2013届高考数学第一轮复习教案23.doc
高考数学第一轮复习教案
高考数学第一轮复习教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、策划方案、演讲致辞、合同协议、条据文书、教案资料、好词好句、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, job reports, planning plans, speeches, contract agreements, doctrinal documents, lesson plans, good words and sentences, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学第一轮复习教案高考数学第一轮复习教案七篇高考数学第一轮复习教案都有哪些?新的数学方法和概念,常常比解决数学问题本身更重要。
高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积
第二节空间几何体的表面积与体积表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).知识点一空间几何体的表面积1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表(侧)面积名称侧面积表面积圆柱(底面半径r,母线长l)2πrl 2πr(l+r)圆锥(底面半径r,母线长l)πrl πr(l+r) 圆台(上、下底面半径r1,r2,母线长l)π(r1+r2)l π(r1+r2)l+π(r21+r22)球(半径为R)4πR2易误提醒(1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.(2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.(3)组合体的表面积应注意重合部分的处理.[自测练习]1.正六棱柱的高为6,底面边长为4,则它的表面积为()A.48(3+3)B.48(3+23)C.24(6+2) D.144解析:正六棱柱的侧面积S侧=6×6×4=144,底面面积S底=2×6×34×42=483,S表=144+483=48(3+3).答案:A2.如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .8+4 2B .10πC .11πD .12π解析:由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和,即S =4π+2π+2π×3=12π,故选D.答案:D知识点二 空间几何体的体积空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh . (2)V 锥体=13Sh .(3)V 台体=13h (S +SS ′+S ′).(4)V 球=43πR 3(球半径是R ).易误提醒 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.[自测练习]3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3D .4 cm 3解析:由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥,如图所示.由四棱锥的体积公式知所求几何体的体积V =83cm 3.答案:B4.某一容器的三视图如图所示,则该几何体的体积为________.解析:依题意,题中的几何体是从一个棱长为2的正方体中挖去一个圆锥,其中该圆锥的底面半径是1、高是2,因此题中的几何体的体积等于23-13π×12×2=8-2π3.答案:8-2π3考点一 空间几何体的表面积|1.(2015·高考福建卷)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S 表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+22,故选B.答案:B2.(2015·高考课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2.答案:B3.(2016·昆明模拟)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的表面积与球O 的表面积的比值为________.解析:设等边三角形的边长为2a ,则S 圆锥表=12·2πa ·2a +πa 2=3πa 2.又R 2=a 2+(3a -R )2(R 为球O 的半径),所以R =233a ,故S 球表=4π·⎝⎛⎭⎫233a 2=16π3a 2,故其表面积比为916. 答案:916(1)由三视图求相关几何体的表面积:,给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体(常规几何体、组合体或旋转体)的特征求表面积:①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.考点二 空间几何体的体积|(1)(2015·高考山东卷)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π(2)(2015·辽宁五校联考)某几何体的三视图如图所示,则该几何体的体积是________.[解析] (1)由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=423π.(2)由三视图知,该几何体为长方体去掉一个三棱锥,其体积V =2×2×3-13×⎝⎛⎭⎫12×2×1×3=11.[答案] (1)B (2)11空间几何体体积问题的三种类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.(2015·绵阳模拟)一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .8+π3B .8+2π3C .8+8π3D .8+16π3解析:依题意得,该机器零件的形状是在一个正方体的上表面放置了一个14的球体,其中正方体的棱长为2,相应的球半径是1,因此其体积等于23+14×43π×13=8+π3,选A.答案:A考点三 与球有关的切、接问题|与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:1.四面体的外接球. 2.四棱锥的外接球. 3.三棱柱的外接球. 4.圆锥的内切球与外接球. 5.四面体的内切球. 探究一 四面体的外接球问题1.(2016·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π解析:如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R (R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.答案:A探究二 四棱锥的外接球问题2.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面P AD ⊥底面ABCD ,△P AD 为正三角形,AB =2AD =4,则球O 的表面积为( )A.323π B .32π C .64πD.643π 解析:依题意,AB ⊥平面P AD 且△P AD 是正三角形,过P 点作AB 的平行线,交球面于点E ,连接BE ,CE ,则可得到正三棱柱APD -BEC .因为△P AD 是正三角形,且AD =2,所以△P AD 的外接圆半径是23,球O 的半径R =22+⎝⎛⎭⎫232=43,球O 的表面积S =4πR 2=64π3,故选D.答案:D探究三 三棱柱的外接球问题3.(2016·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3探究四 圆锥的内切球与外接球问题4.(2016·嘉兴模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π探究五 四面体的内切球问题5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π求解与球有关的切、接问题的关键点解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.21.补形法在空间几何体的体积、面积中的应用【典例】 已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[思维点拨] 可考虑将几何体补完整,再分析求解.[解析] 法一:由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.法二:由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用大小与形状完全相同的补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.[答案] B[方法点评] 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.[跟踪练习] (2015·沈阳模拟)已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π解析:依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π,选C.答案:CA 组 考点能力演练1.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233 D.643解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.答案:D2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .43π D .23π解析:由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.答案:A3.(2016·唐山模拟)某几何体的三视图如图所示,则该几何体的体积为( ) A .8π+16 B .8π-16 C .8π+8 D .16π-8解析:由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.答案:B4.某几何体的三视图如图所示,则该几何体的体积为( )A.2π B .22π C.π3 D.2π3解析:依题意得,该几何体是由两个相同的圆锥将其底面拼接在一起所形成的组合体,其中该圆锥的底面半径与高均为1,因此题中的几何体的体积等于2×13π×12×1=2π3,选D.答案:D5.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( )A.323π B .12π C .16π D .32π 解析:设球心为O ,球心在平面BCD 的投影为O 1,则OO 1=AB2=1,因为△BCD 为等边三角形,故DO 1=23×323=3,因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,球O 的表面积S =4πR 2=16π,故选C.答案:C6.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:437.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π8.(2016·南昌一模)已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝⎛⎭⎫BC 22+⎝⎛⎭⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π9.已知某锥体的三视图(单位:cm)如图所示,求该锥体的体积.解:由三视图知,原几何体是一个五面体,由一个三棱柱截去一个四棱锥得到,其体积为V =V 三棱柱-V 四棱锥=12×2×2×2-13×12×(2+1)×2×2=2.10.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2,S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2, 所以S 表面=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a1+π2.B 组 高考题型专练1.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:由所给三视图可知,该几何体是圆柱从底面圆直径处垂直切了一半,故该几何体的表面积为12×2π×1×2+2×12×π×12+2×2=3π+4,故选D.答案:D2.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:三棱锥V O -ABC =V C -OAB=13S △OAB×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O -ABC =V C -OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π. 答案:C3.(2015·高考课标卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.15解析:如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.答案:D4.(2015·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:该几何体的体积V =23+13×22×2=323(cm 3).答案:C5.(2015·高考四川卷)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离.根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:124。
2013高考数学(文)一轮复习课件:1-3
三个注意
(1)p∨q 为真命题,只需 p,q 有一个为真即可,p∧q 为真命题, 必须 p,q 同时为真,解题时要注意分类讨论思想的应用. (2)p 或 q 的否定为:
q.
p 且 q;p 且 q 的否定为 p 或
(3)高考中较多地考查简单逻辑与其他知识的综合问题,要注意 其他知识的提取与应用,一般先化简转化命题,再处理关系.
5.命题 p:有的三角形是等边三角形,命题非 p:________. 答案 所有的三角形都不是等边三角形
考向一 含有逻辑联结词的命题的真假判断 【例 1】►已知命题 p1:函数 y=2x-2-x 在 R 上为增函数.p2: 函数 y=2x+2 x 在 R 上为减函数.则在命题 q1 :p1∨p2,q2:
基础梳理 1.简单的逻辑联结词 (1)命题中的“ 或 结词. ”、“ 且 ”、“ 非 ”叫做逻辑联
(2)命题 p∧q,p∨q, p 的真假判断 p 真 真 假 假 q 真 假 真 假 p∧q 真 假 假 假 p∨q 真 真 真 假 p 假 假 真 真
2.全称量词与存在量词、全称命题与特称命题 (1)短语“所有的”“任意一个”这样的词语,一般在指定的范围 内都表示事物的全体,这样的词叫做全称量词,用符号“∀”表 示,含有全称量词的命题,叫做 全称命题 .全称命题“对M中 任意一个x,有p(x)成立”可用符号简记为: ∀x∈M,p(x) . (2)短语“存在一个”“至少有一个”这样的词语,都是表示事物 的个体或部分的词叫做存在量词.并用符号“∃”表示.含有存 在量词的命题叫做 特称命题 .特称命题“存在M中的一个x0, .
- -
y=2x+2-x在R上存在最小值,故这个函数一定不是R上的单调函 数,故p2是假命题.由此可知,q1真,q2假,q3假,q4真. 答案 C
2013高考数学(理)一轮复习教案:第六篇_数列第2讲_等差数列及其前n项和
第2讲 等差数列及其前n 项和泊头一中韩俊华 【2013年高考会这样考】1.考查运用基本量法求解等差数列的基本量问题(知三求二问题,知三求一问题).2.考查等差数列的性质、前n 项和公式及综合应用. 【复习指导】1.掌握等差数列的定义与性质、通项公式、前n 项和公式等.2.掌握等差数列的判断方法,等差数列求和的方法.基础梳理1.等差数列的定义(1)文字定义:如果一个数列从第 项起,每一项与它的前一项的差都等于 ,那么这个数列就叫做等差数列,这个叫做 等差数列的 ,通常用字母d 表示(2)符号定义: ①. ② 2.等差数列的通项公式:n a = ,变式:d = ()1n ≠或n a = ,变式:d = ()n m ≠(其中*,m n N ∈)或n a = 。
(函数的一次式) 3.等差中项如果A =a +b2A 叫做a 与b 的等差中项.4 等差数列的判定方法 ①定义法:②等差中项法: ③通项公式法: 4.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且m +n =p +q ,则 (m ,n ,p ,q ∈N *).特别的若:m +n =2p ,则(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为 的等差数列(4)在有穷等差数列中与首末两项等距离的任意两项的和相等:即: (5)等差数列的单调性:若d >0,则数列{a n }为 若d=0,则数列{a n }为 若d <0,则数列{a n }为(6)等差数列中公差d= = (7)等差数列中a n =m ,a m =n 则a m+n =(8)若数列{a n } {b n }均为等差数列,则若{c a n +kb n }仍为 ,另外数列 (9)若项数为2n ,则 ①S S -=奇偶; ②S S =偶奇; ③2n S =(用1,n n a a +表示,1,n n a a +为中间两项) (10)若项数为21n +,则 ①S S -=奇偶; ②S S =奇偶; ③21n S +=(用1n a +表示,1n a +为中间项)(11)若等差数列{n a },{n b }的前n 项和分别为n n S T ,,则2121n n nn a S b T --=(12).23243m m m m m m m S S S S S S S --- ,,,,为等差数列。
2013届高考数学一轮复习课件(理)人教A版-第23讲 正(余)弦定理
1 2 2 = ×4R sinAsinB× 2 2 3π = 2R sinAsin( -A) 4
2
1 2 π = R [ 2sin(2A- )+1]. 2 4 3π π π 5π 因为 0<A< ,所以- <2A- < , 4 4 4 4 π π 3π 所以当 2A- = ,即 A= 时,S△ABC 取最大值. 4 2 8 2+1 2 (SR,它的内接△ABC 中,有 2R(sin2A-sin2C)=( 2a-b)sinB,求角 C 和△ABC 面积 S△ABC 的最大值.
a b c 【解析】由正弦定理得 sinA= ,sinB= ,sinC= , 2R 2R 2R a2 c2 b 则 2R( 2- 2)=( 2a-b)× , 4R 4R 2R 即 a2-c2=( 2a-b)b, a2+b2-c2 2 π 3π 所以 cosC= = ,于是 C= ,A+B= . 2 4 4 2ab 1 所以 S△ABC= ab· sinC 2
π π π asin -C 2RsinAsin -C sinAsin -C 6 6 6 (3) = = b-c 2RsinB-2RsinC sinB-sinC 31 3 cosC- sinC 2 2 2 = π sin -C-sinC 3 3 3 cosC- sinC 4 4 1 = = . 2 3 3 cosC- sinC 2 2
1 1 3 【解析】由 S= bcsinA,即 3= ×1×c× ,所以 c=4. 2 2 2 所以 a= b2+c2-2bccos120° 1 = 16+1+2×4×1× 2 = 21. a 21 所以 2R= = =2 7. sinA 3 2 a+b+c 2RsinA+sinB+sinC 所以 = = 2R = sinA+sinB+sinC sinA+sinB+sinC 2 7.
高中一轮复习教案数学
高中一轮复习教案数学第一课:函数及其性质
1.1 函数的定义和性质
概念:函数的定义和表示方法
性质:单调性、奇偶性、周期性等
1.2 函数的基本变换
平移、翻转、缩放等基本函数的变换方法
例题:给出函数图像,要求根据变换规律求新函数的图像1.3 复合函数
概念:复合函数的定义和计算方法
例题:计算复合函数的值,并分析其性质
1.4 反函数
概念:反函数的存在条件及求解方法
例题:给定函数,求其反函数,并验证是否合理
第二课:三角函数及其应用
2.1 三角函数的概念与性质
正弦、余弦、正切等三角函数的定义和性质
例题:解三角函数方程,证明恒等式等
2.2 三角函数的图像与变换
三角函数的图像特征及平移、翻转、缩放等变换规律
例题:给定函数图像,要求根据变换规律求新函数的图像2.3 三角函数的应用
三角函数在几何、物理等领域的应用
例题:实际问题中的三角函数应用
第三课:导数与微分
3.1 导数的概念与性质
导数的定义、导数与函数图像的关系等基本性质
例题:求函数的导数,研究导数的性质
3.2 导数的计算
常见函数的导数计算方法
例题:计算给定函数的导数,并分析其变化规律
3.3 微分的应用
微分的定义及在近似计算、最值问题等方面的应用
例题:利用微分求函数的极值点,解几何问题等
以上是高中数学一轮复习的教案范本,希望对你的备考有所帮助。
祝你取得优异的成绩!。
高三数学第一轮复习教案
高三数学第一轮复习教案作为一位杰出的教职工,常常需要用到教案,教案有助于学生知道并掌控系统的知识。
教案要怎么写呢?这里给大家分享一些关于高三数学第一轮复习教案,方便大家学习。
高三数学第一轮复习教案教学准备教学目标数列求和的综合运用教学重难点数列求和的综合运用教学进程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=5.已知方程(___2-2___+m)(___2-2___+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=an___n,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有值,并求出它的值.已知数列{an},an∈N______,Sn=(an+2)2(1)求证{an}是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.已知f(___)=___2-2(n+1)___+n2+5n-7(n∈N______)(1)设f(___)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(___)的图象的顶点到___轴的距离构成数列{dn},求数列{dn}的前n项和sn.11.购买一件售价为5000元的商品,采取分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每个月利息按复利运算(上月利息要计入下月本金),那么每期应对款多少?(精确到1元)12.某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)求这种商品的日销售额的值注:对于分段函数型的运用题,应注意对变量___的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,肯定值高三数学复习计划一、背景分析最近3年高考数学命题很安稳,坚持了稳中求改、稳中创新的原则。
2013届高考数学(理)一轮复习教案:第三篇 导数及其应用专题一 高考函数与导数命题动向(人教A版)
2013届高考数学(理)一轮复习教案:第三篇导数及其应用专题一高考函数与导数命题动向高考命题分析函数是数学永恒的主题,是中学数学最重要的主干知识之一;导数是研究函数的有力工具,函数与导数不仅是高中数学的核心内容,还是学习高等数学的基础,而且函数的观点及其思想方法贯穿于整个高中数学教学的全过程,高考对函数的考查更多的是与导数的结合,发挥导数的工具性作用,应用导数研究函数的性质、证明不等式问题等,体现出高考的综合热点.所以在高考中函数知识占有极其重要的地位,是高考考查数学思想、数学方法、能力和素质的主要阵地.高考命题特点函数与导数在高考试卷中形式新颖且呈现出多样性,既有选择题、填空题,又有解答题.其命题特点如下:(1)全方位:近年新课标的高考题中,函数的知识点基本都有所涉及,虽然高考不强调知识点的覆盖率,但函数知识点的覆盖率依然没有减小.(2)多层次:在近年新课标的高考题中,低档、中档、高档难度的函数题都有,且题型齐全.低档难度题一般仅涉及函数本身的内容,诸如定义域、值域、单调性、周期性、图象等,且对能力的要求不高;中、高档难度题多为综合程度较高的试题,或者函数与其他知识结合,或者是多种方法的渗透.(3)巧综合:为了突出函数在中学数学中的主体地位,近年高考强化了函数与其他知识的渗透,加大了以函数为载体的多种方法、多种能力(甚至包括阅读能力、理解能力、表述能力、信息处理能力)的综合程度.(4)变角度:出于“立意”和创设情景的需要,函数试题设置问题的角度和方式也不断创新,重视函数思想的考查,加大了函数应用题、探索题、开放题和信息题的考查力度,从而使函数考题显得新颖、生动、灵活.(5)重能力:以导数为背景与其他知识(如函数、方程、不等式、数列等)交汇命题.利用导数解决相关问题,是命题的热点,而且不断丰富创新.解决该类问题要注意函数与方程、转化与化归、分类讨论等数学思想的应用.综合考查学生分析问题、解决问题的能力和数学素养.高考动向透视函数的概念和性质函数既是高中数学中极为重要的内容,又是学习高等数学的基础.函数的基础知识涉及函数的三要素、函数的表示方法、单调性、奇偶性、周期性等内容.纵观全国各地的高考试题,可以发现对函数基础知识的考查主要以客观题为主,难度中等偏下,在解答题中主要与多个知识点交汇命题,难度中等.【示例1】►(2011·安徽)设f (x )是定义在R 上的奇函数,当x ≤0时,f (x )=2x 2-x ,则f (1)=( ).A .-3B .-1C .1D .3解析 法一 ∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (1)=-f (-1)=-2×(-1)2+(-1)=-3.故选A.法二 设x >0,则-x <0,∵f (x )是定义在R 上的奇函数,且x ≤0时,f (x )=2x 2-x ,∴f (-x )=2(-x )2-(-x )=2x 2+x ,又f (-x )=-f (x ),∴f (x )=-2x 2-x ,∴f (1)=-2×12-1=-3,故选A.答案 A本题考查函数的奇偶性和函数的求值,解题思路有两个:一是利用奇函数的性质,直接通过f (1)=-f (-1)计算;二是利用奇函数的性质,先求出x >0时f (x )的解析式,再计算f (1).指数函数、对数函数、幂函数指数函数在新课标高考中占有十分重要的地位,因此高考对指数函数的考查有升温的趋势,重点是指数函数的图象和性质,以及函数的应用问题.对于幂函数应重点掌握五种常用幂函数的图象及性质,此时,幂的运算是解决有关指数问题的基础,也要引起重视.对数函数在新课标中适当地降低了要求,因此高考对它的考查也会适当降低难度,但它仍是高考的热点内容,重点考查对数函数的图象和性质及其应用.【示例2】►(2011·天津)已知a =5log 23.4,b =5log 43.6,c =⎝ ⎛⎭⎪⎫15log 30.3,则( ). A .a >b >c B .b >a >c C .a >c >b D .c >a >b解析因为c=5-log30.3=5log3103,又log23.4>log33.4>log3103>1>log43.6>0,且指数函数y=5x是R上的增函数,所以a>c>b.故选C.答案 C本题主要考查指数函数单调性的应用、对数式的大小比较.一般是利用指数函数单调性进行比较.对数式的比较类似指数式的比较,也可以寻找中间量.函数的应用函数的应用历来是高考重视的考点,新课标高考更是把这个考点放到了一个重要的位置.相对于大纲的高考,新课标高考无论在考查内容上还是力度上都有所加强,这主要体现在函数与方程方面,函数与方程已经成为新课标高考的一个命题热点,值得考生重视.【示例3】►(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x <2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析由f(x)=0,x∈[0,2)可得x=0或x=1,即在一个周期内,函数的图象与x 轴有两个交点,在区间[0,6)上共有6个交点,当x=6时,也是符合要求的交点,故共有7个不同的交点.故选B.答案 B本小题考查对周期函数的理解与应用,考查三次方程根的求法、转化与化归思想及推理能力,难度较小.求解本题的关键是将f(x)=x3-x进行因式分解,结合周期函数的性质求出f(x)=0在区间[0,6]上的根,然后将方程f(x)=0的根转化为函数图象与x轴的交点问题.导数的概念及运算从近两年的高考试题来看,利用导数的几何意义求曲线在某点处的切线方程是高考的热点问题,解决该类问题必须熟记导数公式,明确导数的几何意义是曲线在某点处切线的斜率,切点既在切线上又在曲线上.【示例4】►已知点P在曲线f(x)=x4-x上,曲线在点P处的切线平行于直线3x -y=0,则点P的坐标为________.解析由题意知,函数f(x)=x4-x在点P处的切线的斜率等于3,即f′(x0)=4x30-1=3,∴x0=1,将其代入f(x)中可得P(1,0).答案(1,0)本题主要考查导数的几何意义及简单的逻辑推理能力.利用导数求函数的单调区间、极值、最值从近两年的高考试题来看,利用导数研究函数的单调性和极、最值问题已成为高考考查的热点.解决该类问题要明确:导数为零的点不一定是极值点,导函数的变号零点才是函数的极值点;求单调区间时一定要注意函数的定义域;求最值时需要把极值和端点值逐一求出,比较即可.【示例5】►已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为1010,若x=23时,y=f(x)有极值.(1)求a,b,c的值;(2)求y=f(x)在[-3,1]上的最大值和最小值.解(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b.当x=1时,切线l的斜率为3,可得2a+b=0.①当x=23时,y=f(x)有极值,则f′⎝⎛⎭⎪⎫23=0,可得4a+3b+4=0②由①②解得a=2,b=-4. 设切线l的方程为y=3x+m由原点到切线l的距离为10 10,则|m|32+1=1010,解得m=±1.∵切线l不过第四象限∴m=1,由于切点的横坐标为x=1,∴f(1)=4,∴1+a+b+c=4∴c=5.(2)由(1)可得f(x)=x3+2x2-4x+5,∴f′(x)=3x2+4x-4.令f′(x)=0,得x=-2,x=2 3.f(x)和f′(x)的变化情况如下表:在x=23处取得极小值f⎝⎛⎭⎪⎫23=9527.又f(-3)=8,f(1)=4,∴f(x)在[-3,1]上的最大值为13,最小值为95 27.在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.突出以函数与导数为主的综合应用高考命题强调“以能力立意”,就是以数学知识为载体,从问题入手,把握数学学科的整体意义,加强对知识的综合性和应用性的考查.中学数学的内容可以聚合为数和形两条主线,其中数是以函数概念来串联代数、三角和解析几何知识,我们可以把方程看作函数为零,不等式看成两个函数值的大小比较、数列、三角则是特殊的一类函数.所以,高考试题中涉及函数的考题面很广.新课标高考对有关函数的综合题的考查,重在对函数与导数知识理解的准确性、深刻性,重在与方程、不等式、数列、解析几何等相关知识的相互联系,要求考生具备较高的数学思维能力和综合分析问题能力以及较强的运算能力,体现了以函数为载体,多种能力同时考查的命题思想.【示例6】►(2011·福建)已知a,b为常数,且a≠0,函数f(x)=-ax+b+ax ln x,f(e)=2(e=2.718 28…是自然对数的底数).(1)求实数b的值;(2)求函数f(x)的单调区间.(3)当a=1时,是否同时存在实数m和M(m<M),使得对每一个t∈[m,M],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点?若存在,求出最小的实数m 和最大的实数M ;若不存在,说明理由.解 (1)由f (e)=2得b =2.(2)由(1)可得f (x )=-ax +2+ax ln x .从而f ′(x )=a ln x .因为a ≠0,故①当a >0时,由f ′(x )>0得x >1,由f ′(x )<0得0<x <1;②当a <0时,由f ′(x )>0得0<x <1,由f ′(x )<0得x >1.综上,当a >0时,函数f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1);当a <0时,函数f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)当a =1时,f (x )=-x +2+x ln x ,f ′(x )=ln x .由(2)可得,当x 在区间⎣⎢⎡⎦⎥⎤1e ,e 内变化时,f ′(x ),f (x )的变化情况如下表:又2-2e <2,所以函数f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 的值域为[1,2].据此可得,若⎩⎨⎧m =1,M =2.则对每一个t ∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点; 并且对每一个t ∈(-∞,m )∪(M ,+∞),直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都没有公共点.综上,当a =1时,存在最小的实数m =1,最大的实数M =2,使得对每一个t∈[m ,M ],直线y =t 与曲线y =f (x )⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤1e ,e 都有公共点.本题主要考查函数、导数等基础知识.考查推理论证能力、抽象概括能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想.。
2013高考数学(理)一轮复习课件:3-2
则切线方程为 y-(-2)=(3x2 0-8x0+5)(x-2),
3 又切线过(x0,x0 -4x2 0+5x0-4)点, 3 2 则x0 -4x2 + 5 x - 2 = (3 x 0 0 0-8x0+5)(x0-2),
考向一 求曲线切线的方程 【例1】►已知函数f(x)=x3-4x2+5x-4. (1)求曲线f(x)在x=2处的切线方程; (2)求经过点A(2,-2)的曲线f(x)的切线方程. [审题视点] 由导数几何意义先求斜率,再求方程,注意点是
否在曲线上,是否为切点.
解 (1)f′(x)=3x2-8x+5 f′(2)=1,又f(2)=-2 ∴曲线f(x)在x=2处的切线方程为 y-(-2)=x-2,即x-y-4=0.
三个步骤 求函数单调区间的步骤: (1)确定函数f(x)的定义域; (2)求导数f′(x); (3)由f′(x)>0(f′(x)<0)解出相应的x的范围. 当f′(x)>0时,f(x)在相应的区间上是增函数;当f′(x)<0 时,f(x)在相应的区间上是减函数,还可以列表,写出函数的 单调区间.
双基自测 1.(2011· 山东)曲线y=x3+11在点P(1,12)处的切线与y轴交点的 纵坐标是( A.-9 C.9 解析 由已知y′=3x2,则y′|x=1=3 切线方程为y-12=3(x-1), 即y=3x+9. 答案 C ). B.-3 D.15
).
3.(2012· 长沙一中月考)若点P是曲线y=x2-ln x上任意一点, 则点P到直线y=x-2的最小值为( A.1 2 C. 2 解析 ). B. 2 D. 3 1 1 由已知y′=2x- x ,令2x- x =1,解得x=1.曲线y=x2
高三数学第一轮复习教案
集合的性质: ①任何一个集合是它本身的子集,记为
A A;
②空集是任何集合的子集,记为
A;
③空集是任何非空集合的真子集;
如果 A B ,同时 B A ,那么 A = B. 如果 A B, B C,那么 A C .
[ 注 ] :① Z= { 整数 } (√) Z ={ 全体整数 } (3)
②已知集合 S 中 A的补集是一个有限集,则集合 则 CsA= {0} )
命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式: p 或 q( 记作“ p∨ q” ) ; p 且 q( 记作“ p∧ q” ) ;非 p( 记
作“┑ q” ) 。
3、“或”、 “且”、 “非”的真值判断 ( 1)“非 p”形式复合命题的真假与 F 的真假相 反; ( 2)“ p 且 q”形式复合命题当 P 与 q 同为真时 为真,其他情况时为假; ( 3)“ p 或 q”形式复合命题当 p 与 q 同为假时 为假,其他情况时为真.
高考数学总复习教案及知识点
第一章 - 集合
考试内容: 集合、 子集、 补集、 交集、 并集. 逻辑联结词. 四种命题. 充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包 含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充 分条件、必要条件及充要条件的意义.
( 1)根的“零分布”:根据判别式和韦达定理分析列式解之
.
( 2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之
.
第三讲,简易逻辑及命题
高三数学一轮复习教学计划
高三数学一轮复习教学计划高三数学一轮复习教学计划1一、背景分析近几年来的高考数学试题逐步做到科学化、规范化,坚持了稳中求改、稳中创新的原则。
考试题不但坚持了考查全面、比例适当,布局合理的特点,也突出体现了变知识立意为能力立意这一举措。
更加注重考查学生进入高校学习所需的基本数学素养,这些变化应引起我们在教学中的关注和重视。
二、指导思想在全面推行素质教育的背景下,努力提高课堂复习效率是高三数学复习的重要任务。
通过复习,让学生在数学学习过程中,更好地学会从事社会生产和进一步学习所必需的数学基础知识,从而培养学生思维能力,激发学生学习数学的兴趣,使学生树立学好数学的信心。
老师要在教学过程中不断了解新的教学信息,更新教育观念,探求新的教学模式,加强教改力度,准确把握课程标准和考试说明的各项基本要求,立足基本知识、基本技能、基本思想和基本方法教学,针对学生实际,指导学法,着力培养学生的创新能力和运用数学的意识和能力。
三、目标要求第一轮复习要结合高考考点,紧扣教材,以加强双基教学为主线,以提高学生能力为目标,加强学生对知识的理解、联系、应用,同时结合高考题型强化训练,提高学生的解题能力。
为此,我们确立了一轮复习的总体目标:通过梳理考点,培养学生分析问题、解决问题的能力;使学生养成思考严谨、分析条理、解答正确、书写规范的良好习惯,为二轮复习乃至高考奠定坚实的基础。
具体要求如下:1、第一轮复习必须面向全体学生,降低复习起点,在夯实双基的前提下,注重培养学生的能力,包括:空间想象、抽象概括、推理论证、运算求解、数据处理等基本能力。
提高学生对实际问题的阅读理解、思考判断能力;以及数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
复习教学要充分考虑到本班学生的实际水平,坚决反对脱离学生实际的任意拔高和只抓几个“优等生”放弃大部分“中等生”的不良做法,不做或少做无效劳动,加大分层教学和个别指导的力度,狠抓复习的针对性、实效性,提高复习效果。
高三数学一轮复习教案全套
高三数学一轮复习教案全套教案标题:高三数学一轮复习教案全套教学目标:1. 复习和巩固高三数学知识点,提高学生的数学应用能力和解题技巧;2. 培养学生的数学思维和逻辑推理能力,提高解决问题的能力;3. 帮助学生理解数学知识与实际生活的联系,培养数学兴趣。
教学内容:本教案全套包含以下内容:1. 整式与分式2. 二次函数与二次方程3. 三角函数与解三角形4. 空间几何与立体几何5. 概率与统计6. 导数与微分7. 积分与定积分8. 向量与解析几何9. 数列与数学归纳法10. 线性规划与简单优化教学步骤:第一课:整式与分式1. 复习整式的基本概念和运算法则;2. 复习分式的基本概念和运算法则;3. 练习整式与分式的综合运用。
第二课:二次函数与二次方程1. 复习二次函数的基本概念和性质;2. 复习二次方程的解法和应用;3. 练习二次函数与二次方程的综合运用。
第三课:三角函数与解三角形1. 复习三角函数的基本概念和性质;2. 复习解三角形的基本方法和技巧;3. 练习三角函数与解三角形的综合运用。
第四课:空间几何与立体几何1. 复习空间几何的基本概念和性质;2. 复习立体几何的基本概念和性质;3. 练习空间几何与立体几何的综合运用。
第五课:概率与统计1. 复习概率的基本概念和计算方法;2. 复习统计的基本概念和分析方法;3. 练习概率与统计的综合运用。
第六课:导数与微分1. 复习导数的基本概念和计算方法;2. 复习微分的基本概念和应用方法;3. 练习导数与微分的综合运用。
第七课:积分与定积分1. 复习积分的基本概念和计算方法;2. 复习定积分的基本概念和应用方法;3. 练习积分与定积分的综合运用。
第八课:向量与解析几何1. 复习向量的基本概念和运算法则;2. 复习解析几何的基本概念和性质;3. 练习向量与解析几何的综合运用。
第九课:数列与数学归纳法1. 复习数列的基本概念和性质;2. 复习数学归纳法的基本原理和应用方法;3. 练习数列与数学归纳法的综合运用。
高三数学第一轮复习课时作业(23)解三角形的应用
课时作业(二十三) 第23讲 解三角形的应用时间:45分钟 分值:100分基础热身1.已知两座灯塔A 、B 与海洋观察站C 的距离相等,灯塔A 在观察站C 的北偏东40°,灯塔B 在观察站C 的南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10° B.北偏西10° C .南偏东10° D.南偏西10°2.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,观测得∠ABC =120°,则AC 两地的距离为( )A .10 km B. 3 kmC .10 5 kmD .107 km3.有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则斜坡长为( ) A .1 B .2sin10°C .2cos10° D.cos20°4.2011²北京朝阳区二模 如图K23-1,一艘船上午8:00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8:30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是________ n mileh.能力提升5.如图K23-2,设A 、B 两点在河的两岸,一测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB 两点的距离为( )A .50 2 mB .50 3 mC .25 2 m D.2522m6.两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( )A .a km B.2a kmC .2a km D.3a km7.据新华社报道,强台风“珍珠”在广东饶平登陆.台风中心最大风力达到12级以上,大风降雨给灾区带来严重的灾害,不少大树被大风折断.某路边一树干被台风吹断后,折成与地面成45°角,树干也倾斜为与地面成75°角,树干底部与树尖着地处相距20 m ,则折断点与树干底部的距离是( )A.2063 m B .10 6 mC.1063m D .20 2 m8.2011²江门一模 海事救护船A 在基地的北偏东60°,与基地相距100 3 n mile ,渔船B 被困海面,已知B 距离基地100 n mile ,而且在救护船A 的正西方,则渔船B 与救护船A 的距离是( )A .100 n mileB .200 n mileC .100 n mile 或200 n mileD .100 3 n mile9.某人在C 点测得某塔在南偏西80°,塔顶仰角为45°,此人沿南偏东40°方向前进10 m 到D ,测得塔顶A 的仰角为30°,则塔高为( )A .15 mB .5 mC .10 mD .12 m10.已知A 船在灯塔C 北偏东80°处,且A 船到灯塔C 的距离为2 km ,B 船在灯塔C 北偏西40°处,A 、B 两船间的距离为3 km ,则B 船到灯塔C 的距离为________ km.11.如图K23-3,在坡角为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆顶端的仰角分别为60°和30°,且第一排和最后一排的距离为106米,则旗杆的高度为________米.12.2011²潍坊二模 如图K23-4,为测得河对岸塔AB 的高,先在河岸上选取一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________ m.13.2011²珠海二模 △ABC 中,AB =22,BC =5,A =45°,∠B 为△ABC 中最大角,D 为AC 上一点,AD =12DC ,则BD =________.14.(10分)以40 kmh 向北偏东30°航行的科学探测船上释放了一个探测气球,气球顺风向正东飘去,3分钟后气球上升到1000米处,从探测船上观察气球,仰角为30°,求气球的水平飘移速度.15.(13分)2011²开封二模 如图K23-5所示,甲船由A 岛出发向北偏东45°的方向作匀速直线航行,速度为15 2 n mileh ,在甲船从A 岛出发的同时,乙船从A 岛正南40 n mile 处的B 岛出发,朝北偏东θ⎝⎛⎭⎫tan θ=12的方向作匀速直线航行,速度为m n mileh.(1)若两船能相遇,求m .(2)当m =105时,求两船出发后多长时间距离最近,最近距离为多少 n mile?-5难点突破16.(12分)某海岛上有一座海拔1 km的山,山顶上有一观察站P(P在海平面上的射影点为A),测得一游艇在海岛南偏西30°,俯角为45°的B处,该游艇准备前往海岛正东方向,俯角为45°的旅游景点C处,如图K23-6所示.(1)设游艇从B处直线航行到C处时,距离观察站P最近的点为D处.(i)求证:BC⊥平面PAD;(ii)计算B、D两点间的距离.(2)海水退潮后,在(1)中的点D处周围0.25 km内有暗礁,航道变窄,为了有序参观景点,要求游艇从B 处直线航行到A的正东方向某点E处后,再沿正东方向继续驶向C处.为使游艇不会触礁,试求AE的最大值.图K23-6课时作业(二十三)【基础热身】1.B 解析 如图,∠CBA =12(180°-80°)=50°,α=60°-50°=10°.2.D 解析 如图,△ABC 中,AB =10,BC = 由余弦定理得, AC 2=AB 2+BC 2-2AB ²BC ²cos120°,=102+202-2³10³20³⎝⎛⎭⎫-12=700,∴AC =107 km.3.C 解析 如图,在△ACD AD sin ∠ACD =CDsin ∠CAD,∴AD =sin(180°-20°)sin(20°-10°)=2sin10°cos10°sin10°=2cos10°.4.16 解析 如图,在△ABS ABsin ∠ASB =BS sin A ,∴AB =42sin(75°-30°)sin30°=8,故此船的航行速度是8÷12=16(nmileh).【能力提升】5.A 解析 由题意,得B =30°.由正弦定理,得ABsin ∠ACB =ACsin B,∴AB =AC ²sin∠ACBsin B=50³2212=502(m).6.D 解析 依题意得∠ACB =120°,由余弦定理,得cos120°=AC 2+BC 2-AB22AC ²BC.∴AB 2=AC 2+BC 2-2AC ²BC cos120°=a 2+a 2-2a 2³⎝⎛⎭⎫-12=3a 2,∴AB =3a .7.A 解析 如图所示,设树干底部为O ,树尖着地处为B ,折断点为A ,则∠ABO =45°,∠AOB =75°,∴∠OAB =60°.由正弦定理知,AOsin45°=20sin60°,∴AO =2063米.8.C 解析 如图,设基地的位置为O OB =100,∠OAB =30°, 由余弦定理,有 OB 2=AB 2+OA 2-2AB ²OA cos ∠OAB ,即AB 2-300AB +2³1002=0, 解得AB =100,或AB =200.9.C 解析 如图,设塔高为h ,在Rt △OC =OA =h . 在Rt △AOD 中,∠ADO =30°,则OD =3h . 在△OCD 中,∠OCD =120°,CD =10.由余弦定理得,OD 2=OC 2+CD 2-2OC ²CD cos ∠OCD , 即(3h )2=h 2+102-2h ³10³cos120°,∴h 2-5h -50=0,解得h =10,或h =-5(舍).10.6-1 解析 如图,由题意可得,∠ACB =120°,AC =2,AB =3,设BC =x ,则由余弦定理可得, AB 2=BC 2+AC 2-2BC ²AC cos120°,即32=x 2+22-2³2x cos120°, 整理得x 2+2x =5,解得x=6-1.11.30 解析 设旗杆高为h 米,最后一排为点A ,第一排为点B ,旗杆顶端为点C ,则BC =hsin60°=233h .在△ABC 中,AB =106,∠CAB =45°,∠ABC =105°, 所以∠ACB =30°,由正弦定理得,106sin30°=233hsin45°,故h =30.12.10 6 解析 在△BCD 中,CD =10,∠BDC =45°,∠BCD =90°+15°=105°,∠CBD =180°-105°-45°=30°,由正弦定理,有CDsin30°=BCsin45°,则BC =10³2212=102,在Rt △ABC 中,AB =BC tan60°=10 6. 13. 5 解析 在△ABC 中,由正弦定理,有 AB sin C =BC sin A ,即sin C =22sin45°5=25, ∴cos C =1-sin 2C =15,sin B =sin(A +C )=sin A cos C +cos A sin C=22³15+22³25=3225, 由正弦定理,有ACsin B=BCsin A, 得AC =5³322522=3. ∵AD =12DC ,∴AD =1,DC =2,在△ABD 中,BD 2=AB 2+AD 2-2AB²AD cos45° =(22)2+12-2³22³1³22=5, ∴BD = 5.14.解答 如图,船从A 航行到C 由题知,BD =1000米=1千米,AC=2∵∠BCD =30°,∴BC =3千米. 设AB =x 千米,在△ABC 中,∵∠BAC =90°-30°=60°, ∴由余弦定理得22+x 2-2³2x cos60°=(3)2,∴x 2-2x +1=0,∴x =1.∴气球水平飘移速度为1120=20(kmh).15.解答 (1)设t 小时后,两船在M 处相遇,由tan θ=12,得sin θ=55,cos θ=255,所以sin ∠AMB =sin(45°-θ)=1010. 由正弦定理,AM sin θ=ABsin ∠AMB,∴AM =402, 同理得BM =40 5.∴t =402152=83,m =40583=15 5.(2)以A 为原点,BA 所在直线为y t 时刻甲、乙两船分别在P (x 1,y 1),Q (x 2,y 2)处,则|AP |=152t ,|BQ |=由任意角三角函数的定义,可得⎩⎨⎧x 1=152t cos45°=15t ,y 1=152t sin45°=15t ,即点P 的坐标是(15t,15t ),⎩⎨⎧x 2=105t sin θ=10t ,y 2=105t cos θ-40=20t -40,即点Q 的坐标是(10t,20t -40),∴|PQ |=(-5t )2+(5t -40)2=50t 2-400t +1600=50(t -4)2+800≥202,当且仅当t =4时,|PQ |取得最小值202,即两船出发4小时时,距离最近,最近距离为202海里. 【难点突破】16.解答 (1)(i)证明:连接PD ,AD ,∵游艇距离观察站P 最近的点为D 处,∴PD ⊥BC . 又依题意可知PA ⊥平面ABC ,∴PA ⊥BC . 又PA ∩PD =P ,∴BC ⊥平面PAD .(ii)依题意知PA ⊥AB ,∠PBA =45°,PA =1,∴AB =1, 同理AC =1,且∠BAC =120°,∴∠ABC =∠ACB =30°. 又BC ⊥AD ,∴D 为BC 的中点,且BD =32. (2)解法一:依题意过点B 作圆D 则AE 取得最大值.设AE =x ,则CE =1-x ,过点E 作EF ⊥BC 于F ,则EF =1-x2.连接DG ,则DG ⊥BE ,∴Rt △BGD ∽Rt △BFE , ∴BE =3(1-x ).在△ABE 中,BE 2=AB 2+AE 2-2AB ²AE ²cos∠BAC ,即3(1-x )2=1+x 2+x ,化简得2x 2-7x +2=0, 解得x 1=7+334,x 2=7-334又∵0<x <1,∴x =7-334, 答:BD 的长为32千米,AE 的最大值为7-334千米. 解法二:在平面ABC 内,以A 为坐标原点,AC 为x 轴,建立直角坐标系,依题意,当直线BE 与圆D 相切时AE 最长.由已知AB =1得B ⎝ ⎛⎭⎪⎫-12,-32, 可设直线BE :y +32=k ⎝⎛⎭⎫x +12, 即kx -y +k 2-32=0,由(1)知D 为BC 的中点,由C (1,0)知D ⎝ ⎛⎭⎪⎫14,-34. 则D 到直线BE 距离为14,即⎪⎪⎪⎪⎪⎪3k 4-341+k2=14,得4k 2-33k +1=0,即k =33±118⎝ ⎛⎭⎪⎫k =33-118舍去,∴直线BE 的方程:y +32=33+118⎝⎛⎭⎫x +12,令y =0时,得x =7-334,即AE =7-334, 答:BD 的长为32千米,AE 的最大值为7-334千米.。
2013高考数学(理)一轮复习课件:2-1
3 解得a=- , 2 不符合题意,舍去. (2)当a<0时,1-a>1,1+a<1, 这时f(1-a)=-(1-a)-2a=-1-a; f(1+a)=2(1+a)+a=2+3a, 由f(1-a)=f(1+a),得-1-a=2+3a, 3 解得a=- . 4 3 综合(1),(2)知a的值为-4. 答案 3 - 4
【训练2】 (1)已知f(x)是二次函数,若f(0)=0,且f(x+1)=f(x) +x+1,试求f(x)的表达式. 1 (2)已知f(x)+2f( )=2x+1,求f(x). x 解 (1)由题意可设f(x)=ax2+bx(a≠0),则
a(x+1)2+b(x+1)=ax2+bx+x+1 ax2+(2a+b)x+a+b=ax2+(b+1)x+1
1 2 ∴函数y=log3(x -3x)的单调递增区间
3 3 是-∞,2,单调递减区间是2,+∞.
正解
设t=x2-3x,由t>0,得x<0或x>3,即函数的定义域
为(-∞,0)∪(3,+∞). 3 函数t的对称轴为直线x= , 2 故t在(-∞,0)上单调递减,在3,+∞上单调递增. 1 而函数y=log 3 t为单调递减函数,由复合函数的单调性可知, 1 2 函数y=log 3 (x -3x)的单调递增区间是(-∞,0),单调递减区 间是(3,+∞).
【训练1】
(2012· 天津耀华中学月考)(1)已知f(x)的定义域为
1 1 1 2 - , ,求函数y=fx -x- 的定义域; 2 2 2
(2)已知函数f(3-2x)的定义域为[-1,2],求f(x)的定义域. 1 解 (1)令x -x-2=t,
2
1 知f(t)的定义域为t-2
x+1>0, (2)要使函数有意义,必须且只须 2 -x -3x+4>0, x>-1, 即 x+4x-1<0,
高考数学一轮复习练案23第三章三角函数解三角形第四讲三角函数的图象与性质含解析新人教版
第四讲 三角函数的图象与性质A 组基础巩固一、单选题1.函数y =|2sin x |的最小正周期为( A ) A .π B .2π C .π2D .π4〖解析〗 由图象(图象略)知T =π.2.已知直线y =m (0<m <2)与函数f (x )=2sin(ωx +φ)(ω>0)的图象相邻的三个交点依次为A (1,m ),B (5,m ),C (7,m ),则ω=( A )A .π3B .π4C .π2D .π6〖解析〗 由题意,得函数f (x )的相邻的两条对称轴分别为x =1+52=3,x =5+72=6,故函数的周期为2×(6-3)=2πω,得ω=π3,故选A. 3.(2020·山东省实验中学高三第一次诊断)设函数f (x )=sin ⎝⎛⎭⎫2x -π2(x ∈R ),则f (x )是( B )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数〖解析〗 ∵f (x )=sin ⎝⎛⎭⎫2x -π2=-sin ⎝⎛⎭⎫π2-2x =-cos 2x ,∴f (x )的最小正周期T =2π2=π,且为偶函数.故选B.4.已知函数y =2cos x 的定义域为⎣⎡⎦⎤π3,π,值域为〖a ,b 〗,则b -a 的值是( B ) A .2 B .3 C .3+2D .2- 3〖解析〗 因为x ∈⎣⎡⎦⎤π3,π,所以cos x ∈⎣⎡⎦⎤-1,12,故y =2cos x 的值域为〖-2,1〗,所以b -a =3.5.(2021·河北邢台模拟)函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间是( B ) A .⎣⎡⎦⎤k π2-π12,k π2+5π12(k ∈Z ) B.⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ) C.⎝⎛⎭⎫k π+π6,k π+2π3(k ∈Z ) D.⎣⎡⎦⎤k π-π12,k π+5π12(k ∈Z ) 〖解析〗 由k π-π2<2x -π3<k π+π2(k ∈Z ),得k π2-π12<x <k π2+5π12(k ∈Z ),所以函数f (x )=tan ⎝⎛⎭⎫2x -π3的单调递增区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).故选B. 6.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π4(ω>0)的最小正周期为π,则函数f (x )的图象( B ) A .关于直线x =π4对称B .关于直线x =π8对称C .关于点⎝⎛⎭⎫π4,0对称D .关于点⎝⎛⎭⎫π8,0对称〖解析〗 ∵函数f (x )的最小正周期为π,∴2πω=π.∴ω=2.∴f (x )=sin ⎝⎛⎭⎫2x +π4. ∴函数f (x )图象的对称轴为2x +π4=k π+π2,k ∈Z ,即x =π8+k π2,k ∈Z .故函数f (x )的图象关于直线x =π8对称,故选B.二、多选题7.关于函数f (x )=x +sin x ,下列说法正确的是( ACD ) A .f (x )是奇函数 B .f (x )是周期函数 C .f (x )有零点D .f (x )在⎝⎛⎭⎫0,π2上单调递增 〖解析〗 本题考查三角函数的奇偶性、周期性、单调性及零点.函数f (x )的定义域为R ,f (-x )=-x -sin x =-f (x ),则f (x )为奇函数,故A 正确;根据周期函数的定义,可知函数f (x )一定不是周期函数,故B 错误;因为f (0)=0,所以函数f (x )有零点,故C 正确;当x ∈⎝⎛⎭⎫0,π2时,函数y =x 与y =sin x 均为增函数,所以函数f (x )也为增函数,故D 正确. 8.(2020·河南南阳四校联考改编)已知函数f (x )=3cos ⎝⎛⎭⎫2x -π3(x ∈R ),下列结论错误的是( BC )A .函数f (x )的最小正周期为πB .函数f (x )的图象关于点⎝⎛⎭⎫5π6,0对称 C .函数f (x )在区间⎣⎡⎦⎤0,π2上是减函数 D .函数f (x )的图象关于直线x =π6对称〖解析〗 由题意可得函数f (x )的最小正周期T =2π2=π,故A 正确;当x =5π6时,f ⎝⎛⎭⎫5π6=3cos ⎝⎛⎭⎫2×5π6-π3=-32,所以函数f (x )的图象不关于点⎝⎛⎭⎫5π6,0对称,故B 不正确;当0≤x ≤π2时,-π3≤2x -π3≤2π3,函数f (x )不单调,故C 不正确;当x =π6时,f ⎝⎛⎭⎫π6=3cos ⎝⎛⎭⎫2×π6-π3=3,所以函数f (x )的图象关于直线x =π6对称,故D 正确.综上选B 、C.三、填空题9.若y =cos x 在区间〖-π,α〗上为增函数,则实数α的取值范围是 -π<α≤0 . 10.(2021·云南昆明高三调研测试)函数f (x )=sin ⎝⎛⎭⎫2x -π6的图象上相邻的两个最高点之间的距离为 π .〖解析〗 函数f (x )的图象上相邻两个最高点之间的距离为函数f (x )的最小正周期,又函数f (x )=sin ⎝⎛⎭⎫2x -π6的最小正周期为π,故f (x )的图象上相邻的两个最高点之间的距离为π. 11.函数f (x )=2sin(2x +φ)⎝⎛⎭⎫|φ|≤π2部分图象如图所示,若x 1,x 2∈〖a ,b 〗且x 1≠x 2,f (x 1)=f (x 2),满足f (x 1+x 2)=1,则φ= π6 ,此时y =f (x )的单调递减区间是 ⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ) .〖解析〗 因为f (x )的最小正周期T =2π2=π,且f (a )=f (b )=0,故可得b -a =π2,因为f (x 1+x 2)=1,故可得2sin 〖2(x 1+x 2)+φ〗=1,则可得2(x 1+x 2)+φ=5π6.又因为f ⎝ ⎛⎭⎪⎫x 1+x 22=2,故可得2sin 〖(x 1+x 2)+φ〗=2,则可得(x 1+x 2)+φ=π2,解得φ=π6,则f (x )=2sin ⎝⎛⎭⎫2x +π6.令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,故可得x ∈⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).故答案为:π6;⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ).12.函数f (x )=sin 2x +sin x cos x +1的最小正周期是 π ,单调减区间是⎣⎡⎦⎤k π+3π8,k π+7π8,k ∈Z . 〖解析〗 ∵f (x )=sin 2x +sin x cos x +1=12(1-cos 2x )+12sin 2x +1=22sin ⎝⎛⎭⎫2x -π4+32,∴最小正周期是π.由2k π+π2≤2x -π4≤2k π+3π2(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).∴单调减区间为⎣⎡⎦⎤k π+3π8,k π+7π8,k ∈Z . 四、解答题13.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)当f (x )为偶函数时,求φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.〖解析〗 由f (x )的最小正周期为π, 则T =2πω=π,所以ω=2,所以f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ). 所以sin(2x +φ)=sin(-2x +φ), 展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立, 所以cos φ=0.因为0<φ<2π3,所以φ=π2.(2)因为f ⎝⎛⎭⎫π6=32,所以sin ⎝⎛⎭⎫2×π6+φ=32, 即π3+φ=π3+2k π或π3+φ=2π3+2k π(k ∈Z ), 故φ=2k π或φ=π3+2k π(k ∈Z ),又因为0<φ<2π3,所以φ=π3,即f (x )=sin ⎝⎛⎭⎫2x +π3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得k π-5π12≤x ≤k π+π12(k ∈Z ),故f (x )的递增区间为⎣⎡⎦⎤k π-5π12,k π+π12(k ∈Z ). 14.(2021·武汉市调研测试)已知函数f (x )=3sin 2x +cos 2x +a (a 为常数). (1)求f (x )的单调递增区间;(2)若f (x )在⎣⎡⎦⎤0,π2上有最小值1,求a 的值. 〖解析〗 (1)f (x )=2⎝⎛⎭⎫32sin 2x +12cos 2x +a=2sin ⎝⎛⎭⎫2x +π6+a , 令2k π-π2≤2x +π6≤2k π+π2,k ∈Z ,所以k π-π3≤x ≤k π+π6,k ∈Z ,所以f (x )的单调递增区间为⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ). (2)当0≤x ≤π2时,π6≤2x +π6≤76π,所以-12≤sin ⎝⎛⎭⎫2x +π6≤1, 所以当x =π2时,f (x )有最小值,最小值为a -1=1,所以a =2.B 组能力提升1.(多选题)已知函数f (x )=2cos 2x -sin 2x +2,则( AD ) A .f (x )的最小正周期为π B .f (x )最大值为3C .f (x )的最小正周期为2πD .f (x )最大值为4〖解析〗 本题主要考查三角函数变换及三角函数的性质.f (x )=2cos 2x -sin 2x +2=2(1-sin 2x )-sin 2x +2=4-3sin 2x =4-3×1-cos 2x 2=52+3cos 2x2, ∴f (x )的最小正周期T =π,当cos 2x =1时,f (x )取最大值为4,故选A 、D.2.已知函数f (x )=2sin(πx +1),若对于任意的x ∈R ,都有f (x 1)≤f (x )≤f (x 2)成立,则|x 1-x 2|的最小值为( B )A .2B .1C .4D .12〖解析〗 对任意的x ∈R ,f (x 1)≤f (x )≤f (x 2)成立, 所以f (x 1)=f (x )min =-2,f (x 2)=f (x )max =2, 所以|x 1-x 2|min =T2,又f (x )=2sin(πx +1)的周期T =2ππ=2,所以|x 1-x 2|min =1,故选B.3.(2021·常德模拟)若函数f (x )=3sin(2x +θ)+cos(2x +θ)为奇函数,且在⎣⎡⎦⎤-π4,0上为减函数,则θ的一个值为( D )A .-π3B .-π6C .2π3D .5π6〖解析〗 由题意得f (x )=3sin(2x +θ)+cos(2x +θ)=2sin ⎝⎛⎭⎫2x +θ+π6.因为函数f (x )为奇函数,所以θ+π6=k π(k ∈Z ),故θ=-π6+k π(k ∈Z ).当θ=-π6时,f (x )=2sin 2x ,在⎣⎡⎦⎤-π4,0上为增函数,不合题意.当θ=5π6时,f (x )=-2sin 2x ,在⎣⎡⎦⎤-π4,0上为减函数,符合题意,故选D.4.如果函数y =12sin ωx 在区间⎣⎡⎦⎤-π8,π12上单调递减,那么ω的取值范围是( B )A .〖-6,0)B .〖-4,0)C .(0,4〗D .(0,6〗〖解析〗 解法一:因为函数y =12sin ωx 在区间⎣⎡⎦⎤-π8,π12上单调递减,所以ω<0且函数y =12sin(-ωx )在区间⎣⎡⎦⎤-π12,π8上单调递增, 则⎩⎨⎧ω<0,-ω·⎝⎛⎭⎫-π12≥2k π-π2,k ∈Z ,-ω·π8≤2k π+π2,即⎩⎪⎨⎪⎧ω<0,ω≥24k -6,k ∈Z ,ω≥-16k -4,求得-4≤ω<0.故选B.解法二:代值检验法,当ω=1时,y =12sin x 在⎣⎡⎦⎤-π2,π2上单调递增,排除选项C ,D ;当ω=-6时,y =12sin(-6x )=-12sin 6x 在⎣⎡⎦⎤-π8,-π12上单调递增,在⎣⎡⎦⎤-π12,π12上单调递减,排除选项A.故选B.5.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )的一条对称轴是直线x =π8.(1)求φ的值;(2)求y =f (x )的单调递增区间; (3)求x ∈⎝⎛⎭⎫0,π4,求f (x )的值域. 〖解析〗 (1)由题意,函数f (x )=sin(2x +φ)(-π<φ<0). y =f (x )的一条对称轴是直线x =π8,则2×π8+φ=π2+k π(k ∈Z ),结合-π<φ<0可得φ=-3π4.(2)由(1)可得f (x )=sin ⎝⎛⎭⎫2x -3π4, 令2k π-π2≤2x -3π4≤2k π+π2(k ∈Z ),可得k π+π8≤x ≤k π+5π8(k ∈Z ),故函数f (x )的单调递增区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ). (3)因为x ∈⎝⎛⎭⎫0,π4,所以2x -3π4∈⎝⎛⎭⎫-3π4,-π4, 所以-1≤sin ⎝⎛⎭⎫2x -3π4<-22, 故f (x )的值域为⎣⎡⎭⎫-1,-22.。
高三数学一轮复习精品教案1:第1讲 坐标系教学设计
第一节坐_标_系1.平面直角坐标系中的坐标伸缩变换设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎩⎪⎨⎪⎧x ′=λ·x ,λ>0,y ′=μ·y ,μ>0的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系与极坐标 (1)极坐标系:如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM |叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对(ρ,θ)叫做点M 的极坐标,记为M (ρ,θ).一般地,不做特殊说明时,我们认为ρ≥0,θ可取任意实数. 3.极坐标与直角坐标的互化设M 是坐标系平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ)(ρ≥0),于是极坐标与直角坐标的互化公式如下表:点M 直角坐标(x ,y )极坐标(ρ,θ) 互化公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ⎩⎪⎨⎪⎧ρ2=x 2+y 2tan θ=y x x ≠04.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r 的圆ρ=r (0≤θ<2π)圆心为(r,0),半径为r 的圆ρ=2r cos_θ⎝⎛⎭⎫-π2≤θ≤π2 圆心为⎝⎛⎭⎫r ,π2,半径为r 的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线 (1)θ=α(ρ∈R )或θ=π+α(ρ∈R ) (2)θ=α(ρ≥0)和θ=π+α(ρ≥0) 过点(a,0),与极轴垂直的直线 ρcos_θ=a ⎝⎛⎭⎫-π2<θ<π2 过点⎝⎛⎭⎫a ,π2,与极轴平行的直线ρsin_θ=a (0<θ<π)1.在将直角坐标化为极坐标求极角θ时,易忽视判断点所在的象限(即角θ的终边的位置).2.在极坐标系下,点的极坐标不惟一性易忽视.注意极坐标(ρ,θ)(ρ,θ+2k π),(-ρ,π+θ+2k π)(k ∈Z )表示同一点的坐标. 『试一试』1.点P 的极坐标为⎝⎛⎭⎫2,-π3,则点P 的直角坐标为________. 『解析』∵ρ=2,θ=-π3.∴x =ρcos θ=2cos ⎝⎛⎭⎫-π3=1, y =ρsin θ=2sin ⎝⎛⎭⎫-π3=- 3. 『答案』(1,-3)2.极坐标方程ρ=sin θ+2cos θ能表示的曲线的直角坐标方程为________. 『解析』由ρ=sin θ+2 cos θ,得ρ2=ρsin θ+2ρcos θ, ∴x 2+y 2-2x -y =0. 『答案』x 2+y 2-2x -y =01.确定极坐标方程的四要素极点、极轴、长度单位、角度单位及其正方向,四者缺一不可. 2.直角坐标(x ,y )化为极坐标(ρ,θ)的步骤(1)运用ρ=x 2+y 2,tan θ=yx(x ≠0)(2)在『0,2π)内由tan θ=yx (x ≠0)求θ时,由直角坐标的符号特征判断点所在的象限.『练一练』1.在极坐标系中,圆心在(2,π)且过极点的圆的方程为________. 『解析』如图,O 为极点,OB 为直径,A (ρ,θ),则∠ABO =θ-90°,OB =22=ρsinθ-90°,化简得ρ=-22cos θ. 『答案』ρ=-22cos θ2.已知直线的极坐标方程为ρsin (θ+π4)=22,则极点到该直线的距离是________.『解析』极点的直角坐标为O (0,0), ρsin(θ+π4)=ρ22sin θ+22cos θ=22,∴ρsin θ+ρcos θ=1,化为直角坐标方程为x +y -1=0. ∴点O (0,0)到直线x +y -1=0的距离为d =12=22, 即极点到直线ρsin ⎝⎛⎭⎫θ+π4=22的距离为22. 『答案』22考点一平面直角坐标系中的伸缩变换1.(2014·佛山模拟)设平面上的伸缩变换的坐标表达式为⎩⎪⎨⎪⎧x ′=12x ,y ′=3y ,则在这一坐标变换下正弦曲线y =sin x 的方程变为________.『解析』∵⎩⎪⎨⎪⎧ x ′=12x ,y ′=3y ,∴⎩⎪⎨⎪⎧x =2x ′,y =13y ′.代入y =sin x 得y ′=3sin 2x ′. 『答案』y ′=3sin 2x ′2.函数y =sin(2x +π4)经伸缩变换⎩⎪⎨⎪⎧x ′=2x ,y ′=12y 后的解析式为________. 『解析』由⎩⎪⎨⎪⎧ x ′=2x ,y ′=12y ,得⎩⎪⎨⎪⎧x =12x ′,y =2y ′.①将①代入y =sin(2x +π4),得2y ′=sin(2·12x ′+π4),即y ′=12sin(x ′+π4).『答案』y ′=12sin(x ′+π4)3.双曲线C :x 2-y 264=1经过φ:⎩⎪⎨⎪⎧x ′=3x ,2y ′=y 变换后所得曲线C ′的焦点坐标为________.『解析』设曲线C ′上任意一点P ′(x ′,y ′),由上述可知,将⎩⎪⎨⎪⎧x =13x ′,y =2y ′,代入x 2-y 264=1得x ′29-4y ′264=1, 化简得x ′29-y ′216=1,即x 29-y 216=1为曲线C ′的方程,可见仍是双曲线,则焦点F 1(-5,0),F 2(5,0)为所求. 『答案』(-5,0)或(5,0)『备课札记』 『类题通法』平面图形的伸缩变换可以用坐标伸缩变换来表示.在伸缩变换⎩⎪⎨⎪⎧x ′=λ·x ,λ>0y ′=μ·y ,μ>0下,直线仍然变成直线,抛物线仍然变成抛物线,双曲线仍然变成双曲线,圆可以变成椭圆,椭圆也可以变成圆.考点二极坐标与直角坐标的互化『典例』 (2014·石家庄模拟)在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为3ρ2=12ρcos θ-10(ρ>0). (1)求曲线C 1的直角坐标方程;(2)曲线C 2的方程为x 216+y 24=1,设P ,Q 分别为曲线C 1与曲线C 2上的任意一点,求|PQ |的最小值.『解』 (1)曲线C 1的方程可化为3(x 2+y 2)=12x -10, 即(x -2)2+y 2=23.(2)依题意可设Q (4cos θ,2sin θ),由(1)知圆C 1的圆心坐标为C 1(2,0). 故|QC 1|=(4cos θ-2)2+4sin 2θ =12cos 2θ-16cos θ+8 =23⎝⎛⎭⎫cos θ-232+23, |QC 1|min =263, 所以|PQ |min =63. 『备课札记』 『类题通法』直角坐标方程与极坐标方程的互化,关键要掌握好互化公式,研究极坐标系下图形的性质,可转化直角坐标系的情境进行. 『针对训练』(2014·合肥模拟)在极坐标系中,直线ρcos θ-ρsin θ+1=0与圆ρ=2sin θ的位置关系是________.『解析』直线ρcos θ-ρsin θ+1=0可化成x -y +1=0,圆ρ=2sin θ可化为x 2+y 2=2y ,即x 2+(y -1)2=1.圆心(0,1)到直线x -y +1=0的距离d =|0-1+1|2=0<1.故直线与圆相交. 『答案』相交考点三极坐标方程及应用『典例』 (2014·郑州模拟)已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为ρsin(θ+π4)=2 2.(1)求曲线C 在极坐标系中的方程;(2)求直线l被曲线C截得的弦长.『解』(1)由已知得,曲线C的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,化为极坐标方程是ρ=4cos θ.(2)由题意知,直线l的直角坐标方程为x+y-4=0,由⎩⎪⎨⎪⎧x2+y2-4x=0,x+y=4,得直线l与曲线C的交点坐标为(2,2),(4,0),所以所求弦长为2 2.『备课札记』在本例(1)的条件下,求曲线C与曲线C1:ρcos θ=3(ρ≥0,0≤θ<π2)交点的极坐标.『解』由曲线C,C1极坐标方程联立{ρcos θ=3,ρ=4cos θ,∴cos2θ=34,cos θ=±32,又ρ≥0,θ∈『0,π2).∴cos θ=32,θ=π6,ρ=23,故交点极坐标为⎝⎛⎭⎫23,π6.『类题通法』求曲线的极坐标方程的步骤(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点;(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式;(3)将列出的关系式进行整理、化简,得出曲线的极坐标方程.『针对训练』(2014·荆州模拟)在极坐标系中,过圆ρ=6cos θ的圆心,且垂直于极轴的直线的极坐标方程为________.『解析』ρ=6cos θ在直角坐标系中表示圆心为(3,0),半径为3的圆.过圆心且垂直于x轴的直线方程为x=3,其在极坐标系下的方程为ρcos θ=3.『答案』ρcos θ=3『课堂练通考点』1.(2014·南昌调研)在极坐标系中,圆ρ=2cos θ与直线θ=π4(ρ>0)所表示的图形的交点的极坐标是________.『解析』圆ρ=2cos θ可转化为x 2-2x +y 2=0,直线θ=π4可转化为y =x (x >0),两个方程联立得交点坐标是(1,1),可得其极坐标是(2,π4).『答案』(2,π4)2.(2013·惠州模拟)在极坐标系中,已知两点A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB (其中O 为极点)的面积为________.『解析』由题意知A ,B 的极坐标分别为(3,π3)、(4,π6),则△AOB 的面积S △AOB =12OA ·OB ·sin∠AOB =12×3×4×sin π6=3.『答案』33.(2013·天津高考)已知圆的极坐标方程为ρ=4cos θ, 圆心为C, 点P 的极坐标为⎝⎛⎭⎫4,π3,则|CP |=________.『解析』由ρ=4cos θ可得圆的直角坐标方程为x 2+y 2=4x ,圆心C (2,0).点P 的直角坐标为(2,23),所以|CP |=2 3. 『答案』234.在极坐标系中,圆:ρ=2上的点到直线:ρ(cos θ+3sin θ)=6的距离的最小值为________. 『解析』由题意可得,圆的直角坐标方程为x 2+y 2=4,圆的半径为r =2,直线的直角坐标方程为x +3y -6=0,圆心到直线的距离d =|0+3×0-6|2=3,所以圆上的点到直线的距离的最小值为d -r =3-2=1. 『答案』15.(2014·银川调研)已知直线l :{ x =-t ,y =1+t (t 为参数)与圆C :ρ=42cos(θ-π4).(1)试判断直线l 和圆C 的位置关系; (2)求圆上的点到直线l 的距离的最大值.『解』(1)直线l 的参数方程消去参数t ,得x +y -1=0. 由圆C 的极坐标方程,得ρ2=42ρcos(θ-π4),化简得ρ2=4ρcos θ+4ρsin θ,所以圆C 的直角坐标方程为x 2+y 2=4x +4y , 即(x -2)2+(y -2)2=8,故该圆的圆心为C (2,2),半径r =2 2.从而圆心C 到直线l 的距离为d =|2+2-1|12+12=322,显然322<22,所以直线l 和圆C 相交.(2)由(1)知圆心C 到直线l 的距离为d =322,所以圆上的点到直线l 的距离的最大值为322+22=722.。
2013届高考数学(理)一轮复习课件:第五篇 平面向量第2讲 平面向量基本定理及其坐标表示)
).
x-y=4, 设c=xa+yb,则 x+y=2,
∴c=3a-b. 答案 B
3.(2012· 郑州月考)设向量a=(m,1),b=(1,m),如果a与b共线 且方向相反,则m的值为( A.-1 ).
B.1 C.-2 D.2
解析 设a=λb(λ<0),即m=λ且1=λm.解得m=± 1,由于λ< 0,∴m=-1. 答案 A
不共线 向量,那么对于这一
平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+ λ2e2,其中不共线的向量e1,e2叫表示这一平面内所有向量的一组 基底.
2.平面向量坐标运算 (1)向量加法、减法、数乘向量及向量的模 设 a=(x1,y1),b=(x2,y2),则
(x1+x2,y1+y2) ,a-b= (x1-x2,y1-y2) = (λx1,λy1) ,|a|= x2+y2. 1 1
【ABCD中,AD∥BC,∠
→ → ADC=90° ,AD=2,BC=1,P是腰DC上的动点,则|PA +3PB | 的最小值为________. [尝试解析] 以D为原点,分别以DA、DC所在直线为x、y轴建
立如图所示的平面直角坐标系,设DC=a,DP=x.
4.设向量a=(1,-3),b=(-2,4),若表示向量4a、3b-2a、c 的有向线段首尾相接能构成三角形,则向量c=( A.(4,6) B.(-4,-6) C.(4,-6) ).
D.(-4,6)
解析 设c=(x,y), 则4a+(3b-2a)+c=0,
4-6-2+x=0, ∴ -12+12+6+y=0, x=4, ∴ y=-6.
→ → → ∵AD=xAB+yAC,∴(2+ 3, 3)=(2x,2y). x=1+ 3, 2+ 3=2x, 2 即有 解得 3=2y, y= 3. 2 3→ → → → 3 → 另解:AD=AF+FD=1+ AB+ AC, 2 2 3 3 所以x=1+ 2 ,y= 2 . 3 答案 1+ 2 3 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高考数学科一轮复习精品学案第10讲空间中的平行关系一.课标要求:1.平面的基本性质与推论借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可以作为推理依据的公理和定理:◆公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内;◆公理2:过不在一条直线上的三点,有且只有一个平面;◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;◆公理4:平行于同一条直线的两条直线平行;◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。
2.空间中的平行关系以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辨论证,认识和理解空间中线面平行、垂直的有关性质与判定。
通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行;通过直观感知、操作确认,归纳出以下性质定理,并加以证明:◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行;◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行;◆垂直于同一个平面的两条直线平行能运用已获得的结论证明一些空间位置关系的简单命题。
二.命题走向立体几何在高考中占据重要的地位,通过近几年的高考情况分析,考察的重点及难点稳定,高考始终把直线与直线、直线与平面、平面与平面平行的性质和判定作为考察重点。
在难度上也始终以中等偏难为主,在新课标教材中将立体几何要求进行了降低,重点在对图形及几何体的认识上,实现平面到空间的转化,示知识深化和拓展的重点,因而在这部分知识点上命题,将是重中之重。
预测2013年高考将以多面体为载体直接考察线面位置关系:(1)考题将会出现一个选择题、一个填空题和一个解答题;(2)在考题上的特点为:热点问题为平面的基本性质,考察线线、线面和面面关系的论证,此类题目将以客观题和解答题的第一步为主。
三.要点精讲1.平面概述(1)平面的两个特征:①无限延展②平的(没有厚度)(2)平面的画法:通常画平行四边形来表示平面(3)平面的表示:用一个小写的希腊字母α、β、γ等表示,如平面α、平面β;用表示平行四边形的两个相对顶点的字母表示,如平面AC。
2.三公理三推论:公理1:若一条直线上有两个点在一个平面内,则该直线上所有的点都在这个平面内:A l∈,B l∈,Aα∈,Bα∈⇒α⊂l公理2:如果两个平面有一个公共点,那么它们还有其他公共点,且所有这些公共点的集合是一条过这个公共点的直线。
公理3:经过不在同一直线上的三点,有且只有一个平面。
推论一:经过一条直线和这条直线外的一点,有且只有一个平面。
推论二:经过两条相交直线,有且只有一个平面。
推论三:经过两条平行直线,有且只有一个平面。
3.空间直线:(1)空间两条直线的位置关系:相交直线——有且仅有一个公共点;平行直线——在同一平面内,没有公共点;异面直线——不同在任何一个平面内,没有公共点。
相交直线和平行直线也称为共面直线。
异面直线的画法常用的有下列三种:a babαα(2)平行直线:在平面几何中,平行于同一条直线的两条直线互相平行,这个结论在空间也是成立的。
即公理4:平行于同一条直线的两条直线互相平行。
(3)异面直线定理:连结平面内一点与平面外一点的直线,和这个平面内不经过此点的直线是异面直线。
推理模式:,,,A B a B a ααα∉∈⊂∉⇒AB 与a 是异面直线。
4.直线和平面的位置关系(1)直线在平面内(无数个公共点);(2)直线和平面相交(有且只有一个公共点);(3)直线和平面平行(没有公共点)——用两分法进行两次分类。
它们的图形分别可表示为如下,符号分别可表示为a α⊂,a A α= ,//a α。
aαaα线面平行的判定定理:如果不在一个平面内的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
推理模式:,,////a b a b a ααα⊄⊂⇒.线面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
推理模式://,,//a a b a b αβαβ⊂=⇒ .5.两个平面的位置关系有两种:两平面相交(有一条公共直线)、两平面平行(没有公共点)(1)两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于一个平面,那么这两个平面平行。
定理的模式://////a b a b P a b ββαβαα⊂⎫⎪⊂⎪⎪=⇒⎬⎪⎪⎪⎭推论:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面互相平行。
推论模式:a b βα,,,,,,//,////a b P a b a b P a b a a b b ααββαβ'''''''=⊂⊂=⊂⊂⇒(2)两个平面平行的性质(1)如果两个平面平行,那么其中一个平面内的直线平行于另一个平面;(2)如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
四.典例解析题型1:共线、共点和共面问题例1.(1)如图所示,平面ABD 平面BCD =直线BD ,M 、N 、P 、Q 分别为线段AB 、BC 、CD 、DA 上的点,四边形MNPQ是以PN 、QM 为腰的梯形。
试证明三直线BD 、MQ 、NP 共点。
证明:∵ 四边形MNPQ 是梯形,且MQ 、NP 是腰,∴直线MQ 、NP 必相交于某一点O 。
∵ O ∈直线MQ ;直线MQ ⊂平面ABD ,∴ O ∈平面ABD 。
同理,O ∈平面BCD ,又两平面ABD 、BCD 的交线为BD ,故由公理二知,O ∈直线BD ,从而三直线BD 、MQ 、NP 共点。
点评:由已知条件,直线MQ 、NP 必相交于一点O ,因此,问题转化为求证点O 在直线BD 上,由公理二,就是要寻找两个平面,使直线BD 是这两个平面的交线,同时点O 是这两个平面的公共点即可.“三点共线”及“三线共点”的问题都可以转化为证明“点在直线上”的问题。
(2)如图所示,在四边形ABCD 中,已知AB ∥CD ,直线AB ,BC ,AD ,DC 分别与平面α相交于点E ,G ,H ,F .求证:E ,F ,G ,H 四点必定共线。
证明:∵AB ∥CD , ∴AB ,CD 确定一个平面β. 又∵AB α=E ,AB ⊂β,∴E ∈α,E ∈β, 即E 为平面α与β的一个公共点。
同理可证F ,G ,H 均为平面α与β的公共点.∵两个平面有公共点,它们有且只有一条通过公共点的公共直线,∴E ,F ,G ,H 四点必定共线。
点评:在立体几何的问题中,证明若干点共线时,常运用公理2,即先证明这些点都是某二平面的公共点,而后得出这些点都在二平面的交线上的结论。
例2.已知:a ,b ,c ,d 是不共点且两两相交的四条直线,求证:a ,b ,c ,d 共面。
证明:1o 若当四条直线中有三条相交于一点,不妨设a ,b ,c 相交于一点A ,但A ∉d ,如图1所示:∴直线d 和A 确定一个平面α。
αD C B AEF HG α b a d c G F E A d αH K图1又设直线d与a,b,c分别相交于E,F,G,则A,E,F,G∈α。
∵A,E∈α,A,E∈a,∴a⊂α。
同理可证b⊂α,c⊂α。
∴a,b,c,d在同一平面α内。
2o当四条直线中任何三条都不共点时,如图2所示:∵这四条直线两两相交,则设相交直线a,b确定一个平面α。
设直线c与a,b分别交于点H,K,则H,K∈α。
又H,K∈c,∴c⊂α。
同理可证d⊂α。
∴a,b,c,d四条直线在同一平面α内.点评:证明若干条线(或若干个点)共面的一般步骤是:首先根据公理3或推论,由题给条件中的部分线(或点)确定一个平面,然后再根据公理1证明其余的线(或点)均在这个平面内。
本题最容易忽视“三线共点”这一种情况。
因此,在分析题意时,应仔细推敲问题中每一句话的含义。
题型2:异面直线的判定与应用例3.已知:如图所示, =a,b⊂ ,a b=A,c⊂ ,c∥a。
求证直线b、c为异面直线。
证法一:假设b、c共面于 .由A∈a,a∥c知,A∉c,而a b=A, =a,∴A∈ ,A∈ 。
又c⊂ ,∴ 、 都经过直线c及其外的一点A,∴ 与 重合,于是a⊂ ,又b⊂ 。
又 、 都经过两相交直线a、b,从而 、 重合。
∴ 、 、 为同一平面,这与 =a矛盾。
∴b、c为异面直线.证法二:假设b、c共面,则b,c相交或平行。
(1)若b∥c,又a∥c,则由公理4知a∥b,这与a b=A矛盾。
(2)若b c=P,已知b⊂ ,c⊂ ,则P是 、 的公共点,由公理2,P∈a,又b c=P,即P∈c,故a c=P,这与a∥c矛盾。
综合(1)、(2)可知,b、c为异面直线。
证法三:∵ =a,a b=A,∴A∈a。
∵a∥c,∴A∉c,在直线b上任取一点P(P异于A),则P∉ (否则b⊂ ,又a⊂ ,则 、 都经过两相交直线a、b,则 、 重合,与 =a矛盾)。
又c⊂ ,于是根据“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线”知,b、c为异面直线。
点评:证明两直线为异面直线的思路主要有两条:一是利用反证法;二是利用结论“过平面外一点与平面内一点的直线,和平面内不经过该点的直线是异面直线.。
异面直线又有两条途径:其一是直接假设b、c共面而产生矛盾;其二是假设b、c平行与相交;分别产生矛盾。
判定直线异面,若为解答题,则用得最多的是证法一、二的思路;若为选择或填空题,则往往都是用证法三的思路。
用反证法证题,一般可归纳为四个步骤:(1)否定结论;(2)进行推理;(3)导出矛盾;(4)肯定结论.宜用反证法证明的命题往往是(1)基本定理或某一知识系统的初始阶段的命题(如立体几何中的线面、面面平行的判定定量的证明等);(2)肯定或否定型的命题(如结论中出现“必有”、“必不存在”等一类命题);(3)唯一型的命题(如“图形唯一”、“方程解唯一”等一类命题);(4)正面情况较为繁多,而结论的反面却只有一两种情况的一类命题;(5)结论中出现“至多”、“不多于”等一类命题。
例4.(1)已知异面直线a,b所成的角为700,则过空间一定点O,与两条异面直线a,b都成600角的直线有( )条A.1 B.2 C.3 D.4(2)异面直线a,b所成的角为θ,空间中有一定点O,过点O有3条直线与a,b所成角都是600,则θ的取值可能是()A.300B.500C.600 D.900解析:(1)过空间一点O分别作a'∥a,b'∥b。