最新人教版九年级数学下册第二十八章《锐角三角函数》导学案(第1课时)
人教版九年级下册数学作业课件 第二十八章 锐角三角函数 第1课时 仰角、俯角与解直角三角形
=
3
3)
=(30
3
+45)米,
3
∴DG=EH=AH-AE=(30 3 +45)-15=(30 3 +30)米,(30 3 +30)÷5=(6 3
+6)秒,∴经过(6 3 +6)秒时,无人机刚好离开了操控者的视线
2.如图,在高为 2 m,倾斜角为 30°的楼梯表面铺地毯,地毯的长度至少需要 (C )
A.[2பைடு நூலகம்( 3 +1)] m B.4 m C.2( 3 +1) m D.2( 3 +3) m
3.(威海中考)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的 河流宽度.他先在河岸设立 A,B 两个观测点,然后选定对岸河边的一棵树记为点 M.测得 AB=50 米,∠MAB=22°,∠MBA=67°.请你依据所测数据求出这段河流的 宽度.(结果精确到 0.1 米,参考数据:sin22°≈38 ,cos22°≈1156 ,tan22°≈25 ,sin67°≈1123 , cos67°≈153 ,tan67°≈152 )
2
∴x = 17 ≈0.82 , ∴OD = 0.82 m , ∴DH = OH - OD = OA - OD = 3.4 - 0.82 =
5
2.58≈2.6(m),答:最大水深约为 2.6 m.
13.(广元中考)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到 一定高度 D 点处时,无人机测得操控者 A 的俯角为 75°,测得小区楼房 BC 顶端点 C 处的俯角为 45°.已知操控者 A 和小区楼房 BC 之间的距离为 45 米,小区楼房 BC 的高 度为 15 3 米.
解:如图,过点 D 作 DG⊥AE 于点 G,得矩形 GBFD,∴DF=GB,在 Rt△GDE 中,DE=80 cm,∠GED=48°,∴GE=DE·cos 48°≈80×0.67=53.6(cm),∴GB= GE+BE≈53.6+110=163.6≈164(cm).∴DF=GB≈164(cm).答:活动杆端点 D 离地面 的高度 DF 约为 164 cm
人教版九年级数学下册精品教学课件 第二十八章 锐角三角函数 解直角三角形及其应用 第一课时
新课讲解
归纳:(1)在直角三角形的六个元素中,除直角 外的五个元素,只要知道两个元素(其中至少有一 条边),就可以求出其余的三个元素. (2)定义:在直角三角形中,由已知元素求未知 元素的过程就是解直角三角形. (3)解直角三角形有四种基本类型:①已知斜边 和一条直角边;②已知两条直角边;③已知斜边和 一个锐角;④已知一条直角边和一个锐角.
2
课堂小结
1.解直角三角形的概念 由直角三角形中的已知元素,求出其余未知元素的 过程,叫做解直角三角形. 2.解直角三角形的类型及方法 (1)解直角三角形有四种基本类型:①已知斜边和 一条直角边;②已知两条直角边;③已知斜边和一 个锐角;④已知一条直角边和一个锐角.
课堂小结
(2)在解直角三角形时,可以用勾股定理确定直角 三角形的三边关系,由锐角三角函数得到边角关系. 在选择关系时,应遵循以下基本原则:有斜(斜边) 用弦(正弦、余弦),无斜(斜边)用切(正切), 宁乘勿除,尽量采用原始数据.
第28章:锐角三角函数 28.2 解直角三角形及其应用(1)
人教版·九年级下册
导入新课
导入新课
意大利比萨斜塔在1350年落成时就已倾斜,其塔 顶中心点偏离垂直中心线2.1 m.1972年比萨地区发 生地震,这座高54.5 m的斜塔在大幅度摇摆后仍巍然 屹立,但塔顶中心点偏离垂直中心线增至5.2 m,而 且还以每年增加1 cm的速度继续倾斜,随时都有倒塌 的危险.为此,意大利当局从1990年起对斜塔进行维 修纠偏,2001年竣工,此时塔顶中心点偏离垂直中心 线的距离比纠偏前减少了43.8 cm.
导入新课
C 垂 直 中 心 线Ө
A
B
如果要求你根据
塔 身
上述信息,用
中 “塔身中心线与
锐角三角函数(第一课时) 优质课评选教案
锐角三角函数(第一课时说课稿)单位:广东省翁源县龙仙中学姓名:张丽萍年级:九年级锐角三角函数(第一课时)教材:新人教版九年级下册《数学》尊敬的各位领导、老师:大家好!今天我说课的内容是新人教版九年级下册第二十八章《锐角三角函数》第一课时。
我从下面七个方面对本节课的教学进行说明。
一、教材分析(一)教材的内容:锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA 、cosA 、tanA 表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。
本节内容是在学习了直角三角形两锐角关系、勾股定理等知识的基础上,对直角三角形边角关系的进一步深入和拓展。
(二)地位及作用:“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。
在初中阶段我们主要研究锐角三角函数和解直角三角形的内容。
本节课的学习为类比得到余弦、正切的概念作好了铺垫、也为解直角三角形等知识奠定了基础。
二、学情分析(一)学生的知识基础:九年级学生已经掌握直角三角形中各边和各角的关系,能灵活运用相似图形的性质及判定方法解决问题,有较强的推理证明能力,这为顺利完成本节课的教学任务打下了基础 (二)学生的认知能力:九年级学生的思维活跃,接受能力较强,逻辑思维从经验型逐步向理论型发展,具备了一定的数学探究活动经历和应用数学的意识。
(三)学生的感悟收获:体会数学知识之间的联系,感受数形结合的思想,体会锐角三角函数的意义,提高应用数学和合作交流的能力。
三、教学目标分析:(一)教学目标新课标指出,教学目标应从知识技能、解决问题、情感态度等三个方面阐述,而这三维目标又应是紧密联系的一个完整的整体,学生学知识技能的过程同时成为学会学习,形成教材分析学情分析教学目标分析教学评价分析教学过程设计教法和学法分教学反思《锐角三角函数》第一课时教学说明正确价值观的过程,借此结合以上教材分析,我将三个目标进行整合,确定本节课的教学目标为:教学目标知识技能了解三角函数和锐角的正弦的意义,并会求锐角的正弦值;掌握根据锐角的正弦值及直角三角形的一边求其他边长的方法。
最新人教版九年级数学下册《用计算器求锐角三角函数值及锐角》精品导学案
第二十八章 锐角三角函数28.1 锐角三角函数第4课时 用计算器求锐角三角函数值及锐角学习目标:1. 会使用科学计算器求锐角的三角函数值.2. 会根据锐角的三角函数值,借助科学计算器求锐角的大小.3. 熟练运用计算器解决锐角三角函数中的问题. 重点:1.会使用科学计算器求锐角的三角函数值.2.会根据锐角的三角函数值,借助科学计算器求锐角的大小. 难点:熟练运用计算器解决锐角三角函数中的问题.一、知识链接 1.填写下表: 2. sin 30° cos60°, cos 30° sin 60°,sin 230° + cos 230° = .一、要点探究探究点1:用计算器求锐角的三角函数值或角的度数 【典例精析】(1) 用计算器求sin18°的值;(2) 用计算器求tan30°36′的值;(3) 已知sin A = 0.501 8,用计算器求∠A的度数.练一练 1. 用计算器求下列各式的值(精确到0.000 1):(1) sin47°;(2) sin12°30′;(3) cos25°18′;(4) sin18°+cos55°-tan59°.2. 已知下列锐角三角函数值,用计算器求锐角∠A,∠B的度数(结果精确到0.1°):(1) sin A=0.7,sin B=0.01;(2) cos A=0.15,cos B=0.8;(3) tan A=2.4,tan B=0.5.探究点2:利用计算器探索三角函数的性质(1)通过计算(可用计算器),比较下列各对数的大小,并提出你的猜想:①sin30°____2sin15°cos15°;②sin36°____2sin18°cos18°;③sin45°____2sin22.5°cos22.5°;④sin60°____2sin30°cos30°;⑤sin80°____2sin40°cos40°.猜想:已知0°<α<45°,则sin2α___2sinαcosα.(2) 如图,在△ABC中,AB=AC=1,∠BAC=2α,请利用面积方法验证(1) 中的结论.练一练(1) 利用计算器求值,并提出你的猜想(结果保留四位小数):sin25°≈ ,cos65°≈ ,cos58°≈ ,sin32°≈ ,sin67°≈ ,cos23°≈ ,cos17°≈ ,sin73°≈ ;猜想:已知0°<α<90°,则sin αcos(90°-α),cos αsin(90°-α).(2) 利用计算器求值,并提出你的猜想(结果保留四位小数):sin20°≈ ,cos20°≈ ,sin220°≈ ,cos220°≈ ;sin35°≈ ,cos35°≈ ,sin235°≈ ,cos235°≈ ;猜想:已知0°<α<90°,则sin2α + cos2α = .二、课堂小结1. 用计算器求sin24°37′18″的值,以下按键顺序正确的是 ( )2. 下列式子中,不成立的是( )A.sin35°= cos55°B.sin30°+ sin45°= sin75°C.cos30°= sin60°D.sin260°+ cos260°=13. 利用计算器求值:(1) sin40°≈ (精确到0.0001);(2) sin15°30′≈ (精确到0.0001);(3) 若sin α = 0.5225,则α ≈ (精确到0.1°);(4) 若sin α = 0.8090,则α ≈ (精确到0.1°).4. 已知:sin232°+ cos2α =1,则锐角α = .5.用计算器比较大小:sin87°tan87°.6.在Rt△ABC中,∠C = 90°,∠BAC = 42°24′,∠BAC的平分线AT = 14.7 cm,用计算器求AC的长(精确到0.001cm).参考答案自主学习一、知识链接1.2.= = 1课堂探究一、要点探究探究点1:用计算器求锐角的三角函数值或角的度数【典例精析】例1解:(1)第一步:按计算器键;第二步:输入角度值18;屏幕显示答案:0.309 016 994.(2)方法①:第一步:按计算器键;第二步:输入角度值30.6 (因为30°36′= 30.6°);屏幕显示答案:0.591 398 351.方法②:第一步:按计算器键;第二步:输入角度值30,分值36 (使用键);屏幕显示答案:0.591 398 351.(3)第一步:按计算器键;第二步:然后输入函数值0. 501 8;屏幕显示答案:30.119 158 67°(按实际需要进行精确).还可以利用键,进一步得到∠A= 30°07′08.97 ″(这说明锐角A精确到1′的结果为30°7′,精确到1″的结果为30°7′9″).练一练 1. 解:(1)0.7314 (2)0.2164 (3)0.9041 (4)-0.78172.解:(1) ∠A ≈ 44.4°;∠B ≈ 0.6°.(2) ∠A ≈ 81.4°;∠B ≈ 36.9°. (3) ∠A ≈ 67.4°;∠B ≈ 26.6°.探究点2:利用计算器探索三角函数的性质例2 解:(1)① = ② = ③ = ④ = ⑤ = =(2)∵ S ∠ABC =12AB · sin2α · AC =12sin2α,S ∠ABC =12×2AB ·sin α · AC ·cos α =sin α ·cos α,∠sin2α=2sin αcos α. 此方法也是高中才会研究的求面积的计算公式,建议初中阶段不要深挖.练一练 解:(1)0.4226 0.4226 0.5299 0.5299 0.9205 0.9205 0.9563 0.9563 = =(2)0.3420 0.9397 0.1170 0.8830 0.5736 0.8192 0.3290 0.6710 1 当堂检测1. A2. B3.(1) 0.6428(2) 0.2672(3) 31.5 (4)54.04. 32°5. <6.解:∵ AT 平分∠BAC ,且∠BAC = 42°24′, ∴ ∠CAT =21∠BAC = 21°12′. 在Rt △ACT 中 ,cos ∠CAT =ACAT , ∴ AC = AT · cos ∠CAT = 14.7×cos21°12′ ≈13.705(cm).学生励志寄语:人生,想要闯出一片广阔的天地,就要你们努力去为自己的目标奋斗、勤奋刻苦、充满自信的过好每一天,雏鹰总会凌空翱翔。
人教版九年级数学第二十八章:锐角三角函数(教案)
1.教学重点
-锐角三角函数的定义:强调锐角三角函数是由直角三角形中的边长比定义的,包括正弦、余弦、正切三个函数,以及它们的基本性质。
-特殊角的三角函数值:熟练掌握30°、45°、60°等特殊角的正弦、余弦、正切值,并能灵活运用。
-函数图像与性质:理解正弦、余弦、正切函数的图像特点,以及它们随角度变化的规律。
五、教学反思
在今天的课程中,我发现学生们对锐角三角函数的概念和应用表现出浓厚的兴趣。通过引入日常生活中的实际问题,他们能够更好地理解抽象的数学概念。我注意到,当学生们参与到实验操作和小组讨论中时,他们能够更主动地探索和发现数学规律。
在讲授新课的过程中,我发现正弦、余弦、正切的定义对于一些学生来说还是有一定难度。为了帮助学生更好地理解,我采用了直观的图形和实际例子来进行解释。我觉得这种方法是有效的,因为学生能够通过视觉和实际操作来加深记忆。
我也注意到,在小组讨论环节,有些学生刚开始时不太愿意发表自己的意见。为了鼓励他们,我尽量提了一些开放性的问题,并给予积极的反馈。随着时间的推移,我看到了他们的参与度逐渐提高,这是非常令人欣慰的。
在实践活动方面,虽然时间有限,但学生们似乎很喜欢这种动手操作的机会。他们通过测量和计算,能够将理论知识应用到实际问题中。不过,我也意识到在未来的课程中,可以设计更多样化的实践活动,让学生有更多机会亲自探索和验证三角函数的性质。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了锐角三角函数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这些函数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
人教版数学九年级下册-28.2.1 解直角三角形-教案
28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。
本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。
教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。
本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。
通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。
二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。
(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。
并让学生体验到学习是需要付出努力和劳动的。
三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。
四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。
2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。
九年级数学下册28.1锐角三角函数余弦正切导学案(新人教版)
28.1锐角三角函数(余弦,正切)【学习目标】1.我能感知当直角三角形的锐角固定时,它的邻边与斜边、对边与邻边的比值也都固定这一事实。
2.我能根据余弦、正切的概念,正确进行计算。
学习重点:理解余弦、正切的概念。
学习难点:熟练运用锐角三角函数的概念进行有关计算。
导学过程: 一、自主学习1、我们是怎样定义直角三角形中一个锐角的正弦的?如图1,在Rt △ABC 中,∠C =90°,锐角A________________叫 做∠A 的正弦,记作________。
即SinA=________=________。
2、(1)如图2,在Rt △ABC 中,∠C=90°,求sinA= ,sinB = 。
(2)如图3,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,且 AB =5,BC =3,则sin ∠BAC=_______;sin ∠ADC=_______。
二、合作交流探究与展示 问题11)一般地,当∠A 取其他一定度数的锐角时,它的邻边与斜边的比是否也是一个固定值?如图,任意画R t △ABC 和Rt △A ′B ′C ′,使得∠C=∠C ′=90°,∠A=∠A ′=a ,那么B A C A AB AC ''''与有什么关系?你能解释一下吗?2)如图在Rt △ABC 中,∠C=90°,当锐角A 的大小确定时,∠A 的邻边与斜边的比、∠A 的对边与邻边的比也分别是确定的。
我们把 叫做∠A 的余弦,记作 ,即 ; 把 叫做∠A 的正切,记作 ,即 。
3)锐角A 的正弦,余弦,正切都叫做∠A 的锐角三角函数。
问题2如图,在Rt △ABC 中,∠C=90°,AB=8,BC=6,求sinA,cosA ,tanA 的值。
∠A的邻边b∠A的对边a 斜边c CBAB CAB610图1图2图3三、课堂检测(1、2、3题为必做题;4、5题为选做题。
数学人教版九年级下册锐角三角函数-正弦(导学案)
C BA人教版九年级下册《锐角三角函数——正弦》导学案课型:新授课 执笔者:周国勋学习目标:1.在一定范围内求二次函数c bx ax y ++=2的最值.2.从实际问题中抽象出二次函数关系并运用二次函数的最值解决问题. 学习过程:一、口算:在Rt △ABC 中,① 已知∠A=25°,则∠B=_____; ② 已知AC=2,BC=3, 则AB=______;③ 已知∠A=30°, BC= 2 ,则AB=_____. 二、探索规律:活动:每小组根据要求用几何画板作图,测量及计算:第一、二、三、四、五、六小组分别对应作出一个含有23°,37°,45°,50°,60°,75°的直角三角形,测量出所画角度的对边与斜边的长度,并求出它们的比值.[[讨论]]:适当地改变这个直角三角形的大小,你发现了什么:_____________________________________________. 你能用学过的数学知识验证一下上面发现的规律吗?探索:在DEF Rt ABC Rt ∆∆和中,︒=∠=∠90E C ,D A ∠=∠,那么AB BCDF EF 与相等吗?请写出证明过程(小组合作交流)B(1)34CB A斜边c对边abC BCB A结论:在直角三角形中,当锐角∠A 的度数一定时,不管三角形的大小如何,∠A 的对边与斜边的比 正弦函数概念:规定:在Rt △ABC 中,∠C=90°,∠A 的对边记作a ,∠B 的对边记作b ,∠C 的对边记作c .在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦, 记作A sin ,即caA A =∠=斜边的对边sin例如,当∠A=30°时,我们有2130sin sin =︒=A ; 四、学生展示:例1 如图,在Rt △ABC 中,∠C=90°,求的值和B A sin sin(2)随堂练习 : (A 组)1.如图,在直角△ABC 中,∠C =90o ,若AB =5,AC =4,则A sin =( )A .35B .45C .34D .43_3 _5_C_B_A2.如图,已知点P 的坐标是),(b a ,则αsin 等于( )A .a bB .ba CD 3、将Rt △ABC 的各边都扩大4倍,则锐角A 的正弦值( ) A.不变 B.扩大4倍 C.原来的0.25 D.不能确定[[能力提升]]例、在正方形网格中,△ABC 的位置如图所示,则B sin 的值为( ) A .12BCD4、△ABC 中,AB =AC =3,BC =2,则sinB = 。
精品人教版数学9年级下. 特殊角的锐角三角函数(教案与导学案)
第二十八章锐角三角函数28.1锐角三角函第3课时特殊角的锐角三角函数【知识与技能】1.理解并掌握30°,45°,60°的三角函数值,能用它们进展有关计算;2.能依据30°,45°,60°的三角函数值,说出相应锐角的度数.【过程与方法】经历探索30°,45°,60°角的三角函数值的过程,进一步体会三角函数的意义.【情感态度】在探索特殊角的三角函数值的过程中,增强学生的推理能力和计算能力. 【教学重点】熟记30°,45°,60°的三角函数值,并用它们进展计算.【教学难点】探索30°,45°,60°的三角函数值的指导过程.一、情境导入,初步认识问题在前面我们已经得到sin3o°= 12,sin45°=2,你能得到30°,45°角的其它三角函数值吗?不妨试试看.【教学说明】 教师可引导学生从所给结论sinA = sin30°=12出发,设 BC = 1,那么 AB = 2,由勾股定理可得30°的其它三角函数值,同样在图〔2)中,仍可设BC = 1, 那么AC = 1,45°的其它三角函数值.这里设BC = 1是为了方便计算.二、思考探究,获取新知通过对上述问题的思考,可以得到:sin30°=12,cos30°= 2,tan30°= 3,sin45°= 2,cos45°= 2, tan45°= 1.【想一想】 60°角的三角函数值各是多少?你是如何得到的?在学生的相互交流中可得出结论:sin60°= 2,cos60°= 12 ,tan60°教师再将上述所有结论整理,制成下表.三、典例精析,掌握新知例1 求以下各式的值.(1)cos260°+ sin260°;〔2〕cos45tan45sin45︒-︒︒.解〔1〕原式 =12()2 +32()2 =14+34= 1;〔2〕原式 =2222- 1 = 0.例2 〔1〕如图〔1〕,在Rt△ABC中,∠C=90°,AB = 6,BC = 3,求∠A的度数;〔2〕如图〔2〕,圆锥的高AO等于圆锥的底面半径OB的3倍,求α.解〔1〕∵sinA = BC32AB26==,∴∠A = 45°;〔2〕∵tanα = OA33OBOBOB==,∴α = 60°.【教学说明】以上两例均可先由学生自主完成,然后教师在展示解答过程,加深学生对本节知识的理解,并指明两例题的侧重点不一样,例1侧重于运用特殊角的三角函数值来参与计算,而例2那么是通过计算一个角的某一三角函数值后,利用锐角的三角函数值与锐角之间的一一对应关系,从而确定锐角的度数.这样处理,可让学生熟记特殊角的三角函数值.四、运用新知,深化理解1.在△ABC中,∠A,∠B都是锐角,且tanA = 12,cosB =32,那么△ABC的形状是〔〕A.直角三角形B.钝角三角形C.锐角三角形D.不能确定2.计算:〔1〕3tan30°- tan45°+ 12sin60°= ___________ .〔2〕60160sincos︒-︒+130tan︒- sin45°= ___________ .3.在Rt△ABC中,∠C=90°,BC = 7,AC = 21,试求∠A、∠B的度数.4.边长为2的正方形ABCD在平面直角坐标系中的位置如下图,且∠OBC=30°,试求A、D两点坐标.【教学说明】四道题均可让学生自主探究,也可小组内讨论,到达解决问题的目的.教师巡视,发现问题给予指导,对优秀者和积极参与者给予鼓励,增强学生的学习信心.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学〞局部.【答案】 1.B 【解析】∵cosB =32,∴∠B = 30°,又∵tanA =12<3 2= tan30°,∴∠A < 30°,∠A + ∠B < 60°,∴∠C = 180°- (∠A + ∠B)> 120°.即△ABC 是钝角三角形,应选B.2.〔1〕5314-〔2〕2232【解析】〔1〕原式 =31331322⨯-+⨯3314+ =5314-〔2〕原式 =3221312-233222323.由题意易得:tanA =73213BCAC===,tanB = 3ACBC=,∴∠A= 30°,∠B = 60°.4.解:∵ OB = BC·cosB =323⨯=, OC = BC·sinB =1212⨯=,∴B 点的坐标是〔3,0-〕.过D点作DE 垂直于y轴,交y轴于E点,易证△OBC≅△ECD,∴∠DCE = ∠CBO =30°.∴CE = cos∠DCE ·CD =3232⨯=,∴OE = OC + CE = 13+,DE = 112CD=,∴D 点的坐标是〔1,13-+〕.五、师生互动,课堂小结1.如何理解并熟记特殊角的三角函数值?同学间相互交流.2.运用特殊角的三角函数值可解决哪两类问题?【教学说明】师生共同回忆,对于问题1,可引导学生利用图形进展推理计算,也可通过表格中横排的数的变化规律来记忆.1.布置作业:从教材P68〜70习题28. 1中选取.2.完成创优作业中本课时的“课时作业〞局部.本课时教学以“自主探究〞为主体形式,所以应先给学生自主动手的时间,给学生提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作学习的能力.28.1 锐角三角函数第3课时特殊角的锐角三角函数一、新课导入1.课题导入情景:出示一副三角尺,教师手中的两块三角尺中有几个不同的锐角?问题:分别求出这几个锐角的正弦值、余弦值和正切值.本节课我们学习30°,45°,60°角的三角函数值.〔板书课题〕2.学习目标〔1〕推导并熟记30°,45°,60°角的三角函数值.〔2〕能运用30°,45°,60°角的三角函数值进展简单的计算.〔3〕能由30°,45°,60°角的三角函数值求对应的锐角.〔4〕会运用计算器求锐角三角函数的三角函数值和由三角函数值求锐角.3.学习重、难点重点:推导并熟记30°,45°,60°角的三角函数值.难点:相关运算.二、分层学习1.自学指导〔1〕自学内容:教材P65探究~P66例3上面的内容.〔2〕自学时间:8分钟.〔3〕自学方法:完成探究提纲.②通过计算,得到30°,45°,60°角的正弦值、余弦值、正切值如下表:③观察上表,sin30°,sin45°,sin60°的值有什么规律?cos30°,cos45°,cos60°呢?tan30°,tan45°,tan60°呢?2.自学:学生可参考自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生能否推导30°,45°,60°角的三角函数值.②差异指导:根据学情进展针对性指导.〔2〕生助生:小组内相互交流、研讨、纠正错误.4.强化:特殊角的三角函数值的推导和记忆以及30°,45°,60°角的正弦值、余弦值、正切值的变化规律.1.自学指导〔1〕自学内容:教材P66例3~P67练习上面的内容.〔2〕自学时间:10分钟.〔3〕自学方法:先自主学习,再同桌之间讨论交流,互相纠错.〔4〕自学参考提纲:①含30°,45°,60°角的三角函数值的计算题的解题要点是什么?熟练掌握特殊锐角的三角函数值.②求直角三角形中某锐角的解题要点是什么?先求该锐角的正弦值或余弦值或正切值,然后根据特殊锐角的三角函数值求该锐角的度数.③求以下各式的值:1-2sin30°cos30°;=1-2×12×3223-3tan30°-tan45°+2sin60°;=3×3-1+2×3=231.(cos230°+sin230°)×tan60°.=[3〕2+〔12〕2]×3 3④在Rt△ABC中,∠C=90°,BC7AC21,求∠A、∠B的度数.∵tan A=73321==BCAC,∴∠A=30°,∠B=60°.2.自学:学生可结合自学指导进展自学.3.助学〔1〕师助生:①明了学情:明了学生对特殊角的三角函数值表的掌握情况.②差异指导:根据学情指导学生记忆或推导特殊角的三角函数值.〔2〕生助生:小组交流、研讨.4.强化〔1〕求特殊锐角的三角函数值的关键是先把它转化为实数的运算,再根据实数的运算法那么计算.〔2〕求锐角的度数的关键是先求其正弦值或余弦值或正切值,然后对应特殊锐角的三角函数值求角的度数.〔3〕当A、B为锐角时,假设A≠B,那么sin A≠sin B,cos A≠cos B,tan A≠tanB.1.自学指导〔1〕自学内容:教材P67~P68.〔2〕自学时间:10分钟.〔3〕自学指导:完成探究提纲.〔4〕探究提纲:①用计算器求sin18°的值.sin18°=0.309016994.②用计算器求tan30°36′的值.tan30°36′=0.591398351.③sin A=0.5018,用计算器求锐角A的度数.∠A=30.11915867°或∠A=30°7′8.97″.④∠A是锐角,用计算器探索sin A与cos A的数量关系.sin2A+cos2A=1.⑤∠A 是锐角,用计算器探索sin A 、cos A 与tan A 的数量关系.sin tan cos.AA A⑥当一个锐角逐渐增大时,这个角的各三角函数值会发生怎样的变化呢?请用计算器探索其中的规律.正弦值逐渐增大,余弦值逐渐减小,正切值逐渐增大. ⑦用计算器求以下各锐角三角函数的值: sin35° 0.573576436 cos55° 0.573576436 tan80°25′43″ 5.93036308⑧以下锐角三角函数值,用计算器求相应锐角的度数: sin A =0.6275∠A =38.86591697° cos A =0.6252∠A =51.30313157° tan A =4.8425∠A =78.3321511°三、评价1.学生自我评价:这节课你学到了什么?还有什么疑惑?2.教师对学生的评价:〔1〕表现性评价:根据学生的情感态度和学习效果等方面进展评价. 〔2〕纸笔评价:课堂评价检测. 3.教师的自我评价〔教学反思〕.本课时中的特殊角是指30°,45°,60°的角,课堂上采用“自主探究〞的形式,给学生自主动手的时间并提供创新的空间与可能,再给不同层次的学生提供一个交流合作的时机,培养学生独立探究和合作的能力.本节课的最终教学目的是让学生理解并掌握30°,45°,60°角的三角函数值,并且能够熟记其函数值,然后利用它们进展计算.一、根底稳固〔70分〕1.(5分)2cos(α-10°)=1,那么锐角α= 70° .2.(5分) α为锐角,tanα3cosα等于〔A〕A.12B.22C.32D.333.(5分)用计算器计算cos44°的结果〔准确到0.01〕是〔B〕4.(5分)tanα=0.3249,那么α约为〔B〕A.17°B.18°C.19°D.20°5.(40分)求以下各式的值.〔1〕sin45°+cos45°;22=2.〔2〕sin45°cos60°-cos45°;=22×12-22=-2 4.〔3〕cos245°+tan60°cos30°;=2〕23×3=12+32=2.(4〕1-cos30°sin60°+tan30°.=3123+33=3-1.6.(10分)在△ABC中,∠A,∠B都是锐角,且sin A=3,tan B=1,求∠C的度数.解:∵∠A是锐角且sin A=32,∴∠A=60°.∵∠B是锐角且tan B=1,∴∠B=45°.∴∠C=180°-∠A-∠B=75°.二、综合应用〔20分〕7.(10分)在△ABC中,锐角A,B满足〔sin A-3〕2+|cos B-3|=0,那么△ABC是〔D〕A.等腰三角形B.等边三角形C.等腰直角三角形D.直角三角形8.(10分)如图,△ABC内接于⊙O,AB,CD为⊙O的直径,D E⊥AB于点E,BC=1,AC=3,那么∠D的度数为30° .三、拓展延伸〔10分〕9.(10分)对于钝角α,定义它的三角函数值如下:sinα=sin〔180°-α〕,cosα=-cos〔180°-α〕.〔1〕求sin 120°,cos 120°,sin 150°的值;解:sin120°=sin(180°-120°)=sin60°=3 .Cos120°=-cos(180°-120°)=-cos60°=-1 2 .sin150°=sin(180°-150°)=sin30°=1 2 .〔2〕假设一个三角形的三个内角的比是1∶1∶4,A ,B 是这个三角形的两个顶点,sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.解:∵三角形的三个内角的比是1∶1∶4,∴三角形三个内角度数分别为30°,30°,120°.∴∠A =30°或120°,∠B =30°或120°.∴sin A =sin30°=12或sin A =sin120°=,cos B =cos30°=或cos B =cos120°=-12. 又∵sin A ,cos B 是方程4x 2-mx-1=0的两个不相等的实数根, ∴sin A +cos B =4m ,sin A ·cos B =-14. ∴sin A =12,cos B =-12,∴∠A =30°,∠B =120°,m=0.。
秋九年级数学下册 第二十八章 锐角三角函数练习 (新版)新人教版-(新版)新人教版初中九年级下册数学
第二十八章 锐角三角函数28.1 锐角三角函数第1课时 正弦01基础题知识点1 已知直角三角形的边长求锐角的正弦值如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的正弦,记作sin A ,即sin A =∠A 的对边斜边=ac.1.(某某中考)在Rt △ABC 中,∠C=90°,AC =12,BC =5,则sin A 的值为(D )A.512B.125 C.1213D.5132.已知△ABC 中,AC =4,BC =3,AB =5,则sin A =(A )A.35B.45C.53D.343.如图,在平面直角坐标系中,点A 的坐标为(4,3),那么sin α的值是(A )A.35B.45C.34D.43第3题图 第4题图4. 如图,网格中的每一个正方形的边长都是1,△ABC 的每一个顶点都在网格的交点处,则sin A =35.5.如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sin B 的值是34.6.根据图中数据,求sin C 和sin B 的值.解:在Rt△ABC 中,BC =AB 2+AC 2=34, ∴sinC =AB BC =53434,sinB =AC BC =33434.7.如图所示,在Rt △ABC 中,∠ACB=90°,a∶c=2∶3,求sin A 和sin B 的值.解:在Rt△ABC 中,∠ACB =90°,a∶c =2∶3,设a =2k ,c =3k.(k>0)∴b =c 2-a 2=5k. ∴sinA =a c =2k 3k =23,sinB =b c =5k 3k =53.知识点2 已知锐角的正弦值,求直角三角形的边长8.(来宾中考)在△ABC 中,∠C=90°,BC =6,sin A =23,则AB 边的长是9.9.(某某中考)在△ABC 中,AB =AC =5,sin ∠ABC=0.8,则BC =6.易错点 对正弦的概念理解不清10.把△ABC 三边的长度都扩大为原来的3倍,则锐角A 的正弦值(A )A .不变B .缩小为原来的13C .扩大为原来的3倍D .不能确定02中档题11.已知Rt △ABC∽Rt △A′B′C′,∠C=∠C′=90°,且AB =2A′B′,则sin A 与sin A′的关系为(B )A .sin A =2sin A ′ B.sin A =sin A ′ C .2sin A =sin A ′ D.不确定12.如图,在Rt △ABC 中,∠C=90°,AB =2BC ,则sin B 的值为(C )A.12B.22C.32D .1 13.在△ABC 中,∠C=90°,∠A,∠B,∠C 的对边分别为a ,b ,c ,c =3a ,则sin A 的值是(A )A.13B.233 C .3 D .以上都不对14.如图,在Rt △ABC 中,∠ACB=90°,CD⊥AB,垂足为点 D.若AC =5,BC =2,则sin ∠ACD 的值为(A )A.53 B.255 C.52 D.23第14题图 第16题图15.已知锐角A 的正弦sin A 是一元二次方程2x 2-7x +3=0的根,则sin A =12.16.(某某中考)如图,⊙O 的直径CD =10 cm ,且AB⊥CD,垂足为P ,AB =8 cm ,则sin ∠OAP=35.17.如图,直径为10的⊙A 经过点C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧OC 上一点,求∠OBC 的正弦值.解:连接OA 并延长交⊙A 于点D ,连接CD.∴∠OBC =∠ODC, ∠OCD =90°.∴sin∠OBC =sin∠ODC =OC OD =510=12.03综合题18.(某某中考)如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1=1;sin 2A 2+sin 2B 2=1;sin 2A 3+sin 2B 3=1.(1)观察上述等式,猜想:在Rt△ABC 中,∠C =90°,都有sin 2A +sin 2B =1;(2)如图4,在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,利用三角函数的定义和勾股定理,证明你的猜想;(3)已知:∠A +∠B =90°,且sin A =513,求sin B .解:(2)∵在Rt△ABC 中,∠C =90°,sinA =a c ,sinB =b c ,∴sin 2A +sin 2B =a 2+b 2c2.∵∠C =90°, ∴a 2+b 2=c 2. ∴sin 2A +sin 2B =1.(3)∵sinA =513,sin 2A +sin 2B =1,且sinB >0,∴sinB =1-(513)2=1213.第2课时 锐角三角函数01基础题 知识点1 余弦如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边=bc.1.(某某中考)如图,在Rt △ABC 中,∠C=90°,AB =5,BC =3,则cos B 的值是(A )A.35B.45C.34D.432.在Rt △ABC 中,∠C=90°,cos A =35,AC =6 cm ,那么BC 等于(A )A .8 cm B.245 cmC.185 cm D.65cm 3.在△ABC 中,∠C=90°,AC =2,BC =1,求cos A 和cos B 的值.解:∵∠C =90°,AC =2,BC =1,∴AB =AC 2+BC 2=22+12= 5.cosA =AC AB =25=255,cosB =BC AB =15=55.知识点2 正切如图,在Rt△ABC 中,∠C =90°,我们把锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边=a b.4.(某某中考)在Rt △ABC 中,∠C=90°,AB =5,BC =3,则tan A 的值是(A )A.34B.43C.35D.455.在4×4的正方形的网格中画出了如图所示的格点△ABC,则tan ∠ABC 的值为(D )A.31313 B.21313 C.32 D.23第5题图 第6题图6.(某某中考)如图,在△ABC 中,∠C=90°,AC =2,BC =1,则tan A 的值是12.7.已知等腰三角形的腰长为6 cm ,底边长为10 cm ,则底角的正切值为115.知识点3 锐角三角函数∠A 的正弦、余弦、正切都是∠A 的锐角三角函数.8.(某某中考)如图,在Rt △ABC 中,∠C=90°,BC =15,tan A =158,则AB =17.第8题图 第9题图9.(崇左中考)如图,在Rt △ABC 中,∠C=90°,AB =13,BC =12,则下列三角函数表示正确的是(A )A .sin A =1213B .cos A =1213C .tan A =512D .tan B =12510.在Rt △ABC 中,∠C=90°,AC =7,BC =24.(1)求AB 的长;(2)求sin A ,cos A ,tan A 的值. 解:(1)由勾股定理,得AB =AC 2+BC 2=72+242=25.(2)sinA =BC AB =2425,cosA =AC AB =725,tanA =BC AC =247.02中档题11.在△ABC 中,若三边BC ,CA ,AB 满足BC∶CA∶AB=5∶12∶13,则cos B =(C )A.512 B.125C.513 D.121312.(某某中考)在Rt △ABC 中,∠C=90°,若sin A =35,则cos B 的值是(B )A.45B.35C.34D.4313.将△AOB 按如图所示放置,然后绕点O 逆时针旋转90°至△A′OB′的位置,点A 的坐标为(2,1),则tan ∠A′OB′的值为(A )A.12B .2 C.55 D.255第13题图 第14题图14.(某某中考)如图,在Rt △ABC 中,∠ACB=90°,AC =8,BC =6,CD⊥AB ,垂足为D ,则tan ∠BCD 的值是34.15.(某某中考)如图,在半径为3的⊙O 中,直径AB 与弦CD 交于点E ,连接AC ,B D.若AC =2,则cos D =13.16.(某某中考)如图,在△ABC 中,CD⊥AB,垂足为D.若AB =12,CD =6,tan A =32,求sin B +cos B 的值.解:在Rt△ACD 中,CD =6,tanA =32,∴CD AD =6AD =32,即AD =4. 又AB =12,∴BD =AB -AD =8.在Rt△BCD 中,BC =CD 2+BD 2=10.∴sinB =CD BC =610=35,cosB =BD BC =810=45.∴sinB +cosB =35+45=75.17.如图,将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,如果AB BC =23,求tan ∠DCF 的值.解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°. ∵AB BC =23,且由折叠知CF =BC , ∴CD CF =23.设CD =2x ,CF =3x (x>0),∴DF =CF 2-CD 2=5x. ∴tan∠DCF =DF CD =5x 2x =52.03综合题18.如图,定义:在直角三角形ABC 中,锐角α的邻边与对边的比叫做角α的余切,记作c tan α,即c tan α=角α的邻边角α的对边=ACBC,根据上述角的余切定义,解下列问题:(1)c tan 30°=3;(2)如图,已知tan A =34,其中∠A 为锐角,试求c tan A 的值.解:∵tanA =34,且tanA =BC AC,∴设BC =3x ,AC =4x. ∴ctanA =AC BC =4x 3x =43.第3课时 特殊角的三角函数值01基础题知识点1 特殊角的三角函数值填写下表:30° 45° 60° sin α 12 22 32 cosα 32 22 12 tanα33131.已知∠A=30°,下列判断正确的是(A )A .sin A =12B .cos A =12C .tan A =12D .cot A =122.计算:cos 230°=(D )A.12B.14C.32D.34 3.(某某中考)计算:cos 245°+sin 245°=(B )A.12B .1 C.14 D.224.计算:tan 45°+2cos 45°=2. 5.计算:(1)sin 30°+cos 45°; 解:原式=12+22=1+22.(2)cos30°·tan30°-tan 245°; 解:原式=32×33-12=12-1=-12. (3)22sin45°+sin60°·cos45°. 解:原式=22×22+32×22=2+64.知识点2 由三角函数值求特殊角6.(某某中考)在△ABC 中,若|sin A -12|+(cos B -12)2=0,则∠C 的度数是(D )A .30° B.45° C.60° D.90° 7.如果在△ABC 中,sin A =cosB =22,那么下列最确切的结论是(C ) A .△ABC 是直角三角形 B .△ABC 是等腰三角形 C .△ABC 是等腰直角三角形 D .△ABC 是锐角三角形8.已知α为锐角,且cos (90°-α)=12,则α=30°.9.在△ABC 中,∠C=90°,AC =2,BC =23,则∠A=60°.知识点3 用计算器计算三角函数值10.用计算器计算cos 44°的结果(精确到0.01)是(B )A .0.90B .0.72C .0.6911.如图,在△ABC 中,∠ACB=90°,∠ABC=26°,BC =5.若用科学计算器求边AC 的长,则下列按键顺序正确的是(D )A .5÷tan26°=B .5÷sin26°=C .5×cos26°=D .5×tan26°=12.利用计算器求∠A =18°36′的三个锐角三角函数值.解:sinA =sin18°36′≈0.319 0,cosA =cos18°36′≈0.947 8, tanA =tan18°36′≈0.336 5.13.已知下列正(余)弦值,用计算器求对应的锐角(精确到0.1°).(1)sin α=0.822 1; 解:α≈55.3°.(2)cos β=0.843 4. 解:β≈32.5°.02中档题14.点M(-sin 60°,cos 60°)关于x 轴对称的点的坐标是(B )A.(32,12) B.(-32,-12)C.(-32,12) D.(-12,-32)15.李红同学遇到了这样一道题:3tan(α+20°)=1,你猜想锐角α的度数应是(D)A.40° B.30° C.20° D.10°16.如图,以O为圆心,任意长为半径画弧,与射线OA交于点B,再以B为圆心,BO长为半径画弧,两弧交于点C,画射线OC,则sin∠AOC的值为(D)A.12B.33C.22D.3217.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=2,则点B的坐标为(C) A.(2,1) B.(1,2)C.(2+1,1) D.(1,2+1)第17题图第18题图18.(某某中考)如图,C为⊙O外一点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接C B.若⊙O的半径为2,∠ABC=60°,则BC=8.19.计算:(1)(某某中考改编)2 0180+(-1)2-2tan45°+4;解:原式=1+1-2×1+2=2.(2)(-1)-2+|2-3|+(π-3.14)0-tan60°+8.解:原式=1+(3-2)+1-3+2 2=2+ 2.20.若tan A 的值是方程x 2-(1+3)x +3=0的一个根,求锐角A 的度数.解:解方程x 2-(1+3)x +3=0, 得x 1=1,x 2= 3.由题意知tanA =1或tanA = 3.∴∠A =45°或60°.21.(原创题)如图,在等腰△ABC 中,AB =AC =1.(1)若BC =2,求△ABC 三个内角的度数; (2)若BC =3,求△ABC 三个内角的度数.解:(1)∵AB =AC =1,BC =2,∴AB 2+AC 2=BC 2.∴∠BAC =90°,∠B =∠C =45°.(2)过点A 作AD⊥BC,垂足为D.∵AB =AC =1,AD⊥BC, ∴BD =12BC =32.∴cosB =BD AB =321=32.∴∠B =30°.∴∠C =30°,∠BAC =120°.03综合题22.(某某中考)一般地,当α,β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=sin α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如:sin 90°=sin (60°+30°)=sin 60°·cos 30°+cos 60°·sin 30°=32×32+12×12=1.类似地,可以求得sin 15°的值是6-24. 解直角三角形及其应用 28. 解直角三角形01基础题知识点1 已知两边解直角三角形如图,已知两边:(1)已知a ,b ,则c =a 2+b 2,sin A =cos B =a c,sin B =cos A =bc ,tan A =a b ,tan B =b a;(2)已知a ,c ,则b =c 2-a 2,sin A =cos B =a c ,sin B =cos A =b c ,tan A =a b ,tan B =b a. 1.在△ABC 中,∠C=90°,AC =3,AB =4,欲求∠A 的值,最适宜的做法是(C )A .计算tan A 的值求出B .计算sin A 的值求出C .计算cos A 的值求出D .先根据sin B 求出∠B ,再利用90°-∠B 求出2.在Rt △ABC 中,∠C=90°,a =4,b =3,则cos A 的值是(A )A.35B.45C.43D.543.在Rt △ABC 中,∠C=90°,a =20,c =202,则∠A=45°,∠B =45°,b =20. 4.如图,在Rt △ABC 中,∠C=90°,已知BC =26,AC =62,解此直角三角形.解:∵tanA =BC AC =2662=33,∴∠A =30°.∴∠B =90°-∠A =90°-30°=60°,AB =2BC =4 6.知识点2 已知一边一锐角解直角三角形如图,已知一边一角:(1)已知a ,∠A ,则∠B =90°-∠A ,c =a sinA ,b =a tanA; (2)已知c ,∠A ,则∠B =90°-∠A ,a =c·sinA .5.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=30°,AB =8,则BC 的长是(D )A.433B .4C .8 3D .4 36.在Rt △ABC 中,∠C=90°,tan A =43,BC =8,则△ABC 的面积为(C )A .12B .18C .24D .487.(某某中考)如图,在Rt △ABC 中,∠C=90°,∠B=37°,BC =32,则AC =24.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)8.(教材9下P 73例2变式)如图,在Rt △ABC 中,∠C=90°,∠B=55°,AC =4,解此直角三角形.(结果保留小数点后一位)解:根据题意,∠A =90°-∠B =90°-55°=35°. 根据正弦定义,sinB =AC AB,则AB =AC sinB =4sin55°≈4.9.根据正切的定义,tanB =AC BC,则BC =AC tanB =4sin55°≈2.8.所以△ABC 的另一个锐角度数为35°,另一条直角边长为2.8,斜边长为4.9. 易错点 忽视钝角三角形而致错9.在△ABC 中,AB =23,AC =2,∠B=30°,则BC 的长为2或4.02中档题10. 如图,在△AB C 中,∠C=90°,AC =8 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC的长是(A )A .4 cmB .6 cmC .8 cmD .10 cm11.(某某中考)在△ABC 中,AB =122,AC =13,cos B =22,则BC 边长为(D )A .7B .8C .8或17D .7或1712.(某某中考)如图,在△ABC 中,AC =6,BC =5,sin A =23,则tan B =43.第12题图 第13题图13.(某某中考)如图,在菱形ABCD 中,DE⊥AB 于点E ,cos A =35,BE =4,则tan ∠DBE 的值是2.14.(某某中考)如图,在△ABC 中,BD⊥AC,AB =6,AC =53,∠A=30°.(1)求BD 和AD 的长; (2)求tan C 的值.解:(1)∵BD⊥AC,∴∠ADB =∠BDC =90°.在Rt△ADB 中,AB =6,∠A =30°,∴BD =12AB =3.∴AD =3BD =3 3.(2)CD =AC -AD =53-33=23, 在Rt△BDC 中,tanC =BD CD =323=32.15.(某某中考)如图,在四边形ABCD 中,∠ABC=90°,∠ADC=90°,AB =6,CD =4,BC 的延长线与AD 的延长线交于点E.(1)若∠A=60°,求BC 的长; (2)若sin A =45,求AD 的长.解:(1)∵在Rt△ABE 中,∠ABE =90°,∠A =60°,AB =6,tanA =BE AB,∴BE =6·tan60°=6 3.∵在Rt△CDE 中,∠CDE =90°,∠E =90°-60°=30°, CD =4, ∴CE =2CD =8.∴BC =BE -CE =63-8.(2) ∵在Rt△ABE 中,∠ABE =90°,sinA =45,∴BE AE =45. 设BE =4x ,则AE =5x (x >0).∵AE 2-BE 2=AB 2,∴(5x )2-(4x )2=62.∴x =2. ∴BE =8,AE =10.∵在Rt△CDE 中,∠CDE =90°,CD =4,tanE =CD ED ,而在Rt△ABE 中,tanE =AB BE =68=34,∴CD ED =34. ∴ED =43CD =163.∴AD =AE -ED =143.03综合题16. 如图,在△ABC 中,CD 是边AB 上的中线,∠B 是锐角,且sin B =22,tan A =12,AC =3 5. (1)求∠B 的度数与AB 的长; (2)求tan ∠CDB 的值.解:(1)作CE⊥AB 于E ,设CE =x , 在Rt△ACE 中,∵tanA =CE AE =12,∴AE =2x.∴AC =x 2+(2x )2=5x. ∴5x =35,解得x =3. ∴CE =3,AE =6.在Rt△BCE 中,∵sinB =22, ∴∠B =45°.∴△BCE 为等腰直角三角形. ∴BE =CE =3. ∴AB =AE +BE =9.(2)∵CD 是边AB 上的中线,∴BD =12AB =4.5.∴DE =BD -BE =-3=1.5. ∴tan∠CDE =CEDE=错误!=2,即tan∠CDB 的值为2.28.2.2 应用举例第1课时 与视角有关的解直角三角形应用题01基础题知识点1 利用解直角三角形解决简单问题1. 如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC =10米,∠B=36°,则中柱AD(D 为底边中点)的长是(C )A .5sin36°米B .5cos36°米C .5tan36°米D .10tan36°米第1题图 第2题图2.(教材9下P 74例3变式)如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q.若∠QAP=α,地球半径为R ,则航天飞船距离地球表面最近距离AP =Rsinα-R. 3.(某某中考)为解决江北学校学生上学过河难的问题,乡政府决定修建一座桥,建桥过程中需测量河的宽度(即两平行河岸AB 与MN 之间的距离).如图,在测量时,选定河对岸MN 上的点C 处为桥的一端,在河岸点A 处,测得∠CAB =30°,沿河岸AB 前行30米后到达B 处,在B 处测得∠CBA=60°.请你根据以上测量数据求出河的宽度.(参考数据:2≈1.41,3≈1.73;结果保留整数)解:过点C 作CD⊥AB,垂足为D.∵∠CAB =30°, ∴AD =3CD. ∵∠CBA =60°,∴DB =33CD. ∵AB =AD +DB =30,∴3CD +33CD =30. ∴CD =1523=152×1.73≈13(米).答:河的宽度约为13米.知识点2 解与视角有关的实际问题4.(教材9下P 75例4变式)(某某中考)如图,热气球的探测器显示,从热气球A 处看一栋楼顶部B 处的仰角为30°,看这栋楼底部C 处的俯角为60°,热气球A 处与楼的水平距离为120 m ,则这栋楼的高度为(A )A .160 3 mB .120 3 mC .300 mD .160 2 m5.(某某中考)如图,两幢建筑物AB 和CD ,AB⊥BD,CD⊥BD,AB =15 m ,CD =20 m ,AB 和CD 之间有一景观池,小南在A 点测得池中喷泉处E 点的俯角为42°,在C 点测得E 点的俯角为45°(点B ,E ,D 在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1 m ,参考数据:sin 42°≈0.67,cos 42°≈0.74,tan 42°≈0.90)解:由题意,得∠AEB =42°,∠DEC =45°.∵AB⊥BD,CD⊥BD,∴在Rt△ABE 中,∠ABE =90°. ∵AB =15,∠AEB =42°, tan∠AEB =ABBE ,∴BE =15tan42°=503.在Rt△DEC 中,∠CDE =90°,∠DEC =45°,CD =20.∴ED =CD =20.∴BD =BE +ED =503+(m ).答:两幢建筑物之间的距离BD 约为36.7 m.易错点 混淆三点函数的数量关系而导致错误6.(某某中考)如图,为测量一棵与地面垂直的树OA 的高度,在距离树的底端30米的B 处,测得树顶A 的仰角∠ABO 为α,则树OA 的高度为(C )A.30tanα米 B .30sinα米 C .30tanα米 D .30cosα米 02中档题7. (某某中考)某某市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=CE AE ,∴CE=AE·tan60°=153米.在Rt△ABE中,tan∠BAE=BEAE=17+15315,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.8.(某某中考)乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量:无人机在A处正上方97 m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1 m,参考数据:3≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)解:(1)由题意知∠ABP=30°,AP=97,∴AB=APtan∠ABP =97tan30°=9733=973≈168.答:主桥AB的长度约为168 m.(2)∵∠ABP=30°,AP=97,∴PB=2PA=194.又∵∠DBC=∠DBA=90°,∠PB A=30°,∴∠DBP=∠DPB=60°.∴△PBD是等边三角形.∴DB=PB=194.在Rt△BCD中,∵∠C=80°36′,∴BC=DBtanC =194tan80°36′≈32.答:引桥BC的长约为32 m.03综合题9.(六盘水中考)为践行党的群众路线,六盘水市教育局开展了大量的教育教学实践活动.如图是其中一次“测量旗杆高度”的活动场景抽象出的平面几何图形.活动中测得数据如下:①小明的身高DC=1.5米;②小明的影长CE=1.7米;③小明的脚到旗杆底部的距离BC=9米;④旗杆的影长BF=7.6米;⑤从D点看A点的仰角为30°.请你选择需要的数据,求出旗杆的高度.(计算结果精确到0.1米,参考数据:2≈1.414,3≈1.732)情况一:选用①,②,④.∵AB⊥FC,CD⊥FC,∴∠ABF=∠DCE=90°.又∵AF∥DE,∴∠AFB=∠DEC.则△ABF∽△DCE.∴ABDC=FBEC.又∵DC =1.5 m ,FB =7.6 m ,EC =1.7 m ,∴AB≈6.7 m.即旗杆高度约为6.7 m. 情况二: 选用①,③,⑤. 过D 点作DG⊥AB 于G 点, ∵AB⊥FC,DC⊥FC,∴四边形BCDG 为矩形. ∴CD =BG =1.5 m ,DG =BC =9 m.在Rt△AGD 中,∠ADG =30°,tan30°=AG DG,∴AG =3 3 m.又AB =AG +GB ,∴AB =33+(m).∴旗杆高度约为6.7 m.第2课时 与方位角、棱角有关的解直角三角形应用问题01基础题知识点1 解与方位角有关的实际问题1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB 是(A )A .250米B .2503米 C.50033米 D .5002米第1题图 第2题图2.如图,我国的一艘海监船在钓鱼岛A 附近沿正东方向航行,船在B 点时测得钓鱼岛A 在船的北偏东60°方向,船以50海里/时的速度继续航行2小时后到达C点,此时钓鱼岛A在船的北偏东30°方向.则船继续航行50海里与钓鱼岛A的距离最近.3.(某某中考)小亮一家在一湖泊中游玩,湖泊中有一孤岛,妈妈在孤岛P处观看小亮与爸爸在湖中划船(如图所示).小船从P处出发,沿北偏东60°方向划行200米到A处,接着向正南方向划行一段时间到B处.在B处小亮观测到妈妈所在的P处在北偏西37°的方向上,这时小亮与妈妈相距多少米?(精确到1米,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41,3≈1.73)解:过P作PC⊥AB于C,在Rt△APC中,AP = 200 m,∠ACP =90°,∠PAC =60°.∴PC= 200×sin60°=200 ×32=1003(m).∵在Rt△PBC中,sin37°=PCPB ,∴PB=PCsin37°=错误!≈288(m).答:小亮与妈妈相距约288米.知识点2解与坡角有关的实际问题4.(聊城中考)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1∶3,则AB的长为(A) A.12米 B.43米C.53米 D.63米第4题图第5题图5.如图,在坡度为1∶2的山坡上种树,要求株距(相邻两树间的水平距离)是6米,斜坡上相邻两树间的坡面距离是35米.6.(教材9下P77练习T2变式)如图,一水库大坝的横断面为梯形ABCD,坝顶BC宽6米,坝高20米,斜坡AB的坡度i=1∶2.5,斜坡CD的坡角为30°,求坝底AD的长度.(精确到0.1米,参考数据:2≈1.414,3≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比)解:作BE⊥AD,CF⊥AD,垂足分别为点E,F,则四边形BCFE是矩形.由题意得,BC=EF=6米,BE=CF=20米,斜坡AB的坡度i为1∶2.5,在Rt△ABE中,BEAE=错误!,∴AE=50米.在Rt△CFD中,∠D=30°,∴DF=3CF=203米.∴AD=AE+EF+FD=50+6+203(米).答:坝底AD的长度约为米.02中档题7.(某某中考)如图,一艘轮船航行到B处时,测得小岛A在船的北偏东60°的方向,轮船从B处继续向正东方向航行200海里到达C处时,测得小岛A在船的北偏东30°的方向.已知在小岛周围170海里内有暗礁,若轮船不改变航向继续向前行驶,试问轮船有无触礁的危险?(3≈1.732)解:该轮船不改变航向继续前行,没有触礁危险.理由如下:由题意,得∠ABD=30°,∠ACD=60°.∴∠CAB=∠ABD.∴BC =AC =200海里.在Rt△ACD 中,设CD =x ,则AC =2x ,AD =AC 2-CD 2=(2x )2-x 2=3x. 在Rt△ABD 中,AB =2AD =23x ,BD =AB 2-AD 2=(23x )2-(3x )2=3x.又∵BD =BC +CD ,∴3x =200+x ,解得x =100.∴AD =3x =1003≈173.2.海里>170海里,且D 处距离A 处最近,∴轮船不改变航向继续向前行驶,轮船无触礁的危险.8.(某某中考)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B 点先乘坐缆车到达观景平台DE 观景,然后再沿着坡角为29°的斜坡由E 点步行到达“蘑菇石”A 点,“蘑菇石”A 点到水平面BC 的垂直距离为1 790 m .如图,DE∥BC,BD =1 700 m ,∠DBC=80°,求斜坡AE 的长度.(结果精确到0.1 m )解:过点D 作DF⊥BC 于点F ,延长DE 交AC 于点M. 由题意,得EM ⊥AC,DF =CM ,∠AEM =29°, 在Rt△DFB 中,sin80°=DFBD,∴DF =BDsin80°.AM =AC -CM =1 790-1 700sin80°.在Rt△AME 中,sin29°=AM AE,∴AE =AM sin29°=1 790-1 700sin80°sin29°(m ),答:斜坡的长度约为238.9 m. 03综合题9.(黔东南中考)黔东南州某校吴老师组织九(1)班同学开展数学活动,带领同学测量学校附近一电线杆的高,如图,已知电线杆直立于地面上,某天在太阳光的照射下,电线杆的影子(折线BCD)恰好落在水平地面和斜坡上,在D 处测得电线杆顶端A 的仰角为30°,在C 处测得电线杆顶端A 的仰角为45°,斜坡与地面成60°角,CD =4 m ,请你根据这些数据求电线杆的高(AB).(结果精确到1 m ,参考数据:2≈1.4,3≈1.7)解:延长AD交BC的延长线于点G,过点D作DH⊥BG,垂足为点H,则∠G=30°.∵在Rt△DHC中,∠DCH=60°,CD=4,∴C H=CD·cos∠DCH=4×cos60°=2.DH=CD·sin∠DCH=4×sin60°=2 3.又∵DH⊥BG,∠G=30°,∴HG=DHtanG =23tan30°=6.∴CG=CH+HG=2+6=8.设AB=x m.又∵AB⊥BG,∠G=30°,∠BCA=45°,∴BC=x.∴BG=ABtanG =xtan30°=3x.∵BG-BC=CG,∴3x-x=8.解得x≈11 m.答:电线杆的高(AB)约为11 m.小专题17解直角三角形的实际应用1.(某某月考)如图,在一次测量活动中,小华站在离旗杆底部(B)处6 m的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5 m.试帮助小华求出旗杆AB的高度.(结果精确到0.1 m,3≈1.732)解:过点E作EC⊥AB于C.∵CE=BD=6 m,∠AEC=60°,∴AC=CE·tan60°=6×3=63(m).∴AB=AC+DE=+=(m).答:旗杆AB的高度约为11.9 m.2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我国海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号).解:(1)如图.(2)AB=30×=15(海里).在Rt△ABC中,tan∠BAC=BC AB ,∴BC=AB·tan∠BAC=AB·tan30° =15×33=53(海里).答:钓鱼岛C 到B 处距离为53海里.3.(某某中考)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道A B.如图,在山外一点C 测得BC 距离为200 m ,∠CAB =54°,∠CBA =30°,求隧道AB 的长.(参考数据: sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,结果精确到个位)解:过点C 作CD⊥AB 于D ,在Rt△BCD 中,∵∠B =30°,BC =200,∴CD =12BC =100,BD =1003≈173.在Rt△ACD 中,∵tan∠CAB =CD AD ,∴AD =100tan54°≈72.∴AB =AD +BD≈245.答:隧道AB 的长约为245米.4.(黔东南中考)如图,某校教学楼AB 后方有一斜坡,已知斜坡CD 的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD 进行改造,在保持坡脚C 不动的情况下,学校至少要把坡顶D 向后水平移动多少米才能保证教学楼的安全?(结果取整数)(参考数据:sin 39°≈0.63,cos 39°≈0.78,tan 39°≈0.81,2,3≈1.73,4≈2.24)解:假设点D 移到D′的位置时,恰好∠α=39°,过点D 作DE⊥AC 于点E ,作D′E′⊥AC 于点E′,∵CD =12米,∠DCE =60°, ∴DE =CD·sin60°=12×32=63(米), CE =CD·cos60°=12×12=6(米).易知:四边形DEE′D′是矩形.∴DE =D′E′=63米. ∵∠D′CE′=39°,∴CE′=D′E′tan39°≈错误!≈12.8,∴EE′=CE′-CE =-6=(米). ∴DD′=EE′=米.答:学校至少要把坡顶D 向后水平移动米才能保证教学楼的安全.5.(某某中考)如图是某儿童乐园为小朋友设计的滑梯平面图.已知BC =4米,AB =6米,中间平台宽度DE =1米,EN ,DM ,CB 为三根垂直于AB 的支柱,垂足分别为N ,M ,B ,∠EAB=31°,DF⊥BC 于F ,∠CDF=45°.求DM 和BC 的水平距离BM 的长度.(结果精确到0.1米,参考数据:sin 31°≈0.52,cos 31°≈0.86,tan 31°≈0.60)解:设BM =x 米.∵∠CDF =45°,∠CFD =90°, ∴CF =DF =x 米.∴BF =BC -CF =(4-x )米. ∴EN =DM =BF =(4-x )米.∵AB =6米,DE =MN =1米,BM =x 米, ∴AN =AB -MN -BM =(5-x )米.在△AEN 中,∠ANE =90°,∠EAN =31°,∴EN =AN·tan31°,即4-x =(5-x ). ∴x =2.5.答:DM 和BC 的水平距离BM 的长度约为米.6.(某某中考)某新农村乐园设置了一个秋千场所,如图所示,秋千拉绳OB 的长为3 m ,静止时,踏板到地面距离BD 的长为0.6 m (踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为h m ,成人的“安全高度”为2 m .(计算结果精确到0.1 m ,参考数据:2≈1.41,sin 55°≈0.82,cos 55°≈0.57,tan 55°≈1.43)(1)当摆绳OA 与OB 成45°夹角时,恰为儿童的安全高度,则h =m ; (2)某成人在玩秋千时,摆绳OC 与OB 的最大夹角为55°,问此人是否安全?解:过C 点作CM⊥DF,CE⊥OD,垂足分别为M ,E ,∵在Rt△CEO 中,∠CEO =90°, ∠COE =55°, ∴cos∠COE =OEOC.∴OE =OC·cos∠COE =3·cos55°≈1.7 m. ∴ED =3+-=(m ).∴CM =ED =1.9 m <2 m.∴此人是安全的.章末复习(八) 锐角三角函数01分点突破知识点1 求锐角三角函数值1.如图,在Rt △ABC 中,∠BAC=90°,AD⊥BC 于点D ,则下列结论不正确的是(C )A .sinB =AD AB B .sin B =AC BC C .sin B =AD ACD .sin B =CD AC第1题图第3题图2.在Rt △ABC 中,∠C=90°,若斜边AB 是直角边BC 的3倍,则tan B 的值是(D )A.13B .3 C.24D .2 2 3.如图,在△ABC 中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE =9,BC =12,则cos C =23.知识点2 特殊角的三角函数值(某某2016T19、2015T19、2014T19) 4.在△ABC 中,若(3tan A -3)2+|2cos B -3|=0,则△ABC 为(A )A .直角三角形B .含60°角的任意三角形C .等边三角形D .顶角为钝角的等腰三角形5.(某某中考改编)计算:(π-2 016)0+|1-2|+2-1-2sin 45°=12.知识点3 解直角三角形及其应用(某某2017T22、2016T21、2015T21、2014T21、2013T21) 6.在△ABC 中,∠C =90°,AB =2,BC =3,则tan A 2=33.7.如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长.(结果保留小数点后一位,参考数据:2≈1.41,3≈1.73)解:过点A 作AH⊥CD,垂足为H. 则AB =DH =米,BD =AH =6米.在Rt△ACH 中,∵∠CAH =30°,tan∠CAH =CH AH,∴CH =AH·tan∠CAH =6·tan30°=23(米). ∴CD =CH +HD =(23+)米.在Rt△CDE 中,∵∠CED =60°,sin∠CED =CD CE,∴CE =CDsin60°=4+3(米).答:拉线CE 的长约为米.02中考题型演练8.(某某中考)如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cos α=1213,则小车上升的高度是(A )A .5米B .6米C .6.5米D .12米第8题图 第9题图9.(某某中考) △ABC 在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC 于D ,下列四个选项中,错误的是(C )A .sin α=cos αB .tanC =2 C .sin β=cos βD .tan α=110.(某某中考)如图,⊙O 是边长为2的等边△ABC 的内切圆,则⊙O 的半径为33.第10题图 第12题图11.(某某中考) △ABC 中,AB =12,AC =39,∠B=30°,则△ABC 的面积是213或153.12.(某某中考)如图,某城市的电视塔AB 坐落在湖边,数学老师带领学生隔湖测量电视塔AB 的高度,在点M 处测得塔尖点A 的仰角∠AMB 为22.5°,沿射线MB 方向前进200米到达湖边点N 处,测得塔尖点A 在湖中的倒影A′的俯角∠A′NB 为45°,则电视塔AB 的高度为1002米.(结果保留根号)13.(某某中考)如图,一楼房AB 后有一座假山,其坡度为i =1∶3,山坡坡面上E 点处有一休息亭,测得假山坡脚C 与楼房水平距离BC =25米,与亭子距离CE =20米,小丽从楼房顶测得E 点的俯角为45°,求楼房AB 的高.(注:坡度i 是指坡面的铅直高度与水平宽度的比)解:过点E 作EF⊥BC 的延长线于点F ,EH⊥AB 于点H , 在Rt△CEF 中,∵i =EFCF=13=tan∠ECF, ∴∠ECF =30°.∴EF =12CE =10米,CF =103米.∴BH =EF =10米,HE =BF =BC +CF =(25+103)米.在Rt△AHE 中,∵∠HAE =45°,∴AH =HE =(25+103)米. ∴AB =AH +HB =(35+103)米.答:楼房AB 的高为(35+103)米.14.(某某中考)今年,我国海关总署严厉打击“洋垃圾”某某行动,坚决把“洋垃圾”拒于国门之外.如图,某天我国一艘海监船巡航到A港口正西方的B处时,发现在B的北偏东60°方向,相距150海里处的C点有一可疑船只正沿CA方向行驶,C点在A港口的北偏东30°方向上,海监船向A港口发出指令,执法船立即从A港口沿AC方向驶出,在D处成功拦截可疑船只,此时D点与B点的距离为752海里.(1)求B点到直线CA的距离;(2)执法船从A到D航行了多少海里?(结果保留根号)解:(1)过点B作BH⊥CA,交CA的延长线于点H.∵∠MBC=60°.∴∠CBA=30°.∵∠NAD=30°,∴∠BAC=120°.∴∠C=180°-∠BAC-∠CBA=30°.∴BH=BC·sin∠BCA=150×12=75海里.答:B点到直线CA的距离是75海里.(2)∵在Rt△BDH中,BD=752海里,BH=75海里,∴DH=BD2-BH2=75海里,∵∠BAH=180°-∠BAC=60°,在Rt△ABH中,tan∠BAH=BHAH=3,∴AH=253海里.∴AD=DH-AH=(75-253)海里.答:执法船从A到D航行了(75-253)海里.。
人教版初中数学九年级下册第二十八章:锐角三角函数(全章教案)
第二十八章锐角三角函数教材简析本章的内容主要包括:锐角三角函数的概念;30°,45°,60°角的三角函数值;利用计算器求任意锐角的三角函数值及根据三角函数值求出相应的锐角;利用锐角三角函数解直角三角形及三角函数的应用.在学生掌握了直角三角形边、角之间的关系的基础上,引入了锐角三角函数的概念,进而学习解直角三角形,是中学几何的重点与难点.本章是中考的必考内容,主要考查特殊锐角三角函数值的计算和解直角三角形及其应用.教学指导【本章重点】锐角三角函数的概念和直角三角形的解法.【本章难点】综合运用直角三角形的边边关系、边角关系来解决实际问题.【本章思想方法】1.体会数形结合思想.如:在理解和应用锐角三角函数解决实际问题时,注意数形结合思想的应用,即需根据实际问题画出几何图形,并根据图形寻找直角三角形中边、角之间的关系.2.体会转化思想.如:(1)把实际问题转化成数学问题:把实际问题的情境转化为几何图形;把题中的已知条件转化为示意图中的边、角或它们之间的关系.(2)把数学问题转化为解直角三角形问题,如果示意图不是直角三角形,需要添加适当的辅助线构造出直角三角形.3.体会方程思想.如:在解决直角三角形的实际问题中,经常设出未知数来表示某一个量,并利用直角三角形的边、角关系建立方程,将几何问题转化为求方程的解.课时计划28.1锐角三角函数4课时28.2解直角三角形及其应用3课时28.1 锐角三角函数第1课时 正弦教学目标一、基本目标 【知识与技能】1.利用相似的直角三角形,探索直角三角形的锐角确定时,它的对边与斜边的比是固定值,从而引出正弦的概念.2.理解锐角的正弦的概念,并能根据正弦的概念进行计算. 【过程与方法】通过探究锐角的正弦的概念的形成,体会由特殊到一般的数学思想方法,培养学生的归纳、推理能力.【情感态度与价值观】让学生在通过探索、分析、论证、总结获取新知识的过程中体验成功的快乐,感悟数学的实用性,培养学生学习数学的兴趣.二、重难点目标 【教学重点】理解正弦的意义,会求锐角的正弦值. 【教学难点】理解直角三角形的锐角确定时,它的对边与斜边的比是固定值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P61~P63的内容,完成下面练习. 【3 min 反馈】1.在直角三角形中,30°角所对的边等于斜边的一半.2.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,∠A 的对边与斜边的比叫做∠A 的正弦 ,即sin A =a c.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则sin B =45.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,求sin A 和sin B 的值.【互动探索】(引发学生思考)要求sin A 和sin B 的值,需要分别找出∠A 、∠B 的对边和斜边的比.【解答】详细解答过程见教材P63例1.【例2】已知等腰三角形的一腰长为25 cm ,底边长为30 cm ,求底角的正弦值. 【互动探索】(引发学生思考)转化法:将已知条件转化为几何示意图,再作出辅助线构造出直角三角形求解.【解答】如图,过点A 作AD ⊥BC ,垂足为D. ∵AB =AC =25 cm ,BC =30 cm ,AD 为底边上的高, ∴BD =12BC =15 cm ,∴在Rt △ABD 中,由勾股定理,得AD =AB 2-BD 2=20 cm , ∴sin ∠ABC =AD AB =2025=45.即底角的正弦值为45.【互动总结】(学生总结,老师点评)求三角函数值一定要在直角三角形中求,当图形中没有直角三角形时,要通过作高构造直角三角形解答.活动2 巩固练习(学生独学) 1.如图,sin A 等于( C )A .2B .55C.12D . 52.在Rt △ABC 中,∠C =90°,BC =4,sin A =23,则AB 的长为( B )A.83 B .6 C .12D .83.如图,△ABC 的顶点是正方形网格的格点,则sin B 24.如图,在△ABC 中,AD ⊥BC 于点D ,若AD =9,DC =5,E 为AC 的中点,求sin ∠EDC 的值.解:∵AD ⊥BC , ∴∠ADC =90°. ∵AD =9,DC =5,∴AC =AD 2+DC 2=92+52=106. ∵E 为AC 的中点, ∴DE =AE =EC =12AC ,∴∠EDC =∠C ,∴sin ∠EDC =sin C =AD AC =9106=9106106.活动3 拓展延伸(学生对学)【例3】如图,已知AB 是⊙O 的直径,CD 是弦,且CD ⊥AB ,BC =6,AC =8,求sin ∠ABD 的值.【互动探索】首先根据垂径定理得出∠ABD =∠ABC ,然后由直径所对的圆周角是直角,得出∠ACB =90°,从而由勾股定理算出斜边AB 的长,再根据正弦的定义求出sin ∠ABC 的值,进而得出sin ∠ABD 的值.【解答】∵AB 是⊙O 的直径,CD 是弦,且CD ⊥AB , ∴AC ︵ =AD ︵, ∴∠ABD =∠AB C. ∵AB 为直径, ∴∠ACB =90°.在Rt △ABC 中,∵BC =6,AC =8, ∴AB =BC 2+AC 2=10, ∴sin ∠ABD =sin ∠ABC =AC AB =45.【互动总结】(学生总结,老师点评)求三角函数值时必须在直角三角形中.在圆中,由直径所对的圆周角是直角可构造出直角三角形.环节3 课堂小结,当堂达标 (学生总结,老师点评) 1.如图,sin A =∠A 的对边斜边.2.求一个锐角的正弦值一定要放到直角三角形中,若没有直角三角形,可通过作垂线构造直角三角形.练习设计请完成本课时对应练习!第2课时锐角三角函数教学目标一、基本目标【知识与技能】1.掌握余弦、正切的定义.2.了解锐角∠A的三角函数的定义.3.能运用锐角三角函数的定义求三角函数值.【过程与方法】通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生观察、比较、分析、概括等逻辑思维能力.【情感态度与价值观】通过观察、思考、交流、总结等数学活动,体验数学学习充满着探索与发现,培养学生积极思考,勇于探索的精神.二、重难点目标【教学重点】余弦、正切的概念,并会求指定锐角的余弦值、正切值.【教学难点】利用锐角三角函数的定义解决有关问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P64~P65的内容,完成下面练习.【3 min反馈】1.如图,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)∠A 的邻边与斜边的比叫做∠A 的余弦,即cos A =bc ;(2)∠A 的对边与邻边的比叫做∠A 的正切,即tan A =ab .2.锐角A 的正弦、余弦、正切叫做∠A 的锐角三角函数.3.在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若a =3,b =4,则cos B =35,tan B =43.环节2 合作探究,解决问题 活动1 小组讨论(师生互学)【例1】如图,在Rt △ABC 中,∠C =90°,AB =10,BC =6,求sin A 、cos A 、tan A.【温馨提示】详细解答过程见教材P65例2.【例2】如图,△ABC 中,AD ⊥BC ,垂足是D ,若BC =14,AD =12,tan ∠BAD =34,求cos C 的值.【互动探索】(引发学生思考)观察图形,cos C =DC AC ,所以需要通过tan ∠BAD =34和已知条件求出DC 、AC 的长度,再代入求值.【解答】∵在Rt △ABD 中,tan ∠BAD =BD AD =34,∴BD =AD ·tan ∠BAD =12×34=9,∴CD =BC -BD =14-9=5, ∴AC =AD 2+CD 2=122+52=13, ∴cos C =DC AC =513.【互动总结】(学生总结,老师点评)在不同的直角三角形中,要根据三角函数的定义分清它们的边角关系,再根据勾股定理解答.活动2 巩固练习(学生独学)1.在Rt △ABC 中,∠C =90°,AB =13,AC =12,则cos A =( C ) A.513 B .512C.1213D .1252.已知Rt △ABC 中,∠C =90°,tan A =43,BC =8,则AC 等于( A )A .6B .323C .10D .123.如图所示,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.4.如图,在Rt △ABC 中,∠C =90°,D 是BC 边上一点,AC =2,CD =1,设∠CAD =α.(1)求sin α、cos α、tan α的值; (2)若∠B =∠CAD ,求BD 的长.解:在Rt △ACD 中,∵AC =2,DC =1, ∴AD =AC 2+CD 2= 5.(1)sin α=CD AD =15=55,cos α=AC AD =25=255,tan α=CD AC =12.(2)在Rt △ABC 中,∵tan B =AC BC, 而∠B =∠CAD , ∴tan α=2BC =12,∴BC =4,∴BD =BC -CD =4-1=3. 活动3 拓展延伸(学生对学)【例3】如图,在Rt △ABC 中,∠C =90°,根据三角函数定义尝试说明: (1)sin 2A +cos 2A =1; (2)sin A =cos B ; (3)tan A =sin A cos A.【互动探索】用定义表示出sin A 、cos A 、cos B 、tan A →计算等式的左边与右边→得出结论.【证明】(1)由勾股定理,得a 2+b 2=c 2,而sin A =a c ,cos A =bc ,∴sin 2A +cos 2A =a 2c 2+b 2c 2=c 2c 2=1. (2)∵sin A =a c ,cos B =ac ,∴sin A =cos B.(3)∵tan A =a b ,sin A cos A =a c b c =ab,∴tan A =sin Acos A.【互动总结】(学生总结,老师点评)本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.题目中的三个结论应熟记.环节3 课堂小结,当堂达标 (学生总结,老师点评) 锐角三角函数⎩⎪⎨⎪⎧正弦→对比斜余弦→邻比斜正切→对比邻练习设计请完成本课时对应练习!第3课时 特殊角的三角函数值教学目标一、基本目标 【知识与技能】1.掌握30°,45°,60°角的三角函数值,能够用它们进行计算. 2.能够根据30°,45°,60°角的三角函数值说出相应锐角的大小. 【过程与方法】1.通过探索特殊角的三角函数值的过程,培养学生观察、分析、发现的能力. 2.通过推导特殊角的三角函数值,了解知识间的联系,提升综合运用数学知识解决问题的能力.【情感态度与价值观】在探索特殊角的三角函数值中,学生积极参与数学活动,培养学生独立思考问题的能力. 二、重难点目标 【教学重点】根据30°,45°,60°角的三角函数值进行有关计算. 【教学难点】正确理解与记忆30°,45°,60°角的三角函数值.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P65~P67的内容,完成下面练习. 【3 min 反馈】1.sin 30°=12,cos 30°2tan 30°32.sin 60°2cos 60°=12,tan 60°3.sin 45°2cos 45°2tan 45°=1. 环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】求下列各式的值: (1)cos 260°+sin 260°; (2)cos 45°sin 45°-tan 45°. 【互动探索】(引发学生思考)熟记特殊角的三角函数值→代入算式求值.【解答】(1)cos 260°+sin 260°=⎝⎛⎭⎫122+⎝⎛⎭⎫322=1. (2)cos 45°sin 45°-tan 45°=22÷22-1=0. 【互动总结】(学生总结,老师点评)特殊角的三角函数值必须熟练记忆,既能由角得值,又能由值得角,记忆这个结果,可以结合直角三角形三边的大小关系,也可以结合数值的特征,30°,45°,60°的正弦值分母都是2,分子分别为1,2,3,而它们的余弦值分母都是2,分子正好相反,分别为3,2,1;其正切值分别为1÷3,1,1× 3.【例2】数学拓展课程《玩转学具》课堂中,小陆同学发现:一副三角板中,含45°的三角板的斜边与含30°的三角板的长直角边相等,于是,小陆同学提出一个问题:如图,将一副三角板直角顶点重合拼放在一起,点B 、C 、E 在同一直线上,若BC =2,求AF 的长.请你运用所学的数学知识解决这个问题.【互动探索】(引发学生思考)根据正切的定义求出AC →根据正弦的定义求出CF →AF =AC -F C.【解答】在Rt △ABC 中,∵BC =2,∠A =30°, ∴AC =BC tan A =23,∴EF =AC =2 3. ∵∠E =45°,∴FC =EF ·sin E =6, ∴AF =AC -FC =23- 6.【互动总结】(学生总结,老师点评)本题考查的是特殊角的三角函数值的应用,掌握锐角三角函数的概念、熟记特殊角的三角函数值是解题的关键.活动2 巩固练习(学生独学)1.若3tan (α+10°)=1,则锐角α的度数是( A ) A .20° B .30° C .40°D .50°2.若∠A 为锐角,且tan 2A +2tan A -3=0,则∠A =45度. 3.计算.(1)2sin 30°-2cos 45°; (2)tan 30°-sin 60°·sin 30°; (3)(1-3tan 30°)2. 解:(1)0. (2)312. (3)3-1. 4.如图,在△ABC 中,∠ABC =90°,∠A =30°,D 是边AB 上一点,∠BDC =45°,AD =4,求BC 的长.解:∵∠B =90°,∠BDC =45°, ∴△BCD 为等腰直角三角形, ∴BD =B C.在Rt △ABC 中,∵tan A =tan 30°=BC AB ,∴BC BC +4=33,解得BC =2(3+1). 活动3 拓展延伸(学生对学)【例3】已知△ABC 中的∠A 与∠B 满足(1-tan A )2+⎪⎪⎪⎪sin B -32=0,试判断△ABC 的形状.【互动探索】根据非负性的性质求出tan A 及sin B 的值→根据特殊角的三角函数值求出∠A 及∠B 的度数→判断△ABC 的形状.【解答】∵(1-tan A )2+⎪⎪⎪⎪sin B -32=0, ∴1-tan A =0,sin B -32=0, ∴tan A =1,sin B =32, ∴∠A =45°,∠B =60°, ∴∠C =180°-45°-60°=75°, ∴△ABC 是锐角三角形.【互动总结】(学生总结,老师点评)一个数的绝对值和偶次方都是非负数,当几个数或式的绝对值或偶次方相加和为0时,则其中的每一项都必须等于0.环节3 课堂小结,当堂达标 (学生总结,老师点评) 特殊角的三角函数值:练习设计请完成本课时对应练习!第4课时用计算器求锐角三角函数值及锐角教学目标一、基本目标【知识与技能】1.能利用计算器求锐角三角函数值.2.已知锐角三角函数值,能用计算器求相应的锐角.3.能用计算器辅助解决含三角函数的实际问题.【过程与方法】使用计算器可以解决部分复杂问题,通过求值探讨三角函数问题的某些规律,提高学生分析问题的能力.【情感态度与价值观】通过计算器的使用,了解科学在人们日常生活中的重要作用,激励学生热爱科学、学好文化知识.二、重难点目标【教学重点】运用计算器处理三角函数中的值或角的问题.【教学难点】用计算器求锐角三角函数值时的按键顺序.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P67~P68的内容,完成下面练习.【3 min反馈】1.用计算器求sin 24°37′18″的值,以下按键顺序正确的是(A)A.sin24°′″37°′″18°′″=B.24°′″37°′″18°′″sin=C.2ndF sin24°′″37°′″18°′″=D.sin24°′″37°′″18°′″2ndF=2.使用计算器求下列三角函数值.(精确到0.0001)(1) sin 24°≈0.4067;(2)cos 35°≈0.8192;(3)tan 46°≈1.0355.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按要求解决问题:(1)求sin 63°52′41″的值;(精确到0.0001)(2)求tan 19°15′的值;(精确到0.0001)(3)已知tan x=0.7410,求锐角的值.(精确到1′)【互动探索】(引发学生思考)熟悉用科学计算器求锐角三角函数值的操作流程.【解答】(1)在角度单位状态设定为“度”,再按下列顺序依次按键:sin 63°′′′52°′′′41°′′′=显示结果为0.897 859 012.所以sin 63°52′41″≈0.8979.(2)在角度单位状态设定为“度”,再按下列顺序依次按键:tan 19°′′′15°′′′=显示结果为0.349 215 633 4.所以tan 19°15′≈0.3492.(3)在角度单位状态设定为“度”,再按下列顺序依次按键:SHIFT tan 0.7410=显示结果为36.538 445 77.再按°′′′,显示结果为36°32′18.4″.所以x≈36°32′.【互动总结】(学生总结,老师点评)不同计算器的按键顺序是不同的,大体分两种情况:先按三角函数键,再按数字键;或先输入数字后,再按三角函数键,因此使用计算器时一定先要弄清输入顺序.【例2】如图,在△ABC中,AB=8,AC=9,∠A=48°.求:(1)AB边上的高(精确到0.01);(2)∠B的度数(精确到1′).【互动探索】(引发学生思考)观察图形→作辅助线→利用相似锐角三角函数解直角三角形.【解答】(1)作AB 边上的高CH ,垂足为H . ∵在Rt △ACH 中,sin A =CHAC ,∴CH =AC ·sin A =9sin 48°≈6.69. (2)∵在Rt △ACH 中,cos A =AH AC ,∴AH =AC ·cos A =9cos 48°,∴在Rt △BCH 中,tan B =CH BH =CH AB -AH =9sin 48°8-9cos 48°,∴∠B ≈73°32′.【互动总结】(学生总结,老师点评)利用三角函数求非直角三角形的边或角,一般情况下要构造直角三角形.活动2 巩固练习(学生独学)1.如图,在△ABC 中,∠ACB =90°,BC =2,AC =3,若用科学计算器求∠A 的度数,并用“度、分、秒”为单位表示出这个度数,则下列按键顺序正确的是( )A.tan 2÷3=B.tan 2÷3DMS =C.2ndF tan (2÷3)=D.2ndF tan (2÷3)DMS =2.用计算器求下列锐角的三角函数值.(精确到0.0001) (1)tan 63°27′; (2)cos 18°59′27″; (3)sin 67°38′24″; (4)tan 24°19′48″. 解:(1)2.0013. (2)0.9456. (3)0.9248. (4)0.4521. 3.根据下列条件求锐角A 的度数.(精确到1″) (1)cos A =0.6753; (2)tan A =87.54; (3)sin A =0.4553; (4)sin A =0.6725.解:(1)47°31′21″. (2)89°20′44″. (3)27°5′3″. (4)42°15′37″. 环节3 课堂小结,当堂达标 (学生总结,老师点评)用计算器求锐角三角函数值⎩⎪⎨⎪⎧求已知角的三角函数值由锐角三角函数值求锐角练习设计请完成本课时对应练习!28.2 解直角三角形及其应用 28.2.1 解直角三角形(第1课时)教学目标一、基本目标 【知识与技能】1.了解什么叫解直角三角形. 2.掌握解直角三角形的根据. 3.能由已知条件解直角三角形. 【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想. 【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标 【教学重点】 解直角三角形的方法. 【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P72~P73的内容,完成下面练习. 【3 min 反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c . (1)两锐角互余,即∠A +∠B =90°; (2)三边满足勾股定理,即a 2+b 2=c 2;(3)边与角关系sin A =cos B =a c ,cos A =sin B =b c ,tan A =a b ,tan B =b a .3.Rt △ABC 中,若∠C =90°,sin A =45,AB =10,那么BC =8,tan B =34.环节2 合作探究,解决问题活动1小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是(A)A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a=43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin 45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan 60°=43,∴CD=CM-MD=12-4 3.【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决实际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P74~P75的内容,完成下面练习.【3 min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tan α米.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400 km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21 m的建筑物CD的顶端D处测得河岸B 处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB 约是多少?(精确到0.1 m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°. ∵在Rt△ACD中,CD=21 m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21 m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3 m.活动3拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin 42°≈0.67,tan 42°≈0.9,sin 65°≈0.91,tan 65°≈2.1)【互动探索】要求AB ,先求出AE 与BE →解直角三角形:Rt △ADE 、Rt △BCE . 【解答】在Rt △ADE 中,∵∠ADE =65°,DE =15米, ∴tan ∠ADE =AE DE,即tan 65°=AE15≈2.1,解得 AE ≈31.5米.在Rt △BCE 中,∵∠BCE =42°,CE =CD +DE =6+15=21(米), ∴tan ∠BCE =BE CE,即tan 42°=BE21≈0.9,解得 BE ≈18.9米.∴AB =AE -BE =31.5-18.9≈13(米). 即旗杆AB 的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt △ADE 、Rt △BCE ,利用AB =AE -BE 即可求出答案.环节3 课堂小结,当堂达标 (学生总结,老师点评)练习设计请完成本课时对应练习!第3课时 利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i =坡面的铅直高度坡面的水平宽度=坡角的正切值. 【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5 min 阅读】阅读教材P76~P77的内容,完成下面练习.【3 min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m的形式.坡面与水平面的夹角叫做坡角,记作α,有i=hl=tan α.2.一斜坡的坡角为30°,则它的坡度为(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2合作探究,解决问题活动1小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后到达该岛的南偏西25°的C处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD 的长并与10海里比较→得出结论.【解答】如题图,过点A 作AD ⊥BC 交BC 的延长线于点D.在Rt △ABD 中,∵tan ∠BAD =BD AD, ∴BD =AD ·tan 55°.在Rt △ACD 中,∵tan ∠CAD =CD AD, ∴CD =AD ·tan 25°.∵BD =BC +CD ,∴AD ·tan 55°=20+AD ·tan 25°,∴AD =20tan 55°-tan 25°≈20.79(海里). 而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A 距BC 的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD ,AD ∥BC ,路基顶宽BC =9.8 m ,路基高BE =5.8 m ,斜坡AB 的坡度i =1∶1.6,斜坡CD 的坡度i ′=1∶2.5,求铁路路基下底宽AD 的值(精确到0.1 m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8 m, i=1∶1.6, i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tan α=i=1∶1.6,tan β=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6 m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C 村村民欲修建一条水泥公路,将C 村与区级公路相连.在公路A 处测得C 村在北偏东60°方向,沿区级公路前进500 m ,在B 处测得C 村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C 作CD ⊥AB ,垂足落在AB 的延长线上,CD 即为所修公路,CD 的长度即为公路长度.在Rt △ACD 中,根据题意,有∠CAD =30°.∵tan ∠CAD =CD AD, ∴AD =CD tan 30°=3C D. 在Rt △CBD 中,根据题意,有∠CBD =60°.∵tan ∠CBD =CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500 m,∴3CD-33CD=500,解得CD≈433 m.活动3拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶ 3 ,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠。
《锐角三角函数》 导学案
《锐角三角函数》导学案一、学习目标1、理解锐角三角函数的定义,能够准确说出正弦、余弦、正切的概念。
2、掌握锐角三角函数的求值方法,会利用已知条件求出锐角的三角函数值。
3、能够运用锐角三角函数解决与直角三角形相关的实际问题。
二、学习重难点1、重点(1)锐角三角函数的概念,包括正弦、余弦、正切的定义。
(2)特殊锐角(30°、45°、60°)的三角函数值及其应用。
2、难点(1)理解锐角三角函数的本质,以及如何在直角三角形中准确地表示出三角函数值。
(2)运用锐角三角函数解决实际问题时,如何将实际问题转化为数学模型。
三、知识回顾1、直角三角形的性质(1)直角三角形的两个锐角互余。
(2)直角三角形斜边的平方等于两直角边的平方和(勾股定理)。
2、相似三角形的性质(1)对应角相等,对应边成比例。
(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比。
四、新课导入在生活中,我们常常会遇到需要测量高度、距离等问题,比如测量大树的高度、河流的宽度等。
而这些问题往往可以通过直角三角形的知识来解决。
今天,我们就来学习一种新的数学工具——锐角三角函数,它将帮助我们更方便、更准确地解决这类问题。
五、知识讲解1、锐角三角函数的定义在直角三角形中,如果一个锐角的对边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的正弦,记作 sinA。
即 sinA =对边/斜边。
同理,如果一个锐角的邻边与斜边的比值是一个固定值,那么这个比值就叫做这个锐角的余弦,记作 cosA。
即 cosA =邻边/斜边。
如果一个锐角的对边与邻边的比值是一个固定值,那么这个比值就叫做这个锐角的正切,记作 tanA。
即 tanA =对边/邻边。
例如,在直角三角形 ABC 中,∠C = 90°,∠A 为锐角,BC 为∠A 的对边,AC 为∠A 的邻边,AB 为斜边。
则 sinA = BC / AB,cosA = AC / AB,tanA = BC / AC。
锐角三角函数(第一课时)导学案
年级:九年级 班级: 学生姓名: 制作人: 不知名 编号:2023-1228.1.1锐角三角函数(第一课时)【学习目标】1.初步了解锐角三角函数的意义,理解一个锐角的正弦的定义.2.会根据已知条件求一个锐角的正弦值.【预学案】1.如图在Rt △ABC 中,∠C=90°,∠A=30°,BC=10m ,求AB.2.如图在Rt △ABC 中,∠C=90°,∠A=30°,AB=20m ,求BC.【探究案】请你认真阅读课本61的内容,边学边思考下列问题:思考1:如果使出水口的高度为50m ,那么需要准备多长的水管?____________ 如果使出水口的高度为a m ,那么需要准备多长的水管? ; 结论:直角三角形中,30°角的对边与斜边的比值是 思考2:在Rt △ABC 中,∠C=90°,∠A=45°,∠A 的对边与斜边的比值是一个定值吗? 如果是,是多少?结论:直角三角形中,45°角的对边与斜边的比值思考3:Rt △ABC 和Rt △A′B′C′中,∠C=∠C=90°,∠A=∠A′=a ,那么有什么关系?为什么?结论:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何, ∠A 的对边与斜边的比值 .【归纳】在Rt △ABC 中,∠C=90°,我们把锐角A 的对边与斜边的比叫做∠A 的____________,记作________,即_______ __.4.如图(1),在Rt △ABC 中,∠C=90°,求sinA=_____sinB=______.5.如图(2),在Rt △ABC 中,∠C=90°,求sinA=_____ ,图2图1134C A C BsinB=_____ .【检测案】1.在Rt△ABC中,∠C=900,sinA=,求sinB的值________.2.如图,已知点P的坐标是(a,b),则sinα等于()A.B.C.3.已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ(如图所示),则sinθ的值为()A.B.C.D.4.如图,Rt△ABC中,∠C=900,CD⊥AB于D点,AC=3,BC=4,求sinA,sin∠BCD 的值.5.如图,菱形ABCD的边长为10 cm,DE⊥AB,sinA=35,求DE的长和菱形ABCD的面积.6.如图,在△ABC中,∠C=90°,sinA=14,BC=2,求AC,AB的长.。
人教版初中数学九年级下册 28.1 锐角三角函数(第1课时)课件 【经典初中数学课件】
18
21
78°
83°
β
24
G
E
F
H
α
x
118°
【例题】
例2.已知四边形ABCD与四边形A1B1C1D1相似,且A1B1:B1C1:C1D1:D1A1=7:8:11:14,若四边形ABCD的周长为40,求四边形ABCD的各边的长.
当堂检测,反馈提高
1.△ABC与△DEF相似,且相似比是 ,则△DEF 与△ABC与的相似比是( ). A. B. C. D. 2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A.3个 B.4个 C.5个 D.6个 3.已知四边形ABCD和四边形A1B1C1D1相似,四边形ABCD的最长边和最短边的长分别是10cm和4cm,如果四边形A1B1C1D1的最短边的长是6cm,那么四边形A1B1C1D1中最长的边长是多少?
小结: 1、谈谈你的收获。 2.你有哪些困惑。 3.学会了哪些解决问题的方法。
27.1 图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
观察下面两张照片,你发现有什么相同与不同?
想一想:我们刚才所见到的图形有什么相同和不同的地方?
相同点:形状相同. 不同点:大小不一定相同.
A
C
B
┌
【解析】在Rt△ABC中,
【尝试应用】
1.判断对错:
A
10m
6m
B
C
(1)如图 sin A= ( ) ②sin B= . ( ) ③sin A=0.6m. ( ) ④sin B=0.8. ( )
人教版数学九年级下册同步导学案-28
28.3锐角三角函数(4)教学目标:1.会使用计算器求锐角的三角函数值.2.会使用计算器根据锐角三角函数的值求对应的锐角.3.在做题、计算的过程中,逐步熟悉计算器的使用方法.经历计算器的使用过程,熟悉其按键顺序.教学重点:利用计算器求锐角三角函数的值.教学难点:计算器的按键顺序.教学过程:一、新知引入通过前面的学习,我们知道,当锐角A是 30°,45°或60°等特殊角时,可以求得这些特殊角的锐角三角函数值;如果锐角A不是这些特殊角,怎样得到它的锐角三角函数值呢?二、新知讲解知识点1 用计算器求已知锐角的三角函数值比如让你求sin18°的值.(想一想可以怎样做?)作一个有一个锐角为18°的直角三角形,量出它的对边和斜边长,求它的比值.学生作图、测量、计算.约等于0.309 016 994.用这种方法确实可以求出任意一个锐角三角函数的近似值,古代的数学家、天文学家也采用过这样的方法,只是误差较大.经过许多数学家不断的改进,不同角的三角函数值被制成了常用表,三角函数表大大改进了三角函数值的应用.今天,三角函数表又被带有sin、cos和tan功能键的计算器所取代.拿出计算器.我们学习这种计算器的使用方法.请同学们拿出自己的计算器.学生拿出自己的计算器.具体如下:(让学生学会使用计算器,并能熟练操作!)例1用计算器求sin 16°,cos 42°,tan 85°,sin 72°38′25″的值.求sin16°的值:依次按sin、4、0、°′″、=求cos42°的值:依次按cos、4、、°′″=这几个键2求 sin 72°38′25″的值:※学生可按照提示操作后回答.(熟练的使用计算器)要注意不同型号的计算器的操作步骤可能有所不同.巩固练习:1、用计算器求sin24°37′18″的值,以下按键顺序正确的是()A2、用计算器求下列各式的值:(1)sin 57°;(2)sin 12°30′;(3)cos 25°18′;(4)tan 44°59′59″.解析:本题要求同学们,熟练应用计算器,对计算器给出的结果,根据有效数字的概念用四舍五入法取近似数.解:根据题意用计算器求出:(1)sin 57°=0.8387;(2)sin12°30′=0.2164;(3)cos 25°18′=0.9003;(4)tan59°14′=1.680.知识点2 用计算器求已知三角函数值的对应角如果已知锐角三角函数值,也可以使用计算器求出相应锐角的度数.例如,已知sin A=0. 501 8,用计算器求锐角A可以按照下面方法操作:依次按键,然后输入函数值0.501 8,得到∠A=30.119 158 67° (这说明锐角A精确到1°的结果为30°).还可以利用键,进一步得到∠A=30 °07′08.97″(这说明锐角A精确到1′的结果为30°7′,精确到 1"的结果为30°7′9″).你有没有注意到计算器上有个2ndf键?这个键叫做第二功能键,我们用这个可以转换键盘上的功能键的作用.我们依次按2ndf、sin-1、0、·、5、0、8、=.这样我们得到的是多少度,要化成度分秒的形式,我们按那个第二功能键2ndf和度分秒键°′″.例题讲解例2 已知下列锐角三角函数值,用计算器求其相应的锐角:(1)sin A=0.516 8(结果精确到0.01°);(2)cos A=0.675 3(结果精确到1″);(3)tan A=0.189(结果精确到1°).巩固练习:1、已知下列锐角三角函数值,用计算器求锐角的度数.(1)Sinα=0.536,sin B=0.01;(2)cosα=0.1842,cos B=0.8;(3)tan A=2.4,tan B=0.5.解:(1)由Sinα=0.536,得α=32°25′;由sin B=0.01得B=0.57°;(2)由cosα=0.1842,得α=79°23′;由cos B=0.8,得B=36.8°;(3)由tan A=2.4,得A=67.4°;由tan B=0.5,得B=26.5°.知识点3 用计算器探究三角函数的性质1.用计算器求下列各组锐角的三角函数值,从中你能得出什么猜想?(1)sin83°,cos7°;(2)sin56°,cos34°;(3) sin27°36′, cos62°24′.2.用计算器求下列各组锐角的三角函数值,从中你能得出什么猜想?(1)sin13°, sin25°,sin36°,sin44°, sin57°,sin68°,sin79°17′,sin83°27′53″;(2)cos17°34′,cos34°27′53″, cos53°18′,cos69°57′ 3″, cos77°17′, cos88°17′25″;(3)tan27°34′, tan43°57′28″,tan52°18′15″,tan67°, tan78°17′, tan85°24′ .引导学生大胆的提出猜想,最后归纳总结结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
28.1 锐角三角函数第1课时 正弦函数
学前温故
1.勾股定理:如果直角三角形的两条直角边分别是a ,b ,斜边为c ,则c 2=________.
2.相似三角形的对应边________.
新课早知
1.在Rt △ABC 中,∠C =90°,我们把锐角A 的对边与斜边的比叫做∠A 的________,记作sin A ,即______=________=______.
2.在Rt △ABC 中,如果∠C =90°,a =22,b =1,那么sin A =__________.
3.在等腰Rt △ABC 中,∠C =90°,则sin A 等于( ).
A.12
B.22
C.32
D .1
答案:学前温故
1.a 2+b 2 2.成比例
新课早知
1.正弦 sin A ∠A 的对边斜边
a c 2.223
3.B
求锐角的正弦值
【例题】 在Rt △ABC 中,∠C =90°,AC =4,BC =6,求sin A 和sin B . 分析:求sin A 和sin B ,先要根据勾股定理求出斜边AB 的长. 解:根据勾股定理,得
AB =AC 2+BC 2=42+62=52=213. 故sin A =BC AB =6213=313
13, sin B =AC AB =4213=213
13. 点拨:在直角三角形中,求一个角的正弦值,要根据条件求出角的对边和斜边.
1.如图,已知点P 的坐标是(a ,b ),则sin α等于( ).
A.a b
B.b a
C.a a 2+b 2
D.b a 2+b 2
2.在Rt △ABC 中,∠C =90°,sin A =513,则sin B 等于( ).
A.1213
B.1312
C.512
D.513
3.在Rt △ABC 中,∠C =90°,a =1,c =4,则sin A 的值是( ).
A.1515
B.14
C.13
D.154
4.三角形在正方形网格纸中的位置如图所示,则sin α的值是( ). A.34 B.43 C.35
D.45
5.如图,∠1的正弦值等于__________.
6.求出如图所示的Rt △ABC 中∠A 的正弦值.
答案:1.D 2.A 3.B 4.C 5.1010
如图所示,∠1=∠2, 所以sin ∠1=sin ∠2=BC AB =110=1010.
6.解:∵AB =BC 2+AC 2=289=17,∴sin A =BC AB =817
.。