苏科版九年级数学上《第二章对称图形--圆》单元测试含答案

合集下载

苏科版九年级数学上册《第二章对称图形—圆》单元检测带答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测带答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测带答案一、单选题(共10小题,满分40分)1.如图,正五边形ABCDE 与O 相切于点A 和点C ,则AOC ∠度数为( )A .126︒B .135︒C .144︒D .150︒2.如图,PA 是O 的切线,A 为切点,PO 的延长线交O 于点B ,若20P ∠=︒,则B ∠的度数为( )A .30︒B .32︒C .35︒D .40︒3.如图,在正五边形ABCDE 中,连接AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则FDC ∠的度数是( )A .18︒B .30︒C .36︒D .40︒4.如图,在ABC 中90BAC ∠=︒ 30ACB ∠=︒ AB=2.ABC 绕直角顶点A 顺时针旋转得到 ADE ,当点B 的对应点D 正好在线段BC 上时,点C 经过的路径长为( )A.π3B.2π3C23πD.π5.如图,AB是圆O的直径,弦CD⊥AB,⊥BCD=30°,CD=3S阴影=()A.2πB.43πC.83πD.38π6.如图,在直角坐标系中,⊥O的半径为1,则直线y=﹣x+与⊥O的位置关系是().A.相离B.相交C.相切D.以上三种情形都有可能7.如图,半圆O的半径长为5,点P为直径AB上的一个动点,已知CP⊥AB,交半圆O 于点C,若D为半圆O上的一动点,且CD=4,M是CD的中点,则PM的值有()A.最小值5B.最小值4C.最大值5D.最大值48.如图,Rt△ABC中,⊥ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.19.已知⊥O的半径是3 cm,若圆心O到直线l的距离为1 cm,则⊥O与直线l的位置关系是()A.相交B.相切C.相离D.无法确定10.如图,两边平行的刻度尺在圆上移动,当刻度尺的边与直径为10cm的圆相切时,另边与圆两个交点处的读数恰好为“4”和“12”(单位:cm),则刻度尺的宽为()cm.A.1B.2C.4D.8二、填空题(共8小题,满分32分)11.勾股容圆是中国数学史上的一个重要问题,《九章算数》是东方数学思想之源,书中有记载相关内容.今有勾七步,股二十四步,问勾中容圆径几何.其意思为:有直角三角形,短直角边长为7步,长直角边长为24步,问该直角三角形内切圆直径是多少步.该问题的答案是步.12.如图,A、B是⊥O上的点,且⊥AOB=60°,在这个图中,仅用无刻度的直尺能画出的角的度数可以是.(只要求写出四个)13.如图,在直角坐标系中,已知点A (6,0),B (6,23-,C (0,23,点P 为平面内一点,连接BP ,OP ,CP ,且OPB OAB ∠=∠,则CP 的最小值为 .14.如图,A B C D ,,,四点都在O 上.已知70AOB ∠=︒,则ADB =∠ .15.如图,四边形ABCD 是菱形,⊥O 经过点,,A C D ,与BC 相交于点E ,连接,AC AE ,若15EAC ︒∠=,则B ∠= °.16.如图,四边形ABCD 内接于O ,∠ABC=90°,AD=5,CD=4,则OCD S 的值为 .17.如图,CD 是O 的直径,弦AB CD ⊥于点E ,若AB 6=,CE :ED=1:9,则O 的半径是 .18.把一个球放入长方体纸盒,球的一部分露出盒外,球与纸盒内壁都刚好相切,其截面如图所示,若露出部分的高度为6cm ,AF =DE =3cm ,则这个球的半径是 cm .三、解答题(共6小题,每题8分,满分48分)19.如图,已知ABC ∆,以AB 为直径的半⊥O 交AC 于D ,交BC 于E ,BE=CE ,∠C=65°,求DOE ∠的度数.20.如图1,边长均为6的正ABC 和正A'B'C'原来完全重合.如图2,现保持正ABC 不动,使正A'B'C'绕两个正三角形的公共中心点O 按顺时针方向旋转,设旋转角度为α(α0)>.(注:除第 (3)题中的第⊥问,其余各问只要直接给出结果即可)()1当α多少时,正A'B'C'与正ABC 出现旋转过程中的第一次完全重合?()2当0α360<<时,要使正A'B'C'与正ABC 重叠部分面积最小,α可以取哪些角度?(3)旋转时,如图3,正ABC 和正A'B'C'始终具有公共的外接圆O .当0α60<<时,记正A'B'C'与正ABC 重叠部分为六边形DEFGHI .当α在这个范围内变化时⊥求ADI 面积S 相应的变化范围;⊥ADI 的周长是否一定?说出你的理由.21.在⊥O 中,AB 为直径,C 为O 上一点.(1)如图⊥,过点C 作⊥O 的切线,与AB 的延长线相交于点P ,若27CAB ∠=︒,求P ∠的大小;(2)如图⊥,D 为AC 上一点,连接DC 并延长,与AB 的延长线相交于点P ,连接AD ,若AD CD =,30P ∠=︒求CAP ∠的大小.22.如图,AB 为O 的直径CD AB ⊥,垂足为点E .若O 的半径为5.CD 的长为8,求线段AE 的长.23.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.如图,用锯去锯这木材,锯口深1ED =寸,锯道长1AB =尺(1尺10=寸).这根圆柱形木材的直径是多少寸?24.如图,直角坐标系中一条圆弧经过网格点()0,4A ,()4,4B 和()6,2C .(1)该圆弧所在圆的圆心坐标为______.(2)求弧ABC 的长.参考答案1.C2.C3.C4.C5.C6.C7.C8.B9.A10.B11.612.30°,60°,90°,120°(答案不唯一)13.623-14.145︒/145度15.7016.517.518.1519.50︒20.() 1α120=;() 2当α60=、180或300时重叠部分面积最小;(3)⊥0S 3<<⊥ADI 的周长一定.21.(1)36°;(2)10° 22.223.这根圆形木材的直径为26寸 24.(1)()2,0 5π。

完整版苏科版九年级上册数学第2章 对称图形——圆含答案

完整版苏科版九年级上册数学第2章 对称图形——圆含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、在中,,,根据以下圆规作图的痕迹,只用无刻度直尺能符合题意找到的外心的是()A. B. C.D.2、如图,四边形ABCD内接于⊙O,如果它的一个外角∠DCE=64°,那么∠BOD=()A.128°B.100°C.64°D.32°3、如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6C.8D.84、如图,在⊙O中,∠BOC=100°,则∠A等于()A.100°B.50°C.40°D.25°5、圆外切等腰梯形的中位线等于8,则一腰长等于()A.4B.6C.8D.106、如图,AC,BC是两个半圆的直径,∠ACP=30°,若AB=2a,则 PQ的值为()A.aB.1.5aC.D.7、如图,在⊙中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是().A. B. C. D.8、已知圆锥的底面半径为3cm,母线长为5cm,则它的侧面积为()A.60πcm 2B.45πcm 2C.30πcm 2D.15πcm 29、下列说法正确的是()A.等弧所对的圆周角相等B.平分弦的直径垂直于弦C.相等的圆心角所对的弧相等D.圆是轴对称图形,任何一条直径都是它的对称轴10、如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4-B.4-C.8-D.8-11、如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙0于点B,∠P=30°,OB=3,则线段BP的长为().A.3B.C.6D.912、如图,A、B、C、D四点在同一个圆上.下列判断正确的是()A.∠C+∠D=180°B.当E为圆心时,∠C=∠D=90°C.若E是AB的中点,则E一定是此圆的圆心D.∠COD=2∠CAD13、如图,过半径为6的圆O上一点A作圆O的切线l,P为圆O的一个动点,作PH⊥l于点H,连接PA.如果PA=x,AH=y,那么下列图象中,能大致表示y 与x的函数关系的是()A. B. C.D.14、如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为()A.πB.2πC.3πD.5π15、已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为()A.M在⊙O上B.M在⊙O内C.M在⊙O外D.M在⊙O右上方二、填空题(共10题,共计30分)16、若扇形的圆心角为,半径为6,则扇形的面积为________.17、如图,⊙O中,已知弧AB=弧BC,且弧AB:弧AmC=3:4,则∠AOC=________度.18、一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的表面积为________cm2.19、如图,是的弦,于点H,点P是所对的优弧上一点,若,,则________.20、如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=________°.21、如图,Rt△ABC中,∠C=90°,AC=BC=1,将其放人平面直角坐标系,使A 点与原点重合,AB在x轴上,△ABC沿x轴顺时针无滑动的滚动,点A再次落在x轴时停止滚动,则点A经过的路线与x轴围成图形的面积为________22、如图,已知A为⊙O外一点,连结OA交⊙O于P,AB为⊙O的切线,B为切点,AP=5㎝,AB=㎝,则劣弧与AB,AP所围成的阴影的面积是________.23、如图,在中,,.以点B为圆心,为半径作弧,交的延长线于点E,线段沿方向平移至.若四边形的面积为,则阴影部分面积为________.24、如图,AB为⊙O直径,点C、D在⊙O上,已知∠AOD=50°,AD∥OC,则∠BOC= ________度.25、如图,P是⊙O的直径BA延长线上一点,PD交⊙O于点C,且PC=OD,如果∠P=24°,则∠DOB=________.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,弧的度数为50°,求∠AOC 的度数.27、设圆锥的侧面展开图是一个半径为18cm,圆心角为240°的扇形,求圆锥的底面积和高.28、如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,路两旁50米内会受到噪音影响,已知有两台相距30米的拖拉机正沿ON方向行驶,它们的速度均为5米/秒,问这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间是多少?29、如图,在半径为13的⊙O中,OC垂直弦AB于点D,交⊙O于点C,AB=24,求CD的长.30、如图,BC为⊙O的直径,A为⊙O上的点,以BC、AB为边作▱ABCD,⊙O交AD于点E,连结BE,点P为过点B的⊙O的切线上一点,连结PE,且满足∠PEA=∠ABE.(1)求证:PB=PE;(2)若sin∠P=,求的值.参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、C6、C7、D8、D9、A10、B11、A12、B13、C14、B15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、27、30、。

九年级数学上第二章对称图形圆单元测试卷有答案(苏科版)

九年级数学上第二章对称图形圆单元测试卷有答案(苏科版)

九年级数学上第二章对称图形圆单元测试卷有答案
(苏科版)
在人类历史发展和社会生活中,数学发挥着不可替代的作用。

小编为大家准备了这篇九年级数学上第二章对称图形圆单元测试卷。

 九年级数学上第二章对称图形圆单元测试卷有答案(苏科版)
 一、选择题(24分)
 1.下列图形的四个顶点在同一个圆上的是( )
 A.矩形、平行四边形B.菱形、正方形
 C.正方形、直角梯形D.矩形、等腰梯形
 2.已知⊙O的半径为r,圆心到点A的距离为d,且r,d分别是方程x2-4x+3=0的两根,则点A与⊙O的位置关系是( )
 A.点A在⊙O内部B.点A在⊙O上
 C.点A在⊙O外部D.点A不在⊙O上
 3.与三角形三条边距离相等的点是这个三角形的( )
 A.三条中线的交点B.三条角平分线的交点
 C.三条高的交点D.三边的垂直平分线的交点
 4.如图,若⊙O的弦AB垂直平分半径OC,则四边形OACB是( )
 A.正方形B.长方形
 C.菱形D.平行四边形
 5.在平面直角坐标系中,以点(2,3)为圆心、2为半径的圆必定( )
 A.与x轴相离、与y轴相切B.与x轴、y轴都相离
 C.与x轴相切、与y轴相离D.与x轴、y轴都相切
 6.下列命题是真命题的是( )。

苏科版九年级数学上《第二章对称图形--圆》单元测试含答案试卷分析详解

苏科版九年级数学上《第二章对称图形--圆》单元测试含答案试卷分析详解

第二章对称图形--圆单元测试一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 ( )A、25πB、65πC、90πD、130π2.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A、60ºB、30ºC、45ºD、50º3.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则的长为()A、3π2B、3π4C、3π8D、3π4.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系()A、点A在圆内B、点A在圆上C、点A在圆外D、不能确定5.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是( ).A、30°B、60°C、90°D、120°6.如图所示的扇形的圆心角度数分别为30°,40°,50°,则剩下扇形是圆的()A、13B、23C、14D、347.如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则S1S2=()A.3B.4C.5D.68.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.若抛物线与坐标轴只有一个交点,则b2﹣4ac=0D.相等的圆心角所对的弧相等9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°10.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A、27°B、54°C、63° D 、36°二、填空题(共8题;共24分)11.已知,半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是________ .12.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .13.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________14.已知正六边形的半径为2cm,那么这个正六边形的边心距为 ________cm15.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的面积为________ cm2.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC^ 的弧长为________.(结果保留π)17.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是________.18.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于________.三、解答题(共5题;共36分)19.如图,P是半径为3cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C 是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=433cm,求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.23.如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB的长为43 ,求点P的坐标.四、综合题(共1题;共10分)24.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)答案解析一、单选题1、【答案】B【考点】圆锥的计算,图形的旋转【解析】【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2、【答案】A【考点】圆周角定理【解析】【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=12∠AOB=60°;故选A.3、【答案】A【考点】等腰梯形的性质,切线的性质,弧长的计算【解析】【分析】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,由等腰梯形的性质可得到BM=AM=2,从而可求得∠BAD的度数,再根据弧长公式即可求得长.【解答】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为135×2π180=3π2 ,故选A.【点评】本题考查等腰梯形的性质,圆的切线的性质及弧长公式的理解及运用.4、【答案】A【考点】点与圆的位置关系【解析】【分析】点A到圆心O的距离是3,小于⊙O半径4,所以点A在圆内。

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册第2章对称图形——圆 单元测试题含答案

2022-2023学年苏科版九年级数学上册《第2章对称图形——圆》单元测试题(附答案)一.选择题(共8小题,满分40分)1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,若BE=CD=8,则⊙O的半径的长是()A.5B.4C.3D.22.如图,点P是半径为4的⊙O上一点,OC⊥AB于点D.若∠P=30°,则OD等于()A.B.C.2D.33.如图,AB是⊙O的弦,OC⊥AB,垂足为C,OD∥AB,OC=OD,则∠ABD的度数为()A.90°B.95°C.100°D.105°4.如图,CD是⊙O的直径,⊙O上的两点A,B分别在直径CD的两侧,且∠ABC=78°,则∠AOD的度数为()A.12°B.22°C.24°D.44°5.如图,从一张直径是2的圆形纸片上剪出一个圆心角为90°的扇形,若剪出的扇形恰好可以围成一个圆锥,则该圆锥底面圆的面积是()A.πB.C.D.6.已知三角形ABE为直角三角形,∠ABE=90°,BC为圆O切线,C为切点,CA=CD,则△ABC和△CDE面积之比为()A.1:3B.1:2C.:2D.(﹣1):1 7.如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4B.4<m≤10C.8<m≤10D.6<m<108.如图,AB是圆O的直径,弦AD平分∠BAC,过点D的切线交AC于点E,∠EAD=25°,则下列结论错误的是()A.AE⊥DE B.AE∥OD C.DE=OD D.∠BOD=50°二.填空题(共8小题,满分40分)9.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分,如果C是⊙O中弦AB的中点,CD经过圆心O交⊙O于点D,并且AB=4m,CD=6m,则⊙O的半径长为m.10.如图,AB、AC是⊙O的弦,过点A的切线交CB的延长线于点D,若∠BAD=35°,则∠C=°.11.如图,从一个腰长为60cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,则此扇形的弧长为cm.12.如图,四边形ABCD是边长为的正方形,曲线DA1B1C1D1A2…是由多段90°的圆心角所对的弧组成的.其中,弧DA1的圆心为A,半径为AD;弧A1B1的圆心为B,半径为BA1;弧B1C1的圆心为C,半径为CB1;弧C1D1的圆心为D,半径为DC1….弧DA1、弧A1B1、弧B1C1、弧C1D1…的圆心依次按点A、B、C、D循环,则弧C2022D2022的长是(结果保留π).13.如图,将⊙O沿弦AB折叠,恰经过圆心O,若AB=2,则阴影部分的面积为.14.如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O 于点D.若∠APD是所对的圆周角,则∠APD的度数是.15.如图,矩形ABCD与圆心在AB上的⊙O交于点G,B,F,E,GB=5,EF=4,那么AD=.16.如图,在平面直角坐标系中,B(0,4),A(3,0),⊙A的半径为2,P为⊙A上任意一点,C是BP的中点,则OC的最大值是.三.解答题(共6小题,满分40分)17.如图,四边形ABCD是⊙O的内接四边形,且对角线BD为直径,过点A作⊙O的切线AE,与CD的延长线交于点E,已知DA平分∠BDE.(1)求证:AE⊥DE;(2)若⊙O的半径为5,CD=6,求AD的长.18.如图,在△ABC中,AB=AC.以AB为直径的⊙O与线段BC交于点D,过点D作DE ⊥AC,垂足为E,ED的延长线与AB的延长线交于点P.(1)求证:直线PE是⊙O的切线;(2)若⊙O的半径为6,∠P=30°,求CE的长.19.如图,点O是△ABC的边AC上一点,以点O为圆心,OA为半径作⊙O,与BC相切于点E,交AB于点D,连接OE,连接OD并延长交CB的延长线于点F,∠AOD=∠EOD.(1)连接AF,求证:AF是⊙O的切线;(2)若FC=10,AC=6,求FD的长.20.如图,AB是⊙O的切线,B为切点,直线AO交⊙O于C,D两点,连接BC,BD.过圆心O作BC的平行线,分别交AB的延长线、⊙O及BD于点E,F,G.(1)求证:∠D=∠E;(2)若F是OE的中点,⊙O的半径为3,求阴影部分的面积.21.已知AB为⊙O的直径,C为⊙O上一点,D为BA的延长线上一点,连接CD.(1)如图1,若CO⊥AB,∠D=30°,OA=1,求AD的长;(2)如图2,若DC与⊙O相切,E为OA上一点,且∠ACD=∠ACE.求证:CE⊥AB.22.如图①,在△ABC中,CA=CB,D是△ABC外接圆⊙O上一点,连接CD,过点B作BE∥CD,交AD的延长线于点E,交⊙O于点F.(1)求证:四边形DEFC是平行四边形;(2)如图②,若AB为⊙O直径,AB=7,BF=1,求CD的长.参考答案一.选择题(共8小题,满分40分)1.解:连接OC,设⊙O的半径为R,则OE=8﹣R,∵CD⊥AB,AB过圆心O,CD=8,∴∠OEC=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,R2=42+(8﹣R)2,解得:R=5,即⊙O的半径长是5,故选:A.2.解:连接OA,∵∠P=30°,∴∠AOD=60°,∵OC⊥AB,∴∠ADO=90°,∴∠OAD=30°,∵OA=4,∴OD=OA=2.故选:C.3.解:如图:连接OB,则OB=OD,∵OC=OD,∴OC=OB,∵OC⊥AB,∴∠OBC=30°,∵OD∥AB,∴∠BOD=∠OBC=30°,∴∠OBD=∠ODB=75°,∠ABD=30°+75°=105°.故选:D.4.解:∵∠AOC=2∠ABC,∠ABC=78°,∴∠AOC=156°,∴∠AOD=180°﹣∠AOC=24°,故选:C.5.解:∵∠BAC=90°,∴BC为⊙O的直径,BC=2,∴AB=AC=,设该圆锥底面圆的半径为r,∴2πr=,解得r=,即该圆锥底面圆的半径为,∴底面圆的面积为.故选:C.6.解:如图,连接OC,∵BC是⊙O的切线,OC为半径,∴OC⊥BC,即∠OCB=90°,∴∠COD+∠OBC=90°,又∵∠ABE=90°,即∠ABC+∠OBC=90°,∴∠ABC=∠COD,∵DE是⊙O的直径,∴∠DCE=90°,即∠OCE+∠OCD=90°,又∠A+∠E=90°,而∠E=∠OCE,∴∠A=∠OCD,在△ABC和△COD中,,∴△ABC≌△COD(AAS),又∵BO=DO,∴S△COD=S△COE=S△DCE,∴S△ABC=S△DCE,即△ABC和△CDE面积之比为1:2,故选:B.7.解:连接PD,DF,OC,BD,如图,∵CD⊥AB,BA为⊙O的直径,∴CE=ED=CD=4,∵OC=AB=5,∴OE==3,∴BE=OE+OB=8.∴BD==4.∵P是直径AB上的动点,CD⊥AB,∴AB是CD的垂直平分线,∴PC=PD.∵m=PC+PF,∴m=PD+PF,由图形可知:PD+PF≥DF(当D,P,F在一条直线上时取等号),∵点F是弧BC上动点,且与点B、C不重合,∴DC<DF≤直径,∴8<m≤10.故选:C.8.解:∵弦AD平分∠BAC,∠EAD=25°,∴∠OAD=∠ODA=25°.∴∠BOD=2∠OAD=50°.故选项D不符合题意;∵∠OAD=∠CAD,∴∠CAD=∠ODA,∴OD∥AC,即AE∥OD,故选项B不符合题意;∵DE是⊙O的切线,∴OD⊥DE.∴DE⊥AE.故选项A不符合题意;如图,过点O作OF⊥AC于F,则四边形OFED是矩形,∴OF=DE.在直角△AFO中,OA>OF.∵OD=OA,∴DE<OD.故选项C符合题意.故选:C.二.填空题(共8小题,满分40分)9.解:连接OA,如图,设⊙O的半径为rm,∵C是⊙O中弦AB的中点,CD过圆心,∴CD⊥AB,AC=BC=AB=2m,在Rt△AOC中,∵OA=rcm,OC=(6﹣r)m,∴22+(6﹣r)2=r2,解得r=,即⊙O的半径长为m.故答案为:.10.解:连接OA并延长交⊙O于点E,连接BE,∵AD与⊙O相切于点A,∴∠OAD=90°,∵∠BAD=35°,∴∠BAE=∠OAD﹣∠BAD=55°,∵AE是⊙O的直径,∴∠ABE=90°,∴∠E=90°﹣∠BAE=35°,∴∠C=∠E=35°,故答案为:35.11.解:过O作OE⊥AB于E,当扇形的半径为OE时扇形OCD最大,∵OA=OB=60cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=30cm,∴弧CD的长==20πcm,故答案为:20π.12.解:根据题意可得,的半径AA1=;的半径BB1=AB+AA1=;的半径CC1=CB+BB1=;的半径DD1==CD+CC1=;的半径AA2=AD+DD1=;的半径BB2=AB+AA2=;的半径CC2=BC+BB2=;的半径DD2=CD+CC2=;•以此类推可知,弧∁n D n的半径为=2n,即弧C2022D2022的半径为DD2022=2n=2×2022=4044,∴弧C2022D2022的长l===2022π.故答案为:2022π.13.解:如图,过点O作AB的垂线并延长,垂足为C,交⊙O于点D,连结AO,AD,根据垂径定理得:AC=BC=AB=,∵将⊙O沿弦AB折叠,恰经过圆心O,∴OC=CD=r,∴OC=OA,∴∠OAC=30°,∴∠AOD=60°,∵OA=OD,∴△AOD是等边三角形,∴∠D=60°,在Rt△AOC中,AC2+OC2=OA2,∴()2+(r)2=r2,解得:r=2,∵AC=BC,∠OCB=∠ACD=90°,OC=CD,∴△ACD≌△BCO(SAS),∴阴影部分的面积=S扇形ADO=×π×22=.故答案为:.14.解:∵OC⊥AB,∴,∴∠AOD=∠BOD,∵∠AOB=120°,∴∠AOD=∠BOD=∠AOB=60°,∴∠APD=∠AOD=×60°=30°,故答案为:30°.15.解:过O作OM⊥EF于M,连接OE,则∠OMD=90°,∵四边形ABCD是矩形,∴∠A=∠D=90°,∴四边形AOMD是矩形,∴OM=AD,∵OM⊥EF,OM过圆心O,EF=4,∴EM=FM=2,∵OG=OB,BG=5,∴OB=OG=2.5=OE,在Rt△OME中,由勾股定理得:OM===1.5,∴AD=OM=1.5,故答案为:1.5.16.解:如图,连接AB,取AB的中点H,连接CH,OH.∵BC=CP,BH=AH,∴CH=P A=1,∴点C的运动轨迹是以H为圆心半径为1的圆,∵B(0,4),A(3,0),∴H(1.5,2),∴OH==2.5,∴OC的最大值=OH+CH=2.5+1=3.5,故答案为:3.5.三.解答题(共6小题,满分40分)17.(1)证明:连接OA,∵AE是⊙O的切线,∴∠OAE=90°,∵OA=OD,∴∠OAD=∠ODA,∵DA平分∠BDE,∴∠ODA=∠ADE,∴∠ADE=∠OAD,∴OA∥CE,∴∠E=180°﹣∠OAE=90°,∴AE⊥DE;(2)解:过点O作OF⊥DC,垂足为F,∴∠OFD=90°,∵∠OAE=∠E=90°,∴四边形OAEF是矩形,∴OA=EF=5,AE=OF,∵OF⊥CD,∴DF=CD=3,∴DE=EF﹣DF=5﹣3=2,∴OF===4,∵AE=OF=4,∴AD===2,∴AD的长为2.18.(1)证明:连接OD,如图:∵AB=AC,∴∠ABC=∠ACB,∵OB=OD,∴∠ABC=∠ODB,∴∠ACB=∠ODB,∴OD∥AC,∵DE⊥AC,∴DE⊥OD,即PE⊥OD,∵OD是⊙O的半径,∴PE是⊙O的切线;(2)解:连接AD,连接OD,如图:∵DE⊥AC,∴∠AEP=90°,∵∠P=30°,∴∠P AE=60°,∵AB=AC,∴△ABC是等边三角形,∵⊙O的半径为6,∴BC=AB=12,∠C=60°,∵AB是⊙O的直径,∴∠ADB=90°,∴BD=CD=BC=6,在Rt△CDE中,CE=CD•cos C=6×cos60°=3,答:CE的长是3.19.(1)证明:在△AOF和△EOF中,,∴△AOF≌△EOF(SAS),∴∠OAF=∠OEF,∵BC与⊙O相切,∴OE⊥FC,∴∠OAF=∠OEF=90°,即OA⊥AF,∵OA是⊙O的半径,∴AF是⊙O的切线;(2)解:在Rt△CAF中,∠CAF=90°,FC=10,AC=6,∴AF==8,∵∠OCE=∠FCA,∠OEC=∠F AC=90°,设⊙O的半径为r,则,解得r=,在Rt△F AO中,∠F AO=90°,AF=8,AO=,∴OF==,∴FD=OF﹣OD=﹣,即FD的长为﹣.20.(1)证明:连接OB,∵AB是⊙O的切线,∴∠OBE=90°,∴∠E+∠BOE=90°,∵CD为⊙O的直径,∴∠CBD=90°,∴∠D+∠DCB=90°,∵OE∥BC,∴∠BOE=∠OBC,∵OB=OC,∴∠OBC=∠OCB,∴∠BOE=∠OCB,∴∠D=∠E;(2)解:∵F为OE的中点,OB=OF,∴OF=EF=3,∴OE=6,∴BO=OE,∵∠OBE=90°,∴∠E=30°,∴∠BOG=60°,∵OE∥BC,∠DBC=90°,∴∠OGB=90°,∴OG=,BG=,∴S△BOG=OG•BG==,S扇形BOF==π,∴S阴影部分=S扇形BOF﹣S△BOG=.21.解:(1)∵OA=1=OC,CO⊥AB,∠D=30°,∴OD=•OC=,∴AD=OD﹣OA=﹣1;(2)∵DC与⊙O相切,∴OC⊥CD,即∠ACD+∠OCA=90°,∵OA=OC,∴∠OCA=∠OAC,∵∠ACD=∠ACE,∴∠OAC+∠ACE=90°,∴∠AEC=90°,即CE⊥AB.22.(1)证明:∵BE∥CD,∴∠ADC=∠E,∵AC=BC,∴=,∴∠ADC=∠BFC,∴∠BFC=∠E,∴ED∥FC,∴四边形DEFC是平行四边形;(2)解:如图②,连接AF,∵AB是⊙O的直径,∴∠ACB=∠AFB=∠AFE=90°,∵AB=7,BF=1,∴AF===4,∵AC=BC,∠ACB=90°,∴∠BAC=45°,∴∠BFC=∠BAC=45°,∵DE∥CF,∴∠E=∠BFC=45°,∴△AFE是等腰直角三角形,∴EF=AF=4,∵四边形DEFC是平行四边形,∴CD=EF=4.。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°2、下列说法正确的是()A.直径是弦,弦是直径B.过圆心的线段是直径C.圆中最长的弦是直径D.直径只有二条3、如图,AB是⊙O的直径,点C、D是圆上两点,且,则()A. B. C. D.4、下列说法中,正确的是()A.过圆心的线段是直径B.小于半圆的弧是优弧C.弦是直径D.半圆是弧5、如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为()A.6cmB. cmC.8cmD. cm6、如图,正方形ABCD的边长为8.M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为()A.3B.4C.3或4D.不确定7、一个扇形的圆心角为60°,弧长为2π厘米,则这个扇形的半径为()A.6厘米B.12厘米C. 厘米D. 厘米8、如图,⊙C过原点O,且与两坐标轴分别交于点A、B,点A的坐标为(0,2),M是第三象限内⊙C上一点,∠BMO=120°,则圆心C的坐标为()A.(1,1)B.(1,)C.(2,1)D.(﹣,1)9、能说明圆上一条弧所对的圆周角等于它所对圆心角的一半的图形是()A. B. C. D.10、如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线AD的延长线交于点E,若点D是弧AC的中点,且∠ABC=70°,则∠AEC等于()A.80°B.75°C.70°D.65°11、如图,OA是⊙O的半径,BC是⊙O的弦,且BC⊥OA,过BC的延长线上一点D作⊙O的切线DE,切点为E,连接AB,BE,若∠BDE=52°,则∠ABE的度数是()A.52°B.58°C.60°D.64°12、如图,AB为⊙O的直径,AB=30,点C在⊙O上,∠A=24°,则的长为()A.9πB.10πC.11πD.12π13、如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD= ,则阴影部分图形的面积为()A.4πB.2πC.πD.14、如图,小正方形的边长均为1,则∠1的正切值为()A. B. C. D.15、如图所示,四边形ABCD内接于⊙O,则下列结论错误的是()A.∠1=∠AB.∠B=∠DC.∠A+∠2=180°D.∠A+∠2=∠B+∠D二、填空题(共10题,共计30分)16、在⊙O中,弦AB=8cm,弦心距OC=3cm,则该圆的半径为________ cm17、如图所示,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r 为半径的圆与边AB所在直线有公共点,则r的取值范围为________.18、将半径为30cm,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥底面半径的最大值为________cm.19、如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为________.(答案用根号表示)20、如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),点P的坐标为________21、如图,BD是⊙O的切线,B为切点,连接DO与⊙O交于点C,AB为⊙O的直径,连接CA,若∠D=30°,⊙O的半径为4,则图中阴影部分的面积为________.22、已知⊙O的直径CD为4,的度数为80°,点B是的中点,点P在直径CD上移动,则BP+AP的最小值为________.23、如图,中,,,若把绕边所在直线旋转一周,则所得几何体的表面积为________(结果保留).24、如图,⊙O与正方形ABCD的各边分别相切于点E、F、G、H,点P是上的一点,则tan∠EPF的值是________.25、如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,如果⊙O的半径为,则O点到BE的距离OM=________.三、解答题(共5题,共计25分)26、如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.27、如图,AB是⊙O的直径,点C、E在⊙O上,AC平分∠BAE,CM⊥AE于点D.求证:CM是⊙O的切线.28、如图是大型输气管的截面图(圆形),某次数学实践活动中,数学课题学习小组为了计算大型输气管的直径,在圆形弧上取了A,B两点并连接AB,在劣弧AB上取中点C连接CB,经测量BC=米,∠ABC=36.87°,请根据这些数据计算出大型输气管的直径(精确到0.1米).(sin36.87°≈0.60,cos36.87°≈0.80,tan36.87°≈0.75)29、用一个半径为4 cm,圆心角为120°的扇形纸片围成一个圆锥(接缝处不重叠),求这个圆锥的高.30、如图,⊙O的内接四边形ABCD中,AC,BD是它的对角线,AC的中点I是△ABD的内心.求证:(1)OI是△IBD的外接圆的切线;(2)AB+AD=2BD.参考答案一、单选题(共15题,共计45分)1、D3、D4、D5、B6、C7、A8、D9、A10、B11、D12、C13、D14、D15、B二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

苏科版九年级数学上册《第2章 对称图形~圆》单元测试卷【含答案】

苏科版九年级数学上册《第2章 对称图形~圆》单元测试卷【含答案】

苏科版九年级数学上册《第2章对称图形~圆》单元测试卷一.选择题1.下列说法中正确的是()A.弦是直径B.弧是半圆C.半圆是圆中最长的弧D.直径是圆中最长的弦2.⊙O的弦A B的长为8cm,弦AB的弦心距为3cm,则⊙O的半径为()A.4cm B.5cm C.8cm D.10cm3.如图所示,正六边形ABCDEF内接于圆O,则∠ADB的度数为()A.60°B.45°C.30°D.22.5°4.下列说法正确的是()A.半圆是弧,弧也是半圆B.三点确定一个圆C.平分弦的直径垂直于弦D.直径是同一圆中最长的弦5.如图,圆O的弦中最长的是()A.AB B.CD C.EF D.GH6.平面内有两点P,O,⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法判断7.如图,⊙O的半径为3,点P是弦AB延长线上的一点,连接OP,若OP=4,∠P=30°,则弦AB的长为()A.2B.2C.D.28.下列说法中,不正确的是()A.过圆心的弦是圆的直径B.等弧的长度一定相等C.周长相等的两个圆是等圆D.同一条弦所对的两条弧一定是等弧9.《九章算术》是我国古代著名数学著作,书中记载:“今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用数学语言可表述为:“如图,CD为⊙O 的直径,弦AB⊥DC于E,ED=1寸,AB=10寸,求直径CD的长.”则CD=()A.13寸B.20寸C.26寸D.28寸10.下列说法正确的是()A.等弧所对的圆心角相等B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆D.相等的圆心角所对的弧相等二.填空题11.如图,△ABC中,∠ACB=90°,∠A=40°,以C为圆心、CB为半径的圆交AB于点D,则∠ACD=度.12.如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD 的延长线交⊙O于点E.若∠C=20°,则∠BOE的度数是.13.已知圆中最长的弦为6,则这个圆的半径为.14.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=8,OE=3,则⊙O的半径为.15.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为.16.如图△ABC中外接圆的圆心坐标是.17.根据“不在同一直线上的三点确定一个圆”,可以判断平面直角坐标系内的三个点A (3,0)、B(0,﹣4)、C(2,﹣3)确定一个圆(填“能”或“不能”).18.如图,在⊙O中,AB=2CD,那么2(填“>,<或=”).19.在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为.20.如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则CM的长为.三.解答题21.如图,矩形ABCD中AB=3,AD=4.作DE⊥AC于点E,作AF⊥BD于点F.(1)求AF、AE的长;(2)若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,求⊙A的半径r的取值范围.22.筒车是我国古代发明的一种水利灌溉工具,彰显了我国古代劳动人民的智慧,图1,点P表示筒车的一个盛水桶.如图2,当筒车工作时,盛水桶的运行路径是以轴心O为圆心,5m为半径的圆,且圆心在水面上方.若圆被水面截得的弦AB长为8m,求筒车工作时,盛水桶在水面以下的最大深度.23.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.24.如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)25.如图,BD=OD,∠B=38°,求∠AOD的度数.26.如图:A、B、C是⊙O上的三点,∠AOB=50°,∠OBC=40°,求∠OAC的度数.27.如图,要把破残的圆片复制完整,已知弧上的点A、B、C.(1)试确定所在圆的圆心O;(2)设△ABC是等腰三角形,底边BC=10厘米,腰AB=6厘米,求圆片的半径R.(结果保留根号)答案与试题解析一.选择题1.解:A、错误.弦不一定是直径.B、错误.弧是圆上两点间的部分.C、错误.优弧大于半圆.D、正确.直径是圆中最长的弦.故选:D.2.解:如图∵AE=AB=4cm∴OA===5cm.故选:B.3.解:∵正六边形ABCDEF内接于圆O∴的度数等于360°÷6=60°∴∠ADB=30°故选:C.4.解:A、半圆是弧,但弧不一定是半圆,故本选项错误;B、不在同一直线上的三点确定一个圆,故本选项错误;C、当被平分的弦为直径时,两直径不一定垂直,故本选项错误;D、直径是同一圆中最长的弦,故本选项正确,故选:D.5.解:如图所示,圆O的弦中最长的是AB.故选:A.6.解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙O内,故选:C.7.解:连接OA,作OC⊥AB于C,则AC=BC,∵OP=4,∠P=30°,∴OC=2,∴AC==,∴AB=2AC=2,故选:A.8.解:A、过圆心的弦是圆的直径,说法正确;B、等弧的长度一定相等,说法正确;C、周长相等的两个圆是等圆,说法正确;D、同一条弦所对的两条弧一定是等弧,说法错误,应是同一条弦对的两条弧只有在这条弦是直径的情况下是等弧,故原说法错误,符合题意;故选:D.9.解:连接OA,∵AB⊥CD,且AB=10,∴AE=BE=5,设圆O的半径OA的长为x寸,则OC=OD=x寸,∵DE=1,∴OE=x﹣1,在直角三角形AOE中,根据勾股定理得:x2﹣(x﹣1)2=52,化简得:x2﹣x2+2x﹣1=25,即2x=26,解得:x=13所以CD=26(寸).故选:C.10.解:等弧所对的圆心角相等,A正确;平分弦的直径垂直于这条弦(此弦不能是直径),B错误;经过不在同一直线上的三点可以作一个圆,C错误;相等的圆心角所对的弧不一定相等,故选:A.二.填空题11.解:∵△ABC中,∠ACB=90°,∠A=40°∴∠B=50°∵BC=CD∴∠B=∠BDC=50°∴∠BCD=80°∴∠ACD=10°.12.解:连接OD,∵CD=OA=OD,∠C=20°,∴∠ODE=2∠C=40°,∵OD=OE,∴∠E=∠EDO=40°,∴∠EOB=∠C+∠E=40°+20°=60°,故60°.13.解:∵圆中最长的弦为6,∴⊙O的直径为6,∴圆的半径为3.故3.14.解:连接OD,∵CD⊥AB于点E,直径AB过O,∴DE=CE=CD=×8=4,∠OED=90°,由勾股定理得:OD===5,即⊙O的半径为5.故5.15.解:作OD⊥AB于D,连接OA.∵OD⊥AB,OA=2,∴OD=OA=1,在Rt△OAD中AD===,∴AB=2AD=2.故2.16.解:分别作三角形的三边的垂直平分线,可知相交于点(6,2),即△ABC中外接圆的圆心坐标是(6,2).故(6,2).17.解:设经过A,B两点的直线解析式为y=kx+b,由A(3,0)、B(0,﹣4),得,解得.∴经过A,B两点的直线解析式为y=x﹣4;当x=2时y=x﹣4=﹣≠﹣3,所以点C(2,﹣3)不在直线AB上,即A,B,C三点不在同一直线上,因为“两点确定一条直线”,所以A,B,C三点可以确定一个圆.故答案为能.18.解:如图,过点O作OM⊥AB,垂足为N,交⊙O于点M,连接MA,MB,由垂径定理得,AN=BN,=,∵AB=2CD,∵AN=BN=CD,又∵MA>AN,∴MA>CD,∴>,∴2>2,即,>2,故>.19.解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===10,∵E是直角△ABC斜边AB上的中点,∴CE=AB=5.∵M是BD的中点,E是AB的中点,∴ME=AD=2.∵5﹣2≤CM≤5+2,即3≤CM≤7.∴最大值为7,故7.20.解:连接OA,∵直径CD⊥AB,AB=8,∴AM=BM=AB=4,在Rt△AOM中,OA=5,AM=4,根据勾股定理得:OM==3,则CM=OC﹣OM=5﹣3=2,故2三.解答题21.解:(1)∵矩形ABCD中AB=3,AD=4,∴AC=BD==5,∵AF•BD=AB•AD,∴AF==,同理可得DE=,在Rt△ADE中,AE==;(2)∵AF<AB<AE<AD<AC,∴若以点A为圆心作圆,B、C、D、E、F五点中至少有1个点在圆内,且至少有2个点在圆外,即点F在圆内,点D、C在圆外,∴⊙A的半径r的取值范围为2.4<r<4.22.解:过O点作半径OD⊥AB于E,如图,∴AE=BE=AB=×8=4,在Rt△AEO中,OE===3,∴ED=OD﹣OE=5﹣3=2,答:筒车工作时,盛水桶在水面以下的最大深度为2m.23.解:∵AB、CD为⊙O中两条直径,∴OA=OB,OC=OD,∵CE=DF,∴OE=OF,在△AOF和△BOE中,,∴△AOF≌△BOE(SAS),∴AF=BE.24.解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE===4,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.25.解:∵BD=OD,∠B=38°,∴∠DOB=∠B=38°,∴∠ADO=∠DOB+∠B=2×38°=76°,∵OA=OD,∴∠A=∠ADO=76°,∴∠AOD=180°﹣∠A﹣∠ADO=180°﹣76°﹣76°=28°.26.解:∵OB=OC∴∠OCB=∠OBC=40°(2分)∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣40°﹣40°=100°(3分)∴∠AOC=∠AOB+∠BOC=50°+100°=150°(4分)又∵OA=OC∴∠OAC==15°(6分)27.解:(1)作DO⊥AB.DO必过圆心,作EO⊥AC,EO必过圆心,DO、EO交点必为圆心;(2)设半径为r.连接OA,因为BA=AC,故AO⊥BC.所以:CD=×10=5,AD==.根据勾股定理,(R﹣)2+52=R2,解得R=.。

2021年苏科版九年级数学上册《第2章 对称图形——圆》单元检测卷含答案

2021年苏科版九年级数学上册《第2章 对称图形——圆》单元检测卷含答案

九年级上册数学《第2章对称图形——圆》单元测试卷一.选择题1.如图,⊙O的弦AB=6,M是AB上任意一点,且OM最小值为4,则⊙O的半径为()A.2B.3C.4D.52.在直径为20cm的圆柱形油槽内装入一些油后,截面如图所示,若油槽面宽AB=16cm,则油的最大深度为()A.4cm B.6cm C.8cm D.10cm3.经过不在同一直线上的三个点可以作圆的个数是()A.1B.2C.3D.无数4.如图,四边形A BCD内接于⊙O,已知∠ADC=140°,则∠AOC的大小是()A.100°B.80°C.60°D.40°5.在⊙O中,弦AB和CD相交于P,且AB⊥CD,如果AP=4,PB=4,CP=2,那么⊙O 的直径为()A.4B.5C.8D.106.已知⊙O的直径为6,点P到圆心O的距离为4,则点P在()A.⊙O内B.⊙O外C.⊙O上D.无法确定7.如图,A,B,C是⊙O上的三点,AB,AC的圆心O的两侧,若∠ABO=20°,∠ACO =30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°8.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE 的长为()A.B.1C.D.a9.如图,已知⊙O的半径为3,弦C D=4,A为⊙O上一动点(点A与点C、D不重合),连接AO并延长交CD于点E,交⊙O于点B,P为CD上一点,当∠APB=120°时,则AP•BP的最大值为()A.4B.6C.8D.1210.已知⊙O1,⊙O2,⊙O3是等圆,△A BP内接于⊙O1,点C,E分别在⊙O2,⊙O3上.如图,①以C为圆心,AP长为半径作弧交⊙O2于点D,连接CD;②以E为圆心,BP长为半径作弧交⊙O3于点F,连接EF;下面有四个结论:①CD+EF=AB②③∠CO2D+∠EO3F=∠AO1B④∠CDO2+∠EFO3=∠P所有正确结论的序号是()A.①②③④B.①②③C.②④D.②③④二.填空题11.在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是cm.12.一条弧所对的圆心角为135°,弧长等于半径为5cm的圆的周长的3倍,则这条弧的半径为cm.13.如图,已知⊙O中,弦AB、CD交于P,AP=PB=4,CP=2,则CD=.14.如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为.15.在平面直角坐标系中有A,B,C三点,A(1,3),B(3,3),C(5,1).现在要画一个圆同时经过这三点,则圆心坐标为.16.如图,⊙O的半径为6,△OAB的面积为18,点P为弦AB上一动点,当OP长为整数时,P点有个.17.如图,A B是⊙O的弦,C是AB的中点,连接OC并延长交⊙O于点D.若CD=1,AB=4,则⊙O的半径是.18.如图,在圆内接四边形ABCD中,若∠A、∠C的度数之比为4:5,则∠C的度数是.19.如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆,则的长等于.20.如图,AB是⊙O的直径,弦CD⊥AB于点E,如果=,则∠ACD的度数是.三.解答题21.如图,两个同心圆的圆心为O,大圆的弦AB交小圆于C、D,求证:AC=BD.22.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.23.如图所示,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于点D,(1)求证:△ABD是等腰三角形;(2)求CD的长.24.如图,四边形ABCD内接于⊙O,连接AC、BD相交于点E.(1)如图1,若AC=BD,求证:AE=DE;(2)如图2,若AC⊥BD,连接OC,求证:∠OCD=∠ACB.25.已知⊙O经过四边形ABCD的B、D两点,并与四条边分别交于点E、F、G、H,且=.(1)如图①,连接BD,若B D是⊙O的直径,求证:∠A=∠C;(2)如图②,若的度数为θ,∠A=α,∠C=β,请直接写出θ、α和β之间的数量关系.26.在Rt△ABC中,∠A=90°,∠B=22.5°,点P为线段BC上一动点,当点P运动到某一位置时,它到点A,B的距离都等于a,到点P的距离等于a的所有点组成的图形为W,点D为线段BC延长线上一点,且点D到点A的距离也等于a.(1)求直线DA与图形W的公共点的个数;(2)过点A作AE⊥BD交图形W于点E,EP的延长线交AB于点F,当a=2时,求线段EF的长.27.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.参考答案与试题解析一.选择题1.解:根据直线外一点到直线的线段中,垂线段最短,知:当OM⊥AB时,为最小值4,连接OA,根据垂径定理,得:BM=AB=3,根据勾股定理,得:OA==5,即⊙O的半径为5.故选:D.2.解:过圆心O向AB作垂线,交AB于点C.根据勾股定理可得OC==6.所以油的最大深度为10﹣6=4(cm).故选:A.3.解:经过不在同一直线上的三点确定一个圆.故选:A.4.解:∵四边形ABC D内接于⊙O,∴∠B+∠ADC=180°,又∠ADC=140°,∴∠B=40°,由圆周角定理得,∠AOC=2∠B=80°,故选:B.5.解:∵AB⊥CD,AP=PB=4,∴C D为⊙O的直径,由相交弦定理得,PA•PB=PC•PD,即2PD=16,解得,PD=8,∴CD=10,6.解:∵⊙O的直径为6,∴⊙O的半径为3,∵点P到圆心O的距离为4,∴4>3,∴点P在⊙O外.故选:B.7.解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×20°=40°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=100°.故选:A.8.解:∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°;∵AB=BD,∴,∴∠AED=∠AOB;∵BC=AB=BD,∴∠D=∠BCD;∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°;又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形;在等腰△EAC和等腰△OAB中,∠AEC=∠AOB,∴△EAC≌△OAB;∴AE=OA=1.故选:B.9.解:延长AP交⊙O于T,连接BT.设PC=x.∵AB是直径,∴∠ATB=90°,∵∠APB=120°,∴∠BPT=60°,∴PT=PB•cos60°=PB,∵PA•PB=2PA•PT=2PC•PD=2x•(4﹣x)=﹣2(x﹣2)2+8,∵﹣2<0,∴x=2时,PA•PB的最大值为8,故选:C.10.解:由题意得,AP=CD,BP=EF,∵AP+BP>AB,∴CD+EF>AB;∵⊙O1,⊙O2,⊙O3是等圆,∴=,=,∵+=,∴+=;∴∠CO2D=∠AO1P,∠EO3F=∠BO1P,∵∠AO1P+∠BO1P=∠AO1P,∴∠CO2D+∠EO3F=∠AO1B;∵∠CDO2=∠APO1,∠BPO1=∠EFO3,∵∠P=∠APO1+∠BPO1,∴∠CDO2+∠EFO3=∠P,∴正确结论的序号是②③④,故选:D.二.填空题11.解:连接OC、OA.则OC⊥AB于点D,OC=OA=×52=26cm,OD=OC﹣CD=26﹣16=10cm.在直角△OAD中,AD===24(cm),则AB=2AD=48cm.故答案是:48.12.解:设弧所在圆的半径为r,由题意得,,解得,r=40cm.故应填40.13.解:∵弦AB、CD交于P,∴PA•PB=PC•PD,∴4×4=2×PD,解得,PD=8,∴CD=PC+PD=10,故答案为:10.14.解:如图,∵AE⊥BE,∴点E在以AB为直径的半⊙O上,连接C O交⊙O于点E′,∴当点E位于点E′位置时,线段CE取得最小值,∵AB=4,∴OA=OB=OE′=2,∵BC=6,∴OC===2,则CE′=OC﹣OE′=2﹣2,故答案为:2﹣2.15.解:∵A(1,3),B(3,3),C(5,1)不在同一直线上∴经过点A,B,C可以确定一个圆∴该圆圆心必在线段AB的垂直平分线上∴设圆心坐标为M(2,m)则点M在线段BC的垂直平分线上∴MB=MC由勾股定理得:=∴1+m2﹣6m+9=9+m2﹣2m+1∴m=0∴圆心坐标为M(2,0)故答案为:(2,0).16.解:解法一:过O作OC⊥AB于C,则AC=BC,设OC=x,AC=y,∵AB是⊙O的一条弦,⊙O的半径为6,∴AB≤12,∵△OAB的面积为18,∴,则y=,∴,解得x=3或﹣3(舍),∴OC=3>4,∴4<OP≤6,∵点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.解法二:设△AOB中OA边上的高为h,则,即,∴h=6,∵OB=6,∴OA⊥OB,即∠AOB=90°,∴AB=6,图中OC=3,同理得:点P为弦AB上一动点,当OP长为整数时,OP=5或6,P点有4个.故答案为:4.17.解:连接OA,∵C是AB的中点,∴AC=AB=2,OC⊥AB,∴OA2=OC2+AC2,即OA2=(OA﹣1)2+22,解得,OA=,故答案为:.18.解:∵∠A、∠C的度数之比为4:5,∴设∠A=4x,则∠C=5x.∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠C=100°.故答案为:100°.19.解:∵每个小方格都是边长为1的正方形,∴AB=2,AC=,BC=,∴AC2+BC2=AB2,∴△ACB为等腰直角三角形,∴∠A=∠B=45°,∴连接OC,则∠COB=90°,∵OB=,∴的长为:=π,故答案为:π.20.解:∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵=,∴==,即、、的度数是=120°,∴∠ACD=°=60°,故答案为:60°.三.解答题21.证明:过O作OE⊥AB于E,则OE⊥CD,∵OE过O,∴由垂径定理得:AE=BE,CE=DE,∴AE﹣CE=BE﹣DE,即AC=BD.22.解:设圆弧所在圆的圆心为O,连接OA、OA′,设半径为x米,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=60米,∴AM=30米,且OM=OP﹣PM=(x﹣18)米,在Rt△AOM中,由勾股定理可得AO2=OM2+AM2,即x2=(x﹣18)2+302,解得x=34,∴ON=OP﹣PN=34﹣4=30(米),在Rt△A′ON中,由勾股定理可得A′N===16(米),∴A′B′=32米>30米,∴不需要采取紧急措施.23.(1)证明:连接OD,∵AB为⊙O的直径,∴∠ACB=90°,∵CD是∠ACB的平分线,∴∠ACD=∠BCD=45°,由圆周角定理得,∠AOD=2∠ACD,∠BOD=2∠BCD,∴∠AOD=∠BOD,∴DA=DB,即△ABD是等腰三角形;(2)解:作AE⊥CD于E,∵AB为⊙O的直径,∴∠ADB=90°,∴AD=AB=5,∵AE⊥CD,∠ACE=45°,∴AE=CE=AC=3,在Rt△AED中,DE==4,∴CD=CE+DE=3+4=7.24.证明:(1)∵AC=BD,∴=,即+=+,∴=,∴∠ADB=∠CAD,∴AE=DE;(2)作直径CF,连接DF,如图2,∵AC⊥BD,∴∠AED=90°,∴∠ADE+∠CAD=90°,∵∠ACB=∠ADE,∠F=∠CAD,∴∠ACB+∠F=90°,∵CF为直径,∴∠CDF=90°,∴∠F+∠FCD=90°,∴∠ACB=∠FCD,即∠OCD=∠ACB.25.解:(1)连接DF、DG.∵B D是⊙O的直径,∴∠DFB=∠DGB=90°,∵=,∴∠EDF=∠HDG,∵∠DFB=∠EDF+∠A,∠DGB=∠HDG+∠C,∴∠A=∠C.(2)结论:α+β+θ=180°.理由:如图②中,连接DF,BH.∵=,∴∠ADF=∠HB G=θ,∵∠AFD+∠DFB=180°,∠DFB+∠DHB=180°,∴∠AFD=∠DHB,∵∠A+∠ADF+∠AFD=180°,∠AFD=∠DHB=∠C+∠HBG,∴∠A+θ+∠C+θ=180°,∴α+β+θ=180°.26.解:(1)直线DA与图形W的公共点的个数为1个;∵点P到点A,B的距离都等于a,∴点P为AB的中垂线与BC的交点,∵到点P的距离等于a的所有点组成图形W,∴图形W是以点P为圆心,a为半径的圆,根据题意补全图形如图所示,连接AP,∵∠B=22.5°,∴∠APD=45°,∵点D到点A的距离也等于a,∴DA=AP=a,∴∠D=∠APD=45°,∴∠PAD=90°,∴DA⊥PA,∴DA为⊙P的切线,∴直线DA与图形W的公共点的个数为1个;(2)∵AP=BP,∴∠BAP=∠B=22.5°,∵∠BAC=90°,∴∠PAC=∠PCA=67.5°,∴PA=PC=a,∴点C在⊙P上,∵AE⊥BD交图形W于点E,∴=,∴AC=CE,∴∠DPE=∠APD=45°,∴∠APE=90°,∵EP=AP=a=2,∴AE=,∠E=45°,∵∠B=22.5°,AE⊥BD,∴∠BAE=67.5°,∴∠AFE=∠BAE=67.5°.∴EF=AE=.27.解:(1)∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴,即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2∴CM=DM=,由(1)知AM•MB=CM•MD.∴AM•MB=•=5.1、三人行,必有我师。

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案

苏科版九年级数学上册《第二章对称图形—圆》单元检测卷及答案一、单选题1.如图,四边形ABCD 内接于O .若108B ∠=︒,则D ∠的大小为( )A .54︒B .62︒C .72︒D .82︒2.下列命题中,是真命题的有( )①相等的角是对顶角②三角形的外心是它的三条角平分线的交点 ③四边相等的四边形是菱形④线段垂直平分线上的点与这条线段两个端点的距离相等 A .①③B .①④C .②③D .③④3.如图,△ABC 内接于△O ,△A =30°,则△BOC 的度数为( )A .30°B .60°C .75°D .120°4.如图,BC 是△O 的直径,点A ,D 在△O 上,若△ADC =48°,则△ACB 等于( )度.A .42B .48C .46D .505.已知圆锥的底面直径是12 cm ,母线长为8 cm ,则这个圆锥的侧面积是( )A .48 cm 2B .48 cm 2C .96 cm 2D .96 cm 26.如图, EM 经过圆心 O , EM CD ⊥ 于 M ,若 4CD = , EN=6 ,则 CED 所在圆的半径为( )A.103B.83C.3D.47.如图,圆内接正六边形ABCDEF的周长为12cm,则该正六边形的内切圆半径为()A3cm B.2cm C.3cm D5cm8.如图,△O中,弦AC= 23,沿AC折叠劣弧AC交直径AB于D,DB=2,则直径AB=()A.4B.154C.32D.59.已知△O的半径为13cm,弦AB△CD,AB=24cm,CD=10cm,则AB,CD之间的距离为()A.17cm B.7cm C.12cm D.17cm或7cm10.如图,已知△O的半径为5cm,弦AB=6cm,则圆心O到弦AB的距离是()A.1cm B.2cm C.3cm D.4cm11.如图,BC是△O的直径,AD是△O的切线,切点为D,AD与CB的延长线交于点A,△C=30°,给出下面四个结论:①AD=DC ;②AB=BD ;③AB=12BC ;④BD=CD , 其中正确的个数为( )A .4个B .3个C .2个D .1个12.如图,点16P P ~是O 的六等分点.若156PP P ,235P P P 的周长分别为1C 和2C ,面积分别为1S 和2S ,则下列正确的是( )A .12C C =B .212C C = C .12S S =D .212S S =二、填空题13.圆周角的度数等于它所对弧上的圆心角度数的 .14.已知直角三角形的两条直角边长分别为 6 和 8 ,那么这个三角形的外接圆半径等于 . 15.已知:如图,半圆O 的直径AB =12cm ,点C ,D 是这个半圆的三等分点,则弦AC ,AD 和CD 围成的图形(图中阴影部分)的面积S 是 .16.如图,在矩形ABCD 中,AB =3,AD =4,点E 是AD 边上一动点,将△ABE 沿BE 折叠,使点A 的对应点A′恰好落在矩形ABCD 的对角线上,则AE 的长为 .17.在平面直角坐标系xOy 中,A 为y 轴正半轴上一点.已知点()10B , ()50C , P 是ABC 的外接圆.△点P 的横坐标为 ;△若BAC ∠最大时,则点A 的坐标为 .三、解答题18.如图,AB 与△O 相切于点B ,AO 及AO 的延长线分别交△O 于D 、C 两点,若△A=40°,求△C 的度数.19.如图3-1所示,O 的直径AB 垂直于弦CD ,垂足P 是OB 的中点 6cm CD =,求直径AB 的长.20.如图,已知△O 分别切△ABC 的三条边AB 、BC 、CA 于点D 、E 、F 210ABCScm = C △ABC =10cm且△C=60°.求: (1)△O 的半径r ;(2)扇形OEF 的面积(结果保留π); (3)扇形OEF 的周长(结果保留π)21.如图,以△ABC 的一边AB 为直径的半圆与其它两边AC ,BC 的交点分别为D 、E ,且=.(1)试判断△ABC 的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin△ABD 的值.22.如图,O 为Rt ABC 的外接圆 90ACB ∠=︒ BC =3,4AC = 点D 是O 上的动点,且点C 、D 分别位于AB 的两侧.(1)求O 的半径;(2)当42CD =时,求ACD ∠的度数;(3)设AD 的中点为M ,在点D 的运动过程中,线段CM 是否存在最大值?若存在,求出CM 的最大值;若不存在,请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:因为,四边形ABCD 内接于O 108B ∠=︒所以,D ∠=180°-18010872B ∠=︒-︒=︒ 故答案为:C【分析】根据题意求出108B ∠=︒,再计算求解即可。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图所示,点A,B,C是⊙O上三个点,若∠AOC=130°,则∠ABC等于()A.50°B.60°C.65°D.70°2、若一个圆锥的底面半径为2cm,高为4 cm,则圆锥的侧面展开图中圆心角的度数为()A.80°B.100°C.120°D.150°3、如图,已知AB是⊙O的直径,AD切⊙O于点A,=.则下列结论中不一定正确的是( )A.BA⊥DAB.OC//AEC.∠COE=2∠CAED.OD⊥AC4、有下列结论:(1)三点确定一个圆;(2)垂直于弦的直径平分弦;(3)三角形的外心到三角形各边的距离相等。

其中正确的个数有()A.3个B.2个C.1个D.0个5、如图,△ABC绕点A按逆时针方向转动一个角度后成为△A′B′C′,在下列等式中:①BC=B′C′;②∠BAB′=∠CAC′;(3)∠ABC=∠A′B′C′;④.其中正确的个数是()A.3个B.2个C.1个D.0个6、如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=AP=8,则⊙O的直径为()A.10B.8C.5D.37、如图,AB是⊙O的直径,⊙O交BC的中点于D,DE⊥AC于点E,连接AD,则下列结论:①AD⊥BC;②∠EDA=∠B;③OA= AC;④DE是⊙O的切线.其中正确的个数是()A.1B.2C.3D.48、如图,在半径为3的⊙O中,B是劣弧AC的中点,连接AB并延长到D,使BD=AB,连接AC、BC、CD,如果AB=2,那么CD等于()A.2B.1C.D.9、如图,△ABC内接于⊙O,∠A=50°.E是边BC的中点,连接OE并延长,交⊙O于点D,连接BD,则∠D的大小为()A.55°B.65°C.60°D.75°10、如图,在以AB为直径的半圆O中,C是它的中点,若AC=2,则△ABC的面积是()A.1.5B.2C.3D.411、如图中∠BOD的度数是()A.150 °B.125°C.110°D.55°12、P(x,y)是以坐标原点为圆心,5为半径的圆周上的点,若x,y都是整数,则这样的点共有()A.4个B.8个C.12个D.16个13、下列四个图中,∠x是圆周角的是()A. B. C. D.14、如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为()A.5米B.8米C.7米D.5 米15、有下列四个命题中,其中正确的有()①三角形的内心到三角形各边的距离都相等;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O 处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是________.17、如图,AB为⊙O直径,E是BC中点,OE交BC于点D,BD=3,AB=10,则AC=________.18、一条弦的弦心距等于它所在圆的直径的,则这条弦所对的圆周角为________.19、某排水管的截面如图,已知截面圆半径OB=10cm,水面宽AB是16cm,则截面水深CD为________.20、如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为________.21、如图,AB是⊙O的直径,AC、BC是⊙O的弦,直径DE⊥AC于点P.若点D 在优弧上,AB=8,BC=3,则DP=________22、已知扇形的圆心角为160°,面积为4π,则它的半径为________.23、已知圆台的上、下底面半径分别为和,母线长为,则此圆台的侧面积为________ .(结果可以含).24、小明的圆锥形玩具的高为12cm,母线长为13cm,则其侧面积是________cm2.25、正五边形的中心角的度数是________.三、解答题(共5题,共计25分)26、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.27、如图,已知△ABC内接于⊙O,AD、AE分别平分∠BAC和△BAC的外角∠BAF,且分别交圆于点D、F,连接DE,CD,DE与BC相交于点G.(1)求证:DE是△ABC的外接圆的直径;(2)设OG=3,CD=,求⊙O的半径.28、如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.29、如图,已知,⊙O为△ABC的外接圆,BC为直径,点E在AB上,过点E作EF⊥BC,点G在FE的延长线上,且GA=GE.(1)求证:AG与⊙O相切.(2)若AC=6,AB=8,BE=3,求线段OE的长.30、如图,在⊙O中,过弦AB的中点E作弦CD,且CE=2,DE=4,求弦AB的长.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、C5、A6、A7、D8、D9、B10、B11、C12、C13、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)30、。

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆  单元综合检测卷【含答案】

苏科版九年级(上册)数学第二章 对称图形—圆 单元综合检测卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在相应位置上)1.(本题3分)如图,AB 为⊙O 的直径,点C 在⊙O 上,若50OCA ∠=︒,4AB =,则BC 的长为( )A .103πB .109πC .59π D .518π 2.(本题3分)在一个圆中任意画4条半径,则这个圆中有扇形( )A .4个B .8个C .12个D .16个3.(本题3分)如图,半径为5的⊙A 中,弦BC ED ,所对的圆心角分别是BAC ∠,EAD ∠.已知6DE =,180BAC EAD ∠+∠=︒,则弦BC 的弦心距等于( )A B C .4 D .34.(本题3分)如图所示,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C ,连接BC ,若36P ∠=︒,则B 等于( )A .27︒B .32︒C .36︒D .54︒5.(本题3分)如图,半圆的圆心为0,直径AB 的长为12,C 为半圆上一点,⊙CAB =30°,AC 的长是( )A .12πB .6πC .5πD .4π6.(本题3分)如图,一块直角三角板ABC 的斜边AB 与量角器的直径重合,点D 对应54°,则⊙BCD 的度数为( )A .54°B .27°C .63°D .36°7.(本题3分)如图,半径为3的⊙O 内有一点A ,OA P 在⊙O 上,当⊙OP A 最大时,S ⊙OP A 等于( )A .32BCD .18.(本题3分)如图,点A 、B 、C 在O 上,,CD OA CE OB ⊥⊥ ,垂足分别为D 、E ,若40DCE ∠=︒,则ACB ∠的度数为( )A .140︒B .70︒C .110︒D .80︒9.(本题3分)如图是某几何体的三视图及相关数据,则下面判断正确的是( )A .a >cB .b >cC .a 2+4b 2=c 2D .a 2+b 2=c 2 10.(本题3分)O 的半径为5,同一个平面内有一点P ,且OP =7,则P 与O 的位置关系是( ) A .P 在圆内 B .P 在圆上 C .P 在圆外 D .无法确定二、填空题(本大题共10小题,每小题3分,共30分,不需写出解答过程,请把答案直接填写在相应位置上)11.(本题3分)如图,将长为8cm 的铁丝首尾相接围成半径为2cm 的扇形.则S =扇形________2cm .12.(本题3分)如图,在O 中,半径OC 垂直AB 于,8,2D AB CD ==,则O 的半径是_____.13.(本题3分)如图,四边形ABCD 内接于⊙O ,且四边形OABC 是平行四边形,则⊙D =______.14.(本题3分)如图,AB 是⊙O 的弦,点C 在过点B 的切线上,且OC ⊙OA ,OC 交AB 于点P ,已知⊙OAB =22°,则⊙OCB =__________.15.(本题3分)已知圆心角为120的扇形的面积为212cm π,则扇形的弧长是________cm .16.(本题3分)如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.17.(本题3分)在一个圆中,有个圆心角为160°的扇形,则这个扇形的面积是整个圆面积的________. 18.(本题3分)如图,⊙ABC 内接于⊙O ,若⊙OBC=25°,则⊙A=_____.19.(本题3分)如图,Rt ABC △中,90C ∠=︒,30ABC ∠=︒,6AB =.点D 在AB 边上,点E 是BC 边上一点(不与点B 、C 重合),且DA DE =,则AD 的取值范围是______.20.(本题3分)如图是一个圆锥的主视图,根据图中标出的数据(单位:cm ),计算这个圆锥侧面展开图圆心角的度数为_______.三、解答题(本大题共10小题,共60分,请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(本题5分)如图所示是一个纸杯,它的母线延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯开口圆的直径为6cm,下底面直径为4cm,母线长EF=9cm,求扇形OAB的圆心角及这个纸杯的表面积.(结果保留根号和π)22.(本题5分)如图,大正方形的边长为8厘米,求阴影部分的周长和面积(结果保留π)23.(本题5分)如图所示,⊙B=⊙OAF=90°,BO=3 cm,AB=4 cm,AF=12 cm,求图中半圆的面积.24.(本题5分)某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)25.(本题5分)如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为216cm,求半圆的半径.26.(本题5分)如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?=,以AB为直径的O分别交BC,AC于点D,27.(本题6分)已知:如图,在ABC中,AB ACE,连结EB,交OD于点F.⊥.(1)求证:OD BE(2)若DE =,5AB =,求AE 的长.28.(本题6分)如图,O 的两条弦//AB CD (AB 不是直径),点E 为AB 中点,连接EC ,ED . (1)直线EO 与AB 垂直吗?请说明理由;(2)求证:EC ED =.29.(本题8分)如图,在Rt⊙ABC 中,90C ∠=︒,AD 平分⊙BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)30.(本题10分)如图,在Rt ⊙ABC 中,⊙C =90°,以BC 为直径的⊙O 交斜边AB 于点M ,若H 是AC 的中点,连接MH .(1)求证:MH 为⊙O 的切线.(2)若MH =32,AC BC =34,求⊙O 的半径. (3)在(2)的条件下分别过点A 、B 作⊙O 的切线,两切线交于点D ,AD 与⊙O 相切于N 点,过N 点作NQ ⊙BC ,垂足为E ,且交⊙O 于Q 点,求线段NQ 的长度.答案1.B解:⊙⊙OCA=50°,OA=OC,⊙⊙A=50°,⊙⊙BOC=2⊙A=100°,⊙AB=4,⊙BO=2,⊙BC的长为:10021819ππ⨯=故选B.2.C解:图中有四条半径,以其中一条半径为始边,可以找到3个扇形, 所以可以把这个图分成4×3=12个扇形,故选C.3.D解:作AH⊙BC于H,作直径CF,连结BF,如图,⊙⊙BAC+⊙EAD=180°,⊙BAC+⊙BAF=180°,⊙⊙DAE=⊙BAF,⊙DE BF=,⊙DE=BF=6,⊙AH⊙BC,⊙CH=BH,而CA=AF,⊙AH为⊙CBF的中位线,⊙AH=12BF=3,故选:D.4.A⊙PA 切O 于点A ,⊙90PAO ∠=︒,⊙36P ∠=︒,⊙903654POA ∠=︒-︒=︒, ⊙1272B POA ∠=∠=︒, 故A .5.D解:如图,连接OC ,⊙OA =OC ,⊙CAB =30°,⊙⊙C =⊙CAB =30°,⊙⊙AOC =120°,⊙弧AC 的长度l =12064180ππ⨯=. 故选:D .6.C⊙一块直角三角板ABC 的斜边AB 与量角器的直径重合, ⊙点A. B. C. D 都在以AB 为直径的圆上,⊙点D 对应54°,即⊙AOD=54°, ⊙⊙ACD=12⊙AOD=27°, ⊙⊙BCD=90°−⊙ACD=63°.故选C.7.B解:如图所示:OA 、OP 是定值,PA OA ∴⊥时,OPA ∠最大,在直角三角形OPA 中,OA =3OP =,PA ∴=12OPA S OA AP ∆∴=⋅12==. 故选:B .8.C解:在优弧AB 上取一点F ,连接AF ,BF .⊙,CD OA CE OB ⊥⊥ ,⊙⊙CDO=⊙CEO=90°.⊙40DCE ∠=︒,⊙⊙O=140°,⊙⊙F=70°,⊙⊙ACB=180°-70°=110°.故选C .9.D由题意可知该几何体是圆锥,根据勾股定理得,a 2+b 2=c 2故选:D .10.C解:因为75OP =>,所以点P 与圆O 的位置关系是点在圆外,故选:C11.4⊙扇形周长等于铁丝的长为8 cm ,扇形的半径是2 cm ,⊙扇形弧长是4 cm ,⊙12S lr=扇形214242cm=⨯⨯=.故4.12.5设⊙O的半径为r,则OD=r-2,⊙OC⊙AB,⊙AD=BD=12AB=4,在Rt⊙AOD中,⊙OD2+AD2=OA2,⊙(r-2)2+42=r2,解得r=5,即⊙O的半径为5.故5.13.60°⊙四边形ABCD内接于⊙O,⊙⊙D+⊙B=180°,由圆周角定理得,⊙D=12⊙AOC,⊙四边形OABC为平行四边形,⊙⊙AOC=⊙B,⊙2⊙D=180°−⊙D,解得,⊙D=60°,故60.14.44°连接OB,⊙BC是⊙O的切线,⊙OB⊙BC,⊙⊙OBA+⊙CBP=90°,⊙OC⊙OA,⊙OA=OB ,⊙OAB=22°,⊙⊙OAB=⊙OBA=22°,⊙⊙APO=⊙CBP=68°,⊙⊙APO=⊙CPB ,⊙⊙CPB=⊙ABP=68°,⊙⊙OCB=180°-68°-68°=44°,故答案为44°15.4π令扇形的半径和弧长分别为R 和l ,则S=2120360R π=12π, ⊙R=6cm , ⊙l=0208161π⨯=4πcm . ⊙扇形的弧长为4πcm .16.35r <<.根据勾股定理可求得BD=5,三个顶点A 、B 、C 中至少有一个点在圆内,点A 与点D 的距离最近,点A 应该在圆内,所以r>3,三个顶点A 、B 、C 中至少有一个点在圆外,点B 与点D 的距离最远,点B 应该在圆外,所以r<5,所以r 的取值范围是35r <<.17.49160°÷360°=49 故答案为.4918.65°.连接OC .⊙OB=OC ,⊙OBC=25°⊙⊙BOC=130°, ⊙⊙A=12⊙BOC=65°. 故答案是:65°.19.23AD ≤<以D 为圆心,AD 的长为半径画圆,当圆与BC 相切,如图⊙,DE BC ⊥时,30ABC =︒∠, ⊙12DE BD =, ⊙DA DE =⊙2DB DA =6AB =,2AD DE ∴==⊙DE 到BC 的最短距离为2⊙2AD ≥当圆与BC 相交时,如图⊙,若交点为B 和C ,则132AD AB ==, ⊙3AD < AD ∴的取值范围是23AD ≤<.20.120⊙圆锥的底面半径为1,⊙圆锥的底面周长为2π,⊙圆锥的高是⊙圆锥的母线长为3,设扇形的圆心角为n°, ⊙32180n ππ⨯==2π,解得n=120.即圆锥的侧面展开图中扇形的圆心角为120°.故答案为120°.21.40度 49π2cm解:由题意可知:BA =6πcm , CD =4π,设⊙AOB=n ,AO=R ,则CO=R ﹣9,由弧长公式得:l =180n R π,⊙618041809n nR nR ⨯=⎧⎨⨯=-⎩,解得:n=40,R=27,故扇形OAB 的圆心角是40度.⊙R=27,R ﹣9=18,⊙S 扇形OCD = 12×4π×18=36π(cm 2),S 扇形OAB = 12×6π×27=81π(cm 2),纸杯侧面积=S 扇形OAB ﹣S 扇形OCD =81π﹣36π=45π(cm 2),纸杯底面积=π•22=4π(cm 2)纸杯表面积=45π+4π=49π(cm 2).22.(16)4π+厘米;(32)8π+平方厘米解:周长:π×8×14×2+8×12×4 =8π×12+16=4π+16(厘米);面积:8×8×12+π×282÷()×12=32+8π(平方厘米).答:阴影部分的周长是4π+16厘米,面积是32+8π平方厘米.23.图中半圆的面积是169π8cm 2. 解:如图,⊙在直角⊙ABO 中,⊙B =90°,BO =3 cm ,AB =4 cm ,⊙AO 5 cm.则在直角⊙AFO 中,由勾股定理,得到FO 13 cm ,⊙图中半圆的面积=12π×2FO ⎛⎫ ⎪⎝⎭2=12π×169π169π88=(cm 2). 答:图中半圆的面积是169π8cm 2. 24.作图见解析. 在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.25.R =.如下图所示,圆心为A ,设大正方形的边长为2x ,圆的半径为R ,⊙正方形有两个顶点在半圆上,另外两个顶点在圆心两侧,⊙AE BC x ==,2CE x =,⊙小正方形的面积为216cm ,⊙小正方形的边长4cm EF DF ==,由勾股定理得,22222R AE CE AF DF =+=+,即()2222444x x x +=++,解得4x =,⊙R =.26.选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.⊙圆锥形漏斗的底面半径为20cm,高为,⊙圆锥的母线长为R==60(cm).设圆锥的侧面展开图的圆心角为n°,则有60180nπ⨯=2π×20,解得:n=120.方案一:如图⊙,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为cm.此时矩形的面积为60⨯(cm2).方案二:如图⊙,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为30+60=90(cm),此时矩形的面积为90×60=5 400(cm2).⊙>5400,⊙方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.27.(1)见解析;(2)3(1)证明:⊙AB为⊙O的直径,⊙⊙AEB=90°,⊙AB=AC,⊙⊙C=⊙ABC.⊙BO=OD,⊙⊙ODB=⊙ABC,⊙⊙C=⊙ODB,⊙OD//AC,⊙OD⊙BE;(2)解:⊙OD⊙BE,⊙弧BD=弧DE,⊙AB=5,则OB=OD=52,设OF=x,则DF=52-x,⊙BF2=BD2-DF2=OB2-OF2,即2-(52-x)2=(52)2-x 2, 解得x=32, ⊙OF//AE ,OA=OB , ⊙AE=2OF=2×32=3. 28.(1)直线EO 与AB 垂直.理由见解析;(2)证明见解析.解:(1)直线EO 与AB 垂直.理由如下:如图,连接EO ,并延长交CD 于F .⊙ EO 过点O ,E 为AB 的中点,EO AB ∴⊥.(2)EO AB ⊥,//AB CD ,EF CD ∴⊥.⊙ EF 过点O ,CF DF ∴=,EF ∴垂直平分CD ,EC ED ∴=.29.(1)证明见解析 (2)23π(1)连接OD .⊙OA =OD ,⊙⊙OAD =⊙ODA .⊙⊙OAD =⊙DAC ,⊙⊙ODA =⊙DAC ,⊙OD ⊙AC ,⊙⊙ODB =⊙C =90°,⊙OD ⊙BC ,⊙BC 是⊙O 的切线. (2)连接OE ,OE 交AD 于K .⊙AE DE =,⊙OE ⊙AD .⊙⊙OAK =⊙EAK ,AK =AK ,⊙AKO =⊙AKE =90°,⊙⊙AKO ⊙⊙AKE ,⊙AO =AE =OE ,⊙⊙AOE 是等边三角形,⊙⊙AOE =60°,⊙S 阴=S 扇形OAE ﹣S ⊙AOE 2602360π⋅⋅=2223π=- 30.(1)证明见解析;(2)2;(3)4813. 解:(1)连接OH 、OM ,⊙H 是AC 的中点,O 是BC 的中点⊙OH 是⊙ABC 的中位线 ,⊙OH ⊙AB ,⊙⊙COH =⊙ABC ,⊙MOH =⊙OMB又⊙OB =OM ,⊙⊙OMB =⊙MBO ,⊙⊙COH =⊙MOH ,在⊙COH 与⊙MOH 中,⊙OC =OM ,⊙COH =⊙MOH ,OH =OH⊙⊙COH ⊙⊙MOH (SAS ),⊙⊙HCO =⊙HMO =90°,⊙MH 是⊙O 的切线;(2)⊙MH 、AC 是⊙O 的切线,⊙HC =MH =32, ⊙AC =2HC =3, ⊙AC BC =34, ⊙BC =4 ,⊙⊙O 的半径为2;(3)连接OA 、CN 、ON ,OA 与CN 相交于点I , ⊙AC 与AN 都是⊙O 的切线 ,⊙AC =AN ,AO 平分⊙CAD ,⊙AO ⊙CN ,⊙AC =3,OC =2 ,⊙由勾股定理可求得:A O ⊙12AC •OC =12AO •CI ,⊙CI ,⊙由垂径定理可求得:C N =13, 设OE =x ,由勾股定理可得:2222CN CE ON OE -=-, ⊙22144(2)413x x -+=-, ⊙x =1013, ⊙CE =1013, 由勾股定理可求得:EN =2413, ⊙由垂径定理可知:NQ =2EN =4813.。

2021年苏科版九年级数学上册第2章 对称图形——圆 单元检测题含答案

2021年苏科版九年级数学上册第2章 对称图形——圆 单元检测题含答案

九年级上册数学《第2章对称图形——圆》单元测试卷一.选择题1.下列语句中,正确的是()A.长度相等的弧是等弧B.在同一平面上的三点确定一个圆C.三角形的内心是三角形三边垂直平分线的交点D.三角形的外心到三角形三个顶点的距离相等2.如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连接AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°3.如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于M,AB=8,OC=5,则MD的长为()A.4B.2C.D.14.一辆装满货物,宽为2.4米的卡车,欲通过如图的隧道,则卡车的外形高必须低于()A.4.1米B.4.0米C.3.9米D.3.8米5.对于以下图形有下列结论,其中正确的是()A.如图①,AC是弦B.如图①,直径AB与组成半圆C.如图②,线段CD是△ABC边AB上的高D.如图②,线段AE是△ABC边AC上的高6.如图,AB是半圆O的直径,点C在半圆O上,把半圆沿弦AC折叠,恰好经过点O,则与的关系是()A.=B.=C.=D.不能确定7.小明不慎把家里的圆形镜子打碎了,其中三块碎片如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.均不可能8.下列说法正确的是()A.三点确定一个圆B.长度相等的两条弧是等弧C.经过圆内一点有且仅有一条直径D.半圆是弧9.如图,⊙O的直径CD为10,弦AB的长为8,且AB⊥CD,垂足为M,则CM的长为()A.1B.2C.3D.410.在数轴上,点A所表示的实数为2,点B所表示的实数为a,⊙A的半径为3,若点B 在⊙A外,则a的值可能是()A.﹣1B.0C.5D.6二.填空题11.如图,⊙O的直径C D垂直弦AB于点E,且CE=3cm,DE=7cm,则弦AB=cm.12.如图所示,三圆同心于O,AB=4cm,CD⊥AB于O,则图中阴影部分的面积为cm2.13.如图,⊙O的半径为4cm,∠AOB=60°,则弦AB的长为cm.14.如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作⊙A,则点A,点B,点C,点D四点中在⊙A外的是.15.⊙O的直径为10cm,弦AB∥CD,AB=8cm,CD=6cm,则AB和CD的距离是cm.16.如图,直角坐标系中一条圆弧经过网格点A,B,C,其中B点坐标为(4,4),则该圆弧所在圆的圆心坐标为.17.我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB =1尺(1尺=10寸).问这根圆形木材的直径是寸.18.如图,⊙O的弦AB、半径OC延长交于点D,BD=OA,若∠AOC=105°,则∠D=度.19.如图,在⊙O中,,AB=3,则AC=.20.正方形的四个顶点和它的中心共5个点能确定个不同的圆.三.解答题21.如图,在⊙O中,直径AB=10,弦CD⊥AB,垂足为E,BE=2.求:弦CD的长.22.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?23.如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.24.已知:如图,在△ABC中,∠ACB=90°,∠B=25°,以C为圆心,CA长为半径的圆交AB于D,求的度数.25.如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2,则称点P′是点P关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.26.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25.求⊙O的半径.27.已知:如图,AB为⊙O的直径,OD∥AC.求证:点D平分.参考答案与试题解析一.选择题1.解:A、能完全重合的弧才是等弧,故错误;B、不在同一直线上的三点确定一个圆,故错误;C、三角形的内心到三边的距离相等,是三条角平分线的交点,故错误;D、三角形的外心是外接圆的圆心,到三顶点的距离相等,故正确;故选:D.2.解:∵AD∥OC,∴∠AOC=∠DAO=70°,又∵OD=OA,∴∠ADO=∠DAO=70°,∴∠AOD=180﹣70°﹣70°=40°.故选:D.3.解:连接OA,∵CD是直径,AB是弦,AB⊥CD于M,AB=8,∴AM=BM=4,∵OC=5,∴OA=OD=5,∴OM===3.∴DM=OD﹣OM=5﹣3=2.故选:B.4.解:∵车宽2.4米,∴欲通过如图的隧道,只要比较距隧道中线1.2米处的高度与车高.在Rt△OCD中,由勾股定理可得:CD===1.6(m),CH=CD+DH=1.6+2.5=4.1米,∴卡车的外形高必须低于4.1米.故选:A.5.解:A、AC不是弦,故错误;B、半圆是弧,不包括弧所对的弦,故错误;C、线段CD是△ABC边AB上的高,正确;D、线段AE不是△ABC边AC上的高,故错误,故选:C.6.解:连接OC,BC,过O作OE⊥AC于D交圆O于E,∵把半圆沿弦AC折叠,恰好经过点O,∴OD=OE,∵AB是半圆O的直径,∴∠ACB=90°,∴OD∥BC,∵OA=OB,∴OD=BC,∴BC=OE=OB=OC,∴∠COB=60°,∴∠AOC=120°,∴=,故选:A.7.解:第①块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:A.8.解:A、不在同一直线上的三点确定一个圆,故错误;B、能够完全重合的两条弧是等弧,故错误;C、经过圆内除圆心外的一点有且只有一条直线,故错误;D、半圆是弧,正确,故选:D.9.解:连接OA.∵直径CD⊥AB,AB=8,∴AM=BM=AB=4,在Rt△AOM中,OA=5,AM=4,根据勾股定理得:OM==3,则CM=OC﹣OM=5﹣3=2,故选:B.10.解:由题意,观察图形可知a<﹣1,a>5,故选:D.二.填空题11.解:连接OA,如图,∵CE=3cm,DE=7cm,∴CD=10cm,∴OC=OA=5cm,OE=2cm,∵AB⊥CD,∴AE=BE,在Rt△AOE中,AE==(cm),∴AB=2AE=2(cm).故答案为2.12.解:阴影部分的面积应等于=圆=π(4÷2)2=πc m2.13.解:∵OA=OB,而∠AOB=60°,∴△OAB为等边三角形,∴AB=OA=4cm.故答案为4.14.解:∵CA==5>4,∴点,C在⊙A外,∵AD═4,∴点D在⊙A上外;AB=3<4,∴点B在⊙A内,故答案为:C.15.解:分两种情况考虑:当两条弦位于圆心O一侧时,如图1所示,过O作OF⊥AB,交AB于点F,交CD于点E,连接OA,OC,∵AB∥CD,∴OE⊥CD,∴F、E分别为AB、CD的中点,∴AF=BF=AB=4,CE=DE=CD=3,在Rt△COE中,∵OC=5,CE=3,∴OE==4,在Rt△AOF中,OA=5,AF=4,∴OF==3,∴EF=OE﹣OF=4﹣3=1;当两条弦位于圆心O两侧时,如图2所示,同理可得EF=4+3=7,综上,弦AB与CD的距离为7或1.故答案为:7或1.16.解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,0).故答案为:(2,0)17.解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r寸,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.18.解:连接OB,∵BD=OA,OA=OB所以△AOB和△BOD为等腰三角形,设∠D=x度,则∠OBA=2x°,因为OB=OA,所以∠A=2x°,在△AOB中,2x+2x+(105﹣x)=180,解得x=25,即∠D=25°.19.解:∵在⊙O中,,∴AC=AB=3,故答案为:320.解:正方形的四个顶点和它的中心的点的距离相等,中心与一边的两个端点可以确定一个圆,正方形有四条边,因而有四个圆;而正方形的四个顶点都在以中心为圆心的圆上,因而能确定5个不同的圆.三.解答题21.解:如图,连接OC;∵直径AB=10,BE=2,∴OE=5﹣2=3,OC=5;∵弦CD⊥AB,∴CE=DE;由勾股定理得:CE==4,∴CD=2CE=8.22.解:AC与BD相等.理由如下:连接OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴=,∴AC=BD.23.解:∵AB、CD为⊙O中两条直径,∴OA=OB,OC=OD,∵CE=DF,∴OE=OF,在△AOF和△BOE中,,∴△AOF≌△BOE(SAS),∴AF=BE.24.解:∵在△ABC中,∠ACB=90°,∠B=25°∴∠A=90°﹣∠B=65度.∵CA=CD∴∠CDA=∠CAD=65°∴∠ACD=50°即弧AD的度数是50度.25.解:设OA交⊙O于C,连接B′C,如图2,∵OA′•OA=42,而r=4,OA=8,∴OA′=2,∵OB′•OB=42,∴OB′=4,即点B和B′重合,∵∠BOA=60°,OB=OC,∴△OBC为等边三角形,而点A′为OC的中点,∴B′A′⊥OC,在Rt△OA′B′中,sin∠A′OB′=,∴A′B′=4sin60°=2.26.解:如图,连接OC,∵M是弦CD的中点,EM过圆心O,∴EM⊥CD.∴CM=MD.∵CD=10,∴CM=5.设OC=x,则OM=25﹣x,在Rt△COM中,根据勾股定理,得52+(25﹣x)2=x2.解得x=13.∴⊙O的半径为13.27.证明:连接CB,∵A B为⊙O的直径,∴∠ACB=90°,∵OD∥AC,∴∠OEB=∠ACB=90°,即OD⊥BC,∵OD过O,∴点D平分.1、三人行,必有我师。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、下列命题正确的是()A.三点确定一个圆B.平分弦的直径垂直于弦C.等圆中相等的圆心角所对的弧相等D.圆周角的度数等于圆心角度数的一半2、如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A.12B.15C.16D.183、给出下列命题:①任意三角形一定有一个外接圆,并且只有一个外接圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个内切圆,并且只有一个内切圆;④任意一个圆一定有一个外切三角形,,并且只有一个外切三角形。

其中真命题共有( )A.1个B.2个C.3个D.4个4、如图,AB为⊙O的直径,C为上一点,AD∥OC, AD交⊙O于点D,连接AC,CD,设∠BOC=x°,∠ACD=y°,则下列结论成立的是()A.x+y=90B.2x+y=90C.2x+y=180D.x=y5、如图,已知⊙的半径为3,圆外一点满足,点为⊙上一动点,经过点的直线上有两点、,且OA=OB,∠APB=90°,不经过点,则的最小值()A.2B.4C.5D.66、若正六边形的边长为4,则它的内切圆面积为()A.9πB.10πC.12πD.15π7、如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A.140°B.70°C.80°D.60°8、如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设,正八边形外侧八个扇正八边形内侧八个扇形(无阴影部分)面积之和为S1形(阴影部分)面积之和为S,则=()2A. B. C. D.19、如图,在⊙O中,弦AC=2 cm,C为⊙O上一点,且∠ABC=120°,则⊙O的直径为()A.2cmB.4 cmC.4cmD.6cm10、已知圆O的半径为3,圆心O到直线l的距离为5,则直线l和圆O的位置关系是()A.相离B.相切C.相交D.以上均有可能11、如图,已知AB是⊙O的直径,弦CD⊥AB于点E,G是的中点,连结AD,AG,CD,则下列结论不一定成立的是()A.CE=DEB.∠ADG=∠GABC.∠AGD=∠ADCD.∠GDC=∠BAD12、已知⊙O的半径为5,点A为线段OP的中点,当OP=12时,点A与⊙O的位置关系是()A.在圆内B.在圆上C.在圆外D.不能确定13、如图,△ABC内接于⊙O,D为线段AB的中点,延长OD交⊙O于点E,连接AE,BE,则下列五个结论①AB⊥DE,②AE=BE ,③OD=DE,④∠AEO=∠C,⑤弧AE=弧AEB,正确结论的个数是()A.2B.3C.4D.514、如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A. B.4 C. D.215、如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD 与AB的交点为E,则等于()A.4B.3.5C.3D.2.8二、填空题(共10题,共计30分)16、在Rt△ABC中,∠C=90°,AC=12,BC=5,以点A为圆心作⊙A,要使B、C 两点中的一点在圆外,另一点在圆内,那么⊙A的半径长r的取值范围为________17、如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF2为________.18、如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.19、如图,正△ABO的边长为2,O为坐标原点,A在轴上,B在第二象限。

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《对称图形-圆》单元测试(含解析答案)

苏科版数学九年级上第二章《圆》单元测试一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.122.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A .R B .R C .R D .6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P的度数可以为()A.20°B.50°C.110°D.80°7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°8.如图,四边形ABCD是⊙O 的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB =CD B.AB=CD C.AB=CD D.AB =CD9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA 的度数为()A.15°B.20°C.18°D.22°题号一二三四五总分第分11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a 的值为()A.4cm B.2cm C.2cm D .cm12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B 经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B 经过的路径为,则图中阴影部分的面积是()A .B .C .D .二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD 于点E,则EO+EB=.(用数字表示)15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.18.如图,A,B,C,D是⊙O上的四点,且点B 是的中点,BD交OC于点E,∠AOC=100°,∠OCD=35°,那么∠OED=.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC 与BD相等吗?为什么?22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为,∠A的度数为;(2)求证:∠ADC=2∠DAB.26.如图,AB为⊙O直径,OE⊥BC垂足为E,AB⊥CD垂足为F.(1)求证:AD=2OE;(2)若∠ABC=30°,⊙O的半径为2,求两阴影部分面积的和.27.如图,AB是⊙O的直径,点C 为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.参考答案与试题解析一.选择题(共12小题)1.已知AB是半径为5的圆的一条弦,则AB的长不可能是()A.4B.8C.10D.12【分析】根据圆中最长的弦为直径求解.【解答】解:因为圆中最长的弦为直径,所以弦长L≤10.故选:D.【点评】考查了圆的认识,在本题中,圆的弦长的取值范围0<L≤10.2.下列说法中,不正确的是()A.圆既是轴对称图形又是中心对称图形B.圆有无数条对称轴C.圆的每一条直径都是它的对称轴D.圆的对称中心是它的圆心【分析】利用圆的对称性质逐一求解可得.【解答】解:A.圆既是轴对称图形又是中心对称图形,正确;B.圆有无数条对称轴,正确;C.圆的每一条直径所在直线都是它的对称轴,此选项错误;D.圆的对称中心是它的圆心,正确;故选:C.【点评】本题主要考查圆的认识,解题的关键是掌握圆的对称性.3.如图,⊙O的直径BA的延长线与弦DC的延长线交于点E,且CE=OB,已知∠DOB=72°,则∠E等于()A.36°B.30°C.18°D.24°【分析】根据圆的半径相等,可得等腰三角形;根据三角形的外角的性质,可得关于∠E 的方程,根据解方程,可得答案.【解答】解:如图:CE=OB=CO,得∠E=∠1.由∠2是△EOC的外角,得∠2=∠E+∠1=2∠E.由OC=OD,得∠D=∠2=2∠E.由∠3是三角形△ODE的外角,得∠3=E+∠D=∠E+2∠E=3∠E.由∠3=72°,得3∠E=72°.解得∠E=24°.故选:D.【点评】本题考查了圆的认识,利用圆的半径相等得出等腰三角形是解题关键,又利用了三角形外角的性质.4.⊙O中,直径AB=a,弦CD=b,则a与b大小为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据直径是弦,且是最长的弦,即可求解.【解答】解:直径是圆中最长的弦,因而有a≥b.故选:B.【点评】注意理解直径和弦之间的关系.5.如图,⊙O是△ABC的外接圆,半径为R,∠A=45°,连接OB、OC,则边BC的长为()A.R B.R C.R D.【分析】根据圆周角定理得到∠BOC=90°,根据等腰直角三角形的性质即可得到结论BC=OB=R,【解答】解:∵∠A=45°,∴∠BOC=90°,∵半径为R,∴OB=OC=R,∴BC=OB=R,故选:A.【点评】此题考查了三角形的外接圆与外心,圆周角定理、勾股定理,等腰直角三角形的性质,熟练正确圆周角定理是解决本题的关键.6.如图,已知△ABC内接于⊙O,点P在⊙O内,点O在△PAB内,若∠C=50°,则∠P 的度数可以为()A.20°B.50°C.110°D.80°【分析】延长AP交圆O于D,连接BD,根据三角形的外角的性质得到∠APB>∠ADB >50°,于是得到结论.【解答】解:延长AP交圆O于D,连接BD,则∠ADB=∠C=50°,∴∠APB>∠ADB>50°,∵点O在△PAB内,∴∠APB<90°,∴∠P的度数可以为80°,故选:D.【点评】本题考查了三角形的外接圆与外心,三角形的外角的性质,圆周角定理,熟练掌握圆周角定理是解题的关键.7.如图所示,在Rt△ABC中∠A=25°,∠ACB=90°,以点C为圆心,BC为半径的圆交AB于一点D,交AC于点E,则∠DCE的度数为()A.30°B.25°C.40°D.50°【分析】求出∠BCD即可解决问题.【解答】解:∵∠ACB=90°,∠A=25°,∴∠B=90°﹣25°=65°,∵CB=CD,∴∠B=∠CDB=65°,∴∠BCD=180°﹣65°﹣65°=50°,∴∠DCE=90°﹣50°=40°,故选:C.【点评】本题考查圆周角定理,等腰三角形的性质,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.如图,四边形ABCD是⊙O的内接四边形,.若∠BAC=45°,∠B=105°,则下列等式成立的是()A.AB=CD B.AB=CD C.AB=CD D.AB=CD 【分析】如图设AC交BD于K.首先证明△CBK的Rt△,∠BCK=30°,推出KC=BK,再利用相似三角形的性质解决问题即可.【解答】解:如图设AC交BD于K.∵=,∴∠ACD=∠BDC=∠BAC=45°,∴∠DKC=90°,∵∠BAC=∠DCK=45°,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=105°,∴∠DCB=75°,∠ACB=30°,∵∠CKB=90°,∴CK=BK,∵∠KAB=∠KDC,∠AKB=∠DKC,∴△AKB∽△DKC,∴=,∴AB=AB,故选:B.【点评】本题考查圆内接四边形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图,⊙O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=3,则CD的长为()A.3B.C.6D.【分析】由垂径定理可得出CD=2CE,∠CEO=90°,由∠A=22.5°,利用圆周角定理可求出∠COE=45°,进而可得出△CEO为等腰直角三角形,再利用等腰直角三角形的性质及OC=3可求出CE的长(或通过解直角三角形求出CE的长),结合CD=2CE 可求出CD的长.【解答】解:∵⊙O的直径AB垂直于弦CD,∴CD=2CE,∠CEO=90°,又∵∠COE=2∠A=45°,∴△CEO为等腰直角三角形,∴CE=OC=,∴CD=2CE=3.故选:B.【点评】本题考查了圆周角定理、垂径定理以及等腰直角三角形,利用等腰直角三角形的性质求出CE的长是解题的关键.10.如图,直线l与⊙O相切于点A,直径BC的延长线与切线l交于点D,连接AB.且∠BDA=3∠DBA,则∠DBA的度数为()A.15°B.20°C.18°D.22°【分析】连接OA.根据等腰三角形的性质得到∠OBA=∠OAB,由三角形的外角的性质得到∠DOA=2∠B,设∠DBA=α,根据三角形的没机会即可得到结论.【解答】解:连接OA.∵OB=OA,∴∠OBA=∠OAB,∴∠DOA=2∠B,∵∠BDA=3∠DBA,∴设∠DBA=α,∴∠DOA=2α,∠ADB=3α,∵AD是⊙的切线,∴∠OAD=90°.∴2α+3α=90°,∴α=18°.∴∠DBA=18°,故选:C.【点评】本题主要考查的是切线的性质、等腰三角形的性质、三角形的外角的性质、三角形的内角和定理,求得∠DOC和∠OCD的度数是解题的关键.11.如图,用八根长为4cm的铁丝,首尾相接围成一个正八边形(接点不固定)要将它的四边按图中的方式向内等距离移动acm,同时去掉另外四根长为4cm的铁丝(虚线部分)得到一个正方形,则a的值为()A.4cm B.2cm C.2cm D.cm【分析】由题意可知△ABC是等腰直角三角形,AB=4,AC=BC=a.利用勾股定理列出方程,解方程即可得出结果.【解答】解:如图,由题意可知:△ABC是等腰直角三角形,AB=4,AC=BC=a.则有:a2+a2=42,解得:a=2或﹣2(舍去),故选:C.【点评】本题考查正多边形与圆、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题.12.如图,在Rt△ACB中,∠ACB=90°,AC=1,将Rt△ACB绕点C顺时针旋转90°后得到Rt△DCE,点B经过的路径为,将线段AB绕点A顺时针旋转60°后,点B恰好落在CE上的点F处,点B经过的路径为,则图中阴影部分的面积是()A.B.C.D.【分析】根据S阴=S△ACB+S扇形CBE﹣S扇形ABF计算即可.【解答】解:S阴=S△ACB+S扇形CBE﹣S扇形ABF=•1•+﹣=+,故选:A.【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.二.填空题(共8小题)13.点A、B在⊙O上,若∠AOB=40°,则∠OAB=70°.【分析】由∠AOB=40°,OA=OB知∠OAB=∠OBA=,代入计算可得.【解答】解:如图,∵∠AOB=40°,OA=OB,∴∠OAB=∠OBA==70°,故答案为:70°.【点评】本题主要考查圆的基本性质,解题的关键是掌握圆的所有半径都相等及等腰三角形的性质.14.如图,圆O的周长为4π,B是弦CD上任意一点(与C,D不重合),过B作OC的平行线交OD于点E,则EO+EB=2.(用数字表示)【分析】根据圆的周长公式得到OD=2,根据等腰三角形的判定和性质定理即可得到结论.【解答】解:∵⊙O的周长为4π,∴OD=2,∵OC=OD,∴∠C=∠D,∵BE∥OC,∴∠EBD=∠C,∴∠EBD=∠D,∴BE=DE,∴EO+EB=OD=2,故答案为:2.【点评】本题考查了圆的认识,圆周长公式,平行线的性质,等腰三角形的性质,熟练掌握等边三角形的性质是解题的关键.15.如图,AB是半圆O的直径,AB=12,AC为弦,OD⊥AC于D,OE∥AC交半圆O于点E,EF⊥AB于F,若BF=3,则AC的长为6.【分析】根据垂径定理得出AD=CD,再证△ADO≌△OFE,推出OF=AD=1,即可求出答案.【解答】解:AB是半圆O的直径,AB=12,∴OB=OA=6,∵BF=3,∴OF=OB﹣BF=3,∵OD⊥AC,∴AD=CD,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90°,∵OE∥AC,∴∠DAO=∠EOF,在△ADO和△OFE中,,∴△ADO≌△OFE(AAS),∴AD=OF=1,∴AC=2AD=6;故答案为:6.【点评】本题考查了垂径定理、全等三角形的性质和判定、平行线的性质等知识;熟练掌握垂径定理,证明三角形全等是解题的关键.16.如图,已知⊙O的半径为6cm,两弦AB与CD垂直相交于点E,若CE=3cm,DE=9cm,则AB=6cm.【分析】连接OA,根据已知条件得到CD是⊙O的直径,根据垂径定理得到AE=BE,OE=3,OA=6,由勾股定理得到AE==3,于是得到结论.【解答】解:连接OA,∵⊙O的半径为6cm,CE+DE=12cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE==3,∴AB=2AE=6,故答案为:6cm.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.17.如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为.【分析】连接BD,作OE⊥AD,连接OD,先由圆内接四边形的性质求出∠BAD的度数,再由AD=AB可得出△ABD是等边三角形,则DE=AD,∠ODE=∠ADB=30°,根据锐角三角函数的定义即可得出结论.【解答】解:连接BD,作OE⊥AD,连接OD,∵⊙O为四边形ABCD的外接圆,∠BCD=120°,∴∠BAD=60°.∵AD=AB=2,∴△ABD是等边三角形.∴DE=AD=1,∠ODE=∠ADB=30°,∴OD==.故答案为【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形对角互补是解答此题的关键.18.如图,A,B,C,D是⊙O上的四点,且点B是的中点,BD交OC于点E,∠AOC =100°,∠OCD=35°,那么∠OED=60°.【分析】连接OB,求出∠D,利用三角形的外角的性质解决问题即可.【解答】解:连接OB.∵=,∴∠AOB=∠BOC=50°,∴∠BDC=∠BOC=25°,∵∠OED=∠ECD+∠CDB,∠ECD=35°,∴∠OED=60°,故答案为60°.【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.19.如图,⊙O的半径为2,正八边形ABCDEFGH内接于⊙O,对角线CE、DF相交于点M,则△MEF的面积是2﹣.【分析】设OE交DF于N,由正八边形的性质得出DE=FE,∠EOF==45°,,由垂径定理得出∠OEF=∠OFE=∠OED,OE⊥DF,得出△ONF是等腰直角三角形,因此ON=FN=OF=,∠OFM=45°,得出EN=OE﹣OM=2﹣,证出△EMN是等腰直角三角形,得出MN=EN,得出MF=OE=2,由三角形面积公式即可得出结果.【解答】解:设OE交DF于N,如图所示:∵正八边形ABCDEFGH内接于⊙O,∴DE=FE,∠EOF==45°,,∴∠OEF=∠OFE=∠OED,OE⊥DF,∴△ONF是等腰直角三角形,∴ON=FN=OF=,∠OFM=45°,∴EN=OE﹣OM=2﹣,∠OEF=∠OFE=∠OED=67.5°,∴∠CED=∠DFE=67.5°﹣45°=22.5°,∴∠MEN=45°,∴△EMN是等腰直角三角形,∴MN=EN,∴MF=MN+FN=ON+EN=OE=2,∴△MEF的面积=MF×EN=×2×(2﹣)=2﹣;故答案为:2﹣.【点评】本题考查了正多边形和圆、垂径定理、正八边形的性质、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握正八边形的性质,证明△ONF和△ENM 是等腰直角三角形是解题的关键.20.如图,若从一块半径是6cm的圆形纸片圆O上剪出一个圆心角为60°的扇形(点A、B、C在圆O上),再将剪下的扇形围成一个圆锥,则该圆锥的底面圆半径是cm.【分析】连接OA,作OD⊥AB于点D,利用三角函数即可求得AD的长,则AB的长可以求得,然后利用弧长公式即可求得弧长,即底面圆的周长,再利用圆的周长公式即可求得半径.【解答】解:连接OA,作OD⊥AB于点D.在直角△OAD中,OA=6,∠OAD=∠BAC=30°,则AD=OA•cos30°=3.则AB=2AD=6,则扇形的弧长是:=2π,设底面圆的半径是r,则2π×1=2π,解得:r=.故答案为:.【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.三.解答题(共7小题)21.已知:如图,AB是⊙O的直径,点C、D在⊙O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?【分析】连结OC、OD,由OA=OB,AE=BF,得到OE=OF,由CE⊥AB,DF⊥AB 得到∠OEC=∠OFD=90°,再根据“HL”可判断Rt△OEC≌Rt△OFD,则∠COE=∠DOF,所以AC弧=BD弧,AC=BD.【解答】解:AC与BD相等.理由如下:连结OC、OD,如图,∵OA=OB,AE=BF,∴OE=OF,∵CE⊥AB,DF⊥AB,∴∠OEC=∠OFD=90°,在Rt△OEC和Rt△OFD中,,∴Rt△OEC≌Rt△OFD(HL),∴∠COE=∠DOF,∴AC弧=BD弧,∴AC=BD.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了直角三角形全等的判定与性质.22.如图,已知⊙O是△ABC的外接圆,圆心O在△ABC的外部,AB=AC=4,BC=4,求⊙O的半径.【分析】连接AO,交BC于点D,连接BO,由垂径可求AO⊥BC,BD=CD,即可求BD=2,由勾股定理可求AD的长,圆的半径.【解答】解:如图,连接AO,交BC于点D,连接BO∵AB=AC,∴又AO是半径,∴AO⊥BC,BD=CD∵,∴∴在Rt△ABD中,∠ADB=90°,∴BD2+AD2=AB2又∵AB=4,∴AD=2设半径为r.在Rt△BDO中,∵BD2+DO2=BO2∴∴r=4∴⊙O的半径为4.【点评】本题考查了三角形的外接圆与外心,等腰三角形的性质,勾股定理,熟练运用勾股定理求线段的长是本题的关键.23.如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:(1)=;(2)AE=CE.【分析】(1)由AB=CD知=,即+=+,据此可得答案;(2)由=知AD=BC,结合∠ADE=∠CBE,∠DAE=∠BCE可证△ADE≌△CBE,从而得出答案.【解答】证明(1)∵AB=CD,∴=,即+=+,∴=;(2)∵=,∴AD=BC,又∵∠ADE=∠CBE,∠DAE=∠BCE,∴△ADE≌△CBE(ASA),∴AE=CE.【点评】本题主要考查圆心角、弧、弦的关系,圆心角、弧、弦三者的关系可理解为:在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.24.如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.已知AB是⊙O的直径,C是圆上的点,D是优弧ABC的中点.(1)若∠AOC=100°,则∠D的度数为50°,∠A的度数为25°;(2)求证:∠ADC=2∠DAB.【分析】(1)连接OD.证明△AOD≌△COD即可解决问题.(2)利用全等三角形的性质,等腰三角形的性质解决问题即可.【解答】(1)解:连接OD.∵=,∴AD=CD,∵OD=OD,OA=OC,∴△AOD≌△COD(SSS),∴∠A=∠C,∵∠A=∠ODA,∠C=∠ODC,∴∠A =∠C =∠ADO =∠CDO ,∵∠ADC =∠AOC =50°,∴∠A =∠ADO =∠ADC =25°,故答案为50°,25°.(2)证明:∵△AOD ≌△COD (SSS ),∴∠A =∠C ,∵∠A =∠ODA ,∠C =∠ODC ,∴∠A =∠C =∠ADO =∠CDO ,∴∠ADC =2∠DAB .【点评】本题考查圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.如图,AB 为⊙O 直径,OE ⊥BC 垂足为E ,AB ⊥CD 垂足为F .(1)求证:AD =2OE ;(2)若∠ABC =30°,⊙O 的半径为2,求两阴影部分面积的和.【分析】(1)证明:连接AC ,因为AB ⊥CD ,所以,AC =BD ,又OE ⊥BC ,则E 为BC 的中点,OE =AC ,OE =AD ,即AD =2OE ;(2)S 半圆=π•OB 2==2π,S △ABC =AC •BC ==2,S 阴影=S 半圆﹣S △ABC =2π﹣2.【解答】解:(1)证明:连接AC ,∵AB ⊥CD ,∴,∴AC =BD ,∵OE⊥BC,∴E为BC的中点,∵O为AB的中点,∴OE为△ABC的中位线,∴OE=AC,∴OE=AD,即AD=2OE;(2)S半圆=π•OB2==2π,∵AB为⊙O直径,∴∠ACB=90°,∵∠ABC=30°,AB=4,∴AC=AB=,BC=,S△ABC=AC•BC==2,∵AB⊥CD,∴拱形AD的面积=弓形AC的面积,∴S阴影=S半圆﹣S△ABC=2π﹣2.【点评】本题是圆的综合题,熟练运用垂径定理、特殊直角三角形的性质以及扇形面积公式是解题的关键.27.如图,AB是⊙O的直径,点C为的中点,CF为⊙O的弦,且CF⊥AB,垂足为E,连接BD交CF于点G,连接CD,AD,BF.(1)求证:△BFG≌△CDG;(2)若AD=BE=2,求BF的长.【分析】(1)根据AAS证明:△BFG≌△CDG;(2)解法一:连接OF,设⊙O的半径为r,由CF=BD列出关于r的勾股方程就能求解;解法二:如图,作辅助线,构建角平分线和全等三角形,证明Rt△AHC≌Rt△AEC(HL),得AE=AH,再证明Rt△CDH≌Rt△CBE(HL),得DH=BE=2,计算AE和AB的长,证明△BEC∽△BCA,列比例式可得BC的长,就是BF的长.解法三:连接OC,根据垂径定理和三角形的中位线定理可得OH=1,证明△COE≌△BOH,并利用勾股定理可得结论.【解答】证明:(1)∵C是的中点,∴,∵AB是⊙O的直径,且CF⊥AB,∴,∴,∴CD=BF,在△BFG和△CDG中,∵,∴△BFG≌△CDG(AAS);(2)解法一:如图,连接OF,设⊙O的半径为r,Rt△ADB中,BD2=AB2﹣AD2,即BD2=(2r)2﹣22,Rt△OEF中,OF2=OE2+EF2,即EF2=r2﹣(r﹣2)2,∵,∴,∴BD=CF,∴BD2=CF2=(2EF)2=4EF2,即(2r)2﹣22=4[r2﹣(r﹣2)2],解得:r=1(舍)或3,∴BF2=EF2+BE2=32﹣(3﹣2)2+22=12,∴BF=2;解法二:如图,过C作CH⊥AD于H,连接AC、BC,∵,∴∠HAC=∠BAC,∵CE⊥AB,∴CH=CE,∵AC=AC,∴Rt△AHC≌Rt△AEC(HL),∴AE=AH,∵CH=CE,CD=CB,∴Rt△CDH≌Rt△CBE(HL),∴DH=BE=2,∴AE=AH=2+2=4,∴AB=4+2=6,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠BEC=90°,∵∠EBC=∠ABC,∴△BEC∽△BCA,∴,∴BC2=AB•BE=6×2=12,∴BF=BC=2.解法三:如图,连接OC,交BD于H,∵C是的中点,∴OC⊥BD,∴DH=BH,∵OA=OB,∴OH=AD=1,∵OC=OB,∠COE=∠BOH,∠OHB=∠OEC=90°,∴△COE≌△BOH(AAS),∴OH=OE=1,∴CE=EF==2,∴BF===2.【点评】此题考查了相似三角形的判定与性质、圆周角定理、垂径定理、三角形全等的性质和判定以及勾股定理.第二问有难度,注意掌握辅助线的作法,注意掌握数形结合思想的应用.。

苏科版九年级上册数学第2章 对称图形——圆含答案

苏科版九年级上册数学第2章 对称图形——圆含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=( )A.80°B.100°C.110°D.120°2、如图,内接于⊙O,,于点M,若,则的长为()A. B. C. D.3、如图,已知AB是⊙O的直径,CD是弦,且CD⊥AB,BC=3,AC=4,则sin∠ABD的值是()A. B. C. D.4、如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是( )A.AB=ADB.BC=CDC.D.∠BCA=∠DCA5、如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作CE⊥AD于E,连接BE,在点D变化的过程中,线段BE的最小值是()A.2.5B.C.D.56、如图,在中,,.以为直径的交于点,是上一点,且,连接,过点作,交的延长线于点,则的度数为()A. B. C. D.7、如图,已知⊙P与坐标轴交于点A,O,B,点C在⊙P上,且∠ACO=60°,若点B的坐标为(0,3),则弧OA的长为()A.2πB.3πC. πD.2 π8、到三角形三边的距离相等的点是()A.三角形三条高的交点B.三角形三条中线的交点C.三角形三条角平分线的交点D.不存在这个点9、如图,两个同心圆,大圆的半径为5,小圆的半径为3,若大圆的弦AB与小圆有公共点,则弦AB的取值范围是()A.8≤AB≤10B.8<AB≤10C.4≤AB≤5D.4<AB≤510、给定下列图形可以确定一个圆的是()A.已知圆心B.已知半径C.已知直径D.不在同一直线上的三个点11、如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则=()A.3B.4C.5D.612、已知锐角∠AOB如图,⑴在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;⑵分别以点C,D为圆心,CD长为半径作弧,交于点M,N;⑶连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠CODB.若OM=MN,则∠AOB=20°C.MN∥CD D.MN=3CD13、如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD 在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动,求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S=()A. +2B. +2C.D.14、如图,△ABC内接于⊙O,∠OBC=40°,则∠A的度数为()A.80°B.100°C.110°D.130°15、如图:在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是( )A.点PB.点QC.点RD.点M二、填空题(共10题,共计30分)16、若一个圆锥的底面半径为2,母线长为6,则该圆锥侧面展开图的圆心角是________.17、如图,PA、PB分别切圆O于A、B,并与圆O的切线DC分别相交于C、D.已知△PCD的周长等于14cm,则PA=________ cm.18、圆锥的主视图是边长为4cm的等边三角形,则该圆锥侧面展开图的面积是________cm2.19、已知圆锥的底面半径为20,侧面积为400π,则这个圆锥的母线长为________.20、圆锥的底面半径为2,母线长为6,则它的侧面积为________.21、如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA 上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为________.22、如图,AE是半圆O的直径,弦AB=BC=4 ,弦CD=DE=4,连结OB,OD,则图中两个阴影部分的面积和为________.23、数学课上,老师提出如下问题:△ABC是⊙O的内接三角形,OD⊥BC于点D.请借助直尺,画出△ABC中∠BAC的平分线.晓龙同学的画图步骤如下:①延长OD交于点M;②连接AM交BC于点N.所以线段AN为所求△ABC中∠BAC的平分线.请回答:晓龙同学画图的依据是________.24、若圆锥底面圆的直径和母线长均为4cm,则它的侧面展开图的面积等于________ cm2 .25、已知扇形的面积为15πcm2,半径长为5cm ,则扇形周长为________cm.三、解答题(共5题,共计25分)26、如图,AB、CD是⊙O的直径,弦CE∥AB,的度数为70°.求∠EOC的度数.27、如图,在⊙O中,= ,OD= AO,OE= OB,求证:CD=CE.28、如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.29、如图,AB是⊙O的直径,C,E是⊙O上的两点,CD⊥AB于D,交BE于F,= .求证:BF=CF.30、在△ABC中,∠A=90°,AB=3,AC=4.以点A为圆心,AC长为半径画弧交CB的延长线与点D,求CD的长.参考答案一、单选题(共15题,共计45分)1、C2、C3、D4、B5、C6、C7、A8、C9、A10、D11、C12、D13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、29、。

苏科版九年级数学上册 第二章 对称图形--圆 单元检测试题(有答案)

苏科版九年级数学上册 第二章 对称图形--圆 单元检测试题(有答案)

第二章对称图形-圆单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 下列说法正确的有()A.优弧的长一定大于劣弧的长B.以圆心为端点的线段是半径C.半径相等的两个半圆是等弧D.不同的圆中,就不可能有相等的弦长2. 圆的半径为4,圆心到直线l的距离为3,则直线l与⊙O位置关系是()A.相离B.相切C.相交D.相切或相交3. 在△ABC中,已知AB=AC=5cm,BC=8cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,则下列说法正确的是()A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定4. 下列说法中,结论错误的是()A.直径相等的两个圆是等圆B.长度相等的两条弧是等弧C.圆中最长的弦是直径D.一条弦把圆分成两条弧,这两条弧可能是等弧5. 如图,PA切⊙O点于A,割线PBC交⊙O于点B、C,已知PB=BC=3,则PA的长是()A.3B.3√2C.3√3D.96. 如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=40∘,则∠B=( )A.20∘B.25∘C.40∘D.50∘7. 半径为2的⊙O中,弦AB=2√3,弦AB所对的圆周角的度数为()A.60∘B.60∘或120∘C.45∘或135∘D.30∘或150∘8. 如图,⊙O阴影部分为残缺部分,现要在剩下部分裁去一个最大的正方形,若OP=2,⊙O半径为5,则裁去的最大正方形边长为多少?()A.7B.6C.5D.49. 某公园的两个花圃,面积相等,形状分别为正三角形和正六边形,已知正三角形花圃的周长为50米,则正六边形花圃的周长()A.大于50米B.等于50米C.小于50米D.无法确定二、填空题(本题共计10 小题,每题3 分,共计30分,)10 将一个圆分成1:2:3三部分,每一部分的圆心角的度数分别是________.11 在半径为2的圆中,弦AB的长为2,则弧AB̂长等于________.12 下列说法:①直径是弦;②经过三点一定可以作圆;③三角形的外心到三角形各顶点的距离相等;④长度相等的弧是等弧;⑤平分弦的直径垂直于弦.其中正确的是________(填序号).13. 已知扇形的圆心角为120∘,所对的弧长为8π,则此扇形的面积是________.314. 如图,∠AOB=30∘,⊙M的圆心在OA上,半径为4cm,若圆心在射线OA上移动,则当OM=________cm时,⊙M与OB相切.15. 如图,已知圆O的半径为3,△ABC内接于圆O,∠ACB=135∘,则AB=________.16. 已知,如图,AC切⊙O于点A,∠BAC=60∘,则∠AOB=________度.17. 如图,AB是⊙O的直径,C、D、E都是⊙O上的点,则∠ACE+∠BDE=________.18 如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________cm.19 如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=45∘,则劣弧AC的长为________.三、解答题(本题共计6 小题,共计63分,)20. 已知AB是⊙O的直径,弦CD交AB于点E,AB=6,BEOE =12.(1)当∠AEC=90∘时,求CD的长;(2)当∠AEC=30∘时,求CD的长.21. 已知⊙O半径为R(1)如图1,过⊙O内一点P作弦AB,连接OP.求证:PA⋅PB=R2−OP2.(2)如图2,过⊙O外一点P,作割线PAB,求证:PA⋅PB=R2−OP2.22 如图,已知梯形ABCD中,AD // BC,∠C=90∘,AD+BC=AB,以AB为直径作⊙O.(1)求证:CD为⊙O的切线;(2)试探索以CD为直径的圆与AB有怎样的位置关系?证明你的结论.23 如图,在Rt△ABC中,∠C=90∘,AC=3,BC=4.(1)求△ABC内切圆的半径;(2)若移动圆心O的位置,使⊙O保持与△ABC的边AC、BC都相切.①求半径r的取值范围;时,求圆心O的位置.②当⊙O的半径为12724. 如图,已知点O为Rt△ABC斜边AC上一点,以点O为圆心,OA长为半径的⨀O与BC相切于点E,与AC相交于点D,与AB相交于点F,连接AE、DE、FE、OE.求证:EF=ED.25 如图△ABC内接于⊙O,∠B=60∘,CD是⊙O的直径,点P是CD延长线上一点,且AP= AC.(1)求证:PA是⊙O的切线;(2)若PD=√5,求⊙O的直径.参考答案一、选择题(本题共计10 小题,每题 3 分,共计30分)1.【解答】解:A、在同圆或等圆中,优弧的长一定大于劣弧的长,所以A选项错误;B、圆上的点与圆心的连线段是圆的半径,所以B选项错误;C、半径相等的两个半圆是等弧,所以C选项正确;D、不同的圆中,可能有相等的弦长,所以D选项错误.故选C.2.【解答】解:∵圆的半径为4,圆心到直线l的距离为3,3<4,∴直线与圆相交.故选C.3.【解答】解:连结AD,如图,∵AB=AC,D是BC的中点,∴AD⊥BC,BD=1BC=4cm2在Rt△ABD中,AB=5cm,BD=4cm,∴AD=√AB2−BD2=3cm,∵⊙D的半径为3cm,∴点A在⊙D上.故选B.4.【解答】A、直径相等的两个圆是等圆,正确,不符合题意;B、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C、圆中最长的弦是直径,正确,不符合题意;D、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,5.【解答】解:∵PB=BC=3,∴PC=6,∵PA2=PB⋅PC=18,∴PA=3√2,故选B.6.【解答】解:∵PA为圆O的切线,∴BA⊥AP,∴∠BAP=90∘,在Rt△AOP中,∠P=40∘,∴∠AOC=50∘,∴∠B=12∠AOC=25∘.故选B.7.【解答】解:如图,作直径BC,则∠A=90∘,∵BC=2×2=4,弦AB=2√3,∴tan∠C=ABBC =√32,∴∠C=60∘,∴∠D=180∘−∠C=120∘,∴弦AB所对的圆周角的度数为:60∘或120∘.故选B.8.【解答】解:如图:正方形ABCD是最大的正方形,OP⊥AB,延长PO交CD于点F,∴OF⊥CD,DF=CF,AD=PF,∵OP=2,⊙O半径为5,可设正方形ABCD的边长为x,则DF=x,OF=x−2,∴在直角△OFD中,(x−2)2+(x2)2=52,解得x=6;即正方形ABCD的边长为6.故选B.9.【解答】当AB=AC时,如图:连接AD,∵AB是⊙O的直径,∴AD⊥BC,∴CD=BD,∵AO=BO,∴OD是△ABC的中位线,∴OD // AC,∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切线.所以B正确.当CD=BD时,AO=BO,∴OD是△ABC的中位线,∴OD // AC∵DE⊥AC∴DE⊥OD∴DE是⊙O的切线.所以C正确.当AC // OD时,∵DE⊥AC,∴DE⊥OD.∴DE是⊙O的切线.所以D正确.10.【解答】解:正三角形花圃的周长为50米,则边长为503;正三角形的面积=12×sin60∘×(503)2=625√39,则正六边形的面积也为625√34,它由六个小的等边三角形组成.设它的边长为R,则有625√34=6×12×sin60∘×R2,∴R=50√618,正六边形的周长=503√6.∵503√6<50,∴正六边形花圃的周长小于50米.故选C.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【解答】解:360∘×16=60∘,360∘×26=120∘,360∘×36=180∘,所以每一部分的圆心角的度数分别60∘,120∘,180∘.故答案为60∘,120∘,180∘.12.【解答】解:连接OA、OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60∘,∴AB̂的长为:60π×2180=23π,故答案为:23π.13.【解答】解::直径是弦,所以①正确;经过不共线的三点一定可以作圆,所以②错误;三角形的外心到三角形各顶点的距离相等,所以③正确;能够完全重合的弧是等弧,所以④错误;平分弦(非直径)的直径垂直于弦.故答案为①③.14.【解答】解:∵扇形的圆心角为120∘,所对的弧长为8π3,∴l=120π×R180=8π3,解得:R=4,则扇形面积为12Rl=16π3,故答案为:16π315.【解答】解:设OB与⊙M相切于点C,连接MC,则MC⊥OB,且MC=4cm,∵∠AOB=30∘,∴OM=2MC=8cm,故答案为:8.16.【解答】连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135∘,∴∠ADB=45∘,∴∠AOB=90∘,∵OA=OB=3,∴AB=3√2,17.【解答】解:∵AC切⊙O于点A,∴∠AOB=2∠BAC=120∘.18.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90∘,∵∠ADE与∠ACE是同弧所对的圆周角,∴∠ADE=∠ACE,∴∠ACE+∠BDE=∠ADB=90∘故答案为:90∘.19.【解答】解:∵∠CAD=60∘,∴∠CAB=120∘,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=1∠CAB=60∘2∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3√3cm,∴光盘的直径6√3cm.故答案为:6√3.20.【解答】解:连接OA、OC,∵∠D=45∘,∴∠AOC=2∠D=90∘,则劣弧AC的长为:90π×2180=π.故答案为π.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【解答】解:(1)如图1,连接OC.∵AB=6,∴OC=OB=3,∵BEOE =12.∴OE=2,在直角三角形OEC中,根据勾股定理,得CE=√5.∵AB⊥CD于E,∴CD=2CE=2√5.(2)如图2,过O作OP⊥CD于E,∵AB=6,BEOE =12,∴BE=1,OE=2,AE=5,∵∠AEC=30∘,∴在Rt△POE中,OE=2,∴PE=OP cos30∘=2×√3=√32设CE=x,利用相交弦定理可得:1×5=(x−√3)(x+√3)解得x=2√2,所以CD=4√2.22.【解答】证明:(1)过点P作直径CD,如图1,∵PA⋅PB=PC⋅PD,而PC=OC−OP=R−OP,PD=OD+OP=R+OP,∴PA⋅PB=(R−OP)(R+OP)=R2−OP2;(2)直线OP交⊙O于C、D,如图2,∵PCD和PAB都为⊙O的割线,∴PA⋅PB=PC⋅PD,而PC=OC−OP=OP−R,PD=OD+OP=OP+R,∴PA⋅PB=(OP−R)(OP+R)=OP2−R2.23.【解答】(1)证明:过点O作OE⊥CD于点E,∵在梯形ABCD中,AD // BC,∠C=90∘,∴AD⊥CD,BC⊥CD,∴AD // OE // BC,∵OA=OB,∴OE是梯形ABCD的中位线,∴OE=12(AD+BC),∵AD+BC=AB,∴OE=12AB,∵以AB为直径作⊙O.∴直线CD是⊙O的切线.(2)设圆心为O′.过点O′作O′F⊥AB于点F,过点O′作O′M // AD,∴O′M是梯形ABCD的中位线,∴O′M=12(AD+BC)=12AB=DM,∴∠O′DM=∠DO′M,∵AD // O′M,∴∠ADO′=∠DO′M=∠O′DM,在△AO′D和△FO′D中,{∠ADO′=∠FDO′∠A=∠O′FD=90∘O′D=O′D,∴△AO′D≅△FO′D(AAS),∴O′F=O′A=12AB,即CD与⊙O′相切.24.【解答】解:(1)在直角△ABC中,AB=√AC2+BC2=√32+42=5,设内切圆的半径是:r.则12AB⋅r+12BC⋅r+12AC⋅r=12AC⋅BC,即5r+4r+3r=12,解得:r=1;(2)①当⊙O与边AC相切于C时,圆的半径最大,如图.过圆心作OD⊥AB于点D,连接OA.则AD=AC=3,BD=5−3=2,设半径是r,则S△AOC+S△AOD+S△BOD=12×3×4,即12×3r+12×3r+12×2r=12×3×4,解得:r=32,则半径r的取值范围是:0<r≤32;②当⊙O与边AC相切于C时,圆心用O表示,则OA=√AD2+OD2=√32+94=3√52,当⊙O的半径为127时,求圆心O用O′表示,则作O′E⊥AB于点E.则A、O、O′在一条直线上,△AOE∽△AOD,∴OAOA′=ODO′E,即3√52OA′=32127,解得:OA′=12√57.则圆心在∠CAB的平分线上,且到O的距离是12√57.25.【解答】证明:∵OE=OA,∴∠OAE=∠OEA,∵BC是圆O的切线,∴OE⊥BC,∵∠B=90∘,∴AB⊥BC,∴OE // AB,∴∠OEA=∠BAE,∴∠OAE=∠BAE,∴EF=ED.26.【解答】证明:连接OA,∵∠B=60∘,∴∠AOC=2∠B=120∘,又∵OA=OC,∴∠OAC=∠OCA=30∘,又∵AP=AC,∴∠P=∠ACP=30∘,∴∠OAP=∠AOC−∠P=90∘,∴OA⊥PA,∴PA是⊙O的切线.在Rt△OAP中,∵∠P=30∘,∴PO=20A=OD+PD,又∵OA=OD,∴PD=OA,∵PD=√5,∴20A=2PD=2√5.∴⊙O的直径为2√5.。

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章 对称图形——圆 含答案

苏科版九年级上册数学第2章对称图形——圆含答案一、单选题(共15题,共计45分)1、如下图,已知AB是⊙O的直径,= = ,∠BOC=40°,那么∠AOE 等于()A.40°B.50°C.60°D.120°2、在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为()A.5分米B.6分米C.8分米D.10分米3、若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A.6cmB.9cmC.12cmD.18cm4、如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )A.PA=PBB.∠BPD=∠APDC.AB⊥PDD.AB平分PD5、如图,⊙的半径为5,为⊙的弦,⊥于点。

若,则的长为( )A.4B.6C.8D.106、如图△ABC的内接圆于⊙O,∠C=45°,AB=4,则⊙O的半径为()A.2B.4C.2D.57、如图,△ABC中,∠A=45°,I是内心,则∠BIC=()A.112.5°B.112°C.125°D.55°8、如图,∠AOB=100,则∠A+∠B等于( )A.100°B.80°C.50°D.40°9、已知一个扇形的半径为R,圆心角为n°,当这个扇形的面积与一个直径为R的圆面积相等时,则这个扇形的圆心角n的度数是()A.180°B.120°C.90°D.60°10、已知⊙O的直径为4,圆心O到直线l的距离是4,则⊙O与直线l的关系是()A.相交B.相切C.相离D.相交或相切11、如图,⊙O是等边三角形ABC的外接圆,⊙O的半径为2,则等边三角形ABC的边长为()A. B. C. D.12、下列说法正确的是()A.弦是直径B.半圆是弧C.长度相等的弧是等弧D.过圆心的线段是直径13、如图⊙O是Rt△ABC的内切圆,D,E,F分别为切点,∠ACB=90°,则∠EDF的度数为()A.25°B.30°C.45°D.60°14、如图,在平面直角坐标系中,点B的坐标(0,2 ),∠AOC=45°,∠ACO=30°,则OC的长为()A. +B. ﹣C.2 +D.2 +15、在☉O中=2 ,则弦AB与弦CD的大小关系是()A.AB>2CDB.AB=2CDC.AB<2CDD.AB=CD二、填空题(共10题,共计30分)16、如图,Rt△ABC中,∠ACB=90°,AB=6,AC=3,以BC为直径的半圆交AB 于点D,则阴影部分的面积为________.17、如图,点P(3,4),⊙P半径为2,A(2.8,0),B(5.6,0),点M是⊙P上的动点,点C是MB的中点,则AC的最小值是________.18、如图所示,在⊙O中,,∠B=70°,则的度数=________.19、如图,正方形ABCD的边长为2,分别以A、D为圆心,2为半径画弧BD、AC,则图中阴影部分的面积为________.20、一个扇形的面积为,半径为,则此扇形的弧长为________.21、圆心角为120°,半径为6cm的扇形的弧长是________cm.22、用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为________.23、已知⊙O的半径为1,则其内接正六边形的边长为________.24、已知一个圆的半径为5cm,则它的内接正六边形的边长为________.25、若为的一条弦,,点为该上异于,的一点,则度数是________.三、解答题(共5题,共计25分)26、如图,AB是⊙O的直径,点D在⊙O上,∠DAB=45°,BC∥AD,CD∥AB.若⊙O的半径为1,求图中阴影部分的面积(结果保留π).27、如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D、E,且=.(1)试判断△ABC的形状,并说明理由.(2)已知半圆的半径为5,BC=12,求sin∠ABD的值.28、如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式29、如图,AC为⊙O的直径,AC=4,B、D分别在AC两侧的圆上,∠BAD=60°,BD与AC的交点为E.(1)求∠BOD的度数及点O到BD的距离;(2)若DE=2BE,求的值.30、如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=,求⊙O的直径AB和弦BC的长.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、D5、C6、A7、A8、C9、C10、C11、C12、B13、C14、A15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、。

第2章 对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)

第2章 对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)

第2章对称图形——圆数学九年级上册-单元测试卷-苏科版(含答案)一、单选题(共15题,共计45分)1、如图,PA切⊙O于点A,PB切⊙O于点B,CD切⊙O于E,若∠APB=50°,则∠COD的度数是()A.50°B.40°C.25°D.65°2、按图1的方法把圆锥的侧面展开,得到图2,其半径OA=3,圆心角∠AOB=120°,则弧AB的长为().A.πB.2πC.3πD.4π3、如图,边长为a的正六边形,里面有一菱形,边长也为a,空白部分面积为S1,阴影部分面积为S2,则=()A. B. C. D.4、如图,在△ABC中,AC=BC,E是内心,AE的延长线交△ABC的外接圆于点D,以下四个结论:①BE=AE;②CE⊥AB;③△DEB是等腰三角形;④ .其中正确的个数是( )A.1个B.2个C.3个D.4个5、如图,圆上有两点A,B,连接AB,分别以A,B为圆心,AB的长为半径画弧,两弧相交于点C,D,CD交AB于点E,交于点F.若EF=1,AB=6,则该圆的半径长是()A.4B.5C.6D.106、如图,D是等边△ABC外接圆上的点,且∠CAD=20°,则∠ACD的度数为()A.20°B.30°C.40°D.45°7、小英家的圆形镜子被打碎了,她拿了如图(网格中的每个小正方形边长为1)的一块碎片到玻璃店,配制成形状、大小与原来一致的镜面,则这个镜面的半径是()A.2B.C.2D.38、如图,两个同心圆的半径分别为6cm和3cm,大圆的弦AB与小圆相切,则劣弧AB的长为()A.2πB.4 πC.6 πD.8 π9、下列说法正确的是()A.等弧所对的圆心角相等B.平分弦的直径垂直于这条弦C.经过三点可以作一个圆D.相等的圆心角所对的弧相等10、如图所示的暗礁区,两灯塔A,B之间的距离恰好等于圆的半径,为了使航船(S)不进入暗礁区,那么S对两灯塔A,B的视角∠ASB必须()A.大于60°B.小于60°C.大于30°D.小于30°11、如图,四边形ABCD为的内接四边形,∠BCD=120°,则∠BOD的大小是()A. B. C. D.12、如图,Rt△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于点D,过点D作⊙O的切线,与边BC交于点E,若AD=, AC=3.则DE长为()A. B.2 C. D.13、如图,△ABC内接于⊙O,∠A=60°,BC=6 ,则的长为()A.2πB.4πC.8πD.12π14、已知△ABC中,∠C=90°,AC=, BC=5,以c为圆心,BC为半径作圆交BA的延长线于D,则AD的长为()A. B. C. D.15、如图,A、B、C三点在⊙O上,若∠B=53°,∠A=21°,则∠AOB等于()A.32°B.53°C.64°D.74°二、填空题(共10题,共计30分)16、若直角三角形两边分别为6和8,则它内切圆的半径为________.17、PA为⊙O切线,A为切点,PO交⊙O于点B,OA=3,OP=6,则∠BAP度数为________ 度.18、如图,PA,PB是⊙O的切线,切点为A,B,∠P=58°,C是⊙O上异于A,B的点,则∠ACB的度数为________.19、半径为5的圆内接正六边形的边心距为________.20、已知⊙O的半径为10,弦AB∥CD,AB=12,CD=16,则AB和CD的距离为________.21、如图,用一个半径为R,圆心角为90°的扇形做成一个圆锥的侧面,设圆锥底面半径为r,则R:r=________22、如图,正五边形ABCDE的边长为2,分别以点C、D为圆心,CD长为半径画弧,两弧交于点F,则弧BF 的长为________.23、如图,直线与x轴、y轴分别交于点A、B;点Q是以C(0,﹣1)为圆心、1为半径的圆上一动点,过Q点的切线交线段AB于点P,则线段PQ的最小是________.24、如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为________.25、如图,的半径长为5cm,内接于,圆心O在的内部,如果,cm,那么的面积为________cm三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。

2020年苏科版初三数学上册第二章《对称图形-圆》单元测试卷(含答案)

2020年苏科版初三数学上册第二章《对称图形-圆》单元测试卷(含答案)

九年级数学上册第二章《对称图形-圆》单元测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一.选择题(共 10 小题,每小题 3 分,共 30 分)1.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直径,已知∠BAC=35∘,∠P的度数为()A.35∘B.45∘C.60∘D.70∘2.如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE垂直于AC,交AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论正确的是()①DE是⊙O的切线;②直径AB长为20cm;③弦AC长为15cm;④C为弧AD的中点.A.①②④B.①③④C.①②D.②③3.如图,△ABC内接于⊙O,∠B=60∘,∠A=40∘,半径OE⊥AB,连接CE,则∠E等于()A.20∘B.15∘C.10∘D.5∘4.如图,PA是⊙O的直径,PC是⊙O的弦,过AC弧的中点H作PC的垂线交PC的延长线于点B.若HB=6cm,BC=4cm,则⊙O的直径为()A.2√13cmB.3√17cmC.13cmD.6√13cm5.如图,直线l1 // l2,⊙O与l1和l2分别相切于点A和点B,点M和点N分别是l1和l2上的动点,MN沿l1和l2平移,若⊙O的半径为1,∠AMN=60∘,则下列结论不正确的是()A.l1和l2的距离为2B.当MN与⊙O相切时,AM=√3C.MN=4√3 D.当∠MON=90∘时,MN与⊙O相切36.已知扇形的圆心角为120∘,弧长等于一个半径为5cm的圆的周长,则扇形的面积为()A.75cm2B.75πcm2C.150cm2D.150πcm27.AB是⊙O的弦,OQ⊥AB于Q,再以QO为半径作同心圆,称作小⊙O,点P 是AB上异于A,B,Q的任意一点,则P点位置是()A.在大⊙O上B.在大⊙O外部C.在小⊙O内部D.在小⊙O外而大⊙O内8.如图,AE、AD和BC分别切⊙O于点E、D、F,如果AD=20,则△ABC的周长为()A.20B.30C.40D.509.如图,AD是⊙O的切线,D为切点,过点A引⊙O的割线ABC,依次交⊙O于点B和点C,若AC=4,AD=2,则AB等于()A.12B.1C.√2D.210.如图,某小朋友玩的秋千绳长OA为3米,摆动时(左右对称)最下端的最高点A距地面MN为1.7米,最低点B距地面MN为0.2米,则该秋千最下端荡过的弧长AC为()A.π米B.2π米C.43π米 D.32π米二、填空题(共 10 小题,每小题 3 分,共 30 分)11.半径为6cm,圆心角为40∘的扇形的面积为________cm2.12.如图,圆锥底面圆的直径为6cm,高为4cm,则它的全面积为________cm2(结果保留π).12题图 14题图 15题图13.已知扇形的圆心角为150∘,它所对应的弧长20πcm,则此扇形的半径是________cm,面积是________cm2.14.如图,点A、B、C在⊙O上,AO // BC,∠OAC=20∘,则∠AOB的度数是________.15.已知一个圆柱体侧面展开图为矩形ABCD(如图),若AB=6.28cm,BC= 18.84cm,则该圆柱体的体积约为________cm3(取π=3.14,结果精确到0.1). 16.如图,Rt△ABC中,∠C=90∘,BC=√3,AC=3,以AD为直径的⊙O经过A、B两点,交AC边于点E,AD=4.则图中阴影部分的面积为________.16题图 17题图 18题图17.如图,AB是⊙O的直径,∠CAB=40∘,则∠D=________.18.如图,⊙O的直径为10,Q是⊙O内一点,且OQ=3,弦MN过点Q,则MN长的取值范围是________.19.如图,在圆O中,直径AB=10,C、D是上半圆AB^上的两个动点.弦AC与BD交于点E,则AE⋅AC+BE⋅BD=________.19题图 20题图20.如图,AD是⊙O的直径,弦BC⊥AD,连接AB、AC、OC,若∠COD=60∘,则∠BAD=________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.如图,AB是⊙O的一条直径,CD是⊙O的一条弦,交AB与点P,AC^=AD^.若AP=1,CD=4,求⊙O的直径.22.如图.点O是△ABC的外心.∠A=72∘.(1)求∠COB的度数.(2)若BC=24cm.求△ABC外接圆的半径(精确到0.1cm).23.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且AD^=CE^.(1)求证:BE=CE;(2)若∠B=50∘,求∠AOC的度数.24.已知PA、PB分别切⊙O于A、B,E为劣弧AB上一点,过E点的切线交PA于C、交PB于D.(1)若PA=6,求△PCD的周长.(2)若∠P=50∘求∠DOC.25.如图,AB是⊙O的直径,点C在⊙O上,M是BC^的中点,OM交⊙O的切线BP于点P.(1)判断直线PC和⊙O的位置关系,并证明你的结论;(2)若sin∠BAC=0.8,⊙O的半径为2,求线段PC的长.26.如图(1)、(2),A是半径为12cm的⊙O上的定点,动点P从A出发,以2π(cm/s)的速度沿圆周逆时针运动,当点P回到A时立即停止运动.(1)如图(1),点B是OA延长线上一点,AB=OA,当点P运动时间为2s时,试证明直线BP是⊙O的切线;(2)如图(2),当∠POA=90∘时,求点P的运动时间.答案1.D2.C3.C4.C5.B6.B7.D8.C9.B10.B11.4π12.24π13.24240π14.40∘15.177.5或59.216.3√32−2π317.130∘18.8≤MN≤1019.10020.30∘21.解:连接OC,设OC=x,∵AC^=AD^,∴CD⊥AB,∵CD=4,∴CP=2,∵AP=1,∴OP=x−1,在Rt△CPO中,x2=22+(x−1)2,解得:x=52,∴⊙O的直径为2×52=5.22.解:(1)∵点O是△ABC的外心.∠A=72∘,∴∠COB=2∠A=144∘;(2)作OM⊥BC于M,如图所示:则BM=CM=12BC=12cm,∠OMB=90∘,∠BOM=12∠COB=72∘,∵sin∠BOM=BMOB,∴OB=BMsin72=120.9511≈12.6(cm),即△ABC外接圆的半径为12.6cm.23.(1)证明:∵∠AOD=∠BOE,∴AD^=BE^.∵AD^=CE^,∴BE^=CE^,∴BE=CE;(2)解:∵∠B=50∘,OB=OE,∴∠BOE=180∘−50∘−50∘=80∘.∵由(1)知,BE=CE,∴∠COE=∠BOE=80∘,∴∠AOC=180∘−80∘−80∘=20∘.24.解:(1)连接OE,∵PA、PB与圆O相切,∴PA=PB=6,同理可得:AC=CE,BD=DE,△PCD的周长=PC+PD+CD=PC+PD+CE+DE=PA+PB=12;(2)∵PA PB与圆O相切,∴∠OAP=∠OBP=90∘∠P=50∘,∴∠AOB=360∘−90∘−90∘−50∘=130∘,在Rt△AOC和Rt△EOC中,{OA=OEOC=OC,∴Rt△AOC≅Rt△EOC(HL),∴∠AOC=∠COE,同理:∠DOE=∠BOD,∠AOB=65∘.∴∠COD=1225.解:(1)相切;证明:连接OC;∵点M是弧BC的中点,∴∠BOM=∠MOC;又∵OB=OC,OP=OP,∴△POC≅△POB,∴∠PBO=∠PCO;已知PB是⊙O的切线,即∠PBO=90∘;故∠PCO=∠PBO=90∘,即PC⊥OC;而OC是⊙O的半径,所以PC是⊙O的切线.∠BOC=∠BOM,(2)由圆周角定理知:∠BAC=12∴sin∠BOM=sin∠BAC=0.8;,易知:tan∠BOM=43则PB=OB⋅tan∠BOM=8;3∵PC、PB都是⊙O的切线,且切点为C、B,由切线长定理知:PC=PB=8.326.解:(1)如图,当点P 运动的时间为2s 时,直线BP 与⊙O 相切.理由如下: 当点P 运动的时间为2s 时,点P 运动的路程为4πcm ,连接OP ,PA .∵⊙O 的周长为24πcm ,∴弧AP 的长为⊙O 周长的16,∴∠POA =60∘;∵OP =OA ,∴△OAP 是等边三角形,∴OP =OA =AP ,∠OAP =60∘;∵AB =OA ,∴AP =AB ,∵∠OAP =∠APB +∠B ,∴∠APB =∠B =30∘,∴∠OPB =∠OPA +∠APB =90∘,∴OP ⊥BP ,∴直线BP 与⊙O 相切.(2)当∠POA =90∘时,点P 运动的路程为⊙O 周长的14或34,设点P 运动的时间为ts ;当点P 运动的路程为⊙O 周长的14时,2π⋅t =14⋅2π⋅12,解得t =3;当点P 运动的路程为⊙O 周长的34时,2π⋅t =34⋅2π⋅12,解得t =9;∴当∠POA =90∘时,点P 运动的时间为3s 或9s .1、老吾老以及人之老,幼吾幼以及人之幼。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章对称图形--圆单元测试一、单选题(共10题;共30分)1.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是 ( )A、25πB、65πC、90πD、130π2.如图,⊙O是△ABC的外接圆,已知∠ABO=30º,则∠ACB的大小为()A、60ºB、30ºC、45ºD、50º3.如图,等腰梯形ABCD中,AD∥BC,以A为圆心,AD为半径的圆与BC切于点M,与AB交于点E,若AD=2,BC=6,则的长为()A、3π2B、3π4C、3π8D、3π4.若⊙O的半径为4cm,点A到圆心O的距离为3cm,那么点A与⊙O的位置关系()A、点A在圆内B、点A在圆上C、点A在圆外D、不能确定5.若正多边形的一个外角为60°,则这个正多边形的中心角的度数是( ).A、30°B、60°C、90°D、120°6.如图所示的扇形的圆心角度数分别为30°,40°,50°,则剩下扇形是圆的()A、13B、23C、14D、347.如图,在边长为a的正六边形内有两个小三角形,相关数据如图所示.若图中阴影部分的面积为S1,两个空白三角形的面积为S2.则S1S2=()A.3B.4C.5D.68.下列说法正确的是()A.等弧所对的弦相等B.平分弦的直径垂直弦并平分弦所对的弧C.若抛物线与坐标轴只有一个交点,则b2﹣4ac=0D.相等的圆心角所对的弧相等9.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A.116°B.32°C.58°D.64°10.如图,一块直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为()A、27°B、54°C、63° D 、36°二、填空题(共8题;共24分)11.已知,半径为4的圆中,弦AB把圆周分成1:3两部分,则弦AB长是________ .12.如图,MN=3,以MN为直径的⊙O1,与一个半径为5的⊙O2相切于点M,正方形ABCD的顶点A,B在大圆上,小圆在正方形的外部且与CD切于点N,则正方形ABCD的边长为________ .13.已知△ABC的三边长a=3,b=4,c=5,则它的内切圆半径是________14.已知正六边形的半径为2cm,那么这个正六边形的边心距为 ________cm15.一圆锥的侧面展开后是扇形,该扇形的圆心角为120°,半径为6cm,则此圆锥的底面圆的面积为________ cm2.16.如图,AB切⊙O于点B,OA=2,∠OAB=30°,弦BC∥OA,劣弧BC^ 的弧长为________.(结果保留π)17.如图,点B、C把分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=1,则图中阴影部分的面积是________.18.如图,在扇形AOB中,∠AOB=100°,半径OA=9,将扇形OAB沿着过点B的直线折叠,点O恰好落在弧AB上的点D处,折痕交OA于点C,则弧AD的长等于________.三、解答题(共5题;共36分)19.如图,P是半径为3cm的⊙O外一点,PA,PB分别和⊙O切于点A,B,PA=PB=3cm,∠APB=60°,C是弧AB上一点,过C作⊙O的切线交PA,PB于点D,E.(1)求△PDE的周长;(2)若DE=433cm,求图中阴影部分的面积.20.如图,已知AB是⊙O的直径,AP是⊙O的切线,A是切点,BP与⊙O交于点C,若AB=2,∠P=30°,求AP的长(结果保留根号).21.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.22.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC 于点E.(1)求证:EB=EC;(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.23.如图,在平面直角坐标系xOy中,⊙P与y轴相切于点C,⊙P的半径是4,直线y=x被⊙P截得的弦AB 的长为43 ,求点P的坐标.四、综合题(共1题;共10分)24.如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE 为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)答案解析一、单选题1、【答案】B【考点】圆锥的计算,图形的旋转【解析】【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.2、【答案】A【考点】圆周角定理【解析】【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】△AOB中,OA=OB,∠ABO=30°;∴∠AOB=180°-2∠ABO=120°;∴∠ACB=12∠AOB=60°;故选A.3、【答案】A【考点】等腰梯形的性质,切线的性质,弧长的计算【解析】【分析】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,由等腰梯形的性质可得到BM=AM=2,从而可求得∠BAD的度数,再根据弧长公式即可求得长.【解答】连接AM,因为M是切点,所以AM⊥BC,过点D作DN⊥BC于N,根据等腰梯形的性质容易求得BM=AM=2,所以∠B=45°,所以∠EAD=135°,根据弧长公式的长为135×2π180=3π2 ,故选A.【点评】本题考查等腰梯形的性质,圆的切线的性质及弧长公式的理解及运用.4、【答案】A【考点】点与圆的位置关系【解析】【分析】点A到圆心O的距离是3,小于⊙O半径4,所以点A在圆内。

故选A.5、【答案】B【考点】正多边形和圆【解析】【解答】∵正多边形的一个外角为60°,∴正多边形的边数为=6,其中心角为=60°故选B【分析】根据正多边形的外角和是360°求出正多边形的边数,再求出其中心角.6、【答案】B【考点】圆心角、弧、弦的关系【解析】【解答】∵30°+40°+50°=120°,∴余下的扇形的度数是360°﹣120°=240°,240°÷360°=23,∴剩下扇形是圆的23.故选B.【分析】先求出三个角的和,再求剩下的角的度数,最后求比值即可.7、【答案】C【考点】正多边形和圆【解析】【解答】解:如图,∵三角形的斜边长为a,∴两条直角边长为12a,32a,∴S2=∵AB=a,∴OC=32a,∴S正六边形=6×∴S1=S正六边形﹣S空白=,∴故选C.【分析】先求得两个三角形的面积,再求出正六边形的面积,求比值即可.8、【答案】A【考点】圆心角、弧、弦的关系【解析】【解答】解:A、等弧所对的弦相等;故本选项正确;B、平分(非直径的)弦的直径垂直弦并平分弦所对的弧;故本选项错误;C、若抛物线与x标轴只有一个交点,则b2﹣4ac=0;故本选项错误;D、在同圆或等圆中,相等的圆心角所对的弧相等;故本选项错误.故选A.【分析】由圆心角、弧、弦的关系,可知等弧所对的弦相等;在同圆或等圆中,相等的圆心角所对的弧相等;注意不要少条件:在同圆或等圆中;抛物线与x标轴只有一个交点,则b2﹣4ac=0;由垂径定理的推论可知:平分(非直径的)弦的直径垂直弦并平分弦所对的弧.9、【答案】B【考点】圆周角定理【解析】【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=58°,∴∠A=90°﹣∠ABD=32°,∴∠BCD=∠A=32°.故选B.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,继而求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得答案.10、【答案】C【考点】圆心角、弧、弦的关系【解析】【解答】解:∵一块直角三角板ABC的斜边AB与量角器的直径重合,∴点A、B、C、D都在以AB为直径的圆上,∵点D对应54°,即∠AOD=54°,∴∠ACD= ∠AOD=27°,∴∠BCD=90°﹣∠ACD=63°.故选C.【分析】先根据圆周角定理得到∠ACD= ∠AOD=27°,然后利用互余求解.二、填空题11、【答案】42【考点】圆心角、弧、弦的关系,等腰直角三角形【解析】【解答】解:连结OA、OB,如图,∵弦AB把圆周分成1:3两部分,∴∠AOB=11+3×360°=90°,∴△OAB为等腰直角三角形,∴AB=2OA=42.故答案为42.【分析】连结OA、OB,如图,根据圆心角、弧、弦的关系由弦AB把圆周分成1:3两部分得到∠AOB=11+3×360°=90°,然后根据等腰直角三角形的性质其尬.12、【答案】6【考点】切线的性质,相切两圆的性质【解析】【解答】设边长为a,连接NO2=2,AO2=5;作O2E垂直AB于E则Rt△AEO2,AO2="5" O2E=a-2,AE=a2,则52=(a2)2+(a-2)2解上式即可得,a=6.【分析】在图中构造直角三角形,利用勾股定理中的相等关系作为等量关系列方程求解即可.13、【答案】1【考点】三角形的内切圆与内心【解析】【解答】解:∵a=3,b=4,c=5,∴a2+b2=c2,∴∠ACB=90°,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,∵S△ACB=S△AOC+S△AOB+S△BOC,∴12×AC×BC=12×AC×0E+12×AB×OF+12×BC×OD,∴3×4=4R+5R+3R,解得:R=1.故答案为:1.【分析】根据勾股定理的逆定理求出△ACB是直角三角形,设△ABC的内切圆切AC于E,切AB于F,切BC于D,连接OE、OF、OD、OA、OC、OB,内切圆的半径为R,则OE=OF=OD=R,根据S△ACB=S△AOC+S△AOB+S△BOC代入即可求出答案.14、【答案】3【考点】圆内接四边形的性质【解析】【解答】解:如图,连接OA、OB;过点O作OG⊥AB于点G.在Rt△AOG中,∵OA=2cm,∠AOG=30°,∴OG=OA•cos 30°=2×32=3(cm).故答案为:3 .【分析】根据正六边形的特点,通过中心作边的垂线,连接半径,结合解直角三角形的有关知识解决.15、【答案】4π【考点】圆锥的计算【解析】【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr= ,解得r=2,所以圆锥的底面圆的面积=π•22=4π(cm2).故答案为4π.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr=,然后求出r后利用圆的面积公式求解.16、【答案】13 π【考点】含30度角的直角三角形,切线的性质,弧长的计算【解析】【解答】解:连接OB,OC,∵AB为圆O的切线,∴∠ABO=90°,在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC^ 长为60π×1180 = 13 π.故答案为:13 π【分析】连接OB,OC,由AB为圆的切线,利用切线的性质得到三角形AOB为直角三角形,根据30度所对的直角边等于斜边的一半,由OA求出OB的长,且∠AOB为60度,再由BC与OA平行,利用两直线平行内错角相等得到∠OBC为60度,又OB=OC,得到三角形BOC为等边三角形,确定出∠BOC为60度,利用弧长公式即可求出劣弧BC的长.17、【答案】【考点】切线的性质,扇形面积的计算【解析】【解答】解:∵点B、C把分成三等分,ED是⊙O的切线,∠E=45°,∴∠ODE=90°,∠DOC=45°,∴∠BOA=∠BOC=∠COD=45°,∵OD=1,∴阴影部分的面积是:+ = ,故答案为:.【分析】根据题意可以求出各个扇形圆心角的度数,然后根据题目中的条件求出阴影部分的面积,本题得以解决.18、【答案】2π【考点】弧长的计算,翻折变换(折叠问题)【解析】【解答】解:∵△BCD是由△BCO翻折得到,∴∠CBD=∠CBO,∠BOD=∠BDO,∵OD=OB,∴∠ODB=∠OBD,∴∠ODB=2∠DBC,∵∠ODB+∠DBC=90°,∴∠ODB=60°,∵OD=OB∴△ODB是等边三角形,∴∠DOB=60°,∵∠AOB=100°,∴∠AOD=∠AOB﹣∠DOB=40°,∴弧AD的长= =2π,故答案为2π.【分析】先证明△ODB是等边三角形,得到∠DOB=60°,根据弧长公式即可解决问题.三、解答题19、【答案】解:(1)∵PA、PB、DE是⊙O的切线,∴PA=PB=3cm,CE=BE,AD=DC,∴△PDE的周长=PE+DE+PD=PE+CE+CD+PD=PE+BE+AD+PD=PA+PB=3cm+3cm=6cm;(2)连接OB、OA、OE,OD,如图,∵PA、PB、OC是⊙O的切线,∴OB⊥PB,OA⊥PA,OC⊥DE,∴∠OBP=∠OPA=90°,∵∠APB=60°,∴∠BOA=120°,∵BE=CE,DC=DA,∴S△OCE=S△OBE,S△OCD=S△ODA,∴S五边AOBED=2S△ODE=2×12×433×3=4,∴图中阴影部分的面积=S五边AOBED﹣S扇形AOB=4﹣120·π·32360=(4﹣π)cm2.【考点】切线的性质【解析】【分析】(1)根据切线长定理得PA=PB=3cm,CE=BE,AD=DC,由三角形周长定义得△PDE的周长=PE+DE+PD,然后利用等线段可得△PDE的周长=PA+PB=6cm;(2)连接OB、OA、OE,OD,如图,根据切线的性质得∠OBP=∠OPA=90°,再根据四边形内角和计算出∠BOA=120°,利用切线长定理得BE=CE,DC=DA,则根据三角形面积公式得到S△OCE=S△OBE,S△OCD=S△ODA,所以S五边AOBED=2S△ODE=4,然后根据扇形面积公式和图中阴影部分的面积=S五边AOBED﹣S扇形AOB进行计算.20、【答案】解:∵AB是⊙O的直径,AP是⊙O的切线,A是切点,∴∠PAB=90°,∵AB=2,∠P=30°,∴tan30°=ABAP=2AP=33,∴AP=23.【考点】切线的性质【解析】【分析】利用切线的性质得出∠PAB=90°,进而利用锐角三角函数关系得出AP的长.21、【答案】解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=43.【考点】垂径定理【解析】【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE的长.22、【答案】(1)证明:连接OD,∵AC是直径,∠ACB=90°,∴BC是⊙O的切线,∠BCA=90°.又∵DE是⊙O的切线,∴ED=EC,∠ODE=90°,∴∠ODA+∠EDB=90°,∵OA=OD,∴∠OAD=∠ODA,又∵∠OAD+∠DBE=90°,∴∠EDB=∠EBD,∴ED=EB,∴EB=EC.(2)解:当以点O、D、E、C为顶点的四边形是正方形时,则∠DEB=90°,又∵ED=EB,∴△DEB是等腰直角三角形,则∠B=45°,∴△ABC是等腰直角三角形.【考点】正方形的性质,切线的性质【解析】【分析】(1)连接OD,由BC是⊙O的切线得出∠BCA=90°,由DE是⊙O的切线,得出ED=EC,∠ODE=90°,故可得出∠EDB=∠EBD,由此可得出结论.(2)当以点O、D、E、C为顶点的四边形是正方形时,则△DEB是等腰直角三角形,据此即可判断.23、【答案】解:过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,∵⊙P与y轴相切于点C,∴PC⊥y轴,∴P点的横坐标为4,∴E点坐标为(4,4),∴△EOD和△PEH都是等腰直角三角形,∵PH⊥AB,∴AH=12AB=23,在△PAH中,PH=PA2-AH2=42-232=2,∴PE=2PH=22,∴PD=4+22,∴P点坐标为(4,4+22).【考点】坐标与图形性质,切线的性质【解析】【分析】过点P作PH⊥AB于H,PD⊥x轴于D,交直线y=x于E,连结PA,根据切线的性质得PC⊥y轴,则P点的横坐标为4,所以E点坐标为(4,4),易得△EOD和△PEH都是等腰直角三角形,根据垂径定理由PH⊥AB得AH=12AB=23 ,根据勾股定理可得PH=2,于是根据等腰直角三角形的性质得PE=2PH=22 ,则PD=4+22 ,然后利用第一象限点的坐标特征写出P点坐标.四、综合题24、【答案】(1)证明:连接OD,∵OD=OB,∴∠1=∠ODB,∴∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,∴∠DOC=∠A,∵∠A+∠C=90°,∴∠DOC+∠C=90°,∴OD⊥DC,∴AC是⊙O的切线(2)解:∵∠A=60°,∴∠C=30°,∠DOC=60°,在Rt△DOC中,OD=2,∴CD= OD=2 ,∴阴影部分的面积=S△COD﹣S扇形DOE= ×2×2 ﹣=2 ﹣【考点】切线的判定,扇形面积的计算【解析】【分析】(1)由OD=OB得∠1=∠ODB,则根据三角形外角性质得∠DOC=∠1+∠ODB=2∠1,而∠A=2∠1,所以∠DOC=∠A,由于∠A+∠C=90°,所以∠DOC+∠C=90°,则可根据切线的判定定理得到AC 是⊙O的切线;(2)由∠A=60°得到∠C=30°,∠DOC=60°,根据含30度的直角三角形三边的关系得CD= 3 OD=2 3 ,然后利用阴影部分的面积=S△COD﹣S扇形DOE和扇形的面积公式求解.。

相关文档
最新文档