2.3平行线的性质(二)
(新人教版)数学七年级下册:5.3.1《平行线的性质(第2课时)》教学设计(两套)
5.3.2平行线的性质(第2课时)平行线的性质(二)教学目标1.经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力.2.理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论.3.能够综合运用平行线性质和判定解题. 重点、难点重点:平行线性质和判定综合应用,两条平行的距离,命题等概念. 难点:平行线性质和判定灵活运用. 教学过程 一、复习引入1.平行线的判定方法有哪些?(注意:平行线的判定方法三种,另外还有平行公理的推论)2.平行线的性质有哪些.3.完成下面填空.已知:如图,BE 是AB 的延长线,AD ∥BC,AB ∥CD,若∠D=100°,则∠C=_____, ∠A=______,∠CBE=________.4.a ⊥b,c ⊥b,那么a 与c 的位置关系如何?为什么?cb二、进行新课1.例1 已知:如上图,a ∥c,a ⊥b,直线b 与c 垂直吗?为什么?学生容易判断出直线b 与c 垂直.鉴于这一点,教师应引导学生思考:(1)要说明b ⊥c,根据两条直线互相垂直的意义, 需要从它们所成的角中说明某个角是90°,是哪一个角?通过什么途径得来?(2)已知a ⊥b,这个“形”通过哪个“数”来说理,即哪个角是90°.(3)上述两角应该有某种直接关系,如同位角关系、内错角关系、同旁内角关系,你能确定它们吗?让学生写出说理过程,师生共同评价三种不同的说理. 2.实践与探究(1)下列各图中,已知AB ∥EF,点C 任意选取(在AB 、EF 之间,又在BF 的左侧).请测量各图中∠B 、∠C 、∠F通过上述实践,试猜想∠B 、∠F 、∠C 之间的关系,写出这种关系,试加以说明.E D C B AFECBAFECBA(1) (2) 教师投影题目:学生依据题意,画出类似图(1)、图(2)的图形,测量并填表,并猜想:∠B+∠F=∠C.在进行说理前,教师让学生思考:平行线的性质对解题有什么帮助? 教师视学生情况进一步引导:①虽然AB ∥EF,但是∠B 与∠F 不是同位角,也不是内错角或同旁内角. 不能确定它们之间关系.②∠B 与∠C 是直线AB 、CF 被直线BC 所截而成的内错角,但是AB 与CF 不平行.能不能创造条件,应用平行线性质,学生自然想到过点C 作CD ∥AB,这样就能用上平行线的性质,得到∠B=∠BCD.③如果要说明∠F=∠FCD,只要说明CD 与EF 平行,你能做到这一点吗?以上分析后,学生先推理说明, 师生交流,教师给出说理过程.FEDCB A作CD ∥AB,因为AB ∥EF,CD ∥AB,所以CD ∥EF(两条直线都与第三条直线平行, 这两条直线也互相平行).所以∠F=∠FCD(两直线平行,内错角相等).因为CD ∥AB.所以∠B=∠BCD(两直线平行,内错角相等).所以∠B+∠F=∠BCF. (2)教师投影课本P23探究的图(图5.3-4)及文字.①学生读题思考:线段B 1C 1,B 2C 2……B 5C 5都与两条平行线的横线A 1B 5和A 2C 5垂直吗?它们的长度相等吗?②学生实践操作,得出结论:线段B 1C 1,B 2C 2……,B 5C 5同时垂直于两条平行直线A1B5和A 2C 5,并且它们的长度相等.③师生给两条平行线的距离下定义.学生分清线段B 1C 1的特征:第一点线段B 1C 1两端点分别在两条平行线上,即它是夹在这两条平行线间的线段,第二点线段B 1C 1同时垂直这两条平行线. 教师板书定义:(像线段B 1C 1)同时垂直于两条平行线, 并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.④利用点到直线的距离来定义两条平行线的距离.F EDCBA教师画AB ∥CD,在CD 上任取一点E,作EF ⊥AB,垂足为F.学生思考:EF 是否垂直直线CD?垂线段EF 的长度d 是平行线AB 、CD 的距离吗? 这两个问题学生不难回答,教师归纳:两条平行线间的距离可以理解为:两条平行线中,一条直线上任意一点到另一条直线的距离.教师强调:两条平行线的距离处处相等,而不随垂线段的位置改变而改变. 3.了解命题和它的构成.(1)教师给出下列语句,学生分析语句的特点.①如果两条直线都与第三条直线平行,那么这条直线也互相平行; ②等式两边都加同一个数,结果仍是等式; ③对顶角相等;④如果两条直线不平行,那么同位角不相等.这些语句都是对某一件事情作出“是”或“不是”的判断. (2)给出命题的定义.判断一件事情的语句,叫做命题.教师指出上述四个语句都是命题,而语句“画AB ∥CD”没有判断成分,不是命题.教师让学生举例说明是命题和不是命题的语句. (3)命题的组成.①命题由题设和结论两部分组成.题设是已知事项,结论是由已知事项推出的事项. ②命题的形成.命题通常写成“如果……,那么……”的形式,“如果”后接的部分是题设,“那么”后接的部分是结论.有的命题没有写成“如果……,那么……”的形式,题设与结论不明显,这时要分清命题判断了什么事情,有什么已知事项,再改写成“如果……,那么……”形式. 师生共同分析上述四个命题的题设和结论,重点分析第②、③语句. 第②命题中,“存在一个等式”而且“这等式两边加同一个数”是题设, “结果仍是等式”是结论。
平行线的性质课件
知识点 3 “同旁内角”的性质
知3-讲
•1.性质3:两条平行直线被第三条直线所截,同旁内角 • 互补. • 简称:两直线平行,同旁内角互补. • 表达方式: • 如图,因为a∥b(已知), • 所以∠1+∠2=180°(两直线平行,同旁内角互补). •2.易错警示:平行线的同旁内角是互补不是相等.
知2-练
• 2 (202X·凉山州)如图,AB∥CD,直线EF分别交AB ,CD于E,F两点,∠BEF的平分线交CD于点G,若 ∠EFG=52°,则∠EGF等于( ) •A.26° •B.64° •C.52° •D.128°
知2-练
• 3 (202X·咸宁)如图,直线l1∥l2,CD⊥AB于点D, ∠1=50°,则∠BCD的度数为( ) •A.50° •B.45° •C.40° •D.30°
导引:要判断AB与CD的位置关系, 应从两直线的位置关系的特 殊情况,如平行或垂直方面 思考问题,视察右图可知, AB与CD没有交点,所以可猜想AB∥CD,要说明AB∥CD, 只要说明∠ABC=∠BCD即可.
解: •AB∥CD,理由如下: •因为MN∥EF, •所以∠2=∠3(两直线平行,内错角相等). •因为∠1=∠2,∠2=∠3,∠3=∠4, •所以∠1+∠2=∠3+∠4. •因为∠1+∠ABC+∠2=180°, • ∠3+∠BCD+∠4=180°, •所以∠ABC=∠BCD. •所以AB∥CD(内错角相等,两直线平行).
a∥b,所以∠2=∠1=70°.
知1-讲
例2 •如图,若AB∥CD,且∠1=∠2,试判断AM与CN •的位置关系,并说明理由.
导引:AM与CN的位置关系很显然 是平行的,要说明AM∥CN, 可考虑说明∠EAM=∠ECN. 因为∠1=∠2,所以只需说 明∠BAE=∠ACD即可, 由于“两直线平行,同位角相等”,所以根据 AB∥CD即可得出∠BAE=∠ACD.
平行线的知识点归纳(两篇)
引言概述:平行线是几何学中一个重要的概念,它在数学和物理学等领域具有广泛的应用。
在本文中,我们将进一步归纳平行线的一些重要知识点,包括平行线的定义、性质以及平行线与其他几何元素的关系。
通过深入理解这些知识点,我们将能够更好地应用平行线的概念解决实际问题。
正文内容:1. 平行线的定义1.1 平行线的定义平行线是指在同一个平面内不相交且不重合的两条直线。
平行线可以永远延伸而不会相交。
1.2 平行线的表示方法平行线可以用符号“∥”来表示。
例如,若AB∥CD,我们可以写成AB∥CD来表示线段AB与线段CD平行。
1.3 平行线的判定方法判定两条直线是否平行有多种方法,常用的方法包括使用同位角、平行线定理以及垂线的性质等。
2. 平行线的性质2.1 平行线的夹角关系当两条平行线被一条横截线相交时,它们所成的对应角、内错角、同位角具有一些特定的关系。
例如,对应角相等、内错角互补、同位角互等等。
2.2 平行线的影子定理若一条横截线与两条平行线分别相交,那么这两条平行线上的对应线段与其所分割的横截线上的线段成比例。
2.3 平行线的平行四边形定理若一条对角线把平行四边形分成两个三角形,那么这两个三角形中的对角线之间的向量是相等的。
3. 平行线与其他几何元素的关系3.1 平行线与角度的关系平行线与角度之间有密切的关系。
例如,当平行线被一条横截线相交时,不同角对应的角度关系等。
3.2 平行线与多边形的关系平行线与多边形的性质也有一定的关系。
例如,对于平行四边形来说,两组对边是平行的。
3.3 平行线与圆的关系平行线与圆的关系也是几何学中一个重要的知识点。
例如,在圆内部的任意两条平行线都会与圆的弦垂直。
4. 平行线的应用4.1 平行线的测量在实际应用中,我们经常需要测量平行线间的距离。
通过使用测量仪器和几何定理,我们可以准确地测量平行线的距离。
4.2 平行线与平行线的相交当两组平行线相交时,我们可以利用平行线的性质推导出一些重要的结论。
人教版初中数学教案
人教版初中数学教案第一篇:人教版初中数学平行线的性质教案2.3平行线的性质一、教材分析:本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是?空间与图形?的重要组成部分。
二、教学目标:1.知识与技能:掌握平行线的性质,能应用性质解决相关问题。
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程。
2.解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神。
3.情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神。
三、教学重、难点:重点:平行线的性质难点:?性质1?的探究过程四、教学方法:引导发现法?与?动像探索法?五、教具、学具:教具:多媒体课件学具:三角板、量角器。
六、教学媒体:大屏幕、实物投影七、教学过程:(一)创设情境,设疑激思:1.播放一组幻灯片。
内容:①火车行驶在铁轨上;②游泳池;③横格纸。
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?学生活动:思考回答。
①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;教师:首先肯定学生的回答,然后提出问题。
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?引出课题——平行线的性质。
(二)数形结合,探究性质1.画图探究,归纳猜想任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图)。
问题一:指出图中的同位角,并度量这些角,把结果填入下表:第一组第二组第三组第四组同位角∠1∠5角的度数数量关系学生活动:画图——度量——填表——猜想结论:两直线平行,同位角相等。
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?学生:探究、讨论,最后得出结论:仍然成立。
北师大版本七年级下册2.3 平行线的性质(共29张PPT)
合作交流探究新知
已知:a∥b, 求证:∠3+∠5=180°
证明:∵ a ∥ b (已知) ∴∠1=∠5( 两直线平行,同位角相等 ) 又∵ ∠1+∠3=180° ( 邻补角的定义 ) ∴ ∠3+∠5=180° (等量代换)
合作交流探究新知
1.如图所示,AB∥CD,AC∥BD,分别找出 与∠1相等或互补的角.
a
1
6
5
8
b
7
合作交流探究新知
平行线的性质:两条平行直线被第 三条直线所截,同位角相等,内错 角相等,同旁内角互补.
简记为
两直线平行,同位角相等.
两直线平行,内错角相等.
两直线平行,同旁内角互补.
合作交流探究新知
你能根据性质1,说出性质2, 性质3成立的理由吗? 已知:a∥b,求证:∠4=∠5 证明:∵a∥b. ∴∠1=∠5 ( 两直线平行,同位角相等 ) 又∵∠1=∠ 4 (对顶角相等) ∴∠4=∠5, 同样,对于性质3,你能说出道理吗?
(3)若∠2 +∠3=180°,可以
判定哪两条直线平行?根据
反馈练习巩固新知
问题3 如图 ,AB∥CD,如果∠1=∠2, 那 么EF与AB 平行吗?说说你的理由.
解:因为 ∠1 = ∠2, 根据“内错角相等, 两直线平行”, 所以 EF∥CD. 又因为 AB∥CD, 根据“平行于同一条直线的两条直线平行” 所以 EF∥AB.
合作交流探究新知
活动3:另外画一组平行线被第三条直 线所截,同样测量并计算各角的度数, 检验刚才的猜想是否成立?
如果直线a与b不平行,猜想还成立吗?试 一试.
b
1
a
除了测量的方法来说明平行线 的方法,还有其他的方法吗?
第3讲 平行线的性质
全方位教学辅导教案学科:数学任课教师:授课时间: 2020 年月日(星期)【知识讲解】一、平行线的性质1、性质1:两条平行线被第三条直线所截,同位角相等。
2、性质2:两条平行线被第三条直线所截,内错角相等。
3、性质3:两条平行线被第三条直线所截,同旁内角互补。
提示:(1)只有当两条直线平行时,才会有同位角相等、内错角相等、同旁内角互补。
(2)平行线的性质和判定是直线的位置关系和角的数量关系之间的相互转换,不同的是性质以平行为条件,即由平行得到角相等或互补;判定是以平行为结论,即由角相等或互补得到两条直线平行。
二、命题1.命题的定义:判断一件事的语句叫做命题2.命题的构成:(1)命题是由题设和结论两部分组成的,题设是已知事项,结论是由已知事项退出的事项。
(2)命题通常可以写成“如果……那么……”的形式,这时“如果”后接的部分是题设,“那么”后接的部分是结论。
例如,命题是“对顶角相等”,可以改写成:如果两个角使对顶角,那么这两个角相等。
题设:两个角是对顶角,结论:这个两个角相等。
3.命题分类:如果题设成立,结论一定成立,这样的命题是真命题;如果题设成立,结论不一定成立,这样的命题是假命题。
提示:(1)命题是用语句的形式对某件事作出肯定或否定的判断,这些判断包含“是”或“不是”,“具有”或“不具有”的特点。
(2)命题是一种判断,这种判断可能正确也可能错误。
(3)在找命题的题设和结论时,要分清命题的“已知事项”和“推出事项”(4)为了准确表达命题的题设和结论,有时需要对命题的语序进行调整或增减,使语句通顺、语意明确,但是不能改变原意。
总结:判断一个语句是不是命题,关键是看他是否对一件事作出了判断,命题的题设和结论不明显时,通常把语句改写成:如果……那么……的形式,“如果”后面接的是题设,“那么”后面接的是结论。
三、定理和证明1.定理:一些命题,它们的正确性是经过推理证实的,这样得到的真命题叫做定理,即所有的定理都是真命题。
平行线的判定和性质知识点详解
平行线的判定和性质(综合篇)一、重点和难点:重点:平行线的判定性质。
难点:①平行线的性质与平行线的判定的区分②掌握推理论证的格式。
二、例题:这部分内容所涉及的题目主要是从已知图形中辨认出对顶角、同位角、内错角或同旁内角.解答这类题目的前提是熟练地掌握这些角的概念,关键是把握住这些角的基本图形特征,有时还需添加必要的辅助线,用以突出基本图形的特征.上述类型题目大致可分为两大类。
一类题目是判断两个角相等或互补及与之有关的一些角的运算问题。
其方法是“由线定角”,即运用平行线的性质来推出两个角相等或互补。
另一类题目主要是“由角定线",也就是根据某些角的相等或互补关系来判断两直线平行,解此类题目必须要掌握好平行线的判定方法.例1.如图,已知直线a,b,c被直线d所截,若∠1=∠2,∠2+∠3=180°,求证:∠1=∠7分析:运用综合法,证明此题的思路是由已知角的关系推证出两直线平行,然后再由两直线平行解决其它角的关系。
∠1与∠7是直线a和c被d所截得的同位角。
须证a//c。
法(一)证明:∵d是直线(已知)∴∠1+∠4=180°(平角定义)∵∠2+∠3=180°,∠1=∠2(已知)∴∠3=∠4(等角的补角相等)∴a//c(同位角相等,两直线平行)∴∠1=∠7(两直线平行,同位角相等)法(二)证明:∵∠2+∠3=180°,∠1=∠2(已知)∴∠1+∠3=180°(等量代换)∵∠5=∠1,∠6=∠3(对顶角相等)∴∠5+∠6=180°(等量代换)∴a//c (同旁内角互补,两直线平行)∴∠1=∠7(两直线平行,同位角相等)。
例2.已知如图,∠1+∠2=180°,∠A=∠C,AD平分∠BDF,求证:BC平分∠DBE.分析:只要求得∠EBC=∠CBD,由∠1+∠2=180°推出∠1=∠BDC,从而推出AE//FC,从而推出∠C=∠EBC而∠C=∠A于是可得∠A=∠EBC.因此又可得AD//BC,最后再运用平行线性质和已知条件便可推出∠EBC=∠DBC.证明:∵∠2+∠BDC=180°(平角定义)又∵∠2+∠1=180°(已知)∴∠BDC=∠1(同角的补角相等)∴AE//FC(同位角相等两直线平行)∴∠EBC=∠C(两直线平行内错角相等)又∵∠A=∠C(已知)∴∠EBC=∠A(等量代换)∴AD//BC(同位角相等,两直线平行)∴∠ADB=∠CBD(两直线平行,内错角相等)∠ADF=∠C(两直线平行,同位角相等)又∵DA平分∠BDF(已知)∴∠ADB=∠ADF(角平分线定义)∴∠EBC=∠DBC(等量代换)∴BC平分∠DBE(角平分线定义)说明:这道题反复应用平行线的判定和性质,这是以后在证题过程中经常使用的方法,见到“平行"应想到有关的角相等,见到有关的角相等,就应想到能否判断直线间的平行关系.把平行线的判定与性质紧密地结合在一起也就是使直线平行和角相等联系在一起,这样解题能得心应手,灵活自如。
北师大版七下数学2.3.2平行线的性质教案
北师大版七下数学2.3.2平行线的性质教案一. 教材分析《北师大版七下数学》2.3.2平行线的性质是学生在学习了直线、射线、线段以及平行线的基本概念之后的一个单元。
本节课主要引导学生探究平行线的性质,让学生通过观察、猜想、验证、归纳等过程,理解和掌握平行线的性质,培养学生的逻辑思维能力和空间想象力。
教材中提供了丰富的素材,通过学生的自主探究和合作交流,使学生能够深刻理解并熟练运用平行线的性质。
二. 学情分析学生在进入七年级之前,已经初步学习了直线、射线、线段等基本概念,对图形有了一定的认识。
但是,对于平行线的性质,他们可能还停留在直观的感受上,缺乏系统的理论支持。
因此,在教学过程中,教师需要从学生的实际出发,通过引导、启发、激励,让学生主动参与学习,提高他们的自主学习能力。
三. 教学目标1.理解平行线的性质,并能够熟练运用。
2.培养学生的观察能力、猜想能力、验证能力和归纳能力。
3.培养学生的逻辑思维能力和空间想象力。
4.培养学生的合作意识和团队精神。
四. 教学重难点1.重点:平行线的性质。
2.难点:平行线性质的证明和运用。
五. 教学方法1.引导法:教师通过提出问题,引导学生思考,激发学生的学习兴趣。
2.探究法:学生通过观察、猜想、验证、归纳等过程,自主探究平行线的性质。
3.合作交流法:学生分组进行讨论,分享学习心得,互相学习,共同进步。
六. 教学准备1.准备相关的图形素材,如直线、射线、线段、平行线等。
2.准备黑板、粉笔等教学工具。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段等基本概念,为新课的学习做好铺垫。
2.呈现(10分钟)教师展示直线、射线、线段和平行线的图形,让学生观察并猜想平行线的性质。
3.操练(10分钟)教师引导学生进行小组讨论,分享各自的猜想,并尝试用已知知识验证平行线的性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师挑选一些典型的题目让学生进行练习,巩固对平行线性质的理解和运用。
平行线判定和性质的应用课件
条件
图形
结论.
定义、判定
定义、判定
知3-练
• 1 (202X·十堰)如图,AB∥EF,CD⊥EF于点D, 若∠ABC=40°,则∠BCD等于( ) •A.140° •B.130° •C.120° •D.110°
知3-练
2 如图,如果AB∥DE,∠1=∠2,那么AE∥DC, 请说明理由.
从图形中得出结论是图形的性质;而从具备什么条 件推理出图形是图形的判定;特别说明,图形的定义既 是图形的判定,也是图形的性质;即:
所以∠ABC=∠BCD(两直线平行,内错角相等).
因为∠1=∠2(已知),
所以∠ABC-∠1=∠BCD-∠2(等式的性质),
即∠PBC=∠BCQ.
所以PB∥CQ(内错角相等,两直线平行).
所以∠P=∠Q(两直线平行,内错角相等).
总结
知3-讲
一个数学问题的构成含有四个要素:题目的条件、 解题的根据、解题的方法、题目的结论,如果题目所 含的四个要素解题者已经知道或者结论虽未指明,但 它是完全确定的,这样的问题就是封闭性的数学问题.
例2 •如图,将一张长方形的纸片沿EF折叠后,点D, •C分别落在D′,C′位置上,ED′与BC的交点为点 •G,若∠EFG=50°,求∠EGB的度数.
知1-讲
导引:本题根据长方形的定义得出其对边是平行的, 利用平行线的性质:两直线平行,内错角相等, 先求∠DEF=50°, 再根据折叠前后的对应角相等求得∠D′EF=50°, 然后根据平角的定义得∠AEG=80°, 最后根据两直线平行,同旁内角互补求得∠EGB =100°.
知1-讲
•所以∠AEG=180°-∠DEF-∠D′EF=80°(平 • 角的定义). •又因为AD∥BC, •所以∠AEG+∠EGB=180°(两直线平行,同旁 内 • 角互补), •即∠EGB=180°-∠AEG=180°-80°= 100°.
平行线的性质 【一等奖教案】 表格版
2.3平行线的性质1.理解平行线的性质;(重点)2.能运用平行线的性质进行推理证明.(重点、难点)一、情境导入窗户的内窗的两条竖直的边是平行的,在推动过程中,两条竖直的边与窗户外框形成的两个角∠1、∠2有什么数量关系?二、合作探究探究点:平行线的性质【类型一】两直线平行,同位角相等如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°解析:由∠1=∠2,可根据“同位角相等,两直线平行”判断出a∥b,可得∠3=∠5.再根据邻补角互补可以计算出∠4的度数.∵∠1=∠2,∴a∥b,∴∠3=∠5.∵∠3=70°,∴∠5=70°,∴∠4=180°-70°=110°.故选D.方法总结:此题主要考查了平行线的判定方法与性质1,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.【类型二】两直线平行,内错角相等如图,∠A=∠D,如果∠B=20°,那么∠C为()A.40°B.20°C.60°D.70°解析:∵∠A=∠D,∴AB∥CD.∵AB∥CD,∠B=20°,∴∠C=∠B=20°.故选B.【类型三】两直线平行,同旁内角互补如图,已知∠1=85°,∠2=95°,∠4=125°,则∠3的度数为()A .95°B .85°C .70°D .55°解析:根据“对顶角相等”得到∠5=∠1=85°,再由“同旁内角互补,两直线平行”得到a ∥b ,最后根据“两直线平行,同旁内角互补”即可得到结论.如图,∵∠5=∠1=85°,∴∠5+∠2=85°+95°=180°,∴a ∥b ,∴∠3+∠4=180°.∵∠4=125°,∴∠3=55°.故选D.【类型四】 平行线性质的实际应用一大门的栏杆如图所示,BA 垂直于地面AE 于A ,CD 平行于地面AE ,则∠ABC+∠BCD =________度.解析:过B 作BF ∥AE ,则CD ∥BF ∥AE .根据平行线的性质即可求解.过B 作BF ∥AE ,则CD ∥BF ∥AE ,∴∠BCD +∠1=180°.又∵AB ⊥AE ,∴AB ⊥BF ,∴∠ABF =90°,∴∠ABC +∠BCD =90°+180°=270°.故答案为270.【类型五】 平行线性质与判定中的探究型问题如图,AB ∥CD ,E ,F 分别是AB ,CD 之间的两点,且∠BAF =2∠EAF ,∠CDF=2∠EDF .(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并说明理由;(2)求出∠AFD 与∠AED 之间的数量关系.解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED =∠BAE +∠CDE .理由如下:过点E 作EG ∥AB .∵AB ∥CD ,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE ,∠DEG =∠CDE .∵∠AED =∠AEG +∠DEG ,∴∠AED =∠BAE +∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE+∠CDE =32∠BAF +32∠CDF ,∴∠AED =32∠AFD . 方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计平行线的性质:性质1:两条平行线被第三条直线所截,同位角相等;性质2:两条平行线被第三条直线所截,内错角相等;性质3:两条平行线被第三条直线所截,同旁内角互补.。
平行线的性质
2.3平行线的性质平行线的判定与性质1.判定方法:(1) 同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.2.性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.3.相同点:平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件。
4.区别:平行线的性质和平行线的判定中的条件和结论恰好相反:平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。
它们是由“数”到“形”的判断。
平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。
它们是由“形”到“数”的说理。
平行公理I平行公理:过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论(平行线的传递性):平行同一直线的两直线平行。
∵a∥c,c ∥b∴a∥b。
1. 阅读填空:(1)如图,请你完成小颖和小明的说理过程:小颖:因为AD与BC是平行的,所以∠1=_____,理由是_____.小明:∠3=∠4→_____∥_____→∠A+_____=180°其中第一步的理由是_____第二步的理由是_____.2. 下列说法中,正确的是( )A.经过一点,有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,内错角相等C.垂直于同一条直线的两条直线互相垂直D.两条直线被第三条直线所截,内错角相等,则两直线平行3. 下列说法中,正确的是( )A.连接两点的线段就叫做两点的距离B.AB=BC,则点B是线段AC的中点C.过直线外一点有且只有一条直线与这条直线平行D.过直线外一点有无数条直线与这条直线垂直4. 如果直线a∥b,则下列说法错误的是( )A.a与b之间距离处处相等B.若a∥c,则b∥cC.若a⊥c,则b⊥cD.a,b被第三条直线所截的同旁内角相等5. 已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF 的度数.6. 如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是( )A.20°B.50°C.70°D.110°7. 如图,直线a∥直线b,∠1=∠2,∠3=150°,∠4的大小( )A.60°B.40°C.50°D.30°8. 已知:如图,∠D=110°,∠EFD=70°,∠1=∠2.求证:∠3=∠B.证明:∵∠D=110°,∠EFD=70°(已知)∴∠D+∠EFD=180°∴_____∥_____又∵∠1=∠2(已知)∴_____∥_____∴_____∥_____∴∠3=∠B_____.9. 如图.已知AB∥CD,MG平分∠AMN,NH平分∠DNM,求证:MG∥NH.10. 如图,BC∥AD,∠1=∠E,若∠A=100°,求∠C的度数.11. 如图,B、C、D三点共线,CE∥AB,∠1=51°,∠2=46°,则∠A=_____°.12. 如图,直线AB∥DE,BC⊥CD,若∠1=25°,则∠2的度数是_____.13. 如果直线a∥b,直线b∥c,则直线a与c的关系是_____.14. 如图,已知AB∥DE,∠1=120°,∠2=110°,求∠3的度数.15. 如图①所示,已知,BC∥OA,∠B=∠A=100°,试回答下列问题:(1)试说明:OB∥AC;(2)如图②,若点E、F在BC上,且∠FOC=∠AOC,OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若左右平行移动AC,如图③,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值;(4)在(3)的条件下,当∠OEB=∠OCA时,试求∠OCA的度数.16. 如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A与∠F的关系,并说明理由.17. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是( )A.17°B.34°C.56°D.68°18. 如图,△ABC的三个顶点分别在直线a、b上,且a∥b,若∠1=120°,∠2=80°,则∠3的度数是( )A.40°B.60°C.80°D.120°19. 如图,点C在∠AOB的边OA上一点,请你使用直尺和圆规,过点C作直线OB的平行线.(保留作图痕迹,不要求写画法).20. 如图,已知AD⊥BC,EF⊥BC,∠1=∠C.(1)证明:AD∥EF;(2)猜想:∠2与∠3有怎样的关系,并说明理由.21. 如图,已知AB∥CD,∠C=65°,∠E=30°,则∠A的度数为( )A.30°B.32.5°C.35°D.37.5°22. 如图,已知a∥b,AC⊥AB,AC交直线b于点C,∠1=65°,那么∠2是_____°.23. 如图,点D、E、F分别在△ABC的三边上,已知∠1=50°,DE∥AC,DF∥AB,则∠2=_____°.24. 如图,AB∥CD,则∠1,∠2,∠3之间的关系是( )A.∠1+∠2+∠3=180°B.∠1+∠2+∠3=360°C.∠1+∠2-∠3=180°D.∠1-∠2+∠3=180°25. 如图,已知AB∥CD,EF∥CD,∠B=70°,∠E=135°,∠1等于_____.26. 如图,AB∥CD,则∠α、∠β、∠γ之间的等量关系为_____.27.如图,已知AB∥DM,BC∥EF,探求∠B与∠D数量关系,∠AEF与∠D数量关系,并说明理由.28.一辆汽车在笔直的公路上行驶,在两次转弯后,前进的方向仍与原来相同,那么这两次转弯的角度可以是( )A.先右转60°,再左转120°B.先左转120°,再右转120°C.先左转60°,再左转120°D.先右转60°,再右转60°29. 如图,AB∥CD,AD∥BC,若∠CBE=68°,则∠C=_____,∠D=_____.30. 平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部.试说明∠BPD=∠B-∠D;(2)将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请说明你的结论成立的理由;(3)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)31. 如图所示,把长方形ABCD的纸片,沿EF线折叠后,ED与BC的交点为G,点D、C 分别落在D′、C′的位置上,若∠1=70°,求∠2、∠EFG的度数.32. 将一条两边沿互相平行的纸带按如图折叠,当∠1:∠2=2:3,则∠2的度数为( )A.22.5°B.45°C.67.5°D.30°33.如果∠α与∠β的两边分别平行,∠α比∠β的4倍少30°,则∠α的度数是( )A.10°B.138°C.10°或138°D.以上都不对34. 如图,已知AB∥CD,直线EF分别交直线AB,CD于点E、F,FG平分∠CFE交AB 于点G,若∠BEF=70°,求∠AGF的度数.35. 已知:如图,在△ABC中,DE∥AC,DF∥AB,∠B=60°,∠C=70°.则∠EDF=_____.36. 如图,直线a∥b,∠A=38°,∠1=46°,则∠ACB的度数是( )A.84°B.106°C.96°D.104°37. 如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠CBE的度数是( )A.17°B.34°C.56°D.68°38. 如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.39. 如图,直线a∥b,直线c与直线a,b都相交,∠1=65°,则∠2=_____°.40. 如图,直线a,b被直线c所截,a∥b,∠1=∠2,若∠3=40°,则∠4等于_____.。
北师大版七年级下2.3.1平行线的性质(第2课时)课件(金榜学案配套)
【跟踪训练】 1.(2012·衡阳中考)如图,直线a⊥直线c, 直线b⊥直线c,若∠1=70°,则∠2=( (A)70° (C)110° (B)90° (D)80° )
【解析】选A.因为a⊥c,b⊥c,所以a∥b. 所以∠1=∠3. 因为∠2=∠3,∠1=70°. 所以∠2=∠1=70°.
2.如图, 已知直线AB∥CD,∠C=115°,
【预习思考】
如何区分平行线的判定和性质?
提示:由两直线的位置关系得角的关系为性质;由角的关系得
两直线的位置关系为判定,即得出结论为角的关系则为性质, 否则为判定.
平行线性质和条件的综合应用 【例】(9分)已知,如图,∠1=∠2,∠C=∠D,请说明∠A=∠F.
【规范解答】因为∠1=∠2(已知),∠2=∠3(对顶角相等), 所以∠1=∠3(等量代换)……………………………………3分 所以BD∥CE(同位角相等,两直线平行), 所以∠D=∠CEF(两直线平行,同位角相等),……………5分 又因为∠C=∠D(已知),
1 ∠ACE(角平分线的性质). 2
又因为AC∥DE(已知), 所以∠ACD=∠D=70°(两直线平行,内错角相等),
所以∠ACE=2∠ACD=140°(等式的性质).
又因为AC∥DE(已知),
所以∠E+∠ACE=18ቤተ መጻሕፍቲ ባይዱ°(两直线平行,同旁内角互补),
所以∠E=40°(等式的性质).
(C)∠4=125°
(D)∠5=55°
【解析】选C.因为AB∥CD,EF∥GH,∠1=55°,
所以∠5=55°,所以∠4=55°,∠3=55°,∠2=125°,故C项错 误.
3.AC∥BD,∠A=60°,∠C=62°,则∠2= ______,∠3=______,∠1=______. 【解析】因为AC∥BD,∠A=60°,∠C=62°, 所以∠2=∠A=60°,∠3=∠C=62°, ∠1=180°-60°-62°=58°. 答案:60° 62° 58°
2.3平行线的性质(二)
3.如图,选择合适的内容填空。 (1)因为AB//CD 所以∠1=∠2( 两直线平行,内错角相等 ) (2)因为∠3=∠1 CD 所以 AB//___(同位角相等,两直线平行) (3)因为∠1+∠ 4 =180 , 所以AB//CD(同旁内角互补,两直线平行)
拓展提高
1.如图,平行直线AB,CD被直线EF所截,分别 交直线AB,CD于点G,M。GH和MN分别是∠EGB 和∠EMD的角平分线。 问:GH和MN平行吗?请说明理由。
温故知新
平行线的判定有哪些?
(1)∵∠3 = ∠7 (已知) ∴a∥b( 同位角相等,两直线平行 ) (2)∵∠3 = ∠6 (已知) ∴a∥b(内错角相等,两直线平行 ) (3)∵∠3 + ∠5 =180°(已知) ∴a∥b( 同旁内角互补,两直线平行 )
两直线平行
性质
请注意:
判定
{
1.同位角相等 2.内错角相等 3.同旁内角互补
解:(1)∵∠1=∠2(已知)
∴BF∥CE(内错角相等,两直线平行)
例题讲解
例1 如图:(1)若∠1=∠2,可以判定哪两条直 线平行?根据是什么? (2)若∠2=∠M,可以判定哪两条直线平行?根 据是什么? (3)若∠2 +∠3=180°,可以判定哪两条直线 平行?根据是什么?源自解:(2)∵∠2=∠M(已知)
∴∠2=∠1=107°( 内错角相等,)
两直线平行
∵
c∥d (已知)
∴∠1+∠3=180°( 两直线平行,同旁内角互补) ∴∠3=180°-∠1=180°-107°= 73°
随堂练习
1.如图,∠1=105°,∠2=75°,
你能判断a∥b吗?
2.如图,AE∥CD,∠1 = 37°, ∠D=54°,求∠2 和∠BAE 的度数。
平行线的性质(知识讲解)-2022-2023学年七年级数学下册基础知识专项讲练(人教版)
专题5.12平行线的性质(知识讲解)【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.特别说明:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.特别说明:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2)两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.【典型例题】类型一、平行线的性质➽➼同位(内错)相等✮✮同旁内角互补➻➸两直线平行1.阅读下列推理过程,在括号中填写理由.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠,试证明:∥DG BA .解:AD BC ⊥ ,EF BC ⊥(已知),90EFB ADB ∴∠=∠=︒(______)∴______∥______(______)1BAD ∴∠=∠(______)又12∠=∠ (已知),∴______(______)∴∥DG BA (______)【答案】垂直的定义;EF AD ;;同位角相等,两直线平行;两直线平行,同位角相等;2BAD ∠=∠;等量代换;内错角相等,两直线平行【分析】根据平行线的判定定理与性质定理求解即可.解:AD BC ⊥ ,EF BC ⊥(已知),∴90EFB ADB ∠=∠=︒(垂直的定义),∴EF AD ∥(同位角相等,两直线平行),∴1BAD ∠=∠(两直线平行,同位角相等),又12∠=∠ (已知),∴2BAD ∠=∠(等量代换),∴∥DG BA (内错角相等,两直线平行),故答案为:垂直的定义;EF ;AD ;同位角相等,两直线平行;两直线平行,同位角相等;2BAD ∠=∠;等量代换;内错角相等,两直线平行.【点拨】此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.举一反三:【变式1】将下列证明过程及依据补充完整.如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,E ,F 分别为BC ,AB 上的点,且AC DE ∥,CD EF ∥,求证:EF 平分DEB∠证明:∵CD 平分ACB ∠(已知),∴DCA DCE ∠=∠(角平分线的定义).∵AC DE ∥(已知),∴DCA CDE ∠=∠()∴DCE CDE ∠=∠(等量代换),∵CD EF ∥(已知),∠=∠()∴DEF CDE∠=∠()DCE BEF∴_____=______(等量代换),∴EF平分DEB∠()【答案】两直线平行,内错角相等;两直线平行,内错角相等;两直线平行,同位角相等;DEF∠;BEF∠;角平分线的定义.【分析】根据平行线的性质和角平分线的概念求解即可.∠(已知),证明:∵CD平分ACB∠=∠(角平分线的定义).∴DCA DCE∥(已知),∵AC DE∴DCA CDE∠=∠(两直线平行,内错角相等)∠=∠(等量代换),∴DCE CDE∵CD EF∥(已知),∠=∠(两直线平行,内错角相等)∴DEF CDEDCE BEF∠=∠(两直线平行,同位角相等)∴DEF∠=BEF∠(等量代换),∴EF平分DEB∠(角平分线的定义)故答案为:两直线平行,内错角相等;两直线平行,内错角相等;两直线平行,同位角相等;DEF∠;BEF∠;角平分线的定义.【点拨】本题考查了平行线的性质和平行线的判定在几何证明中的应用,明确相关性质及定理是解题的关键.【变式2】填空,将本题补充完整.如图,已知EF AD,∠1=∠2,∠BAC=65°.将求∠AGD的过程填写完整.解:∵EF AD (已知)∴∠2=()又∵∠1=∠2(已知)∴∠1=(等量代换)∴AB GD ()∴∠BAC +=180°()∵∠BAC =65°(已知)∴∠AGD =°【答案】∠3;两直线平行,同位角相等;∠3;内错角相等,两直线平行;∠AGD ;两直线平行,同旁内角互补;115°【分析】由EF AD ,可得∠2=∠3,由等量代换可得∠1=∠3,从而得到DG BA ,根据平行线的性质可得∠BAC +∠AGD =180°,即可求解.解:∵EF AD (已知)∴∠2=∠3(两直线平行,同位角相等)又∵∠1=∠2(已知)∴∠1=∠3(等量代换)∴AB GD (内错角相等,两直线平行)∴∠BAC +∠AGD =180°(两直线平行,同旁内角互补)∵∠BAC =65°(已知)∴∠AGD =115°.【点拨】本题考查了平行线的性质与判定,此题比较简单,解题的关键是注意掌握两直线平行,同位角相等;两直线平行,同旁内角互补定理;内错角相等,两直线平行的应用.2.如图,已知AD BC ⊥,EF BC ⊥,12∠=∠.(1)求证:EF AD ∥;(2)求证:180BAC AGD ∠+∠=︒.【分析】(1)根据垂直得出90EFB ADB ∠=∠=︒,根据平行线的判定得出EF AD ∥;(2)根据平行线的性质得出1BAD ∠=∠,由12∠=∠得出2BAD ∠=∠,根据平行线的判定得出DG BA ∥,再根据平行线的性质即可得解.(1)证明:∵AD BC ⊥,EF BC ⊥,∴90EFB ∠=︒,90ADB ∠=︒(垂直的定义),∴∠=∠EFB ADB (等量代换),∴EF AD ∥(同位角相等,两直线平行);(2)证明:∵EF AD ∥,∴1BAD ∠=∠(两直线平行,同位角相等),又12∠=∠ (已知),∴2BAD ∠=∠(等量代换),∴DG BA ∥(内错角相等,两直线平行),∴180BAC AGD ∠+∠=︒(两直线平行,同旁内角互补).【点拨】本题主要考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.举一反三:【变式1】如图,已知AB ∥CD ,BC 平分∠ABD 交AD 于点E .(1)证明:∠1=∠3;(2)若AD ⊥BD 于点D ,∠CDA =34°,求∠3的度数.【答案】(1)见解析;(2)∠3=28°.,根据等量代【变式2】P是∠BAC内一点,射线PD//AB,射线PE//AC,连接BC,当点D在线段BC上,点E在射线AB上时,(1)补全图形;(2)猜想∠DPE与∠A的数量关系,并证明.【答案】(1)补全图形见解析;(2)∠DPE +∠A =180°,证明见解析【分析】(1)根据题中的要求直接补全图形即可;(2)根据平行线的性质得到BEP A ∠=∠,180BEP DPE ∠+∠=︒,等量代换即可证得结论.(1)解:补全图形,如下图所示:(2)解:180DPE A ∠+∠=︒.理由如下:PE AC ∥ ,BEP A ∴∠=∠,PD AB ∥ ,180BEP DPE ∴∠+∠=︒,即180DPE A ∠+∠=︒.【点拨】本题主要考查了平行线的性质的运用,解题的关键是熟练掌握平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补.类型二、平行线的性质➽➼由平行线性质探索角的关系3.如图:(1)若AB EF ∥,猜想图①中,B ∠、BDF ∠与F ∠之间的数量关系并加以证明;(2)若AB EF ∥,如图②,直接写出B ∠、BDF ∠与F ∠之间的数量关系:.(3)学以致用:一个小区大门栏杆的平面示意图如图所示,BA 垂直地面AE 于A ,CD 平行于地面AE ,若150BCD ∠=︒,则ABC ∠=.【答案】(1)BDF B F ∠=∠+∠,证明见解析;(2)360B BDF F ∠+∠+∠=︒;(3)120︒【分析】(1)过点D 作CD AB ∥;通过平行线的性质倒角即可;(2)过点D 作CD AB ∥;根据两直线平行同旁内角互补列出等式求解;(3)由(2)中的结论计算即可;(1)解:BDF B F ∠=∠+∠;理由如下:如图,过点D 作CD AB ∥;∴B BDC∠=∠∵AB EF∥∴CD EF∥∴CDF F∠=∠∵BDF BDC CDF∠=∠+∠∴BDF B F∠=∠+∠(2)解:360B BDF F ∠+∠+∠=︒;理由如下:如图,过点D 作CD AB ∥;∵AB EF∥∴AB CD EF∥∥∴180B BDC =∠+∠︒,180CDF F ∠+∠=︒∴360B BDF F B BDC CDF F ∠+∠+∠=∠+∠+∠+∠=︒(3)解:由(2)可知:BCD ABC BAE ∠+∠+∠=︒360∴90BAE ∠=︒∴ABC BAE BCD ∠=︒-∠-∠=︒360120【点拨】本题考查了平行线的性质以及传递性;熟练运用平行线的性质转化角是解题的关键.举一反三:【变式1】如图,已知三角形EFG 的顶点E ,F 分别在直线AB 和CD 上,且AB CD .若90EFG ∠=︒,30FEG ∠=︒.(1)当221∠=∠时,求1∠的度数.(2)设AEG α∠=,CFG β∠=,求α和β的数量关系(用含α,β的等式表示).∴180AEG EGM ∠+∠=︒,∴∥GM CD ,∴180MGF CFG ∠+∠=︒,∴360AEG EGM MGF CFG ∠+∠+∠+∠=︒,即360AEG EGF CFG ∠+∠+∠=︒,∵在Rt EGF 中,90EFG ∠=︒,30FEG ∠=︒,∴60EGF ∠=︒,∴36036060300AEG CFG EGF ∠+∠=︒-∠=︒-︒=︒,∵AEG α∠=,CFG β∠=,∴300αβ+=︒.【点拨】本题主要考查平行线与三角形的综合运用,掌握平行线的性质,三角形内角和定理是解题的关键.【变式2】请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型一“猪蹄模型”.即已知:如图1,AB CD ∥,E 为AB 、CD 之间一点,连接AE ,CE 得到AEC ∠.求证:AEC A C ∠=∠+∠,小明笔记上写出的证明过程如下:证明:过点E 作EF AB ∥,∴1B ∠=∠,∵AB CD ∥,EF AB ∥,∴EF CD∥∴2C ∠=∠,∵12AEC ∠=∠+∠,∴AEC A C ∠=∠+∠,请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图2,若AB CD ∥,60E ∠=︒,求B C F ∠+∠+∠的度数;(2)灵活应用:如图3,一条河流的两岸AB CD ∥当小船行驶到河中E 点时,与两岸码头B 、D 所形成的夹角为64︒(即64BED ∠=︒),当小船行驶到河中点F 时,恰好满足ABF EBF =∠∠,EDF CDF ∠=∠,请你直接写出此时点F 与码头B 、D 所形成的夹角BFD ∠=_________.∵EN AB ∥,FM AB ∥,DC ∥∴EN CD ∥,FM CD ∥,EN ∴∠B =∠BEN ,∠NEF =∠EFM ∵∠BEN +∠NEF =∠BEF ,∠EFM类型三、平行线的性质➽➼由平行线性质求角度4.(1)如图AD 平分CAB ∠,DE AC ∥,28CAD ∠=︒.求1∠的度数.(2)如图已知1180C ∠+∠=︒,CF BE ∥.求证:B C ∠=∠.【答案】(1)1∠的度数为56︒;(2)见解析【分析】(1)根据角平分线的定义得到256CAB CAD ∠=∠=︒,由平行线的性质即可得到结论.(2)先证明AB CD ∥,再利用平行线的性质证明B CHE ∠=∠,C CHE ∠=∠,即可证明B C ∠=∠.解:(1)∵AD 平分CAB ∠,28CAD ∠=︒,∴256CAB CAD ∠=∠=︒,∵DE AC ∥,∴156CAB ∠=∠=︒;(2)证明:∵1180C ∠+∠=︒,1180AGC ∠+∠=︒,∴AGC C ∠=∠,∴AB CD ∥,∴B CHE ∠=∠,∵CF BE ∥,∴C CHE ∠=∠,∴B C ∠=∠.【点拨】本题考查了平行线的判定与性质,熟练掌握“同旁内角互补,两直线平行”、“内错角相等,两直线平行”及“两直线平行,内错角相等”是解答此题的关键.举一反三:【变式1】如图,已知点B 、C 在线段AD 的异侧,连接、AB CD ,点E 、F 分别是线段、AB CD 上的点,连接CE BF 、,分别与AD 交于点G ,H ,且AEG AGE ∠=∠,C DGC ∠=∠.(1)求证:AB CD ∥;(2)若180AGE AHF ︒∠+∠=,求证:B C ∠=∠;(3)在(2)的条件下,若117BFC C ∠=∠,求AHB ∠的度数.【答案】(1)证明见解析;(2)证明见解析;(3)70︒【分析】(1)只需要证明AEG C ∠=∠即可证明AB CD ∥;(2)先证明HGE AHF =∠∠得到BF CE 则B AEG =∠∠,再由AEG C ∠=∠即可证明B C ∠=∠;(3)根据平行线的性质得到180BFC C ∠+∠=︒,AHB DGC ∠=∠,再结合已知条件求出C ∠的度数即可得到答案.(1)证明:∵AEG AGE ∠=∠,C DGC ∠=∠,AGE DGC ∠=∠,∴AEG C ∠=∠,【变式2】类型四、平行线的性质➽➼平行线性质的应用5.如图,一条公路修在湖边,需拐弯绕道而过,如果第一次向右拐75°,第二次拐弯形成的拐角∠B =135°,第三次拐弯后道路恰好和第一次拐弯前的道路平行,那么第三次是如何拐弯的?【答案】向左拐30°【分析】过点B 作BM OA ∥,延长BC 到点P .可得BM CN ∥.从而得到∠ABM =∠A =105°.再由∠ABC =135°,可得∠MBC =30°即可求解.解:过点B 作BM OA ∥,延长BC 到点P .∵BM OA ∥,OA CN ∥,∴BM CN ∥.∵第一次向右拐75°,即∠A =105°,∴∠ABM =∠A =105°.∵∠ABC =135°,∴∠MBC =30°又∵BM CN ∥,∴∠NCP =∠MBC =30°.答:第三次应向左拐30°.【点拨】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解题的关键.举一反三:【变式1】ABC ∠和BCD ∠,量得63ABC ∠=︒,要保持两次拐弯前后的路线平行,BCD ∠的度数应为多少?为什么?【答案】117°,理由:同旁内角互补,两直线平行【分析】根据两直线平行同旁内角互补即可得出∠BCD 的度数.【详解】解:根据题意得,AB ∥CD ,∠ABC =63°∴∠BCD =180°-∠ABC =117°,∴要保持两次拐弯前后的路线平行,∠BCD 为117°,理由是同旁内角互补,两直线平行.【点拨】题目主要考查平行线的性质,理解题意是解题的关键.【变式2】潜望镜中的两面镜子是互相平行放置的,如图1,光线经过镜子反射时,12∠=∠,3=4∠∠,那么2∠和3∠有什么关系?为什么进入潜望镜的光线和离开潜望镜的光线是平行的?先画几何图形,如图2,再写已知未知.如图,//,12,34AB CD ∠=∠∠=∠,(1)猜想2∠和3∠有什么关系,并进行证明;(2)求证://PM NQ .【答案】(1)23∠∠=,证明见解析;(2)见解析【分析】(1)根据两面镜子是互相平行放置的可知//AB CD ,再根据平行线的性质(两直线平行,内错角相等)即可直接证明23∠∠=.(2)结合题意可证明1234∠=∠=∠=∠,再由125180∠+∠+∠=︒,346180∠+∠+∠=︒,即可证明56∠=∠,最后由平行线的判定定理(内错角相等,两直线平行),即可证明//P M N Q .解:(1)根据题意可知//AB CD ,∴23∠∠=(两直线平行,内错角相等).(2)∵23∠∠=,∴1234∠=∠=∠=∠;∵125180∠+∠+∠=︒,346180∠+∠+∠=︒,∴56∠=∠,∴//P M N Q (内错角相等,两直线平行).【点拨】本题考查平行线的判定与性质在生活中的应用.掌握平行线的性质与判定是解答本题的关键.类型五、平行线的性质➽➼平行线间的距离✮✮应用6.探究规律:我们有可以直接应用的结论:若两条直线平行,那么在一条直线上任取一点,无论这点在直线的什么位置,这点到另一条直线的距离均相等.例如:如图1,两直线//m n ,两点H 、T 在m 上,HE n ⊥于E ,TF n ⊥于F ,则HE TF =.如图2,已知直线//m n ,A 、B 为直线n 上的两点,C 、D 为直线m 上的两点.(1)请写出图中面积相等的各对三角形:__________.(2)如果A 、B 、C 为三个定点,点D 在m 上移动,那么无论D 点移动到任何位置总有:_______与ABC 的面积相等;理由是:___________.【答案】(1)ABC 和ABD △,DCA △和DCB △,ACO △和DBO ;(2)ABD △,同底等高的两个三角形的面积相等【分析】(1)写出面积相等的各对三角形,我们拿ABC 与ABD △为例:两个三角形用公共边AB 为底,再由图1的结论知道高相等,由三角形面积公式知两个三角形面积相等,其它对分析类似;(2)根据同底等高的两个三角形的面积相等,可以得出结论.解:(1)有三对分别是:ABC 和ABD △,DCA △和DCB △,ACO △和DBO ,分析如下:ABC 和ABD △,两个三角形用公共边AB 为底,再由图1的结论知道高相等,由三角形面积公式知两个三角形面积相等;DCA △和DCB △,两个三角形以CD 为底,高相等,即面积相等;ACO △和DBO ,根据DCA △和DCB △面积相等,两个三角形同时减去CDO ,得ACO △和DBO 面积相等.故答案为:ABC 和ABD △,DCA △和DCB △,ACO △和DBO ,(2)如果A 、B 、C 为三个定点,点D 在m 上移动,那么无论D 点移动到任何位置总有:ABD △与ABC 的面积相等,分析如下:ABD △与ABC 同底,点D 在m 上移动,那么无论D 点移动到任何位置,点D 到另一条直线的距离相等,使得这两个三角形是:同底等高的两个三角形,即面积相等.故答案为:同底等高的两个三角形的面积相等【点拨】本题考查了两条平行直线间的距离和两个三角形面积相等问题,解题的关键是:理解两直线平行距离为定值及同底等高的两个三角形面积相等.举一反三:【变式1】如图,已知直线m//n ,A ,B 为直线m 上的两点,C ,P 为直线n 上的两点.(1)请写出图中面积相等的各对三角形:;(2)如果A ,B ,C 为三个定点,点P 在直线n 上移动,那么,无论P 点移动到任何位置,总有.理由是:.【答案】(1)ACP △与BCP 、ABC 与ABP 、AOC 与BOP △;(2)题(1)中三对面积相等的三角形,理由见解析.【分析】(1)根据两平行线之间的距离处处相等、三角形的面积公式即可得;(2)根据两平行线之间的距离处处相等即可得.【详解】(1)设平行线m 与n 之间的距离为h则ACP △和BCP 的边CP 上高均为h ,ABC 和ABP 的边AB 上高均为h由同底等高得:ACP △与BCP 的面积相等,ABC 与ABP 的面积相等又AOC ACP COP S S S =- ,BOP BCP COPS S S =- AOC BOPS S ∴= 即AOC 与BOP △的面积相等故答案为:ACP △与BCP 、ABC 与ABP 、AOC 与BOP △;(2)总有题(1)中三对面积相等的三角形理由:两平行线之间的距离相等、同底等高的三角形的面积相等、面积相等两个三角形都减去公共部分得到的两个三角形的面积也相等.【点拨】本题考查了平行线之间的距离,掌握平行线之间的距离是解题关键.【变式2】作图并写出结论:如图,直线CD与直线AB相交于C,根据下列语句画图.(1)过点P作PR⊥CD,垂足为R.(2)过点P作PQ∥CD,交AB于点Q.(3)若∠DCB=135°,则∠PQC度.(4)点Q到直线PR的距离是线段的长度.)∵PQ∥CD(已作),)∴∠DCB+∠PQC=180°,∵∠DCB=135)因为PR⊥CD,所以点Q到直线【点拨】本题的关键是掌握基本作图,并能运用平行线的性质知识解决问题类型六、平行线的性质➽➼平行线性质与判定综合➽➼证明✮✮计算7.如图,点B,C在线段AD的异侧,点E,F分别是线段AB,CD上的点,∠=∠.已知12∠=∠,3C(1)求证:AB CD ∥;(2)若24180∠+∠=︒,求证:180BFC C ∠+∠=︒;(3)在(2)的条件下,若3021BFC ∠-︒=∠,求B ∠的度数.【答案】(1)见解析;(2)见解析;(3)50B ∠=︒【分析】(1)已知12∠=∠,所以32∠=∠,又因为3C ∠=∠,可以得出1C ∠=∠即可判定AB CD ∥;(2)已知23∠∠=,24180∠+∠=︒,可以得出//BF EC ,即可得出180BFC C ∠+∠=︒;(3)由(1)(2)可知AB CD ∥,//BF EC ,可以得出1C ∠=∠,180BFC C ∠+∠=︒;可以得出30212BFC C ∠-︒=∠=∠,可以得出C ∠,又因为1C B ∠=∠=∠,即可求出B ∠的度数.(1)证明:12∠=∠ ,3C ∠=∠,23∠∠=,1C ∴∠=∠,//AB CD ∴;(2)证明:24180∠+∠=︒ ,23∠∠=,34180∴∠+∠=︒,//BF EC ∴,180BFC C ∴∠+∠=︒;(3)180BFC C ∠+∠=︒ ,30212BFC C ∠-︒=∠=∠ ,230BFC C ∴∠=∠+︒,230180C C ∴∠+︒+∠=︒,50C ∴∠=︒,130BFC ∴∠=︒,//AB CD ,180B BFC ∴∠+∠=︒,50B ∴∠=︒.【点拨】本题考查了对顶角相等,平行线的性质与判定,掌握平行线的性质与判定是解题的关键.举一反三:【变式1】如图,已知点E ,F 在直线上AB 上,点G 在线段CD 上,ED 与FG 交于点H ,180C EFG CED GHE ︒∠=∠∠+∠=,.(1)试判断AED ∠与D ∠之间的数量关系,并说明理由.(2)若7030EHF D ∠︒=︒∠=,,求AEM ∠的度数.【答案】(1)180AED D ∠+∠=︒,理由见解析;(2)100︒.【分析】(1)根据同旁内角互补,两直线平行可得CE ∥GF ,根据平行线的性质等量代换可得∠FGD =∠EFG ,进而判定AB ∥CD ,即可得出∠AED +∠D =180°;(2)根据平行线的性质可得∠CED =70EHF ∠=︒,∠DEF =∠D =30°,求出∠CEF ,依据对顶角相等即可得到∠AEM 的度数.(1)解:∠AED +∠D =180°;理由:∵180CED GHE ∠+∠=︒,∴CE ∥GF ,∴∠C =∠FGD ,∵∠C =∠EFG ,∴∠FGD =∠EFG ,∴AB ∥CD ,∴∠AED +∠D =180°;(2)解:∵CE ∥GF ,70EHF ∠=︒,∴∠CED =70EHF ∠=︒,∵∠D =30°,AB ∥CD ,∴∠DEF =∠D =30°,∴∠CEF =∠CED +∠DEF =70°+30°=100°,∴∠AEM =∠CEF =100°.【点拨】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.如图,1245EF BD BAC ∠=∠∠=︒,,∥.求ADG ∠的度数.【答案】135ADG ∠=︒【分析】根据两直线平行,同位角相等,得出23∠∠=,,再根据等量代换,得出13∠=∠,再根据内错角相等,两直线平行,得到DG AB ∥,最后再根据两直线平行,同旁内角互补,计算即可得出答案.解:∵EF BD ∥,∴23∠∠=,∵12∠=∠,∴13∠=∠,∴DG AB ∥,∴180ADG BAC ∠+∠=︒,∵45BAC ∠=︒,∴18045135AGD ∠=︒-︒=︒.【点拨】本题主要考查了平行线的判定与性质,掌握平行线的判定与性质是解本题的关键.【变式2】完成下面的证明:如图,点B 在AG 上,AG CD ∥,连接BC ,CF 平分BCD ∠,ABE FCB ∠=∠,BE AF ⊥于点E .求证:90F ∠=︒.证明:∵AG CD ∥,∴ABC BCD ∠=∠(_____________________).∵ABE FCB ∠=∠,∴ABC ABE BCD FCB ∠-∠=∠-∠,即EBC FCD ∠=∠.∵CF 平分BCD ∠,∴FCB ∠=______(__________________).∴EBC FCB ∠=∠,∴BE CF ∥(________________________)∴__________________F =∠(________________________).∵BE AF ⊥,∴BEF ∠=______︒(______________________).∴90F ∠=︒.∴90BEF ∠=︒(垂直的定义).∴90F ∠=︒.故答案为:两直线平行,内错角相等;FCD ∠;角平分线的定义;内错角相等,两直线平行;BEF ∠;两直线平行,内错角相等;90;垂直的定义.【点拨】本题主要考查了平行线的性质与判定,角平分线的定义,垂直的定义,熟知相关知识是解题的关键.中考真题专练一、单选题1.(2022·山东东营·中考真题)如图,直线a b ,一个三角板的直角顶点在直线a 上,两直角边均与直线b 相交,140∠=︒,则2∠=()A .40︒B .50︒C .60︒D .65︒【点拨】本题主要考查了几何图形中角度的计算,平行线的性质,三角板中角度的计算,熟知平行线的性质是解题的关键.2.(2022·湖北襄阳·中考真题)已知直线m∥n,将一块含30°角的直角三角板ABC(∠ABC =30°,∠BAC=60°)按如图方式放置,点A,B分别落在直线m,n上.若∠1=70°.则∠2的度数为()A.30°B.40°C.60°D.70°故选:B.【点拨】本题主要考查了平行线的性质,关键是熟练掌握平行线的性质.∥,将一个等腰直角三角板放置到如图所示位置.若3.(2022·贵州安顺·中考真题)如图,a b∠=︒,则2∠的大小是()115A.20︒B.25︒C.30︒D.45︒【答案】C∥,根据平行线的性质,可得【分析】如图,过等腰直角三角板的一个顶点作直线c a23,14∠=∠∠=∠,根据三角板可知3445∠+∠=︒,进而等量代换结合已知条件即可求解.∥解:如图,过等腰直角三角板的一个顶点作直线c a∵a∥b,∴∥∥,a b c∴∠=∠∠=∠,23,14,∠+∠=︒3445\Ð+Ð=°,1245Q,Ð=°115∴∠=︒.230故选:C.【点拨】本题考查了平行线的性质与判定,掌握平行线的性质是解题的关键.二、填空题,则α∠的度数是______.4.(2022·辽宁阜新·中考真题)一副三角板如图摆放,直线AB CD【答案】15︒##15度【分析】根据题意可得:90EBD ∠=︒,45BDE ∠=︒,30EDC ∠=︒,然后利用平行线的性质可得180ABD BDC ∠∠+=︒,从而进行计算即可解答.解:如图:由题意得:90EBD ∠=︒,45BDE ∠=︒,30EDC ∠=︒,//AB CD ,180ABD BDC ∠∠∴+=︒,180EBD BDE EDC∠α∠∠∠∴=︒---180904530=︒-︒-︒-︒15=︒,故答案为:15︒.【点拨】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.(2022·湖北宜昌·中考真题)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是_____.【答案】85︒##85度【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.解: C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C 岛在B 岛的北偏西35︒方向,35CBE ∴∠=︒,过C 作CF DA ∥交AB 于F ,如图所示:DA CF EB ∴∥∥,50,35FCA DAC FCB CBE ∴∠=∠=︒∠=∠=︒,85ACB FCA FCB ∴∠=∠+∠=︒,故答案为:85︒.【点拨】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三、解答题6.(2022·湖北武汉·中考真题)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.【答案】(1)100BAD ∠=︒;(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,即可求解;(2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:∵AD BC ∥,∴180B BAD ∠+∠=°,∵80B ∠=︒,∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠,∴50DAE ∠=︒.∵AD BC ∥,∴50AEB DAE ∠=∠=︒.∵50BCD ∠=︒,∴BCD AEB ∠=∠.∴AE DC ∥.【点拨】本题主要考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键。
七年级数学平行线的判定和性质(二)(北师版)(含答案)
学生做题前请先回答以下问题问题1:在同一平面内,__________的两条直线叫做平行线.问题2:平行线的判定定理:①____________________,两直线平行;②____________________,两直线平行;③____________________,两直线平行.问题3:平行线的性质定理:①两直线平行,____________________;②两直线平行,____________________;③两直线平行,____________________.问题4:平行线的判定定理是用来判定两条直线平行的定理,即已知角的关系证明平行,用平行线的判定定理.平行线的性质定理是由直线平行,可以得到的结论,即已知平行求角的关系,用平行线的性质定理.请根据下面推理,填写推理的依据.①已知:如图,直线a和直线b被直线c所截,∠1=∠2.求证:a∥b.证明:∵∠1=∠2(已知)∴a∥b(_______________________________)①已知:如图,直线a和直线b被直线c所截,a∥b.求证:∠1=∠2.证明:∵a∥b(已知)∴∠1=∠2(_______________________________)平行线的判定和性质(二)(北师版)一、单选题(共10道,每道10分)1.如图,直线DE经过点A,若∠B=∠DAB,则DE∥BC,其依据是( )A.两直线平行,内错角相等B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.内错角相等答案:B解题思路:条件是∠B=∠DAB,结论是DE∥BC,且∠B和∠DAB是直线DE和直线BC被直线AB所截得到的内错角,由内错角相等得到两直线平行,依据是内错角相等,两直线平行,故选B.试题难度:三颗星知识点:平行线的判定2.如图,已知D,E在△ABC的边上,DE∥BC,可得∠ADE=∠B,依据是( )A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等D.同位角相等,两直线平行答案:A解题思路:条件是DE∥BC,结论是∠ADE=∠B.∠ADE和∠B是直线DE和直线BC被直线AB所截得到的同位角,由两直线平行得到同位角相等,依据是两直线平行,同位角相等,故选A.试题难度:三颗星知识点:平行线的性质3.如图,直线,分别与直线,相交,若∥,则∠1=_________,依据是_____________.( )A.∠2;两直线平行,内错角相等B.∠3;两直线平行,内错角相等C.∠2;内错角相等,两直线平行D.∠3;内错角相等,两直线平行答案:B解题思路:由平行得角的关系,先找截线,观察图形,与∠1有关的截线是直线,∠1和∠3是由直线和直线被直线所截得到的内错角,由∥,可以得到∠1=∠3,依据是两直线平行,内错角相等,故选B.试题难度:三颗星知识点:平行线的性质4.如图,若AB∥EF,则∠ADE=_________,依据是_____________.( )A.∠B;两直线平行,同位角相等B.∠DEF;内错角相等,两直线平行C.∠DEF;两直线平行,内错角相等D.∠CEF;两直线平行,同位角相等答案:C解题思路:由平行得角的关系,先找截线,观察图形,与∠ADE有关的截线是直线DE,∠ADE和∠DEF是由直线AB和EF被直线DE所截得到的内错角,若AB∥EF,则∠ADE=∠DEF,理由是两直线平行,内错角相等,故选C.试题难度:三颗星知识点:平行线的性质5.如图,两直线a,b被直线c所截形成八个角,若a∥b,则下列结论错误的是( )A.∠1=∠2B.∠3+∠8=180°C.∠5=∠6D.∠7+∠8=180°答案:D解题思路:A选项:∵a∥b(已知)∴∠1=∠2(两直线平行,内错角相等)故A选项结论正确;B选项:∵a∥b(已知)∴∠3+∠2=180°(两直线平行,同旁内角互补)∵∠8=∠2(对顶角相等)∴∠3+∠8=180°(等量代换)故B选项结论正确;C选项:∵a∥b(已知)∴∠3=∠6(两直线平行,同位角相等)∵∠3=∠5(对顶角相等)∴∠5=∠6(等量代换)故C选项结论正确;D选项:∵a∥b(已知)∴∠1=∠8(两直线平行,同位角相等)∵∠1=∠7(对顶角相等)∴∠7=∠8(等量代换)故D选项结论错误.故选D.试题难度:三颗星知识点:平行线的性质6.如图,若AD∥BC,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.∠1=∠2,∠3=∠4D.∠2=∠3答案:B解题思路:根据平行线的性质,由AD∥BC,要找角之间的关系,需要找两条平行直线AD和BC被第三条直线所截得到的角,四个选项中,只有∠3和∠4是两条平行直线AD和BC被直线BD所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质7.如图,能判定EB∥AC的条件是( )A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE答案:D解题思路:要证平行,考虑找同位角,内错角,同旁内角,分析可得只有选项D中,∠A与∠ABE是直线EB和直线AC被直线AB所截的内错角,根据内错角相等,两直线平行,可以判定EB∥AC,故选D.试题难度:三颗星知识点:平行线的判定8.如图,若BE∥CF,则一定正确的是( )A.∠1=∠2B.∠3=∠4C.AB∥CDD.∠ABC=∠BCD答案:B解题思路:根据平行线的性质,由BE∥CF,可以得到角之间的关系,需要找两条平行直线BE和CF被第三条直线所截得到的角,只有∠3和∠4是两条平行直线BE和CF被直线BC所截得到的内错角,根据两直线平行,内错角相等,得∠3=∠4,故选B.试题难度:三颗星知识点:平行线的性质9.如图,DE∥BC,则下列结论正确的( )A.∠1=∠3B.∠2=∠3C.∠4=∠CD.∠2=∠C答案:B解题思路:根据平行线的性质,由DE∥BC,可以得到角之间的关系,需要找两条平行直线DE和BC被第三条直线所截得到的角,分析可得只有∠2和∠3是两条平行线DE和BC被直线BE所截得到的内错角,根据两直线平行,内错角相等,得∠2=∠3,故选B.试题难度:三颗星知识点:平行线的性质10.如图,AB∥CD,AD平分∠BAC,若∠BAD=70°,则∠1的度数为( )A.35°B.40°C.45°D.50°答案:B解题思路:解:如图,∵AD平分∠BAC(已知)∴∠BAC=2∠BAD(角平分线的定义)∵∠BAD=70°(已知)∴∠BAC=2×70°=140°(等量代换)∵AB∥CD(已知)∴∠1+∠BAC=180°(两直线平行,同旁内角互补)∴∠1=40°(等式的性质)故选B.试题难度:三颗星知识点:平行线的性质。
2.3.2平行线的性质和判定
课题:平行线的性质和判定的综合运用学习目标:1.分清平行线的性质和判定.已知平行用性质,要证平行用判定.2.能够综合运用平行线性质和判定解题.学习重点:平行线性质和判定综合应用 学习难点:平行线性质和判定灵活运用 学习过程: 一、学前准备1、预习疑难: 。
2、填空:①平行线的性质有哪些?_____________________________________________②平行线的判定有哪些?______________________________________________二、平行线的性质与判定的区别与联系1、区别:性质是:根据两条直线平行,去证角的相等或互补.判定是:根据两角相等或互补,去证两条直线平行.2、联系:它们都是以两条直线被第三条直线所截为前提;它们的条件和结论是互逆的。
3、总结:已知平行用性质,要证平行用判定 三、应用(一) 例1:如图,已知:AD ∥BC, ∠AEF=∠B,求证: (1) ∠A+∠B =180°;(2)AD ∥EF 。
证明:(1)∵ AD ∥BC ( )∴ ∠A+∠B =180°( )(2)∵ ∠AEF=∠B ( )∴ ∠A +∠AEF =180°( ) ∴ AD ∥EF ( ) 练习:1.如图1,若∠1=∠2,那么_____∥______,根据___ __.若a ∥b ,•那么∠3=_____,根据___ __.(图1) (图2) (图3) (图4)2.如图2,∵∠1=∠2,∴_______∥_______,根据___ _____.∴∠B=______,根据___ _____.3.如图3,若AB ∥CD ,那么________=•_______;•若∠1=•∠2,•那么_____•∥_____; 若BC ∥AD ,那么_______=_______;若∠A+∠ABC=180°,那么______∥_____4.如图4,•一条公路两次拐弯后,•和原来的方向相同,•如果第一次拐的角是136°(即∠ABC ),那么第二次拐的角(∠BCD )是 度,根据___ .2 1BC ED (二)练一练:1、如图,已知:AB ∥DE ,∠ABC+∠DEF=180°,求证:(1)∠ABC+∠1=180° (2)BC ∥EF 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章相交线与平行线
2.3平行线的性质(第二课时)
一、教材分析
“平行线的性质”是北师大版七年级数学(下册)第二章第三节的内容。
它是在学生已经初步了解并且学习了平行线的概念、平行线的判定等内容的基础上进行教学的。
本节课是第二课时—习题课,在学生已经学习了平行线性质的基础上,主要目的是复习,巩固判断直线平行的判定和平行线性质的相关内容。
二、学情分析
1.学生的知识技能基础
在第一课时的学习中,学生已经初步经历了探索平行线性质的过程,得出了平行线的三条性质,初步具有了利用直线的位置关系来判断角的大小关系的意识。
同时,还认识了平行线的性质和判别直线平行的条件的区别和联系,为本节课的继续探究打下了基础。
2.学生的活动经验基础
在第一课时的学习中,学生通过观察、测量、猜测、验证等活动,认识到了探索平行线性质的基本方法,获得了初步的数学活动经验和体验。
在活动中也培养了学生良好的情感态度,具备了一定的主动参与、合作意识和初步的观察、分析、抽象概括的能力,为本节课初步学习几何推理奠定了良好的基础。
三、教学目标
1.知识与技能
(1)熟练应用平行线的性质和直线平行的判定解决问题。
(2)逐渐理解几何推理的要领,分清推理中“因为”、“所以”表达的意义,从而初步学会简单的几何推理。
2.过程与方法
经历观察、讨论,推理、归纳等活动, 进一步发展空间观念,培养推理能力和有条理表达的能力。
3.情感态度与价值观
使学生在积极参与探索、交流、推理、归纳等数学活动中,进一步体会数学的严密性,提高自己的逻辑思维能力。
四、教学重点和难点
教学重点:平行线性质和直线平行判定的区分以及巩固提高。
教学难点:逐渐理解几何推理的要领,学会简单的几何推理。
五、教学方法:“三环六学”教学模式
六、教学设备和教辅用具:多媒体、课件
七、教学过程
°,∠B=80°,试说明EF 结论:平行于同一条直线的两条直线,互相平行。
两直线平行,一组同旁内角的角平分线互相垂直。
EGB、∠GMD.
两直线平行,一组同位角的角平分线互相平行。
分别平分∠BGM、∠GMC.
两直线平行,一组内错角的角平分线互相平行。
:司机开车,两次拐弯后行驶的方向与原来的方向相同,这两次拐
°
结论:汽车两次拐弯后角度数之和为零,方向不变。
兰州市联校研训第六片区“县区级骨干教师”评比
教学设计
授课学科:数学
授课地点:兰州市第六十六中学
授课内容:2.3平行线的性质(二)
授课班级:七年级(5)班
授课教师:卢彩霞
工作单位:兰州市第八十三中学
授课时间:2017年4月11日第5节。