方差分析

合集下载

方差分析

方差分析

方差分析方差分析是比较多个总体的均值是否相等,但本质上它所研究的是变量之间的关系。

在研究一个(或多个)分类型自变量与一个数值型因变量之间的关系时,方差分析就是其中的只要方法之一。

一、方差分析引论假设需要检验4个总体的均值分别为4321,,,μμμμ,如果用一般假设检验方法,如t 检验,一次只能研究两个样本,要检验4个总体的均值是否相等,需要做6次检验,如果在0.05的置信水平下检验,每次检验犯第Ⅰ类错误的概率都是0.05,检验完成时,犯第Ⅰ类错误的概率会大于0.05,即连续作6次检验第Ⅰ类错误的概率为6)1(1α--=0.265,而置信水平则会降低到0.735(即695.0)。

随着增加个体显著性检验的次数,偶然因素导致差别的可能性也会增加(并非均值真的存在差别)。

而方差分析方法则是同时考虑所有的样本,因此排除了错误累计的概率,从而避免拒绝一个真实的原假设。

1、方差分析及其有关术语方差分析:就是通过检验各总体均值是否相等来判断分类型自变量对数值型因变量是否有显著影响。

例1:为了对几个行业的服务质量进行评价,消费者协会在零售业、旅游业、航空公司、家电制造业分别抽取了不同的企业作为样本。

其中零售业7家,旅游业抽取6家,航空公司抽取5家,家电制造业抽取5家。

最后统计出最近一年中消费者对总共23家企业投诉的次数。

如下表所示。

消费者对四个行业的投诉次数行业零售业 旅游业 航空业 家电制造业57 68 31 44 66 39 49 51 49 29 21 65 40 45 34 77 34 56 40 58 53 51 44要分析四个行业之间的服务质量是否有显著差异,实际上就是要判断“行业”对“投诉次数”是否有显著影响,做出这种判断最终被归结为检验这四个行业被投诉次数的均值是否相等。

在方差分析中,要检验的对象称为因素或因子。

因素不同的表现称为水平或处理。

每个因子水平下得到的样本数据称为观测值。

在例1中,“行业”是要检验的对象,称为“因素”或“因子”;零售业,旅游业,航空公司,家电制造业是行业这一因素的具体表现,称为“水平”或“处理”;在每个行业下得到的样本数据(被投诉次数)称为观测值。

方差分析

方差分析

Minimum Maximum 125.30 143.10 143.80 162.70 182.80 198.60 212.30 225.80 125.30 225.80
给出了四种饲料分组的样本含量N、平均数Mean、标准差 Std Deviation、
标准误 Std Error、95%的置信区间、最小值和最大值 ;
对照组 10.28 31.35 31.23
去卵巢组 10.01 8.28 6.12
雌激素组 28.88 12.77 27.56



随机误差,例如测量误差造成的差异,称为组 内差异。用变量在各组的均值与该组内变量值 之偏(离均)差平方和的总和表示。记作SS组内。 实验条件, 即不同的处理造成的差异,称为组 间差异。用变量在各组的均值与总均值之偏 (离均)差平方和的总和表示。记作SS组间。 SS组间、SS组内除以各自的自由度得到其均方 值即组间均方和组内均方。
3.1 因素与处理



因素(Factor)是影响因变量变化的客观条件;例如影 响农作物产量的因素有气温、降雨量、日照时间等; 处理(Treatments)是影响因变量变化的人为条件。也 可以称为因素。如研究不同肥料对不同种系农作物产 量的影响时农作物的不同种系可称为因素,所施肥料 可视为不同的处理。 一般情况下Factors与Treatments在方差分析中可作 相同理解。在要求进行方差分析的数据文件中均作为 分类变量出现。即它们的值只有有限个取值。即使是 气温、降雨量等平常看作是连续变量的,在方差分析 中如果作为影响产量的因素进行研究,就应该将其数 值用分组定义水平的方法事先变为具有有限个取值的 离散变量
N A B C D Total 5 5 5 4 19

第九章 方差分析

第九章  方差分析

第九章方差分析前面介绍了两个样本均数比较的t检验,那么多个样本均数的比较应该采用什么方法?方差分析(analysis of variance, ANOV A)是20世纪20年代发展起来的一种统计方法,由英国著名统计学家R.A.Fisher提出,又称F检验,是通过对数据变异的分析来推断两个或多个样本均数所代表总体均数是否有差别的一种统计学方法。

本章首先介绍方差分析的基本思想和应用条件,然后结合研究设计类型分别介绍各类方差分析方法。

第一节方差分析的基本思想和应用条件一、方差分析的基本思想方差分析的基本思想是把全部观察值间的变异按设计类型的不同,分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,以判断各部分的变异是否具有统计学意义。

例9.1 为研究大豆对缺铁性贫血的恢复作用,某研究者进行了如下实验:选取已做成贫血模型的大鼠36只,随机等分为3组,每组12只,分别用三种不同的饲料喂养:不含大豆的普通饲料、含10%大豆饲料和含15%大豆饲料。

喂养一周后,测定大鼠红细胞数(×1012/L),试分析喂养三种不同饲料的大鼠贫血恢复情况是否不同?表9.1 喂养三种不同饲料的大鼠红细胞数(×1012/L)普通饲料10%大豆饲料15%大豆饲料合计X 4.78 4.65 6.80 4.65 6.92 5.913.984.447.284.04 6.167.51 3.445.997.51 3.776.677.743.65 5.298.194.91 4.707.154.795.058.185.316.01 5.534.055.677.795.16 4.688.03in12 12 12 36 (n)i X ∑ 52.53 66.23 87.62 206.38(X ∑)i X4.385.52 7.30 5.73 (X ) 2i X ∑ 234.2783373.2851647.73121255.2946(2X ∑)表9.1按完全随机设计获得的36个数据(X )中包含以下三种变异: 1. 总变异 36只大鼠喂养一周后测定红细胞数X 各不相同,即X 与总均数X 不同,这种变异称为总变异(total variation)。

统计学之方差分析

统计学之方差分析
执行方差分析
使用Python的方差分析库(如SciPy)进行方差分析,如 “scipy.stats.f_oneway()”。
查看结果
Python将输出方差分析的结果,包括F值、p值、效应量等。
THANKS FOR WATCHING
感谢您的观看
详细描述
独立性检验可以通过卡方检验、相关性检验 等方法进行。如果数据不独立,需要考虑数 据的相关性和因果关系等因素,以避免误导 的分析结果。
06 方差分析的软件实现
SPSS软件实现
导入数据
将数据导入SPSS软件中,选择正确的数 据类型和格式。
查看结果
SPSS将输出方差分析的结果,包括F值、 p值、效应量等。
03 方差分析的步骤
数据准备
01
02
03
收集数据
收集实验或调查所需的数 据,确保数据来源可靠、 准确。
数据筛选
对异常值、缺失值等进行 处理,确保数据质量。
数据分组
根据研究目的,将数据分 成不同的组或处理水平。
建立模型
确定因子
确定影响因变量的自变量或因子。
建立模型
根据因子和因变量的关系,建立合适的方差分析模型。
统计学之方差分析
目 录
• 方差分析简介 • 方差分析的数学原理 • 方差分析的步骤 • 方差分析的应用场景 • 方差分析的注意事项 • 方差分析的软件实现
01 方差分析简介
方差分析的定义
• 方差分析(ANOVA)是一种统计技术,用于比较两个或多个 组(或类别)的平均值差异是否显著。它通过对总体平均值的 假设检验来进行数据分析,以确定不同条件或处理对观测结果 是否有显著影响。
执行方差分析
在SPSS的“分析”菜单中选择“比较均值” 或“一般线性模型”中的“单变量”,然 后选择需要进行方差分析的变量。

什么是方差分析

什么是方差分析

什么是方差分析关键信息项:1、方差分析的定义2、方差分析的目的3、方差分析的应用场景4、方差分析的类型5、方差分析的步骤6、方差分析的结果解读7、方差分析的局限性8、方差分析与其他统计方法的比较11 方差分析的定义方差分析(Analysis of Variance,简称 ANOVA)是一种用于比较两个或多个总体均值是否存在显著差异的统计方法。

它通过分析数据的变异来源,来判断不同因素对观测变量的影响程度。

111 基本原理方差分析基于总体方差可以分解为各个因素所引起的方差之和的原理。

通过比较不同因素水平下的组间方差和组内方差,来确定因素对观测变量的影响是否显著。

112 数学模型一般来说,方差分析的数学模型可以表示为:观测值=总体均值+因素效应+随机误差。

12 方差分析的目的其主要目的是检验不同水平的因素对因变量的均值是否有显著影响。

121 探究因素的作用确定哪些因素对观测结果有重要影响,哪些因素的影响可以忽略不计。

122 比较不同处理的效果例如在实验研究中,比较不同实验处理条件下的结果是否存在显著差异。

13 方差分析的应用场景131 农业科学用于比较不同种植方法、施肥量、品种等对农作物产量的影响。

132 医学研究分析不同药物剂量、治疗方案对患者康复效果的差异。

133 工业生产研究不同生产工艺、原材料对产品质量的作用。

134 社会科学例如在心理学、教育学中,比较不同教学方法、教育环境对学生成绩或心理状态的影响。

14 方差分析的类型141 单因素方差分析只考虑一个因素对观测变量的影响。

142 双因素方差分析同时考虑两个因素的交互作用对观测变量的影响。

143 多因素方差分析涉及多个因素及其交互作用对观测变量的综合影响。

15 方差分析的步骤151 提出假设包括零假设(各总体均值相等)和备择假设(至少有两个总体均值不相等)。

152 计算统计量根据数据计算组间平方和、组内平方和等,进而得到 F 统计量。

153 确定显著性水平通常设定为 005 或 001 等。

方差分析

方差分析
当g=2时,方差分析结果与两样本t检验结果完全 等价,且t2=F。
第三节 随机区组设计资料的方差分析
一、随机区组设计
1。随机区组设计
随机区组设计又称配伍组设计,是配对设计的扩展。 首先从总体中随机抽样,然后将样本中的所有受试对 象,按条件相同或相近配成若干组(随机区组或配伍 组),再将每组中的几个受试对象随机分配到不同的 处理组中去,这种设计的方法称随机区组设计。
变异程度。计算公式如下:
SS总
2
Xij X
X
2 ij

C
其中:
C X 2 N
用离均差平方和表示总变异大小受样本容量
的影响,样本容量越大,SS越大,所以必须扣 除n的影响,严格的讲是扣除ν的影响。
总变异的自由度:ν 总=N-1
SS总总 称为总变异的均方,用MS总表示。
2。完全随机设计资料的分析方法
完全随机设计资料在进行统计分析时,需根 据数据的分布特征选择方法,对于正态分布且方 差齐的资料,常采用完全随机设计的单因素方差
分析(one-way ANOVA)或两样本t检验(g=2);
对于非正态或方差不齐的资料,可进行数据变换 或采用秩和检验。
二、完全随机设计方差分析
SS区组 区组
MS区组 MS误差
误差 SS总 SS处理 SS区组 (g 1)(n 1) SS误差 误差
其中:C ( X )2 N
例4-4 某研究者采用随机区组设计进行实验,比较三 种抗癌药物对小白鼠肉瘤抑瘤效果,先将15只染有肉瘤 小白鼠按体重大小配成5个区组,每个区组内3只小白鼠 随机接受三种抗癌药物(具体分配结果见例4-3),以 肉瘤的重量为指标,试验结果见表4-9。问三种不同的 药物的抑瘤效果有无差别?

方差分析

方差分析

k
nkΒιβλιοθήκη 2总平方和:SST
实验中产生的总变异
组内平方和:SSW
实验误差(包括个体差异)由于不同的实验处理而造 造成的变异 成的变异
组间平方和:SSB
三者之间的关系如下:
SS 总 SS 组间 SS 组内
组间自由度: 组内自由度: 总体自由度: 书266:这样
df B = k-1
df W = k(n-1)
df T = nk-1
在方差分析中,比较组间变异与组内变异时,不 能直接比较各自的平方和。因为平方和的大小与 项数有关,应该将项数的影响去掉。因此用平方 和除以各自自由度得到均方,再进行比较。
SS B MS B df B
书266
MSW
SSW df W
方差分析就是通过比较组内均方MS组内 和组间均方 MS组间 的大小关系来判断处 理因素有无效应。
变异分解
SS 总(T) SS 组间(B) SS 区组(R) SS 误差(E)
SS R
1 n
( R ) 2 k

( R ) 2 nk
总自由度也被分为三部分: dfT = nk-1
df B k 1
dfE=(k-1)(n-1)
dfR=n-1
例4:5名被试在四种不同的环境条件下参加某一心理测验, 结果如下。问不同的测验环境是否对这一测验成绩有显著影 响。
SSB n ( X j X t ) 2
j 1 k
SSw ( X ij X j ) n s j
2 j 1
k
2
1、求平方和
Xt
X1 X 2 X 3 X 4 6.4 4
k
SSB n ( X j X t ) 2 30.08

第六章方差分析

第六章方差分析

2se( 2 LSD检验)
x
n0
x1 x2
n0
第三节双因素方差分析
1、试验指标:衡量试验结果的标准 2、因素(factor):也叫因子,是指对试验指标有影响,在研究中加以(控制)考虑的试验
4
条件。 3、可控因子:在试验中可以人为地加以调控的因子浓度、温度等 4、非控因子:不能人为调控的因素(气象、环境等) 5、固定因素:指因素的水平是经过特意选择的 6、随机因素:指因素的水平是从该因素水平总体中随机抽出的样本 7、水平(level):每个因素的不同状态(从质或量方面分成不同的等级) (因素是一个抽象的概念,水平则是一个较为具体的概念) 8、处理:指对试验对象施以不同的措施(对单因素试验而言,水平和处理是一致的,一个 水平就是一个处理;对多因素试验而言,处理就是指水平与水平的组合) 9、固定效应(fixed effect):由固定因素所引起的效应。 10、随机效应(random effect):由随机因素引起的效应。 11、二因素方差分析:是指对试验指标同时受到两个试验因素作用的试验资料的方差分析。 12、固定模型:二因素都是固定因素 13、随机模型:二因素均为随机因素 14、混合模型:一个因素是固定因素,一个因素是随机因素 15、主效应(main effect):各试验因素的相对独立作用 16、互作(interaction):某一因素在另一因素的不同水平上所产生的效应不同。 17、因素间的交互作用显著与否关系到主效应的利用价值 如果交互作用不显著,则各因素的效应可以累加,各因素的最优水平组合起来,即为最优的 处理组合。 如果交互作用显著,则各因素的效应就不能累加,最优处理组合的选定应根据各处理组合的 直接表现选定。有时交互作用相当大,甚至可以忽略主效应。 二因素间是否存在交互作用有专门的统计判断方法,有时也可根据专业知识判断。 (一)无重复观测值的二因素方差分析 依据经验或专业知识,判断二因素无交互作用时,每个处理可只设一个观测值,即假定 A 因素有 a 各水平,B 因素有 b 个水平,每个处理组合只有一个观测值。

方差分析 (共72张PPT)

 方差分析 (共72张PPT)

2.总体变异的构成
总体变异 组间变异: 组内变异:组内变异理论上要求齐性,实际计算取其 均值
3.方差的基本公式
一般总体方差称方差,样本方差称均方 能使变量发生变异的原因很多,这些原因我们都将其称为变异
因素或变异来源。
方差分析就是发现各类变异因素相对重要性的一种方法
方差分析的思路就是:把整个试验(设有 k 个总体)的样本资料作 为一个整体来考虑。
原理是变异的可加性。
即每一个数据与数据的总体平均数差的平方和,可以分解为每一组数 据各自的离差平方和与由各组数据的平均数组成的一组数据的
离差平方和两部分。前者表达的是组内差异,即每组数据中 各个数据之间的差异,也就是个体差异,表达的是抽样误差或 随机误差程度;后者表达的是组间差异,即各组平均数之间的差 异,表达的是实验操纵的差异程度,实验操纵即指自变量的操 纵,这两部分差异之间相互独立。
3、这种两两比较会随着样本组数的增加而加大犯Ⅰ型错的差异显著性检验,若两两比较推 断正确的概率为95%,则所有比较都正确的概率为6=0.74,则降低
了推断的可靠性。
• 几个常用术语:
1、试验指标(experimental index) 为衡量试验结果的好坏或处理效应的高低 ,在试验中具体测
(1).计算平方和:
组间平方和
SB SX n2X n2 71 .5 6 65 8 .1 7 8 20 8 .47
¨ 组内平方和
SW SX 2X n2 7 6 7 41 4 .5 6 4 45 7 .5 7 8
¨ 总平方和
SS T X 2X n2
764414252 876.396
23
(2).计算自由度
因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发 现主要的变异来源,从而抓住主要的、实质性的东西。

方差分析

方差分析

二、方差分析的基本假定
每个总体都应服从正态分布 各个总体的方差 σ 2 必须相同 观测值是独立的
三、方差分析的分类
单因素方差分析 双因素方差分析 多因素方差分析 协方差分析 多元方差分析
单因素方差分析
单因素方差分析研究的是一个分类型自 变量对一个数值型因变量的影响。例如, 要检验不同行业被投诉次数的均值是否 相等,这里只涉及行业一个因素,因而 属于单因素方差分析。
计算统计量
由于各误差平方和的大小与观测值的多少有关,为了消 除观测值多少对误差平方和的影响,需要将其平均,也就是 用各平方和除以它们对应的自由度,这一结果称为均方,也 称为方差。 SST的自由度为n-1,其中n为全部观测值的个数。 SSA的自由度为k-1,其中k为因素水平(总体)的个数。 SSE的自由度为n-k。 SSA的均方也称为组间均方或组间方差,记为MSA SSA MSA=组间平方和/自由度= k − 1 代入例题得 MSA=485.536232 SSE MSE=组内平方和/自由度= n − k 代入例题得MSE=142.526316
则根据上面计算出F=3.40643,若取显著性水 平 α = 0 . 05 ,根据自由度 df 2 = n − k = 23 − 4 = 19 和分母自由度 df 1 = k − 1 = 4 − 1 = 3 ,查F分布 F0.05 (3,19) = 3.13 表得到临界值 。由于 F > Fα 拒绝原假设 H 0 : µ1 = µ 2 = µ3 = µ 4 ,表明 µ1, µ 2, µ3, µ 4, 之间有显著的差异,即行业对投诉次数有显著影响。
k
x)
k
∑ ∑
x =
代入得:
i=1
ni
j =1
x ij =

方差分析

方差分析

方差分析一.方差分析的概念及意义方差分析,又称“变异数分析”或“F检验”,用于两个及两个以上样本均数差别的显著检验。

由于各种因素的影响,研究所得的数据呈现波动状。

造成波动的原因可分成两类,一是不可控的随机因素,另一是研究种施加的对结果形成影响的可控因素。

方差分析的意义,工业生产中产品质量优劣,农业生产中产量高低,由诸多因素造成。

如农业生产中,肥料,浇灌,良种,管理等;化工生产中,原料成分,催化剂,剂量,反应温度,压力,溶液,机器设备与操作人员水平。

每种因素的改变,可影响产品质量与数量,那么在诸因素中找出对质量的某种指标有显著影响的因素,还要弄清这些显著因素在什么状态下(水平)起的作用大。

方差分析就是根据试验结果进行分析,鉴别各个因素对试验结果影响的有效方法。

二.方差分析的基本思想根据实验设计的类型及研究目的,将全部观察值之间所表现出来的总变异,分解为两个或多个部分。

除随机误差作用外,其余每个部分的变异均可由某个因素的作用加以解释。

通过比较不同变异来源的均方(MS),借助F分布做出统计推断,从而推断研究因素对试验结果有无影响三.方差分析的假定条件及假设检验3.1方差分析的假定条件为:(1)各处理条件下的样本是随机的。

(2)各处理条件下的样本是相互独立的,否则可能出现无法解析的输出结果。

(3)各处理条件下的样本分别来自正态分布总体,否则使用非参数分析。

(4)各处理条件下的样本方差相同,即具有齐效性。

3.2方差分析的假设检验假设有K个样本,如果原假设H0样本均数都相同,K个样本有共同的方差σ,则K 个样本来自具有共同方差σ和相同均值的总体。

如果经过计算,组间均方远远大于组内均方,则推翻原假设,说明样本来自不同的正态总体,说明处理造成均值的差异有统计意义。

否则承认原假设,样本来自相同总体,处理间无差异。

四.方差分析中的常用术语4.1 因素(Factor)因素是指所要研究的变量,它可能对因变量产生影响。

如果方差分析只针对一个因素进行,称为单因素方差分析。

方差分析

方差分析

F

MSBetween MSWithin
~ F(1 , 2 )
F分布
方差分析的最终统计推断和假设检验均依靠F分 布,所以适当了解一下F分布的特点十分有益。
F分布是英国统计学 家Fisher和Snedecor(斯内德 克 )提出的。
为了表示对Fisher的尊重, Snedecor将其命名为F分布。
进行一次假设检验,犯第一类错误的概率:
进行多次(k)假设检验,犯第一类错误的概率:
1-(1-)k
组数为3, k=3, 1-(1-0.05)k=0.1426 组数为4, k=6, 1-(1-0.05)k=0.2649 组数为5, k=10, 1-(1-0.05)k=0.4013 组数为6, k=15, 1-(1-0.05)k=0.5400
方差分析
方差分析,又称变异数分析。 Analysis of Variance,简写为ANOVA。 由英国统计学家R.A.Fisher提出。 方差分析的起源。 F检验。
Sir Ronald Aylmer Fisher
Fisher于Rothamste研究作物产量 时,完善了方差分析的思想
F 3.98
F(2,57)的F分布及界值
1
.8
.6
.4
.2
0.05
0
0
1
2
3
4
5
3.1588
完全随机设计资料的方差分析
1. H0: 1=2=3 ,即三总体均数相等; H1: 1, 2, 3 不等或不全相等。
=0.05。 2. 计算检验统计量: F=3.98 >3.1588(界值) 3. 对应的概率: P=0.0241(p<0.05) 4. 结论: 在=0.05水准,拒绝H0,接受H1,

anova方差分析

anova方差分析

anova方差分析ANOVA(Analysis of Variance,方差分析)是一种统计分析方法,用于比较两个或两个以上样本的均值是否具有显著差异。

它通过计算总体方差以及各组内部的方差,来推断样本之间的差异是否随机发生。

一、方差分析的基本原理方差分析的基本原理是通过对总体方差进行分解,将样本之间的差异归结为因子差异和误差差异两个部分。

当因子差异显著大于误差差异时,我们可以得出结论:样本之间存在显著差异,即各组均值不全相等。

在方差分析中,我们通常将因子称为自变量,将被观察的变量称为因变量。

自变量可以是分类变量(如不同的药物治疗方法)或连续变量(如不同的剂量水平)。

因变量可以是定量变量(如收缩压)或定性变量(如治疗成功与否)。

二、单因素方差分析单因素方差分析是最简单的一种方差分析形式,适用于只有一个自变量的情况。

假设我们有k个独立的样本,每个样本包含n个观测值。

我们的目标是判断不同样本之间的均值是否存在显著差异。

为了进行单因素方差分析,我们需要计算各组样本的均值和方差。

然后,我们通过计算组间差异(组间方差)和组内差异(组内方差)来评估总体方差。

在显著性检验中,我们会计算F值,通过与临界F值进行比较来判断差异是否显著。

三、多因素方差分析在实际应用中,我们往往需要考虑多个自变量对因变量的影响。

这时,我们就需要使用多因素方差分析。

多因素方差分析可以同时考虑多个自变量之间的交互作用,得出更准确的结论。

多因素方差分析的计算方法与单因素方差分析类似,只是要考虑到不同自变量之间的交互作用。

我们需要计算各组样本的均值和方差,并通过计算组间差异和组内差异来评估总体方差。

最后,我们计算F值并与临界F值进行比较,判断差异是否显著。

四、方差分析的应用领域方差分析在各个领域都有广泛的应用。

在医学研究中,方差分析用于比较不同药物或治疗方法的疗效;在社会科学中,方差分析用于比较不同人群之间的行为差异;在工程领域中,方差分析用于比较不同工艺参数对产品质量的影响等等。

第九章 方差分析506312261

第九章 方差分析506312261

第九章 方差分析第一节 方差分析的基本原理及步骤一、方差分析的基本原理假设从一个实验中抽取了9名被试的学习成绩,如表9-1所示。

随后又抽取了9名被试的学习成绩,如表9-2所示。

你能从这些数据发现什么问题吗?首先,从数据可知,不仅组与组之间存在不同,而且同一组内部也存在着不同。

前者称组间变异,后者称组内变异。

其次,从组间变异看,表9-1组间变异大于表9-2。

表9-1 第1次抽取结果表9-2 第2次抽取结果 方法 学生实验成绩 Xt X方法 学生实验成绩 Xt XA 6 5 7 6A 1 7 4 4B 11 9 10 10 7B 6 2 8 6 5C5465C3655再次,从看组内变异看,表9-1比 9-2差异小。

综上所述,表10-1组间变异较大而组内变异较小,表10-2组间变异较小而组内变异较大,组间变异大小与组内变异大小并非正比关系。

这表明,若组间变异与组内变异的比率越大,各组平均数的差异越大。

因此,通过组间变异和组内变异比率大小来推论几个相应平均数差异显著性的思想就是方差分析的逻辑依据或基本原理。

所以说,方差分析是将实验中的总变异分解为组间变异和组内变异,并通过组间变异和组内变异比率的比较来确定影响实验结果因素的数学方法,其实质是以方差来表示变异的程度。

总变异组间变异实验条件随机误差组内变异个体差异随机误差实验误差图10-1 总变异的分解图二、方差分析的基本过程(一)综合虚无假设与部分虚无假设方差分析主要处理多于两个的平均数之间的差异检验问题,需要检验的虚无假设就是“任何一对平均数”之间是否有显著性差异。

综合虚无假设:样本所归属的所有总体的平均数都相等 备择假设:至少有两个总体的平均数不相等(二)方差的可分解性总变异 = 组间变异 + 组内变异变异(V ariance ,用V 表示)即方差(S 2),又称均方差或均方(M ean S quare ,MS ),其公式为()df SS n X X MS V S =--=∑1),(22或或其中,分子为离均差平方和,简称平方和,记为SS ;分母为自由度,记为df ,所以总变异及各变异源记为w b t MS MS MS +=总变异的数学意义是每一原始分数(X )与总平均数(t X )的离差,记为()tX X -组间变异的数学意义是每一组的平均数(i X )与总平均数的离差,记为()t iX X-组内变异的数学意义是每一组内部的原始分数与其组平均数(i X )的离差,记为()iX X -(二)总变异的分解及各部分的计算 1.平方和的分解与计算 1)平方和的定义式根据变异的可加性,任何一个原始分数都有()()()i t itX X X XX X -+-=-对容量为n 的某一小组而言,则有()()()[]∑∑-+-=-i t it X X X XX X为了使平方和不为0,须做代数的处理,即有()()()[]22∑∑-+-=-i t itX X X XX X对k 组页言,则有()()()[]∑∑∑∑-+-=-22ititX X X X X X()()()()∑∑∑∑∑∑-+--+-=222iititiX X X X X X X X ∵ ()()0=--∑∑i t iX X X X∴ ()∑∑-2tX X ()()∑∑∑∑-+-=22itiX X X X即 总平方和 = 组间平方和 + 组内平方和 或 w b t SS SS SS += 2)平方和的计算式()()nX XX X 222∑∑∑-=-总平方和:()()∑∑∑∑∑∑∑-=-=nX X X X SS t t 222组间平方和:()()()∑∑∑∑∑∑∑-=-=n X n X X X SS tib222组内平方和:()∑∑-=2i wX X SS ()∑∑-=2i w X X SS b tSS SS-=例9-1:要探讨噪音对解决数学问题的影响。

第六章 方差分析

第六章 方差分析

班组
水平
观测值
因素
分析均值间是否有明显差异。
3、方差分析的基本假定
方差分析基本假定的一般性的表述为,设因
素 A 有个 k 水平,在每个具体水平下,总体分布
为 N j, 2 ,j 1, 2, ,k 。注意这里个总体
方差均相等,并且在每个水平下抽取一个样本,
所取得的个样本相互独立。
注:
最后,构造统计量: 不加证明的引入如下的结论: 1)SSA与SSE相互独立
2) SSE ~ 2 n k 2 3)原假设成立情况下 SSA ~ 2 k 1 2 因此构造统计量:
SSA 2 k 1 F = SSE 2 n k SSA H 0为真 k 1 ,则F ~ F k 1,n k SSE nk
实际计算中主要有如下计算流程 a)水平均值 水平均值是指根据具体水平下的观察值的均 值。有计算公式为 nj 1 xi xij ni j 1 b)总均值 总均值是指全部观察值的均值
x 1
ni
i 1
k
x
i 1 j 1
k
ni
ij

1
ni
i 1
k
x
i 1
k
i
ni
c)总离差平方和 反映了全部观察值离散程度的总规模。有
H1:1, 2, , k 不全相等
2) 构造统计量及拒绝域 首先,分析三类离差平方和: a)总离差(总变差)平方和: 各样本观察值之间的差异称之为总差异,用总 离差平方和来表示。总离差平方和是每一观察值与 其总均值的离差的平方的总和。 b)组内离差(组内变差)平方和: 同一水平下观察值之间的差异,用组内离差平 方和来度量。 c)组间离差(组间变差)平方和: 不同水平观察值之间的差异,称之为组间离差, 用组间离差平方和来度量。

方差分析简介

方差分析简介

方差分析简介1. 引言方差分析(analysis of variance,简称ANOV A)是一种假设检验方法,即基本思想可概述为:把全部数据的总方差分解成几部分,每一部分表示某一影响因素或各影响因素之间的交互作用所产生的效应,将各部分方差与随机误差的方差相比较,依据F分布作出统计推断,从而确定各因素或交互作用的效应是否显著。

因为分析是通过计算方差的估计值进行的,所以称为方差分析。

方差分析的主要目标是检验均值间的差别是否在统计意义上显著。

如果只比较两个均值,事实上方差分析的结果和t检验完全相同。

只所以很多情况下采用方差分析,是因为它具有如下两个优点:(1)方差分析可以在一次分析中同时考察多个因素的显著性,比t检验所需的观测值少;(2)方差分析可以考察多个因素的交互作用。

方差分析的缺点是条件有些苛刻,需要满足如下条件:(1)各样本是相互独立的;(2)各样本数据来自正态总体(正态性:normality);(3)各处理组总体方差相等(方差齐性:homogeneity of variance)。

因此在作方差分析之前,要作正态性检验和方差齐性检验,如不满足上述要求,可考虑作变量变换。

常用的变量变换方法有平方根变换,平方根反正弦变换、对数变换及倒数变换等。

方差分析在医药、制造业、农业等领域有重要应用,多用于试验优化和效果分析中。

2. 单因素方差分析2.1 基本概念(1)试验指标:在一项试验中,用来衡量试验效果的特征量称为试验指标,有时简称指标,也称试验结果,通常用y表示。

它类似于数学中的因变量或目标函数。

试验指标用数量表示称为定量指标,如速度、温度、压力、重量、尺寸、寿命、硬度、强度、产量和成本等。

不能直接用数量表示的指标称为定性指标。

如颜色,人的性别等。

定性指标也可以转化为定量指标,方法是用不同的数表示不同的指标值。

(2)试验因素:试验中,凡对试验指标可能产生影响的原因都称为因素(factor),也称因子或元,类似于数学中的自变量。

方差分析

方差分析

(1.2)
27 May 2020
方差分析
一、单因素方差分析的统计模型:
yij
诸 ij
i ij , j 1, 2,..., mi , i
相互独立,且都服从N
1,(21,..3.)., r,
(0, 2 )
总均值与效应的概念:
1)称诸 i 的平均
为总均值(或一般平均).
2)称第 ia水i=平i -下的为均A值i 的效i 与应总。均1n值ir1m的i 差i :
27 May 2020
方差分析
第26页
➢ 由于组间差异除了随机误差外,还反映了效应间 的差异,故由效应不同引起的数据差异可用组间
偏差平方和 SA r mi ( yi• y )2 表示,也称为 i 1
因子A的偏差平方和(或称为因子A的效应平方 和) ,其自由度为 fA=r1;
27 May 2020
27 May 2020
方差分析
第11页
本例中,我们要比较的是三种饲料对鸡的增肥作用是否相同。为 此,我们把饲料称为因素,记为A,而三种不同的配方称为因素A的三 个水平,记为A1, A2, A3,使用配方Ai下第 j 只鸡60天后的重量用yij表 示,i=1, 2, 3, j=1, 2,, 10。
我们的目的是比较三种饲料配方下鸡的平均重量是否相等,为此, 需要做一些基本假定,把所研究的问题归结为一个统计问题,然后用 方差分析的方法进行解决。
27 May 2020
方差分析
第15页
为对假设(1.1)进行检验,需要从每一水平下的
r
总体抽取样本,设n从 i第1 mi i个水平下的总体获得mi个试验结
果,记 yij 表示第i个总体的第j次重复试验结果。共得如

方差分析ANOVA

方差分析ANOVA
Duncan 检验方法,探索性研究
Dunnet 检验方法,证实性检验,常用于多 个试验组与一个对照组间的比较。
单因素方差分析
例1 在肾缺血再灌注过程的研究中,将36只雄性大鼠随机等 分成三组,分别为正常对照组、肾缺血60分组和肾缺血60 分再灌注组,测得各个体的NO数据见数据文件no.sav,试 问各组的NO平均水平是否相同?
均数两两比较方法
直接校正检验水准(相对粗糙) 专用的两两比较方法:
计划好的多重比较(Planned Comparisons) 非计划的多重比较(Post-Hoc Comparisons)
Contrasts按钮
Post Hoc按钮
均数两两比较方法
点击单因素方差分析主对话框中的Post Hoc按钮,总共 有14种两两比较的方法,如下:
组间变异 组内变异
总变异
5
1. 总变异(Total variation): 全部测量值Xij与总 均数X 间的差异
2. 组间变异(between group variation ): 各组的 均数 X i 与总均数 X 间的差异
3. 组内变异(within group variation ):每组的 每个测量值 X ij与该组均数 X i 的差异
结果分析
Means plots 选项给出,更直观。 注意:当分组变量体现出顺序的趋势时,绘制这种折线图可以提示 我们选择正确的趋势分析模型。
均数两两比较方法
通过以上分析得到了拒绝H0的结论,但实际上单因素方差分 析并不这样简单。在解决实际问题时,往往仍需要回答多个 均数间到底是哪些存在差异。虽然结论提示不同组别个体的 NO量不同,但研究者并不知道到底是三者之间均有差别,还 是某一组与其他两组有差别。这就应当通过两两比较(多重 比较)进行考察。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方差分析(Analysis of variance,简称ANOVA)为资料分析中常见的统计模型,主要为探讨连续型(Continuous)资料型态之因变量(Dependent variable)与类别型资料型态之自变量(Independent variable)的关系,当自变项的因子中包含等于或超过三个类别情况下,检定其各类别间平均数是否相等的统计模式,广义上可将T检定中变异数相等(Equality of variance)的合并T检定(Pooled T-test)视为是方差分析的一种,基于T检定为分析两组平均数是否相等,并且采用相同的计算概念,而实际上当方差分析套用在合并T检定的分析上时,产生的F值则会等于T检定的平方项。

方差分析依靠F-分布为机率分布的依据,利用平方和(Sum of square)与自由度(Degree of freedom)所计算的组间与组内均方(Mean of square)估计出F值,若有显著差异则考量进行事后比较或称多重比较(Multiple comparison),较常见的为Scheffé's method、Tukey-Kramer method与Bonferroni correction,用于探讨其各组之间的差异为何。

在方差分析的基本运算概念下,依照所感兴趣的因子数量而可分为单因子方差分析、双因子方差分析、多因子方差分析三大类,依照因子的特性不同而有三种型态,固定效应方差分析(fixed-effect analysis of variance)、随机效应方差分析(random-effect analysis of variance)与混合效应方差分析(Mixed-effect analaysis of variance),然而第三种型态在后期发展上被认为是Mixed model的分支,关于更进一步的探讨可参考Mixed model
的部份。

方差分析优于两组比较的T检定之处,在于后者会导致多重比较(multiple comparisons)的问题而致使第一型错误(Type one error)的机会增高。

因此比较多组平均数是否有差异则是方差分析的主要命题。

在统计学中,方差分析(ANOVA)是一系列统计模型及其相关的过程总称,其中某一变量的方差可以分解为归属于不同变量来源的部分。

其中最简单的方式中,方差分析的统计测试能够说明几组数据的平均值是否相等,因此得到两组的t测试。

在做多组双变量t测试的时候,错误的几率会越来越大,特别是I型错误。

因此,方差分析只在二到四组平均值的时候比较有效。

背景和名称[
方差分析(ANOVA)是一种特殊形式的统计假设测试,广泛应用于实验数据的分析中。

统计假设测试是一种根据数据进行决策的方法。

测试结果(通过原假设进行计算)如果不仅仅是因为运气,则在统计学上称为显著。

统计显著的结果(当可能性的p值小于临界的“显著值”)则可以推翻原假设。

在方差分析的经典应用中,原假设是假设所有数据组都是整体测试对象的完全随机抽样。

这说明所有方法都有相同效果(或无效果)。

推翻原假设说明不同的方法,会得到不同的效果。

在操作中,假设测试限定I类型错误(假阳性导致的假科学论断)达到某一具体的值。

实验者也希望II型错误(假阴性导致的缺乏科学发现)有限。

II型错误受到多重因素作用,例如取样范围(很可能与试验成本有关),相关度(当实验标准高的时候,忽视发现的可能性也大)和效果范围(当对一般观察者来说效果明显,II型错误发生率就低)。

ANOVA的模式型态[编辑]
方差分析分为三种型态:
固定效应模式(Fixed-effects models)[编辑]
用于方差分析模型中所考虑的因子为固定的情况,换言之,其所感兴趣的因子是来自于特定的范围,例如要比较五种不同的汽车销售量的差异,感兴趣的因子为五种不同的汽车,反应变量为销售量,该命题即限定了特定范围,因此模型的推论结果也将全部着眼在五种汽车的销售差异上,故此种状况下的因子便称为固定效应。

随机效应模式(Random-effects models)[编辑]
不同于固定效应模式中的因子特定性,在随机效应中所考量的因子是来自于所有可能的母群体中的一组样本,因子方差分析所推论的并非着眼在所选定的因子上,而是推论到因子背后的母群体,例如,借由一间拥有全部车厂种类的二手车公司,从所有车厂中随机挑选5种车厂品牌,用于比较其销售量的差异,最后推论到这间二手公司的销售状况。

因此在随机效应模型下,研究者所关心的并非局限在所选定的因子上,而是希望借由这些因子推论背后的母群体特征。

混合效应模式(Mixed-effects models)[编辑]
此种混合效应绝对不会出现在单因子方差分析中,当双因子或多因子方差分析同时存在固定效应与随机效应时,此种模型便是典型的混合型模式。

相关文档
最新文档