第3章 动态电路的时域分析

合集下载

《电路分析》——动态电路时域分析

《电路分析》——动态电路时域分析
iL(0+)= iL(0-) 则电感电流(磁链)换路前后保持不变。
注意:
(1)电容电流和电感电压为有限值是换路定律成立的条件。 (2)换路定律反映了能量不能跃变。
《电路分析》——动态电路时域分 析
LC
L iL(0)
+
C uC(0)
-
LC
(a) 稳态时 的L和C
(b) 换路前有储能 的L和C
(c) 换路前无 储能的L和C
第5章 动态电路的时域分析
重点
1. 动态电路方程的建立及初始条件的确定; 2. 一阶电路的零输入响应、零状态响应和
全响应求解; 3. 稳态分量、暂态分量求解; 4. 一阶电路的阶跃响应和冲激响应。
《电路分析》——动态电路时域分 析
由电源和电阻器构成的电阻性网络,是用代 数方程来描述的,求解过程不涉及微分方程。
0
t
零输入响应
《电路分析》——动态电路时域分 析
5.3.2 一阶RC电路的零输入响应
换路后外加激励为零,仅由动态元件初始储能所 产生的电压和电流。
已知 uC (0-)=U0 ; uS =0
t
uc (t) U0e RC t 0
ic (t)
U0 R
e
t RC
t0
《电路分析》——动态电路时域分
a1
df (t) dt
a0
f
(t)
e(t)
t0
(3)高阶电路
电路中有多个动态元件,描述电路 的方程是高阶微分方程。
an
d
n f (t) dt n
an1
d
n1 f (t) dt n1
a1
df (t) dt
a0
f
(t)

电路的时域分析

电路的时域分析

02 电路模型的建立
线性时不变电路
线性时不变电路
在电路分析中,线性时不变电路是一种理想化的电路模型,其特点是电路中的 元件参数不随时间和信号的改变而变化,且电路中的电压和电流满足线性关系。
线性时不变电路的特点
由于其线性特性,线性时不变电路满足叠加定理,即多个信号同时作用于电路 时,其响应可以通过单个信号作用的响应叠加得到。此外,线性时不变电路还 具有齐次性和可逆性。
对非线性元件的处理问题
非线性元件在时域分析中是一个挑战,因为 非线性元件的电压和电流关系不是线性的, 不能简单地用微分方程描述。
对于非线性元件,可以采用分段线性化或者 查找表的方法进行处理。分段线性化方法是 将非线性元件的特性近似为一系列线段,然 后分别进行线性分析。查找表方法是将非线 性元件的特性离散化,并预先计算出离散点 的响应,然后在时域分析时通过查表的方式
THANKS FOR WATCHING
感谢您的观看
电磁防护措施优化
基于时域分析的结果,可以对电磁防护措施进行优化,提高电路或 系统的电磁兼容性。
06 时域分析的局限性
对初始条件的敏感性
初始条件对时域分析结果的影响很大,因为电路的状态会受 到初始条件的直接影响。初始条件的不确定性可能导致分析 结果的误差,甚至可能导致错误的结论。
为了减小初始条件对时域分析的影响,可以采用多次模拟的 方法,取多次模拟结果的平均值作为最终结果,以提高分析 的准确性和可靠性。
微分方程的建立
微分方程的建立
在电路分析中,根据电路的结构和元件参数,可以建立描述电路中电压和电流变化 的微分方程。微分方程的建立通常基于基尔霍夫定律(KCL)和欧姆定律(Ohm's Law)。
微分方程的形式

动态电路分析

动态电路分析
兼容性与可扩展性
未来的动态电路将更加注重兼容性与 可扩展性,以适应不同系统和应用的 需求。
感谢您的观看
THANKS
实现方式
采用高级编程语言(如Python、C)或电路设计自动化 软件(如MATLAB、Simulink)进行实现。
优化设计实例分析
实例一
某数字信号处理电路的优化 设计,通过遗传算法对电路 结构进行优化,实现了功耗
降低20%的效果。
实例二
某无线通信收发机的优化设 计,采用模拟退火算法对电 路参数进行优化,提高了信
时域分析法的缺点
计算量大,特别是对于复杂电路,需要求解微分方程, 计算效率较低。
频域分析法
频域分析法的优点
可以方便地处理正弦信号和周期信号,计算量相对较小,特别适合于求解线性时不变电路。
频域分析法的缺点
对于非线性或时变电路,频域分析法可能不适用。
复频域分析法(拉普拉斯变换和傅里叶变换)
要点一
复频域分析法的优点
采用负反馈
通过在系统中引入负反馈,增强系统的稳定性。
05
动态电路的优化设计
优化目标与约束条件
优化目标
在满足一定性能指标的前提下,降低电路的 功耗、体积和成本等。
约束条件
电路的功能、可靠性、稳定性、时序等要求, 以及工艺、材料、封装等限制。
优化算法与实现
优化算法
遗传算法、模拟退火算法、粒子群算法等。
动态电路分析的历史与发展
历史
动态电路分析起源于20世纪初,随着电子技术的快速发展,其分析方法和工具不断演 进。
发展
近年来,随着计算机技术和数值计算方法的进步,动态电路分析在理论和实践方面取得 了重要突破。现代动态电路分析方法更加精确、高效,为复杂电子系统的设计和优化提

精品文档-自动控制原理及其应用(第二版)温希东-第3章

精品文档-自动控制原理及其应用(第二版)温希东-第3章

能够用一阶微分方程描述的系统称为一阶系统,它的典型 形式是一阶惯性环节,即
(3-9)
第3章 时 域 分 析 法
20
1. 一阶系统的单位阶跃响应 当r(t)=1(t)时,有
第3章 时 域 分 析 法
对上式进行拉氏反变换,得
根据式(3-10),可得出表 3-1 所列数据。
21 (3-10)
第3章 时 域 分 析 法
第3章 时 域 分 析 法
63
图 3-14 二阶系统单位阶跃响应包络线
第3章 时 域 分 析 法
第3章 时 域 分 析 法
57
2) 求峰值时间tp 由峰值时间tp的定义知,tp为c(t)响应超过其终值到达第 一个峰值所需的时间。
由式(3-14)和式(3-19)得
(3-21)
第3章 时 域 分 析 法
58
根据数学求极值概念,令

第3章 时 域 分 析 法
59
因为
所以
由此可得, ωdtp=π, 则 (3-22)
28
3.3 二阶系统的动态响应
用二阶微分方程描述的系统称为二阶系统。从物理上讲, 二阶系统总包含两个储能元件,能量在两个元件之间交换,从 而引起系统具有往复的振荡趋势。当阻尼不够充分大时,系统 呈现出振荡的特性,这样的二阶系统也称为二阶振荡环节。
第3章 时 域 分 析 法
29
二阶系统的典型传递函数为
当r(t)=1(t)时,有

第3章 时 域 分 析 法
44
对上式进行拉氏反变换,可得
(3-17)
其响应曲线如图 3-10所示,系统为无阻尼等幅振荡。该种情况 实际系统不能用。
第3章 时 域 分 析 法
45

语音信号处理课件__第03章时域分析

语音信号处理课件__第03章时域分析
SNRdB 6.02B 4.77 20log10 (
x
xmax
)
(3-11)
3.1 语音信号的短时处理方法 脉冲编码调制
若是xmax取为4倍方差(δx)
SNRdB 6.02B 7.27
取样之位数 8 16 24
(3-12)
数字信号的信噪比 41 dB 89 dB 137 dB
3.1 语音信号的短时处理方法 脉冲编码调制
一个数字信号取样之后,变成离散时间信号,接下来就是要用数字 方式来表示这个离散时间信号上的每个取样值。 一个电位波形会有固定的电压范围,一个取样值可以是在此电压范 围内的任何电位。如果只能用固定数目的位来表示这些取样值,那 么这些二进数字就只能代表固定的几个电位值,这个转换就是量化 (quantization),而转换之后只允许存在的几个电位值就是量化阶 数(quantization level)。 执行量化转换的硬件电路,就是量化器(quantizer)。以二进数字 表示的信号就是数字信号(digital signal),而这种将信号波形转 变成二进数字的方法,就叫脉冲编码调制(pulse code modulation, PCM)。
3.1 语音信号的短时处理方法
预处理 平滑滤波器:D/A后面的低通滤波器是平滑滤 波器,对重构的语音波形的高次谐波起平滑 作用,以去除高次谐波失真。 预加重:




现象:由于语音信号的平均功率谱受声门激励和口 鼻辐射的影响,高频端大约在800 Hz以上按6dB/ 倍频程跌落,为此要在预处理中进行预加重。 目的:提升高频部分,使信号的频谱变得平坦,以 便于进行频谱分析或声道参数分析。 位置:预加重可在A/D变换前的反混叠滤波之前进行, 这样不仅能够进行预加重,而且可以压缩信号的动 态范围,有效地提高信噪比。

第3章动态电路习题

第3章动态电路习题
t 0 时的 i1 (t ) 、 iC (t ) 和 u C (t ) 。
S (t=0)
R2
i1
iS
R1 u1 gmu1
iC C uC
解(答 案)
u C (t) 4 (2 4 )ex p 2 t .4 ( 16 0 )V
iC ( t) C d d C ( u t) t 0 .8e 3x 3 2 t . p 4 1 (6 ) 0 A
第五步: 画过渡过程曲线(由初始值稳态值)
uL(t)4e2tV
0V u L
-4V 起始值
t
稳态值
例3-4
K
.
L
已知:
t uC2(t)25(8.32)5e20106
251.67e5140tV
例3
已知5-35中 E 1 1 V ,0 E 2 5 V ,R ! R 2 4 k ,
R 32k ,C10 F 0 ,
开关S在位置a时电路已处于稳态。求开关S由
a合同b后的 u C (t ) 和 i0 (t )
时电路换路。求换路后的 uC1(t)、 uC2(t)和 i(t)。 i(t)
uC1
R2
U
S (t=0) R1
uC2

(1)uC1(0 ) uC1(0 ) 25 400 200 400 25 2 16.7V 3
(2)uC1()2V 5
(3)1 R1C1 2000.11 06 2 0s
+ US
-
R1
C
答案: ( b )
4、下图所示电路在稳定状态下闭合开关S,该电路 ( )。
a) 不产生过渡过程,因为换路未引起L的电流发生变化 b) 要发生过渡过程,因为电路发生换路 c) 要发生过渡过程,因为电路有储能元件且发生换路

动态电路的时域分析

动态电路的时域分析

必须注意:只有uC 、 iL受换路定律的约束而保持不变,电路 中其他电压、电流都可能发生跃变。
二、电路初始条件的计算(0+、0-等效电路法)
1、 0-等效电路:由换路前的稳态电路确定uc(0-)或iL(0-);
2、 0+等效电路: 由换路定律确定换路后的初始值:
uc (0 ) uc (0 ) iL (0 ) iL (0 )
复习:P226~P232 P235~P238 作业:P266 8-1, 8-2 预习:P239~P244
问题思考:
1、一阶电路分为哪几种响应?
2、什么叫零状态响应?对应三要素中的那个量为零? 3、什么叫零输入响应?对应三要素中的那个量为零? 4、什么叫全响应?全响应有那几个分量? 5、求解一阶电路的响应有那几个步骤?
0
1 uL dt ; L
0 uL 有限
1 iL (0 ) iL (0 ) uL dt L 0
iL (0 )
换路定律:在换路瞬间,电容上电压,电感上的电流不能跃变。
uc (0 ) uc (0 ) iL (0 ) iL (0 )
对于电容上电压和通过电感上的电流有: 换路后的初始值等于换路前的终了值!
duc US 1 uc ; dt R0C R0C
IS diL 1 iL dt LG0 LG0
两个方程具有相同的形式,因此两方程解的形式也相同,区别 仅仅是因变量和常数不同而已。 2、初始条件: (1)RC电路:uc(0+)=uc(0-)=U0 (2)RL电路:iL(0+)=iL(0-)=I0 3、方程的解(分离变量法) duc 1 1 (U S uc ) (uc U S ) dt R0C R0C

电容元件与电感元件

电容元件与电感元件

第六章 电容元件与电感元件
§6-1 §6-2 §6-3 §6-4 §6-5 §6-6 §6-7

电容元件 电容元件的伏安关系 电容电压的连续性质和记忆性质 电容元件的储能 电感元件 电感元件的VAR 电容与电感的对偶性 状态变量
§6-2 电容元件的伏安关系
采用关联参考方向如图所示,则有 (1)微分形式
3、电容的记忆性质:电容电压对电流有记忆作用。
1 t uc (t ) ic ( )d C 它表明,在任一时刻t,电容电压uc是此时刻以前
的电流作用的结果,它“记载”了已往的全部历史,
所以称电容为记忆元件。相应地,电阻为无记忆元件。 1 t0 1 t uc (t ) ic ( )d ic ( )d C C t0 1 t uc (t0 ) ic ( )d C t0 只要知道电容的初始电压和t≥0时作用于电容的 电流,就能确定t≥0时的电容电压。
返 回 上 页 下 页
第六章 电容元件与电感元件
§6-1 §6-2 §6-3 §6-4 §6-5 §6-6 §6-7

电容元件 电容元件的伏安关系 电容电压的连续性质和记忆性质 电容元件的储能 电感元件 电感元件的VAR 电容与电感的对偶性 状态变量
§6-6 电感元件的VCR
对上式从-∞到t进行积分,并设uc(-∞)=0,得
设t0为初始时刻。如果只讨论t≥t0的情况,上式可改写为
1 uc (t ) C
其中,
1 t ic ( )d C t0 ic ( )d 1 t uc (t0 ) ic ( )d C t0 1 t0 uc (t0 )= ic ( )d ( ) C -
1 2 WC (t ) Cuc (t ) 2

大工15秋《电路理论》辅导资料六

大工15秋《电路理论》辅导资料六

电路理论辅导资料六主 题: 第三章 线性动态电路的时域分析(第1-3节) 学习时间: 2015年11月2日--11月8日 内 容:一、本周知识点及重难点分布表6-1 本周知识点要求掌握程度一览表序号学习知识点要求掌握程度本周难点了解熟悉 理解 掌握 1 电容元件 ★ 2 电感元件★ 3 换路定律与初始值的计算★☆二、知识点详解【知识点1】电容元件电容元件、电感元件称为“动态元件”,包含他们的电路称为动态电路。

动态电路是“有记忆”的。

1、电容器和电容元件电容器:因介质不理想存在导电和损耗。

电容元件:实际电容器的理想化模型。

定义:如果一个二端元件,在任一时刻其存储的电荷与其两端电压之间的关系可用u-q 平面上的一条曲线来确定,则此二端元件称为电容元件。

若该曲线为u-q 平面上的一条过原点的直线,则此电容元件称为线性、非时变电容元件。

2、电容元件的伏安关系qC u= 单位:法拉(F )-61μF 10F =,121pF 10F -=伏安关系:d d d d q u i C t t== 图6-1 电容元件的库伏特性稳态直流电路中,u 不随时间变化,0I =,电容相当于开路,有隔直作用。

①0d d >tu 时,电流流向电容正极板,电容充电;②0dd<tu时,电流从电容正极板流出,电容放电。

电容的电压不能发生突变。

假设电容电压突变,则电流为无穷大值,即:∞→=tuCidd因实际中电容上存储的电荷量不可能发生突变,图6-2 电容元件的符号故电容的电流恒为限制,电容电压不能突变。

3、电容的储能u i、为关联参考方向下:()()()()()ttutCut i tutpdd==①0>p:电容吸收功率,将电能转换成电场能②0<p:电容释放功率,将电场能转换成电能从t~∞-时间内电容上存储(释放)的能量为:()()()()()()()()()()∞--====⎰⎰⎰-∞-∞-222121ddddd CutCuuuCuCuptWuuttξξξξξξξξξξ若电容从零开始充电,即()0=∞-u,则:()()212W t Cu t=表明:电容在某时刻的储能值,只取决于该时刻的电容电压值,与电流无关。

电路分析(第六版)动态电路的时域分析

电路分析(第六版)动态电路的时域分析
路后的iL(t)。
动态电路的时域分析
图7.14 题7.2 3图
动态电路的时域分析
图7.15 题7.2 4图
动态电路的时域分析
7.3 一阶电路的零状态响应
零状态响应是指当电路初始状态为零时,由外加激励产 生的响应。外加激励可为直流 电源(电压或电流),也可为交 流电源。
动态电路的时域分析
7.3.1 RC 电路的零状态响应 如图7.16所示RC 串联电路,开关S闭合前uC(0- )=0,t=0
动态电路的时域分析
图7.18 RL 电路的零状态响应
动态电路的时域分析 根据图7.18中S闭合后的电路,依 KVL,有
式(7-17)也是一常系数一阶线性非齐次微分方程,它的解同 样由其特解icp和相应的齐次 方程的通解ich组成,即
动态电路的时域分析
动态电路的时域分析
动态电路的时域分析
图7.19 RL 电路零状态响应曲线
动态电路的时域分析 例 7.1 图7.2(a)所 示 电 路 中,已 知 US =18 V,R1 =1Ω,R2
=2Ω,R3 =3Ω, L=0.5H,C=4.7μF,t=0时,S闭合,设S闭合前电路已 处稳态。求i1(0+ )、i2(0+ )、 i3(0+ )、uL(0+ )、uC(0+ )。
图 7.2 例 7.1 图
L 相当于短路,此时电感电流 为iL(0- )=US/RS=Io。开关动作后
的初始时刻t=0+ 时,根据换路定律,有iL(0+ )=Io。
这时电感中的初始储能
将逐渐被电阻消耗直至殆
尽,电流为零,电感的消磁过程 便结束。下面通过数学分析,找
出电感电流和电压的变化规律。

动态电路的时域分析

动态电路的时域分析

动态电路的时域分析 第一节 换路及其初始条件一、电路的两种工作状态(稳态、动态) 1、稳态电路: (1)定义当电路在直流电源的作用下,各条支路的响应也是直流;当电路在正弦交流电源的作用下,各条支路的响应也是正弦交流,这种类型的电路称为稳态电路。

(2)特征:稳态电路中不存在换路现象,描述稳态电路的方程是代数方程。

2、动态电路: (1)定义当电路中含有储能元件或称动态元件(如电容或电感),电路中的开关在打开或闭合的过程中参数发生变化时,可使电路改变原来的工作状态,转变到另一个工作状态。

电路从一种稳态到达另一种稳态的中间过程称为动态过程或过渡过程。

过渡过程中的电路称为动态电路。

(2)待征:动态电路中存在动态元件且有换路现象,描述动态电路的方程是微分方程。

一阶电路:能够用一阶微分方程描述的电路; 二阶电路:能够用二阶微分方程描述的电路; n 阶电路:能够用n 阶微分方程描述的电路。

(3)存在原因:1)含有动态元件电感或电容 ::di L u L dtdu C i Cdt ⎧=⎪⎪⎨⎪=⎪⎩2)存在换路:电路结构或参数发生变化 二、换路 1、定义:电路中含有储能元件,且电路中开关的突然接通或断开、元件参数的变化、激励形式的改变等引起的电路变化统称为“换路”。

(1)换路是在0t =时刻进行的(2)换路前一瞬间定义为:0t -=;换路后一瞬间定义为:0t +=; (3)换路后达到新的稳态表示为:t =∞。

2、换路定律:在换路时电容电流和电感电压为有限值的条件下,换路前后瞬间电容电压和电感电流不能跃变。

即:(0)(0),(0)(0)c c L L u u i i +-+-==。

注意:00()()C C i t i t +-≠,00()()L L u t u t +-≠,00()()R R i t i t +-≠,00()()R R t u t +-≠ 三、独立初始条件 1、定义:一个动态电路的电容电压(0)C u +和电感电流(0)L i +称为独立初始条件,其余的称为非独立初始条件,非独立初始条件需通过已知的独立初始条件来求得。

《动态电路时域分析 》课件

《动态电路时域分析 》课件
析方法
实例演示:通 过MATL AB软 件进行复杂动 态电路的时域
分析
06
时域分析在工程中 的应用
电子技术领域应用
电路设计:时域分析可用于电路设计,帮助工程师更好地理解和优化电路性能。
故障诊断:通过时域分析,可以检测电路中的故障并进行定位,提高维修效率。
控制系统:时域分析可用于控制系统的设计和分析,提高系统的稳定性和性能。 信号处理:在信号处理领域,时域分析可用于信号的采集、分析和处理,提高信号的准确 性和可靠性。
适用对象
电子信息工程专业学生 电路设计工程师 电子技术爱好者 需要掌握动态电路时域分析知识的相关人员
课件结构
• 课件封面 * 标题:《动态电路时域分析》 * 副标题:深入浅出,掌握时域分析 * 图片:电路图或相关图片
• * 标题:《动态电路时域分析》 • * 副标题:深入浅出,掌握时域分析 • * 图片:电路图或相关图片
课件的主要内容:动态电路时域分析的基本原理、方法、技术和应 用
课件的特色:结合实际案例,深入浅出地讲解动态电路时域分析的理 论和实践
课件的目标:帮助学生掌握动态电路时域分析的基本技能和方法, 提高分析和解决问题的能力
课件目的
掌握动态电路时域分析的基本概念和原理 学会使用时域分析方法解决实际问题 了解动态电路时域分析在工程中的应用 提高分析和解决问题的能力,为后续课程打下基础
定义:时域分析是一种通过时间序列来描述电路特性的方法 原理:通过测量电路在不同时间点的响应,可以获得电路的时域特性 方法:采用示波器等测量仪器对电路进行实时监测 应用:用于分析电路的暂态过程、稳态过程以及过渡过程等
时域分析优缺点
优点:直观、 易于理解,能 够反映系统的
瞬态行为

电模第三章(动态电路分析)

电模第三章(动态电路分析)
新的稳定状态
?
前一个稳定状态
过渡状态
返 回
上 页
下 页
+ uL –
+ Us -
(t →∞) R i + k uL –
k未动作前,电路处于稳定状态: uL= 0, 未动作前,电路处于稳定状态: 未动作前 k断开瞬间 断开瞬间
i=Us /R
i = 0 , uL = ∞
q
斜率为C 斜率为
u + u(t) 线性时不变电容的特性
线性电容——特性曲线是通过坐标原 特性曲线是通过坐标原 线性电容 点一条直线,否则为非线性电容。 点一条直线,否则为非线性电容。时 不变——特性曲线不随时间变化,否 特性曲线不随时间变化, 不变 特性曲线不随时间变化 则为时变电容元件。 则为时变电容元件。
dq d (C u ) du i (t ) = = =C dt dt dt
1. 电容是动态元件 电容的电流与其电压对时间的变化率 成正比。假如电容的电压保持不变, 成正比。假如电容的电压保持不变, 则电容的电流为零。 则电容的电流为零。电容元件相当于 开路( ) 开路(i=0)。
4 .电容是储能元件 电容是储能 电容是储能元件 电压电流参考方向关联时, 电压电流参考方向关联时,电容吸收功率 du p ( t ) = u ( t ) i ( t ) = u ( t )C dt 可正可负。 p 可正可负。当 p > 0 时,电容 吸收功率( ),储存电场能量增加 储存电场能量增加; 吸收功率(吞),储存电场能量增加; 0时 电容发出功率( ),电 当p < 0时,电容发出功率(吐),电 容放出存储的能量。 容放出存储的能量。
电压电流参考方向关联时, 电压电流参考方向关联时,电感吸收功率

第3章时域分析

第3章时域分析

第3章 控制系统时域分析电气信息学科世界著名学者诺伯特·维纳(Norbert Wiener,1894~1964)维纳是美国数学家,控制论的创始人.1948年维纳发表《控制论》,宣告了这门新兴学科的诞生. 这是他长期艰苦努力并与生理学家罗森勃吕特等人多方面合作的伟大科学成果. 维纳立即从声誉有限的数学家一跃成为一位国际知名人士.维纳是一个名符其实的神童.他三岁半开始读书,生物学和天文学的初级科学读物就成了他在科学方面的启蒙书籍,七岁时,开始深入物理学和生物学的领域,甚至超出了他父亲的知识范围.维纳于15岁时获得塔夫茨学院数学系学士学位,并于18岁获哈佛大学哲学博士学位.他先后留学于英国剑桥大学和德国哥丁根大学,在罗素、哈代、希尔伯特等著名数学家指导下研究逻辑和数学.1924年维纳升任助理教授,1929年升为副教授,由于在广义调和分析和关于陶伯定理方面的杰出成就,1932年晋升为正教授.维纳在其50年的科学生涯中,先后涉足哲学、数学、物理学和工程学,最后转向生物学,在各个领域中都取得了丰硕成果,称得上是恩格斯颂扬过的、本世纪多才多艺和学识渊博的科学巨人.他一生发表论文240多篇,著作14本.主要著作有《控制论》(1948)、《维纳选集》(1964).维纳还有两本自传《昔日神童》和《我是一个数学家》.他的主要成果有如下八个方面:建立维纳测度;引进巴拿赫—维纳空间;阐述位势理论;发展调和分析;发现维纳—霍普夫方法;提出维纳滤波理论;开创维纳信息论;创立控制论. 1933年,维纳由于有关陶伯定理的工作与莫尔斯分享了美国数学会五年一次的博赫尔奖.同时,他当选为美国科学院院士.1934年,维纳应邀撰写了《复域上的傅立叶变换》.不久,他当选为美国数学会副会长.1959年,维纳从麻省理工学院退休。

1964年1月,他由于“在纯粹数学和应用数学方面并且勇于深入到工程和生物科学中去的多种令人惊异的贡献及在这些领域中具有深远意义的开创性工作”荣获美国总统授予的国家科学勋章.维纳是伽金汉基金会旅欧研究员,富布赖特研究员,英、德、法等国的数学会会员,但任过中国、印度、荷兰等国的访问教授.3.1 引言系统的时域分析指对控制系统的稳定性、暂态性以及稳态性能分析.稳定性是控制系统工作的前提,不稳定的系统没有任何工程价值.对于不同的系统,例如线性的、非线性的、定常的、时变的系统,稳定性的定义也不同,本章仅讨论线性定常单输入单输出系统的稳定性.从控制系统分析和设计的角度来说有绝对稳定性和相对稳定性,绝对稳定指系统是否稳定,一旦系统是稳定的,则人们更关心其稳定的程度,这就是相对稳定性,相对稳定性一般用稳定裕度衡量. 当系统受外加作用时引起的输出随时间的变化规律,称其为系统的时域响应,分为暂态响应和稳态响应.暂态响应是指系统输出量当时间趋于无穷时趋于零的那部分时间响应,工程上一般定义暂态响应为从初始状态到达某一规定值(例如偏离终值的误差值在终值的5%或2%以内)并且以后不再超过此值的这一部分时间响应过程,它反映控制系统的快速性和阻尼程度,由于系统物体的惯性都是无法避免的,因此人们常常可以观察到暂态现象.而稳态响应则是整个响应在暂态响应消失后余下的那部分响应,主要指系统输出量的最终位置,它反映控制系统的准确性或控制精度,控制系统是按照稳态误差和误差系数的计算来表示控制精度的.本章主要分析了一阶和二阶线性定常系统的典型输入信号激励下的时域响应以及对应的时域性能指标,详细介绍了单输入单输出线性定常系统的稳定性判断的劳斯-赫尔维茨判据,也对稳定的控制系统的稳态误差以及误差系数的分析计算做了详细的叙述,介绍了提高控制系统精度的一般工程方法.对高阶线性系统的分析在一定条件下可以用主导极点的模型降阶方法来近似.本章还介绍了如何利用MATLAB工具分析线性系统的性能.3.1.1 典型输入信号控制系统性能评价分为暂态性能指标和稳态性能指标两大类.对于同一系统,在不同的输入信号作用下会产生不同的输出响应, 因此为了求解系统的时间响应,必须了解输入信号的解析表达式. 然而,在一般情况下,控制系统的外加输入信号具有随机性而无法预先确定.因此,在分析和设计控制系统时,需要有一个对控制系统的性能进行比较的基准,这个基准就是系统对预先规定的具有典型意义的实验信号激励下的响应.为了评价控制系统的性能,需要选择若干个典型输入信号.另外,一个复杂的信号通常可看作是几个简单典型信号的合成.所谓典型输入信号,是指控制系统分析与设计中常常遇到的一些输入信号,也是在数学描述上加以理想化的一些基本输入函数.选取典型信号应满足如下条件,首先,输入信号的形式应反映系统响应的实际输入;其次,输入信号在形式上应尽可能的简单,应当是实验室或仿真可以获得以便于对系统响应进行分析的信号;另外,应选取能使系统工作在最不利情况下的激励信号作为输入信号.控制系统中常用的典型输入信号有:单位阶跃函数、单位斜坡(速度)函数、单位抛物线(加速度)函数、单位脉冲(冲激)函数和正弦函数等,如表3.1所示.表3.1 常用典型输入函数3.1.2 时域性能指标稳定是系统工作的前提,只有系统是稳定的,分析系统的暂态和稳态性能以及性能指标才有意义.控制系统时域性能指标(Time Response Specifications)分为暂态与稳态性能指标.1. 暂态性能指标一般认为阶跃输入对系统来说是最严峻的工作状态,如果系统在阶跃函数作用下的暂态 性能满足要求,那么系统在其它形式函数作用下其暂态性能也是令人满意的.为此,通常在阶跃函数作用下,测定或计算系统的暂态性能.描述稳定的系统在阶跃函数作用下暂态过程随时间t 的变化状况的指标,称为暂态性能指标.如图3.1所示为某一控制系统的阶跃响应,其暂态性能指标定义如下:1)调节时间 (settling time ) s t :指阶跃响应到达并保持在终值的±5%(或±2%)的 误差带内所需时间.2)峰值时间 (peak time) p t :响应超过其终值到达第一个峰值所需时间.3) 上升时间 (rise time) r t :响应从终值的10%上升到终值的90%所需时间. 对振荡系 统, 工程上上升时间r t 定义为输出从零到第一次上升至终值所需时间.4)超调量 (peak overshoot) %σ:响应的最大峰值与终值的差与终值比的百分数,即: ()()%100%()p c t c c σ-∞=⨯∞ (3.1) 超调量常常用来衡量控制系统的相对稳定性或阻尼程度,一般不希望控制系统有很大的超调.在实际应用中,以上四个指标可以用来衡量控制系统的暂态特征,一般通过测量系统的阶跃响应,很容易得到这些指标.通常,用p t 或r t 评价响应速度;用%σ评价系统的相对稳定程度或阻尼程度;用s t 同时反映响应速度和阻尼程度的综合性指标.除简单的一、二阶(0.9(c c ∞∞0.1(c ∞图 3.1 时域性能指标系统外,要精确确定这些暂态性能指标的解析表达式是很困难的.2. 稳态性能指标稳态误差ss e 是衡量系统控制精度或抗扰动能力的一种度量.工程上指控制系统进入稳态后(t →∞)期望的输出与实际输出的差值,ss e 越小,控制精度越高.3.2 控制系统时域分析3.2.1 一阶系统的时域分析可以用一阶微分方程描述的系统,称为一阶系统.一阶系统在控制工程实践中十分常见,有些高阶系统的特性,常可用一阶系统的特性近似表征.考察如图3.2所示的RC 电路,()c t 是电容器C 的输出电压.该电路系统的数学模型为一阶常微分方程:()()()dc t T c t r t dt+= 其中,T RC =为时间常数,控制系统方框图如图3.3所示 .其传递函数为: ()1()()1C s s R s TsΦ==+ (3.2) 1. 一阶系统的单位阶跃响应当输入信号为单位阶跃信号()1r t =()t , t ≥0时,系统的响应()c t 称为单位阶跃响应.将单位阶跃输入的像函数()1/R s s =代入式(3.2),并对输出取拉普拉斯反变换得到该一阶系统的单位阶跃响应:()1t T c t e -=-, t ≥0 (3.3)图 3.3 RC 电路方框图))t r 图 3.2 RC 电路由式(3.3)绘出的系统单位阶跃响应为以指数规律上升到终值1的曲线,如图 3.4 所示.其中,()0.632c T =;(2)0.865c T =;(3)0.950c T =;(4)0.982c T =.显然按照5%或2%的误差带准则有调节时间(3s t =~4)T (5% ~2%误差带),而p t ,%σ不存在. 综上所述,时间常数T 反映系统响应过程的快慢,T 越小,系统响应越快;反之,系统响应越慢.2. 一阶系统的单位脉冲响应当输入信号为单位脉冲或单位冲激信号()()r t t δ=时,系统的响应称为单位脉冲或单位冲激响应.因为理想单位脉冲函数的拉普拉斯变换为1,所以单位脉冲响应的拉普拉斯变换与系统的闭环传递函数相同,即:()()1()()()1r t t C s s R s Tsδ==Φ=+ 两边进行拉普拉斯反变换,得: 1()t T c t e T-= (3.4) 由式(3.4)可知,一阶系统的单位脉冲响应是非周期的单调递减函数,当0t =时,响应取最大值1/T ;当t →∞时,响应的幅值衰减为零.根据给出的误差带宽度可以求出调节时间s t ,通常取 (3s t =~4)T .一阶系统的单位脉冲响应如图 3.5 所示.图 3.4 一阶系统单位阶跃响应 t3. 一阶系统的单位斜坡响应当输入信号为单位斜坡或速度信号()r t t =,t ≥0时,系统的响应称作单位斜坡响应.因为单位斜坡输入的拉普拉斯变换像函数为2()1/R s s =,所以由拉普拉斯反变换得到该一阶系统的单位斜坡时域响应表达式为: ()()t T c t t T Te -=-+ (3.5)式(3.5)表明,一阶系统的单位斜坡响应可分为暂态分量和稳态分量两个部分,其中t T Te -为暂态分量,随时间的增加而逐渐衰减为零;t T -为稳态分量.一阶系统的单位斜坡响应如图 3.6所示.一阶系统单位斜坡响应的稳态误差lim(()())ss t e r t c t T →∞=-=,T 越小跟踪准确度越高.4. 一阶系统的单位抛物线响应当输入信号为单位抛物线或单位加速度信号2()/2r t t =,t ≥0时,因为单位抛物线输入信号拉普拉斯变换像函数为3()1/R s s =,所以由拉普拉斯反变换求得一阶系统的单位抛图 3.5 一阶系统单位脉冲响应t32 T 图 3.6 一阶系统单位斜坡响应物线的时域响应表达式为:221()(1)2t T c t t Tt T e -=-+- (3.6) 系统跟踪误差为:2()()()(1)t T e t r t c t Tt T e-=-=-- 因此lim ()t e t →∞=∞,即跟踪误差随时间增大而增大直至无穷大,故一阶系统不能实现对加速度输入函数的跟踪.3.2.2 典型二阶系统的时域分析如果动态系统的数学模型为二阶微分方程的系统,统称为二阶系统.在控制工程中,二阶系统应用广泛,而且许多高阶系统在一定条件下,可以近似用二阶系统的特性来表征.因此,二阶系统的性能分析,在自动控制理论中有着重要的地位.第2章分析的位置随动系统,其简化的数学模型为22c c m c r d d T K K dt dtθθθθ++= 闭环传递函数为2()()()c r m s K s s T s s KθθΦ==++ 将上式化为标准的典型二阶系统形式:222()()()2n n nC s s R s s s ωξωωΦ==++ (3.7) 其相应的方框图如图 3.7所示,其中,无阻尼振荡频率 (Undamping natural frequency)n ω= ,阻尼比(Damping factor)ξ=.典型二阶系统特征方程为:)s (R s 图 3.7 典型二阶系统2220n n s s ξωω++= (3.8)于是有特征根为:1,2n n d d s j j ξωωξωωσω=-±=-±=-± (3.9) 其中,特征根的实部为n σξω=,阻尼振荡频率(Damped natural frequency)d ωω=(1)ξ<.1. 典型二阶系统的单位阶跃响应典型二阶系统特征根的性质主要取决于ξ值的大小,ξ值的大小决定了系统阻尼程度.ξ在不同范围取值时,二阶系统的特征根在s 平面上的位置不同,典型二阶系统的时间响应对应着不同的运动规律.1)欠阻尼(01ξ<<)此时典型二阶系统在左半s 平面有一对共轭复根, 如图3.8 (a)所示.当输入为单位阶跃信号()1/R s s =时,由式(3.7)得到:222222211()2()()n n n n n n dn d s C s s s s s s s ωξωξωξωωξωωξωω+=⋅=--++++++两边分别取拉普拉斯反变换得:()1[cos ]n t d d c t e t t ξωωω-=-+1sin()n t d t ξωωβ-=+,0t > (3.10)其中, arctan β= 或 cos arc βξ=.式(3.10)表明,欠阻尼典型二阶系统的单位阶跃响应由两部分组成:稳态响应分量为1,表明典型二阶系统在单位阶跃函数作用下不存在稳态误差;暂态分量为阻尼正弦振荡项,其振荡频率为d ω.暂态分量衰减的快慢程度取决于包络线1n tξω-±对应的典型二阶系统欠阻尼情况下的单位阶跃响应如图3.8 (b)所示。

简单动态电路的时域分析

简单动态电路的时域分析

uR
Us
U0 uC
uC (0 ) uC (0 ) U0
2、方程旳解
RC
duC dt
uC
US
方程旳通解 uC uC 'uC ''
特解 uC ' U S
t
相应齐次方程旳通解 uC '' Ae
t
uC U S Ae
根据uC(0+)=uC(0-)=U0
得积分常数 A=U0-US
t
uC U S (U0 U S )e
一阶电路旳阶跃响应
一. 阶跃信号及其单边性
1.单位阶跃信号旳定义
(t)
1
0
, ,
t0 t0
2 .波形
3.实际意义 相当于0时刻接入电路旳单位电流源或单位电压源
若将直流电源表达为阶跃信号,则可省去开关: 例如 :10(V)→10ε(t)(V)
K(V)→Kε(t)(V), K:阶跃信号强度。
4. 延迟单位阶跃信号
时间常数τ
三要素公式:
f (t)
f
()+ f
(0)
t
f () e
t
t0
1.初始值f(0+)旳计算
(1) uc(0+) 与 iL(0+) 按换路定则求出 C视作开路 uc(0+)= uc(0-) L视作短路 iL(0+)= iL(0-)
(2)其他电路变量旳初始值 应画出t=0+旳等效电路,然后按电阻电路计算
o o
t
1S
10 (t)
t
t 10 (t 1)
uC 10(1 et ) (t) 10[1 e(t1) ] (t 1)V

RLC_动态电路的时域分析

RLC_动态电路的时域分析

RLC_动态电路的时域分析动态电路的时域分析学习指导与题解一基本要求1.明确过渡过程的含义电路中发生过渡过程的原因及其实2.熟练掌握换路定律及电路中电压和电流初始值的计算3.能熟练地运用经典分析RC和RL电路接通或断开直流电源时过渡过程中的电压和电流明确RC和RL电路放电和充电时的物理过程与过渡过程中电压电流随时间的规律4.明确时间常数零输入与零状态暂态与稳态自由分量与强制分量的概念电路过渡过程中的暂态响应与稳态响应5.熟练掌握直流激励RC和RL一阶电路过渡过程分析的三要素法能分析含受控源一阶电路的过渡过程6.明确叠加定理在电路过渡过程分析中的应用完全响应中零输入响应与零状态响应的分解方式掌握阶跃函数和RCRL电路阶跃响应的计算7.明确RLC电路发生过渡过程的物理过程掌握RLC串联二阶电路固有频率的计算和固有响应与固有频率的关系以及振荡与非振荡的概念会建立RLC二阶电路描述过渡过程特性的微分方程明确初始条件与电路初始状态的关系和微分方程的解法会计算RLC串联二阶电路在断开直流电源时过渡过程中的电压和电流了解它在接通直流电源时电压和电流的计算方法二学习指导电路中过渡过程的分析是本课程的重要内容教学内容可分如下四部分1.过渡过程的概念2.换路定律3.典型电路中的过渡过程包括RC和RL一阶电路和RLC串联二阶电路过渡过程的分析4.叠加定理在电路过渡过程分析中的应用着重讨论电路过渡过程的概念换路定律RC和RL一阶电路过渡过程中暂态响应与稳态响应和时间常数的概念计算一阶电路过渡过程的三要素法完全响应是的零输入响应和零状态响应阶跃响应以及RLC串联二阶电路过渡过程的分析方法现就教学内容中的几个问题分述如下一关于过渡过程的概念与换路定律1.关于过渡过程的概念电路从一种稳定状态转变到另一种稳定状态所经历的过程称为过渡过程电路过渡过程中的电压和电流是随时间从初始值按一定的规律过渡到最终的稳态值产生过渡过程的原因是由于含有储能元件电容C电感L以及耦合电感元件的电路发生换路工作状态突然改变时引起的因此换路是产生过渡过程的外因而内因是电路是含有储能元件其实质是由于电路是储能元件能量的释放与储存不能突变的缘故电路是的过渡过程就是换路后电路的能量转换过程所以电路产生过渡过程的充分必要的条件是含有储能元件的电路发生换路如t 0时刻换路之后即t 0时储能元件的能量必须发生神化电路是才能产生能量转换的过程如果电路换路之后储能元件的能量不发生变化意味着换路后立即到达稳态电路就不发生五家渠市过程了2.换路定律若t 0时刻换路t 0_表示换路前最后的瞬间t 0表示换路后最初瞬间电压和电流的初始值就是t 0时的数值用u 0 和表示如果换路时刻电容电流和电感电压都是有限值则换路时刻电容电压和电感电流不能跃变即这就是换路定律关于换路定律应该明确的是1适用于换路定律的电量只有电容电压和电感电流其它电量是不适用换路定律的因为电容电压和电感受电流是电路的状态变量决定电路的储能状态即因此储能不能跃变必然是电容电压和电感受电流不能跃变而电路中的其它电量如电容电流电感电压电阻电压和电流等过都是非状态变量在换路时刻是可以跃变的2换路定律适用电路的条件是换路时刻电路中的电容电流和电感电压均为有限值否则换路定律不能应用这是由电容和电感元件的基本性质所决定的即伏安特性为因t 0时刻电容电流为有限值上式中的积分项为零同理因t 0时刻电感电压为有限值上式中的积分项为零否则如果换路时刻电容电流和电感电压不是的限值电容电压和电感电流可能跃变如图4-1a所示电路时刻开关K闭合则电容电压发生强制跃变必然换路时刻电容电流为非有限值又如图4-1b所示电路时刻进行换路输入电感元件L电感电流发生强制跃变必然换路时刻电感电压为为非有限值由此可见换路时刻电容电流和电感电压为非有限值则电容电压和电感电流可能发生跃变换路定律不能应用图 4-1 电容电压和电感电流的强制跃变3.初始值与电路我们所讨论的RC和RL以及RLC电路都是适用换路定律的这类电路换路后电路的初始值对于电容电压和电感电流而言求出和后便可按换路定律求出和电路时视为电压源视为电流源4.稳太值与稳态电路过渡过程结束后电路中的电压和电流的最终值就是新的稳定状态的数值即稳态值稳态值一般作出过渡过程结束后的稳态电路来求出如直流电源激励的稳态电路称为直流稳态电路这时电路中电容相当于开路这时按相量法计算出稳态值5.电路过渡过程分析的目的与立法电路中过渡过程分析的目的主要是研究过渡过程中电压和电流的变化规律它与动态电路换路后的结构和储能元件的性质数目及初始储能等有关由列出和求解描述电路动态过程的微分方程的解来确定电路过渡过程的分析方法有经典法和变换域分析法经典分析法是在时域以待支路的电压或电流为变量列出电路换路后的微分方程并直接求解满足初始条件微分方程的解答得出时间函数的电压电流本章就是采用这种方法来分析过渡过程问题的这换域分析法是应用拉普拉斯变换方法来求解电路过渡过程中的电压和电流这种方法将在第十三章介绍二关于RC和RL一阶电路过程的分析1.典型RC和RL一阶电路含有一个独立储能元件的电路动态特性是用一阶微分方程来描述称为一阶电路如图4-2ab所示RC和RL串联电路是典型的一阶电路其它的一阶电路可以应用戴维南定理等效化简为典型的一阶电路2.直流RC和RL一阶电路的微分方程如果RC和RL电路的激励源是直流电源称为直流一阶电路为了分析RC和RL 一阶电路过渡过程中电压和电流的变化规律需根据KVLKCL和元件VAR列出时电图 4-2 典型RC和RL一阶电路路的微分方程如图4-2 a 所示电路以为变量时电路的微分方程为这是常系数线性非齐次一阶微分方程齐次微分方程是电路换路后过渡过程中的电容电压随时间变化的规律就是满足初始条件微分方程的解又如图12-2 b 所示RL电路以为变量时电路的微分方程为这是常系数线性非齐次一阶微分方程齐次微分方程是电路换路后过渡过程中的电流随时间变化的规律就是满足初始条件微分方程的解电路的初始条件由初始状态来确定3.过渡过程是的暂态响应与稳态响应1如图12-2a所示RC电路初始状态且时的是以为变量常系数一阶非齐次方程的解包含齐次微分方程的通解和非齐次微分方程的特解故微分方程的全解为根据初始条件确定积分常数K当时则上式为故最后解出过渡过程中的电容电压为上式等号右边第一项按指数规律衰减当时为零故称为暂态响应又称自由分量第二项是与激励电源形式相同而与时间无关的恒定值当时故称为稳态响应又称为强制分量由此可见过渡过程中的电容电压可以解为暂态响应与稳态响应之和在工程上RC电路电容放电过程中的电容电压为电容放电电压是从初始值按指数规律衰减为零就是指数规律衰减的因子RC电路当电容充电过程中的电容电压为电容充电电压是从零按指数规律上升到稳态值就是从零按指数规律增长的因子电路中的电流则根据电容零件的VAR得出即2如图12-2b所示RL电路若初始状态且时的是以为变量的非齐次微分方程满足初始条件的解即式中是暂态响应是稳态响应4.时间常数1在上述RC和RL电路过渡过程中和的暂态响应含有衰减因子和e是指数的分母RC和的量纲是时间单位是秒它们的数值决定于电路中的参数RC和RL均为常数故称为时间常数用表示对于图12-2所示典型一阶电路RC电路RL电路对于非典型一阶电路时间常数中的R戴维南等效电路的等效电阻2时间常数是一阶微分方程的特征方程的负倒数如图12-2a所示电路微分方程的特征方程是故特征根为因此时间常数特征根具有频率的量纲即秒由电路的参数RC确定反映电路的固有性质故称为固有频率3时间常数是决定电压过渡过程中电压和电流变化快慢的物理量其值是过渡过程中暂态响应衰减到初始值368所需的时间值越大衰减就越慢过渡过程就越长反之值越小衰减就越快则过渡过程就越短从理论上讲要经过无限长时间暂态响应才能衰减为零过渡过程才能结束但是在工程一般认为经过35的时间暂态响应已衰减趋于零过渡过程便结束了4还应指出对于同一电路时电路中不同支路的电压和电流暂态响应衰减的时间常数都是相同的换句话说一个电路换路后只有一个时间常数5.直流一阶电路分析计算的三要素法由于直流一附上电路换路后在过渡过程中的电压和电流是从初始值按指数规律衰减到稳态值或者是从初始值按指数规律上升到稳态值而指数规律的变化又决定于时间常数因此过渡过程中的电压和电流是随时间的变化规律由初始值稳态值的时间常数所确定只要计算出初始值稳态值和时间常数则过渡过程中的电压和电流便可直接由如下三要素公式得出即上式中是暂态响应是稳态响应上式所示三要素公式化适用于直流激励有损耗一阶电路时刻换路时电路的过渡过程分析有损耗一阶电路的戴维南等效电阻R是正值特征根S是一个负数暂态响应含负指数随时间作衰减变化三要素法是一阶电路过渡过程分析的实用计算法不必列出和求解电路的微分方程只要直接计算出待求响应变量的初始值稳态值和电路的时间常数即可具有简捷方便的优点因此在工程实际中具有重要意义6.关于正弦激励一阶电路过渡过程的分析计算步骤与直流激励一阶电路分析方法相同如图12-2a所示RC电路时刻换路接入电源是开关K闭合时刻电源电压的相位角经典法分析计算的步骤如下1时以电容电压为变量的微分方程为2解微分方程齐次方程的通解为非齐次微分方程的特解就是稳态响应按时稳态电路用相量法求出即正弦稳态时RC串联电路的电容电压为式中是稳态电容电压有效值是RC 串联电路的阻抗角解出稳态响应为3过渡过程中电容电压为4确定积分常数K若当时刻上式为5最后解出过渡过程中的电容电压为过渡过程中电容电压的暂态响应与开关K闭合的时刻有关由于正弦电源电压接入电路初相角的数值取决于开关闭合的时刻当不财的时刻开关闭合时积分常数K的数值不同如果当时刻开关闭合则积分常数暂态响应为零电路称路后立即到达稳态值没有过渡过程如果当或时刻开关K闭合则积分常数为最大值这时电容两端可能出现过电压对于正弦电源接入RL电路的分析按上述同样的步骤进行可以得出与RC电路类似的结果读者自行总结正弦电源激励动态电路过渡过程的分析是本章学习的一个难点三关于零输入响应零状态响应与完全响应从现货电路理念的观点电路中不仅独立电源是电路的激励而且储能元件的初始储能即初始状态也是一种激励因为从能量观点而言独立电源可以向电路提供电能也可以从电路吸收电能储能元件亦有相似的效果同样可以向电路释放电能也可以从电路中吸收能量储存于电场或磁场中然而应明确独立电源和储能元件是两种不同性质的元件它们的伏安特性是完全不同的因此既然动态电路的独立电源和储能形色仓皇的初始储能都是电路的激励那么旅游活动可以应用叠加定理来分析换路后电路中的电压和电流1.零输入响应输入就是电路外加电源激励零输入就是外加电源激励为零电路反由储能元件的初始状态作用下的响应称为零输入响应如图4-2 a所示RC电路则零输入响应为2.零状态响应电路在非零状态下由外加电源激励下产生的响应称为零状态响应如图4-2a 所示RC电路初始状态则零状态响应为3.完全响应电路在非零状态下由外加电源激励和初始储能共同作用下产生的响应称为完全响应如图4-2a所示RC电路且则按叠加定理完全响应是零输入响应与零状态响应之和即应该指出从概念上应明确如下几点1零输入响应和零状态响应都不能与产生它的原因成正比即零输入响应与储能元件的初始状态成正比而零状态响应则与外加电源电压成正比但是完全响应则既不与储能元件的初始状态成正比也不与外加电源激励成正比 2零输入响应不同于暂态响应零状态响应不同于稳态响应一般而言完全响应是的零输入响应包含在暂态响应当之中零状态响应是自由分量和强制分量之和而稳态响应则仅是强制分量与外激励电源的形式相同3完全响应分解为零输入响应与零状态响应之和总是存在的而分解为暂态响应与稳态响应之和则不总是存在的因为在某些情况下暂态响应可能为零 4完全响应的两种分解方式是从不同的角度描述电路中发生的过渡过程从过渡的观点暂态响应与稳态响应的分解方式是把换路后工作过程的层次描述的直观明确而从叠加的观点零输入响应与零状态响应的分解方式是鬼魂激励与响应的因果关系表现得十分清楚从电路理论的观点电路零输入响应和零状态响应分析具有更普遍的意义5在工程上如电容的放电过程中的电容电压运行电机停机时激励磁绕组灭磁过程中的绕组电流都是零输入响应分析又如零状态电容的充电过程和投入电机运行的磁绕组接入电源的升磁过程都是零状态响应分析因此零输入响应分析和零状态响应分析在实际工程中具有直接的实用意义图 4-3 阶跃电源电压RC电路系统四关于阶跃函数与阶跃响应1.单位阶跃函数的定义单位阶跃函数的定义为单位延时阶跃函数的定义为2.单位阶跃函数的作用1用来表示时刻开关K闭合直流电源接入动态电路如图9-2a所示RC电路可用图12-3所示的由阶跃电压电源激励的RC电路表示代替了时刻K闭合将直流电源电压接入RC电路的作用2在时刻换路后过渡过程中的电压和电流表达式表示了的作用如图4-2aRC电路时的电容电压可以表示为或3用阶跃函数表示矩形脉冲信号如图4-4a的矩形脉冲电压可以用图4-4bc的阶跃函数和延时阶跃函数之和来表示即图 4-4 用阶跃函数表示矩形脉冲电压波形图3.单位阶跃响应的定义单位阶跃响应的定义为零状态电路在单位阶跃函数电源激励下的响应并用表示RC电路的单位阶跃响应为单位延阶跃时响应为对于如图4-3所示的RC电路的阶跃响应是如果电路的激励是延时阶跃函数时则RC电路的延时阶跃响应电容电压为 4.关于阶跃函数激励非零状态电路的响应应用叠加定理这时电路的完全响应是零状态响应即阶跃响应和零输入响应之和如图4-3所示电路且这时电路的阶跃响应为零输入响应为故电路的完全响应电容电压为五关于RLC二阶电路的分析方法由两个独立储能元件组成的电路其过渡过程的特征性用二阶微分方程描述故称为二阶电路RLC串联电路是典型的二阶电路通过对它的分析来明确二阶电路过渡过程的基本概念和分析方法着重讨论RLC串联电路的放电过程即电路的固有响应也就是零输入响应也介绍RLC串联电路的充电过程即零状态响应和完全响应1.电路的微分方程与初始条件如图4-5所示RLC串联二阶电路时以电容电压为变量描述动态过程特性的微分方程是图 4-5 RLC串联二阶电路过渡过程中电容电压随时间变化的规律就是微分方程的解方程的求解需有如下两个初始条件只要知道电路的两个初始状态和按上式便可得出初始条件和于是RLC串联电路的放电过程的就是满足上述初始条件齐次微分方程的解充电过程的就是满足初始条件非齐次微分方程的解2.电路的固有频率与固有响应电路的固有频率是二阶微分方程的特征方程的根即它是由电路本身RLC元件参数所确定量纲是秒反映电路本身的固有性质电路的固有响应就是零输入响应是上述二阶齐次微分方程的解根据RLC元件参数的不同数值固有频率和固有响应有如下四种形式1当时固有频率是两个不等的负实数即这时固有响应是过阻尼放电过程其数学表达式为2当时固有频率是一对负实部的共轭复数即这时固有频率响应是欠阻尼振荡放电过程其数学表达式为3当时固有频率是两个相等的负实数即这时固有响应是临界阻尼非振荡放电过程其数学表达式为4当时固有频率是一对共轭虚数即这时固有响应是无阻尼的电振荡过程其数学表达式为已知电路中的两个初始状态便可得出两个初始条件和上述式中的积分常数和便可确定放电过程中的响应电容电压便可解出应该指出二阶电路微分方程的初始条件和积分常数和的确定是二阶电路的分析计算中的难点由以上分析可知二阶电路分析的基本步骤是根据微分方程的特征方程计算出电路的固有频率根据固有频率写出固有响应的表达式根据电路的初始条件确定求解方程计算积分常数和的初始条件和并根据初始条件和固有响应表达式确定积分常数和便解出了放电过程中的响应变量电容电压还应指出二阶电路的固有频率是复频率即式中是正实数它决定响应的衰减特征称为衰减常数是决定电路响应衰减振荡的特性称为阻尼角频率是电路固有的振荡角频率称为谐振角频率上述计算固有频率的关系式是针对RLC串联电路得出的对于一般二阶电路而言微分方程为的特征方程为则电路的固有频率是3.RLC串联二阶电路充电过程的分析方法当外加直流激励电压源电压时RLC串联电路的充电过程若电路初始储能为零就是零状态响应分析若非零初始状态则是完全响应分析二者是常系数二阶非齐次微分方程的解只是初始条件不同而已它包括齐次微分方程的通解和非齐次微分方程的特解齐次微分方程的形式与上述固有响应的表达式相同而非齐次微分方程的特解与激励形式相同由于微分方程中系数为1故特解为因此RLC串联电路充电过程电容电压根据RLC元件参数的不同有如下四种形式即1当时固有频率是则2当时固有频率是则3当时固有频率是则4当时固有频率则最后根据初始条件和确定积分常数和便解出响应变量4.关于振荡与非振荡的概念电路过渡过程的实质就是能量的转换过程这种能量转换的过程由电路的两个初始状态和电路结构及元件参数来确定在无电源RLC串联电路的放电过程中电容和电感在初始时刻可能存在数值不同的电场能量和磁场能量或者它们之一有储能另一无储能在过渡过程中电阻元件R总是消耗能量的电容元件和电感元件是要释放出原有储能提供给电阻元件转换为热能的在这过程中可能是电容与电感同是释放出能量提供电阻元件消耗形成非振荡的放电过程也可能出现电场能量与磁场能量的交换形成振荡放电过程这将决定于电路元件的参数如果RLC 串联电路的电阻元件R是数值较小即时电阻元件消耗功率较小按能量守恒原理在放电开始一段时间内某一储能元件如电容元件释放出的电场能量一部分为电阻R所消耗另一部分为电感元件所吸收储存在磁场中使磁场能量增加到某一最大值而电容中的电场能量逐渐减少至零值继之另一段时间内电感元件释放出磁场能量一部分为电阻R所消耗另一部分为电容进行反充电不断增加电场能量达到某一最大值而电感元件中的磁场能量减少至零值而后重复上述过程往复循环进行电容与电感元件之间的能量交换形成电磁振荡由于电阻元件不断的消耗功率使电容与电感之间能量交换的规模不断减少直至储能全部为电阻所消耗过渡过程便结束形成欠阻尼放电过程要维持等幅振荡就要不断补充电磁振荡过程中的能量消耗这就是电子振荡器的基本原理如果RLC串联电路电阻R的数值较大即时由于电阻元件消耗功率较大根据能量守恒原理这时电容和电感元件均不断同时释放储能提供给电阻R消耗直至全部储能为电阻元件所消耗过渡过程便结束形成非振荡性的阻尼放电过程这应指出如果二阶电路的两个独立储能元件的性质相同的元件时在放电过程中不存在电场能量与磁场能量的交换不可能出现电磁振荡过渡过程只能是非。

第3章时域分析

第3章时域分析

第三章时域分析刘健副教授liujian@课件下载地址:课件下载地址voicesp2013@/voicesp123456北京科技大学3.1 语音分析方法概述语音分析是语音合成及语音识别的基础。

短时分析技术——贯穿语音分析全过程语音分析的三种方法:(1)时域分析法——时域波形图。

(2)频域分析法——频谱图。

(2)频域分析法频谱图(3)语谱分析法——语谱图。

(1)时域分析法语音的时域分析采用时域波形图。

坐是,纵坐是。

横坐标是时间,纵坐标是幅值。

(2)频域分析法频域分析包含:语音信号的频谱、功率包含信的率谱、倒频谱、频谱包络、短时间谱等。

常用的频域分析方法有:a带通滤波器组法a.带通滤波器组法。

b.傅里叶变换法。

c.线性预测法等。

(3)语谱分析法语谱分析法是另种用于语音分析的有效方语谱分析法是另一种用于语音分析的有效方法。

语谱分析法始于20世纪40年代,当时研制成功语谱仪,能生成语谱图。

语谱图可以在二维(时间及频率)图上表示音强的关系,提供了有关不同时间不同频率的相对音强的有价值的信息。

对音强的有价值的信息3.2 语音的时域分析三种常用的时域分析方法:三种常用的时域分析方法(1)过零分析(2)幅度分析/能量分析(3)相关分析3.2 语音信号数字化-采样量化语音信号数字化采样量化采样:一个数字信号取样之后,变成离散时间信号,接下来就是要用数字方式来表示这个离散时间信号上的每个取样值的每个取样值。

量化:一个电位波形会有固定的电压范围,一个取样值可以是在此电压范围内的任何电位。

如果只能用固值可以是在此电压范围内的任何电位如果只能用固定数目的位来表示这些取样值,那么这些二进数字就只能代表固定的几个电位值,这个转换就是量化只能代表固定的几个电位值这个转换就是量化(quantization),而转换之后只允许存在的几个电位值(quantization level)就是量化阶数(quantization level)。

动态电路的时域分析

动态电路的时域分析

动态电路的时域分析
动态电路分析的基本方法是建立电路的微分方程,利用电路中的基尔
霍夫定律和伏安定律,推导出描述电路元件电压和电流变化关系的微分方程。

然后,通过求解微分方程,得到电路的时间响应,即电压和电流随时
间的变化规律。

动态电路的分析过程中需要考虑电路元件的动态特性,包括电容元件
和电感元件的存储能量和存储效应。

对于电容元件,其电压和电流之间的
关系可以用电容的充放电方程来描述。

而对于电感元件,其电压和电流之
间的关系可以用电感的变化率来描述。

在时域分析中,最常用的方法是Laplace变换法。

通过将电路中的微
分方程转化为复频域中的代数方程,可以大大简化电路的分析过程。

利用Laplace变换后的电路方程,可以通过进行代数运算和逆变换,得到电路
的时间响应。

动态电路的时域分析还需要考虑电路的初始条件。

对于包含存储元件
的电路,初始条件是指电容电压和电感电流在初始时刻的取值。

有时候,
电路的初始条件会影响电路的稳定性和响应速度,因此在进行时域分析时,需要充分考虑初始条件的影响。

此外,动态电路的时域分析还可以通过脉冲响应法进行。

该方法利用
电路的单位阶跃响应和冲击响应的线性叠加原理,可以将任意输入信号分
解为一系列单位阶跃函数和冲击函数,并通过对各个分量的处理来得到电
路的时间响应。

总之,动态电路的时域分析是电路理论中的重要内容。

通过对电路中各个元件的电压和电流随时间的变化进行分析,可以揭示电路的动态行为和响应过程,为电路设计和故障诊断提供重要的理论依据。

自动控制原理(第二版)(赵四化)章 (3)

自动控制原理(第二版)(赵四化)章 (3)

(s) C(s) 1
R(s) Ts 1
(3-13)
第3章 时域分析法 图3-5 一阶系统的动态结构图
第3章 时域分析法
3.2.1 一阶系统的单位阶跃响应
设输入
R(s) 1 s
则输出量的拉氏变换为
C(s) (s) 1 1 1 1 1
s Ts 1 s s s 1/T
单位阶跃响应为
1t
C(s)
(s)R(s)
s2
n2 2ns
n2
1 s
其中, 由
s2 2 ns n2 0
可求得两个特征根
s1,2 n n 2 1
(3-22)
第3章 时域分析法
1) ξ>1, 过阻尼
ξ>1

, 2 1 s1,2=-ξωn±ωn
为两个不相等的负实数根, 即有
C(s)
n2
A1 A2 A3
(s)
C(s) R(s)
s2
n2 2ns
n2
(3-21)
其中, ξ为阻尼比, ωn为无阻尼自然振荡频率, 它们 均为系统参数。
第3章 时域分析法
由式(3-21)可以看出, 二阶系统的动态特性 可以用ξ和ωn这两个参数的形式加以描述。 如果0<ξ<1, 则闭环极点为共轭复数, 并且位于左半s平面, 这时系统 叫做欠阻尼系统, 其瞬态响应是振荡的。 如果ξ=1, 那 么就叫做临界阻尼系统。 而当ξ>1时, 就叫做过阻尼系 统。 临界阻尼系统和过阻尼系统的瞬态响应都不振荡。 如果ξ=0, 那么瞬态响应变为等幅振荡。
此时系统输出响应的拉氏变换为
C(s)
1 Ts 1
1 s2
1 s2
T s
T2 Ts 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(t≥0)
5、零状态响应曲线: 、零状态响应曲线:
6、时间常数τ:定义τ=RC 。用来表征一个电路过 、 定义τ 渡过程快慢的物理量。τ 越大,电路过渡过程持续时间 渡过程快慢的物理量。 越大, 一般认为经过3 过渡过程结束。 越长 。一般认为经过3τ~5τ,过渡过程结束。
11
所示, < 时电路已处于稳态 时电路已处于稳态; 【例3-3】 电路如图 所示,在t<0时电路已处于稳态; 】 电路如图3-7所示 闭合, 时的电流i。 在t=0时,开关 闭合,试求 ≥ 0时的电流 。 时 开关S闭合 试求t 时的电流 解:1、先求换路前电 、 容电压uc (0 − ) 。 由图7-7( ) 由图 (a)可求 出 uc (0− )=
f (t ) = f (0 + )e
− t
τ
t≥0
应该注意的是: RC电路与RL电路的时间常数是 电路与RL 应该注意的是: RC电路与RL电路的时间常数是 不同的,前者τ=RC 后者τ=L/R τ=RC, τ=L/R。 不同的,前者τ=RC,后者τ=L/R。
3
3-1-1 动态元件和换路定律
1、动态元件:电容元件、电感元件 动态元件:电容元件、 VAR: VAR: du
iC (t )=C
C
dt
diL uL (t )= L dt
由于电容元件瞬时的电流不该瞬间的电压,而 是取决于该瞬间电容电压的变化情况,因此电容 元件为动态元件。 同理:电感元件也是动态元件。
当电容电压、电感电流为有限值时, 当电容电压、电感电流为有限值时,则uC 、 i L不能跃变。 不能跃变。
4
2、换路定律
(1)换路:当作用于电路的电源发生突变(如电源的接入或撤 换路:当作用于电路的电源发生突变( )、电路的结构或参数发生变化时统称为 换路” 电路的结构或参数发生变化时统称为“ 出)、电路的结构或参数发生变化时统称为“换路”。 (2)换路定律:在电路发生换路后的瞬间,电容两端的电压和 )换路定律:在电路发生换路后的瞬间, 电感中的电流都应保持换路前一瞬间的原有值不变, 电感中的电流都应保持换路前一瞬间的原有值不变,这个结论称 为换路定律。 为换路定律。 若换路发生在t=0时刻 我们把换路前的瞬间记为t=0 时刻, 若换路发生在t=0时刻,我们把换路前的瞬间记为t=0-,换路 后的瞬间记为t=0 后的瞬间记为 +,换路定律可表示为
9
3.2.1 RC电路的零输入响应
1、电路组成:如图所示;在t=0时,开关S由a合 电路组成:如图所示; =0时 开关S 换路后:电路中无电源作用, 向b。换路后:电路中无电源作用,电路的响应均 是由电容的初始储能而产生,故属于零输入响应。 是由电容的初始储能而产生,故属于零输入响应。 2、电路中各电压、电流的 电路中各电压、 参考方向如图7 参考方向如图7-5所示
3、列方程:由KVL得:uC+uR=0 、列方程: 得 其中: 其中:
uC (0+ ) = U 0
uR=R i
i= iC = C
du C 代入 dt
图3-5 RC电路的零输入响应
动态电路的一阶方程: 得RC动态电路的一阶方程: RC duC + u = 0 动态电路的一阶方程 C dt 4、零状态响应表达式: 、零状态响应表达式: 解此方程得: 结合初始值 uC (0+ ) = U 0 解此方程得: uC (t ) = U 0 e
14
从以上求得的RC 和 RL电路零输入响应可知 电路零输入响应可知, 从以上求得的 RC和 RL 电路零输入响应可知 , RC 对于一阶电路,不仅电容电压、电感电流, 对于一阶电路,不仅电容电压、电感电流,而且 所有电压、电流的零输入响应,都是从它的初始 所有电压、 电流的零输入响应, 值按指数规律衰减到零的。且同一电路中, 值按指数规律衰减到零的。且同一电路中,所有 的电压、电流的时间常数相同。 的电压、电流的时间常数相同。 若用f (t)表示零输入响应 表示零输入响应, 若用f (t)表示零输入响应,用f (0+)表示其初始 值,则零输入响应可用以下通式表示为
6
初始值求解举例
【例3-1】 US=10V,R1=R2=R3=5Ω。电路原已达到稳态。在t=0时断 电路原已达到稳态。 开开关S。试求t= 0+ 时电路的初始值uc(0+)、u2(0+)、u3(0+)、 i2(0+)、i3(0+)等。 解:(1)先求uC(0-) :(1 由于换路前电路处于稳态, 所以电容元件相当于开路, 由原电路可求出
- t RC
10
4、零状态响应表达式: 、零状态响应表达式:
uC (t ) = U 0 e
- t RC
它是一个随时间衰减的指数函数
电容上的零输入响应电流表达式为: 电容上的零输入响应电流表达式为:
t t - duC U 0 - RC d iC (t )= C e = C (U 0 e RC )= − dt dt R
R1 R1
13Байду номын сангаас
电感的电压表达式: 电感的电压表达式:
u L = −u R = − RI 0 e

t
τ
t≥0
4、分别作出 uR 和、uL的波形如图所示。 的波形如图所示。 由图可知, 由图可知,uR及uL都是从各自 的初始值开始, 的初始值开始,然后按同一指数 规律逐渐衰减到零。 规律逐渐衰减到零。 衰减的快慢取决于时间常数τ 衰减的快慢取决于时间常数τ, 这与一阶RC RC零输入电路情况相 这与一阶RC零输入电路情况相 同。 5、时间常数τ:RL电路的时间常数τ=L /R 。 时间常数τ RL电路的时间常数τ 电路的时间常数
2
3.1电路的动态过程
概念:
稳态电路: 稳态电路:是指电路中各处响应恒定不 变或随时间按周期性变化。 变或随时间按周期性变化 动态元件:电容、电感元件。 动态元件:电容、电感元件。 动态电路:含有动态元件的电路。 动态电路:含有动态元件的电路。 过渡过程:含有动态元件的电路, 过渡过程:含有动态元件的电路,从原 有的稳定状态变化到一个新的稳定状态, 有的稳定状态变化到一个新的稳定状态, 往往需要一个过程, 往往需要一个过程,这个过程就叫做过 渡过程。 渡过程。
。 (2)计算其他初始值。将原图中的电容C用短路代替[ uC (0+ ) 计算其他初始值。
用开路代替[ =0], =0+时的等效电路 =0]; =0];电感L用开路代替[ iL (0+ )=0],得t=0+时的等效电路 如图所示, 如图所示,从而求得
i1(0 + ) = 18 = 2 A, i2 (0 + ) = 0 9 iC (0 + ) = i1 (0 + ) = 2 A u L (0 + ) = 18V
10 × 2 =2V 6+2+2
2、作出t≥0时的电路如图(b)所示。 电路的时间常数τ =RC=1×2=2s。
uC (0 + ) = uC (0 − ) = 2V
− t 2
由式(7-5b)可得电容电压为: uc (t ) = 2e t t uC − 2 − duC 进而求得 i1 (t )= =e A iC (t )= C = - 2e 2 A 2 dt
i (t )= i 1 (t ) + iC (t )= − e A
− t 2
12
RL电路的零输入响应 3.2.2 RL电路的零输入响应
RL电路的零输入响应,是指电感储存的磁场能量通过电阻进 电路的零输入响应,
行释放的物理过程。如图3 所示,设开关S置于a 行释放的物理过程。如图3-8所示,设开关S置于a时电路已处于稳 =0时 开关S打开, 态,此时电感中电流 I 0 = U S 。在t=0时,开关S打开,电感将通过 R1 释放磁场能。 电阻R释放磁场能。 1、电压、电流的参考方向如图 电压、 电压 所示,开关打开后,根据KVL KVL可 所示,开关打开后,根据KVL可 得方程 uR + uL =0 diL 将: uR = Ri= RiL uL = L 代入得: dt RL电路的零输入响应 动态方程: 2、动态方程: L diL + iL =0 R dt R - t U S - R t U S -τt 3、RL电路的零输入响应: iL (t )= I 0 e L = e L = e
uC (0+ ) = uC (0− ) iL (0+ ) = iL (0− )
需要特别注意:除电容电压和电感电流外,其余各处电压电流 需要特别注意:除电容电压和电感电流外, 不受换路定律的约束,换路前后可能发生跃变。 不受换路定律的约束,换路前后可能发生跃变。
5
3-1-2 电路初始值及计算
求解方法如下: 求解方法如下: (1)由换路前的稳态电路,即t=0-时的电路计算出电容电 由换路前的稳态电路, 压或电感电流; 压或电感电流; (2)根据换路定律可以得到换路后t=0+瞬间电容电压和 根据换路定律可以得到换路后t 电感电流的初始值, (或)电感电流的初始值,即
uC (0+ ) = uC (0− ) iL (0+ ) = iL (0− )
u2 (0+ )=R2 i2 (0+ )
u3 (0+ )=R3 i3 (0+ )
=5×0.5=2.5V
= −5×0.5= −2.5V ×
7
电路如下图( 所示,开关S闭合前电路处于稳态, 【例3-2】 电路如下图(a)所示,开关S闭合前电路处于稳态,在 t=0时S闭合,试求S闭合后的初始值 =0时 闭合,试求S
8
3.2 一阶电路的零输入响应
概述 动态电路的响应来源于两部分:一是外加激励, 动态电路的响应来源于两部分:一是外加激励, 二是电路的初始储能(初始状态), ),或是二者共 二是电路的初始储能(初始状态),或是二者共 同起作用。 同起作用。 零输入响应:外加激励为零, 零输入响应 : 外加激励为零 , 仅由初始状态所 引起的响应; 引起的响应; 零状态响应:初始储能为零, 零状态响应 : 初始储能为零 , 而只由初始时刻 的输入激励所引起的响应; 的输入激励所引起的响应; 全响应:由二者共同作用所引起的响应则称为。 全响应 : 由二者共同作用所引起的响应则称为 。 本节先讨论零输入响应。 本节先讨论零输入响应。
相关文档
最新文档