人教版七年级数学上册整式的加减法专项练习题精选41

合集下载

人教版七年级数学《整式加减》计算题专项练习(含答案)

人教版七年级数学《整式加减》计算题专项练习(含答案)

人教版七年级数学《整式加减》计算题专项练习(含答案)1.计算:$2(5a^2-3b)-3(a^2-2b)$。

2.计算:$3a^2+2a-4a^2-7a$。

3.计算:$2(a-2b)-3(2a-b)$。

4.计算:$5x^2-[2x-3(x+2)+4x^2]$。

5.计算:$3x^2-3(x^2-2x+1)+4$。

6.化简:$2(2a^2+9b)+(-5a^2-4b)$。

7.化简:$-2a+(3a-1)-(a-5)$。

8.计算:$a+2b+3a-2b$。

9.计算:$2(x^2y-3xy^2)-3(x^2y-4xy^2)$。

10.先化简,再求值:$(2a^2-5a)-(2a^2-4a+2)$,其中$a=$。

11.化简:$3(2x^2y-3xy^2)-(xy^2-3x^2y)$。

12.化简:$2(3a-2b)-3(a-3b)$。

13.化简:$(3m+2)-3(m^2-m+1)+(3-6m)$。

14.化简:$-2(x^2-3xy)+6(x^2-xy)$。

15.化简:$2(2x^2-4x+1)-(3x^2-2x+5)$。

16.计算:$2x^2+(3y^2-xy)-(x^2-3xy)$。

17.化简:$(5x^2-2x-3)-(x-4+3x^2)$。

18.先化简,再求代数式的值:$2(a^2-ab)-3(a^2-ab-)$,其中$a=2$,$b=$。

19.化简求值:$2(3x^2-2x+1)-(5-2x^2-7x)$,其中$x=-1$。

20.先化简,再求值。

21.已知$A=2x^2-9x-11$,$B=-6x+3x^2+4$,且$B+C=A$,(1)求多项式$C$;(2)求$A+2B$的值。

22.先化简,再求值:$(4a^2-2a-8)-(a-1)$,其中$a=1$。

23.先化简,再求值:$(-x^2+5+4x)+(5x-4+2x^2)$,其中$x=-2$。

24.化简后再求值:$x+2(3y^2-2x)-4(2x-y^2)$,其中$x=2$,$y=-1$。

【精选习题】最新人教版七年级数学第二章整式的加减单元练习(含答案).doc

【精选习题】最新人教版七年级数学第二章整式的加减单元练习(含答案).doc

人教版七年级上册数学单元练习题:第二章整式的加减一、选择题1.单项式的系数是()A. B. π C. 2 D.2.下列各组式子中,是同类项的是()A. 3x2y与-3xy2B. 3xy与-2yxC. 2x与2x2D. 5xy与5yz3.在式子a2+2,,ab2,,﹣8x,0中,整式有()A. 6个B. 5个C. 4个D. 3个4.下列各式计算结果正确的是()A. a+a=a2B. (a﹣1)2=a2﹣1C. a•a=a2D. (3a)3=9a25.多项式﹣x2+2x+3中的二次项系数是()A. ﹣1B. 1C. 2D. 36.下列说法错误的是()A. 2x2﹣3xy﹣1是二次三项式B. ﹣x+1不是单项式C. 的系数是D. ﹣22xab2的次数是67.计算2a3+3a3结果正确的是()A. 5a6B. 5a3C. 6a6D. 6a38.一个多项式加上3x2y-3xy2得x3-3x2y,则这个多项式是()A. x3+3xy2B. x3-3xy2C. x3-6x2y+3xy2D. x3-6x2y-3x2y9.6张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A. a=2bB. a=3bC. a=4bD. a=b10.已知a﹣b=﹣3,c+d=2,则(b+c)﹣(a﹣d)的值为()A. ﹣1B. ﹣5C. 5D. 111.如图是用大小相等的小正方形拼成的一组图案,观察并探索:第100个图案中有小正方形的个数是()A. 393B. 397C. 401D. 405二、填空题12.单项式﹣x3y的系数是________.13.多项式是a -2a -1 是________次________项式.14.下面是按一定规律排列的一列数:,- ,,- …那么第8个数是________.15.观察下列数:,,,,…按规律写出第6个数是________,第10个数是________,第n个数是________.16.观察下列各式:x+1,x2+4,x3+9,x4+16,x5+25,…按此规律写出第n个式子是________17.下列图形:它们是按一定规律排列的,依照此规律,第n个图形共有________个★.三、解答题18.化简:(1)2x-5y-3x+y(2)19.先化简,再求值.,其中.20.两位数相乘:19×11=209,18×12=216,25×25=625,34×36=1224,47×43=2021,…(1)认真观察,分析上述各式中两因数的个位数、十位数分别有什么联系,找出因数与积之间的规律,并用字母表示出来.(2)验证你得到的规律.21.观察下列算式:①1×3﹣22=﹣1②2×4﹣32=﹣1③3×5﹣42=﹣1(1)请你安照以上规律写出第四个算式:________;(2)这个规律用含n(n为正整数,n≥1)的等式表达为:________;(3)你认为(2)中所写的等式一定成立吗?说明理由.参考答案一、选择题1.D2. B3.B4.C5. A6. D7. B8. C9.A 10.C 11. B二、填空题12. 13.三;三14. 15.;;16.x n+n217.(1+3n)三、解答题18.(1)解:2x-5y-3x+y=(2-3)x+(-5+1)y=-x-4y(2)解:=2a+4b-3a+9b=(2-3)a+(4+9)b=-a+13b19.解:原式=3x²-2xy- [x²-8x+8xy],=3x²-2xy- x²+4x-4xy,= x²-6xy+4x,当时,原式= ×(-2)2-6×(-2)×1+4×(-2),=10+12-8,=14.20.(1)解:上述等式的规律是:两因数的十位数相等,个位数相加等于10,而积后两位是两因数个位数相乘、前两位是十位数乘以(十位数+1);如果用m表示十位数,n表示个位数的话,则第一个因数为10m+n,第二个因数为10m+(10﹣n),积为100m(m+1)+n(10﹣n);等式表示出来为:(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)(2)解:∵左边=(10m+n)(10m﹣n+10),=(10m+n)[10(m+1)﹣n],=100m(m+1)﹣10mn+10n(m+1)﹣n2,=100m(m+1)﹣10mn+10mn+10n﹣n2,=100m(m+1)+n(10﹣n)=右边,∴(10m+n)[10m+(10﹣n)]=100m(m+1)+n(10﹣n)成立21.(1)④4×6﹣52=﹣1(2)(2n﹣1)(2n+1)﹣(2n)2=﹣1(3)解:左边=(2n﹣1)(2n+1)﹣(2n)2=4n2﹣1﹣4n2=﹣1所以(2)中所写的等式一定成立人教版七年级数学第二章整式的加减单元练习(含答案)一、单选题1.单项式的系数和次数分别是()A.2,2B.2,3C.3,2D.2,4 2.下列说法正确的是()A.ab+c是二次三项式B.多项式2x2+3y2的次数是4C.0是单项式D.34ba是整式3.下列各式中,代数式有()个(1)a+b=b+a;(2)1;(3)2x-1 ;(4)23xx+;(5)s =πr 2;(6)-6kA.2 B.3 C.4 D.54.a的5倍与b的和的平方用代数式表示为()A.(5a+b)2B.5a+b2C.5a2+b2D.5(a+b)2 5.下列各式中,不是整式的是().A.3a B.2x = 1 C.0 D.xy 6.23-x yz的系数和次数分别是()A.系数是0,次数是5 B.系数是1,次数是6C .系数是-1,次数是5D .系数是-1,次数是67.考试院决定将单价为a 元的统考试卷降价20%出售,降价后的销售价为( ) A .20%aB .20%a -C .(120%)a -D .(120%)a +8.有理数a ,b 在数轴上对应点的位置如图所示,则a a b b a -+--化简后的结果是( )A .aB .bC .2a +bD .2b −a9.……依次观察左边三个图形,并判断照此规律从左到右第2019个图形是 ( ) A .B .C .D .10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为a 厘米,宽为b 厘米)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .4a 厘米B .4b 厘米C .2(a+b )厘米D .4(a-b )厘米11.使方程3x + 5y - 2 + 3kx + 4k = 0不含 x 的项,则 k 的值为( ) A .k =-1B .k =-2C .k=3D .k = 112.如图,每个图形都是由同样大小的正方形按照一定的规律组成,其中第①个图形面积为2,第②个图形的面积为6,第③个图形的面积为12,…,那么第⑥个图形面积为( )A.20B.30C.42D.56二、填空题13.计算()()3242x y x y --+-的结果是__________. 14.多项式2239x xy π++中,次数最高的项的系数是_______. 15.请将 4 y 2-25xy 3- 5 y 按字母 y 的降幂排列____________ 16.已知212a a -+=,那么21a a -+的值是______________.三、解答题17.把下列代数式的代号填入相应的集合括号里.(A )22a b ab + (B )2315x x -+ (C )2a b + (D )23xy - 人教版七年级上册第二章整式的加减单元测试一、选择题(每题3分,共21分)1. 下列说法正确的是( )A.213x π的系数为13B.212xy 的系数为12x C. ()23x -的系数为3D. ()23x π-的系数为3π-2. 下列各组式子中,是同类项的是( )A. 2233x y xy -与B. 222x x 与C. 32xy yx -与D. 55xy yz 与3. 下面计算正确的是( )A. 2233x x -=B. 235325a a a +=C. 33x x +=D. 10.2504ab ba -+=4. 如果12a b -=,那么()3b a --的值是( ) A. 35-B. 23C.32D.165. 将()()()24x y x y x y +++-+合并同类项得( )A. x y +B. x y -+C. x y --D. x y -6. 若8a =,3b =,且a b <,则a b -的值为( )A. 11-B. 5-C. 5-或5D. 11-或5-7. 观察图中正方形四个顶点所标的数字规律,可知数2013应标在( )A. 第503个正方形的左上角B. 第503个正方形的右下角C. 第504个正方形的左上角D. 第504个正方形的右下角二、填空题(每题3分,共21分)8. 已知单项式23m a b 与4123n a b --人教版七年级上册数学第二章整式加减单元检测卷一、选择题:(每小题3分共30分)1.单项式 的系数和次数分别是( ) A.B.C.D.2.下列语句中错误的是( )A .单项式﹣a 的系数与次数都是1B .12xy 是二次单项式 C .﹣23ab 的系数是﹣23D .数字0也是单项式 3.某企业今年 月份产值为 万元, 月份比 月份增加了 , 月份比 月份减少了 ,则 月份的产值为( ) A. 万元 B. 万元 C. 万元 D. 万元4.已知单项式﹣25m 2x-1n 9和25m 5n 3y是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .05.下列运算结果正确的是( ) A .33(2)6x x =B .33x x x ÷=C .325x x x ? D .23x x x +=6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.87.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( ) A .0B .1-C .2或2-D .69.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( ) A.P +Q 是关于x 的八次多项式 B.P -Q 是关于x 的二次多项式 C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式10.为庆祝六一儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛,如图:按照上面的规律,摆 个“金鱼”需用火柴棒的根数为( ) A. 根B. 根C. 根D. 根二、填空题:(每小题3分共18分)11.3个连续奇数中,n 为最大的奇数,则这3个数的和为_________.12.单项式235πx y -的系数是____________13.已知a-b=-10,c+d=3,则(a+d )-(b-c )=______.14.已知一个多项式与3x 2+9x +2的和等于3x 2+4x -3,则此多项式是______. 15.已知:2+23=22×23,3+38=32×38,4+415=42×415,5+524=52×524,…,若10+b a =102×b a符合前面式子的规律,则a+b=_____.16.如图,是用火柴棒摆出的一系列三角形图案,按这种方式摆下去,当每边上摆n 根火柴棒时,共需要摆__________根火柴棒.三、解答题:(共72分)17.先化简,再求值:22225(3)2(7)a b ab a b ab ---,其中1a =-,1b =.18.已知, , ,求 ,并确定当 时, 的值.19.探索规律:用棋子按如图所示的方式摆正方形.① ② ③……(1)按图示规律填写下表:(2)按照这种方式摆下去,摆第20个正方形需要多少个棋子? (3)按照这种方式摆下去,摆第n 个正方形需要多少个棋子?20.已知m 是最大的负整数,且212m y a b ++-与33x a b 是同类项,求代数式222223639x xy y mx mxy my -+-+-的值.21.化简或计算:( ) ; ( ) . ( ) ; ( ) .22.(1)化简 :()()222252423-+-+-a b ab c c a b ab ;(2)先化简,再求值:2212322232a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭;其中 a = -2 ,b = 3223.父母带着孩子(一家三口)去旅游,甲旅行社报价大人为a 元,小孩为a 2元;乙旅行社报价大人、小孩均为a 元,但三人都按报价的90%收费,则乙旅行社收费比甲旅行社贵多少元?(结果用含a 的代数式表示)24. 、 两仓库分别有水泥 吨和 吨, 、 两工地分别需要水泥 吨和 吨.已知从 、 仓库到 、 工地的运价如下表:(1)若从仓库运到工地的水泥为吨,则用含的代数式表示从仓库运到工地的水泥为_____吨,从仓库将水泥运到工地的运输费用为______元;(2)求把全部水泥从、两仓库运到、两工地的总运输费(用含的代数式表示并化简);(3)如果从仓库运到工地的水泥为吨时,那么总运输费为多少元?第二章整式的加减一、选择题:(每小题3分共30分)1.单项式的系数和次数分别是()A. B. C. D.【答案】C解:单项式的系数是,次数=2+1+3=6.故选:C.2.下列语句中错误的是()A.单项式﹣a的系数与次数都是1 B.12xy是二次单项式C.﹣23ab的系数是﹣23D.数字0也是单项式【答案】A解A、单项式﹣a的系数是﹣1,次数是1,故此选项错误,符合题意;B、12xy是二次单项式,正确,不合题意;C、﹣23ab系数是﹣23,正确,不合题意;D、数字0也是单项式,正确,不合题意;故选:A.3.某企业今年月份产值为万元,月份比月份增加了,月份比月份减少了,则月份的产值为()A. 万元B. 万元C. 万元D. 万元【答案】C 解:由题意得3月份的产值为 万元,4月份的产值为 万元. 故选:C .4.已知单项式﹣25m 2x-1n 9和25m 5n 3y 是同类项,则代数式x ﹣y 的值是( ) A .3B .6C .﹣3D .0 【答案】D解由题意可得,2x ﹣1=5,3y =9,解得x =3,y =3,所以x ﹣y =3﹣3=0,故选:D . 5.下列运算结果正确的是( )A .33(2)6x x =B .33x x x ÷=C .325x x x ?D .23x x x +=【答案】C解:A 、33(2)8x x =,故该选项计算错误; B 、331x x ÷=,故该选项计算错误;C 、325x x x ?,故该选项计算正确;D 、x 和x 2不是同类项,不能合并,故该选项计算错误;故选:C .6.如图,两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a ,b ( ),则b-a 的值为( ).A.5B.6C.7D.8【答案】C 解∵两个正六边形的面积分别为16,9,两个阴影部分的面积分别为a,b(a<b),∴b−a=b+空白面积−(a+空白面积)=大正六边形−小正六边形=16−9=7.故选:C.7.已知a,b,c 是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A .3a-cB .-2a+cC .a+cD .-2b-c【答案】C解根据数轴得: 0c b a <<<,且a b c <<, 0a b ∴->,0c a -<,b+c 0<,则原式=a-b+a-c+b+c+c-a=a+c ,所以C 选项是正确的.8.若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 3b +的值为( )A .0B .1-C .2或2-D .6【答案】B解原式22262351x ax y bx x y =+-+-+++, ()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,,b=1a=-3∴, ,当b=1,a=-3时 ,a+2b=-3+2=-1,所以B 选项是正确的.9.设P 是关于x 的五次多项式,Q 是关于x 的三次多项式,则( )A.P +Q 是关于x 的八次多项式B.P -Q 是关于x 的二次多项式C.P +Q 是关于x 的五次多项式D.P Q 是关于x 的十五次多项式【答案】C解A. 两式相加只能为5次多项式,故本选项错误;B 、P−Q 人教版初中数学七年级上册第2章《整式加减》单元测试卷及答案一、选择题(每题3分,共30分)1、用代数式表示比b 的18小7的数( ) A.18b +7 B.18b -7 C.18(b -7) D.78b - 2、下列代数式中,不是单项式的是( ) A.5 B.2x C.2x D.23a 3、①; ②;③; ④分别是同类项的是( )(A )①② ; (B )①③;(C )②③ ; (D )②④4、-( a-1)-(-a-2)+3的值是( )(A )4; (B )6;(C )0; (D )与的值有关。

人教版七年级上册数学第二章《整式的加减》必考知识点专题提升练习

人教版七年级上册数学第二章《整式的加减》必考知识点专题提升练习

人教版七年级上册数学《整式的加减》必考知识点专题提升练习一.选择题(每小题4分,共32分)1.单项式-5ab的系数是( )A.5B.-5C.2D.-22.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( )A.x2-5x+3B.-x2+x-1C.-x2+5x-3D.x2-5x-133.观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形的“★”有( )A.57个B.60个C.63个D.85个4.已知a+b=,则代数式2a+2b-3的值是( )A.2B.-2C.-4D.-35.一个两位数是a,在它的左边加上一个数字b变成一个三位数,则这个三位数用式子表示为()A.10a+100bB.baC.100baD.100b+a6. 已知代数式x+2y的值是4,则代数式3x+6y+1的值是( )A.5B.9C.11D.137.合并同类项m-3m+5m-7m+…+2 017m的结果为 ( )A.0B.1 009mC.1 007mD.以上答案都不对8.如图是一个运算程序的示意图,若开始输入x的值为81,则第2 019次输出的结果为( )A.3B.27C.9D.1二.填空题(每小题5分,共25分)9.合并同类项:4a2+6a2-a2=__ __.10.如果x m y与2x2y n+1是同类项,则m=____,n=____.11.当x=-1时,代数式x2-4x-k的值为0,则当x=3时,这个代数式的值是___.12.已知P=2x2-3x-4,Q=3(x2-x-1),比较P,Q的大小,则P___Q(填“>”“<”或“=”)13. 如果x,y表示有理数,且x,y满足条件|x|=5,|y|=3,|x-y|=y-x,那么x+y=____.14.如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为____.三.解答题(共39分)15.(10分)化简:(1)-5+(x2+3x)-(-9+6x2);(2)(5a-3a2+1)-(4a3-3a2).16.(12分)先化简,再求值:(1)(4a2-3a)-(2a2-3a-1),其中a=-2;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)],其中a=1,b=-2.17.(7分)马虎同学在计算一个多项式A减去另一个多项式2m2+5m-3时,错将减号抄成了加号,于是他得到的结果是m2+3m-7,请问如果不抄错,正确答案该是多少?18.(9分)用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中__ __ __ __ __ __的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数(用含n的代数式表示);(3)试计算第672个图形棋子的枚数.人教版七年级上册数学《整式的加减》必考知识点专题提升练习一.选择题(每小题4分,共32分)1.单项式-5ab的系数是( B)A.5B.-5C.2D.-22.一个多项式与x2-2x+1的和是3x-2,则这个多项式为( C)A.x2-5x+3B.-x2+x-1C.-x2+5x-3D.x2-5x-133.观察下列图形,它们是按一定的规律排列的,依照此规律,第20个图形的“★”有( B )A.57个B.60个C.63个D.85个4.已知a+b=,则代数式2a+2b-3的值是( B)A.2B.-2C.-4D.-35.一个两位数是a,在它的左边加上一个数字b变成一个三位数,则这个三位数用式子表示为(D)A.10a+100bB.baC.100baD.100b+a6. 已知代数式x+2y的值是4,则代数式3x+6y+1的值是( D)A.5B.9C.11D.137.合并同类项m-3m+5m-7m+…+2 017m的结果为 ( B)A.0B.1 009mC.1 007mD.以上答案都不对8.如图是一个运算程序的示意图,若开始输入x的值为81,则第2 019次输出的结果为( A)A.3B.27C.9D.1二.填空题(每小题5分,共25分)9.合并同类项:4a2+6a2-a2=__9a2__.10.如果x m y与2x2y n+1是同类项,则m=__2__,n=__0__.11.当x=-1时,代数式x2-4x-k的值为0,则当x=3时,这个代数式的值是__-8__.12.已知P=2x2-3x-4,Q=3(x2-x-1),比较P,Q的大小,则P__<__Q(填“>”“<”或“=”)13. 如果x,y表示有理数,且x,y满足条件|x|=5,|y|=3,|x-y|=y-x,那么x+y=__-2或-8__.14.如图,每个图案都由大小相同的正方形组成,按照此规律,第n个图案中这样的正方形的总个数可用含n的代数式表示为__n(n+1)__.三.解答题(共39分)15.(10分)化简:(1)-5+(x2+3x)-(-9+6x2);(2)(5a-3a2+1)-(4a3-3a2).解:(1)-5+(x2+3x)-(-9+6x2)=-5+x2+3x+9-6x2=-5x2+3x+4;(2)(5a-3a2+1)-(4a3-3a2)=5a-3a2+1-4a3+3a2=-4a3+5a+1.16.(12分)先化简,再求值:(1)(4a2-3a)-(2a2-3a-1),其中a=-2;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)],其中a=1,b=-2.解:(1)(4a2-3a)-(2a2-3a-1)=4a2-3a-2a2+3a+1=2a2+1,当a=-2时,原式=2a2+1=2×(-2)2 +1=9;(2)(ab-3a2)-2b2-[5ab-(a2-2ab)]=ab-3a2-2b2-(5ab-a2+2ab)=ab-3a2-2b2-5ab+a2-2ab=-2a2-6ab-2b2,当a=1,b=-2时,原式=-2a2-6ab-2b2=-2×12-6×1×(-2)-2×(-2)2=-2+12-8=2.17.(7分)马虎同学在计算一个多项式A减去另一个多项式2m2+5m-3时,错将减号抄成了加号,于是他得到的结果是m2+3m-7,请问如果不抄错,正确答案该是多少?解:由题意可知:A+(2m2+5m-3)=m2+3m-7,所以A=m2+3m-7-(2m2+5m-3)=m2+3m-7-2m2-5m+3=-m2-2m-4,所以正确答案为:(-m2-2m-4)-(2m2+5m-3)=-m2-2m-4-2m2-5m+3=-3m2-7m-1.18.(9分)用棋子摆出下列一组图形:(1)填写下表:图形编号 1 2 3 4 5 6图形中__ __ __ __ __ __的棋子(2)照这样的方式摆下去,写出摆第n个图形棋子的枚数(用含n的代数式表示);(3)试计算第672个图形棋子的枚数.解:(1)由题干图可得:图形1中的棋子是6枚,图形2中的棋子是6+3×(2-1)=9枚,图形3中的棋子是6+3×(3-1)=12枚,图形4中的棋子是6+3×(4-1)=15枚,图形5中的棋子是6+3×(5-1)=18枚,图形6中的棋子是6+3×(6-1)=21枚.答案:6 9 12 15 18 21(2)由题意可得,摆第n个图形棋子的枚数应为:6+3(n-1)=6+3n-3=3n+3.(3)当n=672时,3n+3=3×672+3=2 019,所以第672个图形棋子的枚数是2 019.。

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习题(含答案解析)

一、选择题1.(0分)下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】 用数学语言叙述代数式1a ﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.(0分)下列对代数式1a b -的描述,正确的是( ) A .a 与b 的相反数的差B .a 与b 的差的倒数C .a 与b 的倒数的差D .a 的相反数与b 的差的倒数C解析:C【分析】根据代数式的意义逐项判断即可.【详解】解:A. a 与b 的相反数的差:()a b --,该选项错误;B. a 与b 的差的倒数:1a b-,该选项错误; C. a 与b 的倒数的差:1a b-;该选项正确; D. a 的相反数与b 的差的倒数:1a b --,该选项错误. 故选:C .【点睛】此题主要考查列代数式,注意掌握代数式的意义.3.(0分)如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1B解析:B【详解】 ∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,22,…,2n ,下边三角形的数字规律为:1+2,222+,…,2n n +,∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.4.(0分)某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B 解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.5.(0分)已知-25a 2m b 和7b 3-n a 4是同类项,则m +n 的值是( )A .2B .3C .4D .6C 解析:C【分析】本题根据同类项的性质求解出m 和n 的值,代入求解即可.【详解】由已知得:2431m n =⎧⎨-=⎩,求解得:22m n =⎧⎨=⎩, 故224m n +=+=;故选:C .【点睛】本题考查同类项的性质,按照对应字母指数相同原则列式求解即可,注意计算仔细. 6.(0分)一列数123,,n a a a a ⋅⋅⋅,其中11a =-,2111a a =- ,3211a a =- ,……,111n n a a -=- ,则1232020a a a a ⨯⨯⋅⋅⋅⨯=( )A .1B .-1C .2020D .2020- A解析:A【分析】 首先根据11a =-,可得()21111,1112a a ===---32112,1112a a ===--43111112a a ===---,…,所以这列数是-1、12、2、−1、12、2…,每3个数是一个循环;然后用2020除以3,求出一共有多少个循环,还剩下几个数,从而可得答案.【详解】 解: 11a =-,()21111,1112a a ===--- 32112,1112a a ===-- 43111112a a ===---, 所以这列数是-1、12、2、−1、12、2…,发现这列数每三个循环, 由202036731,÷= 且()1231121,2a a a ⨯⨯=-⨯⨯=- 所以:()()123206732011 1.a a a a =-⨯-⨯⨯⋅⨯=⋅⋅故选A .【点睛】 本题主要考查了探寻数列规律问题,同时考查了有理数的加减乘除乘方的运算,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:这列数是-1、12、2、−1、12、2…,每3个数是一个循环. 7.(0分)已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3B .﹣3C .1D .﹣1D 解析:D【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值.【详解】 解:单项式3122m x y +与133n x y +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D .【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.8.(0分)下列各式中,符合代数书写规则的是( )A .273x B .14a ⨯ C .126p - D .2y z ÷ A解析:A 【分析】 根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.9.(0分)若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( )A .17B .67C .-67D .0B解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .【点睛】 本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 10.(0分)一列数:0,1,2,3,6,7,14,15,30,___,___,___这串数是由小能按照一定规则写下来的,他第一次写下“0,1”,第二次按着写“2,3”,第三次接着写“6,7”第四次接着写“14,15”,就这样一直接着往下写,那么这串数的最后三个数可能是下面的 A .31,63,64B .31,32,33C .31,62,63D .31,45,46C解析:C【分析】本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1.由此可写出最后的3个数.【详解】解:本题通过观察可知下一组数的第一个数是前一组数的第二个数的两倍,在同一组数中的前后两个数相差1,所以这串数最后的三个数为31,62,63.故选:C .【点睛】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的. 二、填空题11.(0分)在同一平面中,两条直线相交有一个交点,三条直线两两相交最多有3个交点,四条直线两两相交最多有6个交点……由此猜想,当相交直线的条数为n 时,最多可有的交点数m 与直线条数n 之间的关系式为:m =_____.(用含n 的代数式填空)【分析】根据题意3条直线相交最多有3个交点4条直线相交最多有6个交点5条直线相交最多有10个交点而3=1+26=1+2+310=1+2+3+4故可猜想n 条直线相交最多有1+2+3+…+(n-1)=个解析:()12n n - 【分析】根据题意,3条直线相交最多有3个交点,4条直线相交最多有6个交点,5条直线相交最多有10个交点.而3=1+2,6=1+2+3,10=1+2+3+4,故可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12n n-个交点.【详解】解:∵3条直线相交最多有3个交点,4条直线相交最多有6个交点.而3=1+2,6=1+2+3,10=1+2+3+4,∴可猜想,n条直线相交,最多有1+2+3+…+(n-1)=()12 n n-个交点.即()12n nm-=故答案为:()12n n-.【点睛】本题主要考查了相交线,图形的规律探索,此题着重培养学生的观察、实验和猜想、归纳能力,掌握从特殊向一般猜想的方法.12.(0分)观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,按此规律第4个图中共有点的个数比第3个图中共有点的个数多 ________________ 个;第20个图中共有点的个数为________________ 个.【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点从而得出结论【详解】解:第2个图形比第1个图形多2×3个点第3个图形比第2个图形多3×3个点…即每个图形比前一个图形多序号×3个点∴第4个解析:12631【分析】根据图形的变化发现每个图形比前一个图形多序号×3个点,从而得出结论.【详解】解:第2个图形比第1个图形多2×3个点,第3个图形比第2个图形多3×3个点,…,即每个图形比前一个图形多序号×3个点.∴第4个图中共有点的个数比第3个图中共有点的个数多4×3=12个点.第20个图形共有4+2×3+3×3+…+19×3+20×3=4+3×(2+3+…+19+20)=4+627=631(个).故答案为:12;631.【点睛】本题考查了图形的变化,解题的关键是:发现“每个图形比前一个图形多序号×3个点”.本题属于中档题型,解决形如此类题型时,将射线上的点算到同一方向,即可发现规律. 13.(0分)用代数式表示:(1)甲数与乙数的和为10,设甲数为y ,则乙数为____;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为____;(3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为____cm ;(4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为____%;(5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是______km/h .(1)10-y(2)(3)(4)(5)【分析】(1)乙数=和-甲数y 据此解答;(2)甲数x=2个乙数+4从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2据此解答;(4)利用:含盐率=解析:(1)10-y (2)42x - (3)2a b + (4)100a a b + (5)52y - 【分析】(1)乙数=和-甲数y ,据此解答;(2)甲数x=2个乙数+4,从而得出乙数;(3)平均身高=(大华的身高a+小亮的身高b )÷2,据此解答;(4)利用:含盐率=100%⨯盐的质量盐水的质量,据此解答, (5) 利用顺行速度-逆水速度=12水流速度列出式子即可. 【详解】(1) 甲数与乙数的和为10,设甲数为y ,则乙数为:10y -;(2)甲数比乙数的2倍多4,设甲数为x ,则乙数为:42x -; (3)大华身高为a (cm),小亮身高为b (cm),他们俩的平均身高为:2a b +cm ; (4)把a (g)盐放进b (g)水中溶化成盐水,这时盐水的含盐率为:100a a b+%; (5)某船在一条河中逆流行驶的速度为5 km/h ,顺流行驶速度是y km/h ,则这条河的水流速度是:52y - km/h . 故答案为:(1)1?0y -; (2) 42x -; (3) 2a b + ;(4) 100a a b +; (5) 52y -.本题考查了列代数式,比较简单,列代数式时,要先认真审题,抓住关键词语,并注意书写的规范性.14.(0分)观察下列式子:1×3+1=22;7×9+1=82;25×27+1=262;79×81+1=802;…可猜想第2 019个式子为__________.(32019-2)×32019+1=(32019-1)2【分析】观察等式两边的数的特点用n 表示其规律代入n =2016即可求解【详解】解:观察发现第n 个等式可以表示为:(3n-2)×3n +1=(3n-解析:(32 019-2)×32019+1=(32 019-1)2【分析】观察等式两边的数的特点,用n 表示其规律,代入n =2016即可求解.【详解】解:观察发现,第n 个等式可以表示为:(3n -2)×3n +1=(3n -1)2,当n =2019时,(32019-2)×32019+1=(32019-1)2,故答案为:(32019-2)×32019+1=(32019-1)2.【点睛】此题主要考查数的规律探索,观察发现等式中的每一个数与序数n 之间的关系是解题的关键.15.(0分)观察下面的单项式:234,2,4,8,,a a a a 根据你发现的规律,第8个式子是____.【分析】根据题意给出的规律即可求出答案【详解】由题意可知:第n 个式子为2n-1an ∴第8个式子为:27a8=128a8故答案为:128a8【点睛】本题考查单项式解题的关键是正确找出题中的规律本题属于解析:8128a【分析】根据题意给出的规律即可求出答案.【详解】由题意可知:第n 个式子为2n-1a n ,∴第8个式子为:27a 8=128a 8,故答案为:128a 8.【点睛】本题考查单项式,解题的关键是正确找出题中的规律,本题属于基础题型.16.(0分)如果关于x 的多项式42142mx x +-与多项式35n x x +的次数相同,则2234n n -+-=_________.【分析】根据多项式的次数的定义先求出n 的值然后代入计算即可得到答案【详解】解:∵多项式与多项式的次数相同∴∴;故答案为:【点睛】本题考查了求代数式的值以及多项式次数的定义解题的关键是正确求出n 的值解析:24-【分析】根据多项式的次数的定义,先求出n 的值,然后代入计算,即可得到答案.【详解】解:∵多项式42142mx x +-与多项式35n x x +的次数相同, ∴4n =,∴22234243443212424n n -+-=-⨯+⨯-=-+-=-;故答案为:24-.【点睛】本题考查了求代数式的值,以及多项式次数的定义,解题的关键是正确求出n 的值. 17.(0分)如图,有一种飞镖游戏,将飞镖圆盘八等分,每个区域内各有一个单项式,现假设你的每支飞镖均能投中目标区域,如果只提供给你四支飞镖且都要投出,那么要使你投中的目标区域内的单项式之和为a+2b ,共有_____种方式(不考虑投中目标的顺序). 2【分析】根据整式的加减尝试进行即可求解【详解】解:当投中的目标区域内的单项式为ab ﹣b2b 时a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a2a02b 时﹣a+2a+0+2b =a+2b 故解析:2【分析】根据整式的加减尝试进行即可求解.【详解】解:当投中的目标区域内的单项式为a 、b 、﹣b 、2b 时,a+b ﹣b+2b =a+2b ;当投中的目标区域内的单项式为﹣a 、2a 、0、2b 时,﹣a+2a+0+2b =a+2b .故答案为2.【点睛】本题考查了整式的加减,解题的关键是尝试进行整式的加减.18.(0分)已知()()2420b k k a k =--≠,用含有b 、k 的代数式表示a ,则a =______.【分析】将已给的式子作恒等式进行变形表示a由于k≠0先将式子左右同时除以(-4k)再移项系数化1即可表示出a【详解】∵k≠0∴原式两边同时除以(-4x)得∴∴故答案为【点睛】本题考查的是代数式的表示解析:2248b kk+【分析】将已给的式子作恒等式进行变形表示a,由于k≠0,先将式子左右同时除以(-4k),再移项、系数化1,即可表示出a.【详解】∵k≠0,∴原式两边同时除以(-4x)得,22 4bk a k=--∴224ba kk=+,∴2224828b k b kak k+=+=,故答案为2248b kk+.【点睛】本题考查的是代数式的表示,能够进行合理变形是解题的关键.19.(0分)随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n元,那么该电脑的原售价为______.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式解析:43n m+【分析】根据题意列出代数式解答即可.【详解】解:该电脑的原售价4125%3nm n m+=+-,故填:43n m+.【点睛】此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.20.(0分)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7;则上图中m+n+p=_________;4【分析】根据约定的方法求出mnp 即可【详解】解:根据约定的方法可得:;∴;∴∴故答案为4【点睛】本题考查了列代数式和代数式求值解题的关键是掌握列代数式的约定方法解析:4【分析】根据约定的方法求出m ,n ,p 即可.【详解】解:根据约定的方法可得:18n -+= ,81m +=- ;∴7n = ,9m =- ;∴()716p =+-=∴9764m n p ++=-++=故答案为4.【点睛】本题考查了列代数式和代数式求值,解题的关键是掌握列代数式的约定方法.三、解答题21.(0分)已知31A B x ,且3223A x x ,求代数式B .解析:2322x x -++【分析】将A 代入A-B=x 3+1中计算即可求出B .【详解】解:∵A-B=x 3+1,且A=-2x 3+2x+3,∴B=A-(x 3+1)=-2x 3+2x+3-x 3-1=-3x 3+2x+2.【点睛】本题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解题的关键.22.(0分)观察下列单项式:x -,23x ,35x -,47x ,…1937x -,2039x ,…写出第n 个单项式,为了解这个问题,特提供下面的解题思路.()1这组单项式的系数的符号,绝对值规律是什么?()2这组单项式的次数的规律是什么?()3根据上面的归纳,你可以猜想出第n 个单项式是什么?()4请你根据猜想,请写出第2014个,第2015个单项式.解析:()1 (1)n -(或:负号正号依次出现;),21n -(或:从1开始的连续奇数);()2从1开始的连续自然数;()3第n 个单项式是:()(1)21n n n x --;()4?2014个单项式是20144027x ;第2015个单项式是20154029x -.【分析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)和(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.【详解】()1数字为1-,3,5-,7,9-,11,…,为奇数且奇次项为负数,可得规律:()(1)21n n --;故单项式的系数的符号是:(1)n-(或:负号正号依次出现;),绝对值规律是:21n -(或:从1开始的连续奇数); ()2字母因数为:x ,2x ,3x ,4x ,5x ,6x ,…,可得规律:n x ,这组单项式的次数的规律是从1开始的连续自然数.()3第n 个单项式是:()(1)21n n n x --.()4把2014n =、2015n =直接代入解析式即可得到:第2014个单项式是20144027x ;第2015个单项式是20154029x -.【点睛】此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.23.(0分)已知多项式-13x 2y m +1+12xy 2-3x 3+6是六次四项式,单项式3x 2n y 2的次数与这个多项式的次数相同,求m 2+n 2的值.解析:13【解析】 试题分析:根据多项式次数的定义,可得2+m+1=6,从而可求出m 的值,根据单项式的次数的定义结合题意可得2n+2=6,求解即可得到n 的值,把m ,n 的值代入到m 2+n 2中,计算即可得到求解.试题根据题意得2+m +1=6,2n +2=6解得:m =3, n =2,所以m 2+n 2=13.点睛:此题考查多项式,解题的关键是弄清多项式的次数是多项式中次数最高的项的次数,还要弄清有几项.24.(0分)已知a+b =2,ab =2,求32231122a b a b ab ++的值. 解析:4根据因式分解,首先将整式提取公因式12ab ,在采用完全平方公式合,在代入计算即可. 【详解】 解:原式=12a 3b +a 2b 2+12ab 3 =12ab (a 2+2ab +b 2) =12ab (a +b )2, ∵a +b =2,ab =2, ∴原式=12×2×4=4. 【点睛】本题主要考查因式分解的代数计算,关键在于整式的因式分解.25.(0分)已知多项式2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,当k 为何值时,它与多项式3x 2+6xy+2y 2是相等的多项式.解析:k=2.【分析】根据两个多项式是相同的多项式,可以直接列等式根据各项前对应系数相等直接列式计算.【详解】解:2x 2+4xy ﹣3y 2+x 2+kxy+5y 2,=3x 2+(4+k )xy+2y 2,因为它与多项式3x 2+6xy+2y 2是相等的多项式,所以4+k=6,解得:k=2.【点睛】本题考查了带系数多项式与已知多项式相等求未知系数,掌握多项式的概念是解决此题的关键.26.(0分)已知2223,A x xy y B x xy()1若()2230x y ++-=,求2A B -的值()2若2A B -的值与y 的值无关,求x 的值解析:(1)-9;(2)x=-1【分析】(1)根据去括号,合并同类项,可得答案;(2)根据多项式的值与y 无关,可得y 的系数等于零,根据解方程,可得答案.【详解】(1)A-2B=(2x 2+xy+3y )-2(x 2-xy )=2x 2+xy+3y-2x 2+2xy∵(x+2)2+|y-3|=0,∴x=-2,y=3.A-2B=3×(-2)×3+3×3=-18+9=-9.(2)∵A-2B 的值与y 的值无关,即(3x+3)y 与y 的值无关,∴3x+3=0.解得x=-1.【点睛】此题考查整式的加减,解题关键在于掌握去括号,括号前是正数去括号不变号,括号前是负数去括号都变号.27.(0分)化简下列各式:(1)32476x y y -+--+;(2)4(32)3(52)x y y x ----.解析:(1)352x y --+;(2)67x y --【分析】(1)根据合并同类项的法则解答即可;(2)先去括号,再合并同类项.【详解】解:(1)原式3(27)(46)352x y x y =-+-+-+=--+;(2)原式12815667x y y x x y =-+-+=--.【点睛】本题考查了整式的加减运算,属于基础题型,熟练掌握整式加减运算的法则是关键. 28.(0分)如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】 本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简.。

人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)

人教版七年级上册数学第二章《整式的加减》计算题训练(含答案)

3.计算
(1) 2 x 5y 43x 4 y
(2) 4x2 y 3xy 23xy 2 2x2 y
4.计算:
(1) 3a2b 5 5b2 6a2b 7 5b2 4a3 ;
(2) 3ab2 2 2ab2 a2b 3 1 4a2b 10ab2 . 2
5.化简:
8.化简并求值: 2 ab2 2a2b 3 ab2 a2b 1 ,其中 a 2,b 1.
9.先化简,再求值: x2 y2 2xy 3x2 4xy y2 5xy ,其中, x= 1, Nhomakorabeay 2.
10.先化简,再求值 2
ab 3a2
5a2
4ab a2
14.已知 A 3a2 ab , B 5ab a2 (1)求 2A B 的值;
(2)若 2A 与 B C 互为相反数,a、b 满足 a 22 + b+1=0 ,求 C 的值.
15.已知 A 4x2 2xy 3y2, B 4x2 3y2 . (1)求 A B ; (2)当 x 3, y 1 时,求 A B 的值.
18.已知代数式 A 2x2 5xy 7 y 3 , B x2 xy 2
(1)求 3A 2A 3B 的值;
(2)若 A 2B 值与 x 的取值无关,求 y 的值.
1.(1) 1 x2 - 3x + 2 5
(2) 1 a2b 4
2.(1) 2x2 x 1 (2) 3a2 33a 18
3.(1) 6 y 10x (2) 2x2 y 3xy 4
4.(1) 3a2b 4a3 2 (2) 4ab2 6
5.(1) a2b 8ab2 (2) x2 4x
6.(1) 2a2 7b2 ab (2)12a 10b
7. 3x2 4xy 12 , 24 8. ab2 a2b 3 , 5 9. 4x2 xy ;6 10. 2ab ;1 11. 3x2 y 5xy , 2 12. 5x2 xy ,18 13. a2b 6ab2 3 , 89 14.(1) 5a2 3ab (2) 14

(完整版)数学人教版七年级上册整式的加减练习题

(完整版)数学人教版七年级上册整式的加减练习题

整式的加减同类项 一.知识点:1、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:数与数都是同类项如 :2a b 与-5a b 是同类项;4x 2y 与-31yx 2是同类项;83、0与2.5是同类项,2、同类项的条件:(1)所含字母相同 (2)相同字母的指数也相同如 :32xyz 与xy 不是同类项,因为所含字母不相同 ; 0.523y x 和732y x 不是同类项 ,因为相同字母的指数不相同;二、应用题型一:找同类项1、写出-5x 3y 2的一个同类项_______________; 3、下列各组式子中,是同类项的是( )A 、y x 23与23xy -B 、xy 3与yx 2-C 、x 2与22xD 、xy 5与yz 5 题型二:利用同类项,求字母的值k 取何值时,(1)3x k y 与-x 2y 是同类项?(2)35k x y 与439y x -是同类项? 2、若m y x 35和219y x n +-是同类项,则m=_________,n=___________。

合并同类项 一.知识点:1、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

2、合并同类项的法则:把同类项的系数相加减,所得的结果作为系数,字母和字母指数保持不变。

3、合并同类项的解题方法:(1)利用交换律将同类项放在一起(包括前面的符号)(2)利用结合律将同类项括起来,小括号前用“+”连接 (3)合并同类项 (4)得出结果 二.应用题型一:化简与计算1.合并下列多项式中的同类项:①2a 2b -3a 2b +0.5a 2b ; ②23322332923a b a b a b a b --+233223322325x y x y x y x y --+题型二:求字母的值:1.如果关于x 的多项式222542x x kx x -++-中没有2x 项,则k= ; 2.如果关于x,y 的多项式222291063x ky x y xy +--+中没有2y 项,则k= ; 题型三:先化简,再求值1.求222342565x x x x x ----++的值。

人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)

人教版七年级数学上册第二章 整式的加减 专题练习试题(含答案)

人教版七年级数学上册第二章整式的加减专题练习试题专题一、与整式加减相关的新定义问题方法指导:新定义问题,即给出一个新的数学符号标记,规定一种新的运算规则,并按新规定的运算规则进行计算.解题的关键是看懂规定的运算,将新规定的运算转化为整式加减运算问题,在转化过程中,要特别注意括号的作用.1.定义新运算:a#b=3a-2b,则(x+y)#(x-y)=x+5y.2.定义一种新运算:a⊕b=2a-b,a b=b-a,求(x⊕y)⊕(y x)=3x-y.专题二、利用数轴去绝对值符号化简1.有理数a,b在数轴上的位置如图所示,试解决下列问题:(1)因为a<0,所以|a|=-a;(2)因为b>0,-b<0,所以|b|=b;|-b|=b;(3)因为1+a>0,所以|1+a|=1+a;(4)因为1-b <0,所以|1-b|=-(1-b)=b-1;(5)因为a+b>0,所以|a+b|=a+b;(6)因为a-b <0,所以|a-b|=-(a-b)=b-a.2.有理数a,b在数轴上的位置如图所示,则化简式子|a+b|+a的结果是-b.3.有理数a,b在数轴上的位置如图所示,化简|a-b|-|b-a|的结果是(C)A.2a+2b B.2bC.0 D.2a4.有理数a,b在数轴上的位置如图所示,则化简|a-b|-2|a+b|的结果为(A)A.a+3b B.-3a-bC.3a+b D.-a-3b5.已知有理数a ,b ,c 在数轴上的对应点分别是A ,B ,C ,其位置如图所示,化简:2|b +c|-3|a -c|-4|a +b|.解:由数轴知,a <b <0<c ,且|b|<|c|,所以b +c >0,a -c <0,a +b <0,所以原式=2(b +c)-[-3(a -c)]-[-4(a +b)]=2b +2c +3(a -c)+4(a +b)=2b +2c +3a -3c +4a +4b=7a +6b -c.专题三、 整体思想在整式求值中的运用方法指导:整式的化简求值中,当单个字母的值不易求出或化简后的结果与已知值的式子相关联时,需要将已知式子的值整体代入计算.1.已知x -2y =5,那么5(x -2y)2-4(x -2y)-60的值为(B )A .55B .45C .80D .402.已知式子3y 2-2y +6的值是8,那么32y 2-y +1的值是(B ) A .1 B .2C .3D .43.若m -n =-1,则(m -n)2-2m +2n 的值为(A )A .3B .2C .1D .-14.若式子2x 2+3x +7的值是8,则式子4x 2+6x -9的值是(C )A .2B .-17C .-7D .75.已知x 2+2x -1=0,则3x 2+6x -2=1.6.如果m ,n 互为相反数,那么(3m -2n)-(2m -3n)=0.7.已知x =2y +3,则式子4x -8y +9的值是21.8.若2a -b =2,则6+4b -8a =-2.9.若a 2-5a -1=0,则5(1+2a)-2a 2的值为3.10.已知a 2+b 2=6,ab =-2,求(4a 2+3ab -b 2)-(7a 2-5ab +2b 2)的值.解:原式=-3a 2+8ab -3b 2=-3(a 2+b 2)+8ab ,因为a 2+b 2=6,ab =-2,所以原式=-3×6+8×(-2)=-34.专题四、 整式的化简与求值类型1 整式的加减运算1.计算:(1)6a 2+4b 2-4b 2-7a 2;解:原式=(6-7)a 2+(4-4)b 2=-a 2.(2)3(m 2-2m -1)-2(m 2-3m)-3;解:原式=3m 2-6m -3-2m 2+6m -3=m 2-6.(3)-12(4x 2-2x -2)+13(-3+6x 2); 解:原式=-2x 2+x +1-1+2x 2=x.(4)3x2y-[2xy-2(xy-23x2y)+xy].解:原式=3x2y-(2xy-2xy+43x2y+xy)=3x2y-2xy+2xy-43x2y-xy=53x2y-xy.2.已知A=x2-2x+1,B=2x2-6x+3.求:(1)A+2B;(2)2A-B.解:(1)A+2B=x2-2x+1+2(2x2-6x+3)=x2-2x+1+4x2-12x+6=5x2-14x+7.(2)2A-B=2(x2-2x+1)-(2x2-6x+3)=2x2-4x+2-2x2+6x-3=2x-1.类型2整式的化简求值3.先化简,再求值:(1)2(a2+3a-2)-3(2a+2),其中a=-2;解:原式=2a2+6a-4-6a-6=2a2-10.当a =-2时,原式=2×(-2)2-10=-2.(2)2x -y +(2y 2-x 2)-(x 2+2y 2),其中x =-12,y =-3; 解:原式=2x -y +2y 2-x 2-x 2-2y 2=-2x 2+2x -y.当x =-12,y =-3时, 原式=-2×14-1-(-3)=32. (3)2(a 2b -ab 2)-3(a 2b -1)+2ab 2+1,其中a =2,b =14; 解:原式=2a 2b -2ab 2-3a 2b +3+2ab 2+1=-a 2b +4.当a =2,b =14时, 原式=-22×14+4=3. (4)(5a 2+3a -1)-3(a +a 2),其中a 2-2=0;解:原式=5a 2+3a -1-3a -3a 2=2a 2-1.因为a 2-2=0,即a 2=2,所以原式=2×2-1=3.(5)3x 2y -[2xy 2-2(xy -32x 2y)+xy]+3xy 2,其中|x -3|+(y +13)2=0. 解:原式=3x 2y -2xy 2+2xy -3x 2y -xy +3xy 2=xy +xy 2.因为|x -3|+(y +13)2=0, 所以x =3,y =-13.所以原式=-1+13=-23.专题五、与整式的化简有关的说理题1.是否存在数m ,使化简关于x ,y 的多项式(mx 2-x 2+3x +1)-(5x 2-4y 2+3x)的结果中不含x 2项?若不存在,说明理由;若存在,求出m 的值.解:原式=mx 2-x 2+3x +1-5x 2+4y 2-3x=(m -6)x 2+4y 2+1.由题意,得m -6=0,所以m =6.2.有一道题“先化简,再求值:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3,其中x =2 020.”小明做题时把“x =2 020”错抄成了“x =-2 020”.但他计算的结果却是正确的,请你说明这是什么原因.解:17x 2-(8x 2+5x)-(4x 2+x -3)+(5x 2+6x -1)-3=17x 2-8x 2-5x -4x 2-x +3+5x 2+6x -1-3=10x 2-1.因为当x =2 020和x =-2 020时,x 2的值相同,所以他计算的结果是正确的.3.已知关于x ,y 的多项式x 2+ax -y +b 与多项式bx 2-3x +6y -3的和的值与x 的取值无关,求式子3(a 2-2ab +b 2)-[4a 2-2(12a 2+ab -32b 2)]的值. 解:(x 2+ax -y +b)+(bx 2-3x +6y -3)=(b +1)x 2+(a -3)x +5y +b -3.因为该多项式的值与x 的取值无关,所以b +1=0,a -3=0.所以b =-1,a =3.原式=3a 2-6ab +3b 2-(3a 2-2ab +3b 2)=3a2-6ab+3b2-3a2+2ab-3b2=-4ab=12.4.嘉淇在计算一个多项式A减去多项式2b2-3b-5的差时,因一时疏忽忘了将两个多项式用括号括起来,因此得到的差是b2+3b-1.(1)求这个多项式A;(2)求这两个多项式运算的正确结果;(3)当b=-1时,求(2)中结果的值.解:(1)由题意,得A-2b2-3b-5=b2+3b-1,则A=(b2+3b-1)+(2b2+3b+5)=b2+3b-1+2b2+3b+5=3b2+6b+4.(2)这两个多项式运算的正确结果为(3b2+6b+4)-(2b2-3b-5)=3b2+6b+4-2b2+3b+5=b2+9b+9.(3)当b=-1时,原式=(-1)2+9×(-1)+9=1-9+9=1.5.已知一个两位数,其十位数字是a,个位数字是b.(1)写出这个两位数;(2)若a≠b,把这个两位数的十位数字与个位数字对换,得到一个新的两位数,则原两位数与新两位数的和能被11整除吗?为什么?其差又一定是哪个数的倍数?为什么?解:(1)10a+b.(2)由题意得,这两个数的和为(10a+b)+(10b+a)=11a+11b=11(a+b),因为a,b都是整数,所以a+b也是整数.所以这两个数的和能被11整除.这两个数的差为(10a+b)-(10b+a)=10a+b-10b-a=9a-9b=9(a-b),因为a,b都是整数,所以a-b也是整数.所以这两个数的差一定是9的倍数.专题六、规律探究类型1数式规律1.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,…,按此规律,那么请你推测第n组取的种子数是(2n+1)粒.2.按规律写出空格中的数:-2,4,-8,16,-32,64.3.已知一列数a,b,a+b,a+2b,2a+3b,3a+5b,……,按照这个规律写下去,第9个数是13a+21b.4.观察下列各等式:第一个等式3=2+1,第二个等式5=3+2,第三个等式9=5+4,第四个等式17=9+8,…,按此规律猜想第六个等式是65=33+32.5.观察下列各式:22-1=1×3,32-1=2×4,42-1=3×5,52-1=4×6,…,根据上述规律,第n个等式应表示为(n+1)2-1=n(n+2).6.观察以下图案和算式,解答问题:(1)1+3+5+7+9=25;(2)1+3+5+7+9+…+19=100;(3)猜想:1+3+5+7+…+(2n -1)=n 2.7.a 是不为1的有理数,我们把11-a 称为a 的差倒数,如2的差倒数为11-2=-1,-1的差倒数11-(-1)=12,已知a 1=5,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数…,依此类推,a 2 019的值是(D )A .5B .-14C .43D .458.观察下列等式:70=1,71=7,72=49,73=343,74=2 401,75=16 807,…,根据其中的规律可得70+71+72+…+72 019的结果的个位数字是(A )A .0B .1C .7D .89.观察下列单项式:-x ,3x 2,-5x 3,7x 4,…,-37x 19,39x 20,…,回答下列问题:(1)这组单项式的系数的规律是什么?(2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么?(4)请你根据猜想,写出第2 019,2 020个单项式.解:(1)这组单项式的系数的符号规律是(-1)n ,系数的绝对值规律是2n -1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n 个单项式是(-1)n (2n -1)x n .(4)第2 019个单项式是-4 037x 2 019,第2 020个单项式是4 039x 2 020.类型2图形规律10.用棋子摆出下列一组图形:按照这种规律摆下去,第n个图形用的棋子个数为(D)A.3n B.6nC.3n+6 D.3n+311.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形中共有6_058个〇.…12.归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为3n+2.…。

人教版七年级数学上册第二章整式的加减专项练习100题

人教版七年级数学上册第二章整式的加减专项练习100题

七年级数学上册第二章整式的加减专项练习100题1、3(a+5b)-2(b-a)2、3a-(2b-a)+b3、2(2a2+9b)+3(-5a2-4b)4、(x3-2y3-3x2y)-(3x3-3y3-7x2y)5、3x2-[7x-(4x-3)-2x2]6、(2xy-y)-(-y+yx)7、5(a2b-3ab2)-2(a2b-7ab)8、(-2ab+3a)-2(2a-b)+2ab9、(7m2n-5mn)-(4m2n-5mn)10、(5a2+2a-1)-4(3-8a+2a2).11、-3x2y+3xy2+2x2y-2xy2;12、2(a-1)-(2a-3)+3.13、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]14、(x2-xy+y)-3(x2+xy-2y)15、3x2-[7x-(4x-3)-2x2]16、a2b-[2(a2b-2a2c)-(2bc+a2c)];17、-2y3+(3xy2-x2y)-2(xy2-y3).18、2(2x-3y)-(3x+2y+1)19、-(3a2-4ab)+[a2-2(2a+2ab)].20、5m-7n-8p+5n-9m-p;21、(5x 2y-7xy 2)-(xy 2-3x 2y ); 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]. 23、3a 2-9a+5-(-7a 2+10a-5); 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2). 25、(5a-3a 2+1)-(4a 3-3a 2);26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab] 27、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 28、(2x 2-21+3x )-4(x -x 2+21);29、3x 2-[7x -(4x -3)-2x 2].30、5a+(4b-3a )-(-3a+b );31、(3a2-3ab+2b2)+(a2+2ab-2b2); 32、2a2b+2ab2-[2(a2b-1)+2ab2+2]. 33、(2a 2-1+2a )-3(a-1+a 2); 34、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)].35、 -32ab +43a 2b +ab +(-43a 2b )-136、(8xy -x 2+y 2)+(-y 2+x 2-8xy ); 37、2x -(3x -2y +3)-(5y -2);38、-(3a +2b )+(4a -3b +1)-(2a -b -3)39、4x 3-(-6x 3)+(-9x 3) 40、3-2xy +2yx 2+6xy -4x 2y41、 1-3(2ab +a )十[1-2(2a -3ab )].42、 3x -[5x +(3x -2)];43、(3a 2b -ab 2)-(ab 2+3a 2b )44、()[]{}y x x y x --+--3233245、(-x 2+5+4x 3)+(-x 3+5x -4)46、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2).47、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).48、4a 2+2(3ab-2a 2)-(7ab-1).49、21xy+(-41xy )-2xy 2-(-3y 2x )50、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]51、5m-7n-8p+5n-9m+8p52、(5x 2y-7xy 2)-(xy 2-3x 2y )53、 3x 2y-[2x 2y-3(2xy-x 2y )-xy]5556、(a 2+4ab-4b 2)-3(a 2+b 2)-7(b 2-ab ).57、a 2+2a 3+(-2a 3)+(-3a 3)+3a 258、5ab+(-4a 2b 2)+8ab 2-(-3ab )+(-a 2b )+4a 2b 2;59、(7y-3z )-(8y-5z );60、-3(2x 2-xy )+4(x 2+xy-6).61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)62、-3x 2y+2x 2y+3xy 2-2xy 2;63、3(a 2-2ab )-2(-3ab+b 2);64、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}.65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )].66、-[2m-3(m-n+1)-2]-1.67、31a-( 21a-4b-6c)+3(-2c+2b)68、 -5a n-a n-(-7a n)+(-3a n)69、x 2y-3xy 2+2yx 2-y 2x70、41a 2b-0.4ab 2-21a 2b+52ab 2;71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}72、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy];73、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-3474、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.75、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;76、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-13177、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =278、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-79、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.80、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.82、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.83、 求3x 2+x -5与4-x +7x 2的差.84、计算 5y+3x+5z 2与12y+7x-3z 2的和85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M87、当求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-4189、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A);90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?91、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N .92、已知222244,5A x xy y B x xy y =-+=+-,求3A -B93、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B .94、已知2 a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.95、化简求值:5abc-2a 2b+[3abc-2(4ab 2-a 2b )],其中a 、b 、c 满足|a-1|+|b-2|+c 2=0.96、已知a ,b ,z 满足:(1)已知|x-2|+(y+3)2=0,(2)z 是最大的负整数,化简求值:2(x 2y+xyz )-3(x 2y-xyz )-4x 2y .97、已知a+b=7,ab=10,求代数式(5ab+4a+7b )+(6a-3ab )-(4ab-3b )的值.98、已知m 2+3mn=5,求5m 2-[+5m 2-(2m 2-mn )-7mn-5]的值99、设A=2x 2-3xy+y 2+2x+2y ,B=4x 2-6xy+2y 2-3x-y ,若|x-2a|+(y-3)2=0,且B-2A=a ,求a 的值.100、有两个多项式:A =2a 2-4a +1,B =2(a 2-2a )+3,当a 取任意有理数时,请比较A 与B 的大小.答案:1、3(a+5b )-2(b-a )=5a+13b2、3a-(2b-a )+b=4a-b .3、2(2a 2+9b )+3(-5a 2-4b )=—11a 2+6b 24、(x 3-2y 3-3x 2y )-(3x 3-3y 3-7x 2y )= -2x 3+y 3+4x 2y5、3x 2-[7x-(4x-3)-2x 2] = 5x 2-3x-3 6、(2xy-y )-(-y+yx )= xy7、5(a 22b-3ab 2)-2(a 2b-7ab ) = -a 2b+11ab8、(-2ab+3a )-2(2a-b )+2ab= -2a+b 9、(7m 2n-5mn )-(4m 2n-5mn )= 3m 2n10、(5a 2+2a-1)-4(3-8a+2a 2)= -3a 2+34a-13 11、-3x 2y+3xy 2+2x 2y-2xy 2= -x 2y+xy 212、2(a-1)-(2a-3)+3.=413、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]= 7a 2+ab-2b 214、(x 2-xy+y )-3(x 2+xy-2y )= -2x 2-4xy+7y15、3x 2-[7x-(4x-3)-2x 2]=5x 2-3x-316、a 2b-[2(a 2b-2a 2c )-(2bc+a 2c )]= -a 2b+2bc+6a 2c 17、-2y 3+(3xy 2-x 2y )-2(xy 2-y 3)= xy 2-x 2y 18、2(2x-3y )-(3x+2y+1)=2x-8y-119、-(3a 2-4ab )+[a 2-2(2a+2ab )]=-2a 2-4a20、5m-7n-8p+5n-9m-p = -4m-2n-9p 21、(5x 2y-7xy 2)-(xy 2-3x 2y )=4xy 2-4x 2y 22、3(-3a 2-2a )-[a 2-2(5a-4a 2+1)-3a]=-18a 2 +7a+2 23、3a 2-9a+5-(-7a 2+10a-5)=10a 2-19a+10 24、-3a 2b-(2ab 2-a 2b )-(2a 2b+4ab 2)= -4a 2b-64ab 2 25、(5a-3a 2+1)-(4a 3-3a 2)=5a-4a 2+1 26、-2(ab-3a 2)-[2b 2-(5ab+a 2)+2ab]=7a 2+ab-2b 227、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=0 28、(2x 2-21+3x )-4(x -x 2+21) = 6x 2-x-2529、3x 2-[7x -(4x -3)-2x 2]= 5x 2-3x -330、5a+(4b-3a )-(-3a+b )= 5a+3b 31、(3a 2-3ab+2b 2)+(a 2+2ab-2b 2)= 4a 2-ab32、2a 2b+2ab 2-[2(a 2b-1)+2ab 2+2].= -133、(2a 2-1+2a )-3(a-1+a 2)= -a 2-a+234、2(x 2-xy )-3(2x 2-3xy )-2[x 2-(2x 2-xy+y 2)]=-2x 2+5xy-2y 235、-32ab +43a 2b +ab +(-43a 2b )-1 = 31ab-1 36、(8xy -x 2+y 2)+(-y 2+x 2-8xy )=037、2x -(3x -2y +3)-(5y -2)=-x-3y-138、-(3a +2b )+(4a -3b +1)-(2a -b -3)= -a-4b+4 39、4x 3-(-6x 3)+(-9x 3)= x 340、3-2xy +2yx 2+6xy -4x 2y = -2 x 2y+4 41、 1-3(2ab +a )十[1-2(2a -3ab )]=2-7a42、 3x -[5x +(3x -2)]=-5x+2 43、(3a 2b -ab 2)-(ab 2+3a 2b )= -2ab 2 44、()[]{}y x x y x --+--32332 = 5x+y 45、(-x 2+5+4x 3)+(-x 3+5x -4)= 3x 3-x 2+5x+146、(5a 2-2a+3)-(1-2a+a 2)+3(-1+3a-a 2)=a 2+9a-147、5(3a 2b-ab 2)-4(-ab 2+3a 2b ).=3a 2b-ab 248、4a 2+2(3ab-2a 2)-(7ab-1)=1-ab 49、21xy+(-41xy )-2xy 2-(-3y 2x )=41xy+xy 250、5a 2-[a 2-(5a 2-2a )-2(a 2-3a )]=11a 2-8a 51、5m-7n-8p+5n-9m+8p=-4m-2n59、(7y-3z )-(8y-5z )=-y+2z60、-3(2x 2-xy )+4(x 2+xy-6)=-2x2+7xy-24 61、(x 3+3x 2y-5xy 2+9y 3)+(-2y 3+2xy 2+x 2y-2x 3)-(4x 2y-x 3-3xy 2+7y 3)=062、-3x 2y+2x 2y+3xy 2-2xy 2 = -x 2y+xy 263、3(a 2-2ab )-2(-3ab+b 2)=3a 2-2b 264、5abc-{2a 2b-[3abc-(4a 2b-ab 2]}=8abc-6a 2b+ab 2 65、5m 2-[m 2+(5m 2-2m )-2(m 2-3m )]=m 2-4m 66、-[2m-3(m-n+1)-2]-1=m-3n+4 67、31a-( 21a-4b-6c)+3(-2c+2b)= -61a+10b68、 -5a n -a n -(-7a n )+(-3a n )= -2a n69、y-4xy 2 71、71、3a-{2c-[6a-(c-b )+c+(a+8b-6)]}= 10a+9b-2c-672、-3(xy-2x 2)-[y 2-(5xy-4x 2)+2xy]= 2x 2-y 273、化简、求值21x 2-2212- (x + y )2⎡⎤⎢⎥⎣⎦-23(-32x 2+31y 2),其中x =-2, y =-34 原式=2x 2+21y 2-2 =69874、化简、求值21x -2(x -31y 2)+(-23x +31y 2),其中x =-2,y =-32.原式=-3x+y 2=69475、x x x x x x 5)64(213223312323-++-⎪⎭⎫ ⎝⎛---其中x =-121;原式=x 3+x 2-x+6=68376、 化简,求值(4m+n )-[1-(m-4n )],m=52 n=-131原式=5m-3n-1=577、化简、求值2(a 2b +2b 3-ab 3)+3a 3-(2ba 2-3ab 2+3a 3)-4b 3,其中a =-3,b =2原式=-2ab 3+3ab 2=12 78、化简,求值:(2x 3-xyz )-2(x 3-y 3+xyz )+(xyz-2y 3),其中x=1,y=2,z=-3. 原式=-2xyz=679、化简,求值:5x 2-[3x-2(2x-3)+7x 2],其中x=-2.原式=-2x 2+x-6=-1680、若两个多项式的和是2x 2+xy+3y 2,一个加式是x 2-xy ,求另一个加式.(2x 2+xy+3y 2 ) ——( x 2-xy )= x 2+2xy+3y 2 81、若2a 2-4ab+b 2与一个多项式的差是-3a 2+2ab-5b 2,试求这个多项式.( 2a 2-4ab+b 2 )—(-3a 2+2ab-5b 2)=5a 2 -6ab+6b 282、求5x 2y -2x 2y 与-2xy 2+4x 2y 的和.(5x 2y -2x 2y )+(-2xy 2+4x 2y )=3xy 2+2x 2y 83、 求3x 2+x -5与4-x +7x 2的差.(3x 2+x -5)—(4-x +7x 2)=—4x 2+2x -984、计算 5y+3x+5z 2与12y+7x-3z 2的和(5y+3x+5z 2)+(12y+7x-3z 2)=17y+10x+2z 2 85、计算8xy 2+3x 2y-2与-2x 2y+5xy 2-3的差(8xy 2+3x 2y-2)—(-2x 2y+5xy 2-3)=5x 2y+3xy 2+1 86、 多项式-x 2+3xy-21y 与多项式M 的差是-21x 2-xy+y ,求多项式M M=-21x 2+4xy —23y87、当x=- 21,y=-3时,求代数式3(x 2-2xy )-[3x 2-2y+2(xy+y )]的值.原式=-8xy+y= —15 88、化简再求值5abc-{2a2b-[3abc-(4ab 2-a 2b )]-2ab 2},其中a=-2,b=3,c=-41 原式=83abc-a 2b-2ab 2=36 89、已知A=a 2-2ab+b 2,B=a 2+2ab+b 2(1)求A+B ; (2)求41(B-A); A+B=2a 2+2b 241(B-A)=ab 90、小明同学做一道题,已知两个多项式A ,B ,计算A+B ,他误将A+B 看作A-B ,求得9x 2-2x+7,若B=x 2+3x-2,你能否帮助小明同学求得正确答案?A=10x 2+x+5 A+B=11x 2+4x+391、已知:M=3x 2+2x-1,N=-x 2-2+3x ,求M-2N . M-2N=5x 2-4x+392、已知222244,5A x xy y B x xy y =-+=+-,求3A -B3A -B=11x 2-13xy+8y 293、已知A =x 2+xy +y 2,B =-3xy -x 2,求2A -3B . 2A -3B= 5x 2+11xy +2y 294、已知2-a +(b +1)2=0,求5ab 2-[2a 2b -(4ab 2-2a 2b )]的值.原式=9ab 2-4a 2b=3495、化简求值:5abc-2a2b+[3abc-2(4ab2-a2b)],其中a、b、c满足|a-1|+|b-2|+c2=0.原式=8abc-8a2b=-3296、已知a,b,z满足:(1)已知|x-2|+(y+3)2=0,(2)z是最大的负整数,化简求值:2(x2y+xyz)-3(x2y-xyz)-4x2y.原式=-5x2y+5xyz=9097、已知a+b=7,ab=10,求代数式(5ab+4a+7b)+(6a-3ab)-(4ab-3b)的值.原式=10a+10b-2ab=5098、已知m2+3mn=5,求5m2-[+5m2-(2m2-mn)-7mn-5]的值原式=2m2+6mn+5=1599、设A=2x2-3xy+y2+2x+2y,B=4x2-6xy+2y2-3x-y,若|x-2a|+(y-3)2=0,且B-2A=a,求a的值.B-2A=-7x-5y=-14a-15=a a=-1100、有两个多项式:A=2a2-4a+1,B=2(a2-2a)+3,当a取任意有理数时,请比较A与B的大小.A=2a2-4a+1 B=2a2-4a+3 所以A<B。

人教版七年级上册数学 整式的加减 计算题专项训练

人教版七年级上册数学 整式的加减   计算题专项训练

人教版七年级上册数学整式的加减 计算题专项训练一.化简(1)(5a-3b )-3(a 2-2b ) (2)8a+2b+(5a-b )(3)()()()y x y x y x 3242332+--+-- (4)()[]1253---a a a(5)()()43537422+-----x x x x(6))(2)(2b a b a a +-++(7)3a -[-2b +(4a -3b)] (8))32(2[)3(1yz x x xy +-+--(9)4xy ﹣3x 2﹣3xy+2x 2 (10)﹣3(2x 2﹣xy )﹣(x 2+xy ﹣6)(11)3(2x 2﹣y 2)﹣2(3y 2﹣2x 2) (12)2(x 2y+xy 2)﹣(2x 2y+xy 2)二.化简求值(1)先化简,再求值:2(a 2b+3ab )-(2ab-a 2b ),其中a=-2,b=1.(2)求()()xy y x y x 745352222+++-的值,其中.2,1=-=y x(3)先化简,再求值:已知A=4x2y-5xy2,B=3x2y-4xy2,当x=-2,y=1时,求2A-B的值.(5)已知:A=2x2+3xy-5x+1,B=-x2+xy+2.1、求A+2B.2、若A+2B的值与x的值无关,求y的值.(6)求5(3a2b﹣ab2)﹣(ab2+3a2b)的值,其中a=,b=.(7)求(﹣x2+5x+4)+(5x﹣4+2x2)的值,其中x=﹣2.(8)一个整式A与x2﹣x﹣1的和是﹣3x2﹣6x+21、求整式A;2、当x=2时,求整式A的值.(9)若代数式 2x+3y 的值为﹣5,求代数式 4x+6y+3 的值(10). 已知M=3a2﹣2ab+1,N=2a2+ab﹣2,求M﹣N的值。

(11). 已知 A=3x2﹣5x+1,B=﹣2x+3x2﹣5,求当x=时,A﹣B 的值.(12)大刚计算“一个整式A减去2ab﹣3bc+4ac”时,误把“减去”算成“加上”,得到的结果是2bc+ac﹣2ab.请你帮他求出正确答案.(13). 先化简再求值:﹣2(3a2﹣ab+2)﹣(5ab﹣6a2)+4,其中a=2,b=﹣1.(14). 已知A=2x2﹣3x﹣1,B=3x2+mx+2,且3A﹣2B的值与x无关,求m的值.(15).先化简,再求值:﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2,b=2017.(16).如果关于x的多项式5x2﹣(2y n+1﹣mx2)﹣3(x2+1)的值与x的取值无关,且该多项式的次数是三次.求m,n的值.(17).某同学做一道数学题,“已知两个多项式A、B,B=2x2+3x﹣4,试求A﹣2B”.这位同学把“A﹣2B”误看成“A+2B”,结果求出的答案为5x2+8x﹣10.请你替这位同学求出“A ﹣2B”的正确答案.。

人教版数学七年级上册《整式的加减》计算题专项训练 (20套)

人教版数学七年级上册《整式的加减》计算题专项训练 (20套)

人教版七年级数学上册《整式的加减》计算题训练高效训练1 第周星期1、计算下列各式2、化简:1、计算下列各式2、化简:3、先化简再求值:其中,4、先化简,再求值.,其中与互为相反数1、合并同类项2、化简:先化简,后求值:,其中.3、有这样一道题:计算的值,其中。

某同学把抄成了,但计算结果也是正确的,试说明理由,并求出这个结1、计算下列各式2、计算下列各式3、已知a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是,求a,b,c的值;求:、1、计算下列各式计算:计算:化简:化简并求值:;其中,;2、计算下列各式3、先化简,再求值.已知,求的值.1、计算下列各式2、计算下列各式3、已知:,求的值;若的值与x无关,求y的值.1、计算下列各式若,,求:当时,的值.已知,,求代数式的值.2、在关于x,y的多项式中,无论x,y取任何数,多项式的值都不变,求a,b的值.3、已知,求的值1、计算下列各式(2)2、合并下列多项式中的同类项.3、先化简,再求值:,其中,1、计算下列各式2、化简:3、化简求值:已知,求代数式的值1、计算下列各式2、已知代数式,马小虎同学在做整式加减运算时,误将“”看成“”了,计算的结果是.请你帮马小虎同学求出正确的结果;是最大的负整数,将x代入问的结果求值3、已知,,且,求C1、计算下列各式2、计算下列各式化简:先化简,再求值:,其中,3、已知:已知,.求B;当时,求的1、计算下列各式2、化简下列各式:.3、老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了如图所示的一个二次三项式,形式如图:求所捂的二次三项式;若,求所捂二次三项式的值1、计算下列各式2、化简下列各式先化简,再求值.,其中,.已知,,求代数式的值3、已知,.求;若,求的值;试将用A与B的式子表示出来.1、计算下列各式2、求值:,其中,3、先化简,再求值:,其中.,其中,.1、计算下列各式2、已知,,按要求完成下列各小题.若的结果中不存在含x的一次项,求a的值;当时,求的结果.3、已知,求的值.1、先化简,再求值:,其中.,其中,2、先化简,再求值:,其中,.有一道题是一个多项式减去“”,小强误当成了加法计算,得到的结果是“”,请求出正确的计算结果.3、已知,.若化简是常数的结果中没有常数项,求m的值;当时,求的值.1、计算下列各式,其中.,其中,.2、若代数式中不含xy项,求:的值.3、已知多项式与多项式A的和为,且式子的计算结果中不含关于x的一次项,求多项式A.求m的值1、计算下列各式2、已知,.求;若,求的值.3、化简或求值化简:;化简求值:,其中,.1、计算下列各式2、已知,求的值3、如果代数式的值与字母x取值无关,试求代数式的值.4、若,求的值1、计算下列各式先化简,再求值:,其中,.已知整式,整式M与整式N之差是,求出整式N.2、有这样一道题:计算的值,其中,甲同学把“”错抄成了“”但他计算的结果也是正确的,请你通过计算说明原因.3、已知:,求的值;当x的取任意数值,的值是一个定值时,求的值4、如果关于x的多项式的值与x的取值无关,且该多项式的次数是三次.求m,n的值.。

人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)

人教版初中七年级数学上册第二章《整式的加减》经典练习(含答案解析)

1.下列用代数式表示正确的是( )A .a 是一个数的8倍,则这个数是8aB .2x 比一个数大5,则这个数是2x +5C .一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为(50-a )元D .小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元D解析:D【分析】根据题中叙述列出代数式即可判断.【详解】A 、a 是一个数的8倍,则这个数是8a ,错误,不符合题意; B 、2x 比一个数大5,则这个数是25x -,错误,不符合题意;C 、一件上衣的进价为50元,售价为a 元,用代数式表示一件上衣的利润为( 50a -)元,错误,不符合题意;D 、小明买了5支铅笔和4本练习本,其中铅笔x 元1支,练习本y 元1本,那么他应付(5x +4y )元,正确,符合题意;故选:D .【点睛】本题考查了列代数式,要注意语句中的关键字,解决问题的关键是读懂题意,找到所求的量的等量关系.2.下列代数式的书写,正确的是( )A .5nB .n5C .1500÷tD .114x 2y A 解析:A【分析】直接利用代数式书写方法分析得出答案.【详解】解:A 、5n ,书写正确,符合题意;B 、n5,书写错误,不合题意;C 、1500÷t ,应为1500t ,故书写错误,不合题意; D 、114x 2y=54x 2y ,故书写错误,不合题意; 故选:A .【点睛】此题主要考查了代数式,正确把握代数式的书写方式是解题关键.3.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x ,则该文具店五月份销售铅笔的支数是( )A .100(1+x )B .100(1+x )2C .100(1+x 2)D .100(1+2x )B解析:B【解析】试题分析:设出四、五月份的平均增长率,则四月份的市场需求量是100(1+x ),五月份的产量是100(1+x )2.故答案选B.考点:列代数式.4.若 3x m y 3 与﹣2x 2y n 是同类项,则( )A .m=1,n=1B .m=2,n=3C .m=﹣2,n=3D .m=3,n=2B 解析:B【分析】根据同类项是字母相同且相同字母的指数也相,可得答案.【详解】 33m x y 和22n x y ﹣是同类项,得m=2,n=3,所以B 选项是正确的.【点睛】本题考查了同类项,利用了同类项的定义.5.单项式21412n a b --与83m ab 是同类项,则57(1)(1)n m +-=( ) A .14 B .14- C .4 D .-4B解析:B【分析】直接利用同类项的概念得出n ,m 的值,即可求出答案.【详解】21412n a b --与83m ab 是同类项, ∴21184n m -=⎧⎨=⎩解得:121m n ⎧=⎪⎨⎪=⎩ 则()()5711n m +-=14- 故答案选B.【点睛】本题考查的知识点是同类项,解题的关键是熟练的掌握数轴同类项.6.观察下列单项式:223344191920202,2,2,2,,2,2,x x x x x x ---,则第n 个单项式是( )A .2n n xB .(1)2n n n x -C .2n n x -D .1(1)2n n n x +- B 解析:B【分析】 要看各单项式的系数和次数与该项的序号之间的变化规律.本题中,奇数项符号为负,偶数项符号为正,数字变化规律是(-1)n 2n ,字母变化规律是x n .【详解】因为第一个单项式是1112(1)2x x -=-⨯;第二个单项式是222222(1)2x x =-⨯;第三个单项式是333332(1)2x x -=-⨯,…,所以第n 个单项式是(1)2n n n x -.故选:B .【点睛】本题考查了单项式的系数和次数的规律探索,确定单项式的系数和次数时,把一个单项式改写成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分别找出单项式的系数和次数的规律也是解决此类问题的关键.7.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55C解析:C【分析】 观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=,当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.8.已知有理数1a ≠,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--.如果12a =-,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数…依此类推,那么2020a 的值是( )A .2-B .13C .23D .32A 解析:A【分析】求出数列的前4个数,从而得出这个数列以-2,13,32依次循环,用2020除以3,再根据余数可求a 2020的值.【详解】 ∵a 1=-2, ∴2111(3)3a ==--,3131213a ==-, 412312a ==-- ∴每3个结果为一个循环周期∵2020÷3=673⋯⋯1,∴202012a a ==-故选:A.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.9.下列说法正确的是( )A .单项式34xy -的系数是﹣3B .单项式2πa 3的次数是4C .多项式x 2y 2﹣2x 2+3是四次三项式D .多项式x 2﹣2x +6的项分别是x 2、2x 、6C 解析:C【分析】根据单项式的系数、次数:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数;几个单项式的和叫做多项式,每个单项式叫做多项式的项.多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:A 、单项式34xy -的系数是34-,此选项错误; B 、单项式2πa 3的次数是3,此选项错误;C 、多项式x 2y 2﹣2x 2+3是四次三项式,此选项正确;D 、多项式x 2﹣2x+6的项分别是x 2、﹣2x 、6,此选项错误;故选:C .【点睛】本题考查了单项式及多项式的定义,解题的关键是牢记单项式的系数、次数及多项式的次数、项数,难度不大.10.点O ,A ,B ,C 在数轴上的位置如图所示,其中O 为原点,2BC =,OA OB =,若C 点所表示的数为x ,则A 点所表示的数为( )A .2x -+B .2x --C .2x +D .-2A解析:A 【分析】由BC=2,C 点所表示的数为x ,求出B 表示的数,然后根据OA=OB ,得到点A 、B 表示的数互为相反数,则问题可解.【详解】解:∵BC=2,C 点所表示的数为x ,∴B 点表示的数是x-2,又∵OA=OB ,∴B 点和A 点表示的数互为相反数,∴A 点所表示的数是-(x-2),即-x+2.故选:A .【点睛】此题考查用数轴上的点表示数的方法和数轴上两点间的距离以及相反数的性质,解答关键是应用数形结合思想解决问题.11.探索规律:根据下图中箭头指向的规律,从2013到2014再到2015,箭头的方向是( )A .B .C .D . D解析:D【分析】根据图中规律可得,每4个数为一个循环组依次循环,用2013除以4,根据商和余数的情况解答即可.【详解】解:由图可知,每4个数为一个循环组依次循环,2013÷4=503余1,即0到2011共2012个数,构成前面503个循环,∴2012是第504个循环的第1个数,2013是第504个循环组的第2个数,∴从2013到2014再到2015,箭头的方向是.故选:D .【点睛】本题考查了数字变化规律,仔细观察图形,发现每4个数为一个循环组依次循环是解题的关键.12.多项式3336284a a x y x --+中,最高次项的系数和常数项分别为( )A .2和8B .4和8-C .6和8D .2-和8- D 解析:D【分析】根据多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,以及单项式系数、常数项的定义来解答.【详解】多项式6a-2a 3x 3y-8+4x 5中,最高次项的系数和常数项分别为-2,-8.故选D .【点睛】本题考查了同学们对多项式的项和次数定义的掌握情况.在处理此类题目时,经常用到以下知识:(1)单项式中的数字因数叫做这个单项式的系数;(2)多项式中不含字母的项叫常数项;(3)多项式里次数最高项的次数,叫做这个多项式的次数.13.张师傅下岗后做起了小生意,第一次进货时,他以每件a 元的价格购进了20件甲种小商品,以每件b 元的价格购进了30件乙种小商品(a>b ).根据市场行情,他将这两种小商品都以2a b +元的价格出售.在这次买卖中,张师傅的盈亏状况为( ) A .赚了(25a+25b )元 B .亏了(20a+30b )元 C .赚了(5a-5b )元D .亏了(5a-5b )元C解析:C【分析】用(售价-甲的进价)×甲的件数+(售价-乙的进价)×乙的件数列出关系式,去括号合并得到结果,即为张师傅赚的钱数【详解】根据题意列得:20(-2-23020302222a b a b a b a a b a a b ++++-+-=⨯+⨯)() =10(b-a )+15(a-b )=10b-10a+15a-15b=5a-5b ,则这次买卖中,张师傅赚5(a-b )元.故选C .【点睛】此题考查整式加减运算的应用,去括号法则,以及合并同类项法则,熟练掌握法则是解题关键.14.下列各对单项式中,属于同类项的是( )A .ab -与4abcB .213x y 与212xyC .0与3-D .3与a C解析:C【分析】根据同类项的定义逐个判断即可.【详解】A .﹣ab 与4abc 所含字母不相同,不是同类项;B .213x y 与12x y 2所含相同字母的指数不相同,不是同类项; C .0与﹣3是同类项;D .3与a 不是同类项.故选C .【点睛】本题考查了同类项,能熟记同类项的定义是解答本题的关键.15.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a + A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.1.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…,依此类推,则a2016的值为_______.﹣1008【解析】a2=−|a1+1|=−|0+1|=−1a3=−|a2+2|=−|−1+2|=−1a4=−|a3+3|=−|−1+3|=−2a5=−|a4+ 4|=−|−2+4|=−2…所以n是奇数解析:﹣1008【解析】a2=−|a1+1|=−|0+1|=−1,a3=−|a2+2|=−|−1+2|=−1,a4=−|a3+3|=−|−1+3|=−2,a5=−|a4+4|=−|−2+4|=−2,…,所以n是奇数时,a n=−12n;n是偶数时,a n=−2n;a2016=−20162=−1008.故答案为-1008.点睛:此题考查数字的变化规律,根据所给出的数,观察出n为奇数与偶数时的结果的变化规律是解题的关键. 探寻数列规律:认真观察、席子思考、善用联想是解决问题的方法.利用方程解决问题.当问题中有多个未知数时,可先设其中一个为x,再利用它们之间的关系,设出其它未知数,然后列方程.2.如图,阴影部分的面积用整式表示为_________.x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和【详解】如图:阴影部分的面积为:x·x+3x+3×2=x2+3x+6故答案为x2+3x +6【点睛】本题考查了列代数式和代数式求值解决这类问题解析:x2+3x+6【分析】阴影部分的面积=三个小矩形的面积的和.【详解】如图:阴影部分的面积为:x·x+3x+3×2= x 2+3x +6. 故答案为x 2+3x +6【点睛】本题考查了列代数式和代数式求值,解决这类问题首先要从简单图形入手,认清各图形的关系,然后求解.3.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m 2+3m-4,故答案为2m 2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.4.写出一个系数是-2,次数是4的单项式________.答案不唯一例:-2【解析】解:系数为-2次数为4的单项式为:-2x4故答案为-2x4点睛:本题考查了单项式的知识单项式中的数字因数叫做单项式的系数一个单项式中所有字母的指数的和叫做单项式的次数解析:答案不唯一,例:-24x .【解析】解:系数为-2,次数为4的单项式为:-2x 4.故答案为-2x 4.点睛:本题考查了单项式的知识,单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.5.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.6.观察下列各等式中的数字特征:53-58=53×58,92-911=92×911,107-1017=107×1017,…将所发现的规律用含字母a ,b 的等式表示出来是_____.-=×【分析】从大的方面看两个数的差等于两个数的积从小的方面看所有的分子都相同可设两个分母分别为ab 分子用ab 表示即可【详解】观察发现都是两个分数的差等于两个分数的积设第一个分式为则第二个分式的分子 解析:a b -a a b +=a b ×a a b+ 【分析】从大的方面看,两个数的差等于两个数的积.从小的方面看,所有的分子都相同,可设两个分母分别为a ,b ,分子用a ,b 表示即可.【详解】观察发现,都是两个分数的差等于两个分数的积. 设第一个分式为a b,则第二个分式的分子与第一个分式的分子相同,而分母恰好是a b +,∴用含字母a b ,的等式表示出来是a b -a a b +=a b ×a a b +. 故答案为:a b -a a b +=a b ×a a b +. 【点睛】本题考查了数字类规律的探索,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.7.单项式20.8a h π-的系数是______.【分析】根据单项式系数的定义进行求解即可【详解】单项式的系数是故答案为:【点睛】本题考查了单项式的系数问题掌握单项式系数的定义是解题的关键解析:0.8π-【分析】根据单项式系数的定义进行求解即可.【详解】单项式20.8a h π-的系数是0.8π-故答案为:0.8π-.【点睛】本题考查了单项式的系数问题,掌握单项式系数的定义是解题的关键.8.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a 2,a 3,a 4,a 5,a 6,观察发现3次一个循环,所以a 2019=a 3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.9.多项式223324573x x y x y y --+-按x 的降幂排列是______。

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案

七年级数学(上)《整式的加减》测试题及答案(3)222232x y xy yx y x -+- (4))](32[52222b a ab ab b a ---(5)2222(2)3(2)4(32)ab a a ab a ab --+---3.先化简再求值(10分)(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .4.一个四边形的周长是48厘米,已知第一条边长a 厘米,第二条边比第一条边的2倍长3厘米,第三条边等于第一、二两条边的和,写出表示第四条边长的整式.(6分)5.大客车上原有(3a -b )人,中途下去一半人,又上车若干人,使车上共有乘客(8a -5b )人,问中途上车乘客是多少人?当a =10,b =8时,上车乘客是多少人?(6分)6.若多项式24x -6xy+2x-3y 与2ax +bxy+3ax-2by 的和不含二次项,求a 、b 的值。

(5分)答案:一、选择题1.D 2.D 3.A 4.C 5.B 6.B 7.D二、填空题1.35-,六 2.五,五.432232,,5,,1a a b a b a --.23324152a a b a b a -+-++ 3.-12a 2b 2+2ab 4.(a+2b )cm <x <(3a +4b )cm 5.(6n +2) 6.22(2)44n n n +-=+ 7.x 2+3x +6三、解答题1.答:-ab 3c ,-ab 2c 2,-abc 3,-a 2b 2c ,-a 2bc 2,-a 3bc .2.解:(1)原式=2222523()a b ab ab a b -+-=22225233a b ab ab a b -+-=222a b ab +.(2)原式=2224263128ab a a ab a ab -++--+=24a ab -+.(1)9y -{159-[4y -(11x -2y )-10x ]+2y },其中x =-3,y =2.(2) 2222222(23)(2)x y y x y x -+--+,其中1-=x ,2=y .3.(1)原式=9y -{159-[6y -21x ]+2y }=9y -{159+21x -4y }=-21x +13y -159.当x =-3,y =2时,原式=-21×(-3)+13×2 -159=-70.(2)原式=2222222232x y y x y x -+---=222x y --.当1-=x ,2=y 时,原式=-2-4=-6.4.解:∵第一条边长a 厘米,第二条边长(2a +3)厘米,第三条边长[a +(2a +3)]=(3a +3)厘米,第四条边长[48-a -(2a +3)-(3a +3)]=48-a -2a -3-3a -3=(42-6a )厘米.∴第四条边长为(42-6a )厘米.5.解:(8a -5b )-12(3a -b )=8a -5b -3322a b +=13922a b -.当a =10,b =8时,上车乘客是29人.。

(word)七年级上册数学整式加减练习题及答案

(word)七年级上册数学整式加减练习题及答案

新人教版七年级〔上〕第二章整式的加减测试题〔时间:45分总分值:100分〕班级姓名成绩一、选择题〔每题3分,共15分〕:1.原产量n吨,增产30%之后的产量应为〔〕〔A〕〔1-30%〕n吨. 〔B〕〔1+30%〕n吨.〔C〕n+30%吨. 〔D〕30%n吨.2.以下说法正确的选项是〔〕〔A〕1∏x2的系数为1. 〔B〕1xy2的系数为1x.3 3 2 2〔C〕5x2的系数为5. 〔D〕3x2的系数为3.3.以下计算正确的选项是〔〕〔A〕4x-9x+6x=-x. 〔B〕1a 1a0.2 2〔C〕x3x2x. 〔D〕xy 2xy 3xy..买一个足球需要m元,买一个篮球需要n元,那么买4个足球、7个篮球共需要〕元.〔A〕4m+7n.〔B〕28mn.〔C〕7m+4n.〔D〕11mn..计算:6a25a3与5a22a1的差,结果正确的选项是〔〕〔A〕a23a4〔B〕a23a2〔C〕a27a2〔D〕a27a4.二、填空题〔每题4分,共24分〕:6.列示表示:p的3倍的1是.4.3的次数为.8.多项式2b1ab25ab1的次数为.4写5x3y2的一个同..出类项10.三个连续奇数,中间一个是n,那么这三个数的和为.观察以下算式:1202 1 0 1; 2212 2 1 3;3222 3 2 5;南雄黄坑中学-1-liaohonghai42 32 437; 52 42 54 9;12.假设字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、计算题〔每题 5分,共30分〕: 计算〔每题5分,共15分〕 〔1〕1s t 36;2 t〔2〕8aa3a 24a 3 a 27a 6;〔3〕7xy x y 346x2xy35xy3;5计算〔每题6分,共12分〕〔1〕2〔2a-3b 〕+3〔2b-3a 〕;〔2〕2(x 2 x y) 3(2x 2 3xy) 2[x 2 (2x 2xyy 2)].14.先化间,再求值〔每题8分,共16分〕〔1〕 31),其中x=-3;2x4x33〔2〕125 (3(34),其中a=-1,b=2,c=-2. aba cac a bacac2〔9分〕如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,假设圆形的半径 r 米,广场长为 a 米,宽为 b 米.〔1〕请列式表示广场空地的面积; 〔2〕假设休闲广场的长为 500米,宽为200米,圆形花坛 的半径为 20米,求广场空地的面积〔计算结果保存∏〕 。

新人教版七年级上册整式的加减测试题(含答案)

新人教版七年级上册整式的加减测试题(含答案)

一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 ,化简后的结果是 。

2、当2-=x 时,代数式-122-+x x = ,122+-x x = 。

3、写出一个关于x 的二次三项式,使得它的二次项系数为-5,则这个二次三项式为 。

4、已知:11=+xx ,则代数式51)1(2010-+++x x x x 的值是 。

5、张大伯从报社以每份0.4元的价格购进了a 份报纸,以每份0.5元的价格售出了b 份报纸,剩余的以每份0.2元的价格退回报社,则张大伯卖报收入 元。

6、计算:=-+-7533x x ,)9()35(b a b a -+-= 。

7、)2008642()200953(m m m m m m m m ++++-++++ = 。

8、-bc a 2+的相反数是 ,π-3= ,最大的负整数是 。

9、若多项式7322++x x 的值为10,则多项式7962-+x x 的值为 。

若≠+-m y x y x m n 则的六次单项式是关于,,)2(232 ,n = 。

11、已知=++=+-=+22224,142,82b ab a ab b ab a 则 ,=-22b a 。

12、多项式172332+--x x x 是 次 项式,最高次项是 ,常数项是 。

二、选择题(每题3分,共30分)13、下列等式中正确的是( )A 、)25(52x x --=-B 、)3(737+=+a aC 、-)(b a b a --=-D 、)52(52--=-x x14、下面的叙述错误的是( )A 、倍的和的平方的与的意义是2)2(2b a b a +。

B 、222b a b a 与的意义是+的2倍的和C 、3)2(ba 的意义是a 的立方除以2b 的商 D 、b a b a 与的意义是2)(2+的和的平方的2倍15、下列代数式书写正确的是( )A 、48aB 、y x ÷C 、)(y x a +D 、211abc 16、-)(c b a +-变形后的结果是( )A 、-c b a ++B 、-c b a -+C 、-c b a +-D 、-c b a --17、下列说法正确的是( )A 、0不是单项式B 、x 没有系数C 、37x x+是多项式 D 、5xy -是单项式 18、下列各式中,去括号或添括号正确的是( )A 、c b a a c b a a +--=+--2)2(22B 、)123(123-+-+=-+-y x a y x aC 、1253)]12(5[3+--=---x x x x x xD 、-)1()2(12-+--=+--a y x a y x19、代数式,21a a + 43,21,2009,,3,42mn bc a a b a xy -+中单项式的个数是( ) A 、3 B 、4 C 、5 D 、620、若A 和B 都是4次多项式,则A+B 一定是( )A 、8次多项式B 、4次多项式C 、次数不高于4次的整式D 、次数不低于4次的整式21、已知y x x n m n m 2652与-是同类项,则( )A 、1,2==y xB 、1,3==y xC 、1,23==y x D 、0,3==y x 22、下列计算中正确的是( )A 、156=-a aB 、x x x 1165=-C 、m m m =-2D 、33376x x x =+三、化简下列各题(每题3分,共18分)23、)312(65++-a a 24、b a b a +--)5(225、-32009)214(2)2(++--y x y x 26、-[]12)1(32--+--n m m27、)(4)()(3222222y z z y y x ---+- 28、1}1]1)1([{2222-------x x x x四、化简求值(每题5分,共10分)29、)]21(3)13(2[22222x x x x x x ------- 其中:21=x30、)22()(3)2(2222222b a ab b a ab b a ab -+--- 其中:1,2==b a五、解答题(31、32题各6分,33、34题各7分,共20分)31、已知:;)()(,,0553212=+-m x y x m 满足2312722a b b a y 与+-)(是同类项,求代数式:)733()9(6222222y xy x y xy m y x +---+-的值。

人教版七年级数学上册整式的加减练习题

人教版七年级数学上册整式的加减练习题

人教版七年级数学上册整式的加减练习题整式的加减专项练1.化简1) 15x + 4x - 10x = 9x2) -p - p - p = -3p3) 2a + 6b - 7a - b = -5a + 5b4) 5x - 7xy + 3x + 6xy - 4x = -2xy + 4x5) 5a - (2a - 4b) = 3a + 4b6) 2x + 3(2x - x) = 7x7) (6a^2 - 4ab - 4(2a^2 + ab)) / 2 = -5a^2 - 2ab8) -3(2x - xy) + 4(x + xy - 6) = -6x + 5xy - 209) 3a + 2 - (-4a) = 7a + 210) 2(x + 3) - (5 - x)^2 = 7x - x^2 - 1612) (st - 3st + 6) / 2 = -st + 313) (a - a) - (a - 2a + 1) = -a + 114) 2(3b^2 - a^3b) - 3(2b^2 - a^2b - a^3b) - 4a^2b = -a^3b - 6b^215) 2(3y - 5y - 6) - (y - 2 + 3y) = -4y - 816) (2x - 3y) - (3x + 2y + 1) = -x - 2y - 117) 3(-ab + 2a) - (3a - b) + 3ab = -2ab + 6a - b18) a - [(ab - a^2) + 4ab] - ab = -a^2 - 3ab19) 3x - [7x - (4x - 3) - 2x] = -2x + 320) m^2n + 3mn^2 + 6 - 8nm^2 + mn^2 = -8nm^2 + m^2n + 4mn^2 + 621) 2(2a - 3b) + 3(2b - 3a) = -5a - 5b22) 7ab - 4ab + 5ab - 4ab + 6ab = 10ab23) (4a - 3a) - (2a + a - 1) + (2 - a) + 4a = 8a24) 2(2x - 3y) - (3x + 2y + 1) = -x - 8y - 125) -(3a - 4ab) + [a - 2(2a + 2ab)] = -5a - 4ab26) 当a = 3,b = -4时,3(2ab - ab - a) - (6ab - 3ab + 3) = -3.XXX的说法有道理,因为题目中已经给出了a和b的值,所以条件是多余的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档