2019届中考数学泰安版精品练习第6讲 一元二次方程(可编辑word)
2021年中考数学复习第6讲 一元二次方程及其应用(精讲练习)
第6讲一元二次方程及其应用一、选择题1.(2020·临沂)一元二次方程x2-4x-8=0的解是(B)A.x1=-2+2 3 ,x2=-2-2 3B.x1=2+2 3 ,x2=2-2 3C.x1=2+2 2 ,x2=2-2 2D.x1=2 3 ,x2=-2 32.(2020·泰安)将一元二次方程x2-8x-5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是(A)A.-4,21 B.-4,11C.4,21 D.-8,693.(2020·河南)定义运算:m☆n=mn2-mn-1.例如:4☆2=4×22-4×2-1=7.则方程1☆x=0的根的情况为(A)A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.只有一个实数根4.(2020·铜仁)已知m,n,4分别是等腰三角形(非等边三角形)三边的长,且m,n是关于x的一元二次方程x2-6x+k+2=0的两个根,则k的值等于(B)A.7 B.7或6C.6或-7 D.65.(2020·鄂州)目前以5G等为代表的战略性新兴产业蓬勃发展.某市2019年底有5G 用户2万户,计划到2021年底全市5G用户数累计达到3.92万户.设全市5G用户数年平均增长率为x,则x值为(C)A.20% B.30% C.40% D.50%6.(2020·随州)将关于x的一元二次方程x2-px+q=0变形为x2=px-q,就可以将x2表示为关于x的一次多项式,从而达到“降次”的目的,又如x3=x·x2=x(px-q)=…,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式.根据“降次法”,已知:x2-x-1=0,且x>0,则x4-2x3+3x的值为(C)A.1- 5 B.3- 5C.1+ 5 D.3+ 5二、填空题7.(2020·江西)若关于x的一元二次方程x2-kx-2=0的一个根为x=1,则这个一元二次方程的另一个根为__-2__.8.(2020·荆门)已知关于x的一元二次方程x2-4mx+3m2=0(m>0)的一个根比另一个根大2,则m的值为__1__.9.(2020·邵阳)中国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步,问它的长与宽各多少步?利用方程思想,设宽为x步,则依题意列方程为__x(x+12)=864__.10.(2020·山西)如图是一张长12 cm ,宽10 cm 的矩形铁皮,将其剪去两个全等的正方形和两个全等的矩形,剩余部分(阴影部分)可制成底面积是24 cm 2的有盖的长方体铁盒.则剪去的正方形的边长为__2__ cm .三、解答题11.(2020·无锡)解方程:x 2+x -1=0.解:x 1=-1+52 ,x 2=-1-52.12.关于x 的方程x 2-2x +2m -1=0有实数根,且m 为正整数,求m 的值及此时方程的根.解:∵关于x 的方程x 2-2x +2m -1=0有实数根,∴b 2-4ac =4-4(2m -1)≥0,解得:m ≤1,∵m 为正整数,∴m =1,∴x 2-2x +1=0,则(x -1)2=0,解得:x 1=x 2=1.13.(2020·上海)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8,9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8,9月份营业额的月增长率.解:(1)450+450×12%=504(万元).答:该商店去年“十一黄金周”这七天的总营业额为504万元.(2)设该商店去年8,9月份营业额的月增长率为x ,依题意,得:350(1+x)2=504, 解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去).答:该商店去年8、9月份营业额的月增长率为20%.14.(丽水一模)新定义:如果一个矩形,它的周长和面积分别是另外一个矩形的周长和面积的一半,则这个矩形是另一个矩形的“减半”矩形.(1)已知矩形ABCD 的长12、宽2,矩形EFGH 的长4、宽3,试说明矩形EFGH 是矩形ABCD 的“减半”矩形.(2)矩形的长和宽分别为2,1时,它是否存在“减半”矩形?请作出判断,并请说明理由.解:(1)矩形EFGH 的周长为14,面积为12,矩形ABCD 的周长为28,面积为24,所以矩形EFGH 是矩形ABCD 的“减半”矩形;(2)不存在.理由如下:假设存在,不妨设“减半”矩形的长和宽分别为x ,y ,则⎩⎪⎨⎪⎧x +y =32,xy =1,可得x 2-32 x +1=0,Δ=b 2-4ac =94 -4=-74 <0,所以不存在.15.如图,在△ABC 中,∠ACB =90°,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD.(1)若∠A =28°,求∠ACD 的度数.(2)设BC =a ,AC =b.①线段AD 的长是方程x 2+2ax -b 2=0的一个根吗?说明理由.②若AD =EC ,求a b的值.解:(1)∵∠ACB =90°,∠A =28°,∴∠B =62°,∵BD =BC ,∴∠BCD =∠BDC =59°,∴∠ACD =90°-∠BCD =31°;(2)①由勾股定理得,AB =AC 2+BC 2 =a 2+b 2 ,∴AD =a 2+b 2 -a ,解方程x 2+2ax -b 2=0得,x =-2a±4a 2+4b 22=±a 2+b 2 -a ,∴线段AD 的长是方程x 2+2ax -b 2=0的一个根;②∵AD =AE ,∴AE =EC =b 2 ,由勾股定理得,a 2+b 2=(12 b +a)2,整理得,a b =34.。
山东泰安2019中考试题-数学(解析版)
山东泰安2019中考试题-数学(解析版)一、选择题1、〔2018泰安〕以下各数比﹣3小的数是〔〕A 、0B 、1C 、﹣4D 、﹣1考点:有理数大小比较。
解答:解:依照两负数比较大小,其绝对值大的反而小,正数都大于负数,零大于一切负数, ∴1>﹣3,0>﹣3,∵|﹣3|=3,|﹣1|=1,|﹣4|=4,∴比﹣3小的数是负数,是﹣4、应选C 、2、〔2018泰安〕以下运算正确的选项是〔〕A 、2(5)5-=-B 、21()164--=C 、632x x x ÷=D 、325()x x =考点:二次根式的性质与化简;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂。
解答:解:A 、2(5)55-=-=,因此A 选项不正确;B 、21()164--=,因此B 选项正确; C 、633x x x ÷=,因此C 选项不正确;D 、326()x x =,因此D 选项不正确、应选B 、3、〔2018泰安〕如下图的几何体的主视图是〔〕A 、B 、C 、D 、考点:简单组合体的三视图。
解答:解:从正面看易得第一层有1个大长方形,第二层中间有一个小正方形、 应选A 、4、〔2018泰安〕一粒米的质量是0.000021千克,那个数字用科学记数法表示为〔〕A 、42110-⨯千克B 、62.110-⨯千克C 、52.110-⨯千克D 、42.110-⨯千克考点:科学记数法—表示较小的数。
解答:解:0.000021=52.110-⨯;应选:C 、5、〔2018泰安〕从以下四张卡片中任取一张,卡片上的图形是中心对称图形的概率是〔〕A、0B 、C 、D 、考点:概率公式;中心对称图形。
解答:解:∵在这一组图形中,中心对称图形只有最后一个,∴卡片上的图形是中心对称图形的概率是、应选D、6、〔2018泰安〕将不等式组841163x xx x+<-⎧⎨≤-⎩的解集在数轴上表示出来,正确的选项是〔〕A 、B 、C 、D 、考点:在数轴上表示不等式的解集;解一元一次不等式组。
2019年山东省泰安市中考数学试题及参考答案(word解析版)
2019年山东省泰安市中考数学试题及参考答案与解析(全卷共150分,考试时间120分钟)第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π2.下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a43.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米4.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④5.如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.27.不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<28.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.309.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.11.如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π12.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.15.如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.16.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.17.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.18.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF 折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B (5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.25.(14分)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB上,且∠CEF =90°,FG⊥AD,垂足为点C.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.参考答案与解析第Ⅰ卷(选择题共48分)一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π【知识考点】算术平方根;实数大小比较.【思路分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反尔小.【解答过程】解:∵||=<|﹣3|=3∴﹣<(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.【总结归纳】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负数的绝对值为正数“.2.下列运算正确的是()A.a6÷a3=a3B.a4•a2=a8C.(2a2)3=6a6D.a2+a2=a4【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答过程】解:A、a6÷a3=a3,故此选项正确;B、a4•a2=a6,故此选项错误;C、(2a2)3=8a6,故此选项错误;D、a2+a2=2a2,故此选项错误;故选:A.【总结归纳】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为()A.4.2×109米B.4.2×108米C.42×107米D.4.2×107米【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:42万公里=420000000m用科学记数法表示为:4.2×108米,故选:B.【总结归纳】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图形:是轴对称图形且有两条对称轴的是()A.①②B.②③C.②④D.③④【知识考点】轴对称图形.【思路分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解.【解答过程】解:①是轴对称图形且有两条对称轴,故本选项正确;②是轴对称图形且有两条对称轴,故本选项正确;③是轴对称图形且有4条对称轴,故本选项错误;④不是轴对称图形,故本选项错误.故选:A.【总结归纳】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,直线11∥12,∠1=30°,则∠2+∠3=()A.150°B.180°C.210°D.240°【知识考点】平行线的性质.【思路分析】过点E作EF∥11,利用平行线的性质解答即可.【解答过程】解:过点E作EF∥11,∵11∥12,EF∥11,∴EF∥11∥12,∴∠1=∠AEF=30°,∠FEC+∠3=180°,∴∠2+∠3=∠AEF+∠FEC+∠3=30°+180°=210°,故选:C.【总结归纳】此题考查平行线的性质,关键是根据平行线的性质解答.6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【知识考点】折线统计图;算术平均数;中位数;众数;方差.【思路分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项.【解答过程】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A选项正确;10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是(8+8)=8,故B选项正确;平均数为(6+7×2+8×3+9×2+10×2)=8.2,故C选项正确;方差为[(6﹣8.2)2+(7﹣8.2)2+(7﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(8﹣8.2)2+(9﹣8.2)2+(9﹣8.2)2+(10﹣8.2)2+(10﹣8.2)2]=1.56,故D选项错误;故选:D.【总结归纳】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.不等式组的解集是()A.x≤2 B.x≥﹣2 C.﹣2<x≤2 D.﹣2≤x<2【知识考点】解一元一次不等式组.【思路分析】先求出两个不等式的解集,再求其公共解.【解答过程】解:,由①得,x≥﹣2,由②得,x<2,所以不等式组的解集是﹣2≤x<2.故选:D.【总结归纳】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.如图,一艘船由A港沿北偏东65°方向航行30km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏东20°方向,则A,C两港之间的距离为()km.A.30+30B.30+10C.10+30D.30【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,解直角三角形即可得到结论.【解答过程】解:根据题意得,∠CAB=65°﹣20°,∠ACB=40°+20°=60°,AB=30,过B作BE⊥AC于E,∴∠AEB=∠CEB=90°,在Rt△ABE中,∵∠ABE=45°,AB=30,∴AE=BE=AB=30km,在Rt△CBE中,∵∠ACB=60°,∴CE=BE=10km,∴AC=AE+CE=30+10,∴A,C两港之间的距离为(30+10)km,故选:B.【总结归纳】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.9.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为()A.32°B.31°C.29°D.61°【知识考点】切线的性质.【思路分析】连接OC、CD,由切线的性质得出∠OCP=90°,由圆内接四边形的性质得出∠ODC =180°﹣∠A=61°,由等腰三角形的性质得出∠OCD=∠ODC=61°,求出∠DOC=58°,由直角三角形的性质即可得出结果.【解答过程】解:如图所示:连接OC、CD,∵PC是⊙O的切线,∴PC⊥OC,∴∠OCP=90°,∵∠A=119°,∴∠ODC=180°﹣∠A=61°,∵OC=OD,∴∠OCD=∠ODC=61°,∴∠DOC=180°﹣2×61°=58°,∴∠P=90°﹣∠DOC=32°;故选:A.【总结归纳】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答过程】解:画树状图如图所示:∵共有25种等可能的结果,两次摸出的小球的标号之和大于5的有15种结果,∴两次摸出的小球的标号之和大于5的概率为=;故选:C.【总结归纳】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.11.如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为()A.πB.πC.2πD.3π【知识考点】垂径定理;弧长的计算;翻折变换(折叠问题).【思路分析】连接OA、OB,作OC⊥AB于C,根据翻转变换的性质得到OC=OA,根据等腰三角形的性质、三角形内角和定理求出∠AOB,根据弧长公式计算即可.【解答过程】解:连接OA、OB,作OC⊥AB于C,由题意得,OC=OA,∴∠OAC=30°,∵OA=OB,∴∠OBA=∠OAC=30°,∴∠AOB=120°,∴的长==2π,故选:C.【总结归纳】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()A.2 B.4 C.D.【知识考点】垂线段最短;矩形的性质;轨迹.【思路分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.【解答过程】解:如图:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE当点F在EC上除点C、E的位置处时,有DP=FP由中位线定理可知:P1P∥CE且P1P=CF∴点P的运动轨迹是线段P1P2,∴当BP⊥P1P2时,PB取得最小值∵矩形ABCD中,AB=4,AD=2,E为AB的中点,∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°∴∠DP2P1=90°∴∠DP1P2=45°∴∠P2P1B=90°,即BP1⊥P1P2,∴BP的最小值为BP1的长在等腰直角BCP1中,CP1=BC=2∴BP1=2∴PB的最小值是2故选:D.【总结归纳】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分)13.已知关于x的一元二次方程x2﹣(2k﹣1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.【知识考点】根的判别式.【思路分析】根据方程有两个不相等的实数根可得△=(2k﹣1)2﹣4(k2+3)>0,求出k的取值范围;【解答过程】解:∵原方程有两个不相等的实数根,∴△=(2k﹣1)2﹣4(k2+3)=﹣4k+1﹣12>0,解得k;故答案为:k.【总结归纳】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意可列方程组为.【知识考点】由实际问题抽象出二元一次方程组.【思路分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答过程】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故答案为:.【总结归纳】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.15.如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A、点C,交OB于点D,若OA=3,则阴影都分的面积为.【知识考点】含30度角的直角三角形;扇形面积的计算.【思路分析】连接OC,作CH⊥OB于H,根据直角三角形的性质求出AB,根据勾股定理求出BD,证明△AOC为等边三角形,得到∠AOC=60°,∠COB=30°,根据扇形面积公式、三角形面积公式计算即可.【解答过程】解:连接OC,作CH⊥OB于H,∵∠AOB=90°,∠B=30°,∴∠OAB=60°,AB=2OA=6,由勾股定理得,OB==3,∵OA=OC,∠OAB=60°,∴△AOC为等边三角形,∴∠AOC=60°,∴∠COB=30°,∴CO=CB,CH=OC=,∴阴影都分的面积=﹣×3×3×+×3×﹣=π,故答案为:π.【总结归纳】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.16.若二次函数y=x2+bx﹣5的对称轴为直线x=2,则关于x的方程x2+bx﹣5=2x﹣13的解为.【知识考点】二次函数的性质;抛物线与x轴的交点.【思路分析】根据对称轴方程求得b,再解一元二次方程得解.【解答过程】解:∵二次函数y=x2+bx﹣5的对称轴为直线x=2,∴,得b=﹣4,则x2+bx﹣5=2x﹣13可化为:x2﹣4x﹣5=2x﹣13,解得,x1=2,x2=4.故意答案为:x1=2,x2=4.【总结归纳】本题主要考查的是抛物线与x轴的交点,利用抛物线的对称性求得b的值是解题的关键.17.在平面直角坐标系中,直线l:y=x+1与y轴交于点A1,如图所示,依次作正方形OA1B1C1,正方形C1A2B2C2,正方形C2A3B3C3,正方形C3A4B4C4,……,点A1,A2,A3,A4,……在直线l上,点C1,C2,C3,C4,……在x轴正半轴上,则前n个正方形对角线长的和是.【知识考点】规律型:点的坐标;一次函数的性质;一次函数图象上点的坐标特征.【思路分析】根据题意和函数图象可以求得点A1,A2,A3,A4的坐标,从而可以得到前n个正方形对角线长的和,本题得以解决.【解答过程】解:由题意可得,点A1的坐标为(0,1),点A2的坐标为(1,2),点A3的坐标为(3,4),点A4的坐标为(7,8),……,∴OA1=1,C1A2=2,C2A3=4,C3A4=8,……,∴前n个正方形对角线长的和是:(OA1+C1A2+C2A3+C3A4+…+C n﹣1A n)=(1+2+4+8+…+2n﹣1),设S=1+2+4+8+…+2n﹣1,则2S=2+4+8+…+2n﹣1+2n,则2S﹣S=2n﹣1,∴S=2n﹣1,∴1+2+4+8+…+2n﹣1=2n﹣1,∴前n个正方形对角线长的和是:×(2n﹣1),故答案为:(2n﹣1),【总结归纳】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,矩形ABCD中,AB=3,BC=12,E为AD中点,F为AB上一点,将△AEF沿EF 折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.【知识考点】矩形的性质;翻折变换(折叠问题).【思路分析】连接EC,利用矩形的性质,求出EG,DE的长度,证明EC平分∠DCF,再证∠FEC=90°,最后证△FEC∽△EDC,利用相似的性质即可求出EF的长度.【解答过程】解:如图,连接EC,∵四边形ABCD为矩形,∴∠A=∠D=90°,BC=AD=12,DC=AB=3,∵E为AD中点,∴AE=DE=AD=6由翻折知,△AEF≌△GEF,∴AE=GE=6,∠AEF=∠GEF,∠EGF=∠EAF=90°=∠D,∴GE=DE,∴EC平分∠DCG,∴∠DCE=∠GCE,∵∠GEC=90°﹣∠GCE,∠DEC=90°﹣∠DCE,∴∠GEC=∠DEC,∴∠FEC=∠FEG+∠GEC=×180°=90°,∴∠FEC=∠D=90°,又∵∠DCE=∠GCE,∴△FEC∽△EDC,∴,∵EC===3,∴,∴FE=2,故答案为:2.【总结归纳】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE,构造相似三角形,最终利用相似的性质求出结果.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.(8分)先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=.【知识考点】分式的化简求值.【思路分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答过程】解:原式=(+)÷(﹣)=÷=•=,当a=时,原式==1﹣2.【总结归纳】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次根式的运算能力.20.(8分)为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):请根据以上信息,解答下列问题:(1)求出a,b的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【知识考点】频数(率)分布表;扇形统计图.【思路分析】(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),所以a=12,b=7;(2)=27°,所以“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),所以成绩高于80分的共有900人.【解答过程】解:(1)抽取学生人数10÷25%=40(人),第2组人数40×50%﹣8=12(人),第4组人数40×50%﹣10﹣3=7(人),∴a=12,b=7;(2)=27°,∴“第5组”所在扇形圆心角的度数为27°;(3)成绩高于80分:1800×50%=900(人),∴成绩高于80分的共有900人.【总结归纳】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键.21.(11分)已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B (5,0),若OB=AB,且S△OAB=.(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.【知识考点】反比例函数综合题.【思路分析】(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;(2)分三种情况,①当AB=PB时,得出PB=5,即可得出结论;②当AB=AP时,利用点P与点B关于AD对称,得出DP=BD=4,即可得出结论;③当PB=AP时,先表示出AP2=(9﹣a)2+9,BP2=(5﹣a)2,进而建立方程求解即可得出结论.【解答过程】解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S△OAB=,∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).【总结归纳】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.22.(11分)端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【知识考点】分式方程的应用;一元一次不等式的应用.【思路分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,根据总价=单价×数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答过程】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600﹣m)个,依题意,得:3m+2.5(2600﹣m)≤7000,解得:m≤1000.答:A种粽子最多能购进1000个.【总结归纳】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE•AB=DE•AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.【知识考点】相似形综合题.【思路分析】(1)想办法证明AG=PF,AG∥PF,推出四边形AGFP是平行四边形,再证明PA =PF即可解决问题.(2)证明△AEP∽△DEC,可得=,由此即可解决问题.(3)利用(2)中结论.求出DE,AE即可.【解答过程】(1)证明:如图①中,∵四边形ABCD是矩形,∴∠BAD=90°,∵AE⊥BD,∴∠AED=90°,∴∠BAE+∠EAD=90°,∠EAD+∠ADE=90°,∴∠BAE=∠ADE,∵∠AGP=∠BAG+∠ABG,∠APD=∠ADE+∠PBD,∠ABG=∠PBD,∴∠AGP=∠APG,∴AP=AG,∵PA⊥AB,PF⊥BD,BP平分∠ABD,∴PA=PF,∴PF=AG,∵AE⊥BD,PF⊥BD,∴PF∥AG,∴四边形AGFP是平行四边形,∵PA=PF,∴四边形AGFP是菱形.(2)证明:如图②中,∵AE⊥BD,PE⊥EC,∴∠AED=∠PEC=90°,∴∠AEP=∠DEC,∵∠EAD+∠ADE=90°,∠ADE+∠CDE=90°,∴∠EAP=∠EDC,∴△AEP∽△DEC,∴=,∵AB=CD,∴AE•AB=DE•AP;(3)解:∵四边形ABCD是矩形,∴BC=AD=2,∠BAD=90°,∴BD==,∵AE⊥BD,∴S△ABD=•BD•AE=•AB•AD,∴AE=,∴DE==,∵AE•AB=DE•AP;∴AP==.【总结归纳】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.(13分)若二次函数y=ax2+bx+c的图象与x轴、y轴分别交于点A(3,0)、B(0,﹣2),且过点C(2,﹣2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内的点,且S△PBA=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)用A、B、C三点坐标代入,用待定系数法求二次函数表达式.(2)设点P横坐标为t,用t代入二次函数表达式得其纵坐标.把t当常数求直线BP解析式,进而求直线BP与x轴交点C坐标(用t表示),即能用t表示AC的长.把△PBA以x轴为界分成△ABC与△ACP,即得到S△PBA=AC(OB+PD)=4,用含t的式子代入即得到关于t的方程,解之即求得点P坐标.(3)作点O关于直线AB的对称点E,根据轴对称性质即有AB垂直平分OE,连接BE交抛物线于点M,即有BE=OB,根据等腰三角形三线合一得∠ABO=∠ABM,即在抛物线上(AB下方)存在点M使∠ABO=∠ABM.设AB与OE交于点G,则G为OE中点且OG⊥AB,利用△OAB面积即求得OG进而得OE的长.易求得∠OAB=∠BOG,求∠OAB的正弦和余弦值,应用到Rt△OEF即求得OF、EF的长,即得到点E坐标.求直线BE解析式,把BE解析式与抛物线解析式联立,求得x的解一个为点B横坐标,另一个即为点M横坐标,即求出点M到y轴的距离.【解答过程】解:(1)∵二次函数的图象经过点A(3,0)、B(0,﹣2)、C(2,﹣2)∴解得:∴二次函数表达式为y=x2﹣x﹣2(2)如图1,设直线BP交x轴于点C,过点P作PD⊥x轴于点D设P(t,t2﹣t﹣2)(t>3)∴OD=t,PD=t2﹣t﹣2设直线BP解析式为y=kx﹣2把点P代入得:kt﹣2=t2﹣t﹣2∴k=t﹣∴直线BP:y=(t﹣)x﹣2当y=0时,(t﹣)x﹣2=0,解得:x=∴C(,0)∵t>3∴t﹣2>1∴,即点C一定在点A左侧∴AC=3﹣∵S△PBA=S△ABC+S△ACP=AC•OB+AC•PD=AC(OB+PD)=4∴=4解得:t1=4,t2=﹣1(舍去)∴t2﹣t﹣2=∴点P的坐标为(4,)(3)在抛物线上(AB下方)存在点M,使∠ABO=∠ABM.如图2,作点O关于直线AB的对称点E,连接OE交AB于点G,连接BE交抛物线于点M,过点E作EF⊥y轴于点F∴AB垂直平分OE∴BE=OB,OG=GE∴∠ABO=∠ABM∵A(3,0)、B(0,﹣2),∠AOB=90°∴OA=3,OB=2,AB=∴sin∠OAB=,cos∠OAB=∵S△AOB=OA•OB=AB•OG∴OG=∴OE=2OG=∵∠OAB+∠AOG=∠AOG+∠BOG=90°∴∠OAB=∠BOG∴Rt△OEF中,sin∠BOG=,cos∠BOG=。
中考数学复习考点知识专题讲义第6讲 一元二次方程及其应用
2.列一元二次方程解决实际问题的一般步骤: 同列一元一次方程解决实际问题的步骤一样:审、设、列、解、验、答. 关键是:审、设、列、解. 注意:检验时既要检验所求结果是否为所列方程的解,还要检验是否为原问题的解.
命题点一 一元二次方程的概念及解法(8 年 4 考)
1.(2019·山西 8 题)一元二次方程 x2-4x-1=0 配方后可化为( D )
aa((11++x)nx=)nb=b 或 aa((11--x)nx=)nb=b
[a 为原来的量,x 为平均增长(降低)率,b 为增长(降低)后的量,n 为
增长(降低)的次数]
利率问题 销售利润问题
本息和=本金+利息 利息= 本本金×金年×利年率×利年率数×年数
利润=售价-成本 利润
利润率=成本×100%
2.(2019·百校联考四)一元二次方程 y2-y=34配方后可化为( B )
B.(40-2x)(30-x)=15×30×40 D.(40-2x)(30-x)=45×30×40
【跟踪训练】 5.改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD)10 m,宽 (AB)4 m 的矩形场地 ABCD 上修建两条同样宽的小路,其中一条与 AB 平行,另一条与 AD 平行,其余部分种草.要使草坪部分的总面积为 27 m2,则小路的宽应为多少?
2.一元二次方程根与系数的关系(选学内容):
若关于 x 的一元二次方程 ax2+bx+c=0(a≠0)的两个实数根为 x1,x2,则 x1+x2=
--ba
,x1·x2=
c a
.
考点三 一元二次方程的实际应用 1.实际问题常见类型
类型
数量间的等量关系 增长数量 增长率=基础数量×100%
中考数学专题练习 一元二次方程(含解析)
一元二次方程一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:,二次项系数为:,一次项系数为:,常数项为:.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m 时为一元一次方程;当m 时为一元二次方程.3.若(a+b)(a+b+2)=8,则a+b= .4.x2+3x+ =(x+ )2;x2﹣+2=(x )2.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是cm2.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ,q= .7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= .9.当t 时,关于x的方程x2﹣3x+t=0可用公式法求解.10.若实数a,b满足a2+ab﹣b2=0,则= .二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=012.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣114.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠015.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤016.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?一元二次方程参考答案与试题解析一、填空题1.一元二次方程(1+3x)(x﹣3)=2x2+1化为一般形式为:x2﹣8x﹣4=0 ,二次项系数为: 1 ,一次项系数为:﹣8 ,常数项为:﹣4 .【考点】一元二次方程的一般形式.【分析】去括号、移项变形为一元二次方程的一般形式ax2+bx+c=0,a叫二次项系数,b叫一次项系数,c叫常数项.【解答】解:去括号得,x﹣3+3x2﹣9x=2x2+1,移项得,x2﹣8x﹣4=0,所以一般形式为x2﹣8x﹣4=0;二次项系数为1;一次项系数为﹣8;常数项为﹣4.故答案为x2﹣8x﹣4=0,1,﹣8,﹣4.【点评】考查了一元二次方程的一般形式:ax2+bx+c=0(a≠0,a,b,c为常数),a叫二次项系数,b叫一次项系数,c叫常数项.2.关于x的方程(m﹣1)x2+(m+1)x+3m+2=0,当m =1 时为一元一次方程;当m ≠1 时为一元二次方程.【考点】一元二次方程的定义;一元一次方程的定义.【专题】方程思想.【分析】根据一元二次方程和一元一次方程的定义,含有一个未知数,并且未知数的最高次数是2的整式方程是一元二次方程;含有一个未知数,并且未知数的最高次数是1的整式方程是一元一次方程.可以确定m的取值.【解答】解:要使方程是一元一次方程,则m﹣1=0,∴m=1.要使方程是一元二次方程,则m﹣1≠0,∴m≠1.故答案分别是:m=1;m≠1.【点评】本题考查的是一元一次方程和一元二次方程的定义,根据定义确定m的取值.3.若(a+b)(a+b+2)=8,则a+b= 2或﹣4 .【考点】换元法解一元二次方程.【专题】换元法.【分析】把原方程中的(a+b)代换成y,即可得到关于y的方程y2+2y﹣8=0,求得y的值即为a+b 的值.【解答】解:把原方程中的a+b换成y,所以原方程变化为:y2+2y﹣8=0,解得y=2或﹣4,∴a+b=2或﹣4.【点评】本题主要考查换元法在解一元二次方程中的应用.换元法是借助引进辅助元素,将问题进行转化的一种解题方法.这种方法在解题过程中,把某个式子看作一个整体,用一个字母去代表它,实行等量替换.这样做,常能使问题化繁为简,化难为易,形象直观.4.x2+3x+ =(x+ )2;x2﹣2x +2=(x ﹣)2.【考点】完全平方式.【专题】计算题.【分析】(1)根据首项是x的平方及中间项3x,利用中间项等于x与乘积的2倍即可解答.(2)根据首项与尾项分别是x与的平方,那么中间项等于x与乘积的2倍即可解答.【解答】解:(1)∵首项是x的平方及中间项3x,∴3x=2×x×,x2+3x+=,∴应填,.(2)首项与尾项分别是x与的平方,∴2×x×即为中间项.∴x2﹣2x+2=,故应填:2,﹣.故答案为:,,2,﹣.【点评】本题考查了完全平方公式,属于基础题,关键要熟记完全平方公式.5.直角三角形的两直角边是3:4,而斜边的长是20cm,那么这个三角形的面积是96 cm2.【考点】一元二次方程的应用;勾股定理的应用.【专题】几何图形问题.【分析】根据直角三角形的两直角边是3:4,设出两直角边的长分别是3x、4x,再根据勾股定理列方程求解即可.【解答】解:设两直角边分别是3x、4x,根据勾股定理得:(3x)2+(4x)2=400,解得:x=4,(负值舍去)则:3x=12cm,4x=16cm.故这个三角形的面积是×12×16=96cm2.【点评】此题主要根据勾股定理来确定等量关系,也考查了三角形的面积公式.6.若方程x2+px+q=0的两个根是﹣2和3,则p= ﹣1 ,q= ﹣6 .【考点】根与系数的关系.【分析】根据根与系数的关系,分别求出p、q的值.【解答】解:由题意知,x1+x2=﹣p,即﹣2+3=﹣p,∴p=﹣1;又x1x2=q,即﹣2×3=q,∴q=﹣6.【点评】已知了一元二次方程的两根求系数,可利用一元二次方程根与系数的关系:x1+x2=,x1x2=解答.7.若代数式4x2﹣2x﹣5与2x2+1的值互为相反数,则x的值是1或﹣.【考点】解一元二次方程﹣因式分解法.【分析】根据题意先列出方程,然后利用因式分解法解方程求得x的值.【解答】解:∵代数式4x2﹣2x﹣5与2x2+1的值互为相反数,∴4x2﹣2x﹣5+2x2+1=0,即(x﹣1)(3x+2)=0,解得x=1或﹣.【点评】本题是基础题,考查了一元二次方程的解法.8.代数式2x2+3x+7的值为12,则代数式4x2+6x﹣10= 0 .【考点】代数式求值.【专题】整体思想.【分析】先对已知进行变形,把所求代数式化成已知的形式,再利用整体代入法求解.【解答】解:∵2x2+3x+7=12∴2x2+3x=12﹣7∴4x2+6x﹣10=2(2x2+3x)﹣10=2×(12﹣7)﹣10=0.【点评】此题考查的是代数式的转化,通过观察可知已知与所求的式子的关系,然后将变形的式子代入即可求出答案.9.当t ≤时,关于x的方程x2﹣3x+t=0可用公式法求解.【考点】根的判别式.【专题】计算题.【分析】关于x的方程x2﹣3x+t=0可用公式法求解,则△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,解不等式即可.【解答】解:∵关于x的方程x2﹣3x+t=0可用公式法求解,∴△=b2﹣4ac≥0,即△=32﹣4×1×t=9﹣4t≥0,∴t≤.故答案为≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.10.若实数a,b满足a2+ab﹣b2=0,则= .【考点】解一元二次方程﹣公式法;一元二次方程的解.【专题】计算题.【分析】把b看成常数,解关于a的一元二次方程,然后求出的值.【解答】解:a2+ab﹣b2=0△=b2+4b2=5b2.a== b∴=.故答案是:【点评】本题考查的是用一元二次方程的求根公式解方程,把b看成是常数,用求根公式解关于a的一元二次方程,然后求出的值.二、选择题11.下列方程中,是关于x的一元二次方程的是()A.ax2+bx+c=0 B.x2+2x=x2﹣1 C.3(x+1)2=2(x+1)D. +﹣2=0【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:(1)方程是整式方程;(2)未知数的最高次数是2;(3)只含有一个未知数.由这三个条件得到相应的关系式,再求解即可.【解答】解:A、a=0时,不是一元二次方程,错误;B、原式可化为2x+1=0,是一元一次方程,错误;C、原式可化为3x2+4x+1=0,符合一元二次方程的定义,正确;D、是分式方程,错误.故选C.【点评】判断一个方程是否是一元二次方程,首先判断是否是整式方程,若是整式方程,再进行化简,化简以后只含有一个未知数,并且未知数的最高次数是2,这样的方程就是一元二次方程.12.若2x+1与2x﹣1互为倒数,则实数x为()A.± B.±1 C.±D.±【考点】解一元二次方程﹣直接开平方法.【分析】两个数互为倒数,即两数的积是1,据此即可得到一个关于x的方程,从而求解.【解答】解:根据2x+1与2x﹣1互为倒数,列方程得(2x+1)(2x﹣1)=1;整理得4x2﹣1=1,移项得4x2=2,系数化为1得x2=;开方得x=±.故选C.【点评】用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.本题开方后要注意分母有理化.13.若m是关于x的方程x2+nx﹣m=0的解,且m≠0,则m+n的值是()A.1 B.﹣0.5 C.0.5 D.﹣1【考点】一元二次方程的解.【专题】计算题.【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值;将m代入原方程即可求得m+n的值.【解答】解:把x=m代入方程x2+nx﹣m=0得m2+mn﹣m=0,又∵m≠0,方程两边同除以m,可得m+n=1;故本题选A.【点评】此题中应特别注意:方程两边同除以字母系数时,应强调字母系数不得为零.14.关于x的方程x2+mx+n=0的两根中只有一个等于0,则下列条件中正确的是()A.m=0,n=0 B.m=0,n≠0 C.m≠0,n=0 D.m≠0,n≠0【考点】解一元二次方程﹣因式分解法;一元二次方程的解.【分析】代入方程的解求出n的值,再用因式分解法确定m的取值范围.【解答】解:方程有一个根是0,即把x=0代入方程,方程成立.得到n=0;则方程变成x2+mx=0,即x(x+m)=0则方程的根是0或﹣m,因为两根中只有一根等于0,则得到﹣m≠0即m≠0方程x2+mx+n=0的两根中只有一个等于0,正确的条件是m≠0,n=0.故选C.【点评】本题主要考查了方程的解的定义,以及因式分解法解一元二次方程.15.关于x的一元二次方程x2﹣k=0有实数根,则()A.k<0 B.k>0 C.k≥0 D.k≤0【考点】解一元二次方程﹣直接开平方法.【分析】根据直接开平方法的步骤得出x2=k,再根据非负数的性质得出k≥0即可.【解答】解:∵x2﹣k=0,∴x2=k,∴一元二次方程x2﹣k=0有实数根,则k≥0,故选:C.【点评】此题考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.16.若方程ax2+bx+c=0(a≠0),a、b、c满足a+b+c=0和a﹣b+c=0,则方程的根是()A.1,0 B.﹣1,0 C.1,﹣1 D.无法确定【考点】一元二次方程的解.【分析】本题根据一元二次方程的根的定义、一元二次方程的定义求解,代入方程的左右两边,看左右两边是否相等.【解答】解:在这个式子中,如果把x=1代入方程,左边就变成a+b+c,又由已知a+b+c=0可知:当x=1时,方程的左右两边相等,即方程必有一根是1,同理可以判断方程必有一根是﹣1.则方程的根是1,﹣1.故选C.【点评】本题就是考查了方程的解的定义,判断一个数是否是方程的解的方法,就是代入方程的左右两边,看左右两边是否相等.三、解答题17.(1)(x+4)2=5(x+4);(2)(x+1)2=4x;(3)(x+3)2=(1﹣2x)2;(4)2x2﹣10x=3.【考点】解一元二次方程﹣因式分解法.【专题】计算题.【分析】(1)运用提取公因式法分解因式求解;(2)运用公式法分解因式求解;(3)运用平分差公式分解因式求解;(4)运用公式法求解.【解答】解:(1)(x+4)2=5(x+4),(x+4)2﹣5(x+4)=0,(x+4)(x+4﹣5)=0,∴x1=﹣4,x2=1.(2)(x+1)2=4x,x2+2x+1﹣4x=0,(x﹣1)2=0,∴x1=x2=1.(3)(x+3)2﹣(1﹣2x)2=0,(x+3+1﹣2x)(x+3﹣1+2x)=0,(4﹣x)(3x+2)=0,∴x1=4,x2=﹣.(4) 2x2﹣10x=3,2x2﹣10x﹣3=0,x=,x1=,x2=.【点评】此题考查了选择适当的方法解一元二次方程的能力,属基础题.18.已知等腰三角形底边长为8,腰长是方程x2﹣9x+20=0的一个根,求这个等腰三角形的腰长.【考点】等腰三角形的性质;一元二次方程的解;三角形三边关系.【分析】首先求出方程的根,再根据三角形三边关系得到x=4时,4,4,8的三条线段不能组成三角形,确定等腰三角形腰长为5.【解答】解:x2﹣9x+20=0,解得x1=4,x2=5,∵等腰三角形底边长为8,∴x=4时,4,4,8的三条线段不能组成三角形,∴等腰三角形腰长为5.【点评】本题从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的边长,不能盲目地作出判断,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.19.已知一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,求m的值.【考点】一元二次方程的解;解一元二次方程﹣因式分解法.【分析】由于一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,那么把x=0代入方程即可得到关于m的方程,解这个方程即可求出m的值.【解答】解:∵一元二次方程(m﹣1)x2+7mx+m2+3m﹣4=0有一个根为零,∴把x=0代入方程中得m2+3m﹣4=0,∴m1=﹣4,m2=1.由于在一元二次方程中m﹣1≠0,故m≠1,∴m=﹣4【点评】此题主要考查了方程解的定义和解一元二次方程,此类题型的特点是,利用方程解的定义找到所求字母的方程,再解此方程即可解决问题.20.已知方程x2﹣2ax+a=4(1)求证:方程必有相异实根(2)a取何值时,方程有两个正根?(3)a取何值时,两根相异,并且负根的绝对值较大?(4)a取何值时,方程有一根为零?【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】(1)根据△>0恒成立即可证明.(2)由方程有两个正根,根据根与系数的关系即可求出a的取值.(3)由方程有两根相异,并且负根的绝对值较大,根据根与系数关系解答.(4)令x=0代入方程求解即可.【解答】解:(1)方程x2﹣2ax+a=4,可化为:x2﹣2ax+a﹣4=0,∴△=4a2﹣4(a﹣4)=4+15>0恒成立,故方程必有相异实根.(2)若方程有两个正根x1,x2,则x1+x2=2a>0,x1x2=a﹣4>0,解得:a>4.(3)若方程有两根相异,并且负根的绝对值较大,则可得:x1+x2=2a<0,x1x2=a﹣4<0,解得:a <0.(4)若方程有一根为零,把x=0代入方程x2﹣2ax+a=4,得:a=4.【点评】本题考查了根与系数的关系及根的判别式,难度适中,关键是熟记x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.。
2019年山东省泰安市中考数学真题试卷及答案 解析版
2019年山东省泰安市中考数学试卷一、选择题1.在实数| 3.14|-,3-,3-,π中,最小的数是( ) A .3-B .3-C .| 3.14|-D .π2.下列运算正确的是( ) A .633a a a ÷=B .428a a a =gC .236(2)6a a =D .224a a a +=3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A .94.210⨯米 B .84.210⨯米C .74210⨯米D .74.210⨯米4.下列图形:是轴对称图形且有两条对称轴的是( ) A .①②B .②③C .②④D .③④5.如图,直线121//1,130∠=︒,则23(∠+∠= )A .150︒B .180︒C .210︒D .240︒6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.27.不等式组542(1),2532132x x x x +-⎧⎪+-⎨->⎪⎩…的解集是( )A .2x „B .2x -…C .22x -<„D .22x -<„8.如图,一艘船由A 港沿北偏东65︒方向航行302km 至B 港,然后再沿北偏西40︒方向航行至C 港,C 港在A 港北偏东20︒方向,则A ,C 两港之间的距离为( )km .A .30303+B .30103+C .10303+D .3039.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32︒B .31︒C .29︒D .61︒10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( )A .15B .25 C .35D .4511.如图,将O e 沿弦AB 折叠,¶AB 恰好经过圆心O ,若O e 的半径为3,则劣¶AB 的长为( )A .12πB .πC .2πD .3π12.如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A .2B .4C .2D .22二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分) 13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是 .14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 . 15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若3OA =,则阴影部分的面积为 .16.若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 .17.在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,⋯⋯,点1A ,2A ,3A ,4A ,⋯⋯在直线l 上,点1C ,2C ,3C ,4C ,⋯⋯在x 轴正半轴上,则前n 个正方形对角线长的和是 .18.如图,矩形ABCD 中,36AB =,12BC =,E 为AD 中点,F 为AB 上一点,将AEF ∆沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 .三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:2541(9)(1)11a a a a a --+÷--++,其中2a = 20.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):组别 分数人数 第1组 90100x <„ 8 第2组 8090x <„ a第3组7080x <„10第4组 6070x <„ b第5组5060x <„3请根据以上信息,解答下列问题: (1)求出a ,b 的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1800名学生,那么成绩高于80分的共有多少人?21.已知一次函数y kx b =+的图象与反比例函数my x=的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S ∆=. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP ∆是等腰三角形,求点P 的坐标.22.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A 、B 两种粽子1100个,购买A 种粽子与购买B 种粽子的费用相同.已知A 种粽子的单价是B 种粽子单价的1.2倍. (1)求A 、B 两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A 、B 两种粽子共2600个,已知A 、B 两种粽子的进价不变.求A 种粽子最多能购进多少个?23.在矩形ABCD 中,AE BD ⊥于点E ,点P 是边AD 上一点.(1)若BP 平分ABD ∠,交AE 于点G ,PF BD ⊥于点F ,如图①,证明四边形AGFP 是菱形;(2)若PE EC ⊥,如图②,求证:AE AB DE AP =g g ; (3)在(2)的条件下,若1AB =,2BC =,求AP 的长.24.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.25.如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G .(1)试判断AG 与FG 是否相等?并给出证明;(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不垂直,说明理由.参考答案一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得4分,选错、不选或选出的答案超过一个,均记零分)1.在实数| 3.14|-,3-,π中,最小的数是( )A .B .3-C .| 3.14|-D .π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反而小. 【解答】解:||3|3=<-=Q(3)>-C 、D 项为正数,A 、B 项为负数,正数大于负数, 故选:B .【点评】此题主要考查利用绝对值来比较实数的大小,此题要掌握性质”两负数比较大小,绝对值大的反尔小,正数大于负数,负数的绝对值为正数“. 2.下列运算正确的是( ) A .633a a a ÷=B .428a a a =gC .236(2)6a a =D .224a a a +=【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A 、633a a a ÷=,故此选项正确; B 、426a a a =g ,故此选项错误; C 、236(2)8a a =,故此选项错误;D 、2222a a a +=,故此选项错误;故选:A .【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里、远地点约42万公里的地月转移轨道,将数据42万公里用科学记数法表示为( ) A .94.210⨯米B .84.210⨯米C .74210⨯米D .74.210⨯米【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <„,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数. 【解答】解:42万公里420000000m =用科学记数法表示为:84.210⨯米, 故选:B .【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <„,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列图形:是轴对称图形且有两条对称轴的是( ) A .①②B .②③C .②④D .③④【分析】根据轴对称图形的概念分别确定出对称轴的条数,从而得解. 【解答】解:①是轴对称图形且有两条对称轴,故本选项正确; ②是轴对称图形且有两条对称轴,故本选项正确; ③是轴对称图形且有4条对称轴,故本选项错误; ④不是轴对称图形,故本选项错误. 故选:A .【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.如图,直线121//1,130∠=︒,则23(∠+∠= )A .150︒B .180︒C .210︒D .240︒【分析】过点E 作1//1EF ,利用平行线的性质解答即可.【解答】解:过点E 作1//1EF ,121//1Q ,1//1EF , 12//1//1EF ∴,130AEF ∴∠=∠=︒,3180FEC ∠+∠=︒,23330180210AEF FEC ∴∠+∠=∠+∠+∠=︒+︒=︒,故选:C .【点评】此题考查平行线的性质,关键是根据平行线的性质解答. 6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( ) A .众数是8B .中位数是8C .平均数是8.2D .方差是1.2【分析】根据众数、中位数、平均数以及方差的算法进行计算,即可得到不正确的选项. 【解答】解:由图可得,数据8出现3次,次数最多,所以众数为8,故A 选项正确; 10次成绩排序后为:6,7,7,8,8,8,9,9,10,10,所以中位数是1(88)82+=,故B 选项正确;平均数为1(6728392102)8.210+⨯+⨯+⨯+⨯=,故C选项正确;方差为22222222221[(68.2)(78.2)(78.2)(88.2)(88.2)(88.2)(98.2)(98.2)(108.2)(108.2)] 1.56 10-+-+-+-+-+-+-+-+-+-=,故D选项错误;故选:D.【点评】本题主要考查了众数、中位数、平均数以及方差,用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差.7.不等式组542(1),2532132x xx x+-⎧⎪+-⎨->⎪⎩…的解集是()A.2x„B.2x-…C.22x-<„D.22x-<„【分析】先求出两个不等式的解集,再求其公共解.【解答】解:()54212532132x xx x⎧+-⎪⎨+-->⎪⎩①②…,由①得,2x-…,由②得,2x<,所以不等式组的解集是22x-<„.故选:D.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.如图,一艘船由A港沿北偏东65︒方向航行302km至B港,然后再沿北偏西40︒方向航行至C港,C港在A港北偏东20︒方向,则A,C两港之间的距离为()km.A.303+B.30103+C.10303+D.303【分析】根据题意得,6520CAB ∠=︒-︒,402060ACB ∠=︒+︒=︒,302AB =,过B 作BE AC ⊥于E ,解直角三角形即可得到结论.【解答】解:根据题意得,652045CAB ∠=︒-︒=︒,402060ACB ∠=︒+︒=︒,302AB =, 过B 作BE AC ⊥于E , 90AEB CEB ∴∠=∠=︒,在Rt ABE ∆中,45ABE ∠=︒Q ,302AB =, 2302AE BE AB km ∴===, 在Rt CBE ∆中,60ACB ∠=︒Q , 31033CE BE km ∴==, 30103AC AE CE ∴=+=+,A ∴,C 两港之间的距离为(30103)km +,故选:B .【点评】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单.9.如图,ABC ∆是O e 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A .32︒B .31︒C .29︒D .61︒【分析】连接OC、CD,由切线的性质得出90OCP∠=︒,由圆内接四边形的性质得出18061ODC A∠=︒-∠=︒,由等腰三角形的性质得出61OCD ODC∠=∠=︒,求出58DOC∠=︒,由直角三角形的性质即可得出结果.【解答】解:如图所示:连接OC、CD,PCQ是Oe的切线,PC OC∴⊥,90OCP∴∠=︒,119A∠=︒Q,18061ODC A∴∠=︒-∠=︒,OC OD=Q,61OCD ODC∴∠=∠=︒,18026158DOC∴∠=︒-⨯︒=︒,9032P DOC∴∠=︒-∠=︒;故选:A.【点评】本题考查了切线的性质、等腰三角形的性质、直角三角形的性质、三角形内角和定理;熟练掌握切线的性质是解题的关键.10.一个盒子中装有标号为1,2,3,4,5的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()A.15B.25C.35D.45【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于5的情况,再利用概率公式即可求得答案.【解答】解:画树状图如图所示:Q共有20种等可能的结果,两次摸出的小球的标号之和大于5的有12种结果,∴两次摸出的小球的标号之和大于5的概率为123 205=;故选:C.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.11.如图,将Oe沿弦AB折叠,¶AB恰好经过圆心O,若Oe的半径为3,则劣¶AB的长为()A.12πB.πC.2πD.3π【分析】连接OA、OB,作OC AB⊥于C,根据翻转变换的性质得到12OC OA=,根据等腰三角形的性质、三角形内角和定理求出AOB∠,根据弧长公式计算即可.【解答】解:连接OA、OB,作OC AB⊥于C,由题意得,12OC OA=,30OAC∴∠=︒,OA OB=Q,30OBA OAC∴∠=∠=︒,120AOB∴∠=︒,∴劣¶AB的长12032180ππ⨯==,故选:C.【点评】本题考查的是弧长的计算、直角三角形的性质、翻转变换的性质,掌握弧长公式是解题的关键.12.如图,矩形ABCD中,4AB=,2AD=,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A .2B .4C .2D .22【分析】根据中位线定理可得出点点P 的运动轨迹是线段12PP ,再根据垂线段最短可得当12BP PP ⊥时,PB 取得最小值;由矩形的性质以及已知的数据即可知112BP PP ⊥,故BP 的最小值为1BP 的长,由勾股定理求解即可. 【解答】解:如图:当点F 与点C 重合时,点P 在1P 处,11CP DP =, 当点F 与点E 重合时,点P 在2P 处,22EP DP =, 12//PP CE ∴且1212PP CE = 当点F 在EC 上除点C 、E 的位置处时,有DP FP = 由中位线定理可知:1//PP CE 且112PP CF = ∴点P 的运动轨迹是线段12PP , ∴当12BP PP ⊥时,PB 取得最小值Q 矩形ABCD 中,4AB =,2AD =,E 为AB 的中点, CBE ∴∆、ADE ∆、1BCP ∆为等腰直角三角形,12CP =145ADE CDE CPB ∴∠=∠=∠=︒,90DEC ∠=︒ 2190DP P ∴∠=︒ 1245DPP ∴∠=︒2190P PB ∴∠=︒,即112BP PP ⊥,BP ∴的最小值为1BP 的长在等腰直角1BCP 中,12CP BC ==1BP ∴=PB ∴的最小值是故选:D .【点评】本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.二、填空题(本大题共6小题,满分24分,只要求填写最后结果,每小题填对得4分) 13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是 4k < . 【分析】根据方程有两个不相等的实数根可得△22(21)4(3)0k k =--+>,求出k 的取值范围;【解答】解:Q 原方程有两个不相等的实数根, ∴△22(21)4(3)41120k k k =--+=-+->,解得114k <-; 故答案为:114k <-. 【点评】本题考查了一元二次方程20(0)ax bx c a ++=≠的根与△24b ac =-有如下关系:①当△0>时,方程有两个不相等的两个实数根;②当△0=时,方程有两个相等的两个实数根;③当△0<时,方程无实数根.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为911(10)(8)13x yy x x y =⎧⎨+-+=⎩. 【分析】根据题意可得等量关系:①9枚黄金的重量11=枚白银的重量;②(10枚白银的重量1+枚黄金的重量)(1-枚白银的重量8+枚黄金的重量)13=两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得: 911(10)(8)13x yy x x y =⎧⎨+-+=⎩, 故答案为:911(10)(8)13x y y x x y =⎧⎨+-+=⎩.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A 、点C ,交OB 于点D ,若3OA =,则阴影部分的面积为34π .【分析】连接OC ,作CH OB ⊥于H ,根据直角三角形的性质求出AB ,根据勾股定理求出BD ,证明AOC ∆为等边三角形,得到60AOC ∠=︒,30COB ∠=︒,根据扇形面积公式、三角形面积公式计算即可.【解答】解:连接OC ,作CH OB ⊥于H , 90AOB ∠=︒Q ,30B ∠=︒, 60OAB ∴∠=︒,26AB OA ==,由勾股定理得,2233OB AB OA =-= OA OC =Q ,60OAB ∠=︒, AOC ∴∆为等边三角形, 60AOC ∴∠=︒, 30COB ∴∠=︒,CO CB ∴=,1322CH OC ==,∴阴影部分的面积2260313133033333336022223604πππ⨯⨯=-⨯⨯⨯+⨯⨯-=, 故答案为:34π.【点评】本题考查的是扇形面积计算、等边三角形的判定和性质,掌握扇形面积公式、三角形的面积公式是解题的关键.16.若二次函数25y x bx =+-的对称轴为直线2x =,则关于x 的方程25213x bx x +-=-的解为 12x =,24x = .【分析】根据对称轴方程求得b ,再解一元二次方程得解. 【解答】解:Q 二次函数25y x bx =+-的对称轴为直线2x =, ∴22b-=, 得4b =-,则25213x bx x +-=-可化为:245213x x x --=-, 解得,12x =,24x =. 故答案为:12x =,24x =.【点评】本题主要考查的是抛物线与x 轴的交点,一元二次方程等知识,利用抛物线的对称性求得b 的值是解题的关键.17.在平面直角坐标系中,直线:1l y x =+与y 轴交于点1A ,如图所示,依次作正方形111OA B C ,正方形1222C A B C ,正方形2333C A B C ,正方形3444C A B C ,⋯⋯,点1A ,2A ,3A ,4A ,⋯⋯在直线l 上,点1C ,2C ,3C ,4C ,⋯⋯在x 轴正半轴上,则前n 个正方形对角线长的和是 2(21)n - .【分析】根据题意和函数图象可以求得点1A ,2A ,3A ,4A 的坐标,从而可以得到前n 个正方形对角线长的和,本题得以解决. 【解答】解:由题意可得,点1A 的坐标为(0,1),点2A 的坐标为(1,2),点3A 的坐标为(3,4),点4A 的坐标为(7,8),⋯⋯, 11OA ∴=,122C A =,234C A =,348C A =,⋯⋯, ∴前n 个正方形对角线长的和是:1112233412()2(12482)n n n OA C A C A C A C A --++++⋯+=++++⋯+,设112482n S -=++++⋯+,则1224822n n S -=+++⋯++, 则221n S S -=-, 21n S ∴=-,11248221n n -∴++++⋯+=-,∴前n 2(21)n -,2(21)n -,【点评】本题考查一次函数图象上点的坐标特征、规律型:点的坐标,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,矩形ABCD 中,36AB =,12BC =,E 为AD 中点,F 为AB 上一点,将AEF ∆沿EF 折叠后,点A 恰好落到CF 上的点G 处,则折痕EF 的长是 215 .【分析】连接EC ,利用矩形的性质,求出EG ,DE 的长度,证明EC 平分DCF ∠,再证90FEC ∠=︒,最后证FEC EDC ∆∆∽,利用相似的性质即可求出EF 的长度.【解答】解:如图,连接EC , Q 四边形ABCD 为矩形,90A D ∴∠=∠=︒,12BC AD ==,36DC AB ==,E Q 为AD 中点, 162AE DE AD ∴=== 由翻折知,AEF GEF ∆≅∆,6AE GE ∴==,AEF GEF ∠=∠,90EGF EAF D ∠=∠=︒=∠, GE DE ∴=, EC ∴平分DCG ∠, DCE GCE ∴∠=∠,90GEC GCE ∠=︒-∠Q ,90DEC DCE ∠=︒-∠, GEC DEC ∴∠=∠,1180902FEC FEG GEC ∴∠=∠+∠=⨯︒=︒, 90FEC D ∴∠=∠=︒,又DCE GCE ∠=∠Q , FEC EDC ∴∆∆∽, ∴FE ECDE DC=, 22226(36)310EC DE DC =+=+=Q ,∴310636FE = 215FE ∴=故答案为:215.【点评】本题考查了矩形的性质,轴对称的性质,相似三角形的判定与性质等,解题关键是能够作出适当的辅助线,连接CE ,构造相似三角形,最终利用相似的性质求出结果.三、解答题(本大题共7小题,满分78分,解答应写出必要的文字说明、证明过程或推演步骤)19.先化简,再求值:2541(9)(1)11a a a a a --+÷--++,其中2a = 【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【解答】解:原式228925141()()1111a a a a a a a a ----=+÷-++++ 22816411a a a a a a -+-=÷++ 2(4)11(4)a a a a a -+=+-g 4a a-=, 当2a =时, 原式241222-=-【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及二次根式的运算能力.20.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整): 组别分数 人数 第1组90100x <„ 8 第2组8090x <„ a 第3组 7080x <„ 10第4组6070x <„ b 第5组5060x <„ 3请根据以上信息,解答下列问题:(1)求出a ,b 的值; (2)计算扇形统计图中“第5组”所在扇形圆心角的度数;(3)若该校共有1800名学生,那么成绩高于80分的共有多少人?【分析】(1)抽取学生人数1025%40÷=(人),第2组人数4030%12⨯=(人),第4组人数4050%1037⨯--=(人),所以12a =,7b =;(2)33602740︒⨯=︒,所以“第5组”所在扇形圆心角的度数为27︒; (3)成绩高于80分:180050%900⨯=(人),所以成绩高于80分的共有900人.【解答】解:(1)抽取学生人数1025%40÷=(人),第2组人数4030%12⨯=(人),第4组人数4050%1037⨯--=(人),12a ∴=,7b =;(2)33602740︒⨯=︒, ∴ “第5组”所在扇形圆心角的度数为27︒;(3)成绩高于80分:180050%900⨯=(人),∴成绩高于80分的共有900人.【点评】本题考查了统计图,熟练掌握条形统计图与扇形统计图是解题的关键.21.已知一次函数y kx b =+的图象与反比例函数m y x=的图象交于点A ,与x 轴交于点(5,0)B ,若OB AB =,且152OAB S ∆=. (1)求反比例函数与一次函数的表达式;(2)若点P 为x 轴上一点,ABP ∆是等腰三角形,求点P 的坐标.【分析】(1)先求出OB ,进而求出AD ,得出点A 坐标,最后用待定系数法即可得出结论;(2)分三种情况,①当AB PB =时,得出5PB =,即可得出结论;②当AB AP =时,利用点P 与点B 关于AD 对称,得出4DP BD ==,即可得出结论; ③当PB AP =时,先表示出22(9)9AP a =-+,22(5)BP a =-,进而建立方程求解即可得出结论.【解答】解:(1)如图1,过点A 作AD x ⊥轴于D ,(5,0)B Q ,5OB ∴=,152OAB S ∆=Q , ∴115522AD ⨯⨯=, 3AD ∴=,OB AB =Q ,5AB ∴=,在Rt ADB ∆中,224BD AB AD =-=,9OD OB BD ∴=+=,(9,3)A ∴,将点A 坐标代入反比例函数m y x =中得,9327m =⨯=, ∴反比例函数的解析式为27y x=, 将点(9,3)A ,(5,0)B 代入直线y kx b =+中,9350k b k b +=⎧⎨+=⎩,∴34154 kb⎧=⎪⎪⎨⎪=-⎪⎩,∴直线AB的解析式为31544y x=-;(2)由(1)知,5AB=,ABP∆Q是等腰三角形,∴①当AB PB=时,5PB∴=,(0,0)P∴或(10,0),②当AB AP=时,如图2,由(1)知,4BD=,易知,点P与点B关于AD对称,4DP BD∴==,54413OP∴=++=,(13,0)P∴,③当PB AP=时,设(,0)P a,(9,3)AQ,(5,0)B,22(9)9AP a∴=-+,22(5)BP a=-,22(9)9(5)a a∴-+=-658a∴=,65(8P∴,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或65(8,0).【点评】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,三角形的面积,等腰三角形的性质,用分类讨论的思想解决问题是解本题的关键.22.端午节是我国的传统节日,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种粽子共2600个,已知A、B两种粽子的进价不变.求A种粽子最多能购进多少个?【分析】(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据数量=总价÷单价结合用3000元购进A、B两种粽子1100个,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购进A种粽子m个,则购进B种粽子(2600)m-个,根据总价=单价⨯数量结合总价不超过7000元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:(1)设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:1500150011001.2x x+=,解得: 2.5x=,经检验, 2.5x=是原方程的解,且符合题意,1.23x∴=.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.(2)设购进A种粽子m个,则购进B种粽子(2600)m-个,依题意,得:3 2.5(2600)7000m m+-„,解得:1000m„.答:A种粽子最多能购进1000个.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.在矩形ABCD 中,AE BD ⊥于点E ,点P 是边AD 上一点.(1)若BP 平分ABD ∠,交AE 于点G ,PF BD ⊥于点F ,如图①,证明四边形AGFP 是菱形;(2)若PE EC ⊥,如图②,求证:AE AB DE AP =g g ;(3)在(2)的条件下,若1AB =,2BC =,求AP 的长.【分析】(1)想办法证明AG PF =,//AG PF ,推出四边形AGFP 是平行四边形,再证明PA PF =即可解决问题.(2)证明AEP DEC ∆∆∽,可得AE AP DE DC=,由此即可解决问题. (3)利用(2)中结论.求出DE ,AE 即可.【解答】(1)证明:如图①中,Q 四边形ABCD 是矩形,90BAD ∴∠=︒,AE BD ⊥Q ,90AED ∴∠=︒,90BAE EAD ∴∠+∠=︒,90EAD ADE ∠+∠=︒,BAE ADE ∴∠=∠,AGP BAG ABG ∠=∠+∠Q ,APB ADE PBD ∠=∠+∠,ABG PBD ∠=∠,AGP APG ∴∠=∠,AP AG ∴=,PA AB ⊥Q ,PF BD ⊥,BP 平分ABD ∠,PA PF ∴=,PF AG ∴=,AE BD ⊥Q ,PF BD ⊥,//PF AG ∴,∴四边形AGFP 是平行四边形,PA PF =Q ,∴四边形AGFP 是菱形.(2)证明:如图②中,AE BD ⊥Q ,PE EC ⊥,90AED PEC ∴∠=∠=︒,AEP DEC ∴∠=∠,90EAD ADE ∠+∠=︒Q ,90ADE CDE ∠+∠=︒,EAP EDC ∴∠=∠,AEP DEC ∴∆∆∽, ∴AE AP DE DC=, AB CD =Q ,AE AB DE AP ∴=g g ;(3)解:Q 四边形ABCD 是矩形,2BC AD ∴==,90BAD ∠=︒,225BD AB AD ∴=+=,AE BD ⊥Q ,1122ABD SBD AE AB AD ∆∴==g g g g , 255AE ∴=, 22455DE AD AE ∴=-=, AE AB DE AP =Q g g ;251152455AP ⨯∴==. 【点评】本题属于相似形综合题,考查了相似三角形的判定和性质,矩形的性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.24.若二次函数2y ax bx c =++的图象与x 轴、y 轴分别交于点(3,0)A 、(0,2)B -,且过点(2,2)C -.(1)求二次函数表达式;(2)若点P 为抛物线上第一象限内的点,且4PBA S ∆=,求点P 的坐标;(3)在抛物线上(AB 下方)是否存在点M ,使ABO ABM ∠=∠?若存在,求出点M 到y 轴的距离;若不存在,请说明理由.【分析】(1)用A 、B 、C 三点坐标代入,用待定系数法求二次函数表达式.(2)设点P 横坐标为t ,用t 代入二次函数表达式得其纵坐标.把t 当常数求直线BP 解析式,进而求直线BP 与x 轴交点C 坐标(用t 表示),即能用t 表示AC 的长.把PBA ∆以x 轴为界分成ABC ∆与ACP ∆,即得到1()42PBA S AC OB PD ∆=+=,用含t 的式子代入即得到关于t 的方程,解之即求得点P 坐标.(3)作点O 关于直线AB 的对称点E ,根据轴对称性质即有AB 垂直平分OE ,连接BE 交抛物线于点M ,即有BE OB =,根据等腰三角形三线合一得ABO ABM ∠=∠,即在抛物线上(AB 下方)存在点M 使ABO ABM ∠=∠.设AB 与OE 交于点G ,则G 为OE 中点且OG AB ⊥,利用OAB ∆面积即求得OG 进而得OE 的长.易求得OAB BOG ∠=∠,求OAB ∠的正弦和余弦值,应用到Rt OEF ∆即求得OF 、EF 的长,即得到点E 坐标.求直线BE 解析式,把BE 解析式与抛物线解析式联立,求得x 的解一个为点B 横坐标,另一个即为点M 横坐标,即求出点M 到y 轴的距离.【解答】解:(1)Q 二次函数的图象经过点(3,0)A 、(0,2)B -、(2,2)C -∴930002422a b c c a b c ++=⎧⎪++=-⎨⎪++=-⎩ 解得:23432a b c ⎧=⎪⎪⎪=-⎨⎪=-⎪⎪⎩∴二次函数表达式为224233y x x =--(2)如图1,记直线BP 交x 轴于点N ,过点P 作PD x ⊥轴于点D设(P t ,2242)(3)33t t t --> OD t ∴=,224233PD t t =-- 设直线BP 解析式为2y kx =-把点P 代入得:2242233kt t t -=-- 2433k t ∴=- ∴直线24:()233BP y t x =-- 当0y =时,24()2033t x --=,解得:32x t =- 3(2N t ∴-,0) 3t >Q21t ∴-> ∴332t <-,即点N 一定在点A 左侧 33(3)322t AN t t -∴=-=-- 111()4222PBA ABN ANP S S S AN OB AN PD AN OB PD ∆∆∆=+=+=+=Q g g∴213(3)24(22)42233t t t t -+--=-g g 解得:14t =,21t =-(舍去) ∴2243216102233333t t --=--= ∴点P 的坐标为10(4,)3(3)在抛物线上(AB 下方)存在点M ,使ABO ABM ∠=∠. 如图2,作点O 关于直线AB 的对称点E ,连接OE 交AB 于点G ,连接BE 交抛物线于点M ,过点E 作EF y ⊥轴于点FAB ∴垂直平分OEBE OB ∴=,OG GE =ABO ABM ∴∠=∠(3,0)A Q 、(0,2)B -,90AOB ∠=︒3OA ∴=,2OB =,AB ==sin OB OAB AB ∴∠==,cos OA OAB AB ∠==1122AOB S OA OB AB OG ∆==Q g gOA OB OG AB ∴==g2OE OG ∴==90OAB AOG AOG BOG ∠+∠=∠+∠=︒Q OAB BOG ∴∠=∠Rt OEF ∴∆中,sin EF BOG OE ∠==cos OF BOG OE ∠==2413EF ∴=,3613OF == 24(13E ∴,36)13- 设直线BE 解析式为2y ex =-把点E 代入得:243621313e -=-,解得:512e =- ∴直线5:212BE y x =--当2524221233x x x --=--,解得:10x =(舍去),2118x = ∴点M 横坐标为118,即点M 到y 轴的距离为118.【点评】本题考查了待定系数法求二次函数、一次函数解析式,一元二次方程的解法,轴对称的性质,等腰三角形性质,三角函数的应用.第(3)题点的存在性问题,可先通过画图确定满足ABO ABM ∠=∠的点M 位置,通过相似三角形对应边成比例或三角函数为等量关系求线段的长.25.如图,四边形ABCD 是正方形,EFC ∆是等腰直角三角形,点E 在AB 上,且90CEF ∠=︒,FG AD ⊥,垂足为点G .(1)试判断AG 与FG 是否相等?并给出证明;(2)若点H 为CF 的中点,GH 与DH 垂直吗?若垂直,给出证明;若不垂直,说明理由.【分析】(1)过点F 作FM AB ⊥交BA 的延长线于点M ,可证四边形AGFM 是矩形,可得AG MF =,AM FG =,由“AAS ”可证EFM CEB ∆≅∆,可得BE MF =,ME BC AB ==,可得BE MA MF AG FG====;(2)延长GH交CD于点N,由平行线分线段成比例可得FG FH GHCN CH NH==,且CH FH=,可得GH HN=,NC FG=,即可求DG DN=,由等腰三角形的性质可得DH HG⊥.【解答】解:(1)AG FG=,理由如下:如图,过点F作FM AB⊥交BA的延长线于点MQ四边形ABCD是正方形AB BC∴=,90B BAD∠=︒=∠FM AB⊥Q,90MAD∠=︒,FG AD⊥∴四边形AGFM是矩形AG MF∴=,AM FG=,90CEF∠=︒Q,90FEM BEC∴∠+∠=︒,90BEC BCE∠+∠=︒FEM BCE∴∠=∠,且90M B∠=∠=︒,EF EC=()EFM CEB AAS∴∆≅∆BE MF∴=,ME BC=ME AB BC∴==BE MA MF∴==AG FG∴=,(2)DH HG⊥理由如下:如图,延长GH交CD于点N,FG AD⊥Q,CD AD⊥//FG CD∴∴FG FH GHCN CH NH==,且CH FH=,GH HN∴=,NC FG=AG FG NC∴==又AD CD=Q,GD DN∴=,且GH HN=DH GH∴⊥【点评】本题考查了正方形的性质,矩形的判定,全等三角形的判定和性质,等腰三角形的性质,证明EFM CEB∆≅∆是本题的关键.。
精品2019版泰安中考数学阶段检测试卷(六)含答案
阶段检测六一、选择题1.一个隧道的横截面如图所示,它的形状是以点O为圆心,半径为5米的圆的一部分,M是☉O中弦CD的中点,EM经过圆心O交☉O于点E.若CD=6米,则隧道的高(ME的长)为( )A.4米B.6米C.8米D.9米2.(2018威海)如图,☉O 的半径为5,AB为弦,点C为AB的中点,若∠ABC=30°,则弦AB的长为( )A.12B.5 C.532D.533.(2018聊城)如图,☉O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是( )A.25°B.27.5°C.30°D.35°4.(2018枣庄)如图,AB是☉O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为( )A.15B.25C.215D.85.(2018湖北咸宁)如图,已知☉O的半径为5,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为( )A.6B.8C.52D.536.(2017青岛)如图,AB是☉O的直径,点C,D,E在☉O上,若∠AED=20°,则∠BCD的度数为( )A.100°B.110°C.115°D.120°7.☉O的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与圆O的位置关系为( )A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定8.如图,正六边形ABCDEF内接于☉O,半径为4,则这个正六边形的边心距OM和BC的长分别为( )A.2,π3B.23,πC.3,2π3D.23,4π39.(2018湖北宜昌)如图,直线AB是☉O的切线,C为切点,OD∥AB交☉O于点D,点E在☉O上,连接OC,EC,ED,则∠CED的度数为( )A.30°B.35°C.40°D.45°10.如图,在△ABC中,已知∠C=90°,BC=3,AC=4,则它的内切圆的半径是( )A.32B.23C.2D.111.(2018湖北黄石)如图,AB是☉O的直径,点D为☉O上一点,且∠ABD=30°,BO=4,则BD的长为( )A.2π3B.4π3C.2πD.8π312.(2017潍坊)点A,C为半径是3的圆周上两点,点B为AC的中点,以线段BA,BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为( )A.5或22B.5或23C.6或22D.6或2313.(2018四川成都)如图,在▱ABCD中,∠B=60°,☉C的半径为3,则图中阴影部分的面积是( )A.πB.2πC.3πD.6π14.(2018湖北荆州)如图,扇形OAB中,∠AOB=100°,OA=12,C是OB的中点,CD⊥OB交AB于点D,以OC为半径的CE交OA于点E,则图中阴影部分的面积是( )A.12π+183B.12π+363C.6π+183D.6π+36315.(2018湖北襄阳)如图,点A,B,C,D都在半径为2的☉O上,若OA⊥BC,∠CDA=30°,则弦BC的长为( )A.4B.22C.3D.23二、填空题16.(2018临沂)如图,在△ABC中,∠A=60°,BC=5 cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.17.(2018浙江杭州)如图,AB是☉O的直径,点C是半径OA的中点,过点C作DE⊥AB,交☉O于D,E两点,过点D作直径DF,连接AF,则∠DFA=.18.(2018青岛)如图,Rt△ABC中,∠B=90°,∠C=30°,O为AC上一点,OA=2,以O为圆心,以OA为半径的圆与CB相切于点E,与AB相交于点F,连接OE,OF,则图中阴影部分的面积是.19.(2018聊城)用一块圆心角为216°的扇形铁皮,做一个高为40 cm 的圆锥形工件(接缝忽略不计),那么这块扇形铁皮的半径是cm.三、解答题20.(2018滨州)如图,AB为☉O的直径,点C在☉O上,AD⊥CD于点D,且AC平分∠DAB.求证:(1)直线DC是☉O的切线;(2)AC2=2AD·AO.21.(2018临沂)如图,△ABC为等腰三角形,O是底边BC的中点,腰AB 与☉O相切于点D,OB与☉O相交于点E.(1)求证:AC是☉O的切线;(2)若BD=3,BE=1,求阴影部分的面积.22.(2018淄博)如图,以AB为直径的☉O外接于△ABC,过A点的切线AP与BC的延长线交于点P.∠APB的平分线分别交AB,AC于点D,E.其中AE,BD(AE<BD)的长是一元二次方程x2-5x+6=0的两个实数根.(1)求证:PA·BD=PB·AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,请说明理由.23.(2018广东深圳)如图,在☉O中,BC=2,AB=AC,点D为AC上的动点,且cos B=10.10(1)求AB的长度;(2)求AD·AE的值;(3)过A点作AH⊥BD于点H,求证:BH=CD+DH.阶段检测六一、选择题1.D 连接OC.∵M是☉O中弦CD的中点,CD=6米,∴CM=3米,OM⊥CD.在Rt△OMC中, OM=OC2-C M2=52-32=4(米),∴ME=EO+OM=5+4=9(米).故选D.2.D 连接OC,OA.∵∠ABC=30°,∴∠AOC=60°.∵AB为弦,点C为AB的中点,∴OC⊥AB.在Rt△OAE中,AE=53,2∴AB=53.故选D.3.D ∵∠A=60°,∠ADC=85°,∴∠B=85°-60°=25°,∠CDO=95°,∴∠AOC=2∠B=50°,∴∠C=180°-95°-50°=35°.故选D.4.C 作OH⊥CD于点H,连接OC,如图.∵OH⊥CD,∴HC=HD.∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA-AP=2.在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,OP=1.∴OH=12在Rt△OHC中,∵OC=4,OH=1,∴CH=OC2-O H2=15,∴CD=2CH=215.故选C.5.B 作OF⊥AB于点F,作直径BE,连接AE,如图.∵∠AOB+∠COD=180°,而∠AOE+∠AOB=180°,∴∠AOE=∠COD,∴AE=DC,∴AE=DC=6.∵OF⊥AB,∴BF=AF,而OB=OE,∴OF为△ABE的中位线,∴OF=12AE=3.∵OA=5,∴AF=4,∴AB=8.故选B.6.B 连接AC.由题意知∠ACD=∠AED=20°.∵AB是☉O的直径,∴∠ACB=90°,∴∠BCD=∠ACD+∠ACB=20°+90°=110°.故选B.7.B ∵☉O的半径为5 cm,点A到圆心O的距离为3 cm,即点A到圆心O的距离小于圆的半径,∴点A在☉O内.故选B.8.D 连接OB,OC,由题意得△BOC是等边三角形,∴∠OBC=∠BOC=60°,∴OM=BO·sin 60°=23,lBC =60×π×4180=4π3.9.D ∵直线AB是☉O的切线,C为切点, ∴∠OCB=90°.∵OD∥AB,∴∠COD=90°,∴∠CED=12∠COD=45°.故选D.10.D 设内切圆的半径为r,连接OD,OE,OF,如图.则OE⊥AC,OF⊥AB,OD⊥BC,则四边形OECD是矩形,又OD=OE,∴四边形OECD是正方形,∴CD=CE=r.∵∠C=90°,BC=3,AC=4,∴AB=5,AE=AF=4-r,BF=BD=3-r,∴4-r+3-r=5,∴r=1.故选D.11.D 连接OD,∵∠ABD=30°,∴∠AOD=60°,∴∠BOD=120°.∵BO=4,∴BD的长=120·π·4180=8π3.故选D.12.D 本题分两种情况讨论:如图1所示,BD=2,连接OA,AC,设AC交BD于点E,则AE⊥BD,BE=ED=1,OE=2.在Rt△AEO中,AE2=OA2-OE2=9-4=5.在Rt△AED中,AD2=AE2+ED2=5+1=6,∴AD=6,即此时菱形的边长为6;如图2所示,BD=4,同理,有OE=OD=1.在Rt△AEO中,AE2=OA2-OE2=9-1=8.在Rt△ADE中,AD2=AE2+ED2=8+4=12,∴AD=23,即此时菱形的边长为23.综上可知,该菱形的边长为6或23.13.C 在▱ABCD中,∠B=60°,∴∠C=120°.∵☉C的半径为3,∴S阴影=120×π×32360=3π.故选C.14.C 连接BD,OD.∵C是OB的中点,DC⊥OB,∴DC是OB的垂直平分线,∴OD=BD.∵OD=OB,∴△ODB是等边三角形,∴∠DOB=60°,∴S扇形DOB=60π·122360=24π.在Rt△OCD中,OD=12,OC=6,∴CD=63,∴S阴影=S扇形AOB-S扇形COE-(S扇形DOB-S△OCD)=100π·122360-100π·62360-24π-12×6×63=6π+183.故选C.15.D 设AO与BC的交点为E,∵OA⊥BC,∴AC=AB,BE=12BC.∵∠CDA=30°,∴∠AOB=60°.∵OB=2,∴BE=3,∴BC=23,故选D.二、填空题16.答案1033解析设圆的圆心为点O,能够将△ABC完全覆盖的最小圆是△ABC的外接圆.连接BO,OC,如图.∵在△ABC中,∠A=60°,BC=5 cm,∴∠BOC=120°.作OD⊥BC于点D,则∠ODB=90°,∠BOD=60°,∴BD=52cm,∠OBD=30°,∴OB=52sin60°,得OB=533cm,∴2OB=1033cm,即△ABC外接圆的直径是1033cm.故答案为1033.17.答案30°解析∵点C是半径OA的中点,∴OC=12OA=12OD.又∵DE⊥AB,∴∠CDO=30°,∴∠DOA=60°,∴∠DFA=12∠DOA=30°.18.答案732-4π3解析在Rt△ABC中,易知∠A=60°.∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°,∴∠COF=120°.∵BC与☉O相切于点E,∴∠OEC=90°,又∠C=30°,OE=OA=2,∴OC=4.在Rt△ABC中,∠C=30°,AC=AO+OC=2+4=6,∴AB=12AC=3,BC=AC·cosC=6×32=33.设☉O与AC的另一个交点为D,过O作OG⊥AF于点G,如图所示,则OG=OA·sinA=2×32=3.∵S△ABC=12×AB×BC=12×3×33=932,S△AOF=12×AF×OG=12×2×3=3,S扇形DOF=120π×22360=4π3,∴S阴影部分=S△ABC-S△AOF-S扇形DOF=932-3-4π3=732-4π3.19.答案50解析设这块扇形铁皮的半径为R cm. ∴圆锥形工件底面半径为216πR 180÷2π=3R5(cm),∴R2=402+3R52 ,解得R=50.三、解答题20.证明(1)如图,连接OC.∵OA=OC,∴∠OAC=∠OCA.∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD.又∵AD⊥CD,∴OC⊥CD,∴直线DC是☉O的切线. (2)连接BC.∵AB为☉O的直径,∴AB=2AO,∠ACB=90°.∵AD⊥DC,∴∠ADC=∠ACB=90°.又∵∠DAC=∠CAB,∴△DAC∽△CAB,∴ACAB =ADAC,即AC2=AB·AD.∵AB=2AO,∴AC2=2AD·AO.21.解析(1)证明:连接OD,作OF⊥AC于点F,如图.∵△ABC为等腰三角形,O是底边BC的中点,∴AO⊥BC,AO平分∠BAC.∵AB与☉O相切于点D,∴OD⊥AB,而OF⊥AC,∴OF=OD,∴AC是☉O的切线.(2)在Rt△BOD中,设☉O的半径为r,则OD=OE=r,∴r2+(3)2=(r+1)2,解得r=1,∴OD=1,OB=2,∴∠B=30°,∠BOD=60°,∴∠AOD=30°.在Rt△AOD中,AD=33OD=33,∴阴影部分的面积=2S△AOD-S扇形DOF=2×12×1×33-60·π·12360=3 3-π6 .22.解析(1)证明:∵PD平分∠APB,∴∠APE=∠BPD.∵AP与☉O相切,∴∠BAP=∠BAC+∠EAP=90°.∵AB是☉O的直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴PAAE =PBBD,∴PA·BD=PB·AE.(2)过点D作DF⊥PB于点F,DG⊥AC于点G,∵PD平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF.∵∠EAP=∠B,∴∠APC=∠BAC.易证DF∥AC,∴∠BDF=∠BAC.由于AE,BD(AE<BD)的长是x2-5x+6=0的两个实数根, ∴AE=2,BD=3,∴由(1)可知:PA2=PB3,∴cos∠APC=PAPB =23 ,∴cos∠BDF=cos∠APC=23,∴DFBD =23 ,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形. ∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点.∵cos∠BAC=cos∠APC=23,∴sin∠BAC=53,∴DGAD =53,∴DG=253,∴在线段BC上存在一点M,使得四边形ADME是菱形,其面积为AE·DG=2×253=453.23.解析(1)过点A作AM⊥BC于点M,如图. ∵AB=AC,BC=2,AM⊥BC,∴BM=CM=12BC=1.在Rt△AMB中,∵cos B=BMAB =1010,BM=1,∴AB=BMcos B =1÷1010=10.(2)∵AB=AC,∴∠ACB=∠ABC.∵四边形ABCD内接于圆O, ∴∠ADC+∠ABC=180°.又∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE.∵∠CAE=∠DAC,∴△EAC∽△CAD,∴ACAD =AE AC,∴AD·AE=AC2=AB2=(10)2=10.(3)证明:在BD上取一点N,使得BN=CD,如图. 在△ABN中和△ACD中,∵AB=AC,∠ABN=∠ACD, BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD.∵AH⊥BD,AN=AD,∴NH=DH.又∵BN=CD,NH=DH,∴BH=BN+NH=CD+DH.。
中考数学专题练习直接开平方法解一元二次方程(含解析)
2019中考数学专题练习-直接开平方法解一元二次方程(含解析)一、单选题1.若分式的值为0,则x的值是()A.1或-1B.1C. -1D.0【答案】B【考点】分式的值为零的条件,解一元二次方程-直接开平方法【解析】【分析】根据分子为0,同时分母不等于0时,分式值是零,即可得到结果.由题意得,解得,则x=1,故选B.【点评】解答本题的关键是熟练掌握分式值是零的条件:分子为0,同时分母不等于0.2.若25x2=16,则x的值为()A. B. C. D.【答案】A【考点】直接开平方法解一元二次方程【解析】【解答】解:25x2=16,x2= ,x=± ,故答案为:A【分析】观察次方程缺一次项,可以用直接开平方法求解或利用因式分解法求解。
3.方程的根是()A. B. C. D.【答案】A【考点】解一元二次方程-直接开平方法【解析】【解答】用开平方法可得【分析】将原方程变形为=4,用直接开平方法解得x=2,即= 2 ,= − 2.4.一元二次方程x2=2的解是()A.x=2或x=﹣2B.x=2C.x=4或x=﹣4D.x=或x=﹣【答案】D【考点】解一元二次方程-直接开平方法【解析】【解答】解:∵x2=2,∵x=±.故选:D.【分析】直接开平方解方程得出答案.5.方程x2=9的解是()A.x1=x2=3B.x1=x2=9C.x1=3,x2=﹣3D.x1=9,x2=﹣9【答案】C【考点】解一元二次方程-直接开平方法【解析】【解答】解:x2=9,两边开平方,得x1=3,x2=﹣3.故选C.【分析】利用直接开平方法求解即可.6.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x-6=-4B.x-6=4C.x+6=4D.x+6=-4【答案】D【考点】解一元二次方程-直接开平方法【解析】【分析】方程两边直接开平方可达到降次的目的,进而可直接得到答案.【解答】(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=-4,故选:D.7.方程x2=9的解是()A.x=9B.x=±9C.x=3D.x=±3【答案】D【考点】直接开平方法解一元二次方程【解析】【解答】解:∵x2=9,∵x=±3,故选:D.【分析】直接开平方法即可得.8.若是反比例函数,则b的值为()A.1B.-1C.D.任意实数【答案】A【考点】直接开平方法解一元二次方程,反比例函数的定义【解析】【解答】,解得.故答案为:A.【分析】根据反比例函数的定义知,自变量次数为-1,b2-2=-1,得b=1,,又因为比例系数k≠0,得b+1≠0,得b≠-1,综合分析可得b=1。
【2019年中考真题模拟】山东省泰安市2019年中考数学真题试题(含解析)
泰安市2019年初中学生学业考试数学试题第Ⅰ卷(选择题 共60分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列四个数:-3,π-,-1,其中最小的数是( )A .π-B .-3C .-1D .【答案】A【解析】试题分析:将四个数从大到小排列为﹣1>3>﹣π,可得最小的数为﹣π,故选:A .考点:实数大小比较2. 下列运算正确的是( )A .2222a a a =B .224a a a +=C .22(12)124a a a +=++D .2(1)(1)1a a a -++=-【答案】D【解析】故选:D .考点:1、平方差公式;2、合并同类项;3、同底数幂的乘法;4、完全平方公式3. 下列图案:其中,中心对称图形是( )A .①②B .②③ C. ②④ D .③④【答案】D【解析】试题分析:根据中心对称图形的概念:绕某点旋转190°,能够与原图形完全重合的图形.可知①不是中心对称图形;②不是中心对称图形;③是中心对称图形;④是中心对称图形.故选:D .考点:中心对称图形4. “2014年至2019年,中国同‘一带一路’沿线国家贸易总额超过3万亿美元”.将数据3万亿美元用科学记数法表示为( )A .14310⨯美元B .13310⨯美元 C. 12310⨯美元 D .11310⨯美元【答案】C【解析】考点:科学记数法—表示较大的数5. 化简22211(1)(1)x x x--÷-的结果为( ) A .11x x -+ B .11x x +- C.1x x + D .1x x - 【答案】A【解析】试题分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到:原式=2222211x x x x x-+-÷=222(1)(1)(1)x x x x x -⋅+-=11x x -+ , 故选:A考点:分式的混合运算6. 下面四个几何体:其中,俯视图是四边形的几何体个数是( )A .1B .2 C.3 D .4【答案】B【解析】试题分析:根据俯视图是分别从物体上面看,所得到的俯视图是四边形的几何体有正方体和三棱柱, 故选:B .考点:简单几何体的三视图7. 一元二次方程2660x x --=配方后化为( )A .2(3)15x -=B .2(3)3x -= C. 2(3)15x += D .2(3)3x +=【答案】A【解析】考点:解一元二次方程﹣配方法9. 袋内装有标号分别为1、2、3、4的4个球,从袋内随机取出一个小球,让其标号为一个两位数的十位数字,放回搅匀后,再随机取出一个小球,主其标号为这个两位数的个位数字,则组成的两位数是3的倍数的概率为( )A .14B .516 C. 716 D .12【答案】B【解析】试题分析:画树状图为:共有16种等可能的结果数,其中所成的两位数是3的倍数的结果数为5,所以成的两位数是3的倍数的概率=516.故选:B .考点:列表法与树状图法9. 不等式组29611x x x k +>+⎧⎨-<⎩,的解集为2x <.则k 的取值范围为( ) A .1k > B .1k < C.1k ≥ D .1k ≤【答案】C【解析】考点:解一元一次不等式组10. 某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x 件衬衫,则所列方程为( )A .10001470010(140%)x x -=+B .10001470010(140%)x x+=+ C.10001470010(140%)x x -=- D .10001470010(140%)x x +=- 【答案】B【解析】试题分析:【考点】B6:.【分析】根据题意表示出衬衫的价格,利用进价的变化,设第一批购进x 件衬衫,则所列方程为: 10001470010(140%)x x+=+.故选:B .。
2019年山东省泰安中考数学试卷(含答案与解析)
第Ⅰ卷(选择题 共 48 分)_ --------------------一、选择题(本大题共 12 小题,每小题 4 分,共 48 分.在每小题给出的四个选项中,只有__ __ __ __ A . - 3 B . -3C . | -3.14 |D . π( )= 6a__ C . 2a 2 D . a 2 + a 2 = a 46 __ ___ __ __ 四号”进入近地点约 200 公里,远地点约 42 万公里的地月转移轨道.将数据 42 万公里__ ____ __ __ __ 名 __ 姓 __ 答 __ 2 >1__ __ 题 __ __ A .①② B .②③ C .②④ D .③④业 _ 2.下列-------------------------- 绝密★启用前6.某射击运动员在训练中射击了 10 次,成绩如图所示:在--------------------山东省泰安市 2019 年初中学业水平考试数学本试卷满分 150 分,考试时间 120 分钟.___号--------------------运算正确的是() 生 __ A . a 6 ÷ a 3 = a 3B . a 4 ⋅ a 2 = a 8考 __ __ _ _ A . 4.2 ⨯109 米 B . 4.2 ⨯108 米_ _4.下列图形: _ _ __ __ ① ② ③ ④校 学 5.如图,直线 l ∥l , ∠1 = 30︒ ,则 ∠2 +∠ 3 =()毕 此一项是符合题目要求的)__ 1.在实数 | -3.14 | , -3 , - 3 , π 中,最小的数是 ( )卷33.2018 年 12 月 8 日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥上--------------------用科学记数法表示为 ( )C . 42 ⨯107 米D . 4.2 ⨯107 米_ --------------------其中是轴对称图形且有两条对称轴的是 ( )--------------------1 2无--------------------(第 5 题)⎩(第 6 题)下列结论不正确的是 ( )A .众数是 8B .中位数是 8C .平均数是 8.2D .方差是 1.2⎧5x + 4≥2( x - 1) ⎪ 7.不等式组 ⎨ 2 x + 5 3x - 2 的解集是 ( ) ⎪ 3 -A . x ≤2B . x ≥ - 2C . -2<x ≤2D . -2≤x <28.如图,一艘船由 A 港沿北偏东 65︒ 方向航行 30 2 km 至 B 港,然后再沿北偏西 40︒ 方 向航行至 C 港,C 港在 A 港北偏东 20°方向,则 A ,C 两港之间的距离为_____ km . ( )(第 8 题)A . 30 + 30 3B . 30 + 10 3效 ---A .150︒B .180︒C . 210︒D . 240︒数学试卷 第 1 页(共 24 页) C .10 + 30 3 D . 30 3数学试卷 第 2 页(共 24 页)A.1B.C.3D.»»A.πB.πC.2πD.3πx9.如图,∆ABC是e O的内接三角形,∠A=119︒,过点C的圆的切线交BO于点P,则∠P的度数为()(第9题)A.32︒B.31︒C.29︒D.61︒10.一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为()24 555511.如图,将e O沿弦AB折叠,AB恰好经过圆心O,若e O的半径为3,则AB的长为()第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,满分24分)13.已知关于x的一元二次方程x2-(2k-1)x+k2+3=0有两个不相等的实数根,则实数k的取值范围是.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x两,每枚白银重y两,根据题意可列方程组为.15.如图,∠AOB=90︒,∠B=30︒,以点O为圆心,O A为半径作弧交AB于点A,点C,交OB于点D,若OA=3,则阴影部分的面积为.(第11题)1212.如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是()(第15题)16.若二次函数y=x2+bx-5对称轴为直线x=2,则关于x的方程x2+bx-5=2x-13的解为.17.在平面直角坐标系中,直线l:y=的+1与y轴交于点A,如图所示,依次作正方形1OA B C,正方形C A B C,正方形C A B C,正方形C A B C,…,点A,A,11112222333344412A,A,…在直线l上,点C,C,C,C,…在x轴正半轴上,则前n个正方形341234对角线的和是.(第12题)A.2B.4C.2D.22数学试卷第3页(共24页)(第17题)数学试卷第4页(共24页)18.如图,矩形ABCD中,AB=36,BC=12,E为AD的中点,F为AB上一点,将∆AEF沿EF折叠后,点A恰好落到CF上的点G处,则折痕EF的长是.x的图象交于点A,与x轴交于点152.__名__姓___卷a-9+25⎫⎛⎪÷ a-1-⎪,其中a=2.第4组60<x≤70b(2)计算扇形统计图中“第5组”所在扇形圆心角的度数;_⎛_ _ __ __ __ __ __号生_考______ __ __ _ _ __ __ __ ____ __ __ __ __ __ _校学业毕--------------------------在--------------------此--------------------(第18题)三、解答题(本大题共7小题,满分78分)19.(8分)先化简,再求值:--------------------4a-1⎫⎝+1⎭⎝a+1⎭上--------------------20.(8分)为了弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(高成都绩于50分),绘制了如下的统计图表(不完整);答组别分数人数--------------------第1组90<x≤1008第2组80<x≤90a第3组70<x≤8010题--------------------第5组50<x≤603(第20题)请根据以上信息,解答下列问题:(1)求出a、b的值;无--------------------(3)若该校共有1800名学生,那么成绩高于80分的共有多少人.21.(11分)已知一次函数y=kx+b的图象与反比例函数y=mB(5,0),若OB=AB,且S(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,∆ABP是等腰三角形,求点P的坐标.(第21题)22.(11分)端午节是我国传统节日,人们素有吃粽子的习俗,某商场在端午节来临之际用3000元购进A、B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同,已知A粽子的单价是B种粽子单价的1.2倍.(1)求A、B两种粽子的单价各是多少?(2)若计划用不超过7000元的资金再次购买A、B两种粽子共2600个,已知A、B两种粽子的进价不变,求A中粽子最多能购进多少个?效---数学试卷第5页(共24页)数学试卷第6页(共24页)23.(13分)在矩形ABCD中,AE⊥BD于点E,点P是边AD上一点.(1)若BP平分∠ABD,交AE于点G,PF⊥BD于点F,如图①,证明四边形AGFP是菱形;(2)若PE⊥EC,如图②,求证:AE⋅AB=DE⋅AP;(3)在(2)的条件下,若AB=1,BC=2,求AP的长.25.(14分)如图,四边形ABCD是正方形,∆EFC是等腰直角三角形,点E在AB上,且∠CEF=90︒,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明.(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不存在,说明理由.图①图②(第23题)(第25题)24.(13分)若二次函数y=ax2+bx+c的图象与x轴分别交于点A(3,0)、B(0,-2),且过点C(2,-2).(1)求二次函数表达式;(2)若点P为抛物线上第一象限内点,且S∆P AB=4,求点P的坐标;(3)在抛物线上(AB下方)是否存在点M,使∠ABO=∠ABM?若存在,求出点M到y轴的距离;若不存在,请说明理由.(第24题)(第24题备用图)数学试卷第7页(共24页)数学试卷第8页(共24页)( )= 8a C .错误, 2a 26 10 =8.2 ,2 ⨯ (10 - 8.2)2 + 2 ⨯ (9 - 8.2)2 +3 ⨯ (8 - 8.2) 2 + 2 ⨯ (7 - 8.2) 2 + (6 - 8.2) 2 10 =1.56 ,⎧5x + 4 ≥ 2( x - 1) ⎩山东省泰安市 2019 年初中学业水平考试数学答案解析第Ⅰ卷(选择题)一、选择题1.【答案】B【解析】【分析】根据实数的比较大小的规则比较即可.【详解】解: -3.14 =3.14 ;因此根据题意可得 -3 是最小的故选 B .【考点】实数的比较大小2.【答案】A【解析】根据整式的运算法则逐个计算即可.A .正确, a 6 ÷ a 3 = a 6-3 = a 3B .错误, a 4 ⋅ a 2 = a 4+2 = a 63D .错误, a 2 + a 2 = 2a 2故选 A .【考点】整式的计算法则3.【答案】B【解析】根据科学记数法的表示方法表示即可.解:42 万公里 = 4.2 ⨯108米故选 B .【考点】科学记数法的表示方法②有两条对称轴;③有四条对称轴;④不是对称图形,故选 A .【考点】图形的对称轴5.【答案】C【解析】根据题意作直线 l 平行于直线 l 1 和 l 2,再根据平行线的性质求解即可. 解:作直线 l 平行于直线 l 1 和 l 2Q l ∥l ∥l ,1 2∴∠1 = ∠4 = 30︒ ; ∠3 + ∠5 = 180︒ ,Q ∠2 = ∠4 + ∠5 ,∴∠ 2+∠3=∠4+∠5+∠3=30︒ + 180︒ = 210︒ ,故选 C .【考点】平行线的性质6.【答案】D【解析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.根据图表可得 10 环的 2 次,9 环的 2 次,8 环的 3 次,7 环的 2 次,6 环的 1 次.所以可得众数是 8,中位数是 8,平均数是 10 ⨯ 2+9 ⨯ 2+8 ⨯ 3+7 ⨯ 2+6 ⨯1方差是故选 D【考点】统计的基本知识7.【答案】D【解析】根据不等式的性质解不等式组即可.4.【答案】A【解析】根据题意首先将各图形的对称轴画出,在数对称轴的条数即可.①有两条对称轴;⎪ ⎧ x ≥ -2解: ⎨ 2 x + 5 3x - 2 化简可得: ⎨⎪ 3 - 2 > 1 ⎩ x < 2 ,数学试卷 第 9 页(共 24 页)数学试卷 第 10 页(共 24 页)2 = 30 ,2 = 30 ,tan 60︒ = 25 =因此可得 -2 ≤ x < 2 ,故选 D .【考点】不等式组的解8.【答案】B【解析】根据题意作 BD 垂直于 AC 于点 D ,根据计算可得 ∠DAB = 45︒ , ∠BCD = 60︒ ;根据直角三角形的性质求解即可.解:根据题意作 BD 垂直于 AC 于点 D .可得 AB = 30 2 , ∠DAB = 65︒ - 20︒ = 45︒∠DCB = 20︒ + 40︒ = 60︒ ,所以可得 AD = ABgcos45 ︒ = 30 2 ⨯2BD = AB sin 45︒ = 30 2 ⨯ 2所以可得 BC 所对的大圆心角为 ∠BOC = 2 ⨯119︒ = 238︒ ,因为 BD 为直径,所以可得 ∠COD = 238︒ - 180︒ = 58︒ ,由于 △COP 为直角三角形,所以可得 ∠P = 90︒ - 58︒ = 32︒ ,故选 A .【考点】圆心角的计算10.【答案】C【解析】根据树状图首先计算出总数,再计算出小球标号之和大于 5 的数,利用概率的计算公式可得摸出的小球标号之和大于 5 的概率.解:根据题意可得树状图为:CD = BD303 = 10 3 ,因此可得 AC = AD + CD = 30 + 10 3 ,故选 B .【考点】解直角三角形的应用9.【答案】A【解析】根据题意连接 OC , ∆COP 为直角三角形,再根据 BC 的优弧所对的圆心角等于圆周角的 2 倍,可计算的 ∠COP 的度,再根据直角三角形可得 ∠P 的度数.【详解】根据题意连接 OC .因为 ∠A = 119︒ ,一共有 25 种结果,其中 15 种结果是大于 5 的因此可得摸出的小球标号之和大于 5 的概率为 15故选 C .【考点】概率的计算的树状图11.【答案】C35数学试卷 第 11 页(共 24 页)【解析】根据题意作 OC ⊥ AB ,垂足为 C ,根据题意可得 OC = 3,因此可得 ∠OAB = 30︒ ,2所以可得圆心角 ∠AOB = 120︒ ,进而计算的 AB 的长.根据题意作 OC ⊥ AB ,垂足为 C ,数学试卷 第 12 页(共 24 页)2 , ∠OAB = 30︒ ,360 ⨯ 2π ⨯ 3 = 2π , » » 4 .∴阴影部分面积1 = 60 ≥? ≥? .∵ e O 沿弦 AB 折叠, AB恰好经过圆心 O ,若 e O 的半径为 3 ∴ OC = 3∴圆心角 ∠AOB = 120︒ ,∴ AB = 120故选 C .【考点】圆弧的计算12.【答案】D【解析】根据题意要使 PB 最小,就要使 DF 最长,所以可得当 C 点和 F 点重合时,才能使 PB 最小,因此可计算的 PB 的长.解:根据题意要使 PB 最小,就必须使得 DF 最长,因此可得当 C 点和 F 点重合时,才能使 PB 最小.∵当 C 和 F 重合时,P 点是 CD 的中点∴ CP = 2 ,∴ BP = BC 2 + CP 2 = 22 + 22 = 2 2 ,故选 D .【考点】二元一次方程的根与系数的关系⎧9 x = 11y14.【答案】 ⎨⎩(10y + x) - (8x + y) = 13【解析】根据题意甲袋中装有黄金 9 枚(每枚黄金重量相同),乙袋中装有白银 11 枚(每枚白银重量相同),称重两袋相同.故可得 9x = 11y ,再根据两袋互相交换 1 枚后,甲袋比乙袋轻了 13 两,可得 (10y + x) - (8x + y) = 13 ,因此可得二元一次方程组.根据题意可得甲袋中的黄金 9 枚和乙袋中的白银 11 枚质量相等,可得 9x = 11y ,再根据两袋互相交换 1 枚后,甲袋比乙袋轻了 13 两.故可得 (10y + x) - (8x + y) = 13 .⎧9 x = 11y因此 ⎨⎩(10y + x) - (8x + y) = 13⎧9 x = 11y所以答案为 ⎨⎩(10y + x) - (8x + y) = 13【考点】二元一次方程组的应用315.【答案】 π4【解析】根据题意连接 OC ,可得阴影部分的面积等于两个阴影部分面积之和,再根据弧AC 所对的阴影部分面积等于弧 AC 所对圆心角的面积减去△OAC 的面积,而不规则图形 BCD 的面积等于 △OBC 的面积减去弧 DC 所对圆心角的面积.进而可得阴【考点】矩形中的动点问题第Ⅱ卷(选择题)影部分的面积.解:根据题意连接 OC二、填空题13.【答案】 k < -114【解析】根据根与系数的关系可得要使 x 2 - (2k - 1)x + k 2 + 3 = 0 有两个不相等的实数根,则必须>,进而可以计算出 k 的取值范围.解:根据根与系数的关系可得要使 x 2 - (2k - 1)x + k 2 + 3 = 0 有两个不相等的实数根,则>Q △ = (2k - 1)2 - 4(k 2 + 3) ∴k < - 114故答案为 k < - 11数学试卷 第 13 页(共 24 页)∵ OA = OC , ∠OAB = 90︒ -∠ B = 90︒ - 30︒ = 60︒∴ △ACO 为等边三角形∴ ∠AOC = 60︒1 3 9360 ⨯ π ⨯ 32 - 2 ⨯ 3 ⨯ 3cos30 ︒ = 2 π - 4 3数学试卷 第 14 页(共 24 页)2 ⨯3 3 ⨯ 360 ⨯ π ⨯ 32 = 故答案为 π 。
2019年全国中考数学真题分类汇编:一元二次方程和应用(含答案)(可编辑修改word版)
2019 年全国中考数学真题分类汇编:一元二次方程及应用一、选择题1.(2019 年ft东省滨州市)用配方法解一元二次方程x2﹣4x+1=0 时,下列变形正确的是()A.(x﹣2)2=1 B.(x﹣2)2=5 C.(x+2)2=3 D.(x﹣2)2=3【考点】解一元二次方程【解答】解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,故选:D.2.(2019 年四川省达州市)某公司今年4 月的营业额为2500 万元,按计划第二季度的总营业额要达到9100 万元,设该公司5、6 两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100 B.2500(1+x%)2=9100 C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【考点】一元二次方程的应用【解答】解:设该公司5、6 两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.3.(2019 年广西贵港市)若α,β是关于x 的一元二次方程x2-2x+m=0 的两实根,且1+1=-2,α β 3则m 等于()A.- 2B.- 3C.2D. 3【考点】一元二次方程根与系数的关系【解答】解:α,β 是关于x 的一元二次方程x2-2x+m=0 的两实根,∴α+β=2,αβ=m,∵ + = = =- ,∴m=-3; 故选:B .4. (2019 年江苏省泰州市)方程 2x 2+6x -1=0 的两根为 x 1、x 2,则 x 1+x 2 等于( )A .-6B .6C .-3D . 3【考点】一元二次方程根与系数的关系【解答】试题分析:∵一元二次方程 2x 2+6x -1=0 的两个实根分别为 x 1,x 2,由两根之和可得; ∴x +x =﹣ 6=3,122故答案为:C .5. (2019 年河南省)一元二次方程(x +1)(x ﹣1)=2x +3 的根的情况是( )A. 有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【考点】一元二次方程根的判别式 【解答】解:原方程可化为:x 2﹣2x ﹣4=0,∴a =1,b =﹣2,c =﹣4,∴△=(﹣2)2﹣4×1×(﹣4)=20>0, ∴方程由两个不相等的实数根. 故选:A .6. (2019 年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民 2016 年人均年收入 20000 元,到 2018 年人均年收入达到 39200 元.则该地区 居民年人均收入平均增长率为 .(用百分数表示)【考点】一元二次方程的应用【解答】解:设该地区居民年人均收入平均增长率为 x ,20000(1+x )2=39200,解得,x 1=0.4,x 2=﹣2.4(舍去),∴该地区居民年人均收入平均增长率为 40%, 故答案为:40%.7. (2019 年甘肃省)若一元二次方程 x 2﹣2kx +k 2=0 的一根为 x =﹣1,则 k 的值为()A.﹣1 B.0 C.1 或﹣1 D.2 或0【考点】一元二次方程的解【解答】解:把x=﹣1 代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.8.(2019 年湖北省鄂州市)关于x 的一元二次方程x2﹣4x+m=0 的两实数根分别为x1、x2,且x1+3x2=5,则m 的值为()A.B.C.D.0【考点】一元二次方程根与系数的关系【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0 得:()2﹣4× +m=0,解得:m=,故选:A.9.(2019 年湖北省荆州市)若一次函数y=kx+b 的图象不经过第二象限,则关于x 的方程x2+kx+b=0 的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【考点】一元二次方程根的判别式【解答】解:∵一次函数y=kx+b 的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.10.(2019 年黑龙江省伊春市)某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是()A.4 B.5 C.6 D.7【考点】一元二次方程的应用【解答】解:设这种植物每个支干长出x 个小分支,依题意,得:1+x+x2=43,解得:x1=﹣7(舍去),x2=6.故选:C.11.(2019 年内蒙古包头市)已知等腰三角形的三边长分别为a、b、4,且a、b 是关于x的一元二次方程x2﹣12x+m+2=0 的两根,则m 的值是()A.34 B.30 C.30 或34 D.30 或36【考点】一元二次方程根与系数的关系【解答】解:当a=4 时,b<8,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴4+b=12,∴b=8 不符合;当b=4 时,a<8,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴4+a=12,∴a=8 不符合;当a=b 时,∵a、b 是关于x 的一元二次方程x2﹣12x+m+2=0 的两根,∴12=2a=2b,∴a=b=6,∴m+2=36,∴m=34;故选:A.12.(2019 年内蒙古赤峰市)某品牌手机三月份销售400 万部,四月份、五月份销售量连续增长,五月份销售量达到900 万部,求月平均增长率.设月平均增长率为x,根据题意列方程为()A.400(1+x2)=900 B.400(1+2x)=9002 1 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 C .900(1﹣x )2=400 D .400(1+x )2=900【考点】一元二次方程的应用 【解答】解:设月平均增长率为 x , 根据题意得:400(1+x )2=900. 故选:D .13.(2019 年内蒙古呼和浩特市)若 x 1,x 2 是一元二次方程 x 2+x ﹣3=0 的两个实数根,则x 2﹣4x 2+17 的值为( ) A .﹣2B .6C .﹣4D .4【考点】一元二次方程的根与系数的关系【解答】解:∵x 1,x 2 是一元二次方程 x 2+x ﹣3=0 的两个实数根,∴x 1+x 2=﹣1,x 1•x 2=﹣3,x 2+x 1=3,∴x 2﹣4x 2+17=x 2+x 2﹣5x 2+17=(x +x )2﹣2x x ﹣5x 2+17=(﹣1)2﹣2×(﹣3)﹣5x 2+17=24﹣5x 2=24﹣5(﹣1﹣x 1)2=24﹣5(x 2+x +1)=24﹣5(3+1)=4,故选:D .14. (2019 年内蒙古通辽市)一个菱形的边长是方程 x 2﹣8x +15=0 的一个根,其中一条对角线长为 8,则该菱形的面积为( )A .48B .24C .24 或 40D .48 或 80【考点】一元二次方程的应用 【解答】解:(x ﹣5)(x ﹣3)=0,所以 x 1=5,x 2=3, ∵菱形一条对角线长为 8, ∴菱形的边长为 5,∴菱形的另一条对角线为 2 =6,∴菱形的面积= ×6×8=24. 故选:B .15. (2019 年新疆)若关于 x 的一元二次方程(k ﹣1)x 2+x +1=0 有两个实数根,则 k 的取值范围是()A.k≤ B.k>C.k<且k≠1D.k≤ 且k≠1【考点】一元二次方程根的判别式【解答】解:∵关于x 的一元二次方程(k﹣1)x2+x+1=0 有两个实数根,∴,解得:k≤且k≠1.故选:D.16.(2019 年新疆)在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x 个队参赛,根据题意,可列方程为()A.x(x﹣1)=36 B.x(x+1)=36C.x(x﹣1)=36 D.x(x+1)=36【考点】一元二次方程的应用【解答】解:设有x 个队参赛,根据题意,可列方程为:x(x﹣1)=36,故选:A.二、填空题1.(2019 年上海市)如果关于x 的方程x2﹣x+m=0 没有实数根,那么实数m 的取值范围是.【考点】一元二次方程根的判别式【解答】解:由题意知△=1﹣4m<0,1 1∴m>.故填空答案:m>.4 42.(2019 年ft东省济宁市)已知x=1 是方程x2+bx﹣2=0 的一个根,则方程的另一个根是.【考点】一元二次方程的根与系数的关系【解答】解:∵x=1 是方程x2+bx﹣2=0 的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.3.(2019 年ft东省青岛市)若关于x 的一元二次方程2x2﹣x+m=0 有两个相等的实数根,则m的值为.【考点】一元二次方程根的判别式【解答】解:根据题意得:△=1﹣4×2m=0,整理得:1﹣8m=0,解得:m=,故答案为:.4.(2019 年ft东省枣庄市)已知关于x 的方程ax2+2x﹣3=0 有两个不相等的实数根,则a 的取值范围是.【考点】一元二次方程根的判别式【解答】解:由关于x 的方程ax2+2x﹣3=0 有两个不相等的实数根得△=b2﹣4ac=4+4×3a>0,解得a>则a>且a≠0故答案为a>且a≠05.(2019 年四川省资阳市)a 是方程2x2=x+4 的一个根,则代数式4a2﹣2a 的值是.【考点】一元二次方程的解【解答】解:∵a 是方程2x2=x+4 的一个根,∴2a2﹣a=4,∴4a2﹣2a=2(2a2﹣a)=2×4=8.故答案为:8.6.(2019 年江苏省泰州市)若关于x 的方程x2+2x+m=0 有两个不相等的实数根,则m 的取值范围是.【考点】一元二次方程根的判别式【解答】∵关于x 的方程x2+2x+m=0 有两个不相等的实数根,∴△=4﹣4m>0解得:m<1,∴m 的取值范围是m<1.故答案为:m<1.7.(2019 年江苏省扬州市)一元二次方程x(x - 2)=x - 2 的根为.【考点】一元二次方程的解法【解答】解:x(x - 2)=x - 2(x -1)(x - 2)= 0 x1=1,x2=28.(2019 年湖北省十堰市)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m=.【考点】一元二次方程的解法【解答】解:根据题意得[(m+2)+(m﹣3)]2﹣[(m+2)﹣(m﹣3)]2=24,(2m﹣1)2﹣49=0,(2m﹣1+7)(2m﹣1﹣7)=0,2m﹣1+7=0 或2m﹣1﹣7=0,所以m1=﹣3,m2=4.故答案为﹣3 或4.9.(2019 年甘肃省武威市)关于x 的一元二次方程x2+ x+1=0 有两个相等的实数根,则m 的取值为.【考点】一元二次方程根的判别式【解答】解:由题意,△=b2﹣4ac=()2﹣4=0得m=4故答案为41 10. (2019 年辽宁省本溪市)如果关于 x 的一元二次方程 x 2﹣4x +k =0 有实数根,那么 k 的取值范围是.【考点】一元二次方程根的判别式 【解答】解:根据题意得:△=16﹣4k ≥0, 解得:k ≤4. 故答案为:k ≤4.11. (2019 年西藏)一元二次方程 x 2﹣x ﹣1=0 的根是 .【考点】一元二次方程的解法【解答】解:△=(﹣1)2﹣4×(﹣1)=5, x = ,所以 x 1= ,x 2=.故答案为 x 1= ,x 2=.三、解答题1.(2019 年安徽省)解方程(x -1)2 =4【考点】一元二次方程的解法【解答】利用直接开平方法:x-1=2 或 x-1=-2∴x 1 = 3,x 2 = ‒ 1 2.(2019 年北京市)关于 x 的方程 x2- 2x + 2m -1 = 0 有实数根,且 m 为正整数,求 m 的值及此时方程的根.【考点】一元二次方程根的判别式、一元二次方程的解法【解答】∵ x 2 - 2x + 2m -1 = 0 有实数根,∴△≥0,即(-2)2 - 4(2m -1) ≥ 0 ,∴ m ≤ 1∵m 为正整数,∴ m = 1,故此时二次方程为 x 2 - 2x +1 = 0, 即(x -1)2 = 0∴ x 1 = x 2 = 1 ,∴ m = 1,此时方程的根为 x 1 = x 2 = 13.(2019 年乐ft 市)已知关于 x 的一元二次方程 x 2 - (k + 4)x + 4k = 0 .(1) 求证:无论k 为任何实数,此方程总有两个实数根;(2) 若方程的两个实数根为 x 1 、 x 2 ,满足 + 1 x 1x 2= 3,求k 的值;4(3) 若 Rt △ ABC 的斜边为 5,另外两条边的长恰好是方程的两个根 x 1 、 x 2 ,求 Rt ∆ABC 的内切圆半径.【考点】一元二次方程根的判别式、一元二次方程的解法、一元二次方程根与系数关系、内切圆【解答】(1)证明:∆ = (k + 4)2 -16k = k 2 - 8k + 16 = (k - 4)2 ≥ 0 , ∴无论k 为任何实数时,此方程总有两个实数根.(2)由题意得: x 1 + x 2 = k + 4 , x 1 ⋅ x 2 = 4k ,1 + 1 = 3 ,∴ x 1 + x2 =3 , 即 k +4 = 3 ,x 1 x 2 4 x 1 ⋅ x 2 44k 4 解得: k = 2 ;(3)解方程得: x 1 = 4 , x 2 = k ,根据题意得: 42 + k 2 = 52 ,即k = 3 ,设直角三角形 ABC 的内切圆半径为 r ,如图, 由切线长定理可得: (3 - r ) + (4 - r ) = 5 ,∴直角三角形 ABC 的内切圆半径 r = 3 + 4 - 524= 1;4.(2019 年重庆市)某文明小区 50 平方米和 80 平方米两种户型的住宅,50 平方米住宅套数是 80 平方米住宅套数的 2 倍.物管公司月底按每平方米 2 元收取当月物管费,该小区全部住宅都人住且每户均按时全额缴纳物管费.(1) 该小区每月可收取物管费 90000 元,问该小区共有多少套 80 平方米的住宅?(2) 为建设“资源节约型社会”,该小区物管公司 5 月初推出活动一:“垃圾分类送礼物”,50平方米和 80 平方米的住户分别有 40%和 20%参加了此次括动.为提离大家的积扱性,6月份准备把活动一升级为活动二:“拉圾分类抵扣物管费”,同时终止活动一.经 调査与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这 样,6 月份参加活动的 50 平方米的总户数在 5 月份参加活动的同户型户数的基础上将增加 2a %, 每户物管费将会减少a %;6 月份参加活动的 80 平方米的总户数在 5 月份参加活动的同户型户数的基础上将增加 6a %,每户物管费将会减少a %.这样,参加活动的这部分住户 6 月份总共缴纳的物管费比他们按原方式共缴纳的物管费将减少 a %,求 a 的值.r r5 r【考点】一元一次方程的应用与解法、一元二次方程的应用与解法【解答】(1)解:设该小区有x 套80 平方米住宅,则50 平方米住宅有2x 套,由题意得:2(50×2x+80x)=90000,解得x=250答:该小区共有250 套80 平方米的住宅.(2)参与活动一:50 平方米住宅每户所交物管费为100 元,有500×40%=200 户参与活动一,80 平方米住宅每户所交物管费为160 元,有250×20%=50 户参与活动一;参与活动二:50 平方米住宅每户所交物管费为100(1﹣ %)元,有200(1+2a%)户参与活动二;80 平方米住宅每户所交物管费为160(1﹣ %)元,有50(1+6a%)户参与活动二.由题意得100(1﹣ %)•200(1+2a%)+160(1﹣ %)•50(1+6a%)=[200(1+2a%)×100+50(1+6a%)×160](1﹣a%)令t=a%,化简得t(2t﹣1)=0∴t1=0(舍),t2=,∴a=50.答:a 的值为50.5.(2019 年ft东省德州市)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128 人次,进馆人次逐月增加,到第三个月末累计进馆608 人次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不超过500 人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.【考点】一元二次方程的应用与解法【解答】解:(1)设进馆人次的月平均增长率为x,则由题意得:128+128(1+x)+128(1+x)2=608化简得:4x2+12x-7=0∴(2x-1)(2x+7)=0,∴x=0.5=50%或x=-3.5(舍)答:进馆人次的月平均增长率为50%.(2)∵进馆人次的月平均增长率为50%,∴第四个月的进馆人次为:128(1+50%)327<500=432=128×8⎩⎨答:校图书馆能接纳第四个月的进馆人次.6. (2019 年四川省攀枝花市)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6讲一元二次方程
A组基础题组
一、选择题
1.用配方法解一元二次方程x2-6x-10=0时,下列变形正确的是( )
A.(x+3)2=1
B.(x-3)2=1
C.(x+3)2=19
D.(x-3)2=19
2.如果x2-x-1=(x+1)0,那么x的值为( )
A.2或-1
B.0或1
C.2
D.-1
3.一元二次方程x2-4x=12的根是( )
A.x1=2,x2=-6
B.x1=-2,x2=6
C.x1=-2,x2=-6
D.x1=2,x2=6
4.已知关于x的一元二次方程x2+2x-(m-2)=0有实数根,则m的取值范围是( )
A.m>1
B.m<1
C.m≥1
D.m≤1
5.(2017威海)若1-是方程x2-2x+c=0的一个根,则c的值为( )
A.-2
B.4-2
C.3-
D.1+
6.(2018菏泽)关于x的一元二次方程(k+1)x2-2x+1=0有两个实数根,则k的取值范围是( )
A.k≥0
B.k≤0
C.k<0且k≠-1
D.k≤0且k≠-1
7.某文具店三月份销售铅笔100支,四、五两个月销售量连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是( ) A.100(1+x) B.100(1+x)2
C.100(1+x2)
D.100(1+2x)
二、填空题
8.(2017枣庄)方程2x2-3x-1=0的两个根分别为x1,x2,则
+= .
9.某加工厂九月份加工了10吨干果,十一月份加工了13吨干果.设该厂加工干果质量的月平均增长率为x,根据题意可列方程
为.
10.如果关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根,那么k的取值范围是.
三、解答题
11.张晓为学校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,则单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,张晓一次性购买这种服装付了1 200元.请问他购买了多少件这种服装.
B组提升题组
一、选择题
1.(2017江西)已知一元二次方程2x2-5x+1=0的两个根分别为x1、x2,下列结论正确的是( )
A.x1+x2=-
B.x1x2=1
C.x1,x2都是有理数
D.x1,x2都是正数
2.(2017肥城一模)已知关于x的一元二次方程mx2+2x-1=0有两个不相等的实数根,则m的取值范围是( )
A.m<-1
B.m>1
C.m<1且m≠0
D.m>-1且m≠0
二、解答题
3.(2017黄冈)已知关于x的一元二次方程x2+(2x+1)x+k2=0有两个不相等的实数根.
(1)求k的取值范围;
(2)设方程的两个实数根分别为x1,x2,当k=1时,求+的值.
4.随着互联网的迅速发展,某购物网站的年销售额从2013年的200万元增长到2015年的392万元.求该购物网站平均每年销售额增长的百分率.
5.(2018德州)为积极响应新旧动能转换,提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台设备售价为40万元时,年销售量为600台;每台设备售价为45万元时,年销售量为550台.假定该设备的年销售量
y(单位:台)和销售单价x(单位:万元)成一次函数关系.
(1)求年销售量y与销售单价x的函数关系式;
(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10 000万元的年利润,则该设备的销售单价应是多少万元?
第6讲 一元二次方程
A 组 基础题组
一、选择题
1.D 方程移项得x 2-6x=10,配方得x 2-6x+9=19,即(x-3)2=19,故选D.
2.C 原方程等价于x 2-x-2=0,
则a=1,b=-1,c=-2,
Δ=(-1)2-4×1×(-2)=9,
所以x=- - = =
, 所以x 1=2,x 2=-1(舍去),故选C.
3.B 方程整理得x 2-4x-12=0,
分解因式得(x+2)(x-6)=0,
解得x 1=-2,x 2=6.故选B.
4.C ∵关于x 的一元二次方程x 2+2x-(m-2)=0有实数根, ∴Δ=b 2-4ac=22-4×1×[-(m-2)]≥0,
解得m≥1.故选C.
5.A ∵关于x 的方程x 2-2x+c=0的一个根是1- ,
∴(1- )2-2(1- )+c=0,
解得c=-2.故选A.
6.D 根据题意得k+1≠0且Δ=(-2)2-4(k+1)≥0,
解得k≤0且k≠-1.
故选D.
7.B 若月平均增长率为x,则四月份的销售量为100(1+x)支,五月份的销售量为100(1+x)(1+x)支,即100(1+x)2,故选B.
二、填空题
8.答案
解析∵方程2x2-3x-1=0的两个根分别为x1,x2,
∴x1+x2=-=,x1·x2==-,
∴+=(x1+x2)2-2x1·x2=-2×-=.
9.答案10(1+x)2=13
解析根据题意,可列方程为10(1+x)2=13.
10.答案k>-且k≠0
解析∵关于x的一元二次方程kx2-3x-1=0有两个不相等的实数根, ∴k≠0且Δ>0,
即
,
(-)-(-),
解得k>-且k≠0.
三、解答题
11.解析设他购买了x件服装,因为80×10=800<1 200,所以列方程得:
[80-2(x-10)]x=1 200,解得x1=20,x2=30,
当x=20时,80-2×(20-10)=60>50,符合题意;
当x=30时,80-2×(30-10)=40<50,不符合题意,舍去.
答:他购买了20件这种服装.
B组提升题组
一、选择题
1.D 由题意可得:
, ,
∵x1x2=>0,∴x1、x2同号,
又∵x1+x2=>0,∴x1,x2都是正数. 故选D.
2.D 根据题意得, ,
即
,
,解得m>-1且m≠0.故选D.
二、解答题
3.解析(1)原方程可化为3x2+x+k2=0,
∵方程有两个不相等的实数根,
∴Δ=12-4×3·k2>0,
解得-<k<.
(2)当方程3x2+x+1=0的两个实数根分别为x1,x2,k=1时, x1+x2=-,x1x2=,
∴+=(x1+x2)2-2x1x2=-=-.
4.解析设该购物网站平均每年销售额增长的百分率为x, 根据题意得200(1+x)2=392,
解得x1=0.4=40%,x2=-2.4(不符合题意,舍去).
答:该购物网站平均每年销售额增长的百分率为40%.
5.解析(1)设年销售量y与销售单价x的函数关系式为
y=kx+b(k≠0),将(40,600),(45,550)代入y=kx+b,得
,
,
解得-,
,
∴年销售量y与销售单价x的函数关系式为y=-10x+1 000.
(2)此设备的销售单价为x万元,则每台设备的利润为(x-30)万元,销售数量为(-10x+1 000)台,根据题意得
(x-30)(-10x+1 000)=10 000,
整理得x2-130x+4 000=0,
解得x1=50,x2=80.
∵此设备的销售单价不得高于70万元,
∴x=50.
答:该设备的销售单价应是50万元.。