2014高考数学(理)一轮复习学案课件 第3编 三角函数的性质
高考数学第一轮章节复习课件 第三章 三角函数 解三角形
【注意】 若角α的终边落在某条直线上,一般要分类讨论.
已知角α的终边在直线3x+4y=0上,求sinα, cosα,tanα的值.
.
解析:tan= 答案:
5.某时钟的秒针端点A到中心点O的距离为5 cm,秒针均匀 地绕点O旋转,当时间t=0时,点A与钟面上标12的点B
重
合.将A、B两点间的距离d(cm)表示成t(s)的函数,则d
=
,其中t∈[0,60].
解析:∵经过t(s)秒针转了 弧度
d
5. t
, d
t
10 sin
.
2 60
)内的单调性.
知识点
考纲下载
考情上线
函数y= Asin(ωx +φ)的图 象
1.考查图象的变换和 1.了解函数y=Asin(ωx+φ)
解析式的确定,以 的
及通过图象描绘, 物理意义;能画出y=
观察讨论有关性质. Asin(ωx+φ)的图象,了解
2.以三角函数为载体, 参数A、ω、φ对函数图象
考查数形结合的思想. 变化的影响.
当且仅当α= ,即α=2时取等号, 此时 故当半径r=1 cm,圆心角为2弧度时,扇形面积最大, 其最大值为1 cm2.
法二:设扇形的圆心角为α(0<α<2π),半径为r,面积为S,
则扇形的弧长为rα,由题意有:2r+rα=4⇒α=
×r2=2r-r2=-(r-1)2+1,
∴当r=1(cm)时,S有最大值1(cm2),
为余弦线
有向线段 AT 为正切线
2014高考数学一轮复习课件3.3三角函数的图象与性质
汇,在考查三角函数图象与性质的同时,注重考查三角变换
的技能,及数形结合、转化与化归等数学思想.
创新探究之四
三角函数单调性的创新应用
π (2012· 课标全国卷)已知ω>0,函数f(x)=sin(ωx+ )在 4 π ( ,π )上单调递减,则ω的取值范围是( 2 1 5 A.[ , ] 2 4 1 C.(0, ] 2 1 3 B.[ , ] 2 4 D.(0,2] )
π π kπ 【解析】 由3x≠ +kπ,k∈Z得x≠ + , 2 6 3 k∈Z,.
【答案】
D
5π 2.函数f(x)=2cos(x+ )是( 2
)
A.最小正周期为2π 的奇函数 B.最小正周期为2π 的偶函数 C.最小正周期为2π 的非奇非偶函数 D.最小正周期为π 的偶函数
π 5 【解析】 f(x)=2cos(x+ π)=2cos(x+ )=-2sin 2 2 x,故f(x)是最小正周期为2π的奇函数.
π 【解析】 f(x)=sin(πx- )-1=-cos πx-1, 2 2π 因此函数f(x)是偶函数,周期T= =2. π
【答案】
B
1.若f(x)=Asin(ωx+φ)(A,ω≠0),则 π (1)f(x)为偶函数的充要条件是φ= +kπ(k∈Z); 2 (2)f(x)为奇函数的充要条件是φ=kπ(k∈Z). 2.对称性:正、余弦函数的图象既是轴对称图形,又 是中心对称图形且最值点在对称轴上,正切函数的图象只 是中心对称图形.
π 设函数f(x)=sin(ωx+φ)(ω>0,|φ|< ),给出以 2 下四个论断: ①它的最小正周期为π ; π ②它的图象关于直线x= 成轴对称图形; 12 π ③它的图象关于点( ,0)成中心对称图形; 3 π ④在区间[- ,0)上是增函数. 6 以其中两个论断作为条件,另两个论断作为结论, 写出你认为正确的一个命题________(用序号表示).
2014版高考数学一轮总复习 第23讲 三角函数的性质课件 理 新人教A版
素材1
1 π 函数 y=2cos( x- )的图象的对称 2 8 5π 中心是 (2kπ+ ,0)(k∈Z) 4 .
1 π 【解析】令 2cos( x- )=0, 2 8 1 π π 得 x- =kπ+ (k∈Z), 2 8 2 5π 即 x=2kπ+ (k∈Z), 4 1 π 所以函数 y=2cos( x- )的图象的对称中心是(2kπ+ 2 8 5π ,0)(k∈Z). 4
17 要使 1≤f(x)≤ 恒成立, 4
a-4≤0 只需 3 9 a- ≥ 4 4
⇔3≤a≤4,所以 a∈[3,4]为所求.
三
三角函数的单调性与周期性
1 π 2x 【例 3】(1)求函数 y= sin( - )的最小正周期和单调区间; 2 4 3 (2)函数 y=xcosx-sinx 在下面哪个区间内是增函数( ) π 3π A.( , ) 2 2 3π 5π C.( , ) 2 2 B.(π,2π) D.(2π,3π)
x π A.y=2sin( + ) 2 3 π C.y=2sin(2x+ ) 6
2π 【解析】根据 T= ,容易得出选项 B、C 中的函数 ω π 周期均为 π, 然后可利用求对称轴的表达式 ωx+φ=kπ+ 2 (k∈Z),将选项 B、C 中的函数依次代入求解验证即可得 答案 B 符合题意.
4.将函数 f(x)= 3sinx-cosx 的图象向右平移 φ(φ>0)个 单位, 所得图象对应的函数为奇函数, φ 的最小值为( 则 π A. 6 2π C. 3 π B. 3 5π D. 6 )
1.三角函数奇偶性的判断与其他函数奇偶性 的判断步骤一致:
1 首先看定义域是否关于原点对称; 2 在满足 1 后,再看f x 与f x 的关系.
2014届高考人教A版数学(理)一轮复习讲义4.3三角函数的图象与性质
第3讲三角函数的图象与性质【2014年高考会这样考】1.考查三角函数的单调性、奇偶性、周期性和对称性.2.考查三角函数的图象在研究三角函数性质中的应用.对应学生56考点梳理正弦、余弦、正切函数的图象与性质(下表中k∈Z).一点提醒求函数y =A sin(ωx +φ)的单调区间时,应注意ω的符号,只有当ω>0时,才能把ωx +φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误. 两种方法求三角函数值域(最值)的两种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域;(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决.考点自测1.(2011·新课标全国)设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( ). A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增解析 先将f (x )化为单一函数形式: f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4,∵f (x )的最小正周期为π,∴ω=2. ∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +φ+π4.由f (x )=f (-x )知f (x )是偶函数, 因此φ+π4=k π+π2(k ∈Z ).又|φ|<π2,∴φ=π4,∴f (x )=2cos 2x .由0<2x <π,得0<x <π2时,f (x )单调递减,故选A. 答案 A2.(2012·湖南)函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1] D.⎣⎢⎡⎦⎥⎤-32,32解析 因为f (x )=sin x -32cos x +12sin x = 3×⎝ ⎛⎭⎪⎫32sin x -12cos x =3sin ⎝ ⎛⎭⎪⎫x -π6,所以函数f (x )的值域为[-3,3]. 答案 B3.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ).A .关于直线x =π3对称B .关于点⎝ ⎛⎭⎪⎫π3,0对称C .关于直线x =-π6对称D .关于点⎝ ⎛⎭⎪⎫π6,0对称解析 由题意知T =2πω=π,则ω=2,所以f (x )= sin ⎝ ⎛⎭⎪⎫2x +π3,又f ⎝ ⎛⎭⎪⎫π3=sin ⎝ ⎛⎭⎪⎫23π+π3=sin π=0. 答案 B4.(2013·郑州模拟)已知ω是正实数,且函数f (x )=2sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π4上是增函数,那么( ). A .0<ω≤32 B .0<ω≤2 C .0<ω≤247 D .ω≥2解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,π4且ω>0,得ωx ∈⎣⎢⎡⎦⎥⎤-ωπ3,ωπ4.又y =sin x 是⎣⎢⎡⎦⎥⎤-π2,π2上的单调增函数,则⎩⎪⎨⎪⎧ωπ4≤π2,-ωπ3≥-π2,解得0<ω≤32.答案 A5.(2012·全国)当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =________.解析 y =sin x -3cos x =2⎝ ⎛⎭⎪⎫12sin x -32cos x =2sin ⎝ ⎛⎭⎪⎫x -π3的最大值为2,又0≤x <2π,故当x -π3=π2,即x =5π6时,y 取得最大值. 答案 5π6对应学生57考向一 与三角函数有关的定义域和值域问题【例1】►(1)函数y =sin x -cos x 的定义域为________.(2)函数f (x )=2cos x (sin x -cos x )+1在x ∈⎣⎢⎡⎦⎥⎤π8,3π4上的最大值为________,最小值为________.[审题视点] (1)求使sin x ≥cos x 的x 的集合即可;(2)先化成形如f (x )=A sin(ωx +φ)的形式,再由x 的范围求解. 解析 (1)sin x -cos x =2sin ⎝ ⎛⎭⎪⎫x -π4≥0,将x -π4视为一个整体,由正弦函数y =sin x 的图象和性质可知2k π≤x -π4≤π+2k π,k ∈Z ,解得2k π+π4≤x ≤2k π+5π4,k ∈Z .所以定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z. (2)f (x )=2cos x sin x -2cos 2x +1=sin 2x -cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π4,∵x ∈⎣⎢⎡⎦⎥⎤π8,3π4,∴2x -π4∈⎣⎢⎡⎦⎥⎤0,5π4,∴sin ⎝ ⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故f (x )max =2,f (x )min =-1. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2k π+π4≤x ≤2k π+5π4,k ∈Z (2)2 -1(1)求与三角函数有关的定义域问题实际上是解简单的三角不等式,也可借助三角函数线或三角函数图象来求解.(2)求解三角函数的值域(最值)首先把三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域),或用换元法(令t =sin x ,或t =sin x ±cos x )化为关于t 的二次函数求值域(最值).【训练1】 (1)函数y =1tan x -1的定义域为________;(2)当x ∈⎣⎢⎡⎦⎥⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值为________,最大值为________. 解析(1)由题意知:tan x ≠1,即⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π,k ∈Z, 又⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z , 故函数的定义域为:⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z. (2)y =3-sin x -2cos 2x =3-sin x -2(1-sin 2x )=2sin 2x -sin x +1=2⎝ ⎛⎭⎪⎫sin x -142+78.又x ∈⎣⎢⎡⎦⎥⎤π6,7π6,∴sin x ∈⎣⎢⎡⎦⎥⎤-12,1, ∴当sin x =14时,y min =78; 当sin x =-12时,y max =2. 答案(1)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x ≠π4+k π且x ≠π2+k π,k ∈Z (2)78 2考向二 三角函数的单调性【例2】►(2012·北京)已知函数f (x )=(sin x -cos x )sin 2xsin x .(1)求f (x )的定义域及最小正周期; (2)求f (x )的单调递增区间.[审题视点] 求原函数的定义域,只要使得原函数式有意义即可;先化简原函数为f (x )=A sin(ωx +φ)的形式,再求周期及单调区间. 解 (1)由sin x ≠0,得x ≠k π(k ∈Z ), 故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }, 因为f (x )=(sin x -cos x )sin 2xsin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝ ⎛⎭⎪⎫2x -π4-1,所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎢⎡⎭⎪⎫k π-π8,k π和⎝ ⎛⎦⎥⎤k π,k π+3π8(k ∈Z ).求较为复杂的三角函数的单调区间时,首先化简成y =A sin(ωx +φ)形式,再求y =A sin(ωx +φ)的单调区间,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可,注意要先把ω化为正数. 【训练2】 求下列函数的单调递增区间: (1)y =cos ⎝ ⎛⎭⎪⎫2x +π6;(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)将2x +π6看做一个整体,根据y =cos x 的单调递增区间列不等式求解.函数y =cos x 的单调递增区间为[2k π-π,2k π],k ∈Z .由2k π-π≤2x +π6≤2k π,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z .故y =cos ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为k π-7π12,k π-π12(k ∈Z ).(2)y =3sin ⎝ ⎛⎭⎪⎫π3-x 2=-3sin ⎝ ⎛⎭⎪⎫x 2-π3,∴由π2+2k π≤x 2-π3≤2k π+3π2,k ∈Z , 得4k π+5π3≤x ≤4k π+11π3,k ∈Z . 故y =3sin ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间为⎣⎢⎡⎦⎥⎤4k π+5π3,4k π+11π3(k ∈Z ). 考向三 三角函数的奇偶性、周期性及对称性【例3】►(1)若0<α<π2,g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α是偶函数,则α的值为________.(2)函数y =2sin(3x +φ)⎝ ⎛⎭⎪⎫||φ<π2的一条对称轴为x =π12,则φ=________.[审题视点] (1)只需令π4+α=π2+k π(k ∈Z ); (2)应满足3×π12+φ=k π+π2,k ∈Z .解析 (1)要使g (x )=sin ⎝ ⎛⎭⎪⎫2x +π4+α为偶函数,则需π4+α=k π+π2,k ∈Z ,α=k π+π4,k ∈Z ,∵0<α<π2,∴α=π4.(2)由y =sin x 的对称轴为x =k π+π2(k ∈Z ), 即3×π12+φ=k π+π2(k ∈Z ),得φ=k π+π4(k ∈Z ), 又|φ|<π2,∴k =0,故φ=π4. 答案 (1)π4 (2)π4函数f (x )=A sin(ωx +φ)(ω≠0),(1)函数f (x )为奇函数的充要条件为φ=k π(k ∈Z );为偶函数的充要条件为φ=k π+π2(k ∈Z ).(2)求f (x )=A sin(ωx +φ)(ω≠0)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;如要求f (x )的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z )即可.【训练3】 (2013·银川联考)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2 (x ∈R ),下面结论错误的是( ). A .函数f (x )的最小正周期为π B .函数f (x )是偶函数C .函数f (x )的图象关于直线x =π4对称 D .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数解析 f (x )=sin ⎝ ⎛⎭⎪⎫2x +3π2=-cos 2x ,故其最小正周期为π,故A 正确;易知函数f (x )是偶函数,B 正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,C 错误;由函数f (x )的图象易知,函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数,D 正确,故选C.答案 C对应学生58规范解答6——如何解决三角函数的值域(或最值)问题【命题研究】 通过近三年的高考试题分析,对三角函数的值域(或最值)的考查特别青睐,主要考查y =A sin(ωx +φ)形式的三角函数在R 上或给定的闭区间[a ,b ]上的值域(或最值),往往作为某一种答题的其中一问,题目难度不大. 【真题探究】► (本小题满分12分)(2012·湖北)已知向量a =(cos ωx -sin ωx ,sin ωx ),b =(-cos ωx -sin ωx,23cos ωx ),设函数f (x )=a ·b +λ(x ∈R )的图象关于直线x =π对称,其中ω、λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,3π5上的取值范围.[教你审题] 一审 准确化成形如f (x )=A sin(ωx +φ)+h 的形式; 二审 充分利用对称轴x =π; 三审 确定λ的值.[规范解答] (1)f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝ ⎛⎭⎪⎫2ωx -π6+λ.(3分)由直线x =π是y =f (x )图象的一条对称轴, 可得sin ⎝ ⎛⎭⎪⎫2ωx -π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ), 又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以k =1,故ω=56.(5分)所以f (x )的最小正周期是6π5.(6分)(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0,得f ⎝ ⎛⎭⎪⎫π4=0,即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6=-2sin π4=-2,故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6- 2.(9分)由0≤x ≤3π5,有-π6≤53x -π6≤5π6, 所以-12≤sin ⎝ ⎛⎭⎪⎫53x -π6≤1,得-1-2≤2sin ⎝ ⎛⎭⎪⎫53x -π6-2≤2-2,(11分)故函数f (x )在⎣⎢⎡⎦⎥⎤0,3π5上的取值范围为[-1-2,2-2].(12分)[阅卷老师手记] (1)将所给函数变换到f (x )=A sin(ωx +φ)+h 的形式时由于变换公式和变换方法不熟造成失分.(2)有的考生混淆了对称轴与对称中心,导致失分.第一步:三角函数式的化简,一般化成形如y =A sin(ωx +φ)+h 的形式或y =A cos(ωx +φ)+k 的形式.第二步:根据题设条件求出y =A sin(ωx +φ)+h 中有关的参数.第三步:由x 的取值范围确定ωx +φ的取值范围,再确定sin(ωx +φ)的取值范围.第四步:求出所求函数的值域(或最值).【试一试】 (2011·北京)已知函数f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1.(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤-π6,π4上的最大值和最小值.解 (1)因为f (x )=4cos x sin ⎝ ⎛⎭⎪⎫x +π6-1=4cos x ⎝ ⎛⎭⎪⎫32sin x +12cos x -1=3sin 2x +2cos 2x -1=3sin 2x +cos 2x =2sin ⎝ ⎛⎭⎪⎫2x +π6,所以f (x )的最小正周期为π.(2)因为-π6≤x ≤π4,所以-π6≤2x +π6≤2π3.于是,当2x +π6=π2,即x =π6时,f (x )取得最大值2; 当2x +π6=-π6,即x =-π6时,f (x )取得最小值-1.对应学生255A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2011·山东)若函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π2上单调递减,则ω=( ).A.23B.32C .2D .3解析 由题意知f (x )的一条对称轴为x =π3,和它相邻的一个对称中心为原点,则f (x )的周期T =4π3,从而ω=32. 答案 B2.已知函数f (x )=sin(x +θ)+3cos(x +θ)⎝ ⎛⎭⎪⎫θ∈⎣⎢⎡⎦⎥⎤-π2,π2是偶函数,则θ的值为( ).A .0B.π6C.π4D.π3解析 据已知可得f (x )=2sin ⎝ ⎛⎭⎪⎫x +θ+π3,若函数为偶函数,则必有θ+π3=k π+π2(k ∈Z ),又由于θ∈⎣⎢⎡⎦⎥⎤-π2,π2,故有θ+π3=π2,解得θ=π6,经代入检验符合题意. 答案 B3.函数y =2sin ⎝ ⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( ).A .2- 3B .0C .-1D .-1- 3解析 ∵0≤x ≤9,∴-π3≤π6x -π3≤7π6,∴-32≤sin ⎝ ⎛⎭⎪⎫π6x -π3≤1,∴-3≤2sin ⎝ ⎛⎭⎪⎫π6x -π3≤2.∴函数y =2sin ⎝ ⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为2- 3. 答案 A4.(2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( ).A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z ) B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ) 解析 由f (x )=sin(2x +φ),且f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对x ∈R 恒成立,∴f ⎝ ⎛⎭⎪⎫π6=±1,即sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1. ∴π3+φ=k π+π2(k ∈Z ).∴φ=k π+π6(k ∈Z ). 又f ⎝ ⎛⎭⎪⎫π2>f (π),即sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ.∴sin φ<0.∴对于φ=k π+π6(k ∈Z ),k 为奇数.∴f (x )=sin(2x +φ)=sin ⎝ ⎛⎭⎪⎫2x +k π+π6=-sin ⎝ ⎛⎭⎪⎫2x +π6.∴由2m π+π2≤2x +π6≤2m π+3π2(m ∈Z ), 得m π+π6≤x ≤m π+2π3(m ∈Z ),∴f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤m π+π6,m π+2π3(m ∈Z ). 答案 C二、填空题(每小题5分,共10分)5.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,则f ⎝ ⎛⎭⎪⎫5π3的值为________. 解析 f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32.答案 326.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.解析 由0≤x ≤π3,得0≤ωx ≤ωπ3<π3,则f (x )在⎣⎢⎡⎦⎥⎤0,π3上单调递增,且在这个区间上的最大值是2,所以2sin ωπ3=2,且0<ωπ3<π3, 所以ωπ3=π4,解得ω=34. 答案 34三、解答题(共25分) 7.(12分)设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解 (1)由1-2sin x ≥0,根据正弦函数图象知: 定义域为{x |2k π+56π≤x ≤2k π+13π6,k ∈Z }. (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3, ∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.8.(13分)(2013·东营模拟)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4. (1)求函数f (x )的最小正周期和图象的对称轴; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域.解 (1)f (x )=cos ⎝ ⎛⎭⎪⎫2x -π3+2sin ⎝ ⎛⎭⎪⎫x -π4sin ⎝ ⎛⎭⎪⎫x +π4 =12cos 2x +32sin 2x +(sin x -cos x )(sin x +cos x ) =12cos 2x +32sin 2x +sin 2x -cos 2x =12cos 2x +32sin 2x -cos 2x =sin ⎝ ⎛⎭⎪⎫2x -π6.∴最小正周期T =2π2=π,由2x -π6=k π+π2(k ∈Z ), 得x =k π2+π3(k ∈Z ).∴函数图象的对称轴为x =k π2+π3(k ∈Z ). (2)∵x ∈⎣⎢⎡⎦⎥⎤-π12,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤-π3,5π6,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π6≤1.即函数f (x )在区间⎣⎢⎡⎦⎥⎤-π12,π2上的值域为⎣⎢⎡⎦⎥⎤-32,1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2012·新课标全国)已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π单调递减,则ω的取值范围是( ).A.⎣⎢⎡⎦⎥⎤12,54 B.⎣⎢⎡⎦⎥⎤12,34 C.⎝ ⎛⎦⎥⎤0,12 D .(0,2]解析 取ω=54,f (x )=sin ⎝ ⎛⎭⎪⎫54x +π4,其减区间为⎣⎢⎡⎦⎥⎤85k π+π5,85k π+π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π⊆85k π+π5,85k π+π,k ∈Z ,排除B ,C.取ω=2,f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,其减区间为⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,显然⎝ ⎛⎭⎪⎫π2,π ⎣⎢⎡⎦⎥⎤k π+π8,k π+58π,k ∈Z ,排除D. 答案 A2.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( ).A.π4B.π3C.π2 D.3π4解析 由题意可知函数f (x )的周期T =2×⎝ ⎛⎭⎪⎫5π4-π4=2π,故ω=1,∴f (x )=sin(x+φ),令x +φ=k π+π2(k ∈Z ),将x =π4代入可得φ=k π+π4(k ∈Z ),∵0<φ<π,∴φ=π4. 答案 A二、填空题(每小题5分,共10分)3.(2013·徐州模拟)已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析 f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎪⎨⎪⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象,可得函数的最小值为-1,最大值为22,故值域为⎣⎢⎡⎦⎥⎤-1,22.答案 ⎣⎢⎡⎦⎥⎤-1,224.(2012·西安模拟)下列命题中:①α=2k π+π3(k ∈Z )是tan α=3的充分不必要条件; ②函数f (x )=|2cos x -1|的最小正周期是π;③在△ABC 中,若cos A cos B >sin A sin B ,则△ABC 为钝角三角形; ④若a +b =0,则函数y =a sin x -b cos x 的图象的一条对称轴方程为x =π4. 其中是真命题的序号为________. 解析 ①∵α=2k π+π3(k ∈Z )⇒tan α=3, 而tan α=3⇒/ α=2k π+π3(k ∈Z ),∴①正确. ②∵f (x +π)=|2cos(x +π)-1|=|-2cos x -1|=|2cos x +1|≠f (x ),∴②错误. ③∵cos A cos B >sin A sin B ,∴cos A cos B -sin A sin B >0, 即cos(A +B )>0,∵0<A +B <π,∴0<A +B <π2, ∴C 为钝角,∴③正确.④∵a +b =0,∴b =-a ,y =a sin x -b cos x =a sin x +a cos x =2a sin ⎝ ⎛⎭⎪⎫x +π4,∴x =π4是它的一条对称轴,∴④正确. 答案 ①③④ 三、解答题(共25分)5.(12分)已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14.(1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值的x 的集合. 解 (1)∵f (x )=cos ⎝ ⎛⎭⎪⎫π3+x cos ⎝ ⎛⎭⎪⎫π3-x=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3-3cos 2x 8=12cos 2x -14,∴f (x )的最小正周期为2π2=π. (2)由(1)知h (x )=f (x )-g (x )=12cos 2x -12sin 2x =22cos ⎝ ⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )取得最大值22.故h (x )取得最大值时,对应的x 的集合为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x =k π-π8,k ∈Z. 6.(13分)已知a >0,函数f (x )=-2a sin ⎝ ⎛⎭⎪⎫2x +π6+2a +b ,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)设g (x )=f ⎝ ⎛⎭⎪⎫x +π2且lg g (x )>0,求g (x )的单调区间.解 (1)∵x ∈⎣⎢⎡⎦⎥⎤0,π2,∴2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6.∴sin ⎝ ⎛⎭⎪⎫2x +π6∈⎣⎢⎡⎦⎥⎤-12,1,又∵a >0,∴-2a sin ⎝ ⎛⎭⎪⎫2x +π6∈[-2a ,a ].∴f (x )∈[b,3a +b ],又∵-5≤f (x )≤1,∴b =-5,3a +b =1, 因此a =2,b =-5.(2)由(1)得a =2,b =-5,∴f (x )=-4sin ⎝ ⎛⎭⎪⎫2x +π6-1,g (x )=f ⎝ ⎛⎭⎪⎫x +π2=-4sin ⎝ ⎛⎭⎪⎫2x +7π6-1 =4sin ⎝ ⎛⎭⎪⎫2x +π6-1,又由lg g (x )>0,得g (x )>1,∴4sin ⎝ ⎛⎭⎪⎫2x +π6-1>1,∴sin ⎝ ⎛⎭⎪⎫2x +π6>12,∴2k π+π6<2x +π6<2k π+5π6,k ∈Z ,其中当2k π+π6<2x +π6≤2k π+π2,k ∈Z 时,g (x )单调递增,即k π<x ≤k π+π6,k ∈Z ,∴g (x )的单调增区间为⎝ ⎛⎦⎥⎤k π,k π+π6,k ∈Z . 又∵当2k π+π2<2x +π6<2k π+5π6,k ∈Z 时,g (x )单调递减,即k π+π6<x <k π+π3,k ∈Z . ∴g (x )的单调减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3,k ∈Z . 综上,g (x )的递增区间为⎝ ⎛⎦⎥⎤k π,k π+π6(k ∈Z );递减区间为⎝ ⎛⎭⎪⎫k π+π6,k π+π3(k ∈Z ).。
高考数学一轮复习 第3章《三角函数》三角函数的图象课件
∴φ=-ωx0=-
2
(3
2)=
3
.
返回目录
解法四:(平移法)
由图象知,将y=5sin
2 3
x的图象沿x轴向左平移
2
个单
位,就得到本题图象.故所求函数解析式为
y=5sin〔 2 ( x+ )〕=5sin( 2 x+ ).
3
2
33
返回目录
考点三 三角函数图象的对称性
已知函数y=sin2x+acos2x= 1 a2 sin(2x+φ)(其中
3
(2)由此题两种解法可见,在由图象求解析式时,
“第一个零点”的确定是重要的,应尽量使A取正值.
(3)已知函数图象求函数
y=Asin(ωx+φ)(A>0,ω>0)的解析式时,常用的解题 方法是待定系数法,由图中的最大值或最小值确定A,由 周期确定ω,由适合解析式的点的坐标来确定φ,但由
返回目录
图象求得的y=Asin(ωx+φ)(A>0,ω>0)的解析式一般不唯 一,只有限定φ的取值范围,才能得出唯一解,否则φ的值不 确定,解析式也就不唯一.
学案3 三角函数的图象
考点分析
1. “五点法”作y=Asin(ωx+φ)(A>00,,ω,>,30)的,2简图
五点的取法是:设X=ωx+φ,由X取 2 2 来求相应的x值,及对应的y值,再描点作图.
2.变换作图法作y=Asin(ωx+φ)(A>0,ω>0)的 图象
(1)振幅变换:y=sinx→y=Asinx 返回目录
以“五点法”中的第一零点(
,0)作为突破口,要从图
象的升降情况找准第一零点的位置.要善于抓住特殊量和特
2014届高考江苏专用(理)一轮复习第四章第3讲三角函数的图象与性质
π 2x π π 故由 2kπ- ≤ - ≤2kπ+ 2 3 4 2 3π 9π ⇒3kπ- ≤x≤3kπ+ (k∈Z), 8 8
π 2x π 3π 由 2kπ+ ≤ - ≤2kπ+ 2 3 4 2 9π 21π ⇒3kπ+ ≤x≤3kπ+ (k∈Z), 8 8 3π 9π ∴函数的递减区间为3kπ- 8 ,3kπ+ 8 (k∈Z), 9π 21π 递增区间为3kπ+ 8 ,3kπ+ 8 (k∈Z).
②作出 y=|tan x|的图象,观察图象可知,y=|tan x|的增 π π 区间是 kπ,kπ+2,k∈Z,减区间是 kπ-2,kπ,k∈ Z.最小正周期 T=π. (2)f(x)= 3sin 2x+1-2sin2x-1 π = 3sin 2x+cos 2x-1=2sin2x+6 -1. π π π π 2π 因为 x∈-6,4,所以 2x+ ∈-6, 3 , 6 π π π 所以当 2x+ =- ,即 x=- 时,f(x)min=-2; 6 6 6 π π π 当 2x+ = ,即 x= 时,f(x)max=1. 6 2 6 π π 故函数 f(x)在区间- 6,4 上的最小值为-2,最大值为 1.
π π f(x)在区间-12,2 上的范围为________.
解析 法一
(1)要使函数有意义,必须使 利用图象.在同一坐标系中
sin x-cos x≥0.
画出[0,2π]上y=sin x和y=cos x的图
象,如图所示.
π 5π 在[0,2π]内,满足 sin x=cos x 的 x 为 , ,再结合正 4 4 弦、余弦函数的周期是 2π,
式).
(3)求三角函数的定义域经常借助两个工具,即单位圆中 的三角函数线和三角函数的图象,有时也利用数轴. (4)求三角函数最值,可以转化为y=Asin(ωx+φ)或二次函 数在某个区域内的最值问题.
高考数学一轮复习第3章三角函数解三角形3.5两角和与差的正弦余弦与正切公式课件理
(2)将三角变换与代数变换密切结合:三角变换主要是 灵活应用相应的三角公式,对于代数变换主要有因式分解、 通分、提取公因式、利用相应的代数公式等,例如,sin4x +cos4x=(sin2x+cos2x)2-2sin2xcos2x=1-12sin22x.
第八页,共45页。
[诊断自测] 1.概念思辨 (1)两角和与差的正弦、余弦公式中的角 α,β 是任意 的.( √ ) (2)存在实数 α,β,使等式 sin(α+β)=sinα+sinβ 成 立.( √ ) (3)在锐角△ABC 中,sinAsinB 和 cosAcosB 大小关系不 确定.( × ) (4)公式 tan(α+β)=1t-anαta+nαttaannββ可以变形为 tanα+tanβ =tan(α+β)(1-tanαtanβ),且对任意角 α,β 都成立.( × )
第二十页,共45页。
冲关针对训练
已知锐角 α,β 满足 sinα= 55,cosβ=31010,则 α+β
等于( )
3π A. 4
B.π4或34π
π C.4
D.2kπ+π4(k∈Z)
第二十一页,共45页。
解析 由 sinα= 55,cosβ=31010,且 α,β 为锐角,可
知 cosα=255,sinβ= 1100,
(1)求函数 f(x)的最小正周期和单调递增区间;
(2)若函数 g(x)=f(x)-m 在0,π2上有两个不同的零点 x1,x2,求实数 m 的取值范围,并计算 tan(x1+x2)的值.
本题采用转化法、数形结合思想.
第二十三页,cosx+ 3, 化简可得 f(x)=2sinxcosx-2 3cos2x+ 3 =sin2x-2 312+21cos2x+ 3 =sin2x- 3cos2x =2sin2x-π3.
高三数学人教版A版数学(理)高考一轮复习教案三角函数的图象与性质
第三节 三角函数的图象与性质三角函数的图象及性质能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝⎛⎭⎫-π2,π2内的单调性. 知识点 正弦函数、余弦函数、正切函数的图象 和性质 函数y =sin xy =cos xy =tan x图 象定义域RR⎩⎨⎧x ⎪⎪ x ≠π2 } +k π,k ∈Z值域[-1,1][-1,1]R单调性递增区间:⎣⎡ 2k π-π2, ⎦⎤2k π+π2(k ∈Z )递减区间:⎣⎡2k π+π2,⎦⎤2k π+3π2(k ∈Z )递增区间: [2k π-π,2k π](k ∈Z ) 递减区间: [2k π,2k π+π] (k ∈Z )递增区间:⎝⎛ k π-π2,⎭⎫k π+π2(k ∈Z )最 值x =2k π+π2(k ∈Z )时,y max =1;x =2k π-π2(k ∈Z )时,y min =-1x =2k π(k ∈Z )时,y max=1;x =2k π+π(k ∈Z )时,y min =-1无最值奇偶性 奇函数偶函数 奇函数 对称性对称中心(k π,0),k ∈Z对称中心⎝⎛⎭⎫k π2,0,k∈Z对称中心⎝⎛⎭⎫k π+π2,0,k ∈Z对称轴l :x =k π+π2,k ∈Z对称轴l :x =k π,k ∈无对称轴Z周期性 2π2ππ易误提醒1.正切函数的图象是由直线x =k π+π2(k ∈Z )隔开的无穷多支曲线组成,单调增区间是⎝⎛⎭⎫-π2+k π,π2+k π,k ∈Z 不能说它在整个定义域内是增函数,如π4<3π4,但是tan π4>tan 3π4,正切函数不存在减区间.2.三角函数存在多个单调区间时易错用“∪”联结.3.研究三角函数单调性、对称中心、奇偶性及对称轴时易忽视“k ∈Z ”这一条件. 必记结论 函数y =A sin(ωx +φ),当φ=k π(k ∈Z )时是奇函数,当φ=k π+π2(k ∈Z )时是偶函数;函数y =A cos(ωx +φ),当φ=k π(k ∈Z )时是偶函数,当φ=k π+π2(k ∈Z )时是奇函数.[自测练习]1.函数y =tan 3x 的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠3π2+3k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π,k ∈Z C.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π6+k π,k ∈Z D.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π6+k π3,k ∈Z 解析:由3x ≠π2+k π,得x ≠π6+k π3,k ∈Z .答案:D2.设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数解析:∵f (x )=sin ⎝⎛⎭⎫2x -π2=-cos 2x , ∴f (x )是最小正周期为π的偶函数. 答案:B3.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图象( ) A .关于直线x =π3对称B .关于点⎝⎛⎭⎫π3,0对称 C .关于直线x =-π6对称D .关于点⎝⎛⎭⎫π6,0对称解析:∵f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,∴ω=2,即f (x )=sin ⎝⎛⎭⎫2x +π3. 经验证可知f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2π3+π3=sin π=0, 即⎝⎛⎭⎫π3,0是函数f (x )的一个对称点. 答案:B4.函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为________,此时x =________. 解析:函数y =3-2cos ⎝⎛⎭⎫x +π4的最大值为3+2=5,此时x +π4=π+2k π,即x =3π4+2k π(k ∈Z ).答案:53π4+2k π(k ∈Z ) 考点一 三角函数的定义域、值域|1.函数y =cos x -32的定义域为( ) A.⎣⎡⎦⎤-π6,π6 B.⎣⎡⎦⎤k π-π6,k π+π6,k ∈Z C.⎣⎡⎦⎤2k π-π6,2k π+π6,k ∈Z D .R解析:∵cos x -32≥0,得cos x ≥32,∴2k π-π6≤x ≤2k π+π6,k ∈Z . 答案:C2.函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为( ) A .-1 B .-22C .0D.22解析:因为0≤x ≤π2,所以-π4≤2x -π4≤3π4,由正弦函数的图象知,1≥sin ⎝⎛⎭⎫2x -π4≥-22,所以函数f (x )=sin ⎝⎛⎭⎫2x -π4在区间⎣⎡⎦⎤0,π2上的最小值为-22,故选B. 答案:B3.已知函数f (x )=12(sin x +cos x )-12|sin x -cos x |,则f (x )的值域是________.解析:f (x )=12(sin x +cos x )-12|sin x -cos x |=⎩⎨⎧cos x (sin x ≥cos x ),sin x (sin x <cos x ).画出函数f (x )的图象(实线),如图,可得函数的最小值为-1,最大值为22,故值域为⎣⎡⎦⎤-1,22.答案:⎣⎡⎦⎤-1,22 1.三角函数定义域的求法求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求三角函数值域(最值)的三种方法(1)将所给函数化为y =A sin(ωx +φ)的形式,通过分析ωx +φ的范围,结合图象写出函数的值域.(2)换元法:把sin x (cos x )看作一个整体,化为二次函数来解决. (3)数形结合法,作出三角函数图象可求.考点二 三角函数的单调性|(2015·高考重庆卷)已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性.[解] (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x )=12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎣⎡⎦⎤5π12,2π3上单调递减. 三角函数的单调区间的求法(1)代换法:求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间内即可.若ω为负,则要先把ω化为正数.(2)图象法:作出三角函数的图象,根据图象直接写出单调区间.1.已知ω>0,函数f (x )=sin ⎝⎛⎭⎫ωx +π4在⎝⎛⎭⎫π2,π上单调递减,则ω的取值范围是( ) A.⎣⎡⎦⎤12,54 B.⎣⎡⎦⎤12,34 C.⎝⎛⎦⎤0,12 D .(0,2]解析:由π2<x <π得π2ω+π4<ωx +π4<πω+π4,又y =sin t 在区间⎝⎛⎭⎫π2,32π上递减.∴π2ω+π4≥π2,且ωπ+π4≤32π,解之得12≤ω≤54.答案:A2.求函数y =tan ⎝⎛⎭⎫π3-2x 的单调区间. 解:把函数y =tan ⎝⎛⎭⎫π3-2x 变为y =-tan ⎝⎛⎭⎫2x -π3.由k π-π2<2x -π3<k π+π2,k ∈Z ,得k π-π6<2x <k π+5π6,k ∈Z ,即k π2-π12<x <k π2+5π12,k ∈Z .故函数y =tan ⎝⎛⎭⎫π3-2x 的单调减区间为⎝⎛⎭⎫k π2-π12,k π2+5π12(k ∈Z ).考点三 三角函数的奇偶性、周期性及对称性|正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有: 1.三角函数的周期性. 2.三角函数的奇偶性.3.三角函数的对称轴或对称中心. 4.三角函数性质的综合应用. 探究一 三角函数的周期性1.函数y =⎪⎪⎪⎪sin ⎝⎛⎭⎫2x -π3的最小正周期为________. 解析:∵y ′=sin ⎝⎛⎭⎫2x -π3的最小正周期T ′=π, ∴T =T ′2=π2.答案:π22.(2015·高考湖南卷)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________.解析:由题意,两函数图象交点间的最短距离即相邻的两交点间的距离,设相邻的两交点坐标分别为P (x 1,y 1),Q (x 2,y 2),易知|PQ |2=(x 2-x 1)2+(y 2-y 1)2,其中|y 2-y 1|=2-(-2)=22,|x 2-x 1|为函数y =2sin ωx -2cos ωx =22sin ⎝⎛⎭⎫ωx -π4的两个相邻零点之间的距离,恰好为函数最小正周期的一半,所以(23)2=⎝⎛⎭⎫2π2ω2+(22)2,ω=π2. 答案:π2探究二 三角函数的奇偶性3.若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( )A.π2 B.2π3 C.3π2D.5π3解析:由y =sin x +φ3是偶函数知φ3=π2+k π,k ∈Z ,即φ=3π2+3k π,k ∈Z ,又∵φ∈[0,2π],∴φ=3π2.答案:C探究三 三角函数的对称轴或对称中心4.若函数y =cos ⎝⎛⎭⎫ωx +π6(ω∈N *)图象的一个对称中心是⎝⎛⎭⎫π6,0,则ω的最小值为( ) A .1 B .2 C .4D .8解析:由题知πω6+π6=k π+π2(k ∈Z )⇒ω=6k +2(k ∈Z )⇒ωmin =2,故选B.答案:B5.函数f (x )=sin ⎝⎛⎭⎫x -π4的图象的一条对称轴是( ) A .x =π4B .x =π2C .x =-π4D .x =-π2解析:∵正弦函数图象的对称轴过图象的最高(低)点, 故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z .即k =-1,则x =-π4.答案:C探究四 三角函数性质的综合应用6.(2015·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝⎛⎭⎫3π4-x ( ) A .是奇函数且图象关于点⎝⎛⎭⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称D .是偶函数且图象关于直线x =π对称 解析:∵当x =π4时,函数f (x )取得最小值,∴sin ⎝⎛⎭⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ). ∴f (x )=sin ⎝⎛⎭⎫x +2k π-3π4=sin ⎝⎛⎭⎫x -3π4. ∴y =f ⎝⎛⎭⎫3π4-x =sin(-x )=-sin x .∴y =f ⎝⎛⎭⎫3π4-x 是奇函数,且图象关于直线x =π2对称. 答案:C7.(2015·高考天津卷)已知函数f (x )=sin ωx +cos ωx (ω>0),x ∈R .若函数f (x )在区间(-ω,ω)内单调递增,且函数y =f (x )的图象关于直线x =ω对称,则ω的值为________.解析:f (x )=sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π4,因为函数f (x )的图象关于直线x =ω对称,所以f (ω)=2sin ⎝⎛⎭⎫ω2+π4=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f (x )在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.答案:π2函数f (x )=A sin(ωx +φ)的奇偶性、周期性和对称性(1)若f (x )=A sin(ωx +φ)为偶函数,则当x =0时,f (x )取得最大或最小值;若f (x )=A sin(ωx +φ)为奇函数,则当x =0时,f (x )=0.(2)对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.11.换元法求三角函数的最值问题【典例】 (1)求函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值与最小值. (2)求函数y =sin x +cos x +3cos x sin x 的最值.[思路点拨] 利用换元法求解,令t =sin x 或令t =sin x +cos x .转化为二次函数最值问题.[解] (1)令t =sin x ,∵|x |≤π4,∴t ∈⎣⎡⎦⎤-22,22. ∴y =-t 2+t +1=-⎝⎛⎭⎫t -122+54, ∴当t =12时,y max =54,t =-22时,y min =1-22.∴函数y =cos 2x +sin x ⎝⎛⎭⎫|x |≤π4的最大值为54,最小值为1-22. (2)令t =sin x +cos x ,∴t ∈[-2, 2 ]. 又(sin x +cos x )2-2sin x cos x =1, ∴sin x cos x =t 2-12,∴y =32t 2+t -32,t ∈[-2,2],∵t 对=-13∈[-2,2],∴y 小=f ⎝⎛⎭⎫-13=32×19-13-32=-53, y 大=f (2)=32+ 2.[方法点评] (1)形如y =a sin 2x +b sin x +c 的三角函数,可设sin x =t ,再化为关于t 的二次函数求值域(最值).(2)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可设t =sin x ±cos x ,再化为关于t 的二次函数求值域(最值).[跟踪练习] 当x ∈⎣⎡⎦⎤π6,7π6时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.解析:由π6≤x ≤7π6,知-12≤sin x ≤1.又y =3-sin x -2cos 2x =2sin 2x -sin x +1 =2⎝⎛⎭⎫sin x -142+78,∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2.答案:782A 组 考点能力演练1.(2015·唐山期末)函数f (x )=1-2sin 2x2的最小正周期为( )A .2πB .π C.π2D .4π解析:∵f (x )=1-2sin 2x 2=cos x ,∴f (x )的最小正周期T =2π1=2π,故选A.答案:A2.函数f (x )=cos 2x +2sin x 的最大值与最小值的和是( ) A .-2 B .0 C .-32D .-12解析:f (x )=1-2sin 2x +2sin x =-2⎝⎛⎭⎫sin x -122+32,所以函数f (x )的最大值是32,最小值是-3,所以最大值与最小值的和是-32,故选C.答案:C3.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎡⎦⎤-1,12,则b -a 的值不可能是( ) A.π3 B.2π3 C .πD.4π3解析:画出函数y =sin x 的草图分析知b -a 的取值范围为⎣⎡⎦⎤2π3,4π3.答案:A4.已知函数f (x )=sin ωx +3cos ωx (ω>0),f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,且f (x )在区间⎝⎛⎭⎫π6,π2上递减,则ω=( )A .3B .2C .6D .5解析:∵f (x )在⎝⎛⎭⎫π6,π2上单调递减,且f ⎝⎛⎭⎫π6+f ⎝⎛⎭⎫π2=0,∴f ⎝ ⎛⎭⎪⎫π6+π22=0, ∵f (x )=sin ωx +3cos ωx =2sin ⎝⎛⎭⎫ωx +π3, ∴f ⎝ ⎛⎭⎪⎫π6+π22=f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫π3ω+π3=0, ∴π3ω+π3=k π(k ∈Z ),又12·2πω≥π2-π6,ω>0,∴ω=2. 答案:B5.若函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,且-π2<φ<π2,则函数y =f ⎝⎛⎭⎫x +π3为( ) A .奇函数且在⎝⎛⎭⎫0,π4上单调递增 B .偶函数且在⎝⎛⎭⎫0,π2上单调递增 C .偶函数且在⎝⎛⎭⎫0,π2上单调递减 D .奇函数且在⎝⎛⎭⎫0,π4上单调递减 解析:因为函数f (x )=cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0成中心对称,则8π3+φ=k π+π2,k ∈Z .即φ=k π-13π6,k ∈Z ,又-π2<φ<π2,则φ=-π6, 则y =f ⎝⎛⎭⎫x +π3=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3-π6=cos ⎝⎛⎭⎫2x +π2=-sin 2x ,所以该函数为奇函数且在⎝⎛⎭⎫0,π4上单调递减,故选D. 答案:D6.(2015·长沙一模)若函数f (x )=2tan ⎝⎛⎭⎫kx +π3的最小正周期T 满足1<T <2,则自然数k 的值为________.解析:由题意知,1<πk<2,即k <π<2k .又k ∈N ,所以k =2或k =3. 答案:2或37.已知函数f (x )=2sin ⎝⎛⎭⎫2ωx -π4(ω>0)的最大值与最小正周期相同,则函数f (x )在[-1,1]上的单调增区间为________.解析:由题知2π2ω=2,得ω=12π, ∴f (x )=2sin ⎝⎛⎭⎫πx -π4,令-π2+2k π≤πx -π4≤π2+2k π,k ∈Z ,解得-14+2k ≤x ≤34+2k ,k ∈Z ,又x ∈[-1,1],所以-14≤x ≤34,所以函数f (x )在[-1,1]上的单调递增区间为⎣⎡⎦⎤-14,34. 答案:⎣⎡⎦⎤-14,34 8.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题:①若f (x 1)=-f (x 2),则x 1=-x 2;②f (x )的最小正周期是2π;③f (x )在区间⎣⎡⎦⎤-π4,π4上是增函数; ④f (x )的图象关于直线x =3π4对称. 其中真命题的是________.解析:f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈⎣⎡⎦⎤-π4,π4时,2x ∈⎣⎡⎦⎤-π2,π2,故③是真命题;因为f ⎝⎛⎭⎫3π4=12sin 3π2=-12,故f (x )的图象关于直线x =3π4对称,故④是真命题. 答案:③④9.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值;(2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间. 解:∵由f (x )的最小正周期为π,则T =2πω=π, ∴ω=2.∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0,由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2.(2)f (x )的图象过点⎝⎛⎭⎫π6,32时, sin ⎝⎛⎭⎫2×π6+φ=32, 即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的单调递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z . 10.(2016·长沙模拟)设函数f (x )=sin ⎝⎛⎭⎫πx 3-π6-2cos 2πx 6. (1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.解:(1)由题意知f (x )=32sin πx 3-32cos πx 3-1=3·sin ⎝⎛⎭⎫πx 3-π3-1, 所以y =f (x )的最小正周期T =2ππ3=6. 由2k π-π2≤πx 3-π3≤2k π+π2,k ∈Z , 得6k -12≤x ≤6k +52,k ∈Z , 所以y =f (x )的单调递增区间为⎣⎡⎦⎤6k -12,6k +52,k ∈Z . (2)因为函数y =g (x )与y =f (x )的图象关于直线x =2对称,所以当x ∈[0,1]时,y =g (x )的最大值即为x ∈[3,4]时,y =f (x )的最大值,当x ∈[3,4]时,π3x -π3∈⎣⎡⎦⎤2π3,π,sin ⎝⎛⎭⎫π3x -π3∈ ⎣⎡⎦⎤0,32,f (x )∈⎣⎡⎦⎤-1,12,即当x ∈[0,1]时,函数y =g (x )的最大值为12. B 组 高考题型专练1.(2014·高考陕西卷)函数f (x )=cos ⎝⎛⎭⎫2x +π4的最小正周期是( ) A.π2B .πC .2πD .4π解析:由周期公式T =2π2=π. 答案:B2.(2015·高考四川卷)下列函数中,最小正周期为π且图象关于原点对称的函数是( )A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2x D .y =sin x +cos x 解析:采用验证法.由y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,可知该函数的最小正周期为π且为奇函数,故选A.答案:A3.(2015·高考浙江卷)函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.解析:由题意知,f (x )=22sin ⎝⎛⎭⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ). 答案:π ⎣⎡⎦⎤3π8+k π,7π8+k π(k ∈Z ) 4.(2014·高考北京卷)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎡⎦⎤π6,π2上具有单调性,且f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,则f (x )的最小正周期为________. 解析:记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3, 又f ⎝⎛⎭⎫π2=f ⎝⎛⎭⎫2π3=-f ⎝⎛⎭⎫π6,且2π3-π2=π6, 可作出示意图如图所示(一种情况):∴x 1=⎝⎛⎭⎫π2+π6×12=π3,x 2=⎝⎛⎭⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π. 答案:π5.(2015·高考北京卷)已知函数f (x )=sin x -23sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤0,2π3上的最小值. 解:(1)因为f (x )=sin x +3cos x - 3=2sin ⎝⎛⎭⎫x +π3-3, 所以f (x )的最小正周期为2π.(2)因为0≤x ≤2π3, 所以π3≤x +π3≤π. 当x +π3=π,即x =2π3时,f (x )取得最小值. 所以f (x )在区间⎣⎡⎦⎤0,2π3上的最小值为f ⎝⎛⎭⎫2π3=- 3.。
高考数学一轮复习 第4章第3节 三角函数的图象与性质课件 文 新课标版
=sin 2x+ 3cos 2x=2sin2x+3π,所以 T=π.
•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 •3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 •4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5
解:(1)因为 y=2sin23x+1, 所以周期 T=22π=3π,
3 即 y=2sin23x+1的周期为 3π. (2)因为 y=|cos x|
=c-oscoxs,x,x∈x∈2kπ2-kππ+2,π22,kπ2+kπ2+π3k2π∈Zk∈;Z,
• 所以作出y=|cos x|的图象如图,
• 从图中可以看出y=|cos x|的周期为π.
k∈Z.
所以 2kπ≤x<2kπ+2π(k∈Z). 所以函数 y= cos x+ tan x的定义域是
x2kπ≤x<2kπ+π2,
k∈Z.
2sin x-1>0, (2)由函数式有意义得-tan x-1≥0,
cos2x+π8≠0,
sin
x>12,
所以tan x≤-1,
2x+π8≠kπ+2π,k∈Z,
解得ab==1122-36-32,3.
②当 a<0 时,fxmax=2a×- 23+b=1, fxmin=2a×1+b=-5,
2014高考数学一轮复习课件3.1角的概念与任意角的三角函数
2 5 y 2 5 又sin θ=- <0,∴y<0且 2=- 5 , 5 16+y 解之得y=-8.
【答案】
-8
(1)写出终边在直线y= 3x上的角的集合;
【思路点拨】 解.
(1)角的终边是射线,应分两种情况求
【尝试解答】 当角的终边在第一象限时,角的集合 π 为{α|α=2kπ+ ,k∈Z},当角的终边在第三象限时,角 3 4 的集合为{α|α=2kπ+ π,k∈Z}, 3 π 故所求角的集合为{α|α=2kπ+ ,k∈Z}∪{α|α=2k 3 π 4 π+ π,k∈Z}={α|α=kπ+ ,k∈Z}. 3 3
(1)已知角α的终边经过点P(m,-3),且cos 4 ,则m等于( ) 5 11 11 A.- B. C.-4 4 4 (2)已知角α的终边在直线3x+4y=0上,求sin α ,tan α 的值.
α =-
D.4 α ,cos
【思路点拨】
(1)求出点P到原点O的距离,根据三角
函数的定义求解.
(2)在直线上设一点P(4t,-3t),求出点P到原点O的距
(2)几何表示:三角函数线可以看作是三角函数的几何 x轴 表示,正弦线的起点都在__________上,余弦线的起点都是 原点 _______,正切线的起点都是(1,0).,
1.“角α为锐角”是“角α为第一象限角”的什么条 件? 【提示】 充分不必要条件.
2.终边在直线y=x上的角的正弦值相等吗?
【思路点拨】
度制;
(1)可直接用弧长公式,但要注意用弧
(2)可用弧长或半径表示出扇形面积,然后确定其最大 值时的半径和弧长,进而求出圆心角α; (3)利用S弓=S扇-S△,这样就需要求扇形的面积和三角 形的面积.
2014届高考数学一轮复习教学案(基础知识+高频考点+解题训练)三角函数图象与性质(含解析)
第三节三角函数图象与性质[知识能否忆起]1.周期函数(1)周期函数的定义:对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有f(x +T)=f(x),那么函数f(x)就叫做周期函数.T叫做这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.2.正弦函数、余弦函数、正切函数的图象和性质[小题能否全取]1.函数y =tan ⎝⎛⎭⎫π4-x 的定义域是( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π4,x ∈R B.⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠-π4,x ∈R C.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π-3π4,k ∈Z ,x ∈R D.⎩⎨⎧⎭⎬⎫x ⎪⎪ x ≠k π+3π4,k ∈Z ,x ∈R 解析:选D ∵x -π4≠k π+π2,∴x ≠k π+3π4,k ∈Z .2.(教材习题改编)下列函数中,最小正周期为π的奇函数是( ) A .y =cos 2x B .y =sin 2x C .y =tan 2xD .y =sin ⎝⎛⎭⎫2x -π2 解析:选B 选项A 、D 中的函数均为偶函数,C 中函数的最小正周期为π2,故选B.3.函数y =|sin x |的一个单调增区间是( ) A.⎝⎛⎭⎫-π4,π4 B.⎝⎛⎭⎫π4,3π4 C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π解析:选C 作出函数y =|sin x |的图象观察可知,函数y =|sin x |在⎝⎛⎭⎫π,3π2上递增. 4.比较大小,sin ⎝⎛⎭⎫-π18________sin ⎝⎛⎭⎫-π10. 解析:因为y =sin x 在⎣⎡⎦⎤-π2,0上为增函数且-π18>-π10,故sin ⎝⎛⎭⎫-π18>sin ⎝⎛⎭⎫-π10. 答案:>5.(教材习题改编)y =2-3cos ⎝⎛⎭⎫x +π4的最大值为________.此时x =________. 解析:当cos ⎝⎛⎭⎫x +π4=-1时,函数y =2-3cos ⎝⎛⎭⎫x +π4取得最大值5,此时x +π4=π+2k π,从而x =34π+2k π,k ∈Z .答案:5 34π+2k π,k ∈Z1.求三角函数的单调区间时,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式,再根据三角函数的单调区间,求出x 所在的区间.应特别注意,考虑问题应在函数的定义域内. 注意区分下列两种形式的函数单调性的不同:(1)y =sin ⎝⎛⎭⎫ωx -π4;(2)y =sin ⎝⎛⎭⎫π4-ωx . 2.周期性是函数的整体性质,要求对于函数整个定义域内的每一个x 值都满足f (x+T )=f (x ),其中T 是不为零的常数.如果只有个别的x 值满足f (x +T )=f (x ),或找到哪怕只有一个x 值不满足f (x +T )=f (x ),都不能说T 是函数f (x )的周期.典题导入[例1] (1)(2013·湛江调研)函数y =lg(sin x )+cos x -12的定义域为________.(2)函数y =sin 2x +sin x -1的值域为( ) A .[-1,1] B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎤-1,54 [自主解答] (1)要使函数有意义必须有⎩⎪⎨⎪⎧sin x >0,cos x -12≥0, 即⎩⎪⎨⎪⎧sin x >0,cos x ≥12,解得⎩⎪⎨⎪⎧2k π<x <π+2k π,-π3+2k π≤x ≤π3+2k π(k ∈Z ), ∴2k π<x ≤π3+2k π,k ∈Z ,∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z .(2)y =sin 2x +sin x -1,令sin x =t ,则有y =t 2+t -1,t ∈[-1,1],画出函数图象如图所示,从图象可以看出,当t =-12及t =1时,函数取最值,代入y =t 2+t -1可得y ∈⎣⎡⎦⎤-54,1. [答案] (1)⎩⎨⎧⎭⎬⎫x ⎪⎪2k π<x ≤π3+2k π,k ∈Z (2)C若本例(2)中x ∈⎣⎡⎦⎤0,π2,试求其值域. 解:令t =sin x ,则t ∈[0,1]. ∴y =t 2+t -1=⎝⎛⎭⎫t +122-54. ∴y ∈[-1,1].∴函数的值域为[-1,1].由题悟法1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x 、cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域(如本例以题试法(2));(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)).以题试法1.(1)函数y =2+log 12x +tan x 的定义域为________.(2)(2012·山西考前适应性训练)函数f (x )=3sin ⎝⎛⎭⎫2x -π6在区间⎣⎡⎦⎤0,π2上的值域为( )A.⎣⎡⎦⎤-32,32B.⎣⎡⎦⎤-32,3 C.⎣⎡⎦⎤-332,332 D.⎣⎡⎦⎤-332,3 解析:(1)要使函数有意义则⎩⎪⎨⎪⎧2+log 12x ≥0,x >0,tan x ≥0,x ≠k π+π2,k ∈Z⇒⎩⎪⎨⎪⎧0<x ≤4,k π≤x <k π+π2(k ∈Z ). 利用数轴可得 函数的定义域是⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4.(2)当x ∈⎣⎡⎦⎤0,π2时,2x -π6∈⎣⎡⎦⎤-π6,5π6,sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-12,1, 故3sin ⎝⎛⎭⎫2x -π6∈⎣⎡⎦⎤-32,3即此时函数f (x )的值域是⎣⎡⎦⎤-32,3. 答案:(1)⎩⎨⎧⎭⎬⎫x ⎪⎪0<x <π2,或π≤x ≤4 (2)B典题导入[例2] (2012·华南师大附中模拟)已知函数y =sin ⎝⎛⎭⎫π3-2x ,求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.[自主解答] 由y =sin ⎝⎛⎭⎫π3-2x 可化为y =-sin ⎝⎛⎭⎫2x -π3. (1)周期T =2πω=2π2=π.(2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z ,得k π-π12≤x ≤k π+5π12,k ∈Z .所以x ∈R 时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为⎣⎡⎦⎤k π-π12,k π+5π12,k ∈Z .从而x ∈[-π,0]时,y =sin ⎝⎛⎭⎫π3-2x 的减区间为 ⎣⎡⎦⎤-π,-7π12,⎣⎡⎦⎤-π12,0.由题悟法求三角函数的单调区间时应注意以下几点:(1)形如y =A sin(ωx +φ)(A >0,ω>0)的函数的单调区间,基本思路是把ωx +φ看作是一个整体,由-π2+2k π≤ωx +φ≤π2+2k π(k ∈Z )求得函数的增区间,由π2+2k π≤ωx +φ≤3π2+2k π(k ∈Z )求得函数的减区间.(2)形如y =A sin(-ωx +φ)(A >0,ω>0)的函数,可先利用诱导公式把x 的系数变为正数,得到y =-A sin(ωx -φ),由-π2+2k π≤ωx -φ≤π2+2k π(k ∈Z )得到函数的减区间,由π2+2k π≤ωx -φ≤3π2+2k π(k ∈Z )得到函数的增区间.(3)对于y =A cos(ωx +φ),y =A tan(ωx +φ)等,函数的单调区间求法与y =A sin(ωx +φ)类似.以题试法2.(1)函数y =|tan x |的增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f ⎝⎛⎫π7,b =f ⎝⎛⎫π6,c =f ⎝⎛⎫π3,则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a解析:(1)作出y =|tan x |的图象,观察图象可知,y =|tan x |的增区间是⎣⎡⎭⎫k π,k π+π2,k ∈Z .(2)f (x )=sin x +3cos x =2sin ⎝⎛⎭⎫x +π3,因为函数f (x )在⎣⎡⎦⎤0,π6上单调递增,所以f ⎝⎛⎭⎫π7<f ⎝⎛⎭⎫π6,而c =f ⎝⎛⎭⎫π3=2sin 2π3=2sin π3=f (0)<f ⎝⎛⎭⎫π7, 所以c <a <b .答案:(1)⎣⎡⎭⎫k π,k π+π2,k ∈Z (2)B典题导入[例3] (2012·广州调研)已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),给出下面四个命题: ①函数f (x )的最小正周期为π;②函数f (x )是偶函数;③函数f (x )的图象关于直线x =π4对称;④函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数.其中正确命题的个数是( )A .1B .2C .3D .4[自主解答] 函数f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,则其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由f (x )的图象易知函数f (x )在⎣⎡⎦⎤0,π2上是增函数,故④正确.综上可知,选C.[答案] C由题悟法1.三角函数的奇偶性的判断技巧首先要对函数的解析式进行恒等变换,再根据定义、诱导公式去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法 (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;(3)利用图象. 3.三角函数的对称性正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.以题试法3.(1)(2013·青岛模拟)下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( ) A .y =sin ⎝⎛⎭⎫2x +π2B .y =cos ⎝⎛⎭⎫2x +π2C .y =sin ⎝⎛⎭⎫x +π2D .y =cos ⎝⎛⎭⎫x +π2 (2)(2012·遵义模拟)若函数f (x )=sin ax +cos ax (a >0)的最小正周期为1,则它的图象的一个对称中心为( )A.⎝⎛⎭⎫-π8,0 B .(0,0) C.⎝⎛⎭⎫-18,0D.⎝⎛⎭⎫18,0解析:(1)选A 对于选项A ,注意到y =sin ⎝⎛⎭⎫2x +π2=cos 2x 的周期为π,且在⎣⎡⎦⎤π4,π2上是减函数.(2)选C 由条件得f (x )=2sin ⎝⎛⎭⎫ax +π4,又函数的最小正周期为1,故2πa=1,∴a =2π,故f (x )=2sin ⎝⎛⎭⎫2πx +π4.将x =-18代入得函数值为0.1.函数y = cos x -12的定义域为( )A.⎣⎡⎦⎤-π3,π3 B.⎣⎡⎦⎤k π-π3,k π+π3,k ∈Z C.⎣⎡⎦⎤2k π-π3,2k π+π3,k ∈Z D .R解析:选C ∵cos x -12≥0,得cos x ≥12,∴2k π-π3≤x ≤2k π+π3,k ∈Z .2.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下面结论错误的是( ) A .函数f (x )的最小正周期为2π B .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数解析:选D ∵y =sin ⎝⎛⎭⎫x -π2=-cos x ,∴T =2π,在⎣⎡⎦⎤0,π2上是增函数,图象关于y 轴对称,为偶函数.3.已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π3(ω>0)的最小正周期为π,则函数f (x )的图象的一条对称轴方程是( )A .x =π12B .x =π6C .x =5π12D .x =π3解析:选C 由T =π=2π2ω得ω=1,所以f (x )=sin ⎝⎛⎭⎫2x -π3,则f (x )的对称轴为2x -π3=π2+k π(k ∈Z ),解得x =5π12+k π2(k ∈Z ),所以x =5π12为f (x )的一条对称轴.4.(2012·山东高考)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0 C .-1D .-1- 3解析:选A 当0≤x ≤9时,-π3≤πx 6-π3≤7π6,-32≤sin ⎝⎛⎭⎫πx 6-π3≤1,所以函数的最大值为2,最小值为-3,其和为2- 3.5.已知函数f (x )=-2sin(2x +φ)(|φ|<π),若f ⎝⎛⎭⎫π8=-2,则f (x )的一个单调递减区间是( ) A.⎣⎡⎦⎤-π8,3π8 B.⎣⎡⎦⎤π8,9π8 C.⎣⎡⎦⎤-3π8,π8D.⎣⎡⎦⎤π8,5π8解析:选C 由f ⎝⎛⎭⎫π8=-2,得f ⎝⎛⎭⎫π8=-2sin ⎝⎛⎭⎫2×π8+φ=-2sin ⎝⎛⎭⎫π4+φ=-2,所以sin ⎝⎛⎭⎫π4+φ=1.因为|φ|<π,所以φ=π4.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z . 6.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( )A.23B.32 C .2D .3解析:选B ∵x ∈⎣⎡⎦⎤-π3,π4,则ωx ∈⎣⎡⎦⎤-π3ω,π4ω,要使函数f (x )在⎣⎡⎦⎤-π3,π4上取得最小值-2,则-π3ω≤-π2或π4ω≥3π2,得ω≥32,故ω的最小值为32.7.函数y =cos ⎝⎛⎭⎫π4-2x 的单调减区间为________.解析:由y =cos ⎝⎛⎭⎫π4-2x =cos ⎝⎛⎭⎫2x -π4得 2k π≤2x -π4≤2k π+π(k ∈Z ),故k π+π8≤x ≤k π+5π8(k ∈Z ).所以函数的单调减区间为⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 答案:⎣⎡⎦⎤k π+π8,k π+5π8(k ∈Z ) 8.已知函数f (x )=5sin (ωx +2)满足条件f (x +3)+f (x )=0,则正数ω=________. 解析:f (x +3)+f (x )=0⇒f (x +6)=f (x ),故f (x )以6为最小正周期,故2π|ω|=6.又ω>0,∴ω=π3.答案:π39.如果函数y =3cos(2x +φ)的图象关于点⎝⎛⎭⎫4π3,0中心对称,那么|φ|的最小值为________.解析:∵y =cos x 的对称中心为⎝⎛⎭⎫k π+π2,0(k ∈Z ), ∴由2×4π3+φ=k π+π2(k ∈Z ),得φ=k π-13π6(k ∈Z ).∴当k =2时,|φ|min =π6.答案:π610.设f (x )=1-2sin x . (1)求f (x )的定义域;(2)求f (x )的值域及取最大值时x 的值.解:(1)由1-2sin x ≥0,根据正弦函数图象知:定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪2k π+56π≤x ≤2k π+13π6,k ∈Z . (2)∵-1≤sin x ≤1,∴-1≤1-2sin x ≤3, ∵1-2sin x ≥0,∴0≤1-2sin x ≤3,∴f (x )的值域为[0,3],当x =2k π+3π2,k ∈Z 时,f (x )取得最大值.11.已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值和最小值. 解:(1)∵f (x )=2sin(π-x )cos x =2sin x cos x =sin 2x ,∴函数f (x )的最小正周期为π.(2)∵-π6≤x ≤π2, ∴-π3≤2x ≤π,则-32≤sin 2x ≤1. 所以f (x )在区间⎣⎡⎦⎤-π6,π2上的最大值为1,最小值为-32. 12.(2012·北京高考)已知函数f (x )=(sin x -cos x )sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递增区间.解:(1)由sin x ≠0得x ≠k π(k ∈Z ),故f (x )的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f (x )=(sin x -cos x )sin 2x sin x=2cos x (sin x -cos x )=sin 2x -cos 2x -1=2sin ⎝⎛⎭⎫2x -π4-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递增区间为⎣⎡⎦⎤2k π-π2,2k π+π2(k ∈Z ). 由2k π-π2≤2x -π4≤2k π+π2,x ≠k π(k ∈Z ), 得k π-π8≤x ≤k π+3π8,x ≠k π(k ∈Z ). 所以f (x )的单调递增区间为⎣⎡⎭⎫k π-π8,k π和⎝⎛⎦⎤k π,k π+3π8(k ∈Z ).1. (2012·新课标全国卷)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则 φ=( ) A.π4B.π3C.π2D.3π4解析:选A 由于直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,所以函数f (x )的最小正周期T =2π,所以ω=1,所以π4+φ=k π+π2(k ∈Z ), 又0<φ<π,所以φ=π4. 2.函数y =f (cos x )的定义域为⎣⎡⎦⎤2k π-π6,2k π+2π3(k ∈Z ),则函数y =f (x )的定义域为________.解析:由2k π-π6≤x ≤2k π+2π3(k ∈Z ), 得-12≤cos x ≤1. 故所求函数的定义域为⎣⎡⎦⎤-12,1. 答案:⎣⎡⎦⎤-12,1 3. (2012·汕头模拟)已知a >0,函数f (x )=-2a sin ⎝⎛⎭⎫2x +π6+2a +b ,当x ∈⎣⎡⎦⎤0,π2时,-5≤f (x )≤1.(1)求常数a ,b 的值;(2)求f (x )的单调区间.解:(1)∵x ∈⎣⎡⎦⎤0,π2,∴π6≤2x +π6≤76π, ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1, 又∵a >0,-5≤f (x )≤1,∴⎩⎪⎨⎪⎧ -2a +2a +b =-5,a +2a +b =1,即⎩⎪⎨⎪⎧a =2,b =-5. (2)f (x )=-4sin ⎝⎛⎭⎫2x +π6-1, 由-π2+2k π≤2x +π6≤π2+2k π得 -π3+k π≤x ≤π6+k π,k ∈Z , 由π2+2k π≤2x +π6≤3π2+2k π得 π6+k π≤x ≤23π+k π,k ∈Z , ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ),单调递减区间为⎣⎡⎦⎤-π3+k π,π6+k π(k ∈Z ).1.(2012·湖南高考)函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ) A .[-2,2]B .[-3, 3 ]C .[-1,1] D.⎣⎡⎦⎤-32,32 解析:选B 因为f (x )=sin x -32cos x +12sin x =3⎝⎛⎭⎫ 32sin x -12cos x =3sin ⎝⎛⎭⎫x -π6,所以函数f (x )的值域为[-3, 3 ].2.(2012·温州模拟)已知函数y =2sin(ωx +φ)(ω>0)为偶函数(0<φ<π),其图象与直线y =2某两个交点的横坐标分别为x 1,x 2,若|x 2-x 1|的最小值为π,则该函数的一个递增区间可以是( )A.⎝⎛⎭⎫-π2,-π4 B.⎝⎛⎭⎫-π4,π4 C.⎝⎛⎭⎫0,π2 D.⎝⎛⎭⎫π4,3π4解析:选A 由函数为偶函数知φ=π2+k π(k ∈Z ),又因为0<φ<π所以φ=π2,从而y =2cos ωx .又由条件知函数的最小正周期为π,故ω=2,因此y =2cos 2x .经验证知A 满足条件.3.设函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形; ③它的图象关于点⎝⎛⎭⎫π3,0成中心对称图形;④在区间⎣⎡⎭⎫-π6,0上是增函数. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).答案:①②⇒③④(或①③⇒②④)4.已知函数f (x )=sin(ωx +φ)⎝⎛⎭⎫0<φ<2π3的最小正周期为π. (1)求当f (x )为偶函数时φ的值; (2)若f (x )的图象过点⎝⎛⎭⎫π6,32,求f (x )的单调递增区间.解:∵由f (x )的最小正周期为π,则T =2πω=π,∴ω=2. ∴f (x )=sin(2x +φ).(1)当f (x )为偶函数时,f (-x )=f (x ).∴sin(2x +φ)=sin(-2x +φ),展开整理得sin 2x cos φ=0, 由已知上式对∀x ∈R 都成立,∴cos φ=0,∵0<φ<2π3,∴φ=π2. (2)f (x )的图象过点⎝⎛⎭⎫π6,32时,sin ⎝⎛⎭⎫2×π6+φ=32,即sin ⎝⎛⎭⎫π3+φ=32. 又∵0<φ<2π3,∴π3<π3+φ<π. ∴π3+φ=2π3,φ=π3. ∴f (x )=sin ⎝⎛⎭⎫2x +π3. 令2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 得k π-5π12≤x ≤k π+π12,k ∈Z . ∴f (x )的递增区间为⎣⎡⎦⎤k π-5π12,k π+π12,k ∈Z .。
高考数学一轮总复习 第3章 第4节 三角函数的图像与性
ω
ω
拓展延伸
1. 三角函数的周期 (1)若T是函数y=f(x)的周期,则必须是对于定义域内的每一个x值
都具有f(x+T)=f(x)(T≠0). (2)周期和最小正周期的区别:周期函数不一定有最小正周期(如y=
c(c为常数),任何非零实数都是它的周期,显然无最小正周期), 而三角函数的周期一般指最小正周期.
选 B.
3. 已知函数 f(x)=sinx-π2(x∈R),下面结论错误的是(
)
A. 函数 f(x)的最小正周期为 2π
B. 函数 f(x)在区间0,π2上是增函数
C. 函数 f(x)的图像关于直线 x=0 对称 D. 函数 f(x)是奇函数
解析: ∵y=sinx-π2=-cos x,∴T=2π,在0,π2上是增函数,图 像关于 y 轴对称,为偶函数.选 D
解析: (1)错误.正弦函数y=sin x在 2kπ-π2,2kπ+π2(k∈Z)内单调 递增,并不是在第一、四象限内递增.
(2)错误.如常数函数是周期函数但无最小正周期.
(3)正确.由cos(-x)=cos x可知余弦函数在定义域内是偶函数. π
(4)错误.由y=sin x的图像可知,当x=2kπ+ 2 ,k∈Z时 y=sin x取 得最大值.
最新考纲
基础梳理
第
自主测评
Байду номын сангаас
四
节
典例研析
特色栏目
备课优选
基础梳理
1. “五点法”作图原理
在确定正弦函数y=sinx在[0,2π]上的图像的形状时,起关键作用的五个 点是(0,0)、 π2,1 、(π, 0 )、32π,-1 、(2π,0). 在确定
余弦函数 y=cosx在[0,2π]上的图像的形状时,起关键作用的五个点是
2014届高考数学一轮复习4.3三角函数的图象与性质教学案
4.3 三角函数的图象与性质考纲要求1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间⎝ ⎛⎭⎪⎫-π2,π2内的单调性.1.周期函数及最小正周期对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有__________,则称f (x )为周期函数,T 为它的一个周期.若在所有周期中,有一个最小的正数,则这个最小的正数叫做f (x )的最小正周期.函数 y =sin x y =cos x y =tan x 图象定义域 x ∈R x ∈Rx ∈R 且x ≠π2+k π,k ∈Z值域 ______ ______ ______单调性 在______上递增,k ∈Z ;在______上递减,k ∈Z在______上递增,k ∈Z ;在______上递减,k ∈Z在______上递增,k ∈Z最值 x =________(k ∈Z )时,y max =1; x =________(k ∈Z )时,y min =-1 x =________(k ∈Z )时,y max =1;x =__________(k ∈Z )时,y min =-1无最值奇偶性 ________ ________ ________对称性 对称中心 ______ _____ ______ 对称轴 ______ ____ 无对称轴最小正周期 ______ ______ ______1.函数y =cos ⎝⎛⎭⎪⎫x +π3,x ∈R ( ).A .是奇函数B .是偶函数C .既不是奇函数也不是偶函数_D .既是奇函数又是偶函数2.下列函数中,在⎣⎢⎡⎦⎥⎤π2,π上是增函数的是( ). A .y =sin x B .y =cos x C .y =sin 2x D .y =cos 2x3.函数y =cos ⎝⎛⎭⎪⎫2x +π2的图象的一条对称轴方程是( ). A .x =-π2B .x =-π4C .x =π8D .x =π4.函数f (x )=tan ωx (ω>0)的图象的相邻的两支截直线y =π4所得线段长为π4,则f ⎝ ⎛⎭⎪⎫π4的值是( ).A .0B .1C .-1D .π45.已知函数y =sin x 的定义域为[a ,b ],值域为⎣⎢⎡⎦⎥⎤-1,12,则b -a 的值不可能是( ). A .π3 B .2π3C .π D.4π3一、三角函数的定义域与值域【例1】(1)求函数y =lg sin 2x +9-x 2的定义域.(2)求函数y =cos 2x +sin x ⎝⎛⎭⎪⎫|x |≤π4的最大值与最小值.方法提炼1.求三角函数定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解.2.求解涉及三角函数的值域(最值)的题目一般常用以下方法: (1)利用sin x ,cos x 的值域;(2)形式复杂的函数应化为y =A sin(ωx +φ)+k 的形式逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.请做演练巩固提升2二、三角函数的单调性 【例2-1】已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,且当x =π2时,f (x )取得最大值,则( ).A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数【例2-2】设a ∈R ,f (x )=cos x (a sin x -cos x )+cos 2⎝ ⎛⎭⎪⎫π2-x 满足f ⎝ ⎛⎭⎪⎫-π3=f (0),求函数f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最大值和最小值.方法提炼1.熟记y =sin x ,y =cos x ,y =tan x 的单调区间是求复杂的三角函数单调区间的基础.2.求形如y =A sin(ωx +φ)+k 的单调区间时,只需把ωx +φ看作一个整体代入y =sin x 的相应单调区间即可,注意A 的正负以及要先把ω化为正数.求y =A cos(ωx +φ)+k 和y =A tan(ωx +φ)+k 的单调区间类似.请做演练巩固提升3三、三角函数的周期性和奇偶性及对称性【例3-1】设函数f (x )=sin(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2,给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形;③它的图象关于点⎝ ⎛⎭⎪⎫π3,0成中心对称图形; ④在区间⎣⎢⎡⎭⎪⎫-π6,0上是增函数. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题__________(用序号表示即可).【例3-2】(2012湖北高考)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx+λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝ ⎛⎭⎪⎫12,1. (1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝ ⎛⎭⎪⎫π4,0,求函数f (x )的值域. 方法提炼1.求三角函数周期的方法: (1)利用周期函数的定义;(2)利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|; (3)利用图象.2.三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.请做演练巩固提升1不注意A ,ω的符号,易把单调性弄反或把区间左右的值弄反【典例】设f (x )=a sin 2x +b cos 2x ,其中a ,b ∈R ,ab ≠0,若f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对一切x ∈R 恒成立,则①f ⎝ ⎛⎭⎪⎫11π12=0 ②⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫7π10<⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5 ③f (x )既不是奇函数也不是偶函数④f (x )的单调递增区间是⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z ) ⑤存在经过点(a ,b )的直线与函数f (x )的图象不相交. 以上结论正确的是__________(写出正确结论的编号).解析:由f (x )≤⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6对一切x ∈R 恒成立知,直线x =π6是f (x )的对称轴, 又f (x )=a 2+b 2sin(2x +φ)⎝⎛⎭⎪⎫其中tan φ=b a的周期为π,∴f ⎝ ⎛⎭⎪⎫1112π=f ⎝ ⎛⎭⎪⎫π6+3π4可看作x =π6的值加了34个周期.∴f ⎝ ⎛⎭⎪⎫1112π=0,故①正确. ∵7π10-2π3=π30,π5-π6=π30, ∴7π10和π5与对称轴的距离相等. ∴⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫7π10=⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π5,故②不正确. ∵x =π6是对称轴,∴sin ⎝ ⎛⎭⎪⎫2×π6+φ=±1.∴π3+φ=±π2+2k π,k ∈Z . ∴φ=π6+2k π或φ=-5π6+2k π,k ∈Z .∵tan φ=b a=13,∴a =3b .∴f (x )=2|b |sin ⎝ ⎛⎭⎪⎫2x +π6或f (x )=2|b |sin ⎝⎛⎭⎪⎫2x -5π6. ∴f (x )既不是奇函数也不是偶函数,故③正确.由以上知,f (x )=2|b |sin ⎝ ⎛⎭⎪⎫2x +π6的单调递增区间为⎣⎢⎡⎦⎥⎤-π3+k π,π6+k π,k ∈Z , f (x )=2|b |sin ⎝ ⎛⎭⎪⎫2x -56π的单调递增区间为⎣⎢⎡⎦⎥⎤π6+k π,2π3+k π,k ∈Z , 由于f (x )的解析式不确定,∴单调递增区间也不确定,故④不正确.∵f (x )=a sin 2x +b cos 2x =a 2+b 2sin(2x +φ)⎝⎛⎭⎪⎫其中tan φ=b a ,∴-a 2+b 2≤f (x )≤a 2+b 2. 又∵ab ≠0,∴a ≠0,b ≠0.∴-a 2+b 2<b <a 2+b 2.∴过点(a ,b )的直线必与函数f (x )的图象相交,故⑤不正确. 答案:①③ 答题指导:1.在解答本题时易犯以下两点错误:(1)在求④中f (x )的单调递增区间时,运算化简不准确,而使判断错误;(2)对于⑤的判断不是根据推导,而是凭借印象想当然做出判断,而使解答错误. 2.解决三角函数性质的问题时,还有以下几点在备考时要高度关注: (1)化简时公式应用要准确;(2)有的题目涉及到角的范围时要考虑全面; (3)和其他内容结合时要注意三角函数的值域.1.(2012大纲全国高考)若函数f (x )=sin x +φ3(φ∈[0,2π])是偶函数,则φ=( ).A .π2B .2π3C .3π2D .5π32.函数y =ln(sin x -cos x )的定义域为__________.3.函数y =2sin ⎝ ⎛⎭⎪⎫x -π4的单调递增区间为__________.4.已知函数f (x )=2sin x 4cos x 4+3cos x2. (1)求函数f (x )的最小正周期及最值;(2)令g (x )=f ⎝⎛⎭⎪⎫x +π3,判断函数g (x )的奇偶性,并说明理由.5.已知函数f (x )=sin x (cos x -3sin x ).(1)求函数f (x )的最小正周期;(2)将函数y =sin 2x 的图象向左平移a ⎝⎛⎭⎪⎫0<a <π2个单位,向下平移b 个单位,得到函数y =f (x )的图象,求a ,b 的值;(3)求函数f (x )的单调增区间.参考答案基础梳理自测 知识梳理1.f (x +T )=f (x )2.{y |-1≤y ≤1} {y |-1≤y ≤1} R ⎣⎢⎡⎦⎥⎤-π2+2k π,π2+2k π ⎣⎢⎡⎦⎥⎤π2+2k π,3π2+2k π [(2k -1)π,2k π] [2k π,(2k +1)π] ⎝ ⎛⎭⎪⎫-π2+k π,π2+k π π2+2k π-π2+2k π 2k π π+2k π 奇 偶 奇 (k π,0),k ∈Z ⎝ ⎛⎭⎪⎫k π+π2,0,k ∈Z ⎝ ⎛⎭⎪⎫k π2,0,k ∈Z x =k π+π2,k ∈Z x =k π,k ∈Z 2π 2π π 基础自测1.C 解析:∵f (-x )≠f (x )且f (-x )≠-f (x ),∴f (x )=cos ⎝⎛⎭⎪⎫x +π3,x ∈R 既不是奇函数,也不是偶函数.2.D 解析:y =sin x 和y =cos x 在⎣⎢⎡⎦⎥⎤π2,π上是减函数,y =sin 2x 在⎣⎢⎡⎦⎥⎤π2,π上不单调,y =cos 2x 在⎣⎢⎡⎦⎥⎤π2,π上是增函数. 3.B 解析:令2x +π2=k π(k ∈Z ).即x =k π2-π4(k ∈Z ),检验知,x =-π4,故选B.4.A 解析:由题意,周期T =π4,∴ω=πT =4.则f ⎝ ⎛⎭⎪⎫π4=tan ⎝⎛⎭⎪⎫4×π4=tan π=0.故选A.5.A 解析:画出函数y =sin x 的草图(图略),分析知b -a 的取值范围为⎣⎢⎡⎦⎥⎤2π3,4π3,故选A.考点探究突破【例1】解:(1)依题意有⎩⎪⎨⎪⎧sin 2x >0,9-x 2≥0,解得⎩⎪⎨⎪⎧k π<x <k π+π2,k ∈Z ,-3≤x ≤3,即函数的定义域为 ⎩⎨⎧x ⎪⎪⎪⎭⎬⎫-3≤x <-π2,或0<x <π2.(2)设sin x =t ,则t ∈⎣⎢⎡⎦⎥⎤-22,22. ∴y =1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫t -122+54,t ∈⎣⎢⎡⎦⎥⎤-22,22.故当t =12,即x =π6时,y max =54,当t =-22,即x =-π4时,y min =1-22. 【例2-1】A 解析:∵函数f (x )的最小正周期为6π, ∴2πω=6π,得ω=13,在x =π2时,函数f (x )取得最大值, ∴13×π2+φ=2k π+π2. 又∵-π<φ≤π,∴φ=π3.∴f (x )=2sin ⎝ ⎛⎭⎪⎫13x +π3.由2k π-π2≤13x +π3≤2k π+π2(k ∈Z ),得6k π-52π≤x ≤6k π+12π(k ∈Z ).∴f (x )的增区间是⎣⎢⎡⎦⎥⎤6k π-52π,6k π+π2(k ∈Z ). 取k =0,得⎣⎢⎡⎦⎥⎤-52π,π2是f (x )的一个增区间,∴函数f (x )在区间[-2π,0]上是增函数. 【例2-2】解:f (x )=a sin x cos x -cos 2x +sin 2x =a2sin 2x -cos 2x .由f ⎝ ⎛⎭⎪⎫-π3=f (0)得-32·a 2+12=-1,解得a =2 3. 因此f (x )=3sin 2x -cos 2x =2sin ⎝⎛⎭⎪⎫2x -π6. 当x ∈⎣⎢⎡⎦⎥⎤π4,π3时,2x -π6∈⎣⎢⎡⎦⎥⎤π3,π2,f (x )为增函数, 当x ∈⎣⎢⎡⎦⎥⎤π3,11π24时,2x -π6∈⎣⎢⎡⎦⎥⎤π2,3π4,f (x )为减函数, 所以f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最大值为f ⎝ ⎛⎭⎪⎫π3=2.又因f ⎝ ⎛⎭⎪⎫π4=3,f ⎝ ⎛⎭⎪⎫11π24=2, 故f (x )在⎣⎢⎡⎦⎥⎤π4,11π24上的最小值为f ⎝ ⎛⎭⎪⎫11π24= 2.【例3-1】①②⇒③④(答案不唯一,也可填①③⇒②④) 解析:若把①②作条件可知ω=2ππ=2,ωx +φ=2×π12+φ=k π+π2,取φ=π3.因此f (x )=sin ⎝⎛⎭⎪⎫2x +π3, 可验证③④都是正确的,因此①②⇒③④, 同理可验证①③⇒②④.【例3-2】解:(1)因为f (x )=sin 2ωx -cos 2ωx +23sin ωx ·cos ωx +λ=-cos2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎪⎫2ωx -π6+λ, 由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎪⎫2ωπ-π6=±1.所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝ ⎛⎭⎪⎫12,1,k ∈Z ,所以ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝ ⎛⎭⎪⎫π4,0, 得f ⎝ ⎛⎭⎪⎫π4=0, 即λ=-2sin ⎝ ⎛⎭⎪⎫56×π2-π6 =-2sin π4=-2,即λ=- 2.故f (x )=2sin ⎝ ⎛⎭⎪⎫53x -π6-2,函数f (x )的值域为[-2-2,2-2].演练巩固提升1.C 解析:∵f (x )=sin x +φ3是偶函数,∴f (0)=±1.∴sin φ3=±1.∴φ3=k π+π2(k ∈Z ).∴φ=3k π+3π2(k ∈Z ).又∵φ∈[0,2π],∴当k =0时,φ=3π2.故选C.2.⎩⎨⎧x ⎪⎪⎪⎭⎬⎫π4+2k π<x <54π+2k π,k ∈Z解析:由已知得sin x -cos x >0,即sin x >cos x .在[0,2π]内满足sin x >cos x 的x 的集合为⎝ ⎛⎭⎪⎫π4,54π. 又正弦、余弦函数的周期为2π,∴所求定义域为⎩⎪⎨⎪⎧ x ⎪⎪⎪ π4+2k π<x <⎭⎬⎫54π+2k π,k ∈Z . 3.⎣⎢⎡⎦⎥⎤2k π-π4,2k π+3π4(k ∈Z ) 解析:由2k π-π2≤x -π4≤2k π+π2(k ∈Z ),得2k π-π4≤x ≤2k π+3π4(k ∈Z ),∴函数的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π4,2k π+3π4(k ∈Z ). 4.解:(1)f (x )=sin x 2+3cos x 2=2sin ⎝ ⎛⎭⎪⎫x 2+π3,∴f (x )的最小正周期T =2π12=4π.当sin ⎝ ⎛⎭⎪⎫x 2+π3=-1时,f (x )取得最小值-2, 当sin ⎝ ⎛⎭⎪⎫x 2+π3=1时,f (x )取得最大值2. (2)由(1)知f (x )=2sin ⎝ ⎛⎭⎪⎫x 2+π3, 又g (x )=f ⎝⎛⎭⎪⎫x +π3,∴g (x )=2sin ⎣⎢⎡⎦⎥⎤12⎝⎛⎭⎪⎫x +π3+π3=2sin ⎝ ⎛⎭⎪⎫x 2+π2=2cos x 2. ∴g (-x )=2cos ⎝ ⎛⎭⎪⎫-x 2=2cos x2=g (x ),∴函数g (x )是偶函数.5.解:f (x )=sin x (cos x -3sin x )=sin x cos x -3sin 2x =12sin 2x -3×1-cos 2x 2=12sin 2x +32cos 2x -32=sin ⎝⎛⎭⎪⎫2x +π3-32. (1)f (x )的最小正周期T =2π2=π.(2)将函数y =sin 2x 的图象向左平移a 个单位得y =sin 2(x +a )的图象,再向下平移b 个单位,得函数y =sin(2x +2a )-b 的图象,依题意得a =π6,b =32.(3)由2k π-π2≤2x +π3≤2k π+π2(k ∈Z )得,k π-5π12≤x ≤k π+π12(k ∈Z ),所以f (x )的单调增区间为⎣⎢⎡⎦⎥⎤k π-5π12,k π+π12(k ∈Z ).。
【恒心】高考数学(理科)一轮复习突破课件003003-三角函数的图象与性质
π {x|xR,x≠k+ } 2 R
奇函数 kπ-π,kπ+π 2 2 无
kπ+π,0 2
kπ,0 2
无
x = k
1.周期性的判断
(1)(教材习题改编)由 sin(30° +120° )=sin 30° 知,120° 是正弦函数 y=sin x (x∈R)的一个周期.( ) π π (2)函数 y=tan2x+3的最小正周期为 .( ) 2
4 4
(k ∈Z).( ) (6)函数 y=tan x 在整个定义域上是增函数.(
)
4.求三角函数的最值
(7)存在 x R,使得 2sin x=3.( ) π π (8)(教材习题改编)函数 f(x)=sin 2x-4 在区间 0,2 上的最小值为 2 - .( 2 )
-1
O
-1
π 5π x 2kπ+ , k Z . 4 4
π 5π x 2kπ+ ≤x≤2kπ+ ,k∈Z. 4 4
三角函数的定义域、值域问题
考 点
【训练 1】 (1)函数 y= sin x-cos x的定义域为________. π 7π (2)当 x∈ 6, 6 时,函数 y=3-sin x-2cos2x 的最小值是________,最大 值是________.
2.判断奇偶性与对称性
(3)函数 y=sin 2x
3π 是奇函数.( 2
) )
π (4)函数 y=sin x 的对称轴方程为 x =2k π + (k ∈Z).( 2
3.求三角函数的单调区间
(5)函数 f (x )=sin(-2x )与 f (x )=sin 2x 的单调增区间都是 kπ - π ,kπ π
2019教育2014高考数学(理)一轮复习学案课件 第3编 三角函数的性质精品英语
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
考纲解读
返回
考向预测
返回
课前热身
返回
返回
返回
考点 一
考点突破
返回
返回
返回
返回
返回
返回
返回
考点 二
返回
返回
返回
返回
返回
考点 三
返回
返回
返回
返回
返回
考点 四
返回
返回
返回
返回
真题再现
返回
返回
返回
返回
误区警示
返回规律探究返回来自即时巩固返回返回
返回
返回
返回
课后拔高
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
返40回
返41回
返42回
返43回
返44回
返45回
返46回
返47回
返48回
返49回
返50回
返51回
返52回
返53回
返54回
返55回
返56回
返57回
返58回
返59回
返60回
学案4 三角函数的性质
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 四 考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
2
考纲解读
返3回
考向预测
返4回
课前热身
返5回
返6回
返7回
考点 一
考点突破
返8回
返9回
返10回
返11回
返12回
返13回
考点 二
返14回
返15回
返16回
返17回
返18回
考点 三
返19回
返20回
返21回
返22回
返23回
考点 四
返24回
返25回
Hale Waihona Puke 返26回返27回返28回
真题再现
返29回
返30回
返31回
返32回
误区警示
返33回
规律探究
返34回
即时巩固
返35回
返36回
返37回
返38回
返39回
课后拔高