1因式分解与乘法公式
乘法公式与因式分解
A .))((22b a b a b a -+=-B .2222)(b ab a b a +-=-C .222()2a b a ab b +=++D .2() a ab a a b +=+8、下列分解因式正确的是 ( )A.)1(23-=-x x x xB.)2)(3(62-+=-+m m m mC.16)4)(4(2-=-+a a aD.))((22y x y x y x -+=+9、若a 为整数,则a a +2一定能被( )整除A .2B .3C .4D .510、无论x,y 取何值,x 2+y 2-2x+12y+40的值都是 ( )A 、正数B 、负数C 、零D 、非负数11、下列判断两角相等的叙述中,错误的是 ( )A 、对顶角相等B 、 两条直线被第三条直线所截,内错角相等C 、两直线平行,同位角相等D 、∵∠1=∠2,,∠2=∠3∴∠1=∠312、下列计算中,正确的是 ( )A 、22 25 =210B 、a+a=a 2C 、a 2 a 3 = a -1D 、(a+b)2 =a 2+b 2选择题答案书写处1-5 6-10 11-12二、填空(每小题3分,共24分)11、计算(31a+3b )2-(31a-3b )2=________________.12、分解因式:2294b a -=________________.13、如果(2a +2b +1)(2a +2b -1)=63,那么a +b 的值为 .14、多项式4x 2+1加上一个单项式后能成为一个整式的完全平方,•请你写出符合条件的这个单项式是___________.15、若5,6x y xy -==则22x y xy -=_________,2222x y +=__________。
16、甲、乙两个同学分解因式2x ax b ++时,甲看错了b ,分解结果为()()24x x ++;乙看错了a ,分解结果为()()19x x ++,则a =________,b =________。
乘法公式与因式分解
乘法公式与因式分解乘法公式和因式分解是数学中常见的概念和工具。
它们在各个数学领域都有广泛的应用,尤其是在代数和方程中。
本文将详细介绍乘法公式和因式分解的概念、原理和应用。
一、乘法公式乘法公式是指将两个或多个数相乘所遵循的规则。
在代数中,乘法公式往往涉及到字母表示的变量和表达式。
以下是常见的乘法公式:1. 两个数的乘积等于它们的因数相乘:a * b = b * a。
2. 两个数相乘再乘以另一个数等于每个因数分别乘以这个数再相乘:(a * b) * c = a * (b * c)。
3. 任何数与1相乘等于它本身:a * 1 = a。
4. 任何数与0相乘等于0:a * 0 = 0。
乘法公式在解决方程、计算等多个数学问题中起着重要作用。
它们能够简化计算过程、发现规律、推导定理等。
二、因式分解因式分解是将一个数或表达式分解成多个因数相乘的过程。
它是乘法公式的逆运算。
因式分解在求解方程、因式的化简和分析函数图像等方面具有重要意义。
1. 将一个数分解成质因数的乘积是因式分解的基本思想。
质因数是指只能被1和自身整除的数,如2、3、5、7等。
例如,将12分解成质因数的乘积等于2 * 2 * 3。
2. 除法和因式分解之间有密切的关系。
将一个数分解成两个因数相乘,可以使用除法的思想。
例如,用因式分解的方法将24分解成2 * 12,相当于24除以2得到12。
3. 多项式的因式分解需要应用乘法公式的原理。
对于多项式,我们可以先找出公因式,然后使用乘法公式将多项式分解为多个因式相乘的形式。
例如,将x^2 - 4分解成(x - 2)(x + 2)。
因式分解不仅在代数中有重要应用,也在数论、几何等数学分支中有广泛的运用。
它能够帮助我们更好地理解数学问题,简化运算,并发现问题的规律和性质。
三、乘法公式与因式分解的应用乘法公式和因式分解在数学中有广泛的应用。
以下列举其中几个常见的应用:1. 方程的求解:通过应用乘法公式和因式分解,我们可以将方程进行变形和化简,从而更容易求得方程的解。
乘法公式与因式分解
乘法公式与因式分解乘法公式和因式分解是数学中重要的概念和方法。
乘法公式是指计算两个或多个数的乘积的规则,而因式分解是将一个多项式分解为其因子的过程。
在本文中,我将详细介绍乘法公式和因式分解的概念、应用和相关的数学知识。
一、乘法公式乘法公式是数学中常用的计算乘积的方法。
常见的乘法公式包括加法乘法公式、减法乘法公式、平方差公式和立方差公式等。
1. 加法乘法公式加法乘法公式是指将一个数的乘积转化为一系列加法运算的规则。
例如,对于两个数a和b,它们的乘积可以表示为(a+b)(a-b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
2. 减法乘法公式减法乘法公式是指将一个带有减法的乘积转化为一系列加法运算的规则。
例如,对于两个数a和b,它们的乘积可以表示为(a-b)(a+b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
3. 平方差公式平方差公式是指将一个数的平方差转化为一个差的平方的规则。
例如,对于两个数a和b,它们的平方差可以表示为(a-b)(a+b)=a^2-b^2。
这个公式可以通过展开括号和合并同类项来证明。
4. 立方差公式立方差公式是指将一个数的立方差转化为一个差的立方的规则。
例如,对于两个数a和b,它们的立方差可以表示为(a-b)(a^2+ab+b^2)=a^3-b^3。
这个公式也可以通过展开括号和合并同类项来证明。
二、因式分解因式分解是将一个多项式分解为其因子的过程。
在因式分解中,我们要找到多项式中的公因式,然后将多项式分解为公因式和余项的乘积。
因式分解在解方程、求极值和简化计算等方面具有重要的应用。
常见的因式分解方法包括公因式提取法、配方法和因式定理等。
1. 公因式提取法公因式提取法是指将多项式中的公因式提取出来,然后将多项式分解为公因式和余项的乘积。
例如,对于多项式4x+8,我们可以提取公因式4,然后将这个多项式分解为4(x+2)。
2. 配方法配方法是指将一个多项式分解为两个因子的乘积的规则。
【全】初中数学整式的乘法与因式分解知识点总结
整式的乘法与因式分解第一节:整式的乘法1.同底数幂的乘法一般地,对于任意底数a与任意正整数m,有(m、n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
该乘法法则是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正整数);⑤公式还可以逆用:(m、n均为正整数)。
2.幂的乘方一般地,对任意底数a与任意正整数m、n,有(m、n都是正整数)。
即幂的乘方,底数不变,指数相乘。
该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:(m、n都是正整数)。
当底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3。
底数有时形式不同,但可以化成相同。
要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。
3.积的乘方法则一般地,对于任意底数a、b与任意正整数n,有(n为正整数)。
即积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4.整式的乘法1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
因式分解常用的六种方法详解
因式分解常用的六种方法详解因式分解常用的六种方法详解因式分解是代数式变形的基本形式之一,它被广泛地应用于初等数学中,并成为解决许多数学问题的有力工具。
因式分解方法灵活,技巧性强,研究这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。
本文将介绍因式分解的方法、技巧和应用。
1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:1) $a^2-b^2=(a+b)(a-b)$;2) $a^2±2ab+b^2=(a±b)^2$;3) $a^3+b^3=(a+b)(a^2-ab+b^2)$;4) $a^3-b^3=(a-b)(a^2+ab+b^2)$。
下面再补充几个常用的公式:5) $a^2+b^2+c^2+2ab+2bc+2ca=(a+b+c)^2$;6) $a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$;7) $a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+…+ab^{n-2}+b^{n-1})$,其中$n$为正整数;8) $a^n-b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…+ab^{n-2}-b^{n-1})$,其中$n$为偶数;9) $a^n+b^n=(a+b)(a^{n-1}-a^{n-2}b+a^{n-3}b^2-…-ab^{n-2}+b^{n-1})$,其中$n$为奇数。
在运用公式法分解因式时,需要根据多项式的特点,正确恰当地选择公式,考虑字母、系数、指数、符号等因素。
例如,分解因式:1) $-2x^{5n-1}y^n+4x^{3n-1}y^n+2-2x^{n-1}y^n+4$原式=$-2x^{n-1}y^n(x^{4n-2}-2x^{2n}y^2+y^4)$2x^{n-1}y^n[(x^{2n})^2-2x^{2n}y^2+(y^2)^2]$2x^{n-1}y^n(x^{2n}-y^2)^2$2x^{n-1}y^n(x^n-y)^2(x^n+y)^2$。
乘法公式与因式分解
乘法公式与因式分解乘法公式和因式分解是数学中重要的概念和操作,它们在代数运算、方程求解、多项式的化简等方面具有广泛的应用。
本文将介绍乘法公式和因式分解的概念、性质以及应用。
一、乘法公式乘法公式是指在对两个或多个数进行乘法运算时,有一些特定的规律可以简化运算过程。
其中,常见的乘法公式包括:1. 乘法交换律:a × b = b × a乘法交换律指出,两个数的乘积与它们的顺序无关。
2. 乘法结合律:(a × b) × c = a × (b × c)乘法结合律指出,三个数相乘时,可以按照不同的顺序进行运算,最终结果相同。
3. 乘法分配律:a × (b + c) = a × b + a × c乘法分配律指出,一个数与括号中的和相乘,等于这个数分别与和中的每个数相乘之后再相加。
以上三个乘法公式是数学运算中常用的基本规律,能够简化计算过程,提高效率。
二、因式分解因式分解是将一个数或者多项式表示为两个或多个因子的乘积的过程。
因式分解有助于化简复杂的表达式、解方程和求极限。
1. 常见因式分解公式(1) 完全平方差公式:a^2 - b^2 = (a + b)(a - b)该公式表示一个完全平方式减去另一个完全平方式的结果可以被分解为两个因子的乘积。
(2) 三项平方差公式:a^3 - b^3 = (a - b)(a^2 + ab + b^2)该公式表示一个立方形式减去另一个立方形式的结果可以被分解为两个因子的乘积。
2. 因式分解的应用(1) 化简表达式:通过因式分解,可以将复杂的代数表达式转化为简单的因式乘积形式,便于计算和理解。
(2) 解方程:因式分解是求解一元高次方程的重要方法之一。
通过将方程进行因式分解,可以将原方程化简为多个一次方程的乘积形式,从而找到方程的解。
(3) 求极限:在一些复杂的极限求解问题中,通过因式分解可以将被极限运算影响的部分拆分为若干个因子,从而简化运算过程。
一乘法公式与因式分解
第一章 乘法公式与因式分解§1.1 乘法公式我们知道:222()2a b a ab b +=++,将公式左边的指数变为3,又有什么结论呢? 即3()a b += .由于3222()()()(2)()a b a b a b a ab b a b +=++=+++=32222332232233a a b ab a b ab b a a b ab b +++++=+++因此得到和的立方公式 3()a b +=322333a a b ab b +++将公式中的b 全部改为-b ,又得到差的立方公式:3()a b -=322333a a b ab b -+-上述两个公式称为完全立方公式,它们可心合写为:3()a b ±=322333a a b ab b ±+±【例1】化简:32(1)(33)x x x x +-++【解】原式=3232331331x x x x x x +++---=由完全立方公式可得3()a b +2233a b ab --=33a b +,即:2()[()3]a b a b ab ++-=33a b +由此可得立方和公式: 22()()a b a ab b +-+=33a b +将公式中的b 全部改为-b ,又得到立方差公式:22()()a b a ab b -++=33a b -〖数学方法归纳〗上述得到立方差公式和差的立方公式过程中,使用了将b 改变-b 的方法,这种方法称为代换法.是代数中广泛使用的一种方法.应用代换法可扩展公式的形式,拓宽公式的使用范围.【例2】对任意实数a ,试比较22(1)(1)(1)(1)a a a a a a -+++-+与1的大小.【分析】观察式子22(1)(1)(1)(1)a a a a a a -+++-+的结构特征,可联想立方和(差)公式进行化简.【解】22(1)(1)(1)(1)a a a a a a -+++-+=22(1)(1)(1)(1)a a a a a a -+++-+=336(1)(1)1a a a -+=-因为61a --1=6a -,对任意实数a ,6a -≤0所以22(1)(1)(1)(1)a a a a a a -+++-+≤1通过将完全平方公式222()2a b a ab b +=++中的指数2推广到3,我们得到了完全立方公式,还可以把指数推广到4,5,…,以至一般()n a b +.另一方面:我们也可以从项数的角度推广:三项和的平方:2222()222a b c a b c ab bc ca ++=+++++甚至还可以推广到n 项和的平方(在此省略)灵活使用上式,可为代数变形及求值带来方便.〖数学思想方法归纳〗以上从完全平方公式出发,从两个角度:指数和项数进行了推广,这种思维方法称为由特殊到一般的思想.人们对很多问题的认识,往往是先从特殊情况出发,发现一些信息,然后进行一般化,进而发现一般规律.【例3】已知:0a b c ++=,12ab bc ca ++=-,求下列各式的值 (1)222a b c ++;(2)444a b c ++.【分析】突破问题的关键在于寻找已知式与未知式的联系,联想三项和的平方公式,可得到(1)的解法,进而反复操作可推进到(2).【解】(1)由2222()222a b c a b c ab bc ca ++=+++++可得:2222()2()1a b c a b c ab bc ca ++=++-++=(2)由12ab bc ca ++=-得:22222221()2()4ab bc ca a b b c c a abc a b c ++=+++++=所以:222222112()44a b b c c a abc a b c ++=-++=而444a b c ++=2222()a b c ++-2222222()a b b c c a ++=12. 【例4】已知210x x +-=,求证:33(1)(1)86x x x +--=-【证法一】3332322(1)(1)331(331)62x x x x x x x x x +--=+++--+-=+由已知得:21x x =-,故2626(1)286x x x +=-+=-,因此:33(1)(1)86x x x +--=-【证法二】3322(1)(1)(11)[(1)(1)(1)(1)]x x x x x x x x +--=+-++++-+-=22222(21121)62x x x x x x +++-+-+=+以下同证法一.【归纳总结】以上两种证法都用到了整体代换的方法,即2x 换为1x -;方法二中又把(1),(1)x x +-分别看作一个整体使用立方差公式.这种整体代换的方法常可找到解题的突破口,并使运算简便.【例5】已知1x y +=,求333x y xy ++的值.【解】33222223()()32()1x y xy x y x xy y xy x xy y x y ++=+-++=++=+=.【例6】已知0abc ≠,且0a b c ++=,求222a b c bc ca ab++的值. 【解】33222333()3()a b c ab a b a b c a b c bc ca ab abc abc++-+++++== ∵0a b c ++=,∴a b c +=-;∴上式=33()33c c abc abc-++=. 习题 1.1 1.若8,2a b ab +==,则33a b +=( )A .128 B.464 C.496 D.512 2.若0x y z ++=,则333x y z ++=( )A .0B .222x y y z z x ++C .222x y z ++D .3xyz 3.设()33311,6A n B n n n =+=++,对于任意n > 0,则A ,B 的大小关系为 ( ) A .A ≥B B .A>B C .A ≤B D .不一定 4.2(5)(255)x x x -++= .5.观察下列各式的规律:22()()a b a b a b -+=-2233()()a b a ab b a b -++=-322344()()a b a a b ab b a b -+++=-可得到11()()n n n n a b a a b ab b ---++++= .6.求函数33(2)y x x =--的最大值.7.当x =()223111242x x x x x ⎛⎫+-+- ⎪⎝⎭的值. 8.已知a 、b 、c 为非零实数,2222222()()()a b c x y z ax by cz ++++=++,求证:y x z a b c==. 9.如果37,3511x y x y +=-=,求2244x xy y -+的值.10.已知21()()()4b c a b c a -=--且0a ≠,求b c a+的值. §1.2 因式分解因式分解就是将一个多项式化成几个整式的积的形式,它与多项式乘法运算是互逆变形.因式分解在将来学习解方程、解不等式、判断代数式的符号等问题中都要用到.多项式的因式分解是代数式恒等变形的基本形式之一,是我们解决许多数学问题的有力工具.主要的方法有____________、____________、___________和____________.把一个多项式因式分解,如果多项式的各项有公因式,就先提取公因式,公因式可以是数、单项式,也可以是多项式;比如:把()()()()()z y x y y x z x y x n n n --+----+22122分解因式为__________________;如果各项没有公因式,再看能否直接运用公式或用十字相乘法分解;比如:把()222224b a b a -+分解因式为________________________、把2243b ab a --分解因式为________________________;常用的公式有:(1)22a b -=____________. (2)222a ab b ±+=____________.(3)33a b +=____________. (4)33a b -=____________.(5)222222a b c ab bc ca +++++=____________.(6)3333a b c abc ++-=____________. (7)322333a a b ab b ±+±=____________.如果还不能分解,就试用分组分解法或其他方法,比如:添项法、拆项法、待定系数法、换元法等等;添、拆项法是在分解因式时,常要对多项式进行适当的变形,使其能分组分解.添项和拆项是两种重要的变形技巧,所谓添项,就是在要分解的多项式中加上仅仅符号相反的两项的和(实际上是加上0,并不改变原多项式的值),如把44+a 添上)4(422a a -+,得________________________,从而可将原多项式分解因式.拆项是把多项式中某一项拆成两项或多项的代数和(相当于整式加法中合并同类项的逆运算),再通过适当分组,达到分解因式的目的;换元法是对有些复杂的多项式,如果把其中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可使原式得到简化,而且能使式子的特点更加明显.这样先进行换元,再将含“新字母”的多项式分解因式,最后将“新字母”用原换的式子代回去,得到原多项式的因式分解结果,这种方法就是因式分解中的换元法,或者说是换元法在因式分解中的应用;待定系数法就是有的多项式虽不能直接分解因式,但可由式子的最高次数与系数的特点断定其分解结果的因式形式.如只含一个字母的三次多项式分解的结果可能是一个一次二项式乘以一个二次三项式,也可能是三个一次因式的积.于是,我们可以先假设要分解因式的多项式等于几个因式的积,再根据恒等式的性质列出方程(组),进而确定其中的系数,得到分解结果,这种方法就称为待定系数法我们已学习过两种分解因式的方法:提取公因式法与公式法.下面我们继续学习一些分解因式的方法:十字相乘法、分组分解法、求根法及待定系数法. 十字相乘法我们知道,形如2()x p q x pq +++的二次三项式,它的特点是二次项系数是1,常数项pq 与一次项系数p + q 可以通过如图的“十字相乘,乘积相加”方式建立联系,得到1 1pq2()x p q x pq +++=()()x p x q ++.这种方法能否推广呢?如果要对2273x x -+分解因式,我们把二次项系数2分解为1×2,把常数项3分解成1×3或(-1)×(-3),按下列图的运算方式,也用“十字相乘,乘积相加”验算.可以发现图中第四个对应的结果1×(-1)+2×(-3)= -7,恰好等于一次项系数-7.由于(3)(21)x x --=2273x x -+,从而2273x x -+=(3)(21)x x --.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法. 形如2ax bx c ++ (0)a ≠的多项式分解因式:方法及原理:若:21122()()ax bx c a x c a x c ++=++ 通常借助十字交叉:12a a 121221c c a c a c b⋅+⋅=. 【例1】将下列各式分解因式:(1)223x x +-; (2)2675a a -++ 【分析】(1)把二次项系数2分解为1×2,常数项-3有两种分解:(-1)×3和1×(-3),然后按十字辅助线凑配验证可得.(2)当二次项系数为负时,二次项系数分解成的两个因数异号,则十字辅助图的各种可能性就会更多.因此先把负号提到括号外面,即2675a a -++=2(675)a a ---,然后再对2675a a --进行分解.【解】 1 2 1 31 1 1 1 32 2 2 -1 -3 -3 -1(1)223x x +-=(1)(23)x x -+(2)2675a a -++=(21)(35)a a -+-【例2】分解因式:222()()2x x x x ----【分析】先将2x x -视为一个整体,通过两次十字相乘法得到解决.【解】222()()2x x x x ----=222(2)(1)(2)(1)(1)x x x x x x x x ---+=-+-+【归纳总结】使用“十字相乘法”关键要进行“凑配”,即要调整二次项系数、常数项的分解方式和十字线上各数的位置.它的原理是多项式乘法的法则.关于凑配的技巧有调整符号,调整大小等,需在实践中体会.提高:有些二次三项式中含有两个或三个字母,这样的式子又怎样分解呢?【例3】分解因式:223()x a a x a +++【例4】分解因式:2256x xy y -+【例5】分解因式:22(1)n x xy ny ++- 分组分解法观察多项式xm xn ym yn +++,它的各项并没有公因式,因此不能用提取公因式来分解因式;这是一个四项式,因此也不能直接用公式法或十字相乘法来分解因式.观察多项式各项,前两项有公因式x ,后两项有公因式y ,分别提取后得到()x m n ++()y m n +.这时又有了公因式(m+n ),因此能把多项式xm xn ym yn +++分解:分解过程为:xm xn ym yn +++=()x m n ++()y m n +=()()m n x y ++.一般地,如果把一个多项式的项适当分组,并提出公因式后,各组之间又出现新的公因式,那么这个多项式就可以用分组方法来分解因式.【例1】将下列各式分解因式(1)321x x x -+-(2)224(1)4x xy y +-+ 【解】(1)解法一:321x x x -+-=322()(1)(1)(1)x x x x x -+-=-+解法二:321x x x -+-=322()(1)(1)(1)x x x x x +-+=+-(2)222224(1)4444(2)4x xy y x xy y x y +-+=++-=+-=(22)(22)x y x y +++-【注】本题第(2)小题的解法是先分组,再用公式法分解因式.先将多项式分组后分解因式的方法称为分组分解法.用这种方法分解因式,分组时应预见到下一步分解的可能性.【例2】已知3223220,0x x y xy y x y --+=>>,化简:21xz yz -+【解】32232222(2)(2)()()(2)x x y xy y x x y y x y x y x y x y --+=---=+-- ∵0x y >>∴0,0x y x y +≠-≠,即只有20x y -=∴21xz yz -+=(2)11z x y -+=.求根分解法结论一:若已知关于x 的二次方程20(0)ax bx c a ++=≠的两个实数根为12,x x ,则关于x 的二次三项式可分解为:212()()(0)ax bx c a x x x x a ++=--≠.结论二:若方程11100n n n n a x a x a x a --++++= 有一个根为0x ,则多项式:1110n n n n a x a x a x a --++++ 有一个因式为0()x x -.用以上方法可对一些较复杂的因式进行分解.【例1】在实数范围内分解因式:(1)221x x +-;(2)2244x xy y +-. 【例2】分解因式:334x x +-. 添、拆项法【例1】 分解因式444b a +(添项)分析:444b a +是二项式,无法直接分解,若添上__________这一项后,就成了()2222b a +,为保持式子的恒等,需要减去____________这时式子正好符合____________公式,因此达到因式分解的目的.解:44422422222224444(2)4a b a a b b a b a b a b +=++-=+-2222(22)(22)a ab b a ab b =++-+【例2】 分解因式443234---+x x x x (拆项)分析:当最高项的次数是偶次时,往往通过拆项(或添项)进行配方,本题把23x -拆成____________,然后再分组,就可利用____________、____________进行分解.解:443234---+x x x x 4322244x x x x x =+----()()222244x x x x x =+--++ ()()()22212x x x x =+--+()()3222x x x x =+---()()32211x x x x =+---- ()()()2212x x x x =+++-或者443234---+x x x x 4322444x x x x x =++---()()222141x x x x x =++-++ ()()2214x x x =++-()()()2212x x x x =+++-.【例2】 分解因式:334x x +-.【解】:333234331(1)(33)(1)(4)x x x x x x x x x +-=+--=-+-=-++【方法总结】在因式分解中,我们有时根据需要,也可能添上仅符号不同的两项,使它能够使用公式法或提取公因式法继续分解.拆项分组分解法的灵活性较大,解法往往不唯一,分解时要根据题目的具体特点,选择简捷的分解方法.待定系数法【例题1】 分解因式:12423++-x x x .分析:对于一个三次多项式,它首先可以分解成一个一次式与一个二次式的乘积.待定系数法实际是假设多项式分解后,通过整式的乘法,利用代数式相等的因素来建立方程,解这个方程,从而找到相应的参数.解:令原式=()()c bx x a x +++2=()()ac x c ab x b a x +++++23, ⎪⎩⎪⎨⎧==+-=+124ac c ab b a 解得⎪⎩⎪⎨⎧-=-=-=131c b a ,所以()()322421131x x x x x x -++=---.【例题2】分解因式:22282143x xy y x y +-++-.分析:本题是一个二次多项式,它只能分解成两个一次多项式的乘积,同时要考虑到式子中有两个字母.解:设原式=()()x ay b x cy d ++++()()()22x a c xy acy ad bc y b d x bd =++++++++,所以:281423a c ac ad bcb d bd +=⎧⎪=-⎪⎪+=⎨⎪+=⎪=-⎪⎩,解得:4a =、1b =-、2c =-、3d =.原式=()()4123x y x y +--+.说明:本题采用待定系数法,计算量比较大,还可以采用双十字相乘法,计算比较简单.因为()()222842x xy y x y x y +-=+-,所以有:原式=()()4123x y x y +--+.【方法总结】待定系数法体现了整式乘法与因式分解之间的相互关系,为我们解决高次多项式的因式分解问题提供了有效的方法.这个方法中,建立的方程组不能按照一般的方法去解,我们只需求它的整数解.整理思想的应用整体思想是中学数学中的一种重要的数学思想,在因式分解中常体现这一思想.【例题1】分解因式:()()y z x c y x z b z y x a +------+)(.分析:在用提公因式法分解因式时要注意整体思想的运用,本例题就是把()z y x -+这一整体作为公因式提出.解:原式=()()x y z a b c +-+-.【例题2】分解因式:()()()c b b a a c ----42.分析:设a b x -=,b c y -=得a b x y -=-. 原式=()()2224y x y y x x -=--=()22c b a +-.说明:通过“整体换元”分解因式简单明了.【方法总结】整体思想主要体现在下面几个方面:“提”整体、“当”整体、“凑”整体、“拆”整体、“换”整体.请同学们对照看一看,上面的两个例题和三个练习题分别是哪种情况?习题1.21、对多项式2242x x y y +--用分组分解法分解因式,下面分组正确的是( ) A 、22(42)()x x y y +-+ B 、224(2)x x y y +--C 、22(4)(2)x y x y -+-D 、22(4)(2)x y x y -+-2、要使二次三项式26x x m -+在整数范围内可分解,m 为正整数,那么m 的取值可以有( )A 、2个B 、3个C 、5个D 、6个 3、把多项式2221ab a b +--分解因式,结果是( )A 、(1)(1)a b b a +--+B 、(1)(1)a b b a -+-+C 、(1)(1)a b a b +--+D 、(1)(1)a b a b -+--4、4242221____1(___)(___)m m m m m m ++=+-+=++5、将下列各式分解因式:(1)243x x -- ;(2)2232x ax a +-.6、将下列各式分解因式:(1)3322x y x y xy --+;(2)2222a b ab a b -+-+7、已知,,m x y n xy =-=试用m ,n 表示332()x y +8、当x =-1时,322560x x x +--=.请根据这一事实,将32256x x x +--分解因式.提高部分:1.将下列各式分解因式: (1)21x ax a -+-;(2)2221x mx m -+-;(3)212x +(4)3333a b c abc ++-.2.若223894613M x xy y x y =-+-++(x 、y 是实数),则M 的值一定是()A .正数B .负数C .零D .非负数3.分解因式42201120102011x x x +++. 4.分解因式:42134x x -+ 5.分解因式:343m m -+6.分解因式:2223914320x xy y x y +-+-+. 7.分解因式:4322x x x -++. 8.分解因式:()22)2(924b a b a +--.9.分解因式:()()2222b a cd d c ab +++. 10.分解因式:()()()()246816x x x x ----+.第一章测试题(注:满分100分,考试时间45分钟)一、选择题(本题共6小题,每小题5分,共30分) 1.多项式2232y yx x --+分解因式的结果是( ) A 、()(3)y x y x -++ B 、()(3)x y x y +-C 、()(3)y x y x ---D 、()(3)x y x y +-2.若3322331a b a b ab -=-+,其中a ,b 为实数,则a b -=( )A 、0B 、-1C 、1D 、±13.若多项式227x x m ++分解因式的结果中有因式x + 3,则此多项式分解因式的结果中另一因式为()A 、2x -1B 、2x + 1C 、x + 1D 、x - 14.若13a a +=,则234234111a a a a a a +++++=( )A 、7B 、25C 、47D 、725.多项式2242x xy y ---分解因式的结果是( )A 、(2)(2)x y x y ++--B 、(2)(2)x y x y ++-+C 、(1)(4)x y x y ++--D 、(1)(4)x y x y -+++6.若3,3x y z yz xy xz --=--=,则222x y z ++=( )A 、0B 、3C 、9D 、-1二、填空题(本题有3小题,每小题8分,共24分)7.若322468126x x y xy y +++可分解为3(2)m x y +,则m = . 8.若关于x 的二次三项式239ax x +-的两个因式的和为3x ,则a = . 9.2211114(___)(___)x x x x xx x x +++-=+++-.三、解答题(本题有3小题,第10,11题各15分,第12题16分,共46分) 10.分解因式:(1)3256x x x -+;(2)341m m +-.11.已知210x x --=,求543233x x x x x --++的值.12.已知2222961(3)(3)a x xy y a x ay xy -+-=+-+,求证:6y x =.答案: 习题1.1 1.B 2.D . 3.A . 4.125-x 3.5.11n n ab ++-.6.-2. 7.24.8.由已知得222222222222222222a x a y a z b x b y b z c x c y c z ++++++++ =222222222a x b y c z abxy acxz bcyz +++++. 即222()()()0bx ay xy bz az cx -+-+-=. 因为222()0,()0,()0bx ay xy bz az cx ---≥≥≥所以,,..bx ay y x z cy bz a b c az cx =⎧⎪===⎨⎪=⎩即9.由37,3511x y x y +=⎧⎨-=⎩相加得29x y -=,则22244(2)81x xy y x y -+=-=.10.由已知得:21()()()4c b a b c a -=--,进而有2[()()]4()()c a a b a b c a -+-=--∴2[()()]0c a a b ---=, ∴2c b a +=,∴2b c a+=.习题1.2 1.C .2.B . 3.B .4.22m ,1m +,1m -.5.(1)(1)(43)x x -+;(2)()(3)x a x a +-. 6.(1)22()()x y x y -+;(2)(1)(2).a b a b +-- 7.222(4)().m n m n ++8.(1)(2)(3)x x x +-+.提高部分:1.(1)(1)(1)x a x -+-;(2)(1)(1)x m x m ---+;(3)2(x ; (4)3333223322333333a b c abc a a b ab b c a b ab abc ++-=++++--- =33()3()a b c ab a b c ++-++=22()[()()3]a b c a b a b c c ab +++-++- =222()()a b c a b c ab bc ca ++++--- 2.A ,提示:M = 2222(2)(2)(3)x y x y -+-++. 3.22(1)(2011)x x x x ++-+ 4.22(32)(32)x x x x +--- 5.2(1)(3)m m m -+- 6.(234)(35)x y x y -+++ 7.22(22)(1)x x x x -+++ 8.(8)(47)a b a b --+ 9.()()ad bc ac bd ++ 10.22(1020)x x -+第一章测试题1.B . 2.C . 3.B 4.D . 5.A . 6.B . 7.2. 8.2 9.3,2. 10.(1)(2)(3)x x x --;(2)2(21)(21).m m m -++ 11.112.略.。
乘法公式与因式分解
乘法公式与因式分解乘法公式、多项式与因式分解1.乘法公式1.$(a+b)^2=a^2+2ab+b^2$(和的平方)2.$(a-b)^2=a^2-2ab+b^2$(差的平方)3.$(a+b)(a-b)=a^2-b^2$(平方差)4.$(a+b)(c+d)=ac+ad+bc+bd$(乘法分配律)5.$(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac$(三项和的平方)6.$(a+b)^3=a^3+3a^2b+3ab^2+b^3$(和的立方)7.$(a-b)^3=a^3-3a^2b+3ab^2-b^3$(差的立方)8.$(a+b)(a^2-ab+b^2)=a^3+b^3$(立方和)9.$(a-b)(a^2+ab+b^2)=a^3-b^3$(立方差)10.$(a+ab+b)(a-ab+b)=a^3+b^3$(立方和)2.求值公式:1.$a+b=(a+b)^2-2ab=(a-b)^2+2ab$若已知$a+b$和$ab$,欲求$a-b$时,需先算出$(a-b)^2$,再用平方根来求)2.$x+\frac{1}{2}x^2=\left(x+\frac{1}{2}\right)^2-\frac{1}{4}$3.$a+b+c+ab+bc+ca=\left(a+b\right)^2+\left(b+c\right)^2+\le ft(c+a\right)^2$4.$a+b=(a-b)+4ab$5.$a-b=(a+b)-4ab$3.乘法公式的应用与式子的展开:1.$(ax+b)(cx+d)=acx^2+(ad+bc)x+bd$2.$(ax+b)^2=a^2x^2+2abx+b^2$3.$(ax-b)^2=a^2x^2-2abx+b^2$4.$(ax+b)(ax-b)=a^2x^2-b^2$5.$(-ax+b)^2=(ax-b)^2$;$(-ax-b)^2=(ax+b)^2$主题二:多项式1.多项式的定义:由数和文字符号$x$进行加法和乘法运算所构成的式子。
因式分解的五个公式
因式分解的五个公式导读a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a& ...因式分解有哪些公式?因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)平方差公式:a²-b²=(a+b)(a-b)推导过程:a²-b²=a²+ab-(b²+ab)=a(a+b)-b(a+b)=(a+b)(a-b)说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。
应该问哪些方法!常见的有:(1)提取公因式法(2)公式法(3)十字相乘法(4)分组分解法……因式分解的方法因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)因式分解原则:1.因式分解因子是多项式的常数变形,要求方程的左边必须是多项式。
《乘法公式》整式的乘除与因式分解
把系数,同底数幂分别相除后,作为商的因式;对于只在被 除式里含有的字母,则连同他的指数一起作为商的一个因式 。
多项式除以单项式
定义
把一个多项式除以另一个单项式的商叫做多项式除以单项式。
运算法则
把这个多项式的每一项分别除以单项式,再把所得的商相加。
多项式除以多项式
定义
把一个多项式除以另一个多项式的商叫 做多项式除以多项式。
《乘法公式》整式的乘除与 因式分解
2023-11-09
目录
• 乘法公式 • 整式的乘法 • 整式的除法 • 因式分解 • 乘法公式、整式的乘除与因式分解的关系 • 经典例题解析
01
乘法公式
乘法公式的定义
乘法公式的定义
乘法公式是指将两个或多个数相 乘的结果用一个简单的符号表示
。例如,$(a+b)^2$ 表示 $a^2+2ab+b^2$。
因式分解的例题
3. 双十字相乘法
$x^2 + 5xy + 6y^2 = (x+2y)(x+3y)$。
2. 公式法
$a^2 - 8a + 16 = (a-4)^2$。
总结词
因式分解的方法多种多样,通过经典例题 解析可以更好地理解各种方法的适用条件 和操作技巧。
详细描述
因式分解是将一个多项式分解为若干个因 式之积的过程,下面通过一些例题及解析 来探讨因式分解的方法
乘法公式与因式分解的关系
乘法公式在因式分解中的应用
在因式分解中,乘法公式被广泛应用,例如利用乘法公 式进行多项式的展开、分组、约分等,这些方法都是基 于乘法公式进行推导和复杂的乘法公式问题时,通过因式分解可以 将问题转化为更简单的形式,例如利用因式分解解决一 些分式的约分问题。
乘法公式与因式分解
乘法公式与因式分解乘法公式和因式分解是数学中常见且重要的概念。
它们在代数运算和解决各种数学问题时起着关键作用。
本文将详细介绍乘法公式和因式分解的概念、应用以及解题方法。
一、乘法公式乘法公式是指一些常见的数学公式,用于求解乘法式子的结果。
常见的乘法公式包括:1. 两个整数相乘:a × b = c2. 平方的乘法公式:(a + b) × (a - b) = a^2 - b^23. 两个二次根式相乘:(a + b) × (c + d) = ac + ad + bc + bd4. 两个多项式相乘:(a + b)(c + d + e) = ac + ad + ae + bc + bd + be这些乘法公式在解决数学问题和代数运算时非常有用。
通过熟练掌握这些公式,可以简化计算过程,提高解题效率。
二、因式分解因式分解指将一个多项式分解成若干个乘法因子的过程。
因式分解的目的是简化多项式的形式,方便问题的求解。
因式分解可以根据多项式的不同形式采用不同的方法。
1. 提公因式法:对于一个多项式,如果各项之间存在公因子,可以将公因子提到括号外,并将其余部分化简为一个新的多项式。
例如,对于表达式4x + 8y,可以提取出2作为公因子,得到2(2x + 4y)。
2. 二次因式分解法:对于一个二次多项式,可以通过因式分解的方法将其分解为两个一次因式的乘积。
例如,对于多项式x^2 + 5x + 6,可以进行二次因式分解,得到(x + 2)(x + 3)。
3. 公式法:对于一些特定的多项式,可以利用一些常见的因式分解公式进行分解。
例如,对于多项式x^2 - 4,可以使用平方差公式进行因式分解,得到(x + 2)(x - 2)。
因式分解在解决代数方程、求解方程根和简化运算等方面具有广泛的应用。
熟练掌握因式分解的方法和技巧,可以帮助我们更好地解决各种数学问题。
三、应用举例下面通过几个具体的数学问题来展示乘法公式与因式分解的应用。
因式分解公式
因式分解——公式法学习指导1.代数中常用的乘法公式有:平方差公式:(a+b)(a-b)=a2-b2完全平方公式:(a±b)2=a2±2ab+b22.因式分解的公式:将上述乘法公式反过来得到的关于因式公解的公式来分解因式的方法,主要有以下三个公式:平方差公式:a2-b2=(a+b)(a-b)完全平方公式:a2±2ab+b2=(a±b)23.①应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。
②明确公式中字母可以表示任何数,单项式或多项式。
③同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。
④运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。
因式分解公式的结构特征。
1.平方差公式:a2-b2=(a+b)(a-b)的结构特征1)公式的左边是一个两项式的多项式,且为两个数的平方差。
2)公式的右边是两个二项式的积,在这两个二项式中有一项a是完全相同的,即为左边式子中被减数a2的底数,另一项b和-b是互为相反数,即b 是左边式子中减数b2的底数。
3)要熟记1——20的数的平方。
2、完全平方公式:a2±2ab+b2=(a±b)2的结构特征.1)公式的左边是一个三项式,首末两项总是平方和的形式,中间项的符号有正有负,当为正号(负号)时右边的两项式中间符号为正(为负),2ab中的“2”是一个固定的常数。
2)公式的右边是两数和或差的平方形式。
3)要确定能不能应用完全平方公式来分解,先要看两个平方项,确定公式中的a和b在这里是什么,然后看中间一项是不是相当于+2ab或-2ab,如果是的,才可以分解为两数和或差的平方形式。
初学时中间的过渡性步骤不要省掉。
考点讲解利用因式分解与整式乘法之间的关系,把乘法公式反过来,就是因式分解的公式。
运用公式法分解因式的关键是要弄清各个公式的形式和特点,熟练地掌握公式,难点是灵活运用公式进行因式分解。
第3讲 乘法公式和因式分解
第3讲 乘法公式和因式分解一、考点知识梳理【考点1 平方差公式】两数和与这两数差的积,等于它们的平方差(a +b)(a -b)=a 2-b 2【考点2 完全平方公式】两数的平方和,加上(或者减去)它们的积的两倍等于它们和(或差)的平方(a±b)2=a 2±2ab +b 2【考点3 因式分解】要点一、因式分解把一个多项式化成几个整式积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解和整式乘法是互逆的运算,二者不能混淆.因式分解是一种恒等变形,而整式乘法是一种运算. 要点二、提公因式法把多项式分解成两个因式的乘积的形式,其中一个因式是各项的公因式,另一个因式是,即,而正好是除以所得的商,提公因式法分解因式实际上是逆用乘法分配律.要点三、公式法1.平方差公式两个数的平方差等于这两个数的和与这两个数的差的积,即:2.完全平方公式两个数的平方和加上这两个数的积的2倍,等于这两个数的和(差)的平方.即,. 形如,的式子叫做完全平方式.要点诠释:(1)平方差公式的特点:左边是两个数(整式)的平方,且符号相反,右边是两个数(整式)的和与这两个数(整式)的差的积.(2)完全平方公式的特点:左边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍. 右边是两数的和(或差)的平方.(3)套用公式时要注意字母和的广泛意义,、可以是字母,也可以是单项式或多项式.要点四、十字相乘法和分组分解法十字相乘法利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法. m m ()()22a b a b a b -=+-()2222a ab b a b ++=+()2222a ab b a b -+=-222a ab b ++222a ab b -+a b a b对于二次三项式,若存在 ,则 分组分解法 对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.要点五、因式分解的一般步骤因式分解的方法主要有: 提公因式法, 公式法, 分组分解法, 十字相乘法, 添、拆项法等.因式分解步骤(1)如果多项式的各项有公因式,先提取公因式;(2)如果各项没有公因式那就尝试用公式法;(3)如用上述方法也不能分解,那么就得选择分组或其它方法来分解.(4)结果要彻底,即分解到不能再分解为止.二、考点分析【考点1 平方差公式】【解题技巧】能够运用平方差公式进行多项式乘法运算的必须是两个二项式,两项都能写成平方的形式,且符号相反.反之能够运用平方差公式分解因式的多项式必须是二项式且符号相反.【例1】(2019河北沧州中考模拟)若(a ﹣b ﹣2)2+|a +b +3|=0,则a 2﹣b 2的值是( )A .﹣1B .1C .6D .﹣6【一领三通1-1】(2019 山东青岛模拟)若k 为任意整数,且993﹣99能被k 整除,则k 不可能是( )A .50B .100C .98D .97【一领三通1-2】(2019辽宁大连模拟)先化简,再求值:(a +b)(a -b)+b(a +2b)-b 2,其中a =1,b =-2.【一领三通1-3】(2019河北石家庄中考模拟)计算并观察、探究下列式子①(x ﹣1)(x +1)= x 2﹣1②(x ﹣1)(x 2+x +1)= x 3﹣1③(x ﹣1)(x 3+x 2+x +1)=x 4﹣1④(x ﹣1)(x 4+x 3+x 2+x +1)=x 5﹣1⑤(x ﹣1)(x 5+x 4+x 3+x 2+x +1)=x 6﹣1…由以上规律(1)填空:(x ﹣1)(x n +x n ﹣1+…+x +1)= . 2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++(2)求:22019+22018+22017+…+22+2+1 的值.【分析】(1)利用多项式乘以多项式法则计算得到结果,规律总结得到一般性结论,写出即可;(2)原式变形后,利用得出的规律计算即可得到结果.【考点2 完全平方公式】【解题技巧】能运用完全平方公式进行多项式乘法运算的,必须是两个数(或差)的平方和的形式,反之能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.【例2】(2019辽宁锦州中考模拟)如果二次三项次x 2﹣16x +m 2是一个完全平方式,那么m 的值是( )A .±8B .4C .﹣2D .±2【一领三通2-1】(2019山东聊城中考模拟)已知a ,b 是△ABC 的两边,且a 2+b 2=2ab ,则△ABC 的形状是( )A .等腰三角形B .等边三角形C .锐角三角形D .不确定【一领三通2-2】(2019沧州九中模拟)当s =t +12时,代数式s 2-2st +t 2的值为 . 【分析】运用完全平方公式分解因式【一领三通2-3】(2019•吉林长春中考)先化简,再求值:(2a +1)2﹣4a (a ﹣1),其中a =.【分析】直接利用完全平方公式以及单项式乘以多项式分别化简得出答案.【一领三通2-4】(2018,江苏南京模拟)先化简,再求值:2(21)2(21)3a a +-++,其中a =【分析】直接运用(a+b)2=a 2+2ab+b 2进行计算、化简.【考点3 因式分解】【解题技巧】因式分解的一般步骤:(1)如果多项式各项有公因式,应先提取公因式;(2)如果各项没有公因式,可以尝试使用公式法来分解因式,看是否符合平方差公式还是完全平方公式,有时需考虑用十字交乘法;(3)检查因式分解是否彻底,必须分解到每一个因式不能再分解为止.类型一、提公因式法分解因式1、 分解因式:(1);(2).【总结升华】在提取公因式时要注意提取后各项字母,指数的变化,另外分解要彻底,特别是因式中含有多项式的一定要检验是否能再分,分解因式后可逆过来用整式乘法验证其正确与否.2、利用分解因式证明:能被120整除.【思路点拨】25=,进而把整理成底数为5的幂的形式,然后提取公因式并整理为含有120的因数即可.【总结升华】解决本题的关键是用因式分解法把所给式子整理为含有120的因数相乘的形式. 类型二、公式法分解因式3、放学时,王老师布置了一道分解因式题:,小明思考了半天,没有答案,就打电话给小华,小华在电话里讲了一句,小明就恍然大悟了,你知道小华说了句什么话吗?小明是怎样分解因式的.【思路点拨】把分别看做一个整体,再运用完全平方公式解答.222284a bc ac abc +-32()()()()m m n m m n m m n m n +++-+-712255-25725()()()222244x y x y x y ++---()()x y x y +-、【总结升华】本题主要考查利用完全平方公式分解因式,注意把看作完全平方式里的是解题的关键.4、若多项式5x 2+17x ﹣12可因式分解成(x +a )(bx +c ),其中a 、b 、c 均为整数,则a +c 之值为何?( )A .1B .7C .11D .13故选:A .5、)把下列各式进行因式分解(1)4(x ﹣2)2﹣1;(2)(x+y )2+4(x+y+1).【思路点拨】(1)直接利用平方差公式分解因式即可;(2)经过变形,利用完全平方公式分解因式即可.【总结升华】此题主要考查了公式法分解因式,熟练掌握乘法公式是解题关键.举一反三: 类型三、十字相乘法和分组分解法分解因式6、分解因式:(1)(2)【总结升华】做题之前要仔细观察,注意从整体的角度看待问题.()()x y x y +-、,a b ()()222222x x ----()2224420x xx x +---7、(x ﹣y )2+5(x ﹣y )﹣50.课堂测1.(2019·安徽中考模拟)下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-2.(2018·江苏中考模拟)把多项式x 2+ax+b 分解因式,得(x+1)(x -3),则a 、b 的值分别是() A .a=2,b=3 B .a=-2,b=-3C .a=-2,b=3D .a=2,b=-33.(2018·广西中考真题)下列各式分解因式正确的是( )A .x 2+6xy+9y 2=(x+3y )2B .2x 2﹣4xy+9y 2=(2x ﹣3y )2C .2x 2﹣8y 2=2(x+4y )(x ﹣4y )D .x (x ﹣y )+y (y ﹣x )=(x ﹣y )(x+y )4.(2019·山东中考模拟)多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )25.(2018·安徽中考模拟)将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a -2D .(a+2)2-2(a+2)+1利用公式法解决代数式求值问题的方法1.(2018·河南中考模拟)已知a ﹣b=1,则a 3﹣a 2b+b 2﹣2ab 的值为( )A .﹣2B .﹣1C .1D .22.(2017·陕西中考模拟)已知实数x 满足22110x x x x +++=,那么1x x +的值是( )A .1或﹣2B .﹣1或2C .1D .﹣23.(2019·江苏中考模拟)若x 2+mx -15=(x+3)(x+n),则m 的值为( )A .-5B .5C .-2D .2课后习题一、选择题1.(2019,湖南湘潭中考模拟)下列式子,正确的是( )A. 3+=B. 1)1=C. 122-=-D. 2222()x xy y x y +-=-(2019,安徽蚌埠中考模拟) 下列多项式中,能用公式法分解因式的是( )A.x 2-xyB. x 2+xyC. x 2-y 2D. x 2+y 23.(2019•河北石家庄中考模拟)若要使4x 2+mx +成为一个两数差的完全平方式,则m 的值应为( ) A . B . C . D .4.(2019•山东青岛中考模拟)如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )5.(2019•辽宁本溪中考模拟)有一个长方形内部剪掉了一个小长方形,它们的尺寸如图所示,则余下的部分(阴影部分)的面积( )A .4a 2B .4a 2﹣abC .4a 2+abD .4a 2﹣ab ﹣2b 2 二、填空题1.(2019•呼和浩特中考)因式分解:x 2y ﹣4y 3= .2.(2019•辽宁沈阳中考)因式分解:﹣x 2﹣4y 2+4xy = .3.(2019•甘肃兰州中考)因式分解:a 3+2a 2+a = .4.(2019•山东威海中考)分解因式:2x 2﹣2x += .5.(2019,江苏省连云港中考模拟)当12s t =+时,代数式222s st t -+的值为 . 6. (2019,山西省太原中考模拟)分解因式(4)4x x ++的结果是 .7.(2019,山东潍坊中考模拟)分解因式:32627x x x +-= .8. (2019,河北沧州中考模拟)有许多代数恒等式可以用图形的面积来表示,如图①,它表示了(2m +n )(m+n)=2m2+3mn+n2(1)图②是将一个长2m、宽2n的长方形,沿图中虚线平均分为四块小长方形,然后再拼成一个正方形(图③),则图③中的阴影部分的正方形的边长等于(用含m、n的代数式表示)(2)请用两种不同的方法列代数式表示图③中阴影部分的面积.方法①方法②(3)请你观察图形③,写出三个代数式(m+n)2、(m﹣n)2、mn关系的等式:;(4)根据(3)题中的等量关系,解决如下问题:若已知x+y=7,xy=10,则(x﹣y)2=;(5)小明用8个一样大的长方形(长acm,宽bcm)拼图,拼出了如图甲、乙的两种图案,图案甲是一个正方形,图案乙是一个大的长方形,图案甲的中间留下了边长是2cm的正方形小洞.则(a+2b)2﹣8ab 的值为.三、解答题1.(2019湖南怀化中考模拟)先化简,再求值:(2a-1)2-2(a+1)(a-1)-a(a-2),其中a=2+1.2.(2019浙江宁波中考模拟)化简:(a+b)2+(a-b)(a+b)-2ab.3、(2019浙江金华中考模拟)先化简,再求值:(x+5)(x-1)+(x-2)2,其中x=-2.4.(2019江苏省淮安中考模拟)先化简,再求值:[]21y 1,))(()(2=-=÷+-+-,其中x x y x y x y x5. 已知a +b =3,ab =﹣10.求:(1)a 2+b 2的值;(2)(a ﹣b )2的值.6.下面是某同学对多项式(x 2﹣4x +2)(x 2﹣4x +6)+4进行因式分解的过程.解:设x 2﹣4x =y ,原式=(y +2)(y +6)+4 (第一步)=y 2+8y +16 (第二步)=(y +4)2(第三步)=(x 2﹣4x +4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式 (2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2﹣2x )(x 2﹣2x +2)+1进行因式分解.7.正方形Ⅰ的周长比正方形Ⅱ的周长长96cm,它们的面积相差960cm2,求这两个正方形的边长.8.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上,BC=DE=a,AC=BD=b,AB=BE=c,且AB⊥BE.(1)用两种不同的方法表示长方形ACDF的面积S.方法一:S=.方法二:S=.(2)求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.。
乘法公式与因式分解
乘法公式与因式分解乘法公式是数学中的重要概念之一,它与因式分解密切相关。
本文将探讨乘法公式与因式分解的概念、应用以及计算方法。
一、乘法公式的概念乘法公式是指将两个或多个数相互乘积的规则。
常见的乘法公式有两类:整式的乘法公式和分式的乘法公式。
整式的乘法公式指的是多项式之间的乘法规则,如(a+b)(c+d)=ac+ad+bc+bd;分式的乘法公式则是指两个分式相乘的规则,如ab/cd=(a/c)(b/d)。
二、乘法公式的应用乘法公式在代数运算中有广泛的应用。
在多项式的乘法运算中,乘法公式可以简化计算步骤,提高计算效率。
例如,将一个多项式与另一个多项式相乘时,可以利用乘法公式将其分解为多个互相独立的项,并将各项的系数相乘得到最终结果。
同样,在分式运算中,乘法公式可以将两个分式相乘,得到一个新的分式,从而简化计算。
三、因式分解的概念因式分解是指将一个复杂的表达式拆解成多个简单因式的过程。
在数学中,因式分解是一种常用的求解问题的方法。
例如,对于一个多项式表达式,通过因式分解可以将其分解为两个或多个乘积形式的简单因式相乘,从而更好地理解和处理该表达式。
四、乘法公式与因式分解的关系乘法公式与因式分解密切相关。
在因式分解过程中,使用乘法公式可以将一个多项式进行拆解,形成由简单因式相乘的形式。
同时,通过乘法公式的合理运用,也可以进行因式分解的计算过程,进一步理解和推导出较为复杂的因式。
五、乘法公式的计算方法乘法公式的计算方法根据具体情况而定。
对于整式的乘法公式,可以根据分配律和结合律,按照一定的顺序进行计算。
需要注意的是,在乘法过程中要对指数和系数进行合理的运算和组合。
而对于分式的乘法公式,可以利用分数的乘法法则,将分子相乘得到新的分子,分母相乘得到新的分母,从而得到新的分式。
六、因式分解的计算方法因式分解的计算方法具体取决于所要分解的表达式的特点。
一般来说,可以使用因式分解的常见方法,如公因式提取法、配方法、换元法等。
因式分解公式及方法大全
公式及方法大全待定系数法(因式分解)待定系数法是数学中的一种重要的解题方法,应用很广泛,这里介绍它在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.常用的因式分解公式:例1 分解因式:x2+3xy+2y2+4x+5y+3.分析由于(x2+3xy+2y2)=(x+2y)(x+y),若原式可以分解因式,那么它的两个一次项一定是x+2y+m和x+y+n的形式,应用待定系数法即可求出m和n,使问题得到解决.解设x2+3xy+2y2+4x+5y+3=(x+2y+m)(x+y+n)=x2+3xy+2y2+(m+n)x+(m+2n)y+mn,比较两边对应项的系数,则有解之得m=3,n=1.所以原式=(x+2y+3)(x+y+1).说明本题也可用双十字相乘法,请同学们自己解一下.例2 分解因式:x4-2x3-27x2-44x+7.分析本题所给的是一元整系数多项式,根据前面讲过的求根法,若原式有有理根,则只可能是±1,±7(7的约数),经检验,它们都不是原式的根,所以,在有理数集内,原式没有一次因式.如果原式能分解,只能分解为(x2+ax+b)(x2+cx+d)的形式.解设原式=(x2+ax+b)(x2+cx+d)=x4+(a+c)x3+(b+d+ac)x2+(ad+bc)x+bd,所以有由bd=7,先考虑b=1,d=7有所以原式=(x2-7x+1)(x2+5x+7).说明由于因式分解的唯一性,所以对b=-1,d=-7等可以不加以考虑.本题如果b=1,d=7代入方程组后,无法确定a,c的值,就必须将bd=7的其他解代入方程组,直到求出待定系数为止.本题没有一次因式,因而无法运用求根法分解因式.但利用待定系数法,使我们找到了二次因式.由此可见,待定系数法在因式分解中也有用武之地.求根法(因式分解)我们把形如anxn+an-1xn-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x) f(1)=12-3×我们把形如a n x n+a n-1x n-1+…+a1x+a0(n为非负整数)的代数式称为关于x的一元多项式,并用f(x),g(x),…等记号表示,如f(x)=x2-3x+2,g(x)=x5+x2+6,…,当x=a时,多项式f(x)的值用f(a)表示.如对上面的多项式f(x)f(1)=12-3×1+2=0;f(-2)=(-2)2-3×(-2)+2=12.若f(a)=0,则称a为多项式f(x)的一个根.定理1(因式定理) 若a是一元多项式f(x)的根,即f(a)=0成立,则多项式f(x)有一个因式x-a.根据因式定理,找出一元多项式f(x)的一次因式的关键是求多项式f(x)的根.对于任意多项式f(x),要求出它的根是没有一般方法的,然而当多项式f(x)的系数都是整数时,即整系数多项式时,经常用下面的定理来判定它是否有有理根.定理2的根,则必有p是a0的约数,q是a n的约数.特别地,当a0=1时,整系数多项式f(x)的整数根均为a n的约数.我们根据上述定理,用求多项式的根来确定多项式的一次因式,从而对多项式进行因式分解.例2 分解因式:x3-4x2+6x-4.分析这是一个整系数一元多项式,原式若有整数根,必是-4的约数,逐个检验-4的约数:±1,±2,±4,只有f(2)=23-4×22+6×2-4=0,即x=2是原式的一个根,所以根据定理1,原式必有因式x-2.解法1 用分组分解法,使每组都有因式(x-2).原式=(x3-2x2)-(2x2-4x)+(2x-4)=x2(x-2)-2x(x-2)+2(x-2)=(x-2)(x2-2x+2).解法2 用多项式除法,将原式除以(x-2),所以原式=(x-2)(x2-2x+2).说明在上述解法中,特别要注意的是多项式的有理根一定是-4的约数,反之不成立,即-4的约数不一定是多项式的根.因此,必须对-4的约数逐个代入多项式进行验证.例3 分解因式:9x4-3x3+7x2-3x-2.分析因为9的约数有±1,±3,±9;-2的约数有±1,为:所以,原式有因式9x2-3x-2.解9x4-3x3+7x2-3x-2=9x4-3x3-2x2+9x2-3x-2=x2(9x3-3x-2)+9x2-3x-2=(9x2-3x-2)(x2+1)=(3x+1)(3x-2)(x2+1)说明若整系数多项式有分数根,可将所得出的含有分数的因式化为整系数因式,如上题中的因式可以化为9x2-3x-2,这样可以简化分解过程.总之,对一元高次多项式f(x),如果能找到一个一次因式(x-a),那么f(x)就可以分解为(x-a)g(x),而g(x)是比f(x)低一次的一元多项式,这样,我们就可以继续对g(x)进行分解了.双十字相乘法(因式分解)分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可分解二次三项式时,我们常用十字相乘法.对于某些二元二次六项式(ax2+bxy+cy2+dx+ey+f),我们也可以用十字相乘法分解因式.例如,分解因式2x2-7xy-22y2-5x+35y-3.我们将上式按x降幂排列,并把y当作常数,于是上式可变形为2x2-(5+7y)x-(22y2-35y+3),可以看作是关于x的二次三项式.对于常数项而言,它是关于y的二次三项式,也可以用十字相乘法,分解为即-22y2+35y-3=(2y-3)(-11y+1).再利用十字相乘法对关于x的二次三项式分解所以原式=[x+(2y-3)][2x+(-11y+1)]=(x+2y-3)(2x-11y+1).上述因式分解的过程,实施了两次十字相乘法.如果把这两个步骤中的十字相乘图合并在一起,可得到下图:它表示的是下面三个关系式:(x+2y)(2x-11y)=2x2-7xy-22y2;(x-3)(2x+1)=2x2-5x-3;(2y-3)(-11y+1)=-22y2+35y-3.这就是所谓的双十字相乘法.用双十字相乘法对多项式ax2+bxy+cy2+dx+ey+f进行因式分解的步骤是:(1)用十字相乘法分解ax2+bxy+cy2,得到一个十字相乘图(有两列);(2)把常数项f分解成两个因式填在第三列上,要求第二、第三列构成的十字交叉之积的和等于原式中的ey,第一、第三列构成的十字交叉之积的和等于原式中的dx.例1 分解因式:(1)x2-3xy-10y2+x+9y-2;(2)x2-y2+5x+3y+4;(3)xy+y2+x-y-2;(4)6x2-7xy-3y2-xz+7yz-2z2.解(1)原式=(x-5y+2)(x+2y-1).(2)原式=(x+y+1)(x-y+4).(3)原式中缺x2项,可把这一项的系数看成0来分解.原式=(y+1)(x+y-2).(4)原式=(2x-3y+z)(3x+y-2z).说明(4)中有三个字母,解法仍与前面的类似.笔算开平方对于一个数的开方,可以不用计算机,也不用查表,直接笔算出来,下面通过一个例子来说明如何笔算开平方,对于其它数只需模仿即可例求316.4841的平方根.第一步,先将被开方的数,从小数点位置向左右每隔两位用逗号,分段,如把数316.4841分段成3,16.48,41.第二步,找出第一段数字的初商,使初商的平方不超过第一段数字,而初商加1的平方则大于第一段数字,本例中第一段数字为3,初商为1,因为12=1<3,而(1+1)2=4>3.第三步,用第一段数字减去初商的平方,并移下第二段数字,组成第一余数,在本例中第一余数为216.第四步,找出试商,使(20×初商+试商)×试商不超过第一余数,而【20×初商+(试商+1)】×(试商+1)则大于第一余数.第五步,把第一余数减去(20×初商+试商)×试商,并移下第三段数字,组成第二余数,本例中试商为7,第二余数为2748.依此法继续做下去,直到移完所有的段数,若最后余数为零,则开方运算告结束.若余数永远不为零,则只能取某一精度的近似值.第六步,定小数点位置,平方根小数点位置应与被开方数的小数点位置对齐.本例的算式如下:根式的概念【方根与根式】数a的n次方根是指求一个数,它的n次方恰好等于a.a的n次方根记为(n为大于1的自然数).作为代数式,称为根式.n称为根指数,a称为根底数.在实数范围内,负数不能开偶次方,一个正数开偶次方有两个方根,其绝对值相同,符号相反.【算术根】正数的正方根称为算术根.零的算术根规定为零.【基本性质】由方根的定义,有根式运算【乘积的方根】乘积的方根等于各因子同次方根的乘积;反过来,同次方根的乘积等于乘积的同次方根,即≥0,b≥0)【分式的方根】分式的方根等于分子、分母同次方根相除,即≥0,b>0)【根式的乘方】≥0)【根式化简】≥0)≥0,d≥0)≥0,d≥0)【同类根式及其加减运算】根指数和根底数都相同的根式称为同类根式,只有同类根式才可用加减运算加以合并.进位制的基与数字任一正数可表为通常意义下的有限小数或无限小数,各数字的值与数字所在的位置有关,任何位置的数字当小数点向右移一位时其值扩大10倍,当小数点向左移一位时其值缩小10倍.例如一般地,任一正数a可表为这就是10进数,记作a(10),数10称为进位制的基,式中ai在{0,1,2,L,9}中取值,称为10进数的数字,显然没有理由说进位制的基不可以取其他的数.现在取q为任意大于1的正整数当作进位制的基,于是就得到q进数表示(1)式中数字ai在{0,1,2,...,q-1}中取值,a n a n-1...a1a0称为q进数a(q)的整数部分,记作[a(q)];a-1a-2 ...称为a(q)的分数部分,记作{a(q)}.常用进位制,除10进制外,还有2进制、8进制、16进制等,其数字如下2进制0, 18进制0, 1, 2, 3, 4, 5, 6, 716进制0, 1, 2, 3, 4, 5, 6, 7, 8, 9各种进位制的相互转换1 q→10转换适用通常的10进数四则运算规则,根据公式(1),可以把q进数a(q)转换为10进数表示.例如2 10→q转换转换时必须分为整数部分和分数部分进行.对于整数部分其步骤是:(1) 用q去除[a(10)],得到商和余数.(2) 记下余数作为q进数的最后一个数字.(3) 用商替换[a(10)]的位置重复(1)和(2)两步,直到商等于零为止.对于分数部分其步骤是:(1)用q去乘{a(10)}.(2)记下乘积的整数部分作为q进数的分数部分第一个数字.(3)用乘积的分数部分替换{a(10)}的位置,重复(1)和(2)两步,直到乘积变为整数为止,或直到所需要的位数为止.例如:103.118(10)=147.074324 (8)整数部分的草式分数部分的草式3 p →q 转换 通常情况下其步骤是:a(p)→a(10)→a(q).如果p,q 是同一数s 的不同次幂,其步骤是:a(p)→a(s)→a(q).例如,8进数127.653(8)转换为16进数时,由于8=23,16=24,所以s=2,其步骤是:首先把8进数的每个数字根据8-2转换表转换为2进数(三位一组) 127.653(8)=001 010 111.110 101 011(2)然后把2进数的所有数字从小数点起(左和右)每四位一组分组,从16-2转换表中逐个记下对应的16进数的数字,即正多边形各量换算公式n 为边数 R 为外接圆半径 a 为边长 爎为内切圆半径为圆心角 S 为多边形面积重心G 与外接圆心O 重合正多边形各量换算公式表 各量 正三角形n 为边数 R 为外接圆半径 a 为边长 爎为内切圆半径为圆心角 S为多边形面积重心G 与外接圆心O 重合 正多边形各量换算公式表Ra或许你还对作图感兴趣:正多边形作图所谓初等几何作图问题,是指使用无刻度的直尺和圆规来作图.若使用尺规有限次能作出几何图形,则称为作图可能,或者说欧几里得作图法是可能的,否则称为作图不可能.很多平面图形可以用直尺和圆规作出,例如上面列举的正五边形、正六边形、正八边形、正十边形等.而另一些就不能作出,例如正七边形、正九边形、正十一边形等,这些多边形只能用近似作图法.如何判断哪些作图可能,哪些作图不可能呢?直到百余年前,用代数的方法彻底地解决了这个问题,即给出一个关于尺规作图可能性的准则:作图可能的充分必要条件是,这个作图问题中必需求出的未知量能够由若干已知量经过有限次有理运算及开平方运算而算出.几千年来许多数学家耗费了不少的精力,企图解决所谓“几何三大问题”:立方倍积问题,即作一个立方体,使它的体积二倍于一已知立方体的体积.三等分角问题,即三等分一已知角.化圆为方问题,即作一正方形,使它的面积等于一已知圆的面积.后来已严格证明了这三个问题不能用尺规作图.代数式的求值代数式的求值与代数式的恒等变形关系十分密切.许多代数式是先化简再求值,特别是有附加条件的代数式求值问题,往往需要利用乘法公式、绝对值与算术根的性质、分式的基本性质、通分、求值中的方法技巧主要是代数式恒等变形的技能、技巧和方法.下面结合例题逐一介绍.1.利用因式分解方法求值因式分解是重要的一种代数恒等变形,在代数式化简求值中,经常被采用.分析x的值是通过一个一元二次方程给出的,若解出x 后,再求值,将会很麻烦.我们可以先将所求的代数式变形,看一看能否利用已知条件.解已知条件可变形为3x2+3x-1=0,所以6x4+15x3+10x2=(6x4+6x3-2x2)+(9x3+9x2-3x)+(3x2+3x-1)+1=(3x2+3x-1)(2z2+3x+1)+1=0+1=1.说明在求代数式的值时,若已知的是一个或几个代数式的值,这时要尽可能避免解方程(或方程组),而要将所要求值的代数式适当变形,再将已知的代数式的值整体代入,会使问题得到简捷的解答.例2 已知a,b,c为实数,且满足下式:a2+b2+c2=1,①求a+b+c的值.解将②式因式分解变形如下即所以a+b+c=0或bc+ac+ab=0.若bc+ac+ab=0,则(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=a2+b2+c2=1,所以a+b+c=±1.所以a+b+c的值为0,1,-1.说明本题也可以用如下方法对②式变形:即前一解法是加一项,再减去一项;这个解法是将3拆成1+1+1,最终都是将②式变形为两个式子之积等于零的形式.2.利用乘法公式求值例3 已知x+y=m,x3+y3=n,m≠0,求x2+y2的值.解因为x+y=m,所以m3=(x+y)3=x3+y3+3xy(x+y)=n+3m·xy,所以求x2+6xy+y2的值.分析将x,y的值直接代入计算较繁,观察发现,已知中x,y的值正好是一对共轭无理数,所以很容易计算出x+y 与xy的值,由此得到以下解法.解x2+6xy+y2=x2+2xy+y2+4xy=(x+y)2+4xy3.设参数法与换元法求值如果代数式字母较多,式子较繁,为了使求值简便,有时可增设一些参数(也叫辅助未知数),以便沟通数量关系,这叫作设参数法.有时也可把代数式中某一部分式子,用另外的一个字母来替换,这叫换元法.分析本题的已知条件是以连比形式出现,可引入参数k,用它表示连比的比值,以便把它们分割成几个等式.x=(a-b)k,y=(b-c)k,z=(c-a)k.所以x+y+z=(a-b)k+(b-c)k+(c-a)k=0.u+v+w=1,①由②有把①两边平方得u2+v2+w2+2(uv+vw+wu)=1,所以u2+v2+w2=1,即两边平方有所以4.利用非负数的性质求值若几个非负数的和为零,则每个非负数都为零,这个性质在代数式求值中经常被使用.例8 若x2-4x+|3x-y|=-4,求y x的值.分析与解x,y的值均未知,而题目却只给了一个方程,似乎无法求值,但仔细挖掘题中的隐含条件可知,可以利用非负数的性质求解.因为x2-4x+|3x-y|=-4,所以x2-4x+4+|3x-y|=0,即(x-2)2+|3x-y|=0.所以y x=62=36.例9 未知数x,y满足(x2+y2)m2-2y(x+n)m+y2+n2=0,其中m,n表示非零已知数,求x,y的值.分析与解两个未知数,一个方程,对方程左边的代数式进行恒等变形,经过配方之后,看是否能化成非负数和为零的形式.将已知等式变形为m2x2+m2y2-2mxy-2mny+y2+n2=0,(m2x2-2mxy+y2)+(m2y2-2mny+n2)=0,即(mx-y)2+(my-n)2=0.5.利用分式、根式的性质求值分式与根式的化简求值问题,内容相当丰富,因此设有专门讲座介绍,这里只分别举一个例子略做说明.例10 已知xyzt=1,求下面代数式的值:分析直接通分是笨拙的解法,可以利用条件将某些项的形式变一变.解根据分式的基本性质,分子、分母可以同时乘以一个不为零的式子,分式的值不变.利用已知条件,可将前三个分式的分母变为与第四个相同.同理分析计算时应注意观察式子的特点,若先分母有理化,计算反而复杂.因为这样一来,原式的对称性就被破坏了.这里所言的对称性是分利用这种对称性,或称之为整齐性,来简化我们的计算.同样(但请注意算术根!)将①,②代入原式有练习六2.已知x+y=a,x2+y2=b2,求x4+y4的值.3.已知a-b+c=3,a2+b2+c2=29,a3+b3+c3=45,求ab(a+b)+bc(b+c)+ca(c+a)的值.5.设a+b+c=3m,求(m-a)3+(m-b)3+(m-c)3-3(m-a)(m-b)(m-c)的值.8.已知13x2-6xy+y2-4x+1=0,求(x+y)13·x10的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法公式与因式分解
1.2)2(n m +-的运算结果是 ( )
A 、2244n mn m ++
B 、2244n mn m +--
C 、2244n mn m +-
D 、2242n mn m +-
2.运算结果为42421x x +-的是 ( )
A 、22)1(x +-
B 、22)1(x +
C 、22)1(x --
D 、2)1(x -
3.已知2264b Nab a +-是一个完全平方式,则N 等于 ( )
A 、8
B 、±8
C 、±16
D 、±32
4.如果22)()(y x M y x +=+-,那么M 等于 ( )
A 、 2xy
B 、-2xy
C 、4xy
D 、-4xy
5.下列可以用平方差公式计算的是( )
A 、(x -y) (x + y)
B 、(x -y) (y -x)
C 、(x -y)(-y + x)
D 、(x -y)(-x + y)
6.下列各式中,运算结果是22169b a -的是( )
A 、)43)(43(b a b a --+-
B 、)34)(34(a b a b --+-
C 、)34)(34(a b a b -+
D 、)83)(23(b a b a -+
7.若2422549))(________57(y x y x -=--,括号内应填代数式( )
A 、y x 572+
B 、y x 572--
C 、y x 572+-
D 、y x 572- 8.22)21
3()21
3(-+a a 等于( )
A 、4192-a
B 、161
814-a
C 、161
29
8124+-a a D 、161
298124++a a
9、下列式子由左到右的变形中,属于因式分解的是( )
A 22244)2(y xy x y x ++=+ B.3)1(4222+-=+-x y x
)1)(13(1232-+=--x x x D.mc mb ma c b a m ++=++)(
10、已知m + n = 5,m – n = 3,则m 2 – n 2 等于
A 、5
B 、15
C 、25
D 、9
11、把216a +-分解因式,结果是( )
A .)8)(8(+-a a
B .)4)(4(-+a a
C .)2)(2(+-a a
D 2)4.(-a
12、下列多项式中,能用公式进行因式分解的是( )
A .22b a -- B.422++x x
C. 22)(b a ---
D. 41
2+-x x
13、用分组分解法将x y xy x 332-+-分解因式,下列的分组方式中不恰当的是(
)
A .)3()3(2xy y x x -+- B.)33()(2x y xy x -+-
C.)33()(2x y xy x -+-
D.y x xy x 3)3(2+--
14、把多项式1222+--y x xy 分解因式的结果是( )
A .)1)(1(+-+-x y y x B.)1)(1(---+x y y x
C.)1)(1+--+y x y x
D..)1)(1(--+-y x y x
15、把多项式822222--++-y x y xy x 分解因式的结果是( )
A.)2)(4(+---y x y x
B.)8)(1(----y x y x
C.)2)(4(--+-y x y x
D.)8)(1(--+-y x y x
D 、32
16、多项式3222315520m n m n m n +-的公因式是( )
A 、5mn
B 、225m n
C 、25m n
D 、25mn
17、下列多项式能分解因式的是( )
A 、x 2-y
B 、x 2+1
C 、x 2+y+y 2
D 、x 2-4x+4
18、20062+3×20062–5×20072的值不能..被下列哪个数整除( )
A 、3
B 、5
C 、20062
D 、20052
19、把多项式)2()2(2a m a m -+-分解因式彻底后等于( )
A 、))(2(2m m a +-
B 、))(2(2m m a --
C 、m(a -2)(m -1)
D 、m(a -2)(m+1)
20、下列各式中,能运用平方差分式分解因式的是( )
A 、21x +-
B 、22y x +
C 、42--x
D 、()22
b a --- 21、若m x x +-82
是完全平方式, 则m 的值为( )
A 、4
B 、8
C 、16
22.计算题
⑴ x (9x -5)-(3x + 1) (3x -1) ⑵ (a + b -c) (a -b + c)
⑶)49)(23)(23(22b a b a b a ++-
⑷ (2x -1) (2x + 1)-2(x -2) (x + 2)
(5) 22)()(y x y x +- (6)22)35()35(y x y x ++-
(7)))((c b a c b a +--+ (8) 2222)2()4()2(++-t t t
(9)3123x x - (10)224520bxy bx a -
23、已知22==+ab b a ,,求
32232121ab b a b a ++的值
24、先分解因式,再求值:655222++-+-b a b ab a ,其中92,96==b a
26. 对于任意自然数n ,()()2257--+n n 是否能被24整除,为什么?。