2.等差数列(教师)

合集下载

教学:2.2.2 等差数列(二)

教学:2.2.2 等差数列(二)
规律二:
在等差数列an中,若m, n, p, q N ,
则当m n p q时,总有am an a p aq
特别地,若m n 2 p,则am an 2a p
练习:在等差数列{an}中,
(1)已知 a6+a9+a12+a15=20,求a1+a20 ;10 (2)已知 a3+a11=10,求 a6+a7+a8; 15
则当m n p q时,总有am an a p aq
特别地,若m n 2 p,则am an 2a p
即此时a p是am与an的等差中项
练习:在等差数列{an}中,
(1)已知 a6+a9+a12+a15=20,求a1+a20 ;10 (2)已知 a3+a11=10,求 a6+a7+a8; 15
a3
8 12
解得
a1 a3
2 6


a1 a3
6 2
∴这三个数为2,4,6或6,4,2
例4、三数成等差数列,它们的和为12,首尾二数的 积也为12,求此三数.
解法2:设这三个数分别为a-d,a,a+d 则 (a-d )+a+(a+d )=12,即3a=12 ∴a= 4 又∵ (a-d )(a+d )=12,即(4-d )(4+d )=12 解得 d=±2 ∴当d=2时,这三个数分别为2,4,6 当d=-2时,这三个数分别为6,4,2
(3)已知 a2+a14=10,能求出a16吗?
练习:
1、已知在等差数列 an 中, a1 a3 6, a7 18,

四年级第15讲-等差数列(二)-教师版

四年级第15讲-等差数列(二)-教师版

在下面9个方框中各填一个数,使这9个数从左到右构成等差数列,其中4、20已经填好,这个等差数列的公差是几?请你填好这个等差数列。

【答案】公差是2。

【解析】相差:9-1=8(个)公差,公差(d):(20-4)÷(9-1)=2⑴有一个等差数列,第1项是3,第10项是39,公差是多少?⑵已知一个等差数列第7项等于43,第9项等于57。

请问这个数列的公差是多少?【答案】(1)4;(2)7。

【解析】(1)公差(d):(39-3)÷(10-1)=4(2)公差(d):(57-43)÷(9-7)=7等差数列(二)知识纵横等差数列中求公差的公式:公差=(末项-首项)÷(项数-1)字母公式:d=(a n - a1)÷(n -1)等差数列中末项的公式:末项=首项+(项数-1)×公差字母公式:a n= a1+ (n -1)⨯d等差数列中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半。

即中间项=和÷项数=(首项+末项)÷2。

或者换句话说,各项的和等于中间项乘项数,即和=中间项×项数。

例 1试一试 1等差数列:1,3,5,7,9,11,……,第20项是多少?【答案】第20项是39。

【解析】末项=首项+(项数-1)×公差公差d=2第20项:1+(20-1)×2=39在等差数列8、11、14、17、20、……中,第10项是多少?第14项是多少?第31项呢?【答案】第10项是35;第14项是47;第31项是98。

【解析】末项=首项+(项数-1)×公差公差d=3第10项(a 10):8+(10-1)×3=35第14项(a 14):8+(14-1)×3=47第31项(a 31):8+(31-1)×3=98等差数列中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。

高中数学数列教案:等差数列

高中数学数列教案:等差数列

高中数学数列教案:等差数列一、教学目标1.知识与技能:理解等差数列的定义及性质;学会利用等差数列的通项公式和前n项和公式解决实际问题;掌握等差数列的应用。

2.过程与方法:通过观察、归纳、推理等方法,探索等差数列的规律;学会运用等差数列的通项公式和前n项和公式进行计算;培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观:培养学生独立思考、合作交流的精神;培养学生运用数学知识解决实际问题的意识。

二、教学重难点1.教学重点:等差数列的定义及性质;等差数列的通项公式和前n项和公式。

2.教学难点:等差数列的性质的证明;等差数列的应用问题。

三、教学过程1.导入新课通过生活中的实例,如斐波那契数列,引导学生思考数列的特点,导入等差数列的概念。

2.等差数列的定义及性质讲解等差数列的定义:一个数列,从第二项起,每一项与它前一项的差都等于同一个常数,这个数列叫做等差数列。

讲解等差数列的性质:等差数列中任意连续三项的和等于中间项的三倍。

通过实例,让学生理解并掌握等差数列的定义及性质。

3.等差数列的通项公式讲解等差数列的通项公式:an=a1+(n1)d,其中an表示第n项,a1表示首项,d表示公差。

通过实例,让学生学会运用通项公式求解等差数列的特定项。

4.等差数列的前n项和公式讲解等差数列的前n项和公式:Sn=n/2(a1+an),其中Sn表示前n项和。

通过实例,让学生学会运用前n项和公式求解等差数列的和。

5.等差数列的应用举例讲解等差数列在实际问题中的应用,如求和、最值问题等。

让学生独立完成一些等差数列的应用题,培养学生的解决问题的能力。

6.课堂小结强调等差数列在实际问题中的应用。

7.作业布置布置一些等差数列的练习题,让学生巩固所学知识。

四、教学反思本节课通过生活中的实例导入等差数列的概念,让学生在轻松的氛围中学习。

在讲解等差数列的定义、性质、通项公式和前n项和公式时,注重通过实例进行教学,让学生在实际操作中掌握知识。

三年级下册数学教案-等差数列(二)等差数列2 苏教版

三年级下册数学教案-等差数列(二)等差数列2  苏教版

三年级下册数学教案:等差数列(二)教学目标:1. 让学生理解等差数列的概念,并能识别等差数列。

2. 使学生掌握等差数列的通项公式,并能运用通项公式求出数列中的任意一项。

3. 培养学生的观察能力、逻辑思维能力和解决问题的能力。

教学重点与难点:1. 等差数列的概念和通项公式的理解与应用。

2. 运用等差数列的知识解决实际问题。

教学方法:1. 讲授法:讲解等差数列的概念和通项公式。

2. 演示法:通过演示等差数列的例子,帮助学生理解等差数列的特点。

3. 练习法:通过练习题,让学生巩固等差数列的知识。

教学步骤:1. 导入新课:回顾上节课学习的等差数列的概念,引导学生思考等差数列的特点。

2. 讲解等差数列的通项公式:通过具体的例子,讲解等差数列的通项公式,并解释公式的含义。

3. 演示等差数列的例子:通过演示等差数列的例子,帮助学生理解等差数列的特点。

4. 练习题:布置一些练习题,让学生运用等差数列的通项公式解决问题。

5. 总结:总结本节课的学习内容,强调等差数列的概念和通项公式的重要性。

6. 作业布置:布置一些与等差数列相关的作业,让学生巩固所学知识。

教学反思:本节课通过讲解等差数列的概念和通项公式,帮助学生理解等差数列的特点。

通过演示等差数列的例子和练习题,让学生巩固等差数列的知识。

在教学过程中,要注重学生的参与,鼓励学生积极思考,提高他们的观察能力、逻辑思维能力和解决问题的能力。

同时,要及时关注学生的学习情况,对学生的学习困难进行指导和帮助。

在以上提供的教案中,需要重点关注的是“教学步骤”部分,因为这一部分详细描述了课堂教学的实施过程,包括导入新课、讲解通项公式、演示例子、练习题、总结和作业布置。

这些步骤的设计直接关系到学生能否有效地理解和掌握等差数列的知识。

以下将对这一重点细节进行详细的补充和说明。

1. 导入新课导入新课是激发学生兴趣和引导学生进入学习状态的重要环节。

在这一部分,教师可以通过提出问题或者展示与等差数列相关的现象来吸引学生的注意力。

四年级奥数第五讲-等差数列(二)-教师版

四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。

这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。

要求这本书共有多少页也就是求出这列数的和。

解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。

引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。

文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。

首项=3,末项=21,项数=(21-3)÷2+1=10。

所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。

2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。

这批零件共有多少个?答:(25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。

例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。

提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。

解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。

项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷ 2=52(根)。

五年级奥数等差数列的认识与公式运用教师版

五年级奥数等差数列的认识与公式运用教师版

五年级奥数等差数列的认识与公式运用教师版一、等差数列的定义⑴ 先介绍一下一些定义和表示方法定义:从第二项起,每一项都比前一项大(或小)一个常数(固定不变的数),这样的数列我们称它为等差数列.譬如:2、5、8、11、14、17、20、 从第二项起,每一项比前一项大3 ,递增数列100、95、90、85、80、 从第二项起,每一项比前一项小5 ,递减数列⑵ 首项:一个数列的第一项,通常用1a 表示末项:一个数列的最后一项,通常用n a 表示,它也可表示数列的第n 项。

项数:一个数列全部项的个数,通常用n 来表示;公差:等差数列每两项之间固定不变的差,通常用d 来表示;和 :一个数列的前n 项的和,常用n S 来表示 .二、等差数列的相关公式(1)三个重要的公式① 通项公式:递增数列:末项=首项+(项数1-)⨯公差,11n a a n d =+-⨯() 递减数列:末项=首项-(项数1-)⨯公差,11n a a n d =--⨯()回忆讲解这个公式的时候可以结合具体数列或者原来学的植树问题的思想,让学生明白 末项其实就是首项加上(末项与首项的)间隔个公差个数,或者从找规律的情况入手.同时还可延伸出来这样一个有用的公式:n m a a n m d -=-⨯(),n m >() ② 项数公式:项数=(末项-首项)÷公差+1由通项公式可以得到:11n n a a d =-÷+() (若1n a a >);11n n a a d =-÷+() (若1n a a >).找项数还有一种配组的方法,其中运用的思想我们是常常用到的.譬如:找找下面数列的项数:4、7、10、13、、40、43、46 ,分析:配组:(4、5、6)、(7、8、9)、(10、11、12)、(13、14、15)、、(46、47、48),注意等差是3 ,那么每组有3个数,我们数列中的数都在每组的第1位,所以46应在最后一组第1位,4到48有484145-+=项,每组3个数,所以共45315÷=组,原数列有15组. 当然还可以有其他的配组方法.③ 求和公式:和=(首项+末项)⨯项数÷2对于这个公式的得到可以从两个方面入手:(思路1) 1239899100++++++11002993985051=++++++++共50个101()()()()101505050=⨯= 知识点拨教学目标五年级奥数等差数列的认识与公式运用教师版(思路2)这道题目,还可以这样理解:23498991001009998973212101101101101101101101+++++++=+++++++=+++++++和=1+和倍和即,和 (1001)1002101505050=+⨯÷=⨯=(2) 中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数.譬如:① 48123236436922091800+++++=+⨯÷=⨯=(),题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209⨯;② 65636153116533233331089++++++=+⨯÷=⨯=(),题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333⨯.模块一、等差数列基本概念及公式的简单应用等差数列的基本认识【例 1】下面的数列中,哪些是等差数列?若是,请指明公差,若不是,则说明理由。

等差数列教案(多篇)

等差数列教案(多篇)

一、教学目标1. 知识与技能:(1)理解等差数列的概念及其特点;(2)掌握等差数列的通项公式、求和公式;(3)能够运用等差数列解决实际问题。

2. 过程与方法:(1)通过观察、分析、归纳等差数列的性质;(2)培养学生的逻辑思维能力和运算能力。

3. 情感态度与价值观:(2)引导学生运用数学知识解决实际问题,感受数学的应用价值。

二、教学重点与难点1. 教学重点:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式。

2. 教学难点:(1)等差数列的通项公式的推导;(2)等差数列求和公式的应用。

三、教学过程1. 导入新课:(1)回顾等差数列的定义;(2)引导学生思考等差数列的特点。

2. 知识讲解:(1)讲解等差数列的通项公式;(2)讲解等差数列的求和公式。

3. 例题解析:(1)分析等差数列的例题,引导学生运用通项公式和求和公式;(2)讲解解题思路和方法。

4. 课堂练习:(1)布置练习题,让学生巩固所学知识;(2)引导学生互相讨论,共同解决问题。

四、课后作业1. 巩固等差数列的概念和性质;2. 练习运用通项公式和求和公式解决实际问题。

五、教学反思1. 总结本节课的收获:(1)学生掌握了等差数列的概念和性质;(2)学生能够运用通项公式和求和公式解决实际问题。

2. 反思教学过程:(1)是否充分讲解等差数列的性质和公式;(2)是否注重学生的参与和思考;(3)是否及时给予学生反馈和指导。

3. 改进措施:(1)针对学生的薄弱环节,加强讲解和练习;(2)鼓励学生积极参与,提高课堂氛围;(3)关注学生的学习进度,及时调整教学节奏。

六、教学评价1. 评价内容:(1)等差数列的概念及其特点;(2)等差数列的通项公式、求和公式;(3)运用等差数列解决实际问题的能力。

2. 评价方式:(1)课堂问答;(2)练习题;(3)课后作业;(4)小组讨论。

七、教学资源1. 教学课件:(1)展示等差数列的定义、性质;(2)呈现通项公式、求和公式的推导过程;(3)提供丰富的例题和练习题。

《等差数列》教案

《等差数列》教案

《等差数列》教案一、教学目标:1. 让学生理解等差数列的概念,掌握等差数列的定义及其性质。

2. 能够运用等差数列的通项公式和求和公式解决实际问题。

3. 培养学生的逻辑思维能力和运算能力。

二、教学内容:1. 等差数列的定义:介绍等差数列的定义,通过实例让学生理解等差数列的特点。

2. 等差数列的性质:探讨等差数列的性质,如相邻两项的差是常数,任意一项都可以用首项和公差表示等。

3. 等差数列的通项公式:引导学生推导等差数列的通项公式,并解释其意义。

4. 等差数列的前n项和公式:引导学生推导等差数列的前n项和公式,并解释其意义。

5. 等差数列的应用:通过实例让学生运用等差数列的知识解决实际问题,如计算等差数列的前n项和,求等差数列的某一项等。

三、教学重点与难点:1. 教学重点:等差数列的概念、性质、通项公式和前n项和公式的理解与运用。

2. 教学难点:等差数列通项公式和前n项和公式的推导过程。

四、教学方法:1. 采用问题驱动法,通过提问引导学生思考和探索等差数列的知识。

2. 使用多媒体辅助教学,展示等差数列的图形和实例,增强学生的直观理解。

3. 利用小组讨论法,让学生分组讨论等差数列的性质和公式,促进学生的合作学习。

五、教学准备:1. 准备PPT课件,包括等差数列的定义、性质、通项公式和前n项和公式的讲解。

2. 准备一些等差数列的实际问题,用于课堂练习和巩固知识。

3. 准备答案和解析,用于课堂讲解和解答学生的疑问。

六、教学过程:1. 导入:通过一个简单的等差数列实例,如自然数的序列,引导学生思考等差数列的特点。

2. 新课讲解:讲解等差数列的定义、性质、通项公式和前n项和公式,结合PPT 课件和实例进行解释。

3. 课堂练习:给出一些等差数列的实际问题,让学生运用所学知识进行计算和解答,教师进行指导和解析。

4. 小组讨论:让学生分组讨论等差数列的性质和公式,分享彼此的想法和理解,教师进行指导和点评。

5. 总结与复习:对本节课的主要内容和知识点进行总结回顾,强调重点和难点,解答学生的疑问。

小学四年级数学 第六讲:数列(教师版)

小学四年级数学 第六讲:数列(教师版)

小学四年级第六讲数列1、数列:按一定顺序排成的一列数叫做数列。

数列中的每一个数都叫做项,第一项称为首项,最后一项称为末项。

数列中共有的项的个数叫做项数。

2、等差数列与公差:一个数列,从第二项起,每一项与与它前一项的差都相等,这样的数列的叫做等差数列,其中相邻两项的差叫做公差。

3、常用公式等差数列的总和=(首项+末项)⨯项数÷2项数=(末项-首项)÷公差+1末项=首项+公差⨯(项数-1)首项=末项-公差⨯(项数-1)公差=(末项-首项)÷(项数-1)等差数列(奇数个数)的总和=中间项⨯项数1、重点是对数列常用公式的理解掌握2、难点是对题目的把握以及对公式的灵活运用例1、在数列3、6、9……,201中,共有多少数?如果继续写下去,第201个数是多少?答案:共有67个数,第201个数是603解析:(1)因为在这个等差数列中,首项=3,末项=201,公差=3,所以根据公式:项数=(末项-首项)÷公差+1,便可求出。

(2)根据公式:末项=首项+公差⨯(项数-1)解:项数=(201-3)÷3+1=67末项=3+3⨯(201-1)=603答:共有67个数,第201个数是603例2、全部三位数的和是多少?答案:全部三位数的和是494550解析:所有的三位数就是从100~999共900个数,观察100、101、102、……、998、999这一数列,发现这是一个公差为1的等差数列。

要求和可以利用等差数列求和公式来解答。

解:(100+999)⨯900÷2=1099⨯900÷2=49455答:全部三位数的和是494550。

例3、求自然数中被10除余1的所有两位数的和。

答案:459解析:在两位数中,被10除余1最小的是11,最大的是91。

从题意可知,本题是求等差数列11、21、31、……、91的和。

它的项数是9,我们可以根据求和公式来计算。

解:11+21+31+……+91=(11+91)⨯9÷2=459例4、求下列方阵中所有各数的和:1、2、3、4、……49、50;2、3、4、5、……50、51;3、4、5、6、……51、52;……49、50、51、52、……97、98;50、51、52、53、……98、99。

等差数列的概念教案

等差数列的概念教案

等差数列的概念教案教学目标:1.了解等差数列的定义和性质;2.学会计算等差数列的通项公式;3.能够应用等差数列解决实际问题。

教学内容:一、引入(10分钟)1.引出等差数列的概念:教师出示一个数字序列:1,3,5,7,9,询问学生是否有发现,让学生讨论并总结规律。

2.介绍等差数列的定义:教师解释等差数列的定义:如果一个数列中任意两个相邻的项之差始终保持不变,那么这个数列就是等差数列。

二、定义与性质(20分钟)1.形式化的定义:教师整理上述讨论结果,给出等差数列的形式化定义,即对于数列{a1, a2, a3,..., an},如果有公差d,那么对于任意的n≥2, ai+1 - ai = d。

2.等差数列的特点:-公差d的大小决定了数列每一项之间的差距;-第一项a1的大小、公差d的正负以及项数n的大小决定了整个数列的排列。

三、计算等差数列的通项公式(30分钟)1.推导递推公式:教师给出等差数列的第一项a1和公差d,让学生推导出递推公式。

-a2=a1+d-a3=a1+2d-...- an = a1 + (n-1)d2.总结通项公式:教师引导学生从递推公式中总结出等差数列的通项公式:an = a1 + (n-1)d。

3.练习计算:学生通过练习计算等差数列的通项公式,巩固学习成果。

四、应用示例(30分钟)1.求等差数列的和:教师给出一个等差数列,让学生思考如何通过通项公式求出数列的和,并进行讲解。

2.实际问题的应用:-示例1:小明从1月1日起,每天存入100元,到12月31日共存了多少钱?-示例2:在一座大楼的楼梯间,第一步有10级台阶,之后每一步比前一步多2级,小明从第二步开始每一步以这个规律上楼,到第10步停下,请计算小明一共走了多少级台阶。

学生通过这些实际问题,巩固应用等差数列解决实际问题的能力。

五、练习与总结(10分钟)1.练习题:让学生独立完成一些练习题,检查学生对等差数列的概念和通项公式的理解和应用。

等差数列教案大班

等差数列教案大班

等差数列教案大班一、教学目标:1. 了解等差数列的概念和性质。

2. 掌握等差数列的通项公式及应用。

3. 能够运用等差数列解决实际问题。

4. 培养学生的逻辑思维和分析问题的能力。

二、教学重点:1. 等差数列的概念和性质。

2. 等差数列的通项公式及应用。

三、教学难点:1. 运用等差数列解决实际问题。

2. 发现等差数列在生活中的应用。

四、教学准备:1. 教学课件、教学书籍。

2. 黑板、粉笔。

3. 习题和练习题。

五、教学过程:步骤一:导入(5分钟)老师通过提问的方式,复习学生对数列的基本概念的理解。

引出等差数列的概念,并给出一个生活中的例子,如每天步行的步数。

引导学生思考等差数列的性质。

步骤二:讲解(20分钟)1. 通过教学课件,详细讲解等差数列的定义和性质。

2. 指导学生理解等差数列的通项公式,并给出相关的示例。

3. 鼓励学生自己推导等差数列的通项公式,帮助他们理解公式的由来。

步骤三:练习(25分钟)1. 分发练习题,并让学生独立完成。

2. 学生完成后,老师逐个讲解题目的解答过程,同时解释解题的思路和方法。

3. 引导学生分析实际问题,应用等差数列进行计算。

步骤四:拓展(20分钟)1. 引导学生思考等差数列在生活中的应用。

例如,车速、水位的变化等。

2. 让学生分组进行小研究,找出更多生活中的等差数列应用,并分享给全班。

3. 整理学生的发现,鼓励他们运用数学知识解决生活中的问题。

步骤五:总结与反思(5分钟)老师引导学生总结今天学习的内容,回顾所学的知识点和解题方法。

并鼓励学生进行反思,思考自己在学习过程中的问题和不足之处。

六、教学延伸:1. 教师可以带领学生进行更复杂的等差数列的计算和应用。

2. 引导学生进行等差数列的推广,如等差数列的和公式等。

3. 给学生提供更多的练习题和挑战题,以更好地巩固所学的知识。

七、教学评价:1. 教师可以通过课堂练习和小组讨论的方式进行学生的评价。

2. 老师可以提供一些练习题或考试题,检查学生对等差数列的掌握程度。

四年级奥数第五讲-等差数列(二)-教师版

四年级奥数第五讲-等差数列(二)-教师版

第五讲等差数列(二)解题方法某些问题以转化为求若干个数的和解决这些问题时先要判断这些数是否成为等差数列,如果是等差数列才可以运用它的一些公式。

在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

例题1小王看一本书第一天看了20页,以后每天都比前一天多看2页,第30天看了78页正好看完。

这本书共有多少页?提示根据条件“以后每天比前一天多看2页”可以知道他每天看的页数都是按照一定规律排列的数,即20、22、24、…、76、78。

要求这本书共有多少页也就是求出这列数的和。

解:由题意可知,这列数是一个等差数列,首项=20,末项=78,项数=30,所以这本书共有(20+78)×30÷2=1470(页)答:这本书共有1470页。

引申1、文丽学英语单词,第一天学会了3个,以后每天都比前一天多学会1个,最后一天学会了21个。

文丽在这些天中共学会了多少个英语单词?解:文丽每天学会的单词个数是一个等差数列,即3、4、5、6、…、21。

首项=3,末项=21,项数=(21-3)÷2+1=10。

所以,文丽在这些天中共学会了(3+21)×10÷2=120(个)答:文丽在这些天中共学会了120个英语单词。

2、李师傅做一批零件,第一天做了25 个,以后每天都比前一天多做2个,第20天做了63个正好做完。

这批零件共有多少个?答: (25+63)×20÷2=880(个)3、小李读一本短篇小说,她第一天读了20页这个等差数列共有多少项?答:这个等差数列共有29项。

例题2 建筑工地上堆着一些钢管(如图所示),求这堆钢管一共有多少根。

提示:根据图可以知道,这是一个以3为首项,以1为公差的等差数列,求钢管一共有多少根其实是求这列数的和。

解:求钢管一共有多少根,其实就是求3+4+5+…+9+10的和。

项数=(10-3)÷1+1=8,根据公式求和为:3+4+5+…+9+10=(3+10)×8÷2=13×8÷2=52(根)。

等差数列教案

等差数列教案

等差数列教案【教案名称】:掌握等差数列的定义、性质和求和公式【教案目标】:1. 理解等差数列的定义和性质;2. 掌握等差数列的通项公式和求和公式;3. 能够应用等差数列的知识解决实际问题。

【教案内容】:一、等差数列的定义1. 引入等差数列的概念:等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都相等。

2. 解释等差数列的特点:等差数列中的任意两项之差都相等,这个公差常用字母d表示。

二、等差数列的性质1. 推导等差数列的通项公式:设等差数列的首项为a₁,公差为d,则第n项aₙ可表示为aₙ = a₁ + (n-1)d。

2. 推导等差数列的前n项和公式:设等差数列的首项为a₁,公差为d,前n项和为Sₙ,则Sₙ = (a₁ + aₙ) * n / 2。

三、应用等差数列解决实际问题1. 求等差数列的第n项:根据通项公式,给定首项和公差,可以求出任意项的值。

2. 求等差数列的前n项和:根据前n项和公式,给定首项、公差和项数,可以求出前n项的和。

3. 应用等差数列解决实际问题:例如计算某人每天存钱的金额、计算某物体的位移等。

【教学步骤】:Step 1:引入等差数列的概念及定义1. 引导学生观察一些具有等差关系的数列,如1, 3, 5, 7, ...,并引导他们发现其中的规律。

2. 引导学生给出等差数列的定义,并解释等差数列的特点。

3. 通过例题,让学生进一步理解等差数列的概念。

Step 2:推导等差数列的通项公式1. 引导学生观察等差数列中的每一项与其前一项之间的关系,进而推导出通项公式。

2. 通过例题,让学生掌握应用通项公式求等差数列中任意项的方法。

Step 3:推导等差数列的前n项和公式1. 引导学生观察等差数列的前n项和与首项、末项之间的关系,进而推导出前n项和公式。

2. 通过例题,让学生掌握应用前n项和公式求等差数列前n项和的方法。

Step 4:应用等差数列解决实际问题1. 引导学生分析实际问题,找出问题中的等差关系,并建立相应的等差数列模型。

等差数列的概念教案

等差数列的概念教案

等差数列的概念教案一、教学目标:1. 知识与技能:(1)理解等差数列的定义及其性质;(2)能够识别和判断一个数列是否为等差数列;(3)学会用通项公式和前n项和公式计算等差数列的项和前n项和。

2. 过程与方法:(1)通过实例引导学生发现等差数列的规律;(2)利用归纳法证明等差数列的性质;(3)培养学生的逻辑思维能力和数学运算能力。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生勇于探索、积极思考的科学精神;二、教学重点与难点:1. 教学重点:(1)等差数列的定义及其性质;(2)等差数列的通项公式和前n项和公式。

2. 教学难点:(1)等差数列性质的证明;(2)通项公式和前n项和公式的灵活运用。

三、教学过程:1. 导入:(1)复习数列的相关概念,如数列、项、相邻项之差等;(2)引导学生思考:是否存在一种数列,使得它的相邻项之差始终相等?2. 新课讲解:(1)介绍等差数列的定义;(2)通过实例展示等差数列的性质;(3)引导学生发现等差数列的通项公式和前n项和公式;(4)讲解等差数列性质的证明方法。

3. 课堂练习:(1)判断一些给定的数列是否为等差数列;(2)利用通项公式和前n项和公式计算等差数列的项和前n项和。

四、教学反思:本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以便更好地引导学生理解和掌握等差数列的概念和性质。

五、课后作业:1. 复习等差数列的定义和性质;2. 练习判断一些给定的数列是否为等差数列;3. 利用通项公式和前n项和公式计算等差数列的项和前n项和;4. 探索等差数列在实际问题中的应用。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况,以及小组合作交流的表现,评价学生对等差数列概念的理解和掌握程度。

2. 练习作业评价:通过学生提交的练习作业,检查学生对等差数列性质的判断、通项公式和前n项和公式的运用能力。

3. 课后反馈评价:收集学生的课后反馈意见,了解学生在学习等差数列过程中遇到的困难和问题,为后续教学提供改进方向。

等差数列教案(多篇)

等差数列教案(多篇)

一、等差数列的定义1. 导入:引导学生回顾数列的概念,进而引出等差数列的定义。

2. 讲解:等差数列是一种特殊的数列,从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差。

3. 举例:给出几个等差数列的例子,让学生观察并找出它们的公差。

4. 练习:让学生练习判断一些数列是否为等差数列,并找出它们的首项和公差。

二、等差数列的通项公式1. 导入:引导学生思考如何表示等差数列的任意一项。

2. 讲解:等差数列的通项公式为$a_n = a_1 + (n-1)d$,其中$a_1$ 是首项,$d$ 是公差,$n$ 是项数。

3. 推导:引导学生利用等差数列的定义和通项公式,推导出前$n$ 项和的公式。

4. 练习:让学生运用通项公式计算等差数列的任意一项,以及求前$n$ 项和。

三、等差数列的性质1. 导入:引导学生思考等差数列有哪些性质。

2. 讲解:等差数列的性质有:①首项和末项的平均值等于中项;②相邻两项的差等于公差;③前$n$ 项和的公式为$S_n = \frac{n(a_1 + a_n)}{2}$。

3. 举例:给出一些等差数列,让学生观察并运用性质进行判断。

4. 练习:让学生运用等差数列的性质解决问题,如求等差数列的中项、判断两个数列是否为等差数列等。

四、等差数列的应用1. 导入:引导学生思考等差数列在实际问题中的应用。

2. 讲解:等差数列在实际问题中的应用举例:①计算等差数列的前$n$ 项和;②求等差数列的通项公式;③解决与等差数列相关的实际问题,如工资增长、人口增长等。

3. 举例:给出一些实际问题,让学生运用等差数列的知识进行解决。

4. 练习:让学生运用等差数列的知识解决实际问题,如计算工资总额、预测人口增长等。

五、等差数列的综合练习1. 给出一些关于等差数列的练习题,让学生独立完成。

2. 针对学生的练习情况,进行讲解和解答疑惑。

3. 总结本节课所学内容,强调等差数列的定义、通项公式、性质和应用。

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计-经典教学教辅文档

《等差数列》教学设计
教学目标:
1.知识与技能教学目标:
理解等差数列的概念,掌握等差数列的通项公式;初步培养先生观察、归纳、推理论证的逻辑思想能力;培养先生数学应意图识和言语表达能力;浸透分类讨论的数学思想,培养先生逻辑思想的严谨性,进步数学素养。

2.过程与方法教学目标:
由实践例子引发先生探求数学知识的愿望,师生共同探求知识的发生发展的过程,促进先生自主探求合作交流,使技能得以进步,充分发挥先生的主观能动性。

3.情感态度与价值观:
充分激发先生学习数学的兴味,让先生体验成功的快乐,培养先生严谨的科学态度和实事求是的精神,让先生建立正确的人生观和价值观,提升先生实践用用的能力。

重点:掌握等差数列的概念及其通项公式的推导过程和运用:
难点:①理解等差数列“等差”的特点及通项公式的含义;
②“数学建模”的思想方法。

五、板书设计:表现重点,难点,及知识结构。

设计如下:
3.2等差数列
一、等差数列的定义……………… 练习:……………
二、等差数列的本质……………… ……………
三、等差数列的通项公式………… 成绩:……………例1
例2。

等差数列教案小学

等差数列教案小学

等差数列教案小学引言:等差数列是小学数学中的重要内容,也是数学学科的基础知识。

在小学阶段,学生初步接触和学习等差数列的概念和性质,掌握等差数列的求和公式,对培养学生的数学思维和分析能力具有重要意义。

本教案旨在通过生动有趣的教学方法,引发学生对等差数列的兴趣,帮助他们理解等差数列的概念和运算规律。

一、教学目标:1. 理解等差数列的概念和性质。

2. 掌握等差数列的通项公式和前n项和公式。

3. 运用等差数列的知识解决实际问题。

4. 培养学生的数学思维和分析能力。

二、教学重点和难点:1. 掌握等差数列的通项公式和前n项和公式。

2. 运用等差数列的知识解决实际问题。

三、教学准备:1. 教学课件。

2. 学生练习册和教材。

3. 白板、彩色笔、橡皮擦等。

四、教学过程:1. 导入(5分钟):引导学生回顾数列的概念和性质,引出等差数列的概念。

通过举例让学生观察和总结等差数列的特点。

2. 概念讲解(10分钟):使用教学课件,给出等差数列的定义和通项公式的推导过程,让学生理解等差数列的概念和计算方法。

3. 练习环节(15分钟):通过多个练习题,让学生熟练掌握等差数列的通项公式和运算规律,培养学生的计算能力和思维能力。

4. 拓展应用(10分钟):通过一些实际问题,引导学生将等差数列的知识应用到实际生活中,例如计算日期、年龄等问题,培养学生的实际运用能力。

5. 归纳总结(5分钟):让学生总结等差数列的性质和公式,并将重点内容记录在笔记本中,方便日后复习。

6. 练习反馈(15分钟):让学生独立完成一些练习题,并进行互相交流和讨论,加深对等差数列的理解和掌握程度。

7. 拓展延伸(10分钟):对于掌握较好的学生,提供一些较难的等差数列问题,挑战他们的思维能力和解题能力,并进行讲解和讨论。

8. 课堂小结(5分钟):通过课堂小结,引导学生回顾本节课的重点内容和解题技巧,对学生的学习效果进行总结评价。

五、课后作业:布置适当数量的练习题目,巩固学生对等差数列的理解和应用能力。

等差数列问题(教师版)

等差数列问题(教师版)

等差数列问题(教师版)等差数列1:了解等差数列的概念及特征;2:掌握等差数列通项公式推导⽅法;3:学会⽤逆向求和的⽅法推导等差数列的和通项公式;4:能灵活运⽤等差数列的通项公式与和通项公式求解⼀般数列。

5 能⼒⽬标培养学⽣观察、分析、归纳、推理的能⼒,在领会函数与数列关系的前提下,把研究函数的⽅法迁移来研究数列,培养学⽣的知识、⽅法迁移能⼒;通过阶梯性练习,提⾼学⽣分析问题和解决问题的能⼒。

6. 情感⽬标在解决问题的过程中培养学⽣主动探索、勇于发现的求知精神;使学⽣认识事物的变化形态,养成细⼼观察、认真分析、善于总结的良好思维习惯。

等差数列我们可以简单地理解为:⼀组数、任意相邻的两个,差都相等,要正确解决实际问题,⼀是要掌握等差数列通⽤公式,既(⾸项+末项)÷2=等差数列的平均数(⾸项+末项)×项数÷2=等差数列所有各项的和⾸项+(项数—1)×公差=末项末项-(项数—1)×公差=⾸项(末项-⾸项)÷(项数-1)=公差(末项-⾸项)÷公差+1=项数第⼆是注意观察,认真思考,明确题⽬中给出条件的实质意义,找出规律性的内容,然后选择合适的公式进⾏计算。

1:2,5,8,11,14……是按照规律排列的⼀串数,第21项是多少?【解析】此数列为⼀个等差数列,将第21项看做末项。

末项=2+(21-1)×3=622:观察右⾯的五个数:19、37、55、a、91排列的规律,推知a =________ 。

【解析】19+18=37,37+18=55,所以a=55+18=733:2、4、6、8、10、12、是个连续偶数列,如果其中五个连续偶数的和是320,求它们中最⼩的⼀个.【解析】⽅法⼀:利⽤等差数列的“中项定理”,对于奇数个连续⾃然数,最中间的数是所有这些⾃然数的平均值,五个连续偶数的中间⼀个数应为320564÷=,因相邻偶数相差2,故这五个偶数依次是60、62、64、66、68,其中最⼩的是60.4:在等差数列6,13,20,27,…中,从左向右数,第 _______个数是1994.【解析】每个数⽐前⼀个数⼤7,根据求通项1(1)n a a n d =+-的公式得1()1n n a a d =-÷+,列式得: (19946)7284-÷=2841285+=即第285个数是1994.5:⼀个等差数列2,4,6,8,10,12,14,这个数列各项的和是多少?【解析】根据中项定理,这个数列⼀共有7项,各项的和等于中间项乘以项数,即为:8756?= 6:学校进⾏书法⼤赛,每个选⼿都要和其他所有选⼿各赛⼀场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自我测试
1.已知等差数列 满足 ,则有…………( C )
A. B. C. D.
, ,
2.在等差数列 中,公差d= ,且 , 等于( B )
A. 120 B. 145 C. 150 D.170
, 它是以 为首项, 为公差的前 项和,由
,代入
3.等差数列 的首项为 ,它的前11项的平均值为5。若从中抽去一项,余下的10项的平均值为4.6,则抽去的是第______项。8
(2)设 的前n项和为 ,
,当n=15时, 有最小值为
3.设 为等差数列, 为前n项和,已知 , 。(1)证明数列 为等差数列;(2)求数列 的前n项和
解:(1)设等差数列 的公差为d,因为 ,所以 ,
解得 ,所以 ,因为 ,所以 是首项为 ,公差为 的等差数列。
(2)
4.在等差数列 中, ,其前n项和为 ,求:
源于名校,成就所托
高中数学备课组
教师陶丰
班级高二MiniA班
学生张三(电话)、李四(电话)、王五(电话)
日期09-9-12
上课时间
学生情况:
张三--------
李四--------
王五--------
主课题:等差数列
教学目标:
1.掌握等差数列的概念、通项公式有关知识解决问题
教学内容
知识精要
等差数列
(1)等差数列定义:一般地,如果一个数列从第 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母 表示。用递推公式表示为 或 。
(2)等差数列的通项公式: ;
说明:等差数列(通常可称为 数列)的单调性: 为递增数列, 为常数列, 为递减数列。
,
3.数列 满足 ,且 ,则 _____8
精解名题
1.已知等差数列 中, , ,试求数列 的通项公式及前n项和公式。
解: ,
当 时, ,此时
当 时, ,此时
2.已知数列 , ,
(1)求证 是等差数列;
(2)设 ,求数列 的前n项和小最小值
解:(1)证明:
整理得

即 ,由 ,得
故 是首项为2,公差为4的等差数列。
,又由已知抽去一项为 ,
, 抽去的是第8项
4.一个等差数列前n项和为18,前3项和为1,且 ,则这个数列的项数n=_____. 27
代入
5.一个等差数列的首项为 ( >0),且 ,当n=_____13时,此数列的前n项和最大。 26,
数形结合来看
(3)等差中项的概念:
定义:如果 , , 成等差数列,那么 叫做 与 的等差中项。其中 , , 成等差数列 。
(4)等差数列的前 和的求和公式: 。
热身练习:
1.等差数列 中,已知 ,那么 =( A )
A. 4 B.5 C. 6 D.7
2.数列 满足 ( ), 是 前n项和,则 =_____ 115.5
(3)数列 中是否存在自然数 ,使得当自然数 时,使不等式 ,对任意大于等于k的自然数都成立;若存在,求出最小的k值;否则请说明理由。
解:(1)当 时, ,得
,是以 为首项,公差 的等差数列;
(2)因为 ,所以 ,从而
所以 ;
(3)令 ,即 ,可得 或 ,故只需取 ,则对大于或等于3的一切自然数总有 成立,这样的自然数存在,且最小值为3。
(1) 的最小值以及 取最小值时的n的值;
(2) =
解:(1)解法一: ,又 ,所以公差 ,首项 ,所以 ;设前n项和 最小,则 ,所以 为最小值;
解法二: ,因为 ,所以当 ,
(2)解法一: ,所以当 时,
当 时,
解法二: ,
所以
备选例题
已知数列 ,首项 ,且
(1)求证: 是等差数列,并求公差;
(2)求 的通项公式;
A.3 B. -3 C. -2 D. -1
由 ,所以
2.若关于x的方程 ,和 (m n)的四个根可组成首项为 的等差数列,则 =________ ( B )
A. 1 B. C. D.
设四个根从小到大依次为: ,所以 ,
所以 ,所以 , ,所以
3.若 成等差数列,则x的值为_______.
由已知 ,
所以
2.
3.
设 ,求
方法提炼
1.复习等差数列的基本公式,要从公式的顺向、逆向、变式等多种角度去掌握它。
2.要深刻理解等差数列的定义及其等价形式,熟练运用通项公式和求和公式,注意用函数与方程的思想,消元的思想及整体消元思想,分析问题与解决问题。
3.判定一个数列是等差数列,不能只验证数列的前几项,需根据定义证明 常数,也可证明其等价形式 ,特别地在判定三个实数a,b,c成等差数列时,常用a+c=2b.
4.等差数列的通项公式与前n项和公式联系着五个参数,“知三求二”是一类基本的运算题型。
5.在等差数列中,首项 与公差d是最重要的两个基本量,在解答有关问题时,要注意分析题目的已知条件,灵活选用“基本量法”或“整体思考法”。
巩固练习
1.等差数列 共有2n项,其中奇数项的和为90,偶数项的和为72,且 ,则该数列的公差为(B)
相关文档
最新文档