4.1.1 从不同方向看立体图形(2)

合集下载

4.1.1立体图形与平面图形(2)

4.1.1立体图形与平面图形(2)

人教版七年级数学(上)第四章图形认识初步4.1.1 几何图形(2)自主学习、课前诊断一、温故知新1.观察下面几何体, 从正面看、上面看、从左面看,分别是什么图形?2.将我们准备好的正方体小纸盒延它的某些棱剪开(剪的次数最少,展开后的六个正方形中的每一个至少有一条边与其它正方形相连),会得到什么样的平面图形?你能把它再折叠成正方体吗?二、设问导读:阅读课本P117-118完成下列问题:1.问题解决:问题1:阅读课本图4.1-7,认真观察并借助想象,画出得到的平面图形.问题2:从不同的方向观察图4.1-8,把你看到的图形画出来.问题3:完成图4.1-9及课本练习题.三、自学检测:1.物体的形状如图所示,则此物体从上面看到的是()2. 观察下图①②③分别是从不同方向看到的,请写在对应图的下边.3.如图某些多面体的平面展开图,把多面体的名称写在横线上.______________. _____________.___________. _____________.人教版七年级数学(上) 第一章 有理数__________. _________.互动学习、问题解决一、导入新课 二、交流展示学用结合、提高能力一、巩固训练1.下图是正方体的表面展开图,如果将其合成原来的正方体(右下图)时,与点P 重合的两点应该是 ( ) A 、S 和 Z B 、T 和 Y C 、U 和 Y D 、T 和 V2.将图(1)中的图形折叠起来围成一个正方体,应该得到图(2)中的( )二、当堂检测1. 下面是用五个小正方体搭成的四种几何体,分别画出它们的三视图。

三、拓展延伸:1.有一正方体木块,它的六个面分别标上数字1——6,这是这个正方体木块从不同面所观察到的数字情况。

请问数字1和5对面的数字各是多少?1252144612.如图,一个3×5的方格纸,现将其剪为三部分,使每一部分都可以折成一个无盖的小方盒,问如何剪?课堂小结、形成网络____________________________________________________________________正面。

七年级人教版上数学教案:4.1.1立体图形与平面图形(2)

七年级人教版上数学教案:4.1.1立体图形与平面图形(2)

4.1.1立体图形与平面图形(二)初一级数学备课组主备人:班级科目数学上课时间2015.12教学目标知识与能力1、能从不同角度观察一些几何体,以及他们简单的组合得到的平面图形。

2、初步培养学生的空间观念和几何直觉。

过程与方法注意图形与几何知识和实际生活的联系,并把有知识应用于实际生活和学习中。

情感态度与价值观通过与他人的交流,初步形成积极参与数学活动,主动与他人合作的交流意识。

教学重难点重点:从不同角度观察几何体。

难点:了解从物体外形抽象几何体的方法。

教学过程【导入】立体图形与平面图形1、欣赏图片2、两幅意大利比萨斜塔的照片,一幅倾斜一幅直立,这是为什么?3、从不同方向观察套娃,看到不同图形。

【讲授】立体图形与平面图形在数学中,我们从正面,左面,上面三个方向观察物体。

以正方体为例,从正面、左面、上面看一个正方体,看到的图形分别是什么?【活动1】立体图形与平面图形想象我们学过的立体图形从不同方向看能看到什么平面图形。

要求(1)先自己想象,然后与同伴交流。

(2)得出结论后,观察实物,验证自己的结论。

(3)汇报成果。

【抢答】长方体、圆柱、圆锥、四凌锥从正面、左面、上面看分别是什么图形。

【练习1】立体图形与平面图形1、从不同方向观察生活中的碗。

【讲授】立体图形与平面图形例题:从不同方向观察组合图形【练习】立体图形与平面图形当组合立体图形发生变化时,相应的平面图形会发生变化吗?【练习2】1.如下左图,下面三幅图分别是从哪个方向看这个棱柱得到的?2.这是一个工件的立体图,画出从不同方向看它得到的平面图形.【探究】如图,是一个由9个正方体组成的立体图形,分别从正面、左面、上面看这个图形,各得到什么平面图形?【活动3】立体图形与平面图形分别从正面、左面、上面看一个由若干个正方体组成的立体图形,得到的平面图形,你能搭出这个立体图形吗?当给出两个平面图形时,得到的立体图形唯一吗?【小结】立体图形与平面图形一、这节课我们主要学习了什么知识?1.能识别从不同方向看几何体得到的平面图形。

从不同方向看立体图形与立体图形的展开图ppt课件

从不同方向看立体图形与立体图形的展开图ppt课件

正面
左面
上面
11
• 2.将下图中左边的图形折叠起来围成一个正 方体,应该得到右图中( ),先想一想, 再做一做.
12
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
13
4.1(第2课时)从不同方向看立 体图形与立体图形的展开图
1
学习目标:
• 1.能够画出从不同方向看一些常见的立体图 形所得到的平面图形,能够根据从不同方 向看一个立体图形得到的平面图形,想象 并描述它的形状
• 2.能画出简单几何体的展开图,能根据展开 图判断几何体的形状
2
自学指导:
• 认真阅读课本第117内容及118页探究,并完成下 列问题:
3
正方体展开图汇总










11
4பைடு நூலகம்
正方体展开图的对面










11
5
第一类: 中间四连方,两侧各一个,共六种。
结构特点
一 四 一
6
第二类: 中间三连方,两侧各有一、二
个,共三种。
结构特点
二 三 一
7
第三类: 中间二连方,两侧各有二个,只有一种。 第四类: 两排各三个,只有一种。
8
当堂检测:
• 1.118页练习1 • 2.分别从正面、左面、上面看圆柱、圆锥、球,
各能得到什么平面图形?
.
9
3.分别从正面、左面、上面观察下面的立体图形,各 能得到什么平面图形?
10
4.188页练习2 5.122页第6、7、11题 6.122页第10题

4.1.1几何图形(2)课件PPT(1)

4.1.1几何图形(2)课件PPT(1)

探究二:用剪刀把手中的正方体纸 盒按任意方式沿棱展开,你能得到 哪些不同的展开图?比比哪一小组 的展开图更与众不同。
活动六:针对训练
1、下列图形是哪些多面体的展开图?
正方体
长方体
四棱锥
三棱柱
2、 下列图形是一些立体图形的展开图, 用它们能围成什么样的立体图形?
(1)
正方体
(2)
圆柱
(3)
长方体
(4) 三棱柱
(5) 圆锥
3、下面六个正方形连在一起的图形,经折叠 后能围成正方体的图形有哪几个?
A
B
C
D
E
F
G
4、下边的4个图形中,哪一个是由 左边的盒子展开而成的。
(A〕 (B) (C) (D)

5、把左图中长方体的表面展开图,折 叠成一个长方体,那么与字母 J重合的 点是哪几个?
A B
E CD



A
B
C
从正面看(
B
B C

从左面看 ( 从上面看 (


A
B
C
3、想一想下面三个平面图是表示哪个几 体?
A
B
C

D

情境问题:妈妈的生日快到了,小 华给妈妈买了个礼物,想做个包装 盒 把礼物装起来,可是包装盒该 怎样设计呢?你认为她需要了解什 么?
有些立体图形是由一些平面图形围成的,将它 的表面适当剪开,可以展开成平面图形。这样的 平面图形称为相应立体图形的展开图。如下图:
从上面看
四棱锥
从正面看
从左面看
从上面看
活动二:猜一猜
从正面看
从左面看
从上面看

4.1.1从不同方向看立体图形及立体图形的展开图2023-2024学年+数学人教版七年级上册

4.1.1从不同方向看立体图形及立体图形的展开图2023-2024学年+数学人教版七年级上册
第四章 几何图形初步
第1节 几何图形
学习目标
1. 能画出从不同方向看一些简单几何体以及由它们组成的简单组合体得
到的平面图形.
重点
2. 通过“展开”和“围成”两种途径认识常见几何图形.
3. 通过直观感知、操作等实践活动,丰富立体图形的认知和感受,进一
步体会立体图形与平面图形之间的关系.
难点
新课引入
课堂小结
1.从不同方向看立体图形,往往会得到不同形状的平面图形. 一般从三个方向看:从正面看、从左面看、从上面看.
2.有些立体图形是由一些平面图形围成的,将它们的表面适当剪开, 可以展成平面图形. 这样的平面图形称为相应立体图形的展开图.
随堂练习
1.正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原
正方体中,与“国”字所在面相对的面上的汉字是( D )
A.厉
B.害
C.了
D.我
分析:由正方体的表面展开图的特征可得,“的”与“害”所在面是相 对面,“了”与“厉”所在面是相对面,“我”与“国”所在面是相对 面.
2.如图是一个几何体的表面展开图,则该几何体是( C )
简记:二三紧连错一个,三一相连一随便.
第三类: 2 — 2 — 2 型,只有一种. 第四类: 3 — 3 型,只有一种.
简记:两两相连各错一,三个两排一对齐.
例3 将一个无盖的正方体形状的盒子的表面沿某些棱剪开,展开后 不能得到的平面图形是( C )
分析:选项A,B,D中的平面图形都可以拼成无盖的正方体,但选项C 中的平面图形拼成的是缺少两个面,且有一个面重合的“正方体”.
观察与思考
将一个正方体的表面适当剪开,能展开成哪些平面图形?
提示:沿着棱剪,展开后是一个平面图形.

七年级数学上册第四章几何图形初步4.1几何图形4.1.1第2课时从不同方向看立体图形与立体图形的展开

七年级数学上册第四章几何图形初步4.1几何图形4.1.1第2课时从不同方向看立体图形与立体图形的展开

第2课时从不同方向看立体图形与立体图形的展开图1.[xx·台州]如图4-1-14所示的工件是由两个长方体构成的组合体,则从正面看到的图形是( )图4-1-142.[xx·襄阳]如图4-1-15所示的几何体是由6个大小完全一样的正方体组合而成的,它从上面看到的图形是( )图4-1-153.[xx·丽水]图4-1-16是底面为正方形的长方体,下面有关它的三个视图的说法正确的是( )图4-1-16A.从上面看到的图形与从正面看到的图形相同B.从左面看到的图形与从正面看到的图形相同C.从左面看到的图形与从上面看到的图形相同D.三个不同方向看到的平面图形都相同4.[xx·北京]图4-1-17是某个几何题的展开图,该几何体是( )图4-1-17A.三棱柱B.圆锥C.四棱柱D.圆柱5.[xx·舟山]一个立方体的表面展开图如图4-1-18所示,将其折叠成立方体后,“你”字对面的字是( )图4-1-18A.中B.考C.顺D.利6.如图4-1-19,从不同方向看一把茶壶,你认为从上面看到的图形是( )7.图4-1-20是一个正方体纸盒的外表面展开图,则这个正方体是( )8.若干个棱长为a的正方体摆放成如图4-1-21所示的几何体,回答下列问题:图4-1-21(1)有几个正方体?(2)表面积是多少?(3)当正方体的棱长为2时,它的表面积是多少?9.如图4-1-22,在一次数学活动课上,张明用17个棱长为1的小正方体搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小正方体,王亮所搭几何体的表面积为 .图4-1-22参考答案第2课时从不同方向看立体图形与立体图形的展开图【分层作业】1.A 2.A 3.B 4.A 5.C 6.A 7.C8.(1)7个(2)30a2(3)120 9.19 48(本资料素材和资料部分来自网络,供参考。

苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件

苏教版七年级上册数学 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图 教学课件

学生课堂行为规范的内容是: 按时上课,不得无故缺课、迟到、早退。 遵守课堂礼仪,与老师问候。 上课时衣着要整洁,不得穿无袖背心、吊带上衣、超短裙、 拖鞋等进入教室。 尊敬老师,服从任课老师管理。 不做与课堂教学无关的事,保持课堂良好纪律秩序。
谢 谢 大 家 听课时有问题,应先举手,经教师同意后,起立提问。
这是一个工件的立体图,设计师们常常画出从不同方向看 它得到的平面图形来表示它.
我们把从正面看到的图形
叫做主视图,从左面看到的图形 叫左视图,从上面看到的图形叫 做俯视图. 主视图,左视图,俯视 图合称三视图.
正方体
主视图
左视图
俯视图
正方体的三视图都 是正方形
圆柱
圆柱的主视图和 左视图都是长方
形,俯视图是圆。
正面
左面
上面
从左面看
分别画出图中几何体的主视图、左视 图和 俯视图。
从上面看
主视图
左视图
从正面看
俯视图
有些立体图形是有一些平面图形围成的,将他们的表面适当剪 开,可以展开成平面图形。这样的平面图形称为相应立体图形 的展开图
探究常见的立体图形的展开图:
圆 柱
展开
长方体
展开
棱柱
展开
圆锥
展开
将一个正方体的表面沿某些棱剪开,展成一个平面图形
主视图
左视图
俯视图
四棱锥
主视图
四棱锥的三视图下图
左视图
俯视图
说出圆锥、球的三视图各是什么图形.
一个长方体的立体图如图所 示,请画它的三视图.
解: 所求三视图如图
主注视意方向:要写上 各视图的名称
主视图 俯视图
左视图
几何体

4.1.1立体图形与平面图形(2)

4.1.1立体图形与平面图形(2)
第四章 几何图形初步
4.1 几何图形
4.1.1立体图形与平面图形(2)
1.会从不同方向看立体图形并能说出看到的平面图形. 2.了解立体图形的展开图,并能根据展开图判断和制作立 体图形.
从上面看
从左面看
从正面看
从左面看
从上面看 从正面看
从左面看
从上面看 从正面看
从左面看
从上面看 从正面看
从上面看 从左面看
4.(宁波中考)骰子是一种特别的数字立方体(如图),它
符合以下规则:相对两面的点数之和总是7.下面四幅图中
可以折成符合规则的骰子的是( )












(A)





(B)





ቤተ መጻሕፍቲ ባይዱ


(C)






(D)
【解析】选C.先判断折叠起来后相对的两面,再看相对 两面的点数之和是否等于7.
从不同的方向看
折 立体图形(几何体)
叠 平面图形
展开
从正面看
从正面看
从左面看
从上面看
利用骰子,摆成下面的图形,分别从正面、左面、上 面观察这个图形,各能得到什么平面图形?
从正面看
从上面看 从左面看
请你从不同角度观察,下列立体图形各是 什么图形?
把你手中的立体图形沿棱展开,看它的平面展开图是什 么?
长方体
展开
圆柱
展开
圆锥
展开
棱柱
展开
如图所示,下面的图形分别是上面哪个立体图形的展开 图?把它们用线连起来.

人教版初一数学上册4.1.1从不同方向观察立体图形.1.1从不同方向观察立体图形

人教版初一数学上册4.1.1从不同方向观察立体图形.1.1从不同方向观察立体图形

4.1.1几何图形(2)
怀集中学何天养
教学目标:1、初步体会从不同方向观察同一物体可能看到不一样的结果,了解为什么要从不同方向看。

2、能画出从不同方向看一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形。

教学重点:画出从正面、左面、上面看正方体及简单组合体的平面图。

教学难点:识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形。

教学过程:
一、新课引入
朗读古诗《题西林壁》,结合图形使学生感受从不同角度看事物的不同。

二、提出学习目标
1•会从各个方向观察立体图形;
2.会画简单物体的三视图
三、新课讲授1、展示交流:请同学们从三个方向看下面物体,你能分别画出看到的图象吗
从上面看
从左面看
从正面看
从正面看 从上面的活动中可以体会到从不同的方向看同一物体时
,可能看到不同的图形.其 中,从正面看到的图叫主视图,从左面看到的图叫左视图,从上面看到的图叫俯 视图,即物体的三视图.
2、观看洋葱数学的知识点教学视频,加深对三视图的理解和掌握如何画常见几 何体的三视图。

四、 练习:画出练习纸中几何体的三视图。

五、 小结
1、 从不同方位看立体图形,了解立体图形中某些部分是平面图形。

2、 会画立体图形的主视图,左视图和俯视图。

六、 作业
A 组:练习册P77-P78课时达标和能力展示
B 组:练习册P77课时达标
C 组:练习册P76自主预习
从上面看
从正面看
从左面看
从上面看
从左面看。

4.1.1 第2课时 从不同的方向看立体图形

4.1.1 第2课时 从不同的方向看立体图形
是从哪个方向看到的.
上面
正面 图4-1-22
侧面
4.1 几何图形
2.我们曾经学过苏轼的《题林西壁》:横看成岭侧成峰,远 近高低各不同.不识庐山真面目,只缘身在此山中.诗中蕴涵 了一个怎样的数学原理? [答案] 在观察同一个物体的时候,由于方向和角度不同,可 能看到的图形不同,因此所得结论也不一样.
4.1 几何图形
[解析] 这个几何体共有三层,从上至下分别有 1,3,6 个小 正方体,即共有 10 个小正方体,所以它的体积为 10 cm .从 上、下、左、右、前、后分别观察这个几何体,所得到的平 面图形的面积都是 6 cm2,而这个几何体正好由这六个面所包 围,所以它的表面积为 6×6=36(cm2).
(1)从正面看(即从前向后看)得到的平面图形是____________. (2)从左面看(即从左向右看)得到的平面图形是____________. (3)从上面看(即从上向下看)得到的平面图形是____________. (4)从右面看(即从右向左看)得到的平面图形是____________. (5)从后面看(即从后向前看)得到的平面图形是____________.
解:(1)它的体积是 10 cm . (2)它的表面积是 36 cm2.
3
3
4.1 几何图形
[归纳总结] 换个角度求面积:在确定组合体的表面积时,通 过“从不同方向看立体图形”来解决是一种快捷而有效的方 法.
[归纳总结]
实物图 几何图 从正面看 从左面看 从上面看
4.1 几何图形
例2
形为
从左面看如图4-1-25所示的几何体,所得的平面图
( B )
图4-1-25
[解析]
Hale Waihona Puke 图4-1-26从左面看几何体,得到的平面图形是由四个小正方

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

七年级上册数学学案设计4.1.1第2课时从不同的方向看立体图形和立体图形的展开图(附模拟试卷含答案)

第四章几何图形初步4.1 几何图形4.1.1 几何图形与平面图形第2课时从不同的方向看立体图形和立体图形的展开图学习目标:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.学习重点:识别并会画出从不同方向看简单几何体所得到的平面图形.学习难点:识别并会画出从不同方向看简单组合体所得到的平面图形.使用要求:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理. 3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.下列各组图形中都是平面图形的是( )A .三角形、圆、球、圆锥B .点、线段、棱锥、棱柱C .角、三角形、正方形、圆D .点、角、线段、长方体2.如图,甲从A 点出发向北偏东70°走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A.125°B.160°C.85°D.105°3.把图1所示的正方体的展开图围成正方体(文字露在外面),再将这个正方体按照图2,依次翻滚到第1格,第2格,第3格,第4格,此时正方体朝上一面的文字为( )A.富B.强C.文D.民4.解方程()4.50.79x x +=,最简便的方法应该首先( )A.去括号B.移项C.方程两边同时乘10D.方程两边同时除以4.55.若方程3x -5=1与方程2102a x --=有相同的解,则a 的值为( ) A.2B.0C.32D.12- 6.方程2395123x x x +--=+去分母得( ) A.3(2x+3)-x=2(9x-5)+6 B.3(2x+3)-6x=2(9x-5)+1C.3(2x+3)-x=2(9x-5)+1D.3(2x+3)-6x=2(9x-5)+6 7.下面合并同类项正确的是( )A.23325x x x +=B.2221a b a b -=C.0ab ab --=D.220xy xy -+= 8.下列各式中,与xy 2是同类项的是( )A .-2xy 2B .2x 2yC .xyD .x 2y 29.已知整数a 0,a 1,a 2,a 3,a 4,…,满足下列条件:a 0=0,a 1=﹣|a 0+1|,a 2=﹣|a 1+2|,a 3=﹣|a 2+3|,…,以此类推,a 2019的值是( )A.﹣1009B.﹣1010C.﹣2018D.﹣2020 10.小明做了以下4道计算题:①(-1)2010=2010;②0-(-1)=-l ;③-+=-;④÷(-)=-1. 其中做对的共有 A .1道 B .2道 C .3道 D .4道11.在下列各数: ()2-+, 23-, 413⎛⎫- ⎪⎝⎭, 325⎛⎫- ⎪⎝⎭, ()01-, 3-中,负有理数的个数是( )A .2个 B .3个 C .4个 D .512.﹣1+3的结果是( )A .﹣4B .4C .﹣2D .2二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知AOB 100∠=,BOC 60∠=,OM 平分AOB ∠,ON 平分BOC ∠,那么MON ∠等于______度.15.一件上衣按成本价提高50%后标价为105元,这件上衣的成本价为_____元.16.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____. 17.小明在做解方程的作业时,不小心将方程中的一个常数污染得看不清楚,方程是:122y y +=--¤ .小明翻看了书后的答案,此方程的解是y= 12- ,则这个常数是_______. 18.将多项式xy 3-x 2y+2x 3-5y 2按字母x 降幂排列是:______.19.-4的倒数是________,相反数是_______.绝对值是_________.20.﹣(﹣82)=_____;﹣(+3.73)=_____;﹣(﹣27)=_____.三、解答题21.已知:AOD 160∠=,OB ,OM ,ON 是AOD ∠内的射线.()1如图1,若OM 平分AOB ∠,ON 平分BOD.∠当射线OB 绕点O 在AOD ∠内旋转时,MON ∠=______度.()2OC 也是AOD ∠内的射线,如图2,若BOC 20∠=,OM 平分AOC ∠,ON 平分BOD ∠,当BOC ∠绕点O 在AOD ∠内旋转时,求MON ∠的大小. ()3在()2的条件下,若AOB 10∠=,当BOC ∠在AOD ∠绕O 点以每秒2的速度逆时针旋转t 秒,如图3,若AOM ∠:DON 2∠=:3,求t 的值.22.如图,某景区内的环形路是边长为1200米的正方形ABCD ,现有1号、2号两辆游览车分别从出口A 和景点C 同时出发,1号车沿A→B→C→D→A 路线、2号车沿C→B→A→D→C 路线连续循环行驶,供游客随时免费乘车(上、下车的时间忽略不计),两车速度均为300米/分.(1)如图1,设行驶时间为t 分(0≤t≤8)①1号车、2号车离出口A 的路程分别为_____米,_____米;(用含t 的代数式表示)②当两车相距的路程是600米时,求t 的值;(2)如图2,游客甲在BC 上的一点K (不与点B 、C 重合)处候车,准备乘车到出口A ,设CK=x 米. 情况一:若他刚好错过2号车,则他等候并搭乘即将到来的1号车;情况二:若他刚好错过1号车,则他等候并搭乘即将到来的2号车.请判断游客甲在哪种情况下乘车到出口A 用时较多?(含候车时间)23.在某市一项城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要60天;若由甲队先做20天,剩下的工程由甲、乙一起做24天可完成.(1)乙队单独完成这项工程需要多少天?(2)已知甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成该工程省钱,还是由甲、乙两队全程一起做完成该工程省钱?24.某中学七年级一班有44人,某次活动中分为四个组,第一组有a人,第二组比第一组的一半多5人,第三组人数等于前两组人数的和.(1)求第四组的人数(用含a的代数式表示).(2)试判断a=12时,是否满足题意.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE= ;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.26.先化简,再求值(1)求代数式14(4a2-2a-8)-(12a-1),其中a=1;(2)求代数式12x-2(x-13y2)+(-32x+13y2)的值,其中x=23,y=-2.27.已知|x+1|+(y+2)2=0,求x+y的值.28.计算:-3- 2 +(-4)-(-1).【参考答案】***一、选择题1.C2.A3.A4.D5.A6.D7.D8.A9.B10.B11.C12.D二、填空题13.150°14. SKIPIF 1 < 0 或80解析:20或8015.70元16.517.118.2x3-x2y+xy3-5y219.- SKIPIF 1 < 0 , 4, 4;解析:-14, 4, 4;20.﹣3.73 SKIPIF 1 < 0解析:﹣3.73 2 7三、解答题21.(1) 80;(2) 70°;(3)t为21秒.22.2400﹣300t23.(1)90天.(2)由甲乙两队全程合作完成该工程省钱.24.(1)(34-3a)(2)a=12时,第四组的人数为-2,不符合题意25.(1)30;(2)答案见解析;(3)65°或52.5°.26.(1)-1(2)227.﹣3.28.-82019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,C ,D 是线段 AB 上两点,若 CB=4cm ,DB=7cm ,且 D 是 AC 的中点,则 AB 的长等于( )A.6cmB.7cmC.10cmD.11cm2.题目文件丢失!3.如图,点C 、D 是线段AB 上的两点,点D 是线段AC 的中点.若AB=10cm ,BC=4cm ,则线段DB 的长等于( )A.2cmB.3cmC.6cmD.7cm4.某车间有34名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大小齿轮,才能刚好配套?若设加工大齿轮的工人有x 名,则可列方程为( )A .3×10x=2×16(34﹣x)B .3×16x=2×10(34﹣x)C .2×16x=3×10(34﹣x)D .2×10x=3×16(34﹣x)5.将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为xcm ,根据题意可列方程为( )A .x+2=(21﹣x )﹣3B .x ﹣3=(21﹣x )﹣2C .x ﹣2=(21﹣x )+3D .x ﹣3=(21﹣x )+26.学友书店推出售书优惠方案:①一次性购书不超过100元,不享受优惠;②一次性购书超过100元,但不超过200元,一律打9折;③一次性购书超过200元,一律打8折.如果小明同学一次性购书付款162元,那么他所购书的原价为( )A .180元B .202.5元C .180元或202.5元D .180元或200元7.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:()()2222223355a ab ba ab b a +---++= 26b -,空格的地方被墨水弄脏了,请问空格中的一项是( )A.+2abB.+3abC.+4abD.-ab 8.已知a+b =4,c ﹣d =3,则(b+c )﹣(d ﹣a )的值等( )A .1B .﹣1C .7D .﹣79.单项式4223ab c -的系数与次数分别是( ) A .2,5- B .2,5 C .2,63- D .2,73- 10.下列各式从左到右的变形错误的是( )A .(y ﹣x )2=(x ﹣y )2B .﹣a ﹣b=﹣(a+b )C .(a ﹣b )3=﹣(b ﹣a )3D .﹣m+n=﹣(m+n )11.﹣(﹣2)等于( )A.﹣2B.2C.12D.±212.下列运算结果为正数的是()A.-22 B.(-2)2 C.-23 D.(-2)3二、填空题13.将一副三角板如图放置,若∠AOD=30°,则∠BOC=______.14.已知x﹣2y+3=8,则整式x﹣2y的值为_____.15.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.16.请写出一个系数含π,次数为3的单项式,它可以是________.17.在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①和图②,已知大长方形的长为a,两个大长方形未被覆盖部分,分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是______.(用含a的代数式表示)18.若||2a=,则a=__________.19.比较大小:23⎛⎫-+ ⎪⎝⎭___34--.(选用>、<、=号填写)20.已知∠A=35°10′48″,则∠A的余角是__________.三、解答题21.已知:如图,直线AB、CD相交于点O,EO⊥CD于O.(1)若∠AOC=36°,求∠BOE的度数;(2)若∠BOD:∠BOC=1:5,求∠AOE的度数;(3)在(2)的条件下,请你过点O画直线MN⊥AB,并在直线MN上取一点F(点F与O不重合),然后直接写出∠EOF的度数.22.如图,O为直线AB上一点,∠AOC=50°20′,OD平分∠AOC,∠DOE=90°.(1)求∠DOB的度数;(2)请你通过计算说明OE是否平分∠COB.23.如图,AB=12cm,点C是线段AB上的一点,BC=2AC.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动.设它们同时出发,运动时间为ts.当点P与点Q第二次重合时,P、Q两点停止运动.(1)AC=__cm,BC=__cm;(2)当t为何值时,AP=PQ;(3)当t为何值时,PQ=1cm.24.小明家使用的是分时电表,按平时段(6:00﹣22:00)和谷时段(22:00一次日6:00)分别计费,平时段每度电价为0.61元,谷时段每度电价为0.30元,小明将家里2005年1月至5月的平时段和谷时段的用电量分别用折线图表示(如图),同时将前4个月的用电量和相应电费制成表格(如表)根据上述信息,解答下列问题:(1)计算5月份的用电量和相应电费,将所得结果填入表1中;(2)小明家这5个月的月平均用电量为度;(3)小明家这5个月的月平均用电量呈 趋势(选择“上升”或“下降”);这5个月每月电费呈 趋势(选择“上升”或“下降”);(4)小明预计7月份家中用电量很大,估计7月份用电量可达500度,相应电费将达243元,请你根据小明的估计,计算出7月份小明家平时段用电量和谷时段用电量.25.先化简,再求值:[(x ﹣y )2+(x+y )(x ﹣y )]÷2x,其中x =﹣1,y =2.26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.计算:28.(1)计算1114125522-+---();(2)计算()()32112321133⎛⎫-+⨯-⨯-÷- ⎪⎝⎭.【参考答案】***一、选择题1.C2.B3.D4.B5.D6.C7.A8.C9.D10.D11.B12.B二、填空题13.150°14.15.1216.πx3或πr2h 或 SKIPIF 1 < 0πr2h(答案不唯一)解析:πx 3或πr 2h 或13πr 2h(答案不唯一)17. SKIPIF 1 < 0解析:1 a 218. SKIPIF 1 < 0解析:219.>.20.54°49′12″三、解答题21.(1)54°;(2)120°;(3)∠EOF的度数为30°或150°.22.(1) 154°50′;(2)见解析23.824.(1)65+45=110,46.95;(2)99;(3)上升;下降;(4)平时段300度,谷时用200度.25.x-y,-3.26.4xy,-4.27.-128.(1)-2;(2)-14.。

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)

4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
4.1.1折叠、展开与从不同方向观察立体图形(教案)-2023-2024学年七年级上册数学(人教版)
一、教学内容
本节课选自人教版七年级上册数学第4章《几何图形初步》中的4.1.1节“折叠、展开与从不同方向观察立体图形”。教学内容主要包括以下三个方面:
1.折叠:通过实际操作,让学生掌握正方体、长方体等简单立体图形的折叠方法,并理解其展开图形的特征。
此外,在小组讨论环节,学生们表现出了很高的积极性。他们围绕立体图形在实际生活中的应用展开了热烈的讨论,并提出了一些有趣的观点。这表明,学生们能够将所学知识与现实生活联系起来,这对于他们理解抽象的几何概念具有重要意义。
在今后的教学中,我需要关注以下几个方面:
1.对于教学难点,要设计更多的实例和练习,帮助学生巩固所学知识,提高解决问题的能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考,如“你们认为这些立体图形的折叠和展开在哪些场合下最有用?”
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(3)解决实际问题时,难以将所学知识灵活运用。
举例:在计算立体图形的表面积和体积时,部分学生可能会忘记使用正确的公式或方法。
在教学过程中,教师应针对教学难点进行有效指导,通过实际操作、示例讲解、讨论交流等方式,帮助学生突破难点,确保学生能够理解透彻本节课的核心知识。
四、教学流程
(一)导入新课(用时5分钟)
(2)从不同方向观察立体图形,学会用简单的几何语言描述观察到的形状。
举例:从正面、侧面、上面等不同方向观察正方体和长方体,让学生能够用“有几个面、面的形状和大小”等几何语言进行描述。

七年级上册数学人教版4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图

七年级上册数学人教版4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图

初中数学集体备课活页纸学科初中数学主备人 节次第 周第 节课题 4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图课时 1 课型 新授课教学目标 1.初步体会从不同的方向观察同一个物体可能 会看到不同的平面图形,能识别简单物体从正面看、从左面看、从上面看的平面图形.2.在平面图形和立体图形互相转换的过程中,初步建立空间观念. 教学重点能由立体图形抽象得到平面图形,能根据得到的平面图形推测出立体图形;立体图形的展开图画法教学难点 由平面图推测出立体图,正确表示立体图形的展开图课 堂 教 学 设 计教学环节教学过程二次备课第一步: 交流预习环节1:教师提问 引入:如图,把茶壶放在桌面上,那么下面五幅图片分别是从哪个方向看得到的?环节2:师友释疑如图,这是一个工件的立体图,设计师常常画出从不同的方向看得到的平面图形来表示它,下面是从正面看、从左面看、从上面看得到的平面图形,你能说出各平面图形是从哪个方位观看得到?第二步: 互助探究环节1:师友探究1.如图是由若干小正方体搭成的几何体,我们分别从正面看、从左面看和从上面看得到的平面图形分别是怎样的呢?请同学们尝试画一画.2.画出正方体、长方体、圆柱体、圆锥、四棱锥、三棱柱从正面、左面、上面看物体得到的平面图形.环节2:教师讲解将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?环节1:师友探究思考:1.观察上面的11种正方体的展开图有没有什么规律?2.小组讨论这些正方体展开图可以分为几类?哪几号展开图可以分为一类,为什么?第三步:分层提高环节1 师友训练1.下列图形中,不是正方体表面展开图的是()2.小明从正面观察如图所示的两个物体,看到的是()A. B. C. D.3.下图是由一些相同的小正方体构成的几何体从正面、左面、上面看得到的三个平面图形,这些相同的小正方体的个数是( )A .4个 B.5个 C.6个 D .7个环节2 教师提升1.下列立体图形的平面展开图是什么?第四步:总结归纳环节1:师友归纳•这节课我学会(懂得)了……•这节课我想对师傅(学友)说……环节2:教师归纳1.从不同方向看平面图,由立体图推平面图,由平面图推测立体图。

《4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图》教案、同步练习(附导学案)

《4.1.1 第2课时 从不同的方向看立体图形和立体图形的展开图》教案、同步练习(附导学案)

4.1.1 立体图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》教案【教学目标】:1.能直观认识立体图形和展开图,了解研究立体图形的方法.2.会由展开图联想对应的立体图形形状.【教学重点】:1.识别一些基本几何体(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的立体图形.2.正确判断哪些平面图形可以折叠为立体图形、某个立体图形的展开图可以是哪些平面图形.【教学难点】:了解基本几何体与其展开图之间的关系,体会一个立体图形按照不同方式展开可得到不同的平面展开图.【教学过程】:一、从不同方向看立体图形1.学生阅读课本P117,图4.1-6及以上相关内容,理解从不同方向看立体图形的意义和用途.2.练习:课本P121第4题.3.小结:从三个不同方向看立体图形的方法.4.小组合作探究P117图4.1-7.问题:(1)从正面看,有几层?每一层分别有几个正方形?(2)从上面看,有几个正方形,这些正方形是怎样排列的?(3)从左面看,有几列?每一列有几个正方形?(4)画出从三个不同方向看该立体图形所得到的平面图形.5.能力提升练习:(1)由相同的小正方体搭成的几何体从正面看和从上面看得到的平面图形如图:画出从左面看该几何体得到的平面图形.(2)由相同小立方块搭成的几何体从正面看和从上面看得到的平面图形如图所示:搭成这个几何体最多要多少个小立方块?最少呢?二、立体图形的展开图1.学生阅读课本P117图4.1-8及相关内容.2.动手操作:将一个长方体墨水瓶盒按不同的棱剪开铺平,并画下其形状观察长方体墨水瓶盒展开图中有哪些平面图形,这些平面图形之间大小形状有什么关系?3.课本P118探究:(1)先由平面图形想象立体图形的形状.(2)实际操作:将这些平面展开图画在纸上,看能否围成想象的立体图形.4.小组合作探究:正方体的平面展开图共有哪些形状?5.交流总结:正方体的平面展开图形状:141型:(共6个).231型:(共3个).33型:(1个).222型:(1个).6.练习(1)课本P118第2题.(2)如图所示,经过折叠可以围成一个棱柱的是( )(3)课本P123第12题.三、课时小结学生谈:我知道了什么?我学会了什么?我发现了什么?四、课堂作业1.课本P122第6题、第7题.2.下图是一个立方体纸盒的展开图,其中三格已经分别填入一个数,请在其余三个正方形内填入所有可能的数,使得折成立方体后相对面上的两个数绝对值相等,则填入正方形间A,B,C内的数依次为.4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》同步练习一、选择题1.由四个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( ).2.如图所示的四种物体中,哪种物体最接近于圆柱( ).3.如图是一正方体纸盒的展开图,每个面上都标注了字母或数字,则面a 在展开前所对的面上的数字是( ).A.2 B.3 C.4 D.54.按如图所示的图形中的虚线折叠可以围成一个棱柱的是( ).5.如图所示,下列图形绕着虚线旋转一周得到圆锥体的是 ( )6.将左图中的正方体纸盒沿所示的粗线剪开,其平面展开图的示意图为()A. B. C. D.二、填空题7.五棱柱有________个顶点,________条棱,________个面.8.柱体包括________和________,锥体包括________和________.9.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“超”相对的字是________.10.(内蒙古赤峰)如图所示是一个几何体的三视图,则这个几何体是________.11.圆锥的底面是__________形,侧面是__________的面,侧面展开图是__________形.12.当笔尖在纸上移动时,形成_______,这说明:_____;表针旋转时,形成了一个,这说明:;长方形纸片绕它的一边旋转,形成的几何图形就是,这说明: .三、解答题13.如图所示是一个长方体的展开图,每个面上都标注了字母,请根据要求回答问题:(1)如果面A在多面体的上面,那么哪一面会在下面?(2)如果面F在多面体的后面,从左面看是面B,那么哪一面会在上面?(3)从右面看是面A,从上面看是面E,那么哪一面会在前面?14.如图所示是一个机器零件从正面看和从上面看所得到的图形,求该零件底面积×高).的体积(π取3.14,单位:mm)(提示:V=圆柱15. 如图所示的一张硬纸片,它能否折成一个长方体盒子?若能,说明理由,并画出它的立体图形,计算它的体积.参考答案一、选择题1.B;2.A;3.B;【解析】要求面a在展开前所对的面上的数字,我们可以把正方体的展开图折叠起来,则面a、2、3、4按照第一、三个对应,第二、四个对应,于是面a在展开前所对的面上的数字为3.4. C ;【解析】A、D中两个底面不能放在同一侧,B中侧面个数与底面边数不等,故选C.5. D ;【解析】选项A、B、C、D中的图形旋转一周分别形成圆台、球、圆柱和圆锥,故选D.6. C;【解析】由正方体的表面展开图的特点再结合实际操作,便可得解.二、填空题7. 10, 15, 7 ;【解析】五棱柱上底面有5个顶点,下底面有5个顶点,共10个顶点;上、下底面各有5条棱,竖直有5条棱,共15条棱;7个面,其中5个侧面,2个底面.8. 圆柱,棱柱;圆锥,棱锥9. 自;【解析】要弄清立体图形与其平面展开图各部分间的关系,需要较强的空间想象能力,这种能力是建立在动手操作、认真观察与善于思考的基础上.10.三棱柱(或填正三棱柱) ;【解析】考查空间想象能力.11.圆,曲,扇;【解析】动手操作或空间想象,便得答案.12.一条线,点动成线;圆面,线动成面;圆柱体,面动成体三、解答题13.解:(1)如果面A在多面体的上面,那么面C会在下面.(2)如果面,在多面体的后面,从左面看是面C,那么向外折时面C会在上面,向里折时面A会在上面.(3)从右面看是面A,从上面看是面E,那么向外折时从前面看是面B,向里折时从前面看是面D.14.解:22032302540400482π⎛⎫⨯⨯+⨯⨯=⎪⎝⎭(mm3),即该零件的体积为40048 mm3.提示:由该零件从正面看和从上面看所得到的图形可以确定该零件是由上、下两部分组成的,上面是一个高为32 mm,底面直径为20 mm的圆柱;下面是一个长为30 mm,宽为25 mm,高为40 mm的长方体,零件的体积是圆柱与长方体体积之和.15. 【解析】解:能折成一个长方体盒子,因为符合长方体的平面展开图的所有条件,该几何体的立体图形如图所示.此长方体的长为5m,宽为2m,高为3m,所以它的体积为:5×2×3=30(m3).4.1.1 几何图形与平面图形《第2课时从不同的方向看立体图形和立体图形的展开图》导学案【学习目标】:1.从不同方向观察一个物体,体会其观察结果的不一样性.2.能画出从不同方向看一些基本几何体或其简单组合得到的平面图形.3.初步建立空间观念.【学习重点】:识别并会画出从不同方向看简单几何体所得到的平面图形.【学习难点】:识别并会画出从不同方向看简单组合体所得到的平面图形.【使用要求】:1.阅读课本P1192.尝试完成教材P120练习第1题;3.限时15分钟完成本导学案(合作或独立完成均可);4.课前在小组内交流展示.【学习过程】一、自主学习:1.观察你身边的一个物体,试着从不同的角度去看它,你看到的形状是一样的吗?2.下面这几个几何体,试着从不同角度去看看,你得到了怎样的几何图形?【老师提示】:我们从不同的方向观察同一个物体时,可能看到不同的图形.为了能完整确切地表达物体的形状和大小,必须从多方面观察物体.在几何中,我们通常选择从正面、从左面、从上面三个方向来观察物体.通过这样的观察,就能把一个立体图形用几个平面图形来描述.3.分别正面、左面、上面再来观察上面的三个几何体,把观察的结果与同学交流.二、合作探究:1.分别从正面、左面、上面三个方向观察下面的几何体,把观察到的图形画出来.(1)从正面看从左面看从上面看(2)从正面看从左面看从上面看(3)从正面看从左面看从上面看2.先阅读P119的教材再完成P119的探究.(1)小组合作,可用正立体积木摆出书上的立体图形,再观察.(2)改变正立体积木的摆放位置,你摆我答,合作学习.(3)观察身边的几何体,如文具盒、同学的水杯等物品,与同学交流分别从正面、左面、上面所看到的几何图形.【老师提示】对于一些立体图形的问题,常把它们转化为平面图形来研究和处理.3.P120练习第1题.3.苏东坡有一首诗《题西林壁》“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.”为什么横看成岭侧成峰?这有怎样的数学道理?三、学习小结:四、作业:P123习题4.1第4、9、10、13题.(准备长方体形状的包装盒至少一个)。

4.1.1 立体图形与平面图形(第2课时) 教学设计

4.1.1 立体图形与平面图形(第2课时) 教学设计

教学评一体化课时教学设计表(教师个体备课表)
一、新知建构(板块)
问题一:从不同方向观察立体图形
活动1:观察下面的五幅图分别是从什么方向看的?
问题二:能画出从不同方向看一些基本几何体以及它们的简单组合体的平面图形. 活动2:能画出从三个方向观察长方体、圆柱、四棱锥、圆锥的平面图形。

活动3:能画出从三个方向观察简单几何组合体的平面图形。

二、迁移运用(板块)
分别画出下面几何体从三个方向看得到的平面图形.
成果集成:(这是课堂小结的策略)
1.常见几何体从三个方向看得到的平面图形
2.画从三个方向看得到的平面图形时,看得见的轮廓线用实线,看不见的轮廓线用虚线。

4. 利用骰子,摆成下面的图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?。

4.1.1从不同的方向观察立体图形。三视图公开课

4.1.1从不同的方向观察立体图形。三视图公开课

从正面看
从左面看
从上面看
正面方向
注意三种图的变化:
从正面看
从左面看
正面方向
从上面看
下面是分别从正面、左面、上面观察一个组合图 形的三幅图,请尝试描述物体形状
从正面看
从左面看
从上面看
物体的形状
自我检测
每组3号回答!
如图是一个蒙古包的照片.你认为这个蒙古包可以看成怎样的 几何体?你能画出从正面看、从左面看和从上面看这个几何体的三 种图吗?
题 西 林 壁

从正面看
从左面看
从上面看
圆台
从正面
从左面
从上面
主视图( 左视图 ( 俯视图 (
A) A
B


A
B
C
观察下面三个平面图形分别是下面立体图形的哪个视图?
( 主视图 )
( 俯视图 )
( 左视图 )
从三个方向看
从正面看
从左面看
从上面看
桌上放着一摞书和茶杯,A.B.C.D.E这五幅图是从什么方向看到的? A 正面
请欣赏漫6”与“9”
从正面看 从上面看 从左面看
人教版数学教材七年级上
4.1.1从不同方向看立体图形
盘锦市实验中学 伏蓉
学习目标
1、通过从不同的方向观察物体的活动,初步体 会从不同方向观察同一物体得到的结果不一样. 2、能画出从不同方向看一些几何体以及它们 的简单组合得到的平面图形.
B
上面
C
左面
D
后面
E
下图是一个由5个正方体组成的立体图形,分别 从正面、左面、上面观察,并画出你所看到的平 面图形:
从上面看
解:
从 左 面 看

最新整理初一数学教案新教材初一数学4.1.1立体图形与平面图形(2)教学设计.docx

最新整理初一数学教案新教材初一数学4.1.1立体图形与平面图形(2)教学设计.docx

最新整理初一数学教案新教材初一数学4.1.1 立体图形与平面图形(2)教学设计“自学互帮导学法”课堂教学设计课题课时1课型新课修改意见教学目标1、使学生能从一组图形辨认出从不同方向看立体图形得到的平面图形,并能说出从不同方向看一些简单立体图形(直棱柱、圆柱、圆锥、球)以及它们的简单组合得到的平面图形。

2、在从不同方向看立体图形的活动过程中,体验立体图形与平面图形之间的相互转化,从而建立空间观念,发展几何直觉教学重点识别一些基本几何体以及它们的简单组合得到的平面图形教学难点画出从正面、左面、上面看正方体及简单组合体的平面图形学情分析教材从生活中常见的立体与平面图形入手,通过实例,在丰富的现实情境中,使学生经历对几何体的研究的教学过程,认识一些常见的几何体及点、线、面的一些特征和性质。

学法指导自学互帮导学法教学过程教学内容教师活动学生活动效果预测(可能出现的问题)补救措施修改意见一、趣味思考图中的比萨塔为何不斜了?中国古诗题西林壁横看成岭侧成峰,远近高低各不同。

不识庐山真面目,只缘身在此山中。

二、新课讲解分别从正面、左面、上面观察三棱柱和四棱锥,看一看各能得到什么图形?(课件展示)练习分别从正面、左面、上面观察圆柱、圆锥、球这些立体图形能分别得到哪些平面图形?三、新知应用练习1、说出下面图形分别是从哪个角度三棱柱得到的?2、这是一个工件的立体图,画出从不同方向看它得到的平面图形.(如课件)四、探究如图,图中是由九个正方形组成的立体图形,分别从正面,上面,左面观察图形,能得到哪些平面图形?五、学以致用分别从正面,左面,上面观察下列图形,能得到哪些平面图形?六、总结想一想,通过本节课的学习,你有哪些收获?七、作业教科书第121页习题4.1第4题1、请同学们思考一下,图中的问题。

并说一说:“横看成岭侧成峰”一句中,蕴含了怎样的数学道理?2、请从不同角度观察三棱柱和四棱锥三棱柱:从正面看是三角形从左面看是长方形从上面看是长方形四棱锥:从正面看是三角形从左面看是三角形从上面看是正方形展示课件中的圆柱、圆锥、球。

4.1.1立体图形与平面图形(三视图)(2)

4.1.1立体图形与平面图形(三视图)(2)

下 面从不同方向看到的平面 图是表示哪个几何体?
A
B
C
D
如右图是由几个小正方体 所搭几何体的从上面看的平面 图,小正方形中的数字表示在 该位置小正方体的个数。 你能摆出这个几何体吗? 试画出这个几何体的从正 面看与从左面看的平面图: 从正面看:
2
1
1
2
从左面看:
不用摆出这个几何体,你能画出这 个几何体的从正面看与从左面看的平 面图吗?
(3)
从正面看
从左面看
从上面看
想 一 想 ?
桌子上放着一个长方体 和圆柱体(如下图),分别 从正面、上面和左面观察这 两个图形,各能得到什么图 形?
B
(1)从正面看 B 到的是_______ (2)从上面看 C 到的是_______
A
C
(3)从左面看 A 到的是_______
想 一 想 ? C
【反思】
本节课你学到了什么?
再 见
A
B
C
D
思考方法
2 1 2
1
先根据已知图形确定从一面看的平面图有 再根据数字确定每列的方块有 (1)从正面看的平面图有 3 列, 个,
列,
从正面看
第一列的方块有 1 个, 第二列的方块有 2 个,
第三列的方块有 1 个,
从左面看
(2)按同样的方法,你会确定从左面看的平面图吗?
用一用
上述立体图形放置在桌上,现要在 该立体图暴露在外的部分涂上白漆,若 记小正方体的边长为1cm,那么需要涂漆 部分的面积为多少?
“立体图”的三看:
从上面看
从 左 面 看
从正面看

探究
从不同方向看以下立体图形 得到的平面图形是什么图形?

2-从不同的方向看立体图形和立体图形展开图知识梳理

2-从不同的方向看立体图形和立体图形展开图知识梳理

立体图形与平面图形的转化
知识梳理:
立体图形可以通过从不同方向看立体图形(三视图)或立体图形的展开图转化为平面图形问题进行研究。

1. 从不同方向看立体图形
(1)从不同方向看是指从正面(从前向后)、上面和左面三个方向看立体图形。

当我们分别从正面、上面和左面看一个立体图形时,就得到这个立体图形的三个平面图形,然后把这三个平面图形按一定的规则放在同一个平面上,就把立体图形转化成了平面图形。

从不同方向看把立体图形转化成平面图形的规则是:
①从上面看的图形放在从正面看的图形的下面;从左面看的图形放在从正面看的图形的右面。

②长对正:从上面、正面观察,所得的图形长度相等;高平齐:从上面、左面观察,所得的图形高度相等;宽相等:从上面、左面观察,所得的图形宽度相等。

(2)常见的几种几何体从正面、左面、上面看到的几何图形:
2. 立体图形的展开图
(1)对于由一些平面围成的立体图形,将它们的表面适当的剪开,展开成平面图形,这个平面图形叫做这个立体图形的展开图。

(2)几种常见的立体图形的展开图
解析:[1] 不是所有的立方体图形都可以展开,如球就不能展开;
[2] 对于同一个立方体按不同的方式展开,可以得到不同的展开图,如正方体有11种展开图;
[3] 由立方体的展开图可以识别出立方体的形状,具体方法是:展开图中有圆,一般考虑圆柱或圆锥;展开图中有三角形,一般考虑棱柱或棱锥;展开图中有长方形或正方形,一般考虑棱柱。

[4]
[5]
[6] 立体图形展开图中,相邻面的规律:①有公共顶点的面是相邻的面; ②有公共边的面是相邻的面。

如图三棱柱的展开图是( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

从正面看时,要面对着几 从正面看时 要面对着几 何体的正面 视线与放置几 从 体的正面,视线与放置几 体的正面 何体的平面 如桌面 持平。 左 体的平面(如桌面 持平。 体的平面 如桌面)持平 从左面看时,要面对着几 面 从左面看时 要面对着几 看 体的左面,视线与放置几 体的左面 视线与放置几 体的平面(如桌面 持平。 如桌面)持平 体的平面 如桌面 持平。
从上面看
从左面看
从正面看
主视图
左视图
俯视图
请画出下面立体图形的三视图
主视图
左视图
俯视图
请画出下面立体图形的三视图
主视图
左视图
俯视图
图中是一个由9 图中是一个由9个正方体组成的 体图形,分别从正面、左面、 体图形,分别从正面、左面、 面观察这个图形, 面观察这个图形,各能得到什 样平面图形? 样平面图形? 从 左 面 看
如图,分别从正面、左面、 如图,分别从正面、左面、上 观察四棱锥, 观察四棱锥,各能得到什么平
解:得到的平面图形如图 所示: 所示:
图形?
从正面看
从左面看
从上面看
从 左 面 看 从正面看
考考你: 考考你:
从不同方向观察右图, 从不同方向观察右图,往 往会得到不同形状的平面 图形, 图形,聪明的你一定知道 填序号) 吧?(填序号)
.选择题 选择题: 一.选择题:
从正面看( 从正面看( A )
从左面看( 从左面看( A )
从上面看( 从上面看( B )
A
B
C
一辆汽车从小明的前面经过, 一辆汽车从小明的前面经过,小明拍摄了一组 照片, 照片,则按照汽车被摄入镜头的先后顺序排列照片 5 ,2 ,4 ,1,3 1, 下面的编号应为___________________。 下面的编号应为___________________。
解:得到的平面图形如示意图: 得到的平面图形如示意图: 从 正 面 看 从 上 面 看
:从正面 从左面的平面图形 , 是 到的面左 , 一 从上面 一 的 体 能 到 上的 个面, 分, 个面, 分, 意分
从你所在的位置看这组几何体, 从你所在的位置看这组几何体,看到的是
什么样子?能否把你所看到的样子画下来? 什么样子?能否把你所看到的样子画下来?
计师的脑海里变成现实的呢? 计师的脑海里变成现实的呢
泰姬陵—印度 中国 泰姬陵 美国希腊 巴台农神庙—希腊 巴台农神庙 天坛祈年殿—中国 天坛祈年殿 白宫—美国 白宫 国家体育馆—中国 国家体育馆意大利 圆形斗兽场—意大利 圆形斗兽场 印度中国
卢浮宫院内的玻璃金字塔
金字塔—埃及 金字塔 埃及
4.1.1几何图形 几何图形( 4.1.1几何图形(二)
1
23Βιβλιοθήκη 认真观察, 认真观察, 好好思考, 好好思考, 你一定行! 你一定行!
一个由几个小正方体组成的几何图形 从正面、左面、 从正面、左面、上面看所得到的平面图形如下 则该几何体由_________个小正方体组成 则该几何体由_________个小正方体组成的 4或5 个小正方体组成的 4或 平 面 图 形
从正面看 从左面看 从上面看
立 体 图 形
图纸与实物存在着什么关系
实 物 图
立 体 图 形
平 面 图 形
通过本节课的学习, 通过本节课的学习, 你有什么收获? 你有什么收获?
作业: 作业:
1. P124 2. P126
4、 4、10
13(与同学交流) 13(与同学交流)
为什么同是这几个娃娃,拍出来的照片会不同呢? 为什么同是这几个娃娃,拍出来的照片会不同呢?
从不同方向看立体图形, 从不同方向看立体图形,往往会得到不同形状 平面图形。 平面图形。为了能完整确切地表达立体图形的形 和大小,必须从多方面观察立体图形。 和大小,必须从多方面观察立体图形。
在几何中,我们通常选择从正面 左面、 正面、 在几何中,我们通常选择从正面、左面、上面 个方向观察立体图形 用所得到的平面图形 观察立体图形。 平面图形来表 个方向观察立体图形。用所得到的平面图形来表 这个立体图形 立体图形。 这个立体图形。
1
2
2 1 从正面看得到的是____; 从正面看得到的是____; ____ 3 4
4 3 从左面看得到的是____. 从左面看得到的是____. ____
5 6 从上面看得到的是____; 从上面看得到的是____; ____
反思:完成此题后, 反思:完成此题后,你能
的平面图形也叫做三视图(主视图、左视图、俯视图 的平面图形也叫做三视图(主视图、左视图、 三视图
从上面看
从上面看时,眼睛在几何 从上面看时 眼睛在几何 体的正上方 视线与放置几 的正上方,视线与放置几 的正上方 何体的平面 如桌面 垂直。 体的平面(如桌面 垂直。 体的平面 如桌面)垂直 温馨提示:看几何体时 看几何体时, 温馨提示 看几何体时,
从上面看
从左面看
长方体
从上面看
从左面看
从左面看 从正面看
相关文档
最新文档