牛顿运动定律2
牛顿第二定律超全
Q:力和运动之间到底有 什么内在联系?
(1)若F合=0,则a = 0 ,物体处于 _平__衡_状__态__。
(2)若F合=恒量,v0=0,则a=__恒_量____, 物体做_匀加速直线运动。
(3)若F合变化,则a随着_变__化___,物体做 ____变__速_运__动_____。
分析:推车时小车受4个力;合力为F- FN f.加速度为1.8m/s2.
不推车时小车受几个力?由谁产生加速度?
推车时, F f ma
F
f F ma 90 451.8 9N
f
不推车时 f ma
a
f
m
9 45
0.2m / s2
G
例4:质量为8103kg的汽车,在水平的公路上沿直 线行驶,汽车的牵引力为1.45104N,所受阻力为 2.5 103N.求:汽车前进时的加速度.
2
0.3m/s
2
s1
1 at2 2
0.3 42 2
2.4m
减速阶段:物体m受力如图,以运动方向为正方向
N2 V(正) 由牛顿第二定律得:-f2=μmg=ma2
a
故 a2 =-μg=-0.2×10m/s2=-2m/s2
f2 又v=a1t1=0.3×4m/s=1.2m/s,vt=0
G
由运动学公式vt2-v02=2as2,得:
故
a2
0
v
2 2
2s2
0 152 m/s2 2 125
0.9m/s2
由牛顿第二定律得:-f=ma2
故阻力大小f= -ma2= -105×(-0.9)N=9×104N 因此牵引力
F=f+ma1=(9×104+5×104)N=1.4×105N
牛顿第二定律运动定律
牛顿第二定律运动定律牛顿第二定律,也称为运动定律,是描述物体运动时所受力与加速度之间关系的基本定律。
它是物理学中最重要的定律之一,由英国物理学家艾萨克·牛顿于17世纪提出。
牛顿第二定律的数学表达式为 F = ma,其中 F 表示物体所受合力的大小,m 表示物体的质量,a 表示物体在受力作用下的加速度。
根据这个定律,如果一个物体受到外力的作用,它的加速度将与所受的力成正比,与物体的质量成反比。
牛顿第二定律运动定律的重要性在于它不仅适用于静止物体,也适用于运动物体。
无论物体是在匀速运动还是在加速运动,只需考虑这个物体所受的合力和质量,即可确定其加速度。
在现实生活中,牛顿第二定律运动定律的应用非常广泛。
下面将介绍一些实际例子来展示这个定律的重要性和应用。
1. 汽车行驶当汽车行驶时,发动机提供的驱动力推动汽车前进。
根据牛顿第二定律,由于汽车的质量与所受的合力成反比,所以质量较大的汽车需要较大的驱动力才能达到相同的加速度。
因此,质量较大的汽车需要更长的时间才能加速到相同的速度。
2. 弹射运动弹射运动是许多体育比赛中常见的项目,如投掷项目、跳高等。
对于投掷项目,选手需要施加合适的力使投掷物飞得更远。
牛顿第二定律告诉我们,如果选手想要投掷物的速度增加,他们需要施加更大的力。
同样,跳高项目中,运动员需要通过加速跑、弹跳等动作来提高跳高的高度。
3. 自行车骑行骑自行车时,我们踩踏脚蹬给自行车提供动力。
根据牛顿第二定律,我们在踩脚蹬时施加的力越大,自行车的加速度就越大,速度也就越快。
同时,如果我们骑车过程中遇到了阻力,比如上坡或者逆风,我们需要施加更大的力才能保持速度或者克服阻力。
4. 摩擦力的作用摩擦力是物体运动中常见的阻力。
根据牛顿第二定律,摩擦力与物体质量成正比,与物体的加速度成反比。
这意味着,质量越大的物体受到的摩擦力越大,加速度越小。
例如,在水面上放置一张纸,我们可以轻易地将它推动。
而如果相同的纸放在凹凸不平的地面上,我们需要施加更大的力才能将其推动。
牛顿第二定律详解
牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。
2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。
(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。
(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。
(2) 瞬时性a与F同时产生、同时变化、同时消失。
作用力突变,a的大小方向随着改变,是瞬时的对应关系。
(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。
因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。
(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。
牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。
牛顿第二定律的理解
2. 用质量为m、长度为L的绳沿着光滑水平面拉动质量 为M的物体,在绳的一端所施加的水平拉力为F, 求: (1)物体与绳的加速度;(2)绳中各处张力的大小(假定绳 的质量分布均匀,下垂度可忽略不计。)
解:(1)以物体和绳整体为研究对
象,根据牛顿第二定律可得:
F(Mm)a a F m
Mm
F
(2)以物体和靠近物体x长的绳为研究对象,根据牛顿第二定
问题1:必须弄清牛顿第二定律的同体性。
F=ma中的F、m和a是同属于同一个研究对象 而言的,不能张冠李戴。研究对象可以是一个物体, 也可以是两个或两个以上的物体组成的系统.所以解 题时首先选好研究对象,然后把研究对象全过程的受 力情况都搞清楚。对同一个研究对象的合外力、质 量、加速度用牛顿第二定律列方程求解。
(A )
A. 8.2N
B. 7N
C. 7.4N
D. 10N
ax
解1:隔离法(略)。
解2:整体法用牛顿第二定律的分量 式求解。
ay
370
2GFNGsi2n307
FN 8.2N
解3:整体法用超重失重观点求解。斜木块和小铁块组成的系 统,小铁块失重Gsin2370=1.8N,故测力计的示数为10N-
1.8N=8.2N
C. 2m/s2, 方向竖直向上
D. 2m/s2, 方向竖直向下
N
解:拔去M的瞬间,小球受到重力和下边弹簧的弹力,重力产生的加速 度是10m/s2,方向竖直向下.此时小球的加速度大小为12m/s2.⑴若 竖直向上,则下边弹簧的弹力产生的加速度为22m/s2 ,方向竖直向上; 说明上边弹簧的弹力产生的加速度为12m/s2 ,方向竖直向下.因此 在拔去销钉N的瞬间,小球的加速度为12m/s2+10m/s2=22m/s2,方 向竖直向下.⑵若竖直向下,则下边弹簧的弹力产生的加速度大小为 2m/s2 ,方向竖直向下.说明上边弹簧的弹力产生的加速度为12m/s2, 方向竖直向上.因此在拔去销钉N的瞬间,小球的加速度为12m/s2- 10m/s2=2m/s2,方向竖直向上.
第三章牛顿运动定律2第2讲牛顿第二定律的基本应用-2024-2025学年高考物理一轮复习课件
F-mg=ma F= 原理方程
_m__g_+__m_a____
mg-F=ma F= __m_g_-__m__a___
mg-F=mg F=0
高考情境链接
(2022·浙江6月选考·改编)如图所示,鱼儿摆尾击水跃出水
面,吞食荷花花瓣的过程。
判断下列说法的正误:
(1)鱼儿吞食花瓣时鱼儿处于超重状态。
返回
考点三 动力学的两类基本问题
返回
动力学的两类基本问题及解决程序图
关键:以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解有 关问题。
考向1 已知受力求运动情况 例4 (2022·浙江6月选考)物流公司通过 滑轨把货物直接装运到卡车中。如图所 示,倾斜滑轨与水平面成24°角,长度 l1=4 m,水平滑轨长度可调,两滑轨间平滑连接。若货物从倾斜滑轨顶 端由静止开始下滑,其与滑轨间的动摩擦因数均为μ= 2 ,货物可视为质
√D.图乙中A、B两球的加速度均为gsin θ
题图甲中撤去挡板瞬间,由于弹簧弹 力不能突变,则A球所受合力为0,加 速度为0,选项A错误;撤去挡板前, 挡板对B球的弹力大小为3mgsin θ,撤 去挡板瞬间,B球与挡板之间弹力消失,B球所受合力为3mgsin θ,加 速度为3gsin θ,选项B错误;题图乙中撤去挡板前,轻杆上的弹力为 2mgsin θ,但是撤去挡板瞬间,杆的弹力突变为0,A、B两球作为整体 以共同加速度运动,所受合力为3mgsin θ,加速度均为gsin θ,选项C错 误,D正确。
对点练2.(多选)如图为泰山的游客乘坐索道缆车上山的 情景。下列说法中正确的是
√A.索道缆车启动时游客处于超重状态 √B.索道缆车到达终点停止运动前游客处于失重状态 √C.索道缆车正常匀速运动时站在缆车地板上的游客不
牛顿第二定律
教材分析:牛顿第二定律它就是在实验基础上建立起来的重要规律,也就是动力学的核心内容。
而牛顿第二定律就是牛顿第一定律的延续,就是整个运动力学理论的核心规律,就是本章的重点与中心内容。
它在力学中占有很重要的地位,反映了力、加速度、质量三个物理量之间的定量关系,就是一条适用于惯性系中的各种机械运动的基本定律,就是经典牛顿力学的一大支柱。
而且牛顿第二定律在生活生产中都有着非常重要的作用,如设计机器、研究天体运动,计算人造卫星轨道等等都与牛顿第二定律有关。
教科书将牛顿第二定律的探究实验与公式表达分成了两节内容,目的在于加强实验探究与突出牛顿第二定律在力学中的重要地位。
牛顿第二定律的首要价值就是确立了力与运动之间的直接关系,即因果关系。
本节内容就是在上节实验的基础上,通过分析说明,提出了牛顿第二定律的具体表述,得到了牛顿第二定律的数学表达式。
教科书突出了力的单位“1牛顿”的物理意义,并在最后通过两个例题介绍牛顿第二定律应用的基本思路。
教学目标:教学重点牛顿第二定律的特点教学难点(1)牛顿第二定律的理解.(2)理解k=1时,F=ma教学过程【新课导入】师:利用多媒体播放上节课做实验的过程,引起学生的回忆,激发学生的兴趣,使学生再一次体会成功的喜悦,迅速把课堂氛围变成研究讨论影响物体加速度原因这一课题中去.学生观瞧,讨论上节课的实验过程与实验结果.师:通过上一节课的实验,我们知道当物体的质量不变时物体的加速度与其所受的作用力之间存在什么关系?生:当物体的质量不变时物体运动的加速度与物体所受的作用力成正比,师:当物体所受力不变时物体的加速度与其质量之间存在什么关系?生:当物体所受的力不变时物体的加速度与物体的质量成反比. 学@科网师:当物体所受的力与物体的质量都发生变化时,物体的加速度与其所受的作用力、质量之间存在怎样的关系呢?【新课教学】一、牛顿第二定律师:通过上一节课的实验,我们再一次证明了:物体的加速度与物体的合外力成正比,与物体的质量成反比.师:如何用数学式子把以上的结论表示出来?生:a∝F/m师:如何把以上式子写成等式?生:需要引入比例常数ka=kF/m师:我们可以把上式再变形为F=kma.选取合适的单位,上式可以,简化。
4.3《牛顿第二定律》(笔记)
所以:从这个例子可以看出, v=0 时a不一定为0 。 那么,a=0 时, v一定为0吗?
也不一定,例如:做匀速直线运动的物体, a=0,但是v≠0。
可见,a=0与v=0之间没有任何必 然关系。
推论:F合=0与v=0之间有什么关系吗?
答:F合=0与v=0之间也没有任何必然关 系,因为F合=0 时,由牛顿第二定律可 得a=0,上面已经证明了。
a、v同向,加速;a、v反向,减速。 F合、v同向,加速;F合、v反向,减速。
(2)独立性:每个力各自独立地 能使物体产生一个加速度
(3)因果性: 力是产生加速度的原因,物 体的加速度由外因“力”和内 因“质量”这两个因素共同决 定的。
思 思考:v=0,a也一定为0吗? 考 例如:竖直向上抛出一个物体,当物体到达 最高点时,速度为为多大? 速度为0 此时加速度为0 吗?或者说 合外力为0 吗? 此时物体只受重力,由牛顿第 G 二定律可得 F合=mg=ma, a=g。
第四章 牛顿运动定律
二 ︑ 牛 顿 第 2. 公式: 二 定 加速度 律
1.内容:物体加速度的大小跟 作用力成正比,跟物体的质 量成反比;加速度的方向跟 作用力的方向相同
a = m 合力
F=ma
质量
F
(1)矢量性: aa = m
F
怎样判断物体做加速运动还 是减速运动?
牛顿二定律
牛顿二定律牛顿第二运动定律是指物体加速度的大小跟作用力成正比,跟物体的质量成反比,且与物体质量的倒数成正比,加速度的方向跟作用力的方向相同。
该定律由艾萨克·牛顿于1687年在《自然哲学的数学原理》一书中提出,和第一、第三定律共同组成了牛顿运动定律,阐述了经典力学中基本的运动规律。
1定律定义牛顿在《自然哲学的数学原理》发表的原始表述:动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;常见表述:物体加速度的大小与合外力成正比,与物体质量成反比(与物体质量的倒数成正比)。
加速度的方向与合外力的方向相同。
牛顿第二运动定律可以用比例式来表示,也可以用等式来表示,即∑F=kma,其中k是比例系数;只有当F以牛顿、m以千克、a以m/s²为单位时,∑F=ma成立。
2定律特点牛顿第二运动定律有五个特点:瞬时性:牛顿第二运动定律是力的瞬时作用效果,加速度和力同时产生、同时变化、同时消失。
矢量性:是一个矢量表达式,加速度和合力的方向始终保持一致。
独立性:物体受几个外力作用,在一个外力作用下产生的加速度只与此外力有关,与其他力无关,各个力产生的加速度的矢量和等于合外力产生的加速度,合加速度和合外力有关。
因果性:力是产生加速度的原因,加速度是力的作用效果h 故力是改变物体运动状态的原因。
等值不等质性:虽然,但不是力,而是反映物体状态变化情况的;虽然,仅仅是度量物体质量大小的方法,3实验验证牛顿第二运动定律实验是物理中的一个很基础、必要的验证性实验,涉及到检验一个物理定律或规律的基本途径和方法,因此对于其实验精度往往有特殊的要求。
牛顿第二运动定律验证实验,就是测量在不同的作用下运动系统的加速度,并检验二者之间是否符合上述关系。
利用现代的实验教学设施改进和补充原来的实验手段,更能体现出物理学的科学素养和科学态度。
牛顿第二定律_例题详解
牛顿第二定律一、牛顿第二定律1.内容:物体的加速度与所受合外力成正比,与物体的质量成反比,加速度的方向与合外力的方向相同.2.公式:F=ma3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中,F的单位是N,m的单位是kg,a的单位是m/s2.【例1】如图所示,轻绳跨过定滑轮(与滑轮问摩擦不计)一端系一质量为m的物体,一端用F的拉力,结果物体上升的加速度为a1,后来将F的力改为重力为F的物体,m向上的加速度为a2则()A.a1=a2 ;B.a1>a2 C.a1<a2 D.无法判断二、突变类问题(力的瞬时性)(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系,每一瞬时的加速度只取决于这一瞬时的合外力,(2)中学物理中的“绳”和“线”,是理想化模型,具有如下几个特性:A.轻:即绳(或线)的质量和重力均可视为等于零,同一根绳(或线)的两端及其中间各点的张为大小相等。
B.不可伸长:即无论绳所受拉力多大,绳子的长度不变,绳子中的张力可以突变。
(3)中学物理中的“弹簧”和“橡皮绳”,也是理想化模型,具有如下几个特性:A.轻:即弹簧(或橡皮绳)的质量和重力均可视为等于零,同一弹簧的两端及其中间各点的弹力大小相等。
B.弹簧既能承受拉力,也能承受压力(沿着弹簧的轴线),橡皮绳只能承受拉力。
不能承受压力。
C、由于弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能发生突变。
【例2】如图(a)所示,一质量为m的物体系于长度分别为l1、12的两根细绳上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态,现将l2线剪断,求剪断瞬间物体的加速度。
牛顿第二定律
第三章 牛顿运动定律第二单元 牛顿第二定律[知识梳理]:1.牛顿第二定律的表述:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)2.对定律的理解:(1)矢量性:牛顿第二定律公式是矢量式。
公式mFa =只表示加速度与合外力的大小关系。
矢量式的含义在于加速度的方向与合外力的方向始终一致。
(2)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零。
(3)独立性:当物体受到几个力的作用时,各力将独立的产生与其对应的加速度,而物体表现出来的实际加速度是各力产生的加速度的矢量和。
3.牛顿第二定律确立了力和运动的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。
联系物体的受力情况和运动情况的桥梁或纽带就是加速度。
[典型例题](一)牛顿第二定律的矢量性、瞬时性、独立性 (1)牛顿第二定律的矢量性、瞬时性 牛顿第二定律公式mFa =是矢量式。
加速度的方向与合外力的方向始终一致。
加速度的大小和方向与合外力是瞬时对应的,当力发生变化时,加速度瞬时变化。
【例1】如图(1)所示,一质量为m 的物体系于长度分别为L 1 、L 2的两根细线上,L 1的一端悬挂在天花板上,与竖直方向夹角为θ,L 2水平拉直,物体处于平衡状态。
现将L 2线剪断,求剪断瞬时物体的加速度。
(1)下面是某同学对该题的某种解法:解:设L 1线上拉力为T 1,L 2线上拉力为T 2,重力为mg ,物体在三力作用下处于平衡。
=θcos 1T mg ,21sin T T =θ,解得2T =mg tan θ,剪断线的瞬间,T 2突然消失,物体却在T 2反方向获得加速度,因为mg tanθ=ma 所以加速度a =g tan θ,方向在T 2反方向。
牛顿第二定律说课稿9篇
牛顿第二定律说课稿9篇牛顿第二定律说课稿9篇作为一名优秀的教育工作者,就不得不需要编写说课稿,借助说课稿可以有效提高教学效率。
说课稿应该怎么写才好呢?下面是小编为大家收集的牛顿第二定律说课稿,仅供参考,欢迎大家阅读。
牛顿第二定律说课稿1一、教材分析1、地位和作用牛顿运动定律是力学知识的核心内容.将牛顿运动定律与运动学知识结合可推导动量定理、动能定理、动量守恒定律和机械能守恒定律;将牛顿运动定律与万有引力结合,可研究天体运动规律;此外,牛顿运动定律在电磁学、热学中也有广泛的应用。
因此,牛顿运动定律实际上几乎贯穿了经典物理学的全部内容。
在历年的高考中,单纯考查牛顿运动定律的题目并不多见,主要是牛顿第二、第三定律与其他知识的综合应用,因此牛顿运动定律并不是作为一个单独的知识点,而是作为一个知识基础体现在历年的高考试题中。
牛顿运动定律的综合应用问题是经典物理学的核心内容,是高考的重点和难点,本部分内容的考题突出了与实际物理情景的结合,出题形式多以大型计算题的形式出现,从近几年的高考形式上来看,20xx年上海物理卷第22题、海南卷第15题、江苏卷第13题、安徽卷第22题、山东卷第24题、08年上海单科卷第21题、海南卷第15题,07年海南卷第16题均以计算题的形式出现。
总之,牛顿运动定律是力学乃至整个物理学的基本规律,是动力学的基础;本节复习课是力的知识,运动学知识和牛顿运动定律分析解决动力学问题的一般思路和方法,为学生学好整个物理学奠定基础。
以提高全体学生的科学素质,从知识与技能、过程与方法、情感态度与价值观三个方面培养学生,按照教学大纲要求,结合新课程标准,提出如下三维教学目标:2、教学目标:(1)知识与技能:知道已知受力情况求解运动情况的解题方法,进一步学习对物体进行正确的受力分析,培养学生分析问题和总结归纳的能力,培养学生应用所学知识解决实际问题的能力。
(2)过程与方法:通过例题变式学生探究,培养学生发散思维和合作学习的能力,通过例题示范让学生学会画受力分析图和过程示意图,培养学生分析物理情景构建物理模型的能力。
高二物理《 牛顿第二定律简单运用》知识点总结
高二物理《牛顿第二定律简单运用》知识点总结
一、牛顿第二定律
1.内容:物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比.加速度的方向跟作用力的方向相同;
2.表达式:F=ma
3. 对牛顿第二定律的理解
4.应用牛顿第二定律求瞬时加速度的技巧
在分析瞬时加速度时应注意两个基本模型的特点:
(1)轻绳、轻杆或接触面——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间;
(2)轻弹簧、轻橡皮绳——两端同时连接(或附着)有物体的弹簧或橡皮绳,特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.二、动力学两类基本问题
1.动力学两类基本问题
(1)已知受力情况,求物体的运动情况;
(2)已知运动情况,求物体的受力情况;
2.解决两类基本问题的方法
以加速度为“桥梁”,由运动学公式和牛顿运动定律列方程求解,具体逻辑关系如图:
3.解决动力学问题的技巧和方法
1.两个关键
(1)两类分析——物体的受力分析和物体的运动过程分析;
(2)一个“桥梁”——物体运动的加速度是联系运动和力的桥梁.
2.两种方法
(1)合成法:在物体受力个数2个或3个时,一般采用“合成法”;
(2)正交分解法:若物体的受力个数3个或3个以上时,则采用“正交分解法”。
牛顿第二定律(上课用)
1:一个质量为2kg的物体同时受到两个力
的作用,这两个力的大小分别为2N和6N当
力的方向发生变化时,物体的加速度大小可
能为:
A.1m/s2
B.2m/s2
C.3m第二定律F=kma中,有关比例系数k的下 列说法,正确的是:
A.在任何情况下k都等于1; B.k的数值是由质量、加速度和力的大小决的; C.k的数值是由质量、加速度和力的单位决的; D.在国际单位制中,k=1.
2.物体受几个力作用处于静止状态,若将其中一个力逐渐减小 到0,再逐渐恢复到原值,物体加速度和速度怎样变化?
答案:加速度先增大后减小,速度一直增大.
23
课后思考:一小球从竖直在地面上轻
弹簧正上某处自由落下,试分析小球从 刚接触弹簧到被压缩最短过程中小球 的速度.加速度怎样变化?
24
1 、为了安全,在公路上行驶的汽车之间应保持必要的距离已知 某高速公路的最高限速 v = 144 km/h 。假设前方车辆突然停止, 后车司机从发现这一情况,经操纵刹车,到汽车开始减速所经历 的时间(即反应时间)t = 0.50s 。刹车时汽车受到的阻力的大小F 为汽车重力的0.40倍。该高速公路上汽车间的距离 s 至少应为多少 (g = 10 m/s2)
互成1200角的两个力 F1 = 10 N
和 F2 = 10 N 的共同作用,这个 物体产生的加速度是多大?
F1
F合
F2
解法1:先由平行四边形法则可知, F1、 F2、F合 构成了一个等边三角形,故 F合 =10 N a = F合 /m =10/2 = 5 m/s2
12
解法2:先分别求出 F1、 F2 产生 的加速度a1、 a2 再根据平行四边 形法则求 a1、 a2 的合加速度a合
第四章:牛顿运动定律(2)
如下图所示,弹簧的原长在圆心O点的位置,一拉
长,小球就从振幅(圆最右端点)开始振荡了。它 在任何一点的受力就是F=-KX.又利用F=-mω2x,两 个方程一联立就可以求到ω 。而它的周期和圆周运 动是一样的。所以,就可以求到简谐振动的周期。
分析:这两个维度运动的合成就是圆周运动,所以 这个力就是圆周运动的向心力。通过求导再求导就 可以得到力。
分析:三维空间的一条曲线没法用一个解析式表示。
就是空间的一条线也没法用一个解析式表示。其实
参数方程本身就是轨迹。二维空间好消参得轨迹, 但三维空间没法消参。你把x,y消t可以,那z怎么办 啊。
另:怎么计算这个等距螺旋线的曲率半径?圆周的曲
率半径就是半径,且处处相等。但是,当圆在竖直方
向被拉开,曲率半径是变大了还是变小了?当拉的足
够远时,转圈就转ห้องสมุดไป่ตู้不严重了,就是拉的很直,曲率
半径就是变大。关键是大多少?曲率半径的公式是 v2/a垂直。二维时,曲率半径处处相等的曲线是圆。 三维中,曲率半径处处相等的曲线不一定是圆。比如
这个等间距的螺旋线就是曲率半径处处相等。因为等 间距螺旋线的合速度是(v2+(Aω)2),而且这个水平和 竖直速度是正交的。而加速度是只有水平的向心加速
注意到:
F和x是很有特点的:正比例,而且是负值。负代表 回复力。就是说向右偏移一个量,力是向左的。向 左偏移一个量,力是向右的。而且是正比例,所以 也叫线性回复力。说明东西能够产生这种线性回复 力呢?是弹簧,因为胡克定律。所以,如果一个质 点要研究怎样才能产生这样的运动,应该有这样的 力,怎样才能有这样的力?来个弹簧就有了。
度,竖直方向没有加速度。但是这个加速度是和实际
速度垂直吗?需不需再分解呢?是垂直的,因为它即
牛顿第二定律
T
θ mg
由于 a =10m/s2 > a0 所以小球会离开斜面, 所以小球会离开斜面,受力如下图
T sinα = mg T cosα = ma ∴T = (mg)2 + (ma)2 2.33(N) =
mg α
T
θ
∴N = 0.
例4.如图所示,质量为0.2kg的小球A用细 绳悬挂于车顶板的O点,当小车在外力作 用下沿倾角为30°的斜面向上做匀加速直线 运动时,球A的悬线恰好与竖直方向成 30°夹角。求: (1)小车沿斜面向上运动的加速度多大? (2)悬线对球A的拉力是多大?
解:对球A做受力分析 A受两个力重力mg、绳子的拉力T 将二力沿图示x、y方向分解 x Tcos30°-mgsin30°=ma ① y Tsin30°-mgcos30°=0 ②
小结: 小结:
牛顿运动定律的应用是力学的重点之一. 牛顿运动定律的应用是力学的重点之一. 在已知运动情况求力或已知力分析运动情 况都是以加速度这一物理量作为(桥梁) 况都是以加速度这一物理量作为(桥梁) 来解决问题. 来解决问题.
牛顿第二定律的性质
1:瞬时性:加速度和力的关系是瞬时对应, a与 F同时产生,同时变化,同时消失;
2:矢量性:加速度的方向总与合外力方向相同;
3:独立性(或相对性):当物体受到几个力的 作用时,可把物体的加速度看成是各个力单 独作用时所产生的分加速度的合成;
4:牛顿运动定律的适应范围:是对宏观、低速 物体而言;
A
B
变式训练2:如图所示,一平直的传送带以速度V =2m/s匀速运动,传送带把A处的工件运送到B处, A、B相距L=10m.从A处把工件无初速地放到传 送带上,经时间t=6s能传送到B处,欲用最短时 间把工件从A处传到B处,求传送带的运行速度至 少多大.
A
B
例题分析:
例2:如图所示,一水平方向足够长的传 送带以恒定的速度V=2m/s沿顺时针方 向匀速转动,传送带传送带右端有一与 传送带等高的光滑水平面,一物体以恒定 的速率V’=4m/s沿直线向左滑上传送带, 求物体的最终速度多大?
要较长时间,在瞬时问题中,其弹力可以看成不变。
一条轻弹簧上端固定在 天花板上,下端连接一物 体A,A的下边通过一轻 绳连接物体B.A,B的质 量相同均为m,待平衡后 A 剪断A,B间的细绳,则剪 断细绳的瞬间,物体A的 B 加速度和B的加速度?
质量皆为m的A,B两球之间系 着一个不计质量的轻弹簧,放 在光滑水平台面上,A球紧靠墙 壁,今用力F将B球向左推压弹 簧,平衡后,突然将力F撤去的瞬 间A,B的加速度分别为多少?.
则当将两物体由静
止释放后,弹簧秤
的读数是多少?
M1
M2
传送带问题
学习重点、难点、疑点、突破 水平传送带问题的演示与分析 传送带问题的实例分析 传送带问题总结
难点与疑点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三物理一轮复习(七)——牛顿运动定律应用授课教师:高茂群基础知识回顾;一、牛 顿 第 二 定 律1.定律的表述:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F =ma (其中的F 和m 、a 必须相对应)2.对定律的理解:(1)瞬时性:合外力恒定不变时,加速度也保持不变。
合外力变化时加速度也随之变化。
合外力为零时,加速度也为零。
(2)矢量性:牛顿第二定律公式是矢量式。
公式mFa 只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致.(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。
即 F 与a 均是对同一个研究对象而言。
(4)相对性:牛顿第二定律只适用于惯性参照系。
(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子。
二、应用举例1.力与运动关系的定性分析1.如图所示,物体P以一定的初速度沿光滑水平面向右运动,与一个右端固定的轻质弹簧相撞,并被弹簧反向弹回.若弹簧在被压缩过程中始终遵守胡克定律,那么在P 与弹簧发生相互作用的整个过程中( )A.P做匀速直线运动B.P的加速度大小不变,但方向改变一次C.P的加速度大小不断改变,当加速度数值最大时,速度最小D.有一段过程,P的加速度逐渐增大,速度也逐渐增大解析:在物体P 压缩弹簧的过程中,弹簧的弹力一直在增大,根据牛顿第二定律可知,物体P 的加速度一直在增大,但速度方向与加速度方向相反,则物体P 运动速度一直在减小,当速度为零时,加速度最大,C 正确.答案:C2.牛顿第二定律的瞬时性2..(2010年高考全国卷Ⅰ)如图所示,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态.现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为a 1、a 2.重力加速度大小为g .则有( )A .a 1=0,a 2=gB .a 1=g ,a 2=gC .a 1=0,a 2=m +M M gD .a 1=g ,a 2=m +MMg解析:木板抽出前,由平衡条件可知弹簧被压缩产生的弹力大小为mg .木板抽出后瞬间,弹簧弹力保持不变,仍为mg .由平衡条件和牛顿第二定律可得a 1=0,a 2=m +MMg .答案:C3.如图所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( ) A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θ B .B 球的受力情况未变,瞬时加速度为零 C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零【解析】 线烧断瞬间,弹簧弹力与原来相等,B 球受力平衡,a B =0,A 球所受合力为mg sin θ+kx =2mg sin θ,故a A =2g sin θ.【答案】 BC3.运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题): (1)已知物体的受力情况,要求物体的运动情况.如物体运动的位移、速度及时间等. (2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向).但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案. 两类动力学基本问题的解题思路图解如下:牛顿第二定律加速度a 运动学公式运动情况第一类问题受力情况另一类问题4.(2011年高考课标全国卷)如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等.现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2.下列反映a1和a2变化的图线中正确的是( )解析:刚开始木块与木板一起在F 作用下加速,且F =kt ,a =Fm 1+m 2=ktm 1+m 2,当相对滑动后,木板只受滑动摩擦力,a 1不变,木块受F 及滑动摩擦力,a 2=F -μm 2g m 2=F m 2-μg ,故a 2=ktm 2-μg ,at 图象中斜率变大,故选项A 正确,选项B 、C 、D 错误.答案:A5.(2012·哈尔滨模拟)一物体从静止开始由倾角很小的光滑斜面顶端滑下,保持斜面底边长度不变,逐渐增加斜面长度以增加斜面倾角直至斜面倾角接近90°.在倾角增加的过程中(每次下滑过程中倾角不变),物体的加速度a 和物体由顶端下滑到底端的时间t 的变化情况是( )A .a 增大,t 增大B .a 增大,t 变小C .a 增大,t 先增大后变小D .a 增大,t 先变小后增大【解析】设斜面倾角为θ,斜面底边长为x0,则斜边长为x0cos θ.物体的加速度a=g sin θ,θ增大时,a增大,由x0cos θ=12at2可得:t=4x0g sin 2θ,可见随θ的增大,t先变小后增大,故只有D正确.【答案】 D4、整体法与隔离法1.整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。
采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、明了。
2.隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。
可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。
采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。
6.如图所示,粗糙水平面上放置质量分别为m、2m和3m的三个木块,木块与水平面间动摩擦因数相同,其间均用一不可伸长的轻绳相连,轻绳能承受的最大拉力为T.现用水平拉力F拉其中一个质量为2m的木块,使三个木块以同一加速度运动,则以下说法正确的是()A.绳断前,a、b两轻绳的拉力比总为4∶1B.当F逐渐增大到T时,轻绳a刚好被拉断C.当F逐渐增大到1.5T时,轻绳a刚好被拉断D.若水平面是光滑的,则绳断前,a、b两轻绳的拉力比大于4∶1【解析】取三木块为整体则有F-6μmg=6ma,取质量为m、3m的木块为整体则有T a-4μmg =4ma,隔离m则有T b-μmg=ma,所以绳断前,a、b两轻绳的拉力比总为4∶1,与F、μ无关,A对D错;当a绳要断时,解得a=T4m-μg,拉力F=1.5T,B错,C正确.【答案】AC7.(2012·茂名模拟)直升机悬停在空中向地面投放装有救灾物资的箱子,如图1所示.设投放初速度为零,箱子所受的空气阻力与箱子下落速度的平方成正比,且运动过程中箱子始终保持图示姿态.在箱子下落过程中,下列说法正确的是()A.箱内物体对箱子底部始终没有压力B.箱子刚从飞机上投下时,箱内物体受到的支持力最大C.箱子接近地面时,箱内物体受到的支持力比刚投下时大D.若下落距离足够长,箱内物体有可能不受底部支持力而“飘起来”【解析】对于箱子和箱内物体组成的整体,a=(M+m)g-fM+m,随着下落速度的增大,空气阻力f增大,加速度a减小.对箱内物体,mg-F N=ma,所以F N=m(g-a)将逐渐增大.故选C.5、临界问题在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。
这类问题称为临界问题。
在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。
8.如图所示,质量为m的球置于斜面上,被一个竖直挡板挡住.现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( )A.若加速度足够小,竖直挡板对球的弹力可能为零B .若加速度足够大,斜面对球的弹力可能为零C .斜面和挡板对球的弹力的合力等于maD .斜面对球的弹力不仅有,而且是一个定值解析:球受力如图,则 N 2-N 1sin θ=ma N 1cos θ=mg由此判断A 、B 错误.根据牛顿第二定律,N 1、N 2和mg 三力的合力等于ma ,C 错误.根据N 1=mgcos θ,D 正确.答案:D6、超重和失重1.超重现象:产生超重现象的条件是物体具有 向上 的加速度。
与物体速度的大小和方向无关。
产生超重现象的原因:当物体具有向上的加速度a (向上加速运动或向下减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F , F -mg =ma 所以F =m (g +a )>mg 2.失重现象:产生失重现象的条件是物体具有 向下 的加速度,与物体速度的大小和方向无关. 产生失重现象的原因:当物体具有向下的加速度a (向下加速运动或向上做减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F 。
mg -F =ma ,所以F =m (g -a )<mg完全失重现象:当物体竖直向下的加速度等于重力加速度时,就产生完全失重现象。
点评:在地球表面附近,无论物体处于什么状态,其本身的重力G=mg始终不变。
超重时,物体所受的拉力(或支持力)与重力的合力方向向上,测力计的示数大于物体的重力;失重时,物体所受的拉力(或支持力)与重力的合力方向向下,测力计的示数小于物体的重力.可见,在失重、超重现象中,物体所受的重力始终不变,只是测力计的示数(又称视重)发生了变化,9“零重力”旅游是一种新兴的旅游项目,一架经过特殊改装的波音727飞机载着乘客在高空反复交替做爬升和俯冲的动作,以制造瞬间的“零重力”状态,乘客可以在地球上体验身处太空的美妙感觉.关于飞机上“零重力”的产生,下列说法正确或设想原理上可行的是( )A.飞机在匀速爬升时处于完全失重状态产生“零重力”B.飞机在经过爬升到达弧形轨道最高点前后的一段时间内的运动,可视为是在竖直平面内的圆周运动,所以这段时间是“零重力”的产生阶段C.设想飞机通过最高点瞬间关闭发动机、收起机翼,忽略空气阻力,让飞机做平抛运动而产生“零重力”D.设想飞机竖直爬升时关闭发动机、收起机翼,忽略空气阻力,让飞机做竖直上抛运动而产生“零重力”解析:“零重力”状态指的就是完全失重状态,在此状态下,物体的加速度为g,方向竖直向下,A选项飞机匀速,处于平衡状态,A选项错误,B、C、D选项中飞机的加速度都可以为g.答案:BCD10.下列四个实验中,能在绕地球飞行的太空实验舱中完成的是A.用天平测量物体的质量B.用弹簧秤测物体的重力C .用温度计测舱内的温度D.用水银气压计测舱内气体的压强7.图像问题11.(2010·山东高考)如图3-3-18所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v、a、f和s分别表示物体速度大小、加速度大小、摩擦力大小和路程.下图中正确的是()【解析】物体在斜面上受重力、支持力、摩擦力作用,其摩擦力大小为f1=μmg cos θ,做初速度为零的匀加速直线运动,其v-t图象为过原点的倾斜直线,A错;加速度大小不变,B错;其s-t图象应为一段曲线,D错.物体到达水平面后,所受摩擦力f2=μmg>f1,做匀减速直线运动,所以正确选项为C.【答案】 C12.(2012·湛江模拟)一个物块放置在粗糙的水平地面上,受到的水平拉力F随时间t变化的关系如图甲所示,速度v随时间t变化的关系如图乙所示,g=10 m/s2,则由图中信息可判定() A.0~2 s内物块所受摩擦力f=4 NB.物块的质量为4 kgC.物块在前6 s内的平均速度为3 m/sD.物块与水平地面间的动摩擦因数μ=0.4【解析】由图乙知0~2 s内,物块处于静止状态,物块受静摩擦力作用,由甲图可读出f=4 N,A对;由v-t图线可知物块在前6 s内的位移大小为s=(2+4)×42m=12 m,所以平均速度为v=st=2 m/s,C错;而在2~4 s内,物块做匀加速运动,加速度大小为a=ΔvΔt=2 m/s2,满足F2-μmg=ma,在4 s后物块做匀速运动,有F3=μmg,联立得m=2 kg,μ=0.4,B错D对.【答案】AD 针对训练:1.质量相等的甲、乙两物体从离地面相同高度同时由静止开始下落,由于两物体的形状不同,运动中受到的空气阻力不同,将释放时刻作为t=0时刻,两物体的速度图象如图所示.则下列判断正确的是()A.t0时刻之前,甲物体受到的空气阻力总是大于乙物体受到的空气阻力B.t0时刻之前,甲物体受到的空气阻力总是小于乙物体受到的空气阻力C.t0时刻甲乙两物体到达同一高度D.t0时刻之前甲下落的高度小于乙物体下落的高度【解析】由牛顿第二定律可得物体下落的加速度a=mg-fm=g-fm从图象上的斜率可知甲的加速度不变,说明其受阻力不变,乙的加速度一直减小,说明其受阻力一直增大,比较两图象的斜率,乙的斜率先大于甲,后小于甲,中间某一时刻二者的斜率相等,说明甲物体所受阻力开始大于乙,后小于乙,中间某一时刻相等,因此A、B选项均错.t0时刻二者速度相等,从图象上图线所围面积推断乙下落的位移大,因此C错D对.【答案】 D 2.(2012·湛江模拟)某研究性学习小组用实验装置模拟火箭发射卫星.火箭点燃后从地面竖直升空,燃料燃尽后火箭的第一级和第二级相继脱落,实验中速度传感器测得卫星竖直方向的速度—时间图象如图所示,设运动中不计空气阻力,燃料燃烧时产生的推力大小恒定.下列判断正确的是()A.t2时刻卫星到达最高点,t3时刻卫星落回地面B.卫星在0~t1时间内的加速度大于t1~t2时间内的加速度C. t1~t2时间内卫星处于超重状态D. t2~t3时间内卫星处于超重状态【解析】卫星在0~t3时间内速度方向不变,一直升高,在t3时刻到达最高点,A错误;v-t图象的斜率表示卫星的加速度,由图可知,t1~t2时间内卫星的加速度大,B错误;t1~t2时间内,卫星的加速度竖直向上,处于超重状态,t2~t3时间内,卫星的加速度竖直向下,处于失重状态,故C正确,D错误.【答案】 C3.如图所示,足够长的传送带与水平面间夹角为θ,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数μ<tan θ.则图中能客观地反映小木块的速度随时间变化关系的是()【解析】m刚放上时,mg sin θ+μmg cos θ=ma1.当m与带同速后,因带足够长,且μ<tan θ,故m要继续匀加速.此时,mg sin θ-μmg cos θ=ma2,a2<a1,故D正确.【答案】 D 4.(2010·海南高考)在水平的足够长的固定木板上,一小物块以某一初速度开始滑动,经一段时间t 后停止.现将该木板改置成倾角为45°的斜面,让小物块以相同的初速度沿木板上滑.若小物块与木板之间的动摩擦因数为μ,则小物块上滑到最高位置所需时间与t之比为()A.2μ1+μB.μ1+2μC.μ2+μD.1+μ2μ【解析】在水平木板上滑动时,加速度a1=μmgm=μg,滑行时间t1=v0a1=v0μg在倾角45°的斜面上上滑时,加速度a2=mg sin 45°+μmg cos 45°m=(22+22μ)g.滑行时间t2=v0a2=v0(22+22μ)g所以t2t1=2μ1+μ,选项A正确.【答案】 A5.(2010·福建高考)质量为2 kg的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律如图3-2-18所示.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()A.18 m B.54 mC.72 m D.198 m【解析】本题考查了牛顿运动定律和运动学公式,解答这类题目的关键是对物体进行正确的受力分析和运动过程分析.物体所受摩擦力为f=μmg=0.2×2×10 N=4 N,因此前3 s内物体静止.3 s~6 s,a=F-fm=8-42m/s2=2 m/s2,s1=12at21=12×2×32 m=9 m;6 s~9 s,物体做匀速直线运动,s2=v t2=at1·t2=2×3×3 m=18 m;9 s~12 s,物体做匀加速直线运动,s3=v t3+12at23=6×3 m+12×2×9 m=27 m;s总=s1+s2+s3=9 m+18 m+27 m=54 m,故B选项正确.【答案】 B6.(2012·揭阳模拟)如图所示,一名消防队员在模拟演习训练中,沿着长为12 m的竖立在地面上的钢管往下滑.已知这名消防队员的质量为60 kg,他从钢管顶端由静止开始先匀加速再匀减速下滑,滑到地面时速度恰好为零.如果他加速时的加速度大小是减速时的2倍,下滑的总时间为3 s,g 取10 m/s2,那么该消防队员()A.下滑过程中的最大速度为4 m/sB.加速与减速过程的时间之比为1∶2C.加速与减速过程中所受摩擦力大小之比为1∶7D.加速与减速过程的位移之比为1∶4【解析】a1t1=v max=a2t2,利用a1=2a2得t1∶t2=1∶2,B正确;下滑的最大速度v max=2v=2s t=8 m/s,A错误;加速过程中有mg-f1=ma1,减速过程中有f2-mg=ma2,而a1=8 m/s2,a2=4 m/s2,所以f1∶f2=1∶7,C正确;加速过程与减速过程的平均速度相等,则其位移s1=v t1,s2=v t2,s1∶s2=t1∶t2=1∶2,D错误.【答案】BC7.(2012·中山模拟)如图所示,一光滑斜面固定在水平地面上,质量m=1 kg的物体在平行于斜面向上的恒力F 作用下,从A 点由静止开始运动,到达B 点时立即撤去拉力F .此后,物体到达C 点时速度为零.每隔0.2 s 通过速度传感器测得物体的瞬时速度,下表给出了部分测量数据.试求:(1)斜面的倾角α;(2)恒力F 的大小;(3)t =1.6 s 时物体的瞬时速度.【解析】 (1)经分析可知,当t =2.2 s 时,物体已通过B 点.因此减速过程加速度大小a 2 =3.3-2.12.4-2.2m/s 2=6 m/s 2,mg sin α=ma 2,解得α=37°.(2)a 1=2.0-1.00.4-0.2 m/s 2=5 m/s 2 F -mg sin α=ma 1,解得F =11 N.(3)设第一阶段运动的时间为t 1,在B 点时有 5t 1=2.1+6(2.4-t 1),t 1=1.5 s 可见,t =1.6 s 的时刻处在第二运动阶段,由逆向思维可得。