2指数函数图像及性质(学生)

合集下载

指数函数的图像与性质

指数函数的图像与性质

指数函数的图像与性质指数函数是高中数学中常见的一种函数,它具有独特的图像与性质。

本文将从图像、定义、性质等方面进行讨论,以帮助读者更好地理解指数函数。

一、指数函数的定义与图像指数函数可以表示为f(x) = a^x,其中a为正实数且不等于1。

在定义域为实数集上,指数函数的图像呈现出特殊的增长趋势。

1. 当a>1时,指数函数呈现上升的趋势。

随着x的增大,f(x)的取值也呈现出逐渐增大的特点。

这是因为指数函数随着底数a的增大,幂次的增长速度加快。

2. 当0<a<1时,指数函数呈现下降的趋势。

随着x的增大,f(x)的取值逐渐减小。

这是因为指数函数随着底数a的减小,幂次的增长速度减慢。

以上两种情况都可以通过绘制函数图像来进行直观的展示。

在图像中,我们可以发现指数函数在x轴的正半轴方向具有渐近线,并且在x=0处经过点(0, 1)。

二、指数函数的性质除了图像外,指数函数还具有以下几个重要的性质。

1. 单调性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。

这是由指数函数的定义所决定的。

2. 定义域与值域:由于指数函数的定义域为实数集,且底数a不等于1,因此指数函数的值域也是正实数集(0, +∞)。

3. 奇偶性:当指数函数的底数a为负时,指数函数为奇函数,即f(x) = -a^x;当底数a为正时,则指数函数为偶函数,即f(x) = a^x。

4. 渐近线:指数函数在x轴的正半轴方向具有一条水平渐近线y=0,并且在x=0处有一个横坐标为1的纵坐标,即点(0, 1)。

5. 过点(1, a):指数函数在x=1处经过点(1, a)。

这是由指数函数的定义得出的。

通过对指数函数的图像与性质的讨论,我们可以更加全面地了解这一函数类型。

指数函数在实际问题中具有广泛的应用,例如在金融领域中的复利计算、人口增长的模型等。

因此,熟练掌握指数函数的图像与性质对于解决实际问题具有重要的意义。

4.2.2指数函数的图像和性质课件-高一上学期数学人教A版(1【03】)

4.2.2指数函数的图像和性质课件-高一上学期数学人教A版(1【03】)
y ax (a 0,且a 1)的图象恒过定点(1,0) 原理 : a 0时,恒有a0 1.
[例1]y ax5 1(a 0,且a 1)的图象恒过定点_(-_5_,2_)__.
[变式1]y 2ax2021 1(a 0,且a 1)的图象恒过定点______.
指数函数的应用二:比较大小
a,b,c,d的大小关系是( B)
A.0<a<b<1<c<d B.0<b<a<1<d<c C.0<a<b<1<d<c
分析1:令x=1时函数值的大小比较.作直线x=1,底越大,交点 越向上 分析2:第一象限内,底大图高
指数函数的应用三:图象问题
[例4]函数y=2-|x|的图像
大致是( C )
2x , x 0
4.2 指数函数 的图象及性质
复习导入
系数为1
y=1 ·ax
自变量
常数(大于0且不等于1)
✓ 两个模型:指数增长模型:y=N(1+p)x(x∈N,p>0); 指数衰减模型:y=N(1-p)x(x∈N,p>0).
描点绘图,看图索质
y
2 x 与y
1
x
的图象关于y轴对称
2
-2
-1.5 0.35
2.83
(1)2x 1
2x 20 x 0
(2)2x 4
2x 22 x 2
(3)
1
x
3
3
(4)
1
3 x 1
2
2
1 x
1
1
x
1
3 3
1
3 x 1
1
1
3x
1
1

4.2.2指数函数的图象和性质

4.2.2指数函数的图象和性质

4.2.2指数函数的图象和性质(人教A版普通高中教科书数学必修第一册第四章)一、教学目标1.类比研究幂函数性质的过程和方法,通过指数函数图象得出其性质;2.利用指数函数的图象研究指数函数的性质,并用所得性质进一步理解指数函数的图象;3.通过信息技术手段更好地理解指数函数的图象和性质。

二、教学重难点1.教学重点:指数函数的图象和性质2.教学难点:指数函数性质的理解三、教学过程师生活动:从简单的函数2x y =入手,教师引导学生分析函数的性质,包括定义域,值域,奇偶性,单调性.由概念知定义域为R ,根据指数运算,分析值域为(0,)+∞,进而分析出函数的图象应该都在x 轴上方.通过特殊点的分析,得出函数不具有奇偶性.单调性需要借助图象研究.学生在列表时,分析x 的取值,要兼顾正值和负值,在性质指导下画出函数的图象.问题4:请同学们画出指数函数1()2x y =的图象,观察函数的图象.师生活动:教师布置任务,学生自己选择方法作图,观察图象,探究函数的性质.问题5:你是如何画出函数1()2x y =的图象?描点法还是利用对称性?请讲出选择的理由.师生活动:教师询问学生作图的方法,学生反馈自己用的是描点法还是利用了函数之间的对称性.因为1()22x x y -==,点(x ,y )与点(-x ,y )关于y 轴对称,所以函数2x y =图象上任意一点(,)P x y 关于y 轴的对称点1(,)P x y -都在函数1()2x y =的图象上,反之亦然.根据这种对称性,可以利用函数2x y =的图象,画出1()2xy =的图象.并将此结论推广:底数互为倒数的两个指数函数的图象关于y 轴对称,所以利用这种对称性,可以由一个函数的图象得到另一个函数的图象.设计意图:根据函数的解析式先初步分析函数的性质,再选择合适的点,利用描点法画出函数的图象,然后由图象概括出函数的性质,这是我们研究具体函数的过程.让学生观察两个具体的指数函数的图象,对指数函数的图象和性质有一个初步的认知.学生在作图的过程中得出结论:底数互为倒数的两个指数函数的图象关于y 轴对称.根据这种对称性,我们将指数函数x y a =的图象按底数a 的取值,分作1a >和01a <<两种类型进行研究.让学生学会用联系的观点看待问题.问题6:我们将指数函数x y a =的图象按底数a 的取值,分作1a >和01a <<两种类型进行研究.为了得到指数函数x y a =的性质,我们还需要画出更多的具体的指数函数的图象进行观察.问题7:画出指数函数3x y =和4x y =的图象,分析它们的性质.画出指数函数1()3x y =和1()4xy =的图象,分析它们的性质.师生活动:学生动手操作,观察分析,师生共同评价.教师指导学生先研究底数1a >的情况,可追问学生在1a >的范围内是否还需要进一步分类,为什么?引导学生还是要从具体的指数函数进行研究.学生画出指数函数3x y =和4x y =的图象,教师借助几何画板呈现多个函数的图象.观察图象,师生共同总结出图象的直观性质;当1a >时,底数越大越靠近y 轴,而当01a <<,底数越小越靠近y 轴,故底数互为倒数的两个指数函数图象关于y 轴对称。

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇

指数函数图像与性质教学设计精选10篇指数函数及其性质教学设计解读篇一《2.1.2 指数函数及其性质(2 》教学设计【学习目标】1.知识与技能①.熟练掌握指数函数概念、图象、性质。

②.掌握指数函数的性质及应用。

③.理解指数函数的简单应用模型, 认识数学与现实生活及其他学科的联系。

2.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理。

②培养学生观察问题,分析问题的能力。

③体会具体到一般数学讨论方式及数形结合的思想;3.过程与方法让学生通过观察函数图象,进而研究指数型函数的性质, 主要通过小组讨论、小组展示、及时评价完成整个导学过程【学习重点】熟练掌握指数函数的的概念,图象和性质及指数型增长模型。

【学习难点】用数形结合的方法从具体到一般地探索、指数型函数的图象,性质。

【导学过程】教学内容师生互动设计意图互查每组两名同学互查识记内容教师提问记忆方法,学生回答,其他同学可以相互借鉴。

复习指数函数的图象及性质,为本节课中的内容储备知识基础。

展系吗?→请用一句话概括下图是指数函数2x y =, 3xy =, 0.3x y =, 0.5x y =的图象,请指出它们各自对应的图象。

教师随时点评,引导,欣赏,鼓励。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可让学生从图象直观的理解指数函数,从变化中找到不变的规律,提高学生的总结归纳能示交流结论:针对展示交流成果提出问题,进一步加深理解。

力教学内容师生互动设计意图展示交流探究二:指数形式的函数定义域、值域:求下列函数的定义域、值域:(121 x y =+,(2y =,(3 1 4 2x y-=.首先提问给出的三个函数是否是指数函数,加深学生对指数函数概念的理解。

学生小组讨论,交流。

每组选派一名代表课堂上展示交流成果,组内同学补充。

其他同学可针对展示交流成果提出问题,进一步加深理解。

所给函数虽然不是指数函数,但是由指数函数得到的复合函数,其性质与指数函数密切相关,通过训练能够培养学生的创造性思维能力。

指数函数的图像及性质教学设计

指数函数的图像及性质教学设计

2、指数函数的图象及其性质一、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教A版)第二章第一节第二课(2.1.2)《指数函数及其性质》。

根据我所任教的学生的实际情况,我将《指数函数及其性质》划分为三节课(探究图象及其性质,指数函数及其性质的应用),这是第一节课“探究图象及其性质”。

指数函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习对数函数和幂函数的基础,同时在生活及生产实际中有着广泛的应用,所以指数函数应重点研究。

二、学生学习况情分析指数函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的第一次应用。

教材在之前的学习中给出了两个实际例子(GDP的增长问题和炭14的衰减问题),已经让学生感受到指数函数的实际背景,但这两个例子背景对于学生来说有些陌生。

本节课先设计一个看似简单的问题,通过超出想象的结果来激发学生学习新知的兴趣和欲望。

三、设计思想1.函数及其图象在高中数学中占有很重要的位置。

如何突破这个即重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。

我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。

本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便能将其迁移到其他函数的研究中去。

2.结合参加我校实际,在本课的教学中我努力实践以下两点:(1).在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。

(2).在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。

课件4:4.1.2 指数函数的性质与图像(一)

课件4:4.1.2  指数函数的性质与图像(一)

单调性
在 R 上是_增__函__数__
在 R 上是__减__函__数__
3.比较幂大小的方法 (1)对于同底数不同指数的两个幂的大小,利用指数函数的_单__调__性__来判断. (2)对于底数不同指数相同的两个幂的大小,利用指数函数的__图__像____的 变化规律来判断. (3)对于底数不同指数也不同的两个幂的大小,则通过_中__间__值__来判断.
3.从左向右,指数函数 y=ax(a>0 且 a≠1)的图像呈上升趋势还是下降 趋势?其图像是上凸还是下凸? [提示] 当 0<a<1 时,指数函数 y=ax(a>0 且 a≠1)的图像从左向右呈下 降趋势;当 a>1 时,指数函数 y=ax(a>0 且 a≠1)的图像从左向右呈上升 趋势.指数函数的图像下凸.
法二:(解方程法)指数函数 y=ax(a>0 且 a≠1)的图像过定点 (0,1);在 f(x)=ax-1+2 中,令 x-1=0,即 x=1,则 f(x)=3, 所以函数 f(x)=ax-1+2(a>0 且 a≠1)的图像过定点(1,3).
2.指数函数 y=ax(a>0 且 a≠1)的图像可能在第三或第四象限吗? 为什么? [提示] 不可能.因为指数函数 y=ax(a>0 且 a≠1)的定义域是(-∞, +∞),值域是(0,+∞),这就决定了其图像只能在第一象限和第二 象限.
(2)令 t=2x-x2,则 y=12t,而 t=-(x-1)2+1≤1,
所以 y=12t≥12,故所求函数的值域为12,+∞.
因为
=12t,由于二次函数 t=2x-x2 的对称轴为 x=1,
可得函数 t 在(-∞,1]上是增函数,函数 y 在(-∞,1]上是减函数, 故函数 y 的减区间是(-∞,1]. 函数 t 在(1,+∞)上是减函数,函数 y 在(1,+∞)上是减函数, 故函数 y 的增区间是(1,+∞).

指数函数的图象和性质 (经典公开课)

指数函数的图象和性质 (经典公开课)

一、导入新课 函数 y=2x 与 y=12x 的图象在同一坐标系内如图:
二、提出问题 1.观察两个函数的图象,它们有什么关系? 2.能否利用函数 y=2x 的图象,画出函数 y=12x 的图象? 3.从图象上看,它们是否具有单调性?增减性如何? [学习目标] 1.能用描点法或借助计算工具画出具体指数函数的图象.(直 观想象) 2.探索并理解指数函数的单调性与特殊点.(数学抽象)
2.函数 f(x)= 31x-1-27的定义域是 (-∞,-2] . 解析:令13x-1-27≥0,即13x-1≥27=13-3,所以 x-1≤-3,所以 x≤
-2.故函数的定义域为(-∞,-2].
题型 3◆指数函数性质的应用
典例 1 已知 a=35 A.c<a<b
,b=35 ,c=32 ,则 a,b,c 的大小关系是( D )
题型 2◆指数型函数的定义域 典例 1 函数 y=3 x-1的定义域为 [1,+∞) .
解析:要使函数有意义,则 x-1≥0,即 x≥1,故函数的定义域为[1,+ ∞). 典例 2 函数 y= 2x-8的定义域为 [3,+∞) . 解析:依题意,得 2x-8≥0,所以 2x≥8=23. 又 y=2x 为增函数,所以 x≥3. 所以函数 y= 2x-8的定义域为[3,+∞).
单调性 是 R 上的 增函数 是 R 上的 减函数
奇偶性
非奇非偶函数
题型 1◆指数函数的图象及应用 典例 1 已知 0<m<n<1,则指数函数①y=mx,②y=nx 的图象为( C )
解析:由于 0<m<n<1,所以 y=mx 与 y=nx 都是减函数,故排除 A,B; 作直线 x=1 与两个曲线相交(图略),交点在下面的是函数 y=mx 的图 象.故选 C.

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是一类重要的数学函数,在数学和其他学科的研究中具有广泛的应用。

本文将介绍指数函数的图像和性质,帮助读者更好地理解和应用这一函数。

1. 定义指数函数是以指数为自变量,底数大于0且不等于1的函数。

一般形式为f(x) = a^x,其中a为底数,x为指数。

指数可以是实数,函数值则可以是正数、负数或零。

2. 指数函数的图像由于底数大于0且不等于1,指数函数的图像不会通过原点(0,0)。

当指数x为0时,函数值为1,因此图像会经过点(0,1)。

当指数x为正值时,函数值逐渐增大;当指数x为负值时,函数值逐渐减小。

图像可以根据底数的不同呈现不同的特点。

3. 底数大于1的指数函数当底数a大于1时,指数函数的图像呈现上升趋势,即从左至右逐渐增大。

随着指数x的增大,函数值也会变得越来越大。

当a越接近1时,曲线的增长速度会变得越来越缓慢。

例如,y = 2^x的图像在x轴的右侧逐渐升高,但增长速度逐渐减慢。

4. 底数介于0和1之间的指数函数当底数a介于0和1之间时,指数函数的图像呈现下降趋势,即从左至右逐渐减小。

随着指数x的增大,函数值会越来越接近于0。

当a越接近0时,曲线的下降速度会越来越慢。

例如,y = (1/2)^x的图像在x轴的右侧逐渐下降,但下降速度逐渐变缓。

5. 指数函数的水平位移指数函数的图像可以通过水平位移产生变化。

将指数函数右移h个单位,可以得到f(x-h)。

这样做会使整个图像向右平移h个单位。

同样,向左移动h个单位可以得到f(x+h),将整个图像向左平移h个单位。

6. 指数函数的垂直位移指数函数的图像也可以通过垂直位移产生变化。

将指数函数上移k个单位,可以得到f(x)+k。

这样做会使整个图像上移k个单位。

同样,向下移动k个单位可以得到f(x)-k),整个图像下移k个单位。

7. 指数函数的对称性对于底数a大于1的指数函数,以y轴为对称轴,具有对称性。

即f(x) = a^x的图像关于y轴对称。

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质(学生版)

指数与指数函数图像及性质【知识要点】 1.根式(1)如果a x n =,那么x 叫做a 的n 次方根.其中1>n ,且*∈N n 。

(2)如果a x n=,当n 为奇数时,n a x =;当n 为偶数时,n a x ±=()0>a .其中n a 叫做根式,n 叫做根指数,a 叫做被开方数. 其中1>n ,且*∈N n 。

(3)()()*∈>==N n n a a nnn ,1,00。

,||,a n a n ⎧=⎨⎩为奇数为偶数其中1>n ,且*∈N n 。

2.分数指数幂(1)正分数指数幂的定义: n m n m a a =()1,,,0>∈>*n N n m a (2)负分数指数幂的定义: nm nm aa1=-()1,,,0>∈>*n Nn m a(3) 要注意四点:①分数指数幂是根式的另一种表示形式; ②根式与分数指数幂可以进行互化; ③0的正分数指数幂等于0; ④0的负分数指数幂无意义。

(4)有理数指数幂的运算性质:①sr sra a a +=⋅()Q s r a ∈>,,0;② ()rs sra a =()Q s r a ∈>,,0;③()r r rb a ab =()Q r b a ∈>>,,0,0.3.无理数指数幂(1)无理数指数幂的值可以用有理数指数幂的值去逼近; (2)有理数指数幂的运算性质同样适用于无理数指数幂。

4.指数函数的概念:一般地,函数()0,1xy a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域是R 。

5.指数函数的图像与性质第一课时【典例精讲】题型一 根式、指数幂的化简与求值1.n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数,规定:1a a =;2. (1,)n a n n N +=>∈,||,a n a n ⎧=⎨⎩为奇数为偶数;3. 1(0,,,)n mnmn a a m n N ma-+=>∈且为既约分数,=a a αβαβ(). 【例1】计算下列各式的值.(1(2(3;(4)a b >.【变式1】 求下列各式的值:(1*1,n n N >∈且);(2【例2】计算)21313410.027256317--⎛⎫--+-+⎪⎝⎭【变式2】化简34的结果为( )A .5B .C .﹣D .﹣5【变式3】1332-⎛⎫ ⎪⎝⎭×76⎛⎫- ⎪⎝⎭0+148=________.题型二 根式、指数幂的条件求值 1. 0a >时,0;b a > 2. 0a ≠时, 01a =; 3. 若,r s a a =则r s =;4. 1111222222()(0,0)a a b b a b a b ±+=±>>; 5. 11112222()()(0,0)a b a b a b a b +-=->>. 【例3】已知11223a a-+=,求下列各式的值.(1)11a a -+;(2)22a a -+;(3)22111a a a a --++++【变式1】已知,a b 是方程2640x x -+=的两根,且0,a b >>的值.【变式2】已知12,9,x y xy +==且x y <,求11221122x y x y-+的值.【变式3】已知11223a a -+=,求33221122a aa a----的值.【变式4】(1)已知122+=xa,求xx xx a a a a --++33;(2)已知a x=+-13,求6322--+-x ax a .【例4】计算下列各式的值:(1)246347625---+-;(2)()2x 3442<--+-x x x ;(3)12121751531311++-+++++++n n ;(4)()54 2222233=++--xxxx x 其中.【变式5】化简或计算出下列各式:(1)121316324(1243)27162(8)--+-+-;(2)化简65312121132ab b a b a ---⎪⎪⎭⎫ ⎝⎛;(3【课堂练习】1. 若()0442-+-a a 有意义,则a 的取值范围是()A.2≥aB.42<≤a 或4>aC. 2≠aD. 4≠a 2. 下列表述中正确的是() A.()()()273336263=-=-=- B.32213421313a a a a a a =⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⋅=⋅ C.无理数指数幂na (n 是无理数)不是一个确定的实数 D.()()()⎩⎨⎧≤-≥=00a a a a a nn3. 已知0>a ,则的值2313123131⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛+--a a a a 为 ()A.3232-+aa B.4 C. 3232--aa D. 4-4. 计算:()=-+-0430625.0833416π ______.【思维拓展】1.化简⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+-----2141811613212121212121的结果是 ( )A.13212121--⎪⎪⎭⎫ ⎝⎛-B.132121--⎪⎪⎭⎫ ⎝⎛- C.32121-- D.⎪⎪⎭⎫ ⎝⎛--3212121第二课时题型三 指数函数的概念【例1】已知函数()2()33x f x a a a =-+是指数函数,求实数a 的值。

指数函数的图象和性质

指数函数的图象和性质

1
1
练习:比较大小 a3和a 2,(a 0, a 1)
方法总结
(1)构造函数法:要点是利用函数的单调性,数的特征是同底不同 指(包括可以化为同底的),若底数是参变量要注意分类讨论。比 较两个同底数幂的大小时,可以构造一个指数函数,再利用指数函数的 单调性即可比较大小. (2)搭桥比较法:用别的数如0或1做桥。数的特征是不同底不同指。 比较两个不同底数幂的大小时,通常引入第三个数作参照.
分析:(1)因为该城市人口呈指数增长,而同一指数函数 的倍增期是相同的,所以可以从图象中选取适当的点计算 倍增期.(2)要计算20年后的人口数,关键是要找到20年与 倍增期的数量关系. 解:(1)观察图,发现该城市人口经过20年约为10万人,经过40年 约为20万人,即由10万人口增加到20万人口所用的时间约为20年, 所以该城市人口每翻一番所需的时间约为20年.(2)因为倍增期为 20年,所以每经过20年,人口将翻一番.因此,从80万人开始, 经过20年,该城市人口大约会增长到160万人.
x
用描点法作函数y (1)x 和y (1)x的图象.

2
3
x … -3 -2 -1 0 1 2 3 …
数 y=2-x … 8 4 2 1 1/2 1/4 1/8 …
图 y=3-x … 27 9 3 1 1/3 1/9 1/27 …
象 y (1)x 2
特 征
y (1)x 3
y
O
思考:若不用描点法, 这两个函数的图象又该 如何作出呢?
底数a由大变小时函数图像在第一象限内按__顺__
时针方向旋转.
问题三:图象中有哪些特殊的点?
答:四个图象都经过点_(_0_,1_) .
a>1

数学人教A版必修第一册4.2.2指数函数的图像与性质课件

数学人教A版必修第一册4.2.2指数函数的图像与性质课件
轴且与轴无交点.
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x




思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)

4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质 课件(20张)
4.2 指数函数
4.2.1 指数函数的概念 4.2.2 指数函数的图象和性质
1.理解指数函数的概念. 2.探索指数函数的单调性与图象的特殊点,并掌握指数函数图象的性质. 3.体会直观想象的过程,加强数学抽象、数学运算素养的培养.
指数函数 一般地,函数① y=ax(a>0,且a≠1) 叫做指数函数,其中指数x是自变量,定义 域是② R .
解下列方程:
(1)81×32x=
1 9
x2
;(2)22x+2+3×2x-1=0.
思路点拨
(1)两边化为同底数幂 利用指数相等求解.
(2)令2x=t(t>0),将原方程化为4t2+3t-1=0 求出t的值
解析
(1)∵81×32x=
1 9
x
2
,∴32x+4=3-2(x+2),
∴2x+4=-2(x+2),解得x=-2.
与指数函数有关的复合函数的定义域、值域问题
大家对“水痘”应该不陌生,它与其他的传染病一样,有一定的潜伏期,这段时 间里病原体在机体内不断地繁殖.病原体的繁殖方式有很多种,分裂就是其中的一 种.我们来看某种球菌的分裂过程:由1个分裂成2个,2个分裂成4个,4个分裂成8个, …… 问题 1.2个这样的球菌分裂x次后,得到的球菌的个数y与分裂次数x的关系式是什么? 提示:y=2x+1. 2.上述求出的关系式中x的范围是什么? 函数的值域是什么? 提示:x∈N*;值域是{22,23,24,…}.
比较指数幂大小
1.01365 37.8, 0.99365 0.03,
1.02365 1 377.4, 0.98365 0.000 6.
问题 1.上面的式子告诉我们一个什么道理? 提示:积跬步以致千里,积怠惰以致深渊. 2.如果不计算出结果,如何比较上式中各指数幂的大小? 提示:利用函数单调性进行比较.

高中数学必修一(人教版)《4.2.2 指数函数的图象和性质》课件

高中数学必修一(人教版)《4.2.2 指数函数的图象和性质》课件

(2)函数的定义域为 R .∵2x-x2=-(x-1)2+1≤1,
∴22x-x2≤2,即 y≤2.又 ∴函数的值域为(0,2].
>0,
(3)函数的定义域为 R .
y=(2x)2-2x+1=2x-122+34, ∵2x>0,∴当 2x=12,即 x=-1 时,y 取最小值34, ∴函数的值域为34,+∞.
题型二 指数函数的图象及应用 【学透用活】
1.指数函数图象的特征 同一坐标系中,画出不同底数的指数函数的图象如图所示.直线x=1与四个 指数函数y=ax,y=bx,y=cx,y=dx的交点依次为(1,a),(1,b),(1,c),(1, d),所以有0<b<a<1<d<c,因此可得出以下结论:在y轴的右侧,底数越大, 图象越高,简称“底大图高”.
3.掌握指数函数的性质并会应用, 辑推理和数学运算素养.
能利用函数的单调性比较大小.
(一)教材梳理填空 指数函数的图象和性质
a>1
图象
0<a<1
续表 定义域 值域
性 过定点 质 单调性
奇偶性 对称性
R _(0_,__+__∞__)_ (0,1) ,即当x=0时,y=_1_ 在R上是 增__函___数__ 在R上是 _减__函__数__ 非奇非偶函数 函数y=ax与y=a-x的图象关于 y轴 对称
2.函数 y= 1-3x的定义域是 A.[0,+∞) C.[1,+∞)
B.(-∞,0] D.(-∞,+∞)
()
解析:∵1-3x≥0,即 3x≤1,∴x≤0,即 x∈(-∞,0].故选 B. 答案:B
3.函数 y=1-2x,x∈[0,1]的值域是
A.[0,1]
B.[-1,0]
C.0,12
D.-12,0

《指数函数的图像和性质》教案、导学案与同步练习

《指数函数的图像和性质》教案、导学案与同步练习

《第四章 指数函数与对数函数》 《4.2.2指数函数的图像和性质》教案【教材分析】本节课在已学指数函数的概念,接着研究指数函数的图像和性质,从而深化学生对指数函数的理解,并且了解较为全面的研究函数的方法,为以后在研究对数函数幂函数等其它函数打下基础。

另外,我们日常生活中的很多方面都涉及到了指数函数的知识,例如细胞分裂,放射性物质衰变,贷款利率等,所以学习这一节具有很大的现实价值。

【教学目标与核心素养】 课程目标1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.数学学科素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.【教学重难点】重点:指数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳指数函数的性质. 【教学方法】:以学生为主体,采用诱思探究式教学,精讲多练。

【教学过程】 一、情景导入请学生用三点画图法画图像,观察两个函数图像猜测指数函12,()2x x y y ==数有哪些性质?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本116-117页,思考并完成以下问题1.结合指数函数的图象,可归纳出指数函数具有哪些性质?2.指数函数的图象过哪个定点?如何求指数型函数的定义域和值域问题?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1、指数函数的图象和性质四、典例分析、举一反三题型一指数函数的图象问题题点一:指数型函数过定点问题例1函数y=a x-3+3(a>0,且a≠1)的图象过定点________.【答案】(3,4)【解析】因为指数函数y=a x(a>0,且a≠1)的图象过定点(0,1),所以在函数y=a x-3+3中,令x-3=0,得x=3,此时y=1+3=4,即函数y=a x-3+3的图象过定点(3,4).题点二:指数型函数图象中数据判断例2函数f(x)=a x -b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D.0<a <1,b <0【答案】D【解析】从曲线的变化趋势,可以得到函数f(x)为减函数,从而有0<a <1;从曲线位置看,是由函数y =a x (0<a <1)的图象向左平移|-b|个单位长度得到,所以-b >0,即b <0.题点三:作指数型函数的图象例3画出下列函数的图象,并说明它们是由函数f(x)=2x 的图象经过怎样的变换得到的.(1)y =2x +1;(2)y =-2x .【答案】见解析【解析】如图.(1)y =2x +1的图象是由y =2x 的图象向上平移1个单位长度得到的;(2)y =-2x 的图象与y =2x 的图象关于x 轴对称. 解题技巧:(指数函数的图像问题)1.指数函数在同一平面直角坐标系中的图象的相对位置与底数大小的关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从上到下相应的底数由小变大.无论指数函数的底数a 如何变化,指数函数y=ax(a>0,且a≠1)的图象与直线x=1相交于点(1,a),因此,直线x=1与各图象交点的纵坐标即为底数,由此可得底数的大小.2.因为函数y=ax 的图象恒过点(0,1),所以对于函数f(x)=kag(x)+b(k,a,b 均为常数,且k≠0,a>0,且a≠1).若g(m)=0,则f(x)的图象过定点(m,k+b).3.指数函数y=ax 与y=(1a )x(a>0,且a≠1)的图象关于y 轴对称.4.处理函数图象问题的常用方法:一是抓住图象上的特殊点;二是利用图象的变换;三是利用函数的奇偶性与单调性.跟踪训练一1、如图是指数函数:①y=a x,②y=b x,③y=c x,④y=d x的图象,则a,b,c,d 与1的大小关系是( )A.a<b<1<c<dB.b<a<1<d<cC.1<a<b<c<dD.a<b<1<d<c2、已知函数f(x)=a x+1+3的图象一定过点P,则点P 的坐标是 .3、函数y=的图象有什么特征?你能根据图象指出其值域和单调区间吗?【答案】1.B2.(-1,4)3.原函数的图象关于y 轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是(0,+∞).【解析】1、解析:(方法一)①②中函数的底数小于1且大于0,在y 轴右边,底数越小,图象向下越靠近x 轴,故有b<a,③④中函数的底数大于1,在y 轴右边,底数越大, 图象向上越靠近y 轴,故有d<c.故选B.(方法二)作直线x=1,与函数①,②,③,④的图象分别交于A,B,C,D 四点, 将x=1代入各个函数可得函数值等于底数值, 所以交点的纵坐标越大,则对应函数的底数越大. 由图可知b<a<1<d<c.故选B. 答案:B2、解析:∵当x+1=0,即x=-1时,f(x)=a 0+3=4恒成立,故函数f(x)=a x+1+3恒过(-1,4)点.3、解:∵y=(12)|x|={(12)x,x≥0,(12)-x ,x<0,∴其图象由y=(12)x(x≥0)和y=2x (x<0)的图象合并而成.||1()2x而y=(12)x(x>0)和y=2x(x<0)的图象关于y 轴对称,所以原函数的图象关于y轴对称.由图象可知值域是(0,1],单调递增区间是(-∞,0],单调递减区间是(0,+∞).题型二指数函数的性质及其应用 题点一:比较两个函数值的大小 例4比较下列各题中两个值的大小: (1)1.72.5与1.73 (2)0.8−√2与0.8−√3 (3)1.70.3与0.93.1【答案】(1)1.72.5<1.73(2)0.8−√2<0.8−√3(3)1.70.3>0.93.1【解析】(1)(单调性法)由于1.72.5与1.73的底数是1.7,故构造函数y=1.7x,而函数y=1.7x在R 上是增函数.又2.5<3,∴1.72.5<1.73(2)(单调性法)由于0.8−√2与0.8−√3的底数是0.8,故构造函数y=0.8x,而函数y=0.8x在R 上是减函数.又0.8−√2<0.8−√3(3)(中间量法)由指数函数的性质,知0.93.1<0.90=1,1.70.3>1.70=1,则1.70.3>0.93.1题点二:指数函数的定义域与值域问题 例5求下列函数的定义域与值域 (1)y=21x−4; (2)y=(23)-|x|.【答案】(1)定义域为{x|x ∈R,且x≠4},值域为(0,1)∪(1,+∞). (2)定义域为R,值域为[1,+∞). 【解析】(1)∵由x-4≠0,得x≠4,∴函数的定义域为{x|x ∈R,且x≠4}.∵1x−4≠0,∴21x−4≠1.∴y=21x−4的值域为(0,1)∪(1,+∞).(2)函数的定义域为R.∵|x|≥0,∴y=(23)-|x|=(32)|x|≥(32)0=1.故y=(23)-|x|的值域为[1,+∞).解题技巧:(指数函数的性质及其应用) 1.函数y=af(x)(a>0,且a≠1)的定义域、值域:(1)定义域的求法.函数y=a f(x)的定义域与y=f(x)的定义域相同.(2)函数y=af(x)的值域的求法如下.①换元,令t=f(x); ②求t=f(x)的定义域x ∈D; ③求t=f(x)的值域t ∈M;④利用y=a t的单调性求y=a t(t ∈M)的值域. 2.比较幂的大小的常用方法:跟踪训练二1、比较下面两个数的大小: (a-1)1.3与(a-1)2.4(a>1,且a≠2). 2、比较下列各题中两个值的大小: ①2.53,2.55.7; ②1.5-7,(827)4;③2.3-0.28,0.67-3.1.【答案】1.当a>2时,(a-1)1.3<(a-1)2.4;当1<a<2时,(a-1)1.3>(a-1)2.4. 2.①2.53<2.55.7..②1.5-7>(827)4.③2.3-0.28<0.67-3.1.【解析】1、因为a>1,且a≠2,所以a-1>0,且a-1≠1, 若a-1>1,即a>2,则y=(a-1)x是增函数,∴(a-1)1.3<(a-1)2.4.若0<a-1<1,即1<a<2,则y=(a-1)x 是减函数,∴(a-1)1.3>(a-1)2.4. 故当a>2时,(a-1)1.3<(a-1)2.4; 当1<a<2时,(a-1)1.3>(a-1)2.4.2.①(单调性法)由于2.53与2.55.7的底数是2.5,故构造函数y=2.5x,而函数y=2.5x在R 上是增函数.又3<5.7,∴2.53<2.55.7. ②(化同底)1.5-7=(32)-7=(23)7,(827)4=[(23)3]4=(23)12,构造函数y=(23)x.∵0<23<1,∴y=(23)x 在R 上是减函数.又7<12,∴(23)7>(23)12,即1.5-7>(827)4. ③(中间量法)由指数函数的性质,知2.3-0.28<2.30=1,0.67-3.1>0.670=1,则2.3-0.28<0.67-3.1.五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业课本118页习题4.2 【教学反思】本节通过运用指数函数的图像及应用解决相关问题,侧重用实操,培养学生的逻辑思维能力,提高学生的数学素养.《4.2.2 指数函数的图像和性质》导学案【学习目标】知识目标1、掌握指数函数的图象和性质,培养学生实际应用函数的能力;2、通过观察图象,分析、归纳、总结指数函数的性质;3、在指数函数的学习过程中,体验数学的科学价值并养成勇于探索的良好习惯.核心素养1.数学抽象:指数函数的图像与性质;2.逻辑推理:图像平移问题;3.数学运算:求函数的定义域与值域;4.数据分析:利用指数函数的性质比较两个函数值的大小:5.数学建模:通过由抽象到具体,由具体到一般的数形结合思想总结指数函数性质.【重点与难点】重点:指数函数的图象和性质;难点:对底数的分类,如何由图象、解析式归纳指数函数的性质.【学习过程】一、预习导入阅读课本111-113页,填写。

指数函数的图象和性质教案(第一课时) 高一上学期数学人教A版(2019)必修第一册

指数函数的图象和性质教案(第一课时) 高一上学期数学人教A版(2019)必修第一册

《指数函数的图象和性质(第一课时)》教学设计课例名称: 指数函数的图象和性质(第一课时)课时教学设计理念高中数学教学以发展学生数学学科核心素养为导向。

因此该课时教学设计创设符合学生认知规律的问题探究,提倡独立思考、自主学习、合作交流等多种学习方式,促进学生创新意识的发展。

该课时教学设计多种教学方法进行,注重信息技术与数学课程的深度融合,提高教学的时效性,提升学生应用数学解决实际问题的能力,提升数学核心素养的培养。

该课时教学设计关注学生的不同层次差异,设计有层次的学习内容,实现不同的学生在数学上得到不同的发展。

课时教学内容分析类比研究幂函数性质的过程和方法来进一步研究指数函数。

在同一直角坐标系内画出不同指数函数的图象,之后对所作的图象进行探讨,从“数”和“形”的角度得到:底数互为倒数的两个指数函数的图象关于y轴对称。

从具体到一般,应用信息技术作出若干个底数a不同的值,观察图象的位置、公共点和变化趋势,找出共性,从而概括出指数函数的性质。

接下来对性质进行了如下的应用:利用指数函数的单调性比较大小。

通过构建函数,帮助学生进一步熟悉指数函数的性质,促使他们形成用函数观点解决问题。

总而言之,这节课的内容是观察图象、概括性质,由性质进一步认识图象。

即“以形助数”、“以数助形”,突出数形结合的思想方法,通过解析式、图象、性质等多元联系地认识函数的本质和函数模型的特征。

课时学情分析本课的学习对象为高一年级普通班的学生,处于初高中数学学习的衔接阶段。

通过前面三章的学习,学生对函数的概念与性质有了初步的认识,能够用函数的观点解决问题。

但是对于“比较大小化成同底并同时借助中间值的方法”的理解存在一定的困难。

学生对数学课的学习兴趣高,积极性强。

但学生在学习课堂上较为依赖老师的引导。

学生的群体性小组交流能力与协同讨论学习的能力不强,对学习资源和知识信息的获取、加工、处理和综合的能力一般。

课时教学目标新课程内容目标核心素养目标1.能用描点法或借助信息技术画出具体指数函数的图象.直观想象2.根据函数图象探索并理解指数函数的单调性.逻辑推理3.能够应用指数函数的图象和性质解决相关问题.数据分析数学运算数学抽象课时教学重点、难点教学重点:观察图象,概括性质.教学难点:用数形结合的方法从具体到一般地探索,概括指数函数的性质.课时教学资源教学媒体:希沃教学一体机、摄影机、教学课件、几何画板、翻页笔等.工具:三角尺等素材:人教版高一数学必修1教材、教师教学用书、全优课堂、网络资源等.课时教学过程教学步骤教学活动设计意图组织形式【学习目标】向学生展示本课时新课程内容目标和数学核心素养要求.教师对本节课的目标要求作说明引导学生有了目标便明确了该课时学习的方向。

4.2.2指数函数的图像和性质教学说课课件高一上学期数学人教A版

4.2.2指数函数的图像和性质教学说课课件高一上学期数学人教A版

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身,所以 我进行了以下学法指导: (1)类比学习法: 与幂函数类比学习指数函数的图象和性质. (2)探究定向性学习法: 学生在教师建立的情境下,通过思考、分析、操作、探索,归 纳出指数函数的图象和性质. (3)主动合作式学习法: 学生在归纳得出指数函数的图象和性质时,通过小组讨论,使 问题得以圆满解决.
类比幂函数的研究方法和过程研究指数函数: 背景→定义→图象→性质→应用
问题1、你准备归纳指数函数的哪些性质?如何归纳其性质?
设计意图:让学生亲自在课前准备好的坐标系里画图,而不是采用几何画板直接得到图象, 目的是使学生更加信服,从而加深学生对图象的印象,从而为以后画图解题,采用数形结合 的思想方法打下基础.小组合作的方式共同探究性质,自己归纳并设计表格展示性质,整个 过程体现了“从具体到抽象,从特殊到一般”的思维方式,使学生的思维得到升华.培养学 生的抽象概括、归纳能力、语言表达能力以及主动性.
必做题:教科书135页习题1-3,140页到141页习题4.4第2、4题 选做题:习题4.4 的12、13题
设计意图:检验学生指数函数的图象和性质的掌握,以及指数函数的图象和性质的应用. 在选做题部分是对指数函数的图象和性质的拓展与延伸,目的是提高学生运用所学知识 解决问题的能力.
设计意图:这样的板书简明清楚,重点突出,加深学生对图象和性质的理解,便于记忆,有利于 提高教学效果.
4.2.2 指数函数的图象和性质
课堂教学
一、情景引入
问题1、这两个是什么函数?
二、探索新知
类比幂函数的研究方法和过程研究指数函数: 背景→定义→图象→性质→应用
问题1、你准备归纳指数函数的哪些性质?如何归纳其性质?

指数函数性质及图像

指数函数性质及图像

指数函数性质及图像指数函数定义为y=a^x(a>0,a1),其中,x 为“指数”,a 为“底数”,y 为“值”。

指数函数可以用于描述一定规律的大小之间的变化关系。

从数学上讲,指数函数属于多项式函数中的特例,其特点是当变量 x加 1,函数值 y 会翻倍或减半,而不像多项式函数那样只会减少很小的数量,比如,当 x 从 0加到 1,y 会从 a^0加到 a^1。

指数函数的性质有如下几点:(1)变量 x指数函数中的未知数,而 a是指数函数中的常量;(2)当 a > 1,指数函数单调递增;当 a < 1,指数函数单调递减;当 a = 1,指数函数是线性函数;(3)任意两个底数不一样的指数函数互不相等,但两个有着相同底数的指数函数则相等;(4)指数函数可以增加或减少的极限是无穷大或无穷小;(5)指数函数是可导函数,其导数可以由变量 x决定,只有当x 为正数或0时其导数才有意义,如当 x 为正数时,其导数为 a^x * ln(a);(6)对于指数函数而言,当其变量 x大时,其函数值 y 会越大,也就是说随着 x增大,y按照指数函数变化,而不像线性函数那样按照简单的等比数列变化。

二、指数函数的图像指数函数的图像只有在二维坐标系内才能看到,在二维坐标系内,指数函数的图像具有以下几个特点:(1)指数函数图像与底数 a正比,因此,当 a > 1,图像的斜率增大,而 a < 1,斜率减小;(2)指数函数的图像是一条弯曲的曲线;(3)指数函数的变量 x 与底数 a取值有关,当 a = 1,x值大小范围为所有实数;当 a > 1,x取值范围是所有正数;当 a < 1,x取值范围是所有负数;(4)指数函数的图像不会交叉,即,它的定义域和值域是相同的;(5)指数函数的图像没有不连续的部分,它表示的是一个连续的函数。

三、指数函数的应用指数函数的性质和图像有着广泛的应用,下面介绍几个比较常见的指数函数的应用:(1)指数函数在金融中有着重要的应用,例如,可以通过指数函数来计算投资利息、通货膨胀率等;(2)指数函数可以用来描述物理数据,例如压强温度曲线、热变形速度温度曲线等;(3)指数函数在社会学、政治科学和投票学中也有着广泛的用途,它可以帮助我们进行统计分析和预测社会变化;(4)指数函数也可以用来模拟电路中的电流电压曲线、正弦波等。

指数函数图像及基本性质

指数函数图像及基本性质

指数函数图像及基本性质(学习版)编制人:__________________审核人:__________________审批人:__________________编制学校:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如英语单词、英语语法、英语听力、英语知识点、语文知识点、文言文、数学公式、数学知识点、作文大全、其他资料等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides various types of classic sample essays, such as English words, English grammar, English listening, English knowledge points, Chinese knowledge points, classical Chinese, mathematical formulas, mathematics knowledge points, composition books, other materials, etc. Learn about the different formats and writing styles of sample essays, so stay tuned!指数函数图像及基本性质性质(1)指数函数的定义域为R,这里的前提是a大于0且不等于1。

指数函数的图像及性质 PPT

指数函数的图像及性质 PPT
面积是多少?(用y 表示面积)
知新益能
1.指数函数定义 一般地,函数y=ax(a>0,且a≠1)叫做__指__数__函__数___,其
中__x_为自变量,函数的定义域为_R__.
注意:
1.底数为常数,指数为自变量 2.三个“1”
小试牛刀
下列哪些是指数函数?
(1)y= 2x (3)y=(-2)x (5)y= 2-x (7)y= 2x+1
(2)y= x2 (4)y=-2x (6)y= 22x (8)y= 2x+1
新知 2
一下指数函数的图象。
新知提炼
2.指数函数y=ax(a>0,且a≠1)的图象和性质
a>1
0<a<1
图 象
定义域为_R_;值域为__(0_,__+__∞__) __
性 质
根据指数函数的概念,求函数解析式. 例1 指数函数 f ( x) 的图象过点 (3 , 27),求 f (0) , f (1) , f (2) 的值
解:设 f ( x) a x (a 0且a 1)
因为函数 f (x) 过点( 3 , 27 ) 所以有 f (3) 27 ,即a3 27 解得 a 3, 于是 f (x) 3x
过定点__(0_,_1_) ,即_x_=__0_时,__y=__1_ 若x>0,则__y_>__1_; 若x>0,则_0_<__y_<__1_; 若x<0,则_0_<__y_<__1_ 若x<0,则_y_>__1__
在R上是__增__函_数___ 在R上是__减__函__数__
考点突破
指数函数的概念
所以 f (0) 30 1 , f (1) 3 ,
f (2) 32 1 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数图象及性质专题一:分辨指数函数1、判断下列函数是否为指数函数( )①y= (21)x ②y=-2x ③y=3-x④y= (x 1)101A .1B .2C .3D .4专题二:指数函数及复合函数定义域1、函数f (x )=x 21-的定义域是( )A .(-∞,0]B .[0,+∞)C .(-∞,0)D .(-∞,+∞)2、已知函数f (x )的定义域是(1,2),则函数)2(xf 的定义域是 . 3、函数1218x y -=的定义域是 ;4、函数()f x =的定义域是 .专题三:指数函数及复合函数值域 1、函数y=2x-1的值域是( )A .RB .(-∞,0)C .(-∞,-1)D .(-1,+∞)2、下列函数中,值域为(0,)+∞的是( )A .125xy -=B .11()3x y -= C.y =D.y =3、函数y=121-x 的值域是( ) A .(-1,∞) B .(-,∞0)⋃(0,+∞) C .(-1,+∞) D .(-∞,-1)⋃(0,+∞)4、函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R5、函数1131+⎪⎭⎫ ⎝⎛=x y 值域为( )A .(-∞,1)B .(31,1) C .[31,1)D .[31,+∞)6、函数y=(31)1822+--x x (-31≤≤x )的值域是 .7、求212)(x x g -=的值域 .8、函数1218x y -=的定义域是 ;值域是 .9、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求值域。

10、已知集合{}1,1-=M ,⎭⎬⎫⎩⎨⎧<<∈=+42211x Zx N ,则=N M ( ) A .{}1,1- B .{}1- C .{}0D .{}0,1-11、函数y =x a 在] ,[10上的最大与最小值的和为3, 则a 等于( )A .21B .2C .4D .41 12、函数x y 2=在]1,0[上的最大值与最小值之和为 . 13、函数=)x (f )1a ,0a (a x≠>在]2 ,1[上的最大值比最小值大2a,则a 的值为 . 14、若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A .251+B .251+- C .251± D .215±15、已知函数()12(1)xxf x a a a 2=--> (1)求函数()f x 的值域;(2)若[2,1]x ∈-时,函数()f x 的最小值为7-,求a 的值和函数()f x 的最大值. 16、已知函数)1(122>-+=a a ay x x在区间[-1,1]上的最大值是14,求a 的值.17、已知910390x x-⋅+≤,求函数111()4()242x xy -=-⋅+的最大值和最小值。

专题四:指数函数及复合函数单调性 1、若41a >32a ,则a 的范围是( )A .a >1B .0<a <1C .41<a <32D .a >322、函数f x x()=-23在区间()-∞,0上的单调性是( )A .增函数B .减函数C .常数D .有时是增函数有时是减函数 3、|x 1|)31(y -=的单调减区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,-1)∪(1,+∞)D .(-∞,+∞)4、函数22)21(++-=x x y 得单调递增区间是( )A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[5、函数y=3232x -的单调递减区间是 .6、函数f x x ()()=-121,使f x ()是增函数的x 的区间是 .7、已知函数22513x x y ++⎛⎫= ⎪⎝⎭,求其单调区间.8、求下列函数的单调递增区间:(1)y=2621()2x x +-(2)y=262x x --9、函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围( )A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或10、函数f (x )=(a-1)x在R 上是减函数,则a 的取值范围( )A .0<a<1B .1<a<2C .a>1D .a>211、函数f (x )=(a 2-1)x 在R 上是减函数,则a 的取值范围是( )A .1>aB .2<aC .a<2D .1<2<a12、求下列函数的定义域、值域及其单调区间: (1)f (x )=; (2)g (x )=11()4()542x x -++13、设函数11()2x x f x +--=,求使()f x ≥的x 取值范围.专题五:指数函数及复合函数奇偶性 1、f (x )=()21x x aa -+⋅是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇且偶函数 2、若1()21x f x a =+-是奇函数,则a = . 3、定义在R 上的奇函数)(x f 满足)3()3(x f x f -=+,若当x ∈(0,3)时,x x f 2)(=,则当x ∈(- 6,-3)时,)(x f =( )A .62+xB .-62+x C .62-xD .-62-x4、设f (x )是定义在实数集R 的函数,满足条件y=f (x+1)是偶函数,且当x≥1时,则12)(-=x x f ,则)31(),23(),32(f f f 的大小关系是 .5、设a >0,f (x )=xx e aa e +是R 上的偶函数.(1)求a 的值;(2)证明f (x )在(0,+∞)上是增函数. 专题六:过定点问题1、指数函数f x a x()=的图象经过点()2116,,则底数a 的值是 . 2、函数22(0,1)x y a a a +=->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则12m n+的最小值为 . 3、已知函数),42(3)(为常数b x x f b x ≤≤=-的图象经过点(2,1),则)()]([)(2121x fx fx F ---=的值域为( )A .[2,5]B .[1,+∞]C .[2,10]D .[2,13]专题七:比较大小1、若41a >32a ,则a 的范围是( )A .a >1B .0<a <1C .41<a <32 D .a >32 2、若3()5x >5()7x ,则x 的范围是( )A .0<x <1B .x >1C .x <-1D .x <0专题八:关于11)(+-=x x a a x f 形式函数的应用1、已知2)(xx e e x f --=,则下列正确的是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数2、方程33131=++-xx的解是 . 3、f (x )=()21x x aa -+⋅是( )A .奇函数B .偶函数C .非奇非偶函数D .既奇且偶函数4、函数y=1212+-x x 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数5、函数1212-+=x x y 的值域是 .6、讨论函数1010()1010x xx xf x ---=+的奇偶性与单调性。

7、已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性; (2)求f (x )的值域;(3)证明f (x )在(-∞,+∞)上是增函数. 专题九:指数函数方程及零点问题1、函数()23xf x =-的零点所在区间为( )A .(-1,0)B .(0,1)C .(1,2)D .(2,3)2、方程)10(2||<<=a x ax 的解的个数为( )A .0个B .1个C .2个D .0个或1个3、若a y a y a a x 2|1|,10=-=≠>与函数且的图象有两个交点,则a 的取值范围是 .4、设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图象的交点为00()x y ,,则0x 所在的区间是( )A .(01),B .(12),C .(23),D .(34),专题十:变形指数函数图象及平移问题1、若b a y b a x+=-<>则函数,1,1的图像必不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2、已知310x =,则这样的x ( )A .存在且只有一个B .存在且不只一个C .存在且x <2D . 根本不存在3、若a y a y a a x 2|1|,10=-=≠>与函数且的图象有两个交点,则a 的取值范围是 .4、若函数|1|()2x f x m --=-的图象与x 轴有交点,则实数m 的取值范围是 .5、函数y =||x a (a >1)的图象是( )A .B .C .D .6、函数bx ax f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a7、将函数xy 3=的图象如何平移可得到函数13+=x y 的图象( )A .向上平移1个单位B .向下平移1个单位C .向左平移1个单位D .向右平移1个单位8、将函数f x x ()=2的图象向_________平移________个单位,就可以得到函数g x x ()=-22的图象.9、说明由函数2xy =的图像经过怎样的图像变换得到函数321x y --=+的图像.(1)将函数2x y =的图像向右平移3个单位,得到函数32x y -=的图像; (2)作出函数32x y -=的图像关于y 轴对称的图像,得到函数32x y --=的图像; (3)把函数32x y --=的图像向上平移1个单位,得到函数321x y --=+的图像. 画出函数|13|-=x y 的图像,并利用图像回答:k 为何值时,方程|3X-1|=k 无解?有一解?有两解?专题十一:指数函数解析式问题1、已知函数)0a (n ma )x (f x>+=,若,8)0(f =,17)2(f =,53)4(f =则=)x (f .2、设xx f 10)(=,在下列等式中,对于R x x ∈21,不恒成立的是( )A .)()()(2121x f x f x x f ⋅=+B .xx f 1.0)(=- C .1)101()1(1x x f =D .xx f 1010)1(⋅=+3、在下列等式中,函数f (x )=x 2不满足的是( )A .f (x +1)=2f (x )B .f (xy )=f (x )+f (y )C .f (x +y )=f (x )·f(y )D .f (-x )=)(1x f 4、点(2,1)与(1,2)在函数()2ax b f x +=的图像上,求()f x 的解析式。

相关文档
最新文档