学案68 离散型随机变量的均值与方差

合集下载

学案2:§12.6 离散型随机变量的均值与方差、正态分布

学案2:§12.6 离散型随机变量的均值与方差、正态分布

§12.6 离散型随机变量的均值与方差、正态分布基础知识过关 知识梳理1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为= 为随机变量型随机变量取值的 .(2)D (X )=∑i =1n(x i -E (X ))2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的_______________,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质(1)E (aX +b )= ;(2)D (aX +b )= (a ,b 为常数). 3.两点分布与二项分布的均值、方差4(1)正态曲线的定义函数φμ,σ(x )=12π·σe -(x -μ)22σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,称φμ,σ(x )的图象为正态分布密度曲线,简称正态曲线(μ是正态分布的期望,σ是正态分布的标准差). (2)正态曲线的特点①曲线位于x 轴上方,与x 轴不相交; ②曲线是单峰的,关于直线 对称;③曲线在 处达到峰值1σ2π;④曲线与x 轴之间的面积为1;⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移;⑥当μ一定时,曲线的形状由σ确定, ,曲线越“高瘦”,表示总体的分布越集中; ,曲线越“矮胖”,表示总体的分布越分散. 5.正态分布(1)正态分布的定义及表示如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=⎠⎛ab φμ,σ(x )d x (即x =a ,x =b ,正态曲线及x 轴围成的曲边梯形的面积),则称随机变量X 服从正态分布,记作X ~N (μ,σ2). (2)正态分布的三个常用数据 ①P (μ-σ<X <μ+σ)= ; ②P (μ-2σ<X <μ+2σ)= ; ③P (μ-3σ<X <μ+3σ)= . 诊断自测 1.概念思辨(1)随机变量不可以是负数,随机变量所对应的概率可以是负数,随机变量的均值不可以是负数.( )(2)正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.( )(3)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离均值的平均程度越小. ( )(4)一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.( ) 2.教材衍化 (1)已知X 的分布列为设Y =2X +3,则E (Y )的值为( ) A.73B .4C .-1D .1(2)正态分布密度函数为φμ,σ(x )=18πe -x 28 ,x ∈(-∞,+∞),则总体的平均数和标准差分别为( )A .0和8B .0和4C .0和2D .0和2 3.小题热身(1)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%(2)如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体.经过搅拌后,从中随机取一个小正方体,记它的涂漆面数为X ,则X 的均值E (X )=( )A.126125B.65C.168125D.75 经典题型闯关题型1 与二项分布有关的期望与方差典例 某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖规则如下: 1.抽奖方案有以下两种,方案a :从装有2个红球、3个白球(仅颜色不同)的甲袋中随机摸出2个球,若都是红球,则获得奖金30元;否则,没有奖金,兑奖后将摸出的球放回甲袋中;方案b :从装有3个红球、2个白球(仅颜色不同)的乙袋中随机摸出2个球,若都是红球,则获得奖金15元;否则,没有奖金,兑奖后将摸出的球放回乙袋中.2.抽奖条件:顾客购买商品的金额满100元,可根据方案a 抽奖一次;满150元,可根据方案b 抽奖一次(例如某顾客购买商品的金额为260元,则该顾客可以根据方案a 抽奖两次或方案b 抽奖一次或方案a 、b 各抽奖一次).已知顾客A 在该商场购买商品的金额为350元.(1)若顾客A 只选择方案a 进行抽奖,求其所获奖金的期望; (2)要使所获奖金的期望值最大,顾客A 应如何抽奖? 方法技巧与二项分布有关的期望、方差的求法1.求随机变量ξ的期望与方差时,可首先分析ξ是否服从二项分布,如果ξ~B (n ,p ),则用公式E (ξ)=np ,D (ξ)=np (1-p )求解,可大大减少计算量.2.有些随机变量虽不服从二项分布,但与之具有线性关系的另一随机变量服从二项分布,这时,可以综合应用E (aξ+b )=aE (ξ)+b 以及E (ξ)=np 求出E (aξ+b ),同样还可求出D (aξ+b ). 冲关针对训练一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).题型2 离散型随机变量的均值与方差 角度1 求离散型随机变量的均值与方差典例 甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求: (1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X 的分布列和数学期望E (X ).角度2 均值与方差的应用问题典例 某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?方法技巧1.求离散型随机变量ξ的均值与方差的步骤(1)理解ξ的意义,写出ξ可能的全部值.(2)求ξ取每个值的概率.(3)写出ξ的分布列.(4)由均值的定义求E(ξ).(5)由方差的定义求D(ξ).2.由均值与方差情况求参数问题的求解思路先根据题设条件将均值、方差用待求参数表示,再由已知均值与方差构建关于参数的方程(组),然后求解.3.利用均值、方差进行决策的方法:均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两个随机变量均值相同或相差不大,则可通过分析两个变量的方差来研究随机变量的离散程度或者稳定程度,方差越小,则偏离均值的平均程度越小,进而进行决策.提醒:均值E(X)由X的分布列唯一确定,即X作为随机变量是可变的,而E(X)是不变的,它描述X值的取值的平均水平.冲关针对训练某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?题型3正态分布典例在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()(附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544) A.2386 B.2718 C.3413 D.4772条件探究若将本典例中条件“曲线C为正态分布N(0,1)的密度曲线”变为“曲线C为正态分布N(-1,1)的密度曲线”,则结果如何?方法技巧正态分布下两类常见的概率计算1.利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x=μ对称,曲线与x轴之间的面积为1.2.利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.冲关针对训练从某企业生产的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x 和样本方差s 2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z 服从正态分布N (μ,σ2),其中μ近似为样本平均数x ,σ2近似为样本方差s 2. ①利用该正态分布,求P (187.8<Z <212.2);②某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求E (X ). 附:150≈12.2.若Z ~N (μ,σ2),则P (μ-σ<Z ≤μ+σ)=0.6826,P (μ-2σ<Z ≤μ+2σ)=0.9544.真题模拟闯关1.已知随机变量ξi 满足P (ξi =1)=p i ,P (ξi =0)=1-p i ,i =1,2.若0<p 1<p 2<12,则( )A .E (ξ1)<E (ξ2),D (ξ1)<D (ξ2)B .E (ξ1)<E (ξ2),D (ξ1)>D (ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)2.设X~N(μ1,σ21),Y~N(μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()A.P(Y≥μ2)≥P(Y≥μ1)B.P(X≤σ2)≤P(X≤σ1)C.对任意正数t,P(X≤t)≥P(Y≤t)D.对任意正数t,P(X≥t)≥P(Y≥t)3.某小区有1000户,各户每月的用电量近似服从正态分布N(300,102),则用电量在320度以上的户数约为()(参考数据:若随机变量ξ服从正态分布N(μ,σ2),则P(μ-σ<ξ≤μ+σ)=68.26%,P(μ-2σ<ξ≤μ+2σ)=95.44%,P(μ-3σ<ξ≤μ+3σ)=99.74%)A.17 B.23 C.34 D.464.一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则D(X)=________.参考答案基础知识过关知识梳理1.(1) x1p1+x2p2+…+x i p i+…+x n p n 平均水平(2)平均偏离程度2.(1)aE (X )+b (2)a 2D (X ) 3. p np p (1-p ) np (1-p )4.(2)②x =μ③x =μ⑥σ越小 σ越大 5.(2) ①0.6826②0.9544③0.9974 诊断自测1.【答案】 (1)× (2)√ (3)√ (4)√ 2.教材衍化 (1)【答案】 A【解析】 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.故选A.(2)【答案】 C【解析】 根据已知条件可知μ=0,σ=2,故选C. 3.小题热身 (1)【答案】 B【解析】 P (-3<ξ<3)=68.26%,P (-6<ξ<6)=95.44%,则P (3<ξ<6)=12×(95.44%-68.26%)=13.59%.故选B. (2)【答案】 B【解析】 设涂0个面的小正方体有x 个,涂1个面的小正方体有y 个,涂2个面的小正方体有z 个,涂3个面的小正方体有w 个,则有0·x +1·y +2·z +3·w =25×6=150, 所以E (X )=0·x 125+1·y 125+2·z 125+3·w 125=150125=65.故选B.经典题型闯关题型1 与二项分布有关的期望与方差典例 解:(1)按方案a 抽奖一次,获得奖金的概率P =C 22C 25=110.顾客A 只选择方案a 进行抽奖,则其可以按方案a 抽奖三次. 此时中奖次数服从二项分布B ⎝⎛⎭⎫3,110. 设所得奖金为w 1元,则E (w 1)=3×110×30=9.即顾客A 所奖资金的期望为9元.(2)按方案b 抽奖一次,获得奖金的概率P 1=C 23C 25=310.若顾客A 按方案a 抽奖两次,按方案b 抽奖一次,则由方案a 中奖的次数服从二项分布B 1⎝⎛⎭⎫2,110,由方案b 中奖的次数服从二项分布B 2⎝⎛⎭⎫1,310, 设所得奖金为w 2元,则E (w 2)=2×110×30+1×310×15=10.5.若顾客A 按方案b 抽奖两次,则中奖的次数服从二项分布B 3⎝⎛⎭⎫2,310. 设所得奖金为w 3元,则E (w 3)=2×310×15=9.结合(1)可知,E (w 1)=E (w 3)<E (w 2).所以顾客A 应该按方案a 抽奖两次,按方案b 抽奖一次. 冲关针对训练解:(1)设A 1表示事件“日销售量不低于100个”, A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064, P (X =1)=C 13·0.6(1-0.6)2=0.288, P (X =2)=C 23·0.62(1-0.6)=0.432, P (X =3)=C 33·0.63=0.216.分布列为因为X ~B (3,0.6)0.6)=0.72. 题型2 离散型随机变量的均值与方差 角度1 求离散型随机变量的均值与方差典例 解:(1)记事件A :“甲第一轮猜对”,记事件B :“乙第一轮猜对”,记事件C :“甲第二轮猜对”,记事件D :“乙第二轮猜对”,记事件E :“‘星队’至少猜对3个成语”. 由题意,E =ABCD +A BCD +A B CD +AB C D +ABC D ,由事件的独立性与互斥性,得P (E )=P (ABCD )+P (A BCD )+P (A B CD )+P (AB C D )+P (ABC D )=P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )+P (A )P (B )P (C )P (D )=34×23×34×23+2×( 14×23×34×23+34×13×34×23 )=23. 所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X 可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P (X =0)=14×13×14×13=1144,P (X =1)=2×( 34×13×14×13+14×23×14×13 )=10144=572,P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112,P (X =4)=2×( 34×23×34×13+34×23×14×23 )=60144=512,P (X =6)=34×23×34×23=36144=14. 可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236. 角度2 均值与方差的应用问题典例 解:(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X 的所有可能取值为16、17、18、19、20、21、22,P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16;P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2; P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为(2)由(1)知P (3)记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E (Y )=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040. 当n =20时,E (Y )=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n =19时所需费用的期望值小于n =20时所需费用的期望值,故应选n =19. 冲关针对训练解:(1)由题意知,X 所有可能取值为200,300,500,由表格数据知P (X =200)=2+1690=0.2,P (X =300)=3690=0.4,P (X =500)=25+7+490=0.4.因此X 的分布列为(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n ≤500. 当300≤n ≤500时,若最高气温不低于25,则Y =6n -4n =2n ;若最高气温位于区间[20,25),则Y =6×300+2(n -300)-4n =1200-2n ; 若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n . 因此E (Y )=2n ×0.4+(1200-2n )×0.4+(800-2n )×0.2=640-0.4n . 当200≤n <300时,若最高气温不低于20,则Y =6n -4n =2n ;若最高气温低于20,则Y =6×200+2(n -200)-4n =800-2n , 因此E (Y )=2n ×(0.4+0.4)+(800-2n )×0.2=160+1.2n . 所以n =300时,Y 的数学期望达到最大值,最大值为520元. 题型3 正态分布 典例 【答案】 C【解析】 由曲线C 为正态分布N (0,1)的密度曲线可知题图中阴影部分的面积为P (0<X ≤1)=12×0.6826=0.3413,又题图中正方形面积为1,故它们的比值为0.3413,故落入阴影部分的点的个数的估计值为0.3413×10000=3413.故选C.条件探究 解:对于正态分布N (-1,1),可知μ=-1,σ=1,正态曲线关于直线x =-1对称,故题图中阴影部分的面积为12×[P (-3<X ≤1)-P (-2<X ≤0)]=12×[P (μ-2σ<X ≤μ+2σ)-P (μ-σ<X ≤μ+σ)]=12×(0.9544-0.6826)=0.1359,所以点落入题图中阴影部分的概率P =0.13591=0.1359,投入10000个点,落入阴影部分的个数约为10000×0.1359=1359. 冲关针对训练解:(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为x =170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200, s 2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.(2)①由(1)知,Z ~N (200,150),从而P (187.8<Z <212.2)=P (200-12.2<Z <200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B (100,0.6826),所以E (X )=100×0.6826=68.26. 真题模拟闯关 1.【答案】 A【解析】 ∵E (ξ1)=0×(1-p 1)+1×p 1=p 1, 同理,E (ξ2)=p 2,又0<p 1<p 2, ∴E (ξ1)<E (ξ2).D (ξ1)=(0-p 1)2(1-p 1)+(1-p 1)2·p 1=p 1-p 21, 同理,D (ξ2)=p 2-p 22.D (ξ1)-D (ξ2)=p 1-p 2-(p 21-p 22)=(p 1-p 2)(1-p 1-p 2).∵0<p 1<p 2<12,∴1-p 1-p 2>0,∴(p 1-p 2)(1-p 1-p 2)<0. ∴D (ξ1)<D (ξ2).故选A. 2.【答案】 C【解析】 由题图可知μ1<0<μ2,σ1<σ2,∴P (Y ≥μ2)<P (Y ≥μ1),故A 错误;P (X ≤σ2)>P (X ≤σ1),故B 错误;当t 为任意正数时,由题图可知P (X ≤t )≥P (Y ≤t ),而P (X ≤t )=1-P (X ≥t ),P (Y ≤t )=1-P (Y ≥t ),∴P (X ≥t )≤P (Y ≥t ),故C 正确,D 错误.故选C. 3.【答案】 B【解析】 P (ξ>320)=12×[1-P (280<ξ≤320)]=12×(1-95.44%)=0.0228,0.0228×1000=22.8≈23,∴用电量在320度以上的户数约为23.故选B. 4.【答案】 1.96【解析】由题意得X~B(100,0.02),∴D(X)=100×0.02×(1-0.02)=1.96.。

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差(含答案)

离散型随机变量的均值与方差测试题(含答案)一、选择题1.设随机变量()~,B n p ξ,若()=2.4E ξ,()=1.44D ξ,则参数n ,p 的值为( ) A .4n =,0.6p = B .6n =,0.4p = C .8n =,0.3p = D .24n =,0.1p =【答案】B【解析】由随机变量()~,B n p ξ,可知()==2.4E np ξ,()=(1)=1.44D np p ξ-,解得6n =,0.4p =.考点:二项分布的数学期望与方差. 【难度】较易2.已知随机变量X 服从二项分布(),B n p ,若()()30,20E X D X ==,则p =( ) A .13B .23C .15D .25【答案】A考点:二项分布的数字特征. 【题型】选择题 【难度】较易3.若随机变量),(~p n B ξ,91035==ξξD E ,,则=p ( ) A. 31 B. 32 C. 52D.53 【答案】A【解析】由题意可知,()5,3101,9E np D np p ξξ⎧==⎪⎪⎨⎪=-=⎪⎩解得5,1,3n p =⎧⎪⎨=⎪⎩故选A.考点:n 次独立重复试验.【题型】选择题 【难度】较易4.若随机变量ξ的分布列如下表,其中()0,1m ∈,则下列结果中正确的是( )ξ0 1Pm nA .()()3,E m D n ξξ== B .()()2,E m D n ξξ== C .()()21,E m D m m ξξ=-=- D .()()21,E m D m ξξ=-=【答案】C考点:离散型随机变量的概率、数学期望和方差. 【题型】选择题 【难度】较易5.已知ξ~(,)B n p ,且()7,()6E D ξξ==,则p 等于( )A.71 B.61 C.51D.41 【答案】A【解析】∵ξ~(,)B n p ,∴()7,()(1)6E np D np p ξξ===-=,∴149,7n p ==,故选A.考点:二项分布的期望与方差. 【题型】选择题 【难度】较易6.设随机变量ξ~(5,0.5)B ,若5ηξ=,则E η和D η的值分别是( )A .252和254 B .52和54 C .252和1254 D .254和1254【答案】C【解析】因为随机变量ξ~(5,0.5)B ,所以5.25.05=⨯=ξE ,25.15.05.05=⨯⨯=ξD ,所以E η=252,D η=1254. 考点:二项分布,数学期望,方差. 【题型】选择题 【难度】较易7.设随机变量ξ的分布列为下表所示,且 1.6E ξ=,则a b -= ( )A .-0.2B .0.1C .0.2D .-0.4 【答案】A【解析】由题中分布列可得0.8a b +=,20.3 1.6a b ++=,则0.3,0.5a b ==,0.2a b -=-,故选A.考点:随机变量的期望. 【题型】选择题 【难度】较易8.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X 表示取出竹签的最大号码,则EX 的值为( ) A .4B .4.5C .4.75D .5【答案】B考点:随机变量的期望.【题型】选择题【难度】较易9.随机变量X的分布列如表所示,2EX=,则实数a的值为( )Xa234P 13b1614A.0B.13C.1D.32【答案】A【解析】11111,3644b b+++=∴=Q,又11112342,03464a a⨯+⨯+⨯+⨯=∴=Q.考点:随机变量的期望. 【题型】选择题【难度】较易10.某班有14的学生数学成绩优秀,如果从班中随机地找出5名学生,那么其中数学成绩优秀的学生数ξ服从二项分布1(5,)4B,则()Eξ-的值为()A.14B.14-C.54D.5 4 -【答案】D【解析】因为1(5,)4Bξ:,所以15()5.44E Eξξ-=-=-⨯=-故选D.考点:二项分布的含义和性质. 【题型】选择题【难度】较易11.已知102a <<,随机变量ξ的分布列如下表,则当a 增大时 ( ) ξ1-0 1Pa12a - 12A.()E ξ增大,()D ξ增大B.()E ξ减小,()D ξ增大C.()E ξ增大,()D ξ减小D.()E ξ减小,()D ξ减小 【答案】B考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般12.甲命题:若随机变量2~(3,)N ξσ,若(2)0.3P ξ≤=,则(4)0.7P ξ≤=.乙命题:随机变量~(,)B n p η,且300E η=,200D η=,则13p =,则正确的是( ) A .甲正确,乙错误 B .甲错误,乙正确 C .甲错误,乙也错误 D .甲正确,乙也正确 【答案】D考点:正态分布,期望,方差,命题的真假判定. 【题型】选择题 【难度】一般13.据气象预报,某地区下月有小洪水的概率为0.2,有大洪水的概率为0.05.该地区某工地上有一台大型设备,两名技术人员就保护设备提出了以下两种方案:方案一:建一保护围墙,需花费4000元,但围墙无法防止大洪水,当大洪水来临时,设备会受损,损失费为30 000元.方案二:不采取措施,希望不发生洪水,此时小洪水来临将损失15000元,大洪水来临将损失30000元.以下说法正确的是( )A .方案一的平均损失比方案二的平均损失大B .方案二的平均损失比方案一的平均损失大C .方案一的平均损失与方案二的平均损失一样大D .方案一的平均损失与方案二的平均损失无法计算 【答案】A 【解析】用1X 表示方案i (1,2i =)的损失,则1()300000.054000150040005500E X =⨯+=+=,2()300000.05150000.2150030004500E X =⨯+⨯=+=.综上可知,采用方案一的平均损失大.考点:期望的实际应用. 【题型】选择题【难度】一般14.若X 是离散型随机变量,1221(),()33P X x P X x ====且12x x <,又42(),()39E X D X ==,则12x x +的值为( )A .3B .53C .73D .113【答案】A考点:离散型随机变量期望与方差.【题型】选择题 【难度】一般15.设随机变量()2,X B p :,随机变量()3,Y B p :,若()519P X ≥=,则()31D Y +=( )A .2B .3C .6D .7 【答案】C【解析】∵随机变量()2,X B p :,∴()()()20251101C 19P X P X p ≥=-==--=,解得13p =, ∴()1223333D Y =⨯⨯=,∴()231963D Y +=⨯=,故选C . 考点:二项分布,方差. 【题型】选择题 【难度】一般16.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望()ξE 为( ) A .24181 B .26681 C .27481 D .670243【答案】B【解析】依题意知,ξ的所有可能值为2,4,6,设每两局比赛为一轮,则该轮结束时比赛停止的概率为95313222=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有()952==ξP ,()812095944=⋅==ξP ,()81169462=⎪⎭⎫ ⎝⎛==ξP ,故()812668116681204952=⨯+⨯+⨯=ξE ,故选B.考点:离散型随机变量的数学期望. 【题型】选择题 【难度】一般17.已知离散型随机变量X 的分布列如下表.若()0,()1E X D X ==,则,a b 的值分别是( )X 1-0 1 2Pabc112A.51,248B.51,62C.31,53D.51,124【答案】D考点:离散型随机变量的期望与方差. 【题型】选择题 【难度】一般 二、填空题18.已知随机变量η=23+ξ,且()2D ξ=,则()D η=________. 【答案】18【解析】η=23+ξ,则()()99218D D ηξ==⨯=. 考点:方差的性质. 【题型】填空题 【难度】较易19.已知随机变量X 的分布列如下表所示,则(68)E X += .X 1 2 3 P 0.2 0.40.4【答案】21.2 【解析】由分布列得()2.24.034.022.01=⨯+⨯+⨯=X E ,则()()2.218686=+=+X E X E .考点:离散型随机变量与分布列. 【题型】填空题 【难度】较易20.已知随机变量()~5,0.2X B ,21Y X =-,则()E Y =,标准差()Y σ= .【答案】1;455考点:二项分布,期望与标准差. 【题型】填空题 【难度】一般21.设p 为非负实数,随机变量ξ的分布列如下表,则()D ξ的最大值为_________.ξ0 1 2p12p - p12【答案】1【解析】由随机变量ξ的分布列的性质,得101,201,p p ⎧≤-≤⎪⎨⎪≤≤⎩解得0≤p ≤12.()1E p ξ=+,则()D ξ=()()()22222111501112112224p p p p p p p p ⎛⎫⎛⎫--⨯-+--⨯+--⨯=--+=-++ ⎪ ⎪⎝⎭⎝⎭,∴当0p =时,()D ξ取最大值,()max D ξ=15144-+=.考点:离散型随机变量及其分布列.【题型】填空题【难度】一般三、解答题22.某大学依次进行A科、B科考试,当A科合格时,才可考B科,且两科均有一次补考机会,两科都合格方通过.甲同学参加考试,已知他每次考A科合格的概率均为23,每次考B科合格的概率均为12.假设他不放弃每次考试机会,且每次考试互不影响.(1)求甲恰好3次考试通过的概率;(2)记甲参加考试的次数为ξ,求ξ的分布列和期望.【答案】(1)518(2)分布列见解析,期望()83Eξ=考点:独立事件的概率,随机变量的概率和期望. 【题型】解答题【难度】一般23.第31届夏季奥林匹克运动会将于2016年8月5日—21日在巴西里约热内卢举行.下表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).第30届伦敦第29届北京第28届雅典第27届悉尼第26届亚特兰大中国3851322816俄罗斯2423273226(1)根据表格中两组数据完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);(2)甲、乙、丙三人竞猜今年中国代表团和俄罗斯代表团中的哪一个获得的金牌数多(假设两国代表团获得的金牌数不会相等),规定甲、乙、丙必须在两个代表团中选一个,已知甲、乙猜中国代表团的概率都为45,丙猜中国代表团的概率为35,三人各自猜哪个代表团的结果互不影响.现让甲、乙、丙各猜一次,设三人中猜中国代表团的人数为X,求X的分布列及数学期望EX.【答案】(1)茎叶图见解析,中国代表团获得的金牌数的平均值高于俄罗斯代表团获得的金牌数的平均值,俄罗斯代表团获得的金牌数比较集中,中国代表团获得的金牌数比较分散(2)分布列见解析,115 EX考点:茎叶图,独立事件的概率,随机变量的概率和期望. 【题型】解答题 【难度】一般24.为推行“新课堂”教学法,某地理老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验,为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表,记成绩不低于70分者为“成绩优良”.分数 [5059),[6069),[7079),[8089),[90100),甲班频数 5 6 4 4 1 乙班频数13565(1)由以上统计数据填写下面22⨯列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?甲班 乙班 总计 成绩优良 成绩不优良 总计附:()()()()()()2n ad bc K n a b c d a c b d a b c d -==+++++++.临界值表:()20P K k ≥0.10 0.05 0.025 0.010k 2.706 3.841 5.024 6.635(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核,在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.【答案】(1)列联表见解析,在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关” (2)分布列见解析,4 5考点:独立性检验,离散型随机变量的期望与方差.【题型】解答题【难度】一般25.某校高三年级有400人,在省普通高中学业水平考试中,用简单随机抽样的方法抽取容量为50的样本,得到数学成绩的频率分布直方图(如图).(1)求第四个小矩形的高;(2)估计该校高三年级在这次考试中数学成绩在120分以上的学生大约有多少人?(3)样本中,已知成绩在[140,150]内的学生中有三名女生,现从成绩在[140,150]内的学生中选取3名学生进行学习经验推广交流,设有X名女生被选取,求X的分布列和数学期望.【答案】(1)0.028(2)280(3)分布列见解析,3 2考点:频率分布直方图,离散型随机变量的分布列和期望.【题型】解答题【难度】一般26.空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量按照AQI 大小分为六级:050:为优;51100:为良;100151:为轻度污染;151200:为中度污染;201300:为重度污染;大于300为严重污染.一环保人士记录去年某地某月10天的AQI 的茎叶图如下.(1)利用该样本估计该地本月空气质量优良(AQI 100≤)的天数;(按这个月总共30天计算)(2)将频率视为概率,从本月随机抽取3天,记空气质量优良的天数为ξ,求ξ的概率分布列和数学期望.【答案】(1)18 (2)分布列见解析,1.8考点:古典概型,二项分布. 【题型】解答题 【难度】一般27.为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.(2)以上样本述数据来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为X,若每次抽取的结果是相互独立的,求X的分布列和数学期望.参考公式与数据:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.【答案】(1)列联表见解析,有99.5%的把握认为平均车速超过100km/h与性别有关(2)分布列见解析,65考点:独立性检验,离散型随机变量的分布列.【题型】解答题【难度】一般28.某学校高一年级学生某次身体素质体能测试的原始成绩采用百分制,已知所有这些学生50,100内,发布成绩使用等级制.各等级划分标准见下表,规定:的原始成绩均分布在[]C B A 、、三级为合格等级,D 为不合格等级.为了解该校高一年级学生身体素质情况,从中抽取了n 名学生的原始成绩作为样本进行统计,按照[)50,60,[)[)[)[)60,70,70,80,80,90,90,100的分组作出频率分布直方图如图1所示,样本中分数在80分及以上的所有数据的茎叶图如图2所示. (1)求n 和频率分布直方图中的,x y 的值;(2)根据样本估计总体的思想,以事件发生的频率作为相应事件发生的概率,若在该校高一学生中任选3人,求至少有1人成绩是合格等级的概率;(3)在选取的样本中,从A C 、两个等级的学生中随机抽取了3名学生进行调研,记ξ表示所抽取的3名学生中为C 等级的学生人数,求随机变量ξ的分布列及数学期望.百分制 85分及以上70分到84分60分到69分60分以下等级A B C D【答案】(1)50,0.004n x ==,0.018y = (2)9991000 (3)分布列见解析,94E ξ=所以ξ的分布列为:ξ0 1 2 3P12202722027552155()127272190123.22022055554Eξ=⨯+⨯+⨯+⨯=考点:频率分布直方图及对立事件的概率公式,数学期望计算公式等有关知识的综合运用.【题型】解答题【难度】一般。

离散型随机变量的均值与方差

离散型随机变量的均值与方差
离散型随机变量的均值与方差
(1)均值
称 E(X)=x1p1+x2p2+…+xipi+…+xnpn 为
随机变量 X 的均值或 数学期望 ,它反映了离
散型随机变量取值的 平均水平 .
(2)方差 n

D(X)=

i=1
(xi-E(X))2pi 为随机变量 X 的
方差,它刻画了随机变量 X 与其均值 E(X) 的 平均偏离程度 ,其算术平方根 DX 为
2.方差的意义 D(X)表示随机变量 X 对 E(X)的平均偏离程 度,D(X)越大表明平均偏离程度越大,说 明 X 的取值越分散,反之 D(X)越小,X 的 取值越集中,由方差定义知,方差是建立 在期望这一概念之上的.在 E(X)附近,统 计中常用 DX来描述 X 的分散程度.
基础自测
1.随机变量 ξ 的分布列如下:
=E(ξ2)+4E(ξ)+4=11+12+4=27.
D(2ξ-1)=4D(ξ)=8,
Dξ-1= Dξ= 2.
探究提高 ξ 是随机变量,则 η=f(ξ)一般仍是 随机变量,在求 η 的均值和方差时,熟练应用 均值和方差的性质,可以避免再求 η 的分布列 带来的繁琐运算.
变式训练 2 袋中有 20 个大小相同的球,其中 记上 0 号的有 10 个,记上 n 号的有 n 个(n =1,2,3,4).现从袋中任取一球,ξ 表示所取 球的标号. (1)求 ξ 的分布列、均值和方差; (2)若 η=aξ+b,E(η)=1,D(η)=11,试求 a,b 的值.
题型分类 深度剖析
题型一 离散型随机变量的均值与方差的求法 例 1(2010·福建)设 S 是不等式 x2-x-6≤0 的解集,
整数 m,n∈S. (1)记“使得 m+n=0 成立的有序数组(m,n)” 为事件 A,试列举 A 包含的基本事件; (2)设 ξ=m2,求 ξ 的分布列及其均值 E(ξ).

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差

离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。

均值与方差

均值与方差

学案68 离散型随机变量的均值与方差导学目标: 1.理解取有限个值的离散型随机变量均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.自主梳理1.离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n(1)均值称E (X )=____________________________________为随机变量X 的均值或___________,它反映了离散型随机变量取值的____________.(2)方差称D (X )=__________________________为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差.2.均值与方差的性质(1)E (aX +b )=____________.(2)D (aX +b )=____________.(a ,b 为实数) 3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=____,D (X )=_____________________________. (2)若X ~B (n ,p ),则E (X )=______,D (X )=____________. 自我检测1.若随机变量X X 0 1 2 3 4 5 P 2x 3x 7x 2x 3x xA.118B.19C.209D.920 2.(2011·菏泽调研)已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.1 3.(2010·全国)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 4.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.5.(2011·杭州月考)随机变量ξ的分布列如下:ξ -1 0 1 P a b c其中a ,b ,c 成等差数列.若E (ξ)=13,则D (ξ)=________.探究点一 离散型随机变量的期望与方差例1 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、期望和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.变式迁移1 编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X .(1)求随机变量X 的分布列;(2)求随机变量X 的数学期望和方差.探究点二 二项分布的期望与方差 例2 (2011·黄山模拟)A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率; (2)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.变式迁移2 某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.探究点三离散型随机变量期望与方差的应用例3购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 0000.999.元的概率为1-410(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).变式迁移3因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi(i =1,2)表示方案i实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?1.若η=aξ+b,则E(η)=aE(ξ)+b,D(η)=a2D(ξ).2.若ξ~B(n,p),则E(ξ)=np,D(ξ)=np(1-p).3.求离散型随机变量的期望与方差的常用方法有:(1)已知随机变量的分布列求它的期望、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的期望、方差,求ξ的线性函数η=aξ+b 的期望、方差和标准差,可直接用ξ的期望、方差的性质求解;(3)如能分析所给随机变量,是服从常用的分布(如两点分布、二项分布等),可直接利用它们的期望、方差公式求解.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·福州质检)已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3,则a 的值为( )ξ 4 a 9 P 0.5 0.1 bA.5 B .6 2.设ξ~B (n ,p ),若有E (ξ)=12,D (ξ)=4,则n 、p 的值分别为( )A .18,23B .16,12C .20,16D .15,143.随机变量XX 1 2 4 P 0.4 0.3 0.3则E (5X +4)等于( ) A .15 B .11 C .2.2 D .2.3 4.设掷1枚骰子的点数为ξ,则( )A .E (ξ)=3.5,D (ξ)=3.52B .E (ξ)=3.5,D (ξ)=3512C .E (ξ)=3.5,D (ξ)=3.5 D .E (ξ)=3.5,D (ξ)=35165.(2011·成都调研)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a 、b 、c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ为“|a -b |的取值”,则ξ的数学期望E (ξ)为( )A.89B.35C.25D.13 二、填空题(每小题4分,共12分) 6.(2011·上海)马老师从课本上抄录一个随机变量ξ的概率分布列如下表:x 1 2 3 P (ξ=x ) ? ! ?请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=____________.7.(2011·泰安模拟)设离散型随机变量X 的可能取值为1,2,3,4.P (X =k )=ak +b (k =1,2,3,4).又X 的均值E (X )=3,则a +b =________.8.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数X 的数学期望E (X )=________.三、解答题(共38分) 9.(12分)(2011·江西)某饮料公司招聘了一名员工,现对其进行一次测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望.10.(12分)(2011·山东)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).11.(14分)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1).设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ξ,对乙项目投资十万元,ξ取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量ξ1、ξ2分别表示对甲、乙两项目各投资十万元一年后的利润.(1)求ξ1、ξ2的概率分布和数学期望E (ξ1)、E (ξ2); (2)当E (ξ1)<E (ξ2)时,求p 的取值范围.学案68 离散型随机变量的均值与方差自主梳理1.(1)x 1p 1+x 2p 2+…+x i p i +…+x n p n 数学期望 平均水平 (2)∑ni =1(x i -E (X ))2p i 平均偏离程度 算术平方根D (X ) 2.(1)aE (X )+b (2)a 2D (X ) 3.(1)p p (1-p ) (2)np np (1-p ) 自我检测1.C 2.B 3.B 4.53解析 由题意知P (X =0)=13(1-p )2=112,∴p =12.随机变量X 的分布列为: X0 1 2 3 P 1121351216E (X )=0×112+1×13+2×512+3×16=53.5.59课堂活动区例1 解题导引 要求期望,需先求出分布列,要求分布列,需先求随机变量取每个值的概率,而求概率离不开常见事件概率的计算方法.第(2)小题注意性质E (aξ+b )=aE (ξ)+b ,D (aξ+b )=a 2D (ξ)的应用.解 (1)ξ的分布列为ξ1 2 3 4 P 12120 110 320 15∴E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,即a =±2.又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.∴⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4变式迁移1 解 (1)P (X =0)=2A 33=13;P (X =1)=C 13A 33=12;P (X =3)=1A 33=16.∴随机变量X 的分布列为X 01 3 P131216(2)E (X )=0×13+1×12+3×16=1.D (X )=(1-0)2×13+(1-1)2×12+(3-1)2×16=1.例2 解题导引 (1)准确理解事件“甲类组”的含义,把“甲类组”这一复杂事件用几个互斥的基本事件的和来表示;(2)第(2)小题首先判断随机变量ξ服从二项分布,再求其分布列和均值.解 (1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2, B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2. 依题意有P (A 1)=2×13×23=49,P (A 2)=23×23=49.P (B 0)=12×12=14,P (B 1)=2×12×12=12.所求的概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2) =14×49+14×49+12×49=49. (2)ξ的可能值为0,1,2,3,且ξ~B ⎝⎛⎭⎫3,49. P (ξ=0)=⎝⎛⎭⎫593=125729,P (ξ=1)=C 13×49×⎝⎛⎭⎫592=100243, P (ξ=2)=C 23×⎝⎛⎭⎫492×59=80243, P (ξ=3)=⎝⎛⎭⎫493=64729. ξ的分布列为ξ0 1 2 3P 125729 100243 80243 64729数学期望E (ξ)=0×125729+1×100243+2×80243+3×64729=43.变式迁移2 解 (1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A .因为事件A 等价于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-13×13=427. (2)由题意可得,ξ的可能取值为0,2,4,6,8(单位:min).事件“ξ=2k ”等价于事件“该学生在上学路上遇到k 次红灯”(k =0,1,2,3,4),所以P (ξ=2k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k (k =0,1,2,3,4). 即ξ的分布列是ξ 0 2 4 6 8 P16813281827881181所以ξ的期望是E (ξ)=0×1681+2×3281+4×827+6×881+8×181=83.例3 解题导引 各投保人是否出险互相独立,且出险的概率都是p ,投保人中出险人数ξ~B (104,p ),进而利用二项分布的有关性质求解.解各投保人是否出险互相独立,且出险的概率都是p,记投保的10 000人中出险的人数为ξ,则ξ~B(104,p).(1)记A表示事件:保险公司为该险种至少支付10 000元赔偿金,则A发生当且仅当ξ=0,P(A)=1-P(A)=1-P(ξ=0)=1-(1-p)104,又P(A)=1-0.999104,故p=0.001.(2)该险种总收入为10 000a元,支出是赔偿金总额与成本的和.支出10 000ξ+50 000.盈利η=10 000a-(10 000ξ+50 000),盈利的期望为E(η)=10 000a-10 000E(ξ)-50 000,由ξ~B(104,10-3)知,E(ξ)=10 000×10-3,E(η)=104a-104E(ξ)-5×104=104a-104×104×10-3-5×104.E(η)≥0⇔104a-104×10-5×104≥0⇔a-10-5≥0⇔a≥15(元).故每位投保人应交纳的最低保费为15元.变式迁移3解(1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25,ξ2的所有取值为0.8、0.96、1.0、1.2、1.44.ξ1、ξ2的分布列分别为:(2)令A、B分别表示方案一、方案二两年后柑桔产量超过灾前产量这一事件,P(A)=0.15+0.15=0.3,P(B)=0.24+0.08=0.32.可见,方案二两年后柑桔产量超过灾前产量的概率更大.(3)令η表示方案i的预计利润,则所以E(η1)=14.75,E(η2)=14.1,可见,方案一的预计利润更大.课后练习区1.C[由分布列性质知:0.5+0.1+b=1,∴b=0.4.∴E(ξ)=4×0.5+a×0.1+9×0.4=6.3.∴a=7.]2.A[E(ξ)=np=12,D(ξ)=np(1-p)=4.∴1-p =412=13,∴p =23,∴n =18.]3.A [∵E (X )=1×0.4+2×0.3+4×0.3=2.2,∴E (5X +4)=5E (X )+4=11+4=15.]4.B [E (ξ)=1×16+2×16+3×16+4×16+5×16+6×16=3.5,D (ξ)=16[(1-3.5)2+(2-3.5)2+(3-3.5)2+(4-3.5)2+(5-3.5)2+(6-3.5)2]=3512.]5.A [对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,ξ的可取值有0、1、2,P (ξ=0)=6×7126=13,P (ξ=1)=8×7126=49,P (ξ=2)=4×7126=29,E (ξ)=0×13+1×49+2×29=89.]6.2解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则 E (ξ)=1·x +2×(1-2x )+3x =x +2-4x +3x =2. 7.110解析 离散型随机变量X 的可能取值为1,2,3,4. P (X =k )=ak +b (k =1,2,3,4),所以(a +b )+(2a +b )+(3a +b )+(4a +b )=1,即10a +4b =1,又X 的均值E (X )=3,则(a +b )+2(2a +b )+3(3a +b )+4(4a +b )=3,即30a +10b =3,∴a =110,b =0,∴a +b =110.8.23解析 由题意知X ~B ⎝⎛⎭⎫2,13,∴E (X )=2×13=23. 9.解 (1)X 的所有可能取值为0,1,2,3,4.(2分)P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4).(4分)即(6分)(2)令Y 表示此员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500.(8分)则P (Y =3 500)=P (X =4)=170,P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=5370.E (Y )=3 500×170+2 800×835+2 100×5370=2 280.(10分)所以此员工月工资的期望为2 280元.(12分)10.解 (1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D ,E ,F 分别表示甲不胜A ,乙不胜B ,丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5, P (F )=0.5.(2分)红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF . 由于以上四个事件两两互斥且各盘比赛的结果相互独立,(4分) 因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(6分) (2)由题意知ξ可能的取值为0,1,2,3.(8分)又由(1)知D E F ,D E F ,D E F 是两两互斥事件,且各盘比赛的结果相互独立,(9分)因此P (ξ=0)=P (D E F )=0.4×0.5×0.5=0.1, P (ξ=1)=P (D E F )+P (D E F )+P (D E F ) =0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5 =0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15. 由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.(11分) 所以ξ的分布列为:因此E (ξ)=0×0.1+111.解 (1)ξ1的概率分布为E (ξ1)=1.2×16+1.18×12+1.17×13=1.18.(3分)由题设得ξ~B (2,(5分)故ξ2所以ξ2的数学期望是E (ξ2)=1.3×(1-p )2×p 2=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2=-p 2-0.1p +1.3.(8分)(2)由E(ξ1)<E(ξ2),得-p2-0.1p+1.3>1.18,整理得(p+0.4)(p-0.3)<0,解得-0.4<p<0.3.因为0<p<1,所以,当E(ξ1)<E(ξ2)时,p的取值范围是0<p<0.3.(14分)。

(完整)离散型随机变量的均值与方差经典例题

(完整)离散型随机变量的均值与方差经典例题

离散型随机变量的均值与方差导学案【知识梳理】1。

离散型随机变量的均值与方差若离散型随机变量X的分布列为:(1)均值:称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根错误!为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b. (2)D(aX+b)=a2D(X)(a,b为常数).(3)D(X)=E(X2)—[E(X)]23.特殊分布的均值与方差【典型例题】【例1】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n ∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.【例2】某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p(0〈p〈1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f(p)的最大值点p0.作为p的值.已(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【例3】为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求①顾客所获的奖励额为60元的概率②顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【例4】有n把看上去样子相同的钥匙,其中只有一把能把大门上的锁打开.用它们去试开门上的锁.设抽取钥匙是相互独立且等可能的.每把钥匙试开后不能放回.求试开次数的数学期望和方差.【例5】某公司计划购买2台机器,该种机器使用三年后被淘汰.机器有一易损零件,在购买机器时,可以额外购买这种零件为备件,每个200元。

离散型随机变量的均值与方差、正态分布-概率、统计与统计案例

离散型随机变量的均值与方差、正态分布-概率、统计与统计案例
(3)曲线在 x=μ
直线x=μ
1 a 2π
对称;
; ;
处达到峰值 1
(4)曲线与x轴之间的面积为
(5)当σ一定时,曲线随着μ的变化而沿 平移; (6)当μ一定时,曲线的形状由σ确定.σ越 小 曲线越“瘦高”,表示总体的分布越集中;σ越 大 曲线越“矮胖”,表示总体的分布越分散.
x轴
, ,
返回目录
考点一 求期望与方差 一接待中心有A,B,C,D四部热线电话,已知某一时 刻电话A,B占线的概率均为0.5,电话C,D占线的概率 均为0.4,各部电话是否占线相互之间没有影响.假设该 时刻有ξ部电话占线,试求随机变量ξ的概率分布和它的 期望. 返回目录
P(a<X≤b)=

b φμ,σ(x)dx, a
则称X的分布为正态分布.正态分布完全由参数μ和 N(μ,σ2) .如果随机变量 σ确定,因此正态分布常记作 N(μ,σ2) . X服从正态分布,则记为X~ 正态曲线有以下特点: 返回目录
(1)曲线位于x轴上方,与x轴不相交;
(2)曲线是单峰的,它关于
【分析】利用ξ,η的分布列,用期望、方差公式计算 出它们的值,再根据期望、方差的实际意义作出分析. 【解析】依题意,有Eξ=10×0.5+9×0.2+8×0.1 +7×0.1+6×0.05+5×0.05+0×0=8.85(环). Eη=10×0.1+9×0.1+8×0.1+7×0.1+6×0.2+5×0.2
返回目录
【解析】因为灯管的使用寿命X~N(1 000,
302),为了查表方便,先化为标准正态分布N(0,1);令
Y= X - 1 000 ,即X=1 000+30Y,故Y~N(0,1).

离散型随机变量的均值与方差

离散型随机变量的均值与方差

返回
(1)P(A)=0.5,P(B)=0.3,C=A+B, P(C)=P(A+B)=P(A)+P(B)=0.8. (2)D=-,P(D)=1-P(C)=1-0.8=0.2, C X~B(100,0.2),即X服从二项分布, 所以期望E(X)=100×0.2=20.
返回
[做一题] [例2] (2011· 福建高考)某产品按行业生产标准分成8个等级,
离散型随机变量均值、方差
考纲点击
1.理解取有限个值的离散型随机变量均值、方差的概念.
2.能计算简单离散型随机变量的均值、方差,并能解决一 些实际问题.
返回
1.离散型随机变量的均值与方差
若离散型随机变量X的分布列为:
X P (1)均值 称E(X)= x1p1+x2p2+…+xipi+…+xnpn 为随机变 x1 p1 x2 p2 „ „ xi Pi „ „ xn pn
6a+7b=3.2, 由 a+b=0.5, a=0.3, 解得 b=0.2.
返回
(2)由已知得,样本的频率分布表如下: X2 3 4 5 6 7 8
f
0.3
0.2
0.2
0.1
0.1
0.1
返回
用这个样本的频率分布估计总体分布,将频率视为概率,
可得等级系数X2的概率分布列如下: X2 3 4 5 6 7 8
3 1 1 2 2 D(ξ2)=(500-200) × 5 +(-300-200) × 3 +(0-200) × 15 =
2
140 000, 所以E(ξ1)=E(ξ2),D(ξ1)<D(ξ2), 这说明虽然项目一、项目二获利相等,但项目一更稳妥. 综上所述,建议该投资公司选择项目一投资.
返回
[热点分析]

离散型随机变量的均值与方差

离散型随机变量的均值与方差

《离散型随机变量的均值与方差》学案学习目标1. 会求一些简单的离散型随机变量的概率分布。

2. 知道两点分布和超几何分布及其应用问题导学例1•在掷一枚图钉的随机试验中,令X= X 针尖向上; 如果针尖向上的概率为|_0,针尖向下•p ,试写出随机变量 X 的分布列。

小结:此题的分布列称为_____________ 布列,又称 ________ 布.如果随机变量X的分布列具有上述形式,就称 X 服从 __________ 布,而称p=P (X = 1 )为由于只有两个可能结果的随机试验叫伯努利试验,所以还称这种分布为 ________ 布.这种分布列的应用有哪些? 例2.在含有5件次品的100件产品中,任取3件,试求:般地,在含有 M 件次品的N 件产品中,任取n 件,其中恰有X 件次其中 m=mirM{ n ,,且 n^N M ,N,n ,Mb N 称N 分布列为_______ .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从 • 例3.在某年级的联欢会上设计了一个摸奖游戏, 在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出 5个球,至少摸到3(1)取到的次品数X 的分布列; 次品的概率.(2 )至少取到1件小结:品数,则事件C M C ,k=0,1,2川,m,{X=k }发生的概率为p(x 二k)= n -k N -MC N个红球就中奖.求中奖的概率.问题探究1■只取两个不同值的随机变量一定服从两点分布吗?2•随机变量X的分布列由右表给出,它服从两点分布吗?3.如何理解摸出红球的个数服从超几何分布?4.如果要将这个游戏的中奖概率控制在55%左右,那么应该如何设计中奖规则?课堂训练1•在课本上完成教材49页练习1、2、3;4 一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了E次球,则P (E =12)等于5..现有一大批种子,其中优质良种占30%,从中任取5粒,记E为5粒中的优质良种粒数,则E的分布列是________ .6.某一射手射击所得的环数E的分布列如下:求此射手“射击一次命中环数》7”的概率7. ________________________________________________ 袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1 只黑球得3分,设得分为随机变量E,则P (EW 6) = _________________________________ .8.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得—1分,试写出从该盒中取出一球所得分数E的分布列.9.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1个,取出后不放回,直到取出2个正品为止.设E为取出的次数,求E的分布列. 选做题:在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖。

离散型随机变量的均值和方差

离散型随机变量的均值和方差

a( x1 p1 x2 p2 xn pn ) b( p1 p2 pn )
aE b
即 E(a b) aE b
离散型随机变量的均值的理解
(1) 均 值 是 算 术 平 均 值 概 念 的 推 广 , 是 概 率 意 义 下 的 平 均.
(2)E(X)是一个实数,是由X的概率分布唯一确定的,它 描述X取值的平均状态.
8.两封信随机投入A、B、C三个空邮箱,则A邮箱的信
2
件数ξ的数数学期望Eξ=_____3___.
若ξ~B(n,p),则Eξ= np
ξ01
…k
…n
P Cn0p0qn Cn1p1qn-1 … Cnkpkqn-k … Cnnpnq0
证明:∵P(ξ=k)= Cnkpkqn-k
(∵ k Cnk =n Cn-1k-1)
第二课时:随机变量取值的方差和标准差
前面,我们认识了数学期望. 数学期望: 一般地,若离散型随机变量 ξ 的概率分布 列为
ξ x1 x2 … xk … xn P p1 p2 … pk … pn
则称 E x1 p1 x2 p2 … xk pk … xn pn 为 ξ 的数 学期望,简称期望.数学期望是离散型随机变量的一个特征 数,它反映了离散型随机变量取值的平均水平,表示了随机 变量在随机实验中取值的平均值,所以又常称为随机变量的 平均数、均值.但有时两个随机变量只用这一个特征量是无 法区别他们的。还需要对随机变量取值的稳定与波动、集中 与离散的程度进行刻画.
探究
已知甲、乙两名射手在同一条件下射击,所得环数1、 2的分布列如下:
x1 8 9 10 P 0.2 0.6 0.2
x2 8 9 10 P 0.4 0.2 0.4
试比较两名射手的射击水平.如果其他对手的射击成 绩都在8环左右,应派哪一名选手参赛?如果其他对手的 射击成绩都在9环左右,应派哪一名选手参赛?

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

离散型随机变量的均值与方差(4类必考点)(北师大版2019选择性必修第一册)(解析版)

专题6.3 离散型随机变量的均值与方差【基础知识梳理】 (1)【考点1:求离散型随机变量的均值】 (1)【考点2:均值的性质】 (7)【考点3:求离散型随机变量的方差】 (11)【考点4:方差的性质】 (16)【基础知识梳理】1.离散型随机变量的均值与方差若离散型随机变量X的分布列为X x1x2…x i…x nP p1p2…p i…p n(1)称E(X)=x1p1+x2p2i i n n量取值的平均水平.(2)称D(X)=(x i-E(X))2p i为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根D(X)为随机变量X的标准差.2.均值与方差的性质(1)E(aX+b)=aE(X)+b;(2)D(aX+b)=a2D(X)(a,b为常数).[方法技巧]求离散型随机变量的均值与方差的步骤(1)找出随机变量X的所有可能取值x i(i=1,2,3,…,n);(2)求出各取值的概率P(X=x i)=p i;(3)列成表格并用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)利用公式求均值或方差.【考点1:求离散型随机变量的均值】【知识点:求离散型随机变量的均值】1.(2023·河南平顶山·校联考模拟预测)甲、乙两人进行围棋比赛,两人共比赛两局,每局比赛甲赢的概率为0.6,两人平局的概率为0.1,设每局的胜方得3分,负方得−1分,若该局为平局,则两人各得2分.(1)求甲、乙各赢一局的概率;(2)记两局结束后甲的最后得分为X,求X的数学期望.【答案】(1)0.36(2)3.4【分析】(1)由题可知比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局.据此可得答案;(2)依次写出对局情况及相应概率,后可计算期望.【详解】(1)依题意可得每局比赛乙赢的概率为0.3,甲、乙各赢一局相当于甲赢第一局乙赢第二局或乙赢第一局甲赢第二局,故甲、乙各赢一局的概P=2×0.6×0.3=0.36.(2)若甲赢两局,得分6分,P(X=6)=0.62=0.36;若甲一赢一平,得分5分,P(X=5)=2×0.6×0.1=0.12;若甲平两局,得分4分,P(X=4)=0.12=0.01;若甲一赢一输,得分2分,P(X=2)=2×0.6×0.3=0.36;若甲一平一输,得分1分,P(X=1)=2×0.3×0.1=0.06;若甲输两局,得分−2,P(X=−2)=0.32=0.09.故E(X)=6×0.36+5×0.12+4×0.01+2×0.36+1×0.06−2×0.09=3.42.(2023·四川·校联考一模)甲袋中装有大小相同的红球2个,白球2个:乙袋中装有与甲袋中相同大小的红球3个,白球4个.先从甲袋中取出1个球投入乙袋中,然后从乙袋中取出3个小球.(1)求从乙袋中取出的3个小球中仅有1个红球的概率;(2)记从乙袋中取出的3个小球中白球个数为随机变量ξ,求ξ的分布列和数学期望.【答案】(1)2756.(2)分布列见解析,数学期望E(ξ)=189112【分析】(1)分“从甲袋中取出1红球投入乙袋”和“从甲袋中取出1白球投入乙袋” 两个类型,利用组合数和古典概型公式。

离散型随机变量的均值与方差的导学案

离散型随机变量的均值与方差的导学案

主备人: 审核: 包科领导: 年级组长: 使用时间:5、离散型随机变量的均值与方差【学习目标】1、理解各种分布的均值(期望)和方差2、.会应用均值(期望)和方差来解决实际问题 【重点、难点】会应用均值(期望)和方差来解决实际问题 【使用说明与学法指导】1、根据学习目标,自学课本内容,限时独立完成导学案;2、用红笔勾画出疑难点,提交小组讨论;3、带※ 为选做题; 【自主探究】则称=EX . 为随机变量X 的均值或数学期望.它反映离散型随机变量取值的 .2、当已知随机变量ξ的分布列为()k k p x P ==ξ ),2,1( =k 时,则称=ξD 为ξ的方差,=σξ 为ξ的标准差随机变量的方差与标准差都反映了随机变量取值的 .ξD 越小,稳定性越 ,波动越 .【合作探究】1、同时抛掷5枚质地均匀的硬币,求出现正面向上的硬币数X 的均值.2、在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为7.0,那么他罚球1次的得分X 的均值是多少?变式:.如果罚球命中的概率为8.0,那么罚球1次的得分均值是多少?3、一次单元测验由20个选择题构成,每个选择题有4个选项,其中仅有一个选项正确.每题选对得5分,不选或选错不得分,满分100分.学生甲选对任意一题的概率为9.0,学生乙则在测验中对每题都从各选项中随机地选择一个.分别求甲学生和乙学生在这次测验中的成绩的均值 .思考:学生甲在这次单元测试中的成绩一定会是90分吗?他的均值为90分的含义是什么?4、运动员投篮时命中率6.0=P(1)求一次投篮时命中次数ξ的期望与方差; (2)求重复5次投篮时,命中次数η的期望与方差.【巩固提高】求EX ,DX 和X σ2、掷一枚均匀的骰子,以ξ表示其出现的点数.(1)求ξ的分布列; (2)求)31(≤≤ξP ;(3)求ξE 、ξD 的值.3、设ξ~),(p n B ,且12=EX ,4=DX ,则n 与p 的值分别为多少?4、已知100件产品中有10件次品,从中任取3件,求任意取出的3件产品中次品数的数学期望、方差和标准差?5、有一批零件共10个合格品,2个不合格品,安装机器时从这批零件中任选一个,取到合格品才能安装;若取出的是不合格品,则不再放回 (1)求最多取2次零件就能安装的概率;(2)求在取得合格品前已经取出的次品数ξ的分布列,并求出ξ的期望ξE 和方差ξD .课堂小结———————————————————————————————————。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学案68 离散型随机变量的均值与方差导学目标: 1.理解取有限个值的离散型随机变量均值、方差的概念.2.能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.自主梳理1.离散型随机变量的均值与方差若离散型随机变量X 的分布列为(1)均值称E (X )=____________________________________为随机变量X 的均值或___________,它反映了离散型随机变量取值的____________. (2)方差称D (X )=__________________________为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的______________,其________________________为随机变量X 的标准差.2.均值与方差的性质(1)E (aX +b )=____________.(2)D (aX +b )=____________.(a ,b 为实数)3.两点分布与二项分布的均值、方差(1)若X 服从两点分布,则E (X )=____,D (X )=_____________________________.(2)若X ~B (n ,p ),则E (X )=______,D (X )=____________.自我检测1.若随机变量XA.118B.19C.209D.9202.(2011·菏泽调研)已知随机变量X 服从二项分布,且E (X )=2.4,D (X )=1.44,则二项分布的参数n ,p 的值为( ) A .n =4,p =0.6 B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.13.(2010·全国)某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需要再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4004.(2011·浙江)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的,记X 为该毕业生得到面试的公司个数.若P (X =0)=112,则随机变量X 的数学期望E (X )=________.5.(2011·杭州月考)其中a ,b ,c 成等差数列.若E (ξ)=13,则D (ξ)=________.探究点一 离散型随机变量的期望与方差例1 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号.(1)求ξ的分布列、期望和方差;(2)若η=aξ+b ,E (η)=1,D (η)=11,试求a ,b 的值.变式迁移1 编号1,2,3的三位学生随意入座编号为1,2,3的三个座位,每位学生坐一个座位,设与座位编号相同的学生的个数是X .(1)求随机变量X 的分布列;(2)求随机变量X 的数学期望和方差.探究点二 二项分布的期望与方差例2 (2011·黄山模拟)A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望.变式迁移2 某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min. (1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率;(2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列及期望.探究点三离散型随机变量期望与方差的应用例3购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 0000.999.元的概率为1-410(1)求一投保人在一年度内出险的概率p;(2)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).变式迁移3因冰雪灾害,某柑桔基地果林严重受损,为此有关专家提出两种拯救果树的方案,每种方案都需分两年实施.若实施方案一,预计第一年可以使柑桔产量恢复到灾前的1.0倍、0.9倍、0.8倍的概率分别是0.3、0.3、0.4;第二年可以使柑桔产量为第一年产量的1.25倍、1.0倍的概率分别是0.5、0.5.若实施方案二,预计第一年可以使柑桔产量达到灾前的1.2倍、1.0倍、0.8倍的概率分别是0.2、0.3、0.5;第二年可以使柑桔产量为第一年产量的1.2倍、1.0倍的概率分别是0.4、0.6.实施每种方案第一年与第二年相互独立,令ξi(i =1,2)表示方案i实施两年后柑桔产量达到灾前产量的倍数.(1)写出ξ1、ξ2的分布列;(2)实施哪种方案,两年后柑桔产量超过灾前产量的概率更大?(3)不管哪种方案,如果实施两年后柑桔产量达不到、恰好达到、超过灾前产量,预计利润分别为10万元、15万元、20万元.问实施哪种方案的平均利润更大?1.若η=aξ+b,则E(η)=aE(ξ)+b,D(η)=a2D(ξ).2.若ξ~B(n,p),则E(ξ)=np,D(ξ)=np(1-p).3.求离散型随机变量的期望与方差的常用方法有:(1)已知随机变量的分布列求它的期望、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的期望、方差,求ξ的线性函数η=aξ+b 的期望、方差和标准差,可直接用ξ的期望、方差的性质求解;(3)如能分析所给随机变量,是服从常用的分布(如两点分布、二项分布等),可直接利用它们的期望、方差公式求解.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·福州质检)已知某一随机变量ξ的概率分布列如下,且E (ξ)=6.3,则a 的值为( )A.5 B .6 2.设ξ~B (n ,p ),若有E (ξ)=12,D (ξ)=4,则n 、p 的值分别为( )A .18,23B .16,12C .20,16D .15,143.随机变量X则E (5X +4)等于( )A .15B .11C .2.2D .2.34.设掷1枚骰子的点数为ξ,则( )A .E (ξ)=3.5,D (ξ)=3.52B .E (ξ)=3.5,D (ξ)=3512C .E (ξ)=3.5,D (ξ)=3.5 D .E (ξ)=3.5,D (ξ)=35165.(2011·成都调研)已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴的左侧,其中a 、b 、c ∈{-3,-2,-1,0,1,2,3},在这些抛物线中,记随机变量ξ为“|a -b |的取值”,则ξ的数学期望E (ξ)为( )A.89B.35C.25D.13二、填空题(每小题4分,共12分)6.(2011·上海)马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ且两个“?”处字迹模糊,但能断定这两个“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=____________.7.(2011·泰安模拟)设离散型随机变量X 的可能取值为1,2,3,4.P (X =k )=ak +b (k =1,2,3,4).又X 的均值E (X )=3,则a +b =________.8.两封信随机投入A 、B 、C 三个空邮箱,则A 邮箱的信件数X 的数学期望E (X )=________.三、解答题(共38分)9.(12分)(2011·江西)某饮料公司招聘了一名员工,现对其进行一次测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元;否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数.假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列;(2)求此员工月工资的期望.10.(12分)(2011·山东)红队队员甲、乙、丙与蓝队队员A 、B 、C 进行围棋比赛,甲对A 、乙对B 、丙对C 各一盘.已知甲胜A 、乙胜B 、丙胜C 的概率分别为0.6,0.5,0.5.假设各盘比赛结果相互独立.(1)求红队至少两名队员获胜的概率;(2)用ξ表示红队队员获胜的总盘数,求ξ的分布列和数学期望E (ξ).11.(14分)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中,价格下降的概率都是p (0<p <1).设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ξ,对乙项目投资十万元,ξ取0、1、2时,一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量ξ1、ξ2分别表示对甲、乙两项目各投资十万元一年后的利润.(1)求ξ1、ξ2的概率分布和数学期望E (ξ1)、E (ξ2);(2)当E (ξ1)<E (ξ2)时,求p 的取值范围.学案68 离散型随机变量的均值与方差自主梳理1.(1)x 1p 1+x 2p 2+…+x i p i +…+x n p n 数学期望 平均水平 (2)∑ni =1 (x i -E (X ))2p i 平均偏离程度 算术平方根D (X ) 2.(1)aE (X )+b (2)a 2D (X )3.(1)p p (1-p ) (2)np np (1-p )自我检测1.C 2.B 3.B4.53解析 由题意知P (X =0)=13(1-p )2=112,∴p =12. 随机变量X E (X )=0×112+1×13+2×512+3×16=53. 5.59课堂活动区例1 解题导引 要求期望,需先求出分布列,要求分布列,需先求随机变量取每个值的概率,而求概率离不开常见事件概率的计算方法.第(2)小题注意性质E (aξ+b )=aE (ξ)+b ,D (aξ+b )=a 2D (ξ)的应用.解 (1)ξ∴E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5. D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,即a =±2.又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2;当a =-2时,由1=-2×1.5+b ,得b =4.∴⎩⎪⎨⎪⎧ a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4 变式迁移1 解 (1)P (X =0)=2A 33=13; P (X =1)=C 13A 33=12;P (X =3)=1A 33=16. ∴随机变量X 的分布列为(2)E (X )=0×13+1×12+3×16=1. D (X )=(1-0)2×13+(1-1)2×12+(3-1)2×16=1. 例2 解题导引 (1)准确理解事件“甲类组”的含义,把“甲类组”这一复杂事件用几个互斥的基本事件的和来表示;(2)第(2)小题首先判断随机变量ξ服从二项分布,再求其分布列和均值.解 (1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2, B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.依题意有P (A 1)=2×13×23=49,P (A 2)=23×23=49. P (B 0)=12×12=14,P (B 1)=2×12×12=12. 所求的概率为P =P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49. (2)ξ的可能值为0,1,2,3,且ξ~B ⎝⎛⎭⎫3,49. P (ξ=0)=⎝⎛⎭⎫593=125729,P (ξ=1)=C 13×49×⎝⎛⎭⎫592=100243, P (ξ=2)=C 23×⎝⎛⎭⎫492×59=80243,P (ξ=3)=⎝⎛⎭⎫493=64729.ξ的分布列为 数学期望E (ξ)=0×125729+1×100243+2×80243+3×64729=43. 变式迁移2 解 (1)设这名学生在上学路上到第三个路口时首次遇到红灯为事件A .因为事件A 等价于事件“这名学生在第一和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为P (A )=⎝⎛⎭⎫1-13×⎝⎛⎭⎫1-13×13=427. (2)由题意可得,ξ的可能取值为0,2,4,6,8(单位:min).事件“ξ=2k ”等价于事件“该学生在上学路上遇到k 次红灯”(k =0,1,2,3,4),所以P (ξ=2k )=C k 4⎝⎛⎭⎫13k ⎝⎛⎭⎫234-k (k =0,1,2,3,4). 即ξ的分布列是所以ξ的期望是E (ξ)=0×1681+2×3281+4×827+6×881+8×181=83. 例3 解题导引 各投保人是否出险互相独立,且出险的概率都是p ,投保人中出险人数ξ~B (104,p ),进而利用二项分布的有关性质求解.解 各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ,则ξ~B (104,p ).(1)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当ξ=0,P (A )=1-P (A )=1-P (ξ=0)=1-(1-p )104,又P (A )=1-0.999104,故p =0.001.(2)该险种总收入为10 000a 元,支出是赔偿金总额与成本的和.支出10 000ξ+50 000. 盈利η=10 000a -(10 000ξ+50 000),盈利的期望为E (η)=10 000a -10 000E (ξ)-50 000,由ξ~B (104,10-3)知,E (ξ)=10 000×10-3,E (η)=104a -104E (ξ)-5×104=104a -104×104×10-3-5×104.E (η)≥0⇔104a -104×10-5×104≥0⇔a -10-5≥0⇔a ≥15(元).故每位投保人应交纳的最低保费为15元.变式迁移3 解 (1)ξ1的所有取值为0.8、0.9、1.0、1.125、1.25,ξ2的所有取值为0.8、0.96、1.0、1.2、1.44.ξ1、ξ2(2)令A 、B P (A )=0.15+0.15=0.3,P (B )=0.24+0.08=0.32.可见,方案二两年后柑桔产量超过灾前产量的概率更大.(3)令η表示方案i所以E (η1)=14.75,E (η2)可见,方案一的预计利润更大.课后练习区1.C [由分布列性质知:0.5+0.1+b =1,∴b =0.4.∴E (ξ)=4×0.5+a ×0.1+9×0.4=6.3.∴a =7.]2.A [E (ξ)=np =12,D (ξ)=np (1-p )=4.∴1-p =412=13,∴p =23,∴n =18.] 3.A [∵E (X )=1×0.4+2×0.3+4×0.3=2.2,∴E (5X +4)=5E (X )+4=11+4=15.]4.B [E (ξ)=1×16+2×16+3×16+4×16+5×16+6×16=3.5, D (ξ)=16[(1-3.5)2+(2-3.5)2+(3-3.5)2+(4-3.5)2+(5-3.5)2+(6-3.5)2]=3512.] 5.A [对称轴在y 轴的左侧(a 与b 同号)的抛物线有2C 13C 13C 17=126条,ξ的可取值有0、1、2,P (ξ=0)=6×7126=13,P (ξ=1)=8×7126=49,P (ξ=2)=4×7126=29, E (ξ)=0×13+1×49+2×29=89.] 6.2解析 设“?”处的数值为x ,则“!”处的数值为1-2x ,则E (ξ)=1·x +2×(1-2x )+3x =x +2-4x +3x =2.7.110解析 离散型随机变量X 的可能取值为1,2,3,4.P (X =k )=ak +b (k =1,2,3,4),所以(a +b )+(2a +b )+(3a +b )+(4a +b )=1,即10a +4b =1,又X 的均值E (X )=3,则(a +b )+2(2a +b )+3(3a +b )+4(4a +b )=3,即30a +10b =3,∴a =110,b =0, ∴a +b =110. 8.23解析 由题意知X ~B ⎝⎛⎭⎫2,13,∴E (X )=2×13=23. 9.解 (1)X 的所有可能取值为0,1,2,3,4.(2分) P (X =i )=C i 4C 4-i 4C 48(i =0,1,2,3,4).(4分) 即(6分)(2)令Y 表示此员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500.(8分)则P (Y =3 500)=P (X =4)=170, P (Y =2 800)=P (X =3)=835, P (Y =2 100)=P (X ≤2)=5370. E (Y )=3 500×170+2 800×835+2 100×5370=2 280.(10分) 所以此员工月工资的期望为2 280元.(12分)10.解 (1)设甲胜A 的事件为D ,乙胜B 的事件为E ,丙胜C 的事件为F ,则D ,E ,F 分别表示甲不胜A ,乙不胜B ,丙不胜C 的事件.因为P (D )=0.6,P (E )=0.5,P (F )=0.5,由对立事件的概率公式知P (D )=0.4,P (E )=0.5,P (F )=0.5.(2分)红队至少两人获胜的事件有:DE F ,D E F ,D EF ,DEF .由于以上四个事件两两互斥且各盘比赛的结果相互独立,(4分)因此红队至少两人获胜的概率为P =P (DE F )+P (D E F )+P (D EF )+P (DEF )=0.6×0.5×0.5+0.6×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.55.(6分)(2)由题意知ξ可能的取值为0,1,2,3.(8分)又由(1)知D E F ,D E F ,D E F 是两两互斥事件,且各盘比赛的结果相互独立,(9分)因此P (ξ=0)=P (D E F )=0.4×0.5×0.5=0.1,P (ξ=1)=P (D E F )+P (D E F )+P (D E F )=0.4×0.5×0.5+0.4×0.5×0.5+0.6×0.5×0.5=0.35,P (ξ=3)=P (DEF )=0.6×0.5×0.5=0.15.由对立事件的概率公式得P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=0.4.(11分)所以ξ的分布列为:因此E (ξ)=0×0.1+111.解 (1)ξ1E (ξ1)=1.2×16+1.18×12+1.17×13=1.18. (3分)由题设得ξ~B (2,(5分) 故ξ2所以ξ22×p 2=1.3×(1-2p +p 2)+2.5×(p -p 2)+0.2×p 2=-p 2-0.1p +1.3.(8分)(2)由E (ξ1)<E (ξ2),得-p 2-0.1p +1.3>1.18,整理得(p +0.4)(p -0.3)<0, 解得-0.4<p <0.3.因为0<p <1,所以,当E (ξ1)<E (ξ2)时,p 的取值范围是0<p <0.3.(14分)。

相关文档
最新文档