黄浦区2014学年度第一学期九年级期终调研测试答案
2014上海市各区县初三语文一模官方权威版(含答卷案)之:黄浦
黄浦区2013学年度第一学期九年级期终调研测试语文试卷(满分150分,考试时间100分钟)考生注意:1.本试卷共25题。
2.请将所有答案做在答题纸的指定位置上,做在试卷上一律不计分。
一、文言文(40分)(一)默写(15分)1.月上柳梢头,。
(《生查子·元夕》)2.,雪尽马蹄轻。
(《观猎》)3.,梦回吹角连营。
(《破阵子·为陈同甫赋壮词以寄》)4.何哉?,。
(《岳阳楼记》)5.,在乎山水之间也。
(《醉翁亭记》)(二)阅读下面的词,完成第6—7题(4分)丑奴儿·书博山道中壁[宋] 辛弃疾少年不识愁滋味,爱上层楼。
爱上层楼,为赋新词强说愁。
而今识尽愁滋味,欲说还休。
欲说还休,却道天凉好个秋。
6.“欲说还休”表现了作者的矛盾心理。
(2分)7.对本词中的“却道天凉好个秋”,运用最恰当的一项是(2分)A.冷空气突然南下,气温跌至冰点,行人个个“却道天凉好个秋”。
B.考试成绩公布,小辛再次名列榜首,兴奋得“却道天凉好个秋”。
C.恒大痛失足协杯冠军,队长郑智接受采访时“却道天凉好个秋”。
D.新年的钟声响起,我们共同回顾四年的时光“却道天凉好个秋”。
(三)阅读下文,完成第8—10题(7分)醉翁亭记(节选)已而夕阳在山,人影散乱,太守归而宾客从也。
树林阴翳,鸣声上下,游人去而禽鸟乐也。
然而禽鸟知山林之乐,而不知人之乐;人知从太守游而乐,而不知太守之乐其乐也。
醉能同其乐,醒能述以文者,太守也。
太守谓谁?庐陵也。
8.在文中的空格内填上恰当的内容。
(1分)9.用现代汉语翻译下面的句子,注意加点词的意义及用法。
(3分)醉能同其.乐,醒能述以.文者,太守也。
10.太守因何而乐?下列说法正确的一项是(3分)A.太守因宾客从而乐。
B.太守因禽鸟乐而乐。
C.太守因人之乐而乐。
D.太守因述以文而乐。
(四)阅读下文,完成第11—14题(14分)魏公子无忌⒈方.食,有鸠飞入案下,鹞⒉逐而杀之。
公子暮为不食,曰:‚鸠避患归无忌,竟为鹞所得,吾负之。
2014学年第一学期黄浦区九年级第一学期期末考试(数学)资料
黄浦区2014学年度第一学期九年级期终调研测试数 学 试 卷 2015年1月(满分150分,考试时间100分钟)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.在Rt △ABC 中,90C ︒∠=,如果∠A =α,AB c =,那么BC 等于(A )sin c α⋅; (B )cos c α⋅; (C )tan c α⋅; (D )cot c α⋅. 2.如果二次函数2y ax bxc =++的图像如图1所示, 那么下列判断正确的是(A )0,0a c >>; (B )0,0a c <>; (C )0,0a c ><;(D )0,0a c <<.3.如果3a =,2b =,且a 与b 反向,那么下列关系式中成立的是(A )23a b =;(B )23a b =-;(C )32a b =; (D )32a b =-.4.在△ABC 中,点D 、E 分别在边AB 、AC 上,如果AD =2,BD =3,那么由下列条件能够判定DE //BC 的是(A )23DE BC =; (B )25DE BC =; (C )23AE AC =; (D )25AE AC =. 5.抛物线21y x x =-+-与坐标轴(含x 轴、y 轴)的公共点的个数是 (A )0; (B )1; (C )2; (D )3.6.如图2,在△ABC 中,点D 、E 分别在边AB 、AC 上,且DE ∥BC ,若S △ADE :S △BDE =1:2,则S △ADE :S △BEC = (A )1:4; (B )1:6; (C )1:8; (D )1:9.图1xyO B图2二、填空题:(本大题共12题,每题4分,满分48分) 7.如果34x y =,那么x yy+的值是 ▲ . 8.计算:tan 60cos30︒︒-= ▲ .9.如果某个二次函数的图像经过平移后能与23y x =的图像重合,那么这个二次函数的解析式可以是 ▲ (只要写出一个).10.如果抛物线21(1)22y x m x m =+--+的对称轴是y 轴,那么m 的值是 ▲ . 11.如图3,AD ∥BE ∥FC ,它们依次交直线1l 、2l 于点A 、B 、C 和点D 、E 、F .如果AB =2,BC =3,那么DEEF的值是 ▲ .B12.如图4,在梯形ABCD 中,AD ∥BC ,AB ⊥AD ,BD ⊥CD ,如果AD =1,BC =3,那么BD长是 ▲ .13.如图5,如果某个斜坡AB 的长度为10米,且该斜坡最高点A 到地面BC 的铅垂高度为8米,那么该斜坡的坡比是 ▲ .14.在Rt △ABC 中,90C ︒∠=,CD 是斜边AB 上的高.如果CD =3,BD =2,那么cos A ∠的值是 ▲ .15.正六边形的中心角等于 ▲ 度.16.在直角坐标平面内,圆心O 的坐标是(3,5-),如果圆O 经过点(0,1-),那么圆O与x 轴的位置关系是 ▲ .17.在Rt △ABC 中,90C ︒∠=,30A ︒∠=,BC =1,分别以A 、B为圆心的两圆外切,如果点C 在圆A 内,那么圆B 的半径长r 的取值范围是 ▲ .18.如图6,在梯形ABCD 中,AD ∥BC ,BE ⊥CD ,垂足为点E ,联结AE ,∠AEB =∠C ,且2cos 5C ∠=,若AD =1,则AE 的长是 ▲ .图5图4图3B图6三、解答题:(本大题共7题,满分78分) 19.(本题满分10分,其中每小题各5分) 如图7,已知两个不平行的向量a 、b .(1)化简:2(3)()a b a b --+;(2)求作c ,使得1=2c b a -.(不要求写作法,但要指出所作图中表示结论的向量.)20.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分)在直角坐标平面内,抛物线2y ax b x c =++经过原点O 、A (2-,2-)与B (1,5-)三点. (1)求抛物线的表达式; (2)写出该抛物线的顶点坐标. 21.(本题满分10分,其中每小题各5分)已知:如图8,⊙O 的半径为5,P 为⊙O 外一点,PB 、PD 与⊙O 分别交于点A 、B 和点C 、D ,且PO 平分∠BPD .(1)求证:CB =AD ;(2)当P A =1,∠BPO =45︒时,求弦AB 的长. 22.(本题满分10分)如图9,小明想测量河对岸的一幢高楼AB 的高度,小明在河边C 处测得楼顶A 的仰角是60°.距C 处60米的E 处有幢楼房,小明从该楼房中距地面20米的D 处测得楼顶A 的仰角是30°(点B 、C 、E 在同一直线上,且AB 、DE 均与地面BE 垂直).求楼AB 的高度.P 图8图7ab图923.(本题满分12分,其中每小题各6分)已知:如图10,在△ABC 中,点D 、E 分别在边AB 、AC 上,且∠ABE =∠ACD ,BE 、CD 交于点G . (1)求证:△AED ∽△ABC ;(2)如果BE 平分∠ABC ,求证:DE =CE .24.(本题满分12分,其中每小题各4分) 在平面直角坐标系xOy 中,将抛物线21(3)4y x =-向下平移使之经过点A (8,0) ,平移后的抛物线交y 轴于点B .(1)求∠OBA 的正切值;(2)点C 在平移后的抛物线上且位于第二象限,其纵坐标为6,联结CA 、CB , 求△ABC 的面积;(3)点D 在平移后抛物线的对称轴上且位于第一象限,联结DA 、DB ,当∠BDA =∠OBA 时,求点D 坐标.25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 如图12,在矩形ABCD 中,AB =8,BC =6,对角线AC 、BD 交于点O .点E 在AB 延长线上,联结CE ,AF ⊥CE ,AF 分别交线段CE 、边BC 、对角线BD 于点F 、G 、H (点F 不与点C 、E 重合).(1)当点F 是线段CE 的中点时,求GF 的长;(2)设BE =x ,OH =y ,求y 关于x 的函数解析式,并写出它的定义域; (3)当△BHG 是等腰三角形时,求BE 的长.黄浦区分,满分241.A ; 4.D ;二、填空题:(本大题共12题,每题4分,满分48分) 图10 B A 备用图A 图12图11 Ox y7.74; 8 9.答案不惟一(如231y x =+); 10. 1;11.23; 12 13.1:0.75; 1415.60; 16.相切; 17.02r << 18.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分,其中每小题各5分)解:(1)原式=62a b a b --- ………………………………………………………………(4分) =53a b -. ……………………………………………………………………(1分)(2)图略 . 20.(本题满分10分,第(1)小题满分7分,第(2)小题满分3分) 解:(1)由抛物线2y ax b x c =++经过原点O ,可知0c =. …………………………(2分) 由抛物线2y ax b x =+经过A (2-,2-)、B (1,5-)得22(2)(2)2,11 5.a b a b ⎧⋅-+⋅-=-⎨⋅+⋅=-⎩ ……………………………………………………………………(2分) 解得2,3.a b =-⎧⎨=-⎩ ……………………………………………………………………(2分)∴该抛物线的表达式为223y x x =--. …………………………………………………(1分)(2)由223y x x =--配方得2392()48y x =-++. …………………………………………(2分)∴顶点坐标为(34-,98). ………………………………………………………… (1分)21. (本题满分10分,其中每小题各5分) 证明:(1)过点O 作OM ⊥AB ,ON ⊥CD ,M 、N 为垂足,………………………………(1分)则OM 、ON 分别是弦AB 和CD 的弦心距.∵PO 平分∠BPD ,∴OM =ON ,………………………………………………………(1分) ∴AB =CD .……………………………………………………………………………………(2分) ∴AB +AC =CD +AC .即CB =AD .……………………………………………………………………………………(1分) (2)联结OA ,…………………………………………………………………………………(1分) 在Rt △PMO 中,∠BPO =45 º, OM =PM . 设AM =x ,则 OM =1x +,由题意得 2225(1)x x =++. ………………………………………………………………(2分) 化简得2012x x +=-.解得14x =- (舍) 23x =.…………………………………………………………………(1分) ∴AM =3,∵OM ⊥AB ,且O 为圆心, ∴AB =2AM =6.…………………………………………………………………………………(1分)22.(本题满分10分)解:设BC =x .在Rt △ABC 中,tan ABACB BC ∠=.………………………………………(1分)∴tan 603AB BC x =⋅=.……………………………………………………………………(1分) 过D 作DG //BE ,交AB 于G ,………………………………………………………………(1分) ∵AB ⊥BE ,DE ⊥BE ,∴BG =DE =20,AG 20-.………………………………………………………………(1分) 在Rt △ADG 中,cot DGADG AG∠=.…………………………………………………………(1分)∴cot 303DG AG x =⋅=-……………………………………………………………(1分)由题意得360x x -+.…………………………………………………………………(2分)解得 30x =+………………………………………………………………………(1分)答:楼AB 的高度(30+米.……………………………………………………………(1分) 23.(本题满分12分,其中每小题各6分) 解:(1)∵∠ABE =∠ACD ,且∠A 是公共角,∴△ABE ∽△ACD .……………………………………………………………………(2分)∴AE AB AD AC =,即AE ADAB AC =.……………………………………………………………(1分) 又∵∠A 是公共角,………………………………………………………………………(1分) ∴△AED ∽△ABC . ……………………………………………………………………(2分) (2)∵∠ABE =∠ACD ,∠BGD =∠CGE ,∴ △BGD ∽△CGE .……………………………………………………………………(1分)∴DG BG EG CG =,即DG EGBG CG =. 又∵∠DGE =∠BGC , ∴△DGE ∽△BGC .………………………………………………………………………(2分)∴∠GBC =∠GDE ,………………………………………………………………………(1分) ∵BE 平分∠ABC ,∴∠GBC =∠ABE , ∵∠ABE =∠ACD , ∴∠GDE =∠ACD .………………………………………………………………………(1分) ∴DE =CE .………………………………………………………………………………(1分) 24.(本题满分12分,其中每小题各4分)解:(1)设平移后抛物线的表达式是21(3)4y x k =-+,将A (8,0)代入该表达式 解得 254k =-.∴平移后抛物线的表达式是2125(3)44y x =--. (1) .…………………………………(2分)把0x =代入(1)得 4y =-. ∴B (0,4-). ………………………………………………………………………………(1分)在Rt △AOB 中,tan 2OBA OAOB∠==.……………………………………………………(1分)(2)把6y =代入(1) 解得110x =(舍去), 24x =-. ∴C (4-,6). ………………………………………………………………………………(2分)∴直线AC 解析式为142y x =-+.设AC 与y 轴交于点E ,则点E 坐标为(0,4) …………………………………………(1分) ∴S △ABC = S △BEC + S △A BE =16+32=48. ………………………………………………………(1分) (3)设对称轴交线段AB 于N ,交x 轴于点F ,∵FN //BO ,∴∠OBA =∠DNA ,∴∠BDA =∠DNA ,又∠DAN 是公共角,△BDA ∽△DNA .……………………………………………………(1分)∴AD ABAN AD=,即2AD AN AB =. ∵FN //BO ,∴58AN AF AB AO ==. ∴58AN AB =. 设点D 坐标为(3,m ) .由题意得 222558m +=⋅. ……………………………………………………………(2分)解得5m = (负值已舍).∴点D 坐标为(3,5) .…………………………………………(1分) 25.(本题满分14分,其中第(1)小题4分,第(2)小题5分,第(3)小题5分) 解:(1)矩形ABCD 中,∠ABC =90 º, ∵AB =8,BC =6,∴AC =10.∵AF ⊥CE ,且点F 是线段CE 的中点,∴AE=AC=10.∴BE=2. ……………………………………………………………(1分)Rt △CBE 中,tan 13ECB BE BC ∠==. ………………………………………………(1分)CE=CF1分) Rt △CBE中,tan 3GF CF ECB =⋅∠=1分)(2)∵∠ABC =∠CBE =90º,∠AGB =∠CGF ,∴△BAG ∽△BCE .……………………………………………………………………(1分)∴BG AB BE BC =,∴43BG x =.……………………………………………………………(1分) 矩形ABCD 中,AD ∥BC , ∴BG BH AD DH=,∴45365xy y -=+.…………………………………………………………(1分) ∴451029x y x -=+ (902x <<). ………………………………………………………(2分)(3)1°当BH =BG 时,DH =AD ,∴56y +=,即4510129xx -=+.解得3x =.…………(1分)2°当GH =BG 时,AD =AH , 过点A 作AM ⊥DH ,垂足为H .Rt △CBE 中,cos 53ADB ∠=. ∴53265y+=. (1)将451029x y x -=+代入(1) 解得74x =.………………………………………………(2分)3°当GH =BH 时,DH =AH , ∴点H 在AD 垂直平分线上,此时点F 与点C 重合 ,∴92x =.(舍) …………………………………………(1分) 综上所述BE 的长是3或74.……………………………………………………………(1分)。
2014届黄浦区初三英语一模试卷及答案
2014届黄浦区初三英语一模试卷及答案黄浦区2013学年度第一学期九年级期终调研测试英语试卷2014年1月9日(满分150分,考试时间100分钟)考生注意:本卷有7大题,共94小题。
试题均采用连续编号,所有答案务必按照规定在答题纸上完成,做在试卷上不给分。
Part 1 Listening(第一部分听力)I.Listening Comprehension(听力理解):(共30分)A. Listen and choose the right picture (根据你听到的内容,选出相应的图片)(6分)A B C DE F G H1. 2. 3. 4. 5. 6.B. Listen to the dialogue and choose the best answer to the question you hear (根据你听到的对话和问题,选出最恰当的答案) (8分)7.A) In his bag. B) On the table. C) In his home. D) In the office. 8.A) The blue one. B) The white one. C) The black one. D) The gray one. 9.A) The ship. B) The trip to Japan. C) Interesting people. D) The holiday. 10.A) 700. B) 1070. C) 7000. D) 1700.11.A) He is going to speak to Angie. B) He is going to leave a message.C) He is going to see the manager. D) He is going to call back.12.A) The boy worked hard. B) The boy used the same excuse.C) The boy had too much homework to do. D) The boy stayed up too late.13.A) They will talk to each other. B) They will have a rest at home.C) They will go out to play. D) They will continue to work.14.A) She is not interested in it. B) She can not afford it.C) She has already had one. D) She will take it.C. Listen to the passage and tell whether the following statements are true or false (判断下列句子是否符合你听到的短文内容,符合的用“T”表示,不符合的用“F”表示。
【精品】2014年上海市黄浦区九年级上学期期中数学试卷带解析答案
2013-2014学年上海市黄浦区九年级(上)期中数学试卷一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列四组数中,能组成比例的是()A.1,2,4,5 B.0.2,0.8,12,30C.12,16,45,60 D.0.1,0.2,0.3,0.42.(4分)在比例尺为1:2000的地图上测得A、B两地间的图上距离为5cm,则A、B两地间的实际距离为()A.10m B.25m C.100m D.10000m3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为()A.3sinαB.3cosαC.D.4.(4分)如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使△DEM∽△ABC,则点M应是F、G、H、K四点中的()A.F B.G C.H D.K5.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,下列比例式不能判定DE∥BC的是()A.=B.=C.=D.=6.(4分)已知△ABC,D,E,F分别是AB,BC,CA的中点,设=,=,则+是()A.(+)B.﹣+ C.﹣D.(﹣)二、填空题(本大题共12题,每题4分,满分48分7.(4分)若,则=.8.(4分)若两个相似三角形的面积之比为4:9,则在这两个三角形中,面积较小的三角形与面积较大的三角形的周长之比为.9.(4分)如图,DE∥BC,DE:BC=4:5,则EA:AC=.10.(4分)在△ABC中,∠A=90°,如果AC=10,tanB=,那么AB=.11.(4分)已知线段AB,延长AB到点C,使AB=3BC,则=.12.(4分)已知点P是线段AB的黄金分割点,PA>PB,且PA=﹣1,则AB=.13.(4分)如图,在△ABC中,AD是中线,G是重心,过点G作EF∥BC,分别交AB、AC于点E、F,若AC=18,则AF=.14.(4分)如图,已知直线l1∥l2∥l3,AB=4,DF=6,BC=4,则EF=.15.(4分)在△ABC中,点D、E分别在边AB、AC上,CD平分∠ACB,DE∥BC.如果AC=10,AE=4,那么BC=.16.(4分)如图,正方形DEAF内接于△ABC,已知AC=8,AB=16,那么正方形的边长是.17.(4分)已知Rt△ABC的两条直角边之比为3:4,△ABC∽△A1B1C1,若△A1B1C1的最短边长12cm,则△A1B1C1最长边的中线长为cm.18.(4分)在△ABC中,AB=6,BC=8,CA=7,延长CA至点P,使∠PBA=∠C,则AP=.三、简答题(本大题共4题,每题10分,满分40分)19.(10分)计算:.20.(10分)如图,在Rt△ABC中,∠C=90°,sinA=,BC=6.(1)求AC的长;(2)求cotB的值.21.(10分)如图,已知向量、,求作向量,使满足﹣2(﹣)=3﹣(不要求写作法,但要保留作图痕迹,并写结论)22.(10分)已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.四、解答题(本大题共2题,每题12分,满分24分)23.(12分)如图,在△BAC中,∠A=90°,∠B=60°,作AD⊥BC,垂足为D,E 为边AB上一点,联结CE交AD于点P,点F为线段CE上一点,且CF:EF=3:1,联结FD.(1)求证:FD∥AB;(2)当AB=2,且=时,求BE的长.24.(12分)如图:已知一次函数y=x+3的图象分别交x轴、y轴于A、B两点,且点C(4,m)在一次函数y=x+3的图象上,CD⊥x轴于点D.(1)求m的值及A、B两点的坐标;(2)如果点E在线段AC上,且=,求E点的坐标;(3)如果点P在x轴上,那么当△APC与△ABD相似时,求点P的坐标.五、(本题满分14分)25.(14分)如图1,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE、DE,DE交边BC于点F,设BE=x,CF=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证:∠CEB=∠COG;(3)在(2)的条件下,当OG=时,求x的值.2013-2014学年上海市黄浦区九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的】1.(4分)下列四组数中,能组成比例的是()A.1,2,4,5 B.0.2,0.8,12,30C.12,16,45,60 D.0.1,0.2,0.3,0.4【解答】解:A、1×5≠2×4,故A选项错误;B、0.2×30≠0.8×12,故B选项错误;C、12×60=16×45,故C选项正确.D、0.1×0.4≠0.2×0.3,故D选项错误;故选:C.2.(4分)在比例尺为1:2000的地图上测得A、B两地间的图上距离为5cm,则A、B两地间的实际距离为()A.10m B.25m C.100m D.10000m【解答】解:设A、B两地间的实际距离为xm,根据题意得=,解得x=100.所以A、B两地间的实际距离为100m.故选:C.3.(4分)已知在Rt△ABC中,∠C=90°,∠A=α,AC=3,那么AB的长为()A.3sinαB.3cosαC.D.【解答】解:∵cosA=,∠A=α,AC=3,∴AB==,故选:D.4.(4分)如图,点A、B、C、D、E、F、G、H、K都是7×8方格纸中的格点,为使△DEM∽△ABC,则点M应是F、G、H、K四点中的()A.F B.G C.H D.K【解答】解:根据题意,△DEM∽△ABC,AB=4,AC=6 DE=2∴DE:AB=DM:AC∴DM=3∴M应是H故选:C.5.(4分)如图,在△ABC中,点D、E分别在边AB、AC上,下列比例式不能判定DE∥BC的是()A.=B.=C.=D.=【解答】解:如图,∵当时,△ADE与△ABC不一定相似,∴∠ADE不一定等于∠B,∴不能判定DE∥BC,故选:C.6.(4分)已知△ABC,D,E,F分别是AB,BC,CA的中点,设=,=,则+是()A.(+)B.﹣+ C.﹣D.(﹣)【解答】解:如图,∵=,=,∴=﹣=﹣,∵D,E,F分别是AB,BC,CA的中点,∴==,==﹣,∴+=﹣+.故选:B.二、填空题(本大题共12题,每题4分,满分48分7.(4分)若,则=.【解答】解:根据题意,设x=2k,y=3k,z=4k,则=,故答案为:.8.(4分)若两个相似三角形的面积之比为4:9,则在这两个三角形中,面积较小的三角形与面积较大的三角形的周长之比为2:3.【解答】解:∵两个相似三角形的面积之比为4:9,∴两个相似三角形的相似比为2:3,∴面积较小的三角形与面积较大的三角形的周长之比为2:3.故答案为2:3.9.(4分)如图,DE∥BC,DE:BC=4:5,则EA:AC=4:5.【解答】解:如图,∵DE∥BC,∴△ADE∽△ABC,∴,故答案为4:5.10.(4分)在△ABC中,∠A=90°,如果AC=10,tanB=,那么AB=20.【解答】解:在△ABC中,∠A=90°,如果AC=10,tanB==,得AB=2AC=2×10=20,故答案为:20.11.(4分)已知线段AB,延长AB到点C,使AB=3BC,则=﹣.【解答】解:∵延长线段AB到点C,使AB=3BC,∴=﹣.故答案为:﹣.12.(4分)已知点P是线段AB的黄金分割点,PA>PB,且PA=﹣1,则AB= 2.【解答】解:∵点P是线段AB的黄金分割点,且PA>PB,∴PA=AB,∴AB=PA,∵PA=﹣1,∴AB=×(﹣1)=2,故答案为:2.13.(4分)如图,在△ABC中,AD是中线,G是重心,过点G作EF∥BC,分别交AB、AC于点E、F,若AC=18,则AF=12.【解答】解:∵G是△ABC的重心,∴AG=2DG,AD=3DG;∵EF∥BC,∴,∵AC=18,∴AF=12.故答案为12.14.(4分)如图,已知直线l1∥l2∥l3,AB=4,DF=6,BC=4,则EF=3.【解答】解:如图,∵l1∥l2∥l3,∴,即,解得:EF=3.故答案为3.15.(4分)在△ABC中,点D、E分别在边AB、AC上,CD平分∠ACB,DE∥BC.如果AC=10,AE=4,那么BC=15.【解答】解:∵CD平分∠ACB,∴∠ECD=∠DCB,又∵DE∥BC,∴∠EDC=∠DCB,∴∠EDC=∠ECD,∴△EDC是等腰三角形.即ED=EC=AC﹣AE=10﹣4=6.∵DE∥BC,∴△ADE∽△ABC,∴∴BC=5×6÷2=15.16.(4分)如图,正方形DEAF内接于△ABC,已知AC=8,AB=16,那么正方形的边长是.【解答】解:∵四边形DEAF是正方形,∴DF∥AC,DF=DE=AE,∠AFD=∠DEA=90°,∴=,设正方形的边长为x,则BF=16﹣x,∴=,∴x=,∴正方形的边长为.故答案为:.17.(4分)已知Rt△ABC的两条直角边之比为3:4,△ABC∽△A1B1C1,若△A1B1C1的最短边长12cm,则△A1B1C1最长边的中线长为10cm.【解答】解:∵Rt△ABC的两条直角边之比为3:4,△ABC∽△A1B1C1,∴△A1B1C1的两条直角边之比也为3:4,又∵△A1B1C1的最短边长12cm,∴其两条直角边分别为12cm,16cm,∴斜边==20cm,∴△A1B1C1最长边的中线长为×20=10cm.故答案为10.18.(4分)在△ABC中,AB=6,BC=8,CA=7,延长CA至点P,使∠PBA=∠C,则AP=9.【解答】解:∵∠PBC=∠C,∠P=∠P,∴△PAB∽△PBC,∴==,设PA=x,PB=y,∴==,解得:x=9,∴PA=9.故答案为:9.三、简答题(本大题共4题,每题10分,满分40分)19.(10分)计算:.【解答】解:原式===7+4.20.(10分)如图,在Rt△ABC中,∠C=90°,sinA=,BC=6.(1)求AC的长;(2)求cotB的值.【解答】解:(1)∵在Rt△ACB中,∠C=90°,sinA==,BC=6,∴AB=8,由勾股定理得:AC===2;(2)cotB===.21.(10分)如图,已知向量、,求作向量,使满足﹣2(﹣)=3﹣(不要求写作法,但要保留作图痕迹,并写结论)【解答】解:∵﹣2(﹣)=3﹣,∴﹣2﹣2=3﹣,∴﹣2=﹣2,解得:=﹣+.22.(10分)已知:如图,△ABC是等边三角形,点D、E分别在边BC、AC上,∠ADE=60°.(1)求证:△ABD∽△DCE;(2)如果AB=3,EC=,求DC的长.【解答】(1)证明:∵△ABC是等边三角形,∴∠B=∠C=60°,AB=AC,∵∠B+∠BAD=∠ADE+∠CDE,∠B=∠ADE=60°,∴∠BAD=∠CDE∴△ABD∽△DCE;(2)解:由(1)证得△ABD∽△DCE,∴=,设CD=x,则BD=3﹣x,∴=,∴x=1或x=2,∴DC=1或DC=2.四、解答题(本大题共2题,每题12分,满分24分)23.(12分)如图,在△BAC中,∠A=90°,∠B=60°,作AD⊥BC,垂足为D,E 为边AB上一点,联结CE交AD于点P,点F为线段CE上一点,且CF:EF=3:1,联结FD.(1)求证:FD∥AB;(2)当AB=2,且=时,求BE的长.【解答】(1)证明:在△BAC中,∠A=90°,∠B=60°,∴设BD=k,则AB=2k,BC=4k,∴CD:BC=3:4,∵CF:EF=3:1,∴CF:CE=3:4,∴CD:BC=CF:CE,∴FD∥AB;(2)解:由(1)证得DF∥AB,∴△DFP∽△AEP,∴==,∴=,由(1)得CD:BC=CF:CE=3:4.∴DF=BE,设BE=x,AB=2,则AE=2﹣x,∴=,∴x=,即BE=.24.(12分)如图:已知一次函数y=x+3的图象分别交x轴、y轴于A、B两点,且点C(4,m)在一次函数y=x+3的图象上,CD⊥x轴于点D.(1)求m的值及A、B两点的坐标;(2)如果点E在线段AC上,且=,求E点的坐标;(3)如果点P在x轴上,那么当△APC与△ABD相似时,求点P的坐标.【解答】解:(1)把x=0,代入一次函数的解析式中,可得:y=3,所以点B的坐标是(0,3);把y=0代入一次函数的解析式中,可得:x=﹣4,所以点A的坐标是(﹣4,0),把x=4代入一次函数的解析式中,可得:y=6,所以m的值是6;(2)过E点作EF垂直x轴与F点,过C点作CD⊥x轴,如图1,∴△AEF∽△ACD,∵,∴,∵根据题意得:EF∥CD,且AD=8,CD=6,∴,∴,∴E点的坐标为(3)当点P在OA的延长线上时,∠BAD>∠APC,∠BAD>∠ACP,且∠BAD<∠PAC,当点P在如图2的位置上时,则△APC∽△ABD,=,则,当点P在如图3的位置上时,则△APC∽△ABD,,则AP=16,则P2=(12,0).综上所述:符合条件的点P的坐标是.五、(本题满分14分)25.(14分)如图1,在正方形ABCD中,AB=1,点E在AB延长线上,联结CE、DE,DE交边BC于点F,设BE=x,CF=y.(1)求y关于x的函数解析式,并写出x的取值范围;(2)如图2,对角线AC、BD的交点记作O,直线OF交线段CE于点G,求证:∠CEB=∠COG;(3)在(2)的条件下,当OG=时,求x的值.【解答】解:(1)∵四边形ABCD是正方形,∴DC∥AB,∴=,即=,∴y=,x的取值范围是x>0;(2)∵CF•AE=•(x+1)=1,CA•CO=•=1,∴CF•AE=CA•CO,即=,又∠OCF=∠EAC=45°,∴△OCF∽△EAC,∴∠CEB=∠COG;(3)在Rt△CBE中,CE=,∵∠CEB=∠COG,∠ECA=∠ECA,∴△OCG∽△ECA,∴=,即=,解得,x1=,x2=3,经检验,它们都是方程的根,∴x 的值为3或.赠送:初中数学几何模型举例 【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为 M FEB2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2014年广州中考中考一模数学黄埔区参考答案
2014年黄埔区初中毕业生综合测试数学参考答案一.选择题(每小题3分,共30分) ABCDA CDCDB二.填空题(本大题共6题,每小题3分,满分18分) 11.3x 12.3≠x 13.1- 14.60 15. <16.45或36 (只对1个,给2分,全对3分,没写单位不扣分) 三.解答题17.(本小题满分9分)两边同时乘以)3(2+x x ……2分 得x x 43=+解得1=x ……6分 把1=x 代入)3(2+x x ,知0)31(2≠+⨯……8分所以1=x 是原方程的解 ……9分 18.(本小题满分9分) ∵AB CD ∥∴︒=∠+∠180C B ……2分 又∵B D ∠=∠∴︒=∠+∠180D C ……4分 ∴AD ∥BC ……6分 又AB CD ∥∴四边形ABCD 是平行四边形. ……9分19.(本小题满分10分)∵)1)(2()1(52+--+-x x x x )( =1)1)(1()1(122-=+-=+--x x x x x x )(AD CB第18题……6分又 ∵32=x∴ )1)(2()1(52+--+-x x x x )( =111121322=-=-)(……10分 20.(本小题满分10分)(1)如图①所示,O 为所求.图略……3分(2)设圆心为O ,连结 OA 、OB ,OA 交BC 于D ……4分 ∵AB =AC∴弧AB =弧AC∴OA ⊥BC 且12021===BC DC BD ……6分 由题意DA=5 在Rt △BDO 中,222BD OD OB += ……8分设x OB =则222120)5(+-=x x ……9人 解得1442510=x ,14431443.5≈=x ……10分 答:略21.(本小题满分12分)(1)300 ……2分 (2)480 ……4分 (3∴李洋能参加的概率为31125P P ===的倍数)(数字和为(洋)……7分 张琳能参加的概率为311243P P ===的倍数)(数字和为(琳)……10分 ∵=(琳)P 31P =(洋) ∴公平.……12分 22.(本小题满分12分)第18题CBA第18题图②(1)∵点A (3,n )在反比例函数12y x=的图象上, ∴4312==n ∴点A 的坐标为(3,4)……3分 (2)根据勾股定理22243+=OA 所以OA =5 ……5分 ∵OB =OA ,且点B 在y 轴的正半轴上 点B 的坐标为(0,5) ……7分 设直线AB 的解析式为b kx y +=则∴⎩⎨⎧==+543b b k ,解得⎪⎩⎪⎨⎧==531-b k 所求直线AB 的解析式为531+-=x y ……12分23.(1)当0<x ≤10,且x 是整数时, x y 8= ……2分当lO<x ≤50时,且x 是整数时,.91.02x x y +-=……4分 当x >50时,且x 是整数时,x y 4=……6分(2)利润5.202)45(91.022+--=+-=x x x y ,由二次函数图象可,当450≤<x 时,y 随x 的增大而增大.且当45=x 时达到最大值,当45>x 时,y 随x 的增大而减小.因为需要卖的越多赚的越多,即需要y 随x 的增大而增大. ,此时x ≤45,即最低售价为20-0.1(45-10)=16.5(元)……12分 答略说明:(1)漏写“且x 是整数”共扣1分 24.(本小题满分14分)(1)∵AB 、CD 、EF 都与半圆相切 ∴EH =EB ,HF=CF ∴四边形AEFD 的周长为AE+EH+HF+DF+AD=AE+ED+FC+DF+AD=AB+CD+AD=6a 故周长不变 ……2分 (2)∵AB ∥CD ∴∠BEF +∠CFE =180°又∵EB 切⊙O 于B ,EF 切⊙O 于H ,FE 切⊙O 于H ,FC 切⊙O 于C ∴∠BEO=∠FEO ,∠EFO=∠OFC ∴∠OEF +∠EFO=90° ∴∠EOF =90 ° ∴∠OEF +∠OEF =90°∵∠BOE =60°,∴∠FOC =30° ∴EFG 中,a a OB EB 3360tan =⋅=︒=a a OC FC 333330tan =⋅=︒= ∴四边形EBFC 的周长为a a a EF BC EF CF BC EB 338633822+=+=+=+++ ……6分 (3)∵EO 平分∠BEH ,FO 平分∠CFH ∴FO ⊥EO ,因此可知△EBO ∽△OCF ∴CFOBOC BE =,∴2a OB OC CF BE =⋅=⋅ ①……8分 又S S S 481321=+,即2448132121a CF OC BE OB ⨯=⋅+⋅ ∴2448132121a CF a BE a ⨯=⋅+⋅ ∴a CF BE 613=+ ② ……9分 由①、②知EF 、CF 为方程061322=+-a ax x 的两根 ……11分 解得a x 231=,a x 322= ……13分∴a BE 23=,a CF 32=或a BE 32=,a CF 23=, ……14分25.(本小题满分14分)(1) 由题意,点B 的坐标为(0,2)……1分HF ED CB A O 第24题∴OB=2,∵2tan =∠OAB ,即2=OAOB, ∴OA =1,∴点A 的坐标为(1,0) ……2分又∵二次函数22y x mx =++的图象经过点A ,∴021=++m ,解得3-=m ……3分 ∴所求二次函数的解析式为232+-=x x y ……4分 (2)由题意可得,点C 的坐标为(3,1) ……6分 所求的二次函数解析式为132+-=x x y ……8分(3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,那么对称轴23=x 不变,且111==DD BB ……9分 ∵点P 在平移后所得的二次函数图象上, 设P 点的坐标为(x ,132+-x x ) 在1PBB ∆和1PDD ∆中,∵1PBB S ∆=21PDD S ∆ ∴边1BB 上的高是边1DD 上的高的2倍.① 点在对称轴的右侧时,)232-=x x (,得3=x ,∴P 的坐标是(3,1)……11分 ② 点在对称轴的左侧,同时在y 轴的右侧时,)232x x -=(,得1=x , ∴P 的坐标是),(11- ……12分 ③ 点在y 轴的左侧时,0<x ,又)232x x -=-(,得03>=x (舍去),……13分 ∴所求点P 的坐标为(3,1)或),(11- ……14分。
2014年秋季九年级期考数学科参考答案
2014年秋季九年级期考数学科参考答案一、选择题(每小题3分,共21分)1.A ;2.D ;3.C ;4.C ;5.D ;6.A ;7.B. 二、填空题(每小题4分,共40分)8.10;9.1x =0,2x =3;10.5;11. 略;12. 2;13.1000; 14.31;15. (3,6);16.-3,-2;17.(1)120 (2)1413. 三、解答题(89分)18.原式=4-33-6(8分)=-2-33(9分) 19.写出求根公式 (4分) 2133±=x (9分) 20. ∵ AD ∥BE ,∴ ∠AEB =∠FAD , 3分∵DF ⊥AE ∴∠AFD =∠B=90°, 6分∴ △ABE ∽△DFA 9分 21. 在Rt △AEC 中,Cos70°=AB BC 4分 ∴AB = 70cos BC≈5.3 (米) 8分 答:梯子AB 的长度为5.6米. 9分22.(1) 用列表或画树状图表示 6分 (2) P(在第二象限)=41. 9分 23.(1)(0,1) 3分(2)画出△A 1B 1C 1(画出一个点各2分 ) 9分 24.(1) 2 2+x 4分(2)根据题意,得 (2+x )(200-20x )=700. 6分整理,得x 2-8x +15=0, 7分解这个方程得x 1=3 x 2=5, 8分 答:售价应定为13元或15元. 9分25.(1)36 3分(2)①当P 点与D 点重合时,t =3 4分 ∴H 为AD 的中点,∵EF ⊥AD ,∴EF 为AD 的垂直平分线 ∴四边形AEDF 的对角线互相垂直平分A EHDF LCB图1∴四边形AEDF 为菱形 5分 ∵AD=BD=CD=6 ∴∠BAC=90° ∴四边形AEDF 为正方形 6分 ②∵ EF ∥BC , ∴△AEF ∽△ABC , 7分 ∴AD AH BC EF =,即6612tEF -=,解得:EF=2(6-t ). S △PEF =EF ·DH=×2(6-t )t =-(t ﹣3)2+9 8分 ∴当t =3秒时,S △PEF 的最大值为9. 9分 ③ 1)若点E 为直角顶点,如图所示, 此时PE ∥AD ,PE =t ,BP=2t . ∵PE ∥AD ,∴BD BP AD PE =,即626tt =,t =0, 与题设矛盾; 10分 2)若点F 为直角顶点,如图所示, 此时PF ∥AD ,PF=t ,BP=2t ,CP=12﹣2t . ∵PF ∥AD ,∴CD CP AD PF =,即62126tt -=, 解得t =4; 11分3)若点P 为直角顶点,如图所示.法1:四边形AEDF 为正方形 ∠EDF=90°当P 点与D 点重合时,△PEF 为直角三角形. ∴t =3 13分 法1:过点E 作EM ⊥BC 于点M ,过点F 作FN ⊥BC 于点N ,则EM=FN=DH=t ,EM ∥FN ∥AD .∵EM ∥AD ,∴BDBMAD EM =,解得BM=t , ∴PM=BP ﹣BM=t .在Rt △EMP 中,由勾股定理得:PE 2=EM 2+PM 2=2t 2. ∵FN ∥AD ,∴CDCN AD FN =,解得CN=t , ∴PN=BC ﹣BP ﹣CN=12﹣2t ﹣t =12﹣3t . 12分在Rt △FNP 中,由勾股定理得:PF 2=FN 2+PN 2=t 2+(12﹣3t )2=10t 2﹣72t +144.在Rt △PEF 中,由勾股定理得:EF 2=PE 2+PF 2,即:(12﹣2t )2=2t 2+10t 2﹣72t +144 化简得:t 2﹣3t =0,PA EHDF LCB图2P图3BCLF DHEAM N P 图4BCLF DHEA解得:t=3或t=0(舍去) 13分综上所述,当t=3秒或t=4秒时,△PEF为直角三角形.26.(1)b=-3;m=-2 3分(2)过点A作AC∥x轴,交抛物线于点C,可求得C(4,4)又B(2,-2)∴∠COB=90° 4分①若以O、B、C为顶点的三角形和以O、B、P为顶点的三角形相似,只能是△OBC∽△OCP 5分∴△OBC与△OPB的相似比为OC:OB=2:1; 6分②由①知CO=42,BO=22,BF=FC=10.1)若翻折后,点B′落在BC的右侧,BC与PB′的交点为M,如图.S△MFP =S△BCP =S△CPF =S△B′PF,∴M为FC、PB′的中点∴四边形B′FPC为平行四边形, 7分∴PC=10, PO=42-10 8分2)若翻折后,点B′落在BC上,则点B,D重合, S△MFP =S△BCP,不合题意,舍去. 10分3)若翻折后,点B落在OD的左侧,OC与FB′的交点为N,如图,S△NFP =S△BCP =S△BPF =S△CPF =S△B′PF∴N为PC、FB′的中点∴四边形B′PFC为平行四边形,11分B′P=FC=10∴BP= B′P=10 12分在直角三角形OPB中OP2+OB2=BP2,PO=2, 13分综上所述,PO=42-10或PO=2.B'MPFyxOCABBACO xyFPNB'。
【精品】广东省广州市黄埔区2014年中考一模物理答案
分)
(2 分 )
定值电阻 R0= U 0 = 3V =30Ω ------------(1
分)
I 2 0.1A
方法二:电路总电阻 R总 U
4V 40 -------(
I 2 0.1A
2分 )
定 值 电 阻 的 阻 值 R 0 R 总 R' 40 10 30 --------------------(1
22. (4 分)本题为捆绑式给分,只要解释对 1 个给 4 分。例如: B ;
随着高度的增加,管外的大气压减小,管内气压大于管外气压,使得细管中的水柱上
升.当玻璃管内液柱升高时,说明管外的大气压减小;
或:
D, 给玻璃瓶加热,玻璃瓶内气体温度升高,气体压强增大,体积增大,导致细玻璃管
中红色液体上升。
( 5)A,灯泡的电阻会随温度的变化而变化(灯泡的电阻会变,它的电流与电压不成
正比) (1 分 )
( 6)缓慢移动滑片,同时观察电压表的读数,不要超出额定电压太多。
(1 分 )
-3-
20. 解:( 1)依题意:电源电压 U I 1 R' 0.4 A 10 4V ------------------
( 2)开关 S 拨到触点 2 时,
方法一: 电阻箱两端电压 U′ = I 2R′=0.1 A× 10Ω =1V------(1 分 )
定值电阻两端电压 U0= U-U′ = 4V -1V =3V ------------(1
2014 年黄埔区初三综合测试物理试题参考答案及评分标准
一、选择题(每小题 3 分,共 36 分)
题号
1
2
3
4
5
6
7
8
9 10 11 12
2013-2014学年上海市黄浦区九年级(上)期中物理试卷
2013-2014学年上海市黄浦区九年级(上)期中物理试卷一、选择题(每题2分,共16分)1.(★★★★)一个初三学生的质量约为()A.50克B.500克C.5000克D.50000克2.(★★★)把一实心铁块磨掉一半,则剩余部分的铁块与原来相比不变的是()A.体积B.质量C.重力D.密度3.(★★★)下列实例中,属于利用连通器原理进行工作的是()A.抽水机B.脱排油烟机C.锅炉液位计D.液体密度计4.(★★★★)如图所示的现象中,与大气压无关的是()A.吸盘式挂衣钩B.凸出的像皮膜C.纸片托水D.用管子吸饮料5.(★★★)一金属块用细绳栓好后,浸在某种液体中.当静止在图(a)、(b)(c)所示的位置时,金属块所受的拉力分别为F 1、F 2和F 3,则三个力的大小关系为()A.F1<F2<F3B.F1=F2=F3C.F1>F2>F3D.F1<F2=F36.(★★★★)在如图所示的电路图中,正确的是()A.B.C.D.7.(★★★)如图所示,取6个完全相同的正方体物块,分别以甲、乙、丙三种方式叠放(均放在中央位置),在三种叠放方式中,其中底层物块上表面受到的压强分别为p 甲、p 乙、p 丙,则p 甲:p 乙:p 丙为()A.3:2:4B.3:3:4C.1:1:2D.3:2:38.(★★)如图所示,薄壁的圆柱形容器甲和乙内分别装有水和酒精.容器足够高,酒精的质量小于水的质量.下列措施中,有可能使两容器内液体对容器底部的压强相等的是(无液体溢出)()A.分别抽出相同质量的水和酒精B.分别抽出相同体积的水和酒精C.分别倒入相同质量的水和酒精D.分别倒入相同体积的水和酒精二、填空题(每空1分,15、16题两空每空2分,共26分)9.(★★★★)上海家庭电路的电压为 220 伏,一节干电池电压为 1.5 伏,电源是为电路中的导体提供持续电压的装置.10.(★★★)下列情况中为了增大压强的有(B)(D)(选填代号),是采取在压力一定时,通过减小受力面积的方法达到的;属于减小压强的有(A)(C)(E)(选填代号).(A)房屋地基部分的墙总比平地上的墙要宽些;(B)刀口常被磨得很薄;(C)桥墩总是上端较细,下端较粗;(D)钉尖越尖越易敲进木板;(E)拖拉机利用履带和地面接触.11.(★★★)证明大气压存在并且很大的著名实验是马德堡半球实验,首先测出大气压数值的著名实验是托里拆利实验,1标准大气压可支持 76 厘米高的汞柱.12.(★★★)有一重为5牛的木块漂浮在水面上,它所受的浮力为 5 牛,如果在水中加入一些盐,木块静止后受到的浮力将不变,如果将木块全部压入水中,木块受到的浮力将变大.(后两空均选填“变大”、“变小”或“不变”).13.(★★★)如图所示,两个完全相同的圆柱形容器甲、乙,分别盛有质量相等的水和酒精(ρ水>ρ酒精).甲容器内盛的是酒精;水和酒精对容器底部的压强p 水等于 p 酒精;水和酒精对容器底部的压力F 水等于 F 酒精(后两空均选填“大于”、“等于”或“小于”).14.(★★★)在导体中大量自由电荷定向移动形成电流,10s内通过某导体横截面的电荷量为12C,通过它的电流为 1.2 A,它表示1秒内通过导体横截面的电荷量为 1.2C .15.(★★)已知一块实心长方体金属块的质量为m、它的长、宽、高分别为a,b,c,它的密度ρ= .若将金属块以平放和竖放两种不同的方式放在水平地面上,则金属块对水平地面的压强之比p 甲:p 乙= c:a .(均用关于m、a,b,c式子作答)16.(★★)小明同学为了探究静止在斜面上的物体对斜面的压力大小与哪些因素有关,他分别把甲、乙两个不同重力的物体放在略倾斜的台式测力计上,通过测力计示数记录压力的大小,接着将台式测力计的一端逐渐抬高,改变斜面的倾斜角度(物体始终保持静止),实验过程和观察到的现象分别如图(a)、(b)、(c)、(d)所示.(1)分析比较图(a)、(b)、(c)所示的现象可初步得出:静止在斜面上的同一物体对斜面的压力大小随斜面倾斜角度的增大而减小;(2)分析比较图(c)和(d)所示的现象可初步得出:斜面倾斜角度相同的情况下,静止在斜面上的不同物体对斜面的压力大小不同.三、作图题(共6分)请将图直接画在答题纸的相应位置,作图必须使用2B铅笔.17.(★★★)请用力的图示法在图中画出重为6牛的物体对水平地面的压力.18.(★★)在图所示电路中,填上适当的电流表和电压表符号,当电键S闭合时,灯泡正常发光,并标出电流表和电压表的正负接线柱.四、计算题(共24分)19.(★★★)体积为5X10 -4米3的金属球浸没在水中,求金属球受到的浮力F 浮.20.(★★★)1分钟内通过某导体的电流为0.2安,求:通过导体的横截面积的电荷量?21.(★★)一个底面积为2X10 -2米2的薄壁圆柱形容器放在水平桌面中央,容器高为0.12米,内盛有0.1米深的水,如图(a)所示,另有质量为2千克,体积为1X10 -3米3的实心正方体A,如图(b)所示,求:(1)图(a)中水对容器底部的压强.(2)图(b)实心正方体A的密度.(3)将实心正方体A放入图(a)的水中后,水面上升的高度.22.(★★)如图甲所示,实心均匀正方体A、B放置在水平地面上,A的边长为0.2米,B的边长为0.3米,A的密度为3000千克/米3,B的密度为2000千克/米3.g=10N/kg①求正方体A的质量;②求正方体B对水平地面的压强;③若正方体A、B在底部中间挖去厚度为0.1米,底面积为S的相同柱形后,如图乙所示,A、B剩余部分对水平地面的压强p A′和p B′.则p A′、p B′不能(选填“能”或“不能”)相等,请通过计算说明.五、实验题(每空1分,共18分)23.(★★★)托盘天平是物理实验中用来测量质量的仪器.在“测定石块密度”的实验中,除了天平以外,还需要的器材有量筒.如图中在一次测量中,若石块的体积是20厘米3,则石块的密度是 3.1X10 3千克/米3,本实验与“探究物质质量与体积的关系”实验需要测量的物理量相同(选填“相同”或“不相同”).324.(★★★)图(a)所示实验装置的名称为 U形管压强计,可用来探究液体内部的压强与哪些因素有关,通过观察该装置两边的液面的高度差来判断液体压强的大小.图(b)、(c)和(d)为实验中的一个情景,由此可得出的初步结论是:同种液体,深度相同,液体内部向各个方向的压强都相等.实验中的情景实验器材还可以研究液体内部压强与深度因素的关系.25.(★★★)在“用电流表测电流”实验中,如图用给定器材连接电路时,开关应该先断开(选填“断开”或“闭合”),使用电流表不能超过它的量程,电流表表盘如图(b)所示,此时电流表的示数为 0.14 安.在图(a)中以笔画线代替导线连接电路,要求:电压表测L 2两端的电压.26.(★★)某小组同学在学习了密度知识后,甲同学依据“石块扔入河中的水里总是沉入河底,木头放进水里却会浮在水面”,猜想:沉入水中的物体不受浮力;乙同学根据“浸入水中的铁块最终静止在容器底部、浸入水银中的铁块最终漂浮在水银面上”的现象,猜想:物块密度与液体密度的大小关系,可能会对它浸入液体中后的最终状态有影响.(1)于是他们首先用细线把物体挂在弹簧测力计上(如图(a)所示),测出物体所受的重力G=3.2牛;再把该石块浸没在水中(如图(b)所示),读出此时弹簧测力计的示数为 2.0 牛,从而判断出甲同学的猜想是错误的(选填“正确”或“错误”).(2)接着他们用若干体积相同、密度不同的实心物块和足够的水进行实验,并将实验数据及观察到的实验现象记录在表中.①分析比较实验序号1或2或3的数据及现象,可得出的初步结论是:当浸入水中的实心物块的密度大于水的密度时,物块最终静止在容器底部.②分析比较实验序号 4或5或6 的数据及现象,可得出的初步结论是:当浸入水中的实心物块的密度小于水的密度时,物块最终漂浮在水面上.③至此,大家认为上述实验数据有限,要完善证实乙同学的猜想是否正确,应该用更多的实验数据进行验证.于是他们决定还要进行下面的研究是:(Ⅰ)分别把密度范围在0.9X10 3~1.1X10 3千克/米3内的实心物块浸入水中,观察并记录最终状态;(Ⅱ)分别把密度不同的实心物块浸在密度不同的其它液体中,观察并记录最终状态.通过上述实验为乙同学提供全面、有力的证据.333。
2014黄浦区九年级语文一模考
” 告诉我们新事物必将取代旧事物, 要用发展的眼光看问题; 杜甫《 望 岳》 中的“ , ” 启迪我们要不怕困难, 勇于攀登高峰。 ( 5分) ( 《 鱼我所欲也》 ) ( 《 岳阳楼记》 ) ( 《 送东阳马生序》 ) ( 《 狼》 ) ( 《 唐雎不辱使命》 ) 8 . 根据课本, 解释下面文言文句子中加点词的意义。 1 ) 今为所识穷乏者得我而为之 ( 獉 ( 2 ) 微斯人, 吾谁与归 獉 3 ) 烨然若神人 ( 獉獉 ( 4 ) 其一犬坐于前 獉 5 ) 秦王色挠, 长跪而谢之 ( 獉 三、 ( 4小题, 1 5分) 阅读下面的文段, 完成 9 —1 1题( 1 0分) [ 甲文] 天时不如地利, 地利不如人和。三里之城, 七里之郭, 环而攻之而不胜。夫环而攻 之, 必有得天时者矣, 然而不胜者, 是天时不如地利也。城非不高也, 池非不深也, 兵革非不坚 利也, 米粟非不多也, 委而去之, 是地利不如人和也。故曰, 域民不以封疆之界, 固国不以山溪 之险, 威天下不以兵革之利。得道者多助, 失道者寡助。寡助之至, 亲戚畔之。多助之至, 天下 顺之。以天下之所顺, 攻亲戚之所畔, 故君子有不战, 战必胜矣。( 孟子 《 得道多助, 失道寡 助》 ) [ 乙文] 舜发于畎亩之中, 傅说举于版筑之间, 胶鬲举于鱼盐之中, 管夷吾举于士, 孙叔敖 举于海, 百里奚举于市。故天将降大任于是人也, 必先苦其心志, 劳其筋骨, 饿其体肤, 空乏其 身, 行拂乱其所为, 所以动心忍性, 曾益其所不能。人恒过, 然后能改, 困于心衡于虑而后作, 征 于色发于声而后喻。入则无法家拂士, 出则无敌国外患者, 国恒亡。然后知生于忧患, 而死于 安乐也。( 孟子《 生于忧患, 死于安乐》 ) 9 . 下列句子中, 加点词的意义或用法相同的一项是 出则无敌国外患者 獉 B . 以 域民不以封疆之界 獉 C . 而 委而去之 獉 D . 之 多助之至 獉 1 0 . 用现代汉语翻译下列句子。( 4分) ( 1 ) 得道者多助, 失道者寡助。 ( 2 ) 然后知生于忧患, 而死于安乐也。 1 1 . 对本文理解分析不正确的一项是 的道理。 B . 乙文中列举六位人物的事例, 既引出观点, 又充当论据, 有很强的说服力。 C . 甲乙两文都运用了排比的修辞手法, 不但说理充分, 而且加强了文章气势。 D . 甲乙两文都运用了比喻论证的方法, 从不同的侧面论述了治国的道理。 初中毕业班综合测试语文 共8 页 第3 页 ( 3分) A . 甲文论证了“ 天时不如地利, 地利不如人和” 的道理, 乙文论证了“ 生于忧患, 死于安乐” A . 敌 恐前后受其敌 獉 所以动心忍性 獉 困于心衡于虑而后作 獉 攻亲戚之所畔 獉 ( 3分)
上海市黄浦区2013-2014学年第一学期期末考试九年级物理试卷(word版)
上海市黄浦区2013-2014学年第一学期期末考试九年级物理试卷一、选择题(共16分)1.世界上首次制成能连续供电电源的物理学家是()A.安培B.伏特C.焦耳D.瓦特2.家用电能表上显示当前用电示数的单位是()A.千瓦时B.千瓦/时C.瓦秒D.瓦/秒3.家用液晶电视机的功率约为()A.10瓦B.30瓦C.100瓦D.300瓦4.如图1为教科书“大气压强”一节的知识结构图,其中(a)、(b)、(c)、(d)四项有下划线的内容中不正确的一项是()A.(a)B.(b)C.(c)D.(d)5.阻值分别为1欧和10欧的电阻并联后,总电阻R的阻值()A.一定小于1欧B.可能小于1欧C.一定等于11欧D.可能大于10欧6.在如图2所示的电路中,电源电压保持不变.闭合电键S,当滑动变阻器的滑片P向右移动时,变大的是()A.电压表V示数B.电压表V示数与电流表A示数的比值C.电流表A1示数D.电压表V示数与电流表A1示数的乘积7.在如上图3中,重为G的金属块A静止在水面下,弹簧测力计的示数为F.当剪断连接金属块与测力计的细线时,金属块所受合力的大小()A.大于G B.等于G C.大于F D.等于F8.甲、乙两个质量相等的实心均匀圆柱体(ρ甲>ρ乙)分别放在水平地面上,它们的底面积和高度分别为S甲、S乙和h甲、h乙.若在两圆柱体的上方,分别叠放相同体积的原来种类的物体后,它们对地面的压强相等.则两个圆柱体原来的情况可能是图中()二、填空题(共26分)9.上海地区家用照明电路的电压为_________伏,照明灯与控制它的电键是_________的(选填“串联”或“并联”).欧姆通过实验发现了_________与电压的关系.10.嫦娥三号已于2013年12月2日发射成功,它携带的月球车实现了中国首次月面软着陆.如图5所示,登陆后的月球车将利用两块太阳能电池板提供的电能转化为_________能供小车勘探活动.小车配备了6个行动轮,在提高稳定性的同时可以通过_________来减小压强,以防止沉降.由于月球表面大气极其稀薄,小车在月球表面几乎不受_________的作用.11.如图6所示,质量为0.2千克的正方体冰块静止在水平放置的圆柱形容器中,冰块对容器底部的压力为_________牛.当冰熔化成水后(ρ冰<ρ水),它的质量将_________,对容器底部的压强将_________(选填“变小”、“不变”或“变大”).12.某导体两端电压4伏,10秒内通过该导体横截面的电荷量为2库,通过它的电流为_________安.当该导体两端电压变为6伏时,它的电阻为_________欧.13.在如图7所示的电路中,当电键S闭合后,两个电流表的指针偏转至表盘的同一位置,如图所示.则通过电阻R1的电流_________安,通过电阻R2的电流_________安,电阻R1和R2的阻值之比为_________.LED白光灯的部分技术指标.由表可知,两灯均正常工作时,_________灯较亮”或“乙”),通过甲灯的电流为_________安.1度电可供乙灯连续正常工作_________小时.15.在如图所示的电路中,电源电压保持不变,电路中出现了断路故障,且只发生在电阻R1、R2上.①电键S闭合后,_________电表示数不变(选填“只有A”、“只有V”或“A和V”).②在电路中添加一根完好的导线,连接a、b、c、d四点中的两点.若导线连接的是_________两点,则闭合电键S后,可根据电流表_________(选填“有”或“无”)示数,判断故障只能是电阻R2断路.16.请根据下列框图中给出的规律和由此提出的假设,进行合理推理,然后结合事实,判断推论是否正确.推论2:冬日里最先开始结冰的应该是湖里_________(选填“上”或“下”)的湖水,所以湖中的鱼将_________继续存活(选填“能”或“不能”)事实与推论2_________矛盾(选填“有”或“没有”),这表明假设是_________的(选填“正确”或“错误”)三、作图题(共6分)17.如图所示,重4牛的木球漂浮在水面上,用力的图示法画出它所受到的浮力.18.在如图所示的电路中,有两根导线尚未连接,请用笔画线代替导线补上.补上后要求:闭合电键S后,灯L1和L2都能发光,且电流表只测量通过灯L2的电流.四、计算题(24分)19.(3分)(一物体浸没在水中,排开水的体积为2×10﹣3米3.求:此物体受到的浮力F浮.20.(5分)在如图所示的电路中,电源电压保持不变,电阻R1的阻值为10欧,R2的阻值为15欧.闭合电键S后,电流表的示数变化了0.3安.求:①电源电压U.②通电10秒,电流通过电阻R2所做的功W2.21.(8分)如图1所示,底面积为2×10﹣2米2的薄壁轻质圆柱形容器放在水平地面上.容器内水的深度为0.1米.①求水对容器底部的压强ρ水.②求容器中水的质量m水.③如图2所示,将容器放在面积为4×10﹣2米2的正方形木板中央,并置于水平地面上.现有物体A、B(其密度、体积的关系如表所示),请选择一个,当把物体浸没在容器内水中后(水不会溢出),可使水对容器底部压强的增加量△ρ水与水平地面受到的压强增加量△ρ地的比值最大.(a)选择_________物体(选填“A”或“B”).22.(8分)(在如图所示电路中,电源电压可在3~6伏范围内调节.①当通过滑动变阴器R2的电流为0.4安时,R2两端的电压为2伏,求变阻器R2连入电路的阻值.②若要使电路中电流可在0.2~0.6安范围内调节.求所用定值电阻的最大阻值R1.③现有标有“10Ω2A”、“20Ω0.5A”和“50Ω1A”字样的变阻器各一个,当电源电压为6伏且不变时,请选择符合电路电流及电阻R1最大阻值要求的变阻器.(a)选择标有_________字样的变阻器.(b)求出所选用的变阻器连入电路的阻值范围.五、实验题(共18分)23.(4分)(在“探究物质质量与体积关系”实验中,被测物体应放在天平的_________盘.如图所示为称量时分度盘以及砝码和游码的情况,此时应向_________移动_________,使天平横梁在_________位置平衡.24.(4分)(如图(a)、(b)、(c)为“探究液体内部的压强与哪些因素有关”实验中的一个情景(ρ盐>ρ水>ρ煤油),由此可得出的结论是:_________.若要利用图(c)、(d)来探究液体内部压水强大小与方向的关系,则应使两容器内的液体种类_________,橡皮膜置于液体中的深度_________,橡皮膜所对的方向_________(选填“相同”或“不相同”).25.(5分)(小明同学做“测定小灯泡的电功率”实验,电源电压为3伏,小灯标有“0.2A”字样,所用实验器材均完好.①他先将实验器材(除电压表外)串联连接,发现将最后一根导线连接完毕后,电流表示数如图(a),其错误原因可能是_________和_________.②他找到问题所在后,按正确方法进行实验.闭合电键并移动变阻器的滑片,当观察到_________时,小灯正常发光.若此时电压表的示数如图(b)所示,则小灯的额定功率为_________瓦,此时变阻器连入电路的电阻为_________欧.26.(5分)小成和小顾探究串联电路中,当滑动变阻器的阻值改变时,通过变阻器的电流I滑与其两端电压U滑的关系.①小成猜想:I滑与U滑成正比.小顾同学认为利用已学知识也可以判断猜想是错误的,他的理由可能是_________.②小顾选用阻值为10欧的定值电阻、标有“100Ω 2A”的滑动变阻器和电压恒为12伏的电源,按如图连接电路,进行实验,将每次实验变阻器两端电压U滑和通过变阻器的电流I滑记录在表中.他还计算了后四次实验分别与第一次实验的电压和电流的变化量△U滑和△I滑,记录在表的后两列中.分析比较表中_________的实验数据可知:在串联电路中,_________减小而增大(选填“U 随I滑”或“I滑随U滑”).滑进一步分析比较表中后两列数据可知:在串联电路中,_________.③两位同学共同对表格中的数据及相关条件进行讨论和分析后,猜想:在串联电路中,△U滑与△I滑的数量关系是由某一因素决定的.为了验证他们的猜想,你认为他们还应进行的操作是换用_________(填选项代号),重复上述实验过程.A、阻值为15欧的定值电阻.B、标有“50Ω 2A”的滑动变阻器.C、电压为15伏的电源.三、作图题(共6分)17.解:在竖直方向上,木块受竖直向下的重力G,竖直向上的浮力F浮,在这两个力的作用下,木块处于平衡状态,这两个力是一对平衡力,由平衡条件,得:F浮=G=4N.浮力的图示如图所示.18.:解:两只灯泡的连接方式为并联,电流表只测量通过灯L2的电流,故应将灯泡L1右侧的接线柱与电流表的“0.6”接线柱相连接.如图所示.。
上海市黄浦区中考一模(即期末)物理试题(扫描版)
物理部分答案要点和评分要求
题号
答案要点及评分说明
一、16分
(每题2分)
1.A。2.B。3.C。4.D。5.B。6.D。
7.C。8.D。
二、26分
(每空1分)
9.(1)串联;(2)其他形式;(3)高压。
10.(4)压强;(5)连通器;(6)密度。
11.(7)中子;(8)行;(9)无线电波。
(18)~(23)略。
说明:第17~(23)空,答案合理均得分。
=9.8牛1分
20.
(3分)
②W=Pt=0.1千瓦×5小时=0.5千瓦时3分
21.
(10分)
①U1=I1R1=I R1=0.4安×10欧=4伏3分
②U2=U-U1=16伏-4伏=12伏1分
W2=U2I2t2=U2It2=12伏×0.4安×10秒=48焦3分
③I最大=I1最大=U1最大/R1=15伏/10欧=1.5安1分
I最小=U/R最大=16伏/60欧=0.27安1分
ΔI最大=I最大-I最小=1.5安-0.27安=1.23安1分
22.
(8分)
①m=ρV=1×103千克/米3×2×10-3米3=2千克3分
②p=F/S容=(G1+G2)/2S2分
③p甲:p乙=(ρ液g h):(ρ液g h')=h:(H+ΔH)
=h:(H+hS/2S)=h:(H+h/2)1分
12.(10)12;(11)0.2;(12)30。
13.(13)1;(14)竖直向上;(15)等于。
14.(16)1:2;(17)丁叠放在甲上方中央。
15.(18)V;(19)R1和R2同时断路。
(20)A1;(21)R2断路。
黄浦区初三数学2014年1月一模试卷答案
黄浦区2013学年度第一学期九年级期终调研测试数学参考答案与评分标准一、选择题:(本大题共6题,每题4分,满分24分)1. D ;2. B ;3. A ;4. C ;5. D ;6. A . 二、填空题:(本大题共12题,每题4分,满分48分)7. 6 ; 8. 5a b - ; 9. 6; 10. 22-=x y ; 11. 2a >-;12.(1,2)- ; 13. 6; 14.4; 15. 53; 16. 2553y x x =-+; 17. 3; 18.12548.三、解答题:(本大题共7题,满分78分)19.解:原式12⋅ ……………………………………………………(8分)…………………………………………(1分)=2+. ………………………………………………………(1分)20.解:(1)由抛物线2y ax b x c =++经过C (0,3)可知3c =. …………(2分) 由抛物线23y ax b x =++经过A (-1,8)、B (3,0)得22(1)(1)38,3330.a b a b ⎧⋅-+⋅-+=⎨⋅+⋅+=⎩ ………………………………………………………(2分) 解得1,4.a b =⎧⎨=-⎩…………………………………………………………(2分)∴该抛物线的表达式为243y x x =-+. ………………………………………(1分) (2)由243y x x =-+配方得2(2)1y x =--. …………………………………(2分) ∴顶点坐标为(2,-1). ………………………………………………… (1分)21.解:(1)∵EG ∥BD ,∴AE AG EBGD=. …………………………………………(1分)∵GF ∥DC ,∴AG AF GDFC=. ………………………………………………………(1分)∴AE AF EBFC=. …………………………………………………………………(1分)∴EF ∥BC . …………………………………………………………………(2分) (2)∵EF ∥BC ,∴AEF ABC ∠=∠.∵EG ∥BD ,∴AEG ABD ∠=∠.∴AEF AEG ABC ABD ∠-∠=∠-∠,即GEF DBC ∠=∠. ………………………………………………………………(1分) 同理GFE DCB ∠=∠. …………………………………………………………(1分) ∴△EGF ∽△BDC . …………………………………………………………(1分)∵23AE BE=,∴25EF BC=. ……………………………………………………(1分)∴EFG BCD S S ∆∆=2254()EF BC =. ………………………………………………………(1分)22.解:设CH =x . 在Rt △AHC 中,62.6ACH ∠=. ………………………………(1分) ∵tan AH ACH CH∠=,∴tan 62.6AH x =. …………………………………………(2分)在Rt △BHC 中,69.2BCH ∠=. ………………………………………………(1分)∵tan BH BCH CH∠=.∴tan 69.2BH x =. …………………………………………(2分)∵AB BH AH =-, ∴tan 69.2tan 62.610x x -=. ……………………………(2分) 解得tan 69.2tan 62.610x x x =- ≈14. ………………………………………………(2分) 答:此时该集装箱船与观测站A 的距离约为14千米.23.解:(1)1233a b + ; (2)111a m b m m +++ ; (3)34. (每空4分)24. 解:(1)解析式为2(1)3y x =--, 顶点坐标为M (1,3-). ………(2分) A (0,2-),B (3,1). …………………………………………(2分) (2)过点B 、M 分别作BE ⊥AO ,MF ⊥AO ,垂足分别为E 、F . ∵EB =EA =3,∴∠EAB =∠EBA =45°. 同理∠F AM =∠FMA =45°.∴△F AM ∽ △EAB . ∴13AM AB AE AF ==.∵∠EAB =∠F AM =45°∴∠BAM =90°. ………………………………………(2分)∴Rt △ABM 中,1tan 3AM ABM BM ∠==. ………………………………………………(2分)(3)过点P 作PH ⊥x 轴,垂足为H .设点P 坐标为2(,22)x x x --. ……………………………………………………………(1分) 1°当点P 在x 轴上方时, 由题意得22321x x x--=,解得123x =-(舍),23x =.∴点P 坐标为(3,1). ……………………………………………………………(1分) 2°当点P 在x 轴下方时, 题意得22213x x x-+=+,解得156x =(舍),256x +=.∴点P坐标为(55618-. …………………………………………………(1分) 综上所述,P 点坐标为(3,1),(5)5618-++. ………………………………(1分)25. 解:(1)在Rt △ACB 中,8AC =,6BC =,10AB =. ……………………(1分) 过点P 作PH ⊥BE ,垂足为H . ………………………………………………(1分)在Rt △PHB 中,45PH x =,35BH x =.∵CD ∥HP ,∴CE CD PHEH =,即434655y y x x=+-. 解得3035x y x -=- (510x <<). ……………………………………………… (2分)(2)联结QB ,∵DQ =BC =6,DQ ∥BC ,∴四边形QBCD 是平行四边形. ∴BQ =4.又∵∠ACB =90°,∴∠EBQ =90°. ………………………………… ………………(1分) 当△EDQ 与△EGD 相似时,∵∠EDG <∠EDQ ∴∠EDC =∠DQE .∵DQ∥CE,∴∠DQE =∠QEB,∴∠EDC =∠QEB .又∵∠EBQ=∠DCE=90°∴△EBQ ∽△DCE .…………………………………(2分)∴CE CDBQ BE=,即446yy=+,解得18y=-(舍)22y=. ………………………(1分)代入3035xyx-=-,得8x=. …………………………………………………………(1分)(3)延长PQ,交EB延长线于M. …………(1分)∵DQ∥ME,∴QF PF FD MB PB BE==.又∵QF FD=,∴MB=BE. …………………(1分)又由①得QB⊥ME, …………………(1分)∴QE=QM.…………………………………(1分)∵DQ∥ME,∴PD PQ DE QM=.又∵QE=QM,∴PD PQDE QE=.即PD DEPQ QE=. …………………………………………(1分)。
上海市黄浦区中考一模(即期末)化学试题(扫描版)
1分
计算或单位错扣1分
(3)
金刚石(石墨)
1分
错别字扣分
(4)
72
1分
(5)
3
1分
48
(6)
化学
1分
(7)
木炭燃烧,产生白光
1分
(8)
1 2 3 2
1分
没有化简等均扣分
49
(9)
2H2+O22H2O
1分
(10)
氢气燃烧产生淡蓝色火焰,瓶壁出现水滴
2分
漏写一条扣1分
(11)
氢、氧(H、O)
0.07mol×100g/mol=7g(1分)
×100%=70%(1分)
答:该大理石中碳酸钙质量分数为70%
4分
(20)
3.08
1分
51
(21)
锥形瓶
1分
错别字扣分
(22)
黑
1分
(23)
CuO+COCu+CO2
1分
(24)
氧化
1分
(25)
甲中氧化钙吸收水蒸气生成氢氧化1分
(12)
D
1分
(13)
2
1分
(14)
t4
1分
(15)
A B
2分
漏选一个扣1分,一对一错、多选扣2分
(16)
乙﹥甲﹥丙
1分
(17)
CO2+H2OH2CO3
1分
(18)
B
1分
50
(19)
解:设含有xmolCaCO3
CaCO3+2HClCaCl2+CO2↑+H2O(1分)
1 1
x 0.07
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黄浦区2014学年度第一学期九年级期终调研测试
语文试卷参考答案及评分标准
一、文言文(39分)
(一)默写(15分。
每题3分,错一字扣1分,不倒扣;词序颠倒,相同的字重复错,均只扣1分)
1.人约黄昏后2.可怜身上衣正单3.亲射虎看孙郎
4.必先苦其心志5.心旷神怡把酒临风
(二)阅读下面的诗,完成第6—7题(4分)
6.(2分)A 7.(2分)B
(三)阅读下文,完成第8—9题(8分)
8.(2分,各1分)宋欧阳修
9.(6分)蔚然深秀(2分)酿泉之上(旁/侧/边)(2分)乐(2分)
(四)阅读下文,完成第10—13题(12分)
10.(4分,各2分)(1)寻找(2)喜欢
11.(3分)他(伯乐的儿子)回来把情况告诉父亲(主语、归、以各1分)
12.(2分)C
13.(3分)要点:认为愚笨,阐述理由要联系主旨;认为聪明,要解释儿子欺瞒父亲的原因。
示例一:儿子愚笨,因为他只会按照书本知识生搬硬套(2分),将蛤蟆当成千里马(1分)。
示例二:儿子聪明,因为他找不到千里马(1分),无奈之下借千里马的部分特征,以蛤蟆来应付搪塞父亲(2分)。
二、现代文(40分)
(一)阅读下文,完成第14—17题(20分)
14.(3分)B
15.(3分)D
16.(4分)D B(2分)
17.(4分)(1)信箱是人和外在世界的关键连结点(2分)。
(2)信箱已失去传统功能,正在消失(2分)。
18.(6分)不同意(1分)。
因为1—6段介绍《新牛津美语词典》虚构词语防盗版的做法,9—11段说明虚构的内容也具有一定的意义,11段放在第6段之后,内容上无法与上下文关联(3分);结构上,11段与第1段首尾呼应,对虚构词的意义做进一步说明,能使文章结构更完整(2分)。
【答“同意”不得分,理由可酌情给分,最高3分。
】
(二)阅读下文,完成第19—24题(20分)
19.(3分)示例一:不好。
因为文中原句运用了比喻的修辞方法(1分),形象生动地表现了课堂上学生积极举手发言的情景(2分)。
示例二:好。
“迅速”一词可以表现学生积极举手发言的情景(1分),“一只只”
则表现举手同学的多,与原句运用比喻的表达效果一致(1分),而且更加简洁(1分)。
20.(2分)A
21.(8分)(1)赵老师引导小朋友用实验证明乌鸦的确有可能喝不到水(2分)(2)愣怔(尴尬)、镇定自若(满面春风)(2分)
(3)鄙夷、窃窃私语(2分)
(4)目瞪口呆、陷入沉思(2分)
22.(4分)C A(2分)
23.(3分)要求:与人对话,语言要符合身份,且不与文本内容冲突。
示例:谢谢张老师的鼓励,我永远是您的学生。
三、综合运用(11分)
24.(3分)小草悄悄地缩回土里。
【用“钻”扣1分】
25.(4分)(1)“你”后面注意停顿(2分)。
(2)“还在”要重读。
(2分)
26.(4分)示例:这首诗内容上表达对母亲的怀念,形式上采用让时光倒流的写作手法,情感基调比较伤感,与新年联欢会辞旧迎新的喜庆氛围不一致。
四、写作(40分)
27.参见2014年中考作文分项评分细则
2014年上海市中考作文分项评分细则
说明:
(1)题目不写扣2分。
(2)字迹不清楚,书写不规范,卷面不整洁扣1——2分(符合任意两项即扣2分)。
(3)错别字总扣1分(满2个即扣)。