(新课标)高考数学大一轮复习第四章三角函数题组19文
2024届高考一轮复习数学课件(新教材人教A版强基版):三角函数

所以π2+kπ<α2<34π+kπ,k∈Z,
则α2是第二或第四象限角,
又cos
α2=-cos
α2,即
cos
α2<0,
所以α2是第二象限角.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2.(2022·天津模拟)已知扇形的周长为15 cm,圆心角为3 rad,则此扇形
将
f(x)
的
图
象
向
左
平
移
π 3
个
单
位
长
度
得
g(x) = 2sin 2x+π3-π3 =
2sin2x+π3的图象, 向右平移 φ(φ>0)个单位长度得 h(x)=2sin2x-φ-π3=2sin2x-2φ-π3 的图象,
由题意得 -2φ-π3+2kπ=π3(k∈Z), 所以 φ=kπ-π3(k∈Z),又 φ>0,故 φ 的最小值为23π.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
f(x)-g(x)=cos 2x+sin 2x= 2sin2x+π4,最小正周期为 T=22π=π, 选项 C 错误; f(x)-g(x)= 2sin2x+π4,令π2+2kπ≤2x+π4≤32π+2kπ(k∈Z), 解得π8+kπ≤x≤58π+kπ,k∈Z,当 k=0 时,π8≤x≤58π, 所以 f(x)-g(x)在(0,π)上的单调递减区间是π8,58π,选项 D 正确.
第四章 三角函数与解三角形
必刷小题7 三角函数
一、单项选择题
1.(2023·杭州模拟)设
α
是第三象限角,且cos
α2=-cos α2,则α2的终边
【新课标】2019届高考数学大一轮复习试题:第四章_三角函数题组23_含解析

题组层级快练(二十三)1.函数f(x)=(1+cos2x)sin 2x 是( ) A .周期为π的奇函数B .周期为π的偶函数C .周期为π2的奇函数D .周期为π2的偶函数答案 D解析 f(x)=(1+cos2x)sin 2x =2cos 2xsin 2x =12sin 22x =1-cos4x 4,则T =2π4=π2且为偶函数.2.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)答案 A解析 对于选项A ,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选A. 3.函数y =2sin(π6-2x)(x ∈[0,π])的增区间是( )A .[0,π3]B .[π12,7π12]C .[π3,5π6]D .[5π6,π]答案 C解析 ∵y =2sin(π6-2x)=-2sin(2x -π6),由π2+2k π≤2x -π6≤3π2+2k π,k ∈Z ,解得π3+k π≤x ≤5π6+k π,k ∈Z ,即函数的增区间为[π3+k π,5π6+k π],k ∈Z ,∴当k =0时,增区间为[π3,5π6].4.已知f(x)=sin 2x +sinxcosx ,则f(x)的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[-π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]答案 C解析 由f(x)=12sin2x +12(1-cos2x)=2sin (2x -π4)+12,得该函数的最小正周期是π.当2k π-π2≤2x-π4≤2k π+π2,k ∈Z ,即k π-π8≤x ≤k π+3π8,k ∈Z 时,函数f(x)是增函数,即函数f(x)的单调增区间是[k π-π8,k π+3π8],其中k ∈Z .由k =0得到函数f(x)的一个单调增区间是[-π8,3π8],结合各选项知,选C.5.(2016·北京朝阳区期末)已知函数f(x)=sinx +3cosx ,设a =f(π7),b =f(π6),c =f(π3),则a ,b ,c 的大小关系是( )A .a<b<cB .c<a<bC .b<a<cD .b<c<a答案 B解析 f(x)=sinx +3cosx =2sin(x +π3),因为函数f(x)在[0,π6]上单调递增,所以f(π7)<f(π6),而c =f(π3)=2sin 2π3=2sin π3=f(0)<f(π7),所以c<a<b.6.(2016·南昌大学附中)设f(x)=sin (ωx +φ),其中ω>0,则f(x)是偶函数的充要条件是( ) A .f(0)=1 B .f(0)=0 C .f ′(0)=1 D .f ′(0)=0答案 D解析 f(x)=sin (ωx +φ)是偶函数,有φ=k π+π2,k ∈Z .∴f(x)=±cos ωx.而f ′(x)=±ωsin ωx ,∴f ′(0)=0,故选D.7.(2014·天津)已知函数f(x)=3sin ωx +cos ωx (ω>0),x ∈R .在曲线y =f(x)与直线y =1的交点中,若相邻交点距离的最小值为π3,则f(x)的最小正周期为( )A.π2B.2π3 C .π D .2π 答案 C解析 f(x)=3sin ωx +cos ωx =2(sin ωx ×32+cos ωx ×12)=2sin (ωx +π6), 令f(x)=1,得sin (ωx +π6)=12.∴ωx 1+π6=π6+2k π或ωx 2+π6=5π6+2k π.∵|x 1-x 2|min =π3,∴ω(x 2-x 1)=2π3,∴ω=2,∴T =2πω=π.8.如果函数y =3cos(2x +φ)的图像关于点(4π3,0)成中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 A解析 依题意得3cos(8π3+φ)=0,8π3+φ=k π+π2,φ=k π-136π(k ∈Z ),因此|φ|的最小值是π6.9.已知函数y =sin ωx 在[-π3,π3]上是增函数,则实数ω的取值范围是( )A .[-32,0) B .[-3,0)C .(0,32] D .(0,3]答案 C解析 由于y =sinx 在[-π2,π2]上是增函数,为保证y =sin ωx 在[-π3,π3]上是增函数,所以ω>0且π3·ω≤π2,则0<ω≤32. 10.已知函数f(x)=cos(x +π4)·sinx ,则函数f(x)的图像( ) A .关于直线x =π8对称B .关于点(π8,-24)对称C .最小正周期为2πD .在区间(0,π8)上为减函数答案 A解析 化简f(x)=cos(x +π4)·sinx =(22cosx -22sinx)·sinx =24(sin2x +cos2x -1)=12sin(2x +π4)-24,则该函数图像的对称轴为直线x =π8+k π2,k ∈Z ,A 正确;其对称中心(-π8+k π2,-24),k ∈Z ,B 不正确;其最小正周期为π,C 不正确;令π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z ,D 不正确,故选A.11.若将函数f(x)=sin2x +cos2x 的图像向右平移φ个单位,所得图像关于y 轴对称,则φ的最小正值是( )A.π8B.π4C.3π8D.5π4 答案 C解析 f(x)=sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4,将其图像向右平移φ个单位得到g(x)=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8-φ=2sin ⎝⎛⎭⎫2x +π4-2φ的图像.∵g(x)=2sin ⎝⎛⎭⎫2x +π4-2φ的图像关于y 轴对称,即函数g(x)为偶函数,∴π4-2φ=k π+π2,k ∈Z ,即φ=-k π2-π8,k ∈Z . 因此当k =-1时,φ有最小正值3π8.12.(2015·东北四校模拟)已知函数f(x)=-2sin(2x +φ)(|φ|<π),若f(π8)=-2,则f(x)的一个单调递增区间可以是( )A .[-π8,3π8]B .[5π8,9π8]C .[-3π8,π8]D .[π8,5π8]答案 D解析 ∵f(π8)=-2,∴-2sin(2×π8+φ)=-2.即sin(π4+φ)=1.∵|φ|<π,∴φ=π4.∴f(x)=-2sin(2x +π4).由2k π+π2≤2x +π4≤2k π+3π2,得k π+π8≤x ≤k π+5π8(k ∈Z ).当k =0时,π8≤x ≤5π8.13.设f(x)=xsinx ,若x 1,x 2∈[-π2,π2],且f(x 1)>f(x 2),则下列结论中,必成立的是( )A .x 1>x 2B .x 1+x 2>0C .x 1<x 2D .x 12>x 22答案 D14.若y =cosx 在区间[-π,α]上为增函数,则实数α的取值范围是________. 答案 -π<α≤015.将函数y =sin (ωx +φ)(π2<φ<π)的图像,仅向右平移4π3,或仅向左平移2π3,所得到的函数图像均关于原点对称,则ω=________.答案 12解析 注意到函数的两相邻对称中心之间距离是函数周期的一半,即有T 2=23π-(-43π)=2π,T =4π,即2πω=4π,ω=12.16.已知函数f(x)=sinx +acosx 的图像的一条对称轴是x =5π3,则函数g(x)=asinx +cosx 的初相是________.答案 23π解析 f ′(x)=cosx -asinx ,∵x =5π3为函数f(x)=sinx +acosx 的一条对称轴,∴f ′(5π3)=cos 5π3-asin 5π3=0,解得a =-33.∴g(x)=-33sinx +cosx =233(-12sinx +32cosx)=233sin(x +2π3).17.已知函数f(x)=(sinx -cosx )sin2xsinx .(1)求f(x)的定义域及最小正周期; (2)求f(x)的单调递减区间.答案 (1){x ∈R |x ≠k π,k ∈Z } T =π(2)[k π+3π8,k π+7π8](k ∈Z )解析 (1)由sinx ≠0,得x ≠k π(k ∈Z ). 故f(x)的定义域为{x ∈R |x ≠k π,k ∈Z }.因为f(x)=(sinx -cosx)sin2xsinx=2cosx(sinx -cosx) =sin2x -cos2x -1=2sin(2x -π4)-1,所以f(x)的最小正周期为T =2π2=π. (2)函数y =sinx 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ).由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ).所以f(x)的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ).18.(2015·重庆理)已知函数f(x)=sin(π2-x)sinx -3cos 2x.(1)求f(x)的最小正周期和最大值;(2)讨论f(x)在[π6,2π3]上的单调性.答案 (1)T =π 2-32(2)增区间[π6,5π12],减区间[5π12,2π3]解析 (1)f(x)=sin(π2-x)sinx -3cos 2x =cosxsinx -32(1+cos2x)=12sin2x -32cos2x -32=sin(2x -π3)-32, 因此f(x)的最小正周期为π,最大值为2-32.(2)当x ∈[π6,2π3]时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f(x)单调递增,当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f(x)单调递减. 综上可知,f(x)在[π6,5π12]上单调递增;在[5π12,2π3]上单调递减.1.将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后,所得到的图像对应的函数的一个单调递增区间是( )A .(-π4,0)B .(0,π2)C .(π2,3π4)D .(3π4,π)答案 B解析 将函数f(x)=sin2x(x ∈R )的图像向右平移π4个单位后得到函数g(x)=sin2(x -π4)=-cos2x 的图像,则函数g(x)的单调递增区间为[k π,k π+π2],k ∈Z ,而满足条件的只有B.2.(2016·北京顺义一模)已知函数f(x)=cos(2x +π3)-cos2x ,其中x ∈R ,给出下列四个结论:①函数f(x)是最小正周期为π的奇函数;②函数f(x)图像的一条对称轴是直线x =2π3;③函数f(x)图像的一个对称中心为(5π12,0);④函数f(x)的单调递增区间为[k π+π6,k π+2π3],k ∈Z .其中正确的结论的个数是( )A .1B .2C .3D .4答案 C解析 由已知得,f(x)=cos(2x +π3)-cos2x =cos2xcos π3-sin2xsin π3-cos2x =-sin(2x +π6),不是奇函数,故①错.当x =2π3时,f(2π3)=-sin(4π3+π6)=1,故②正确;当x =5π12时,f(5π12)=-sin π=0,故③正确;令2k π+π2≤2x +π6≤2k π+3π2,k ∈Z ,得k π+π6≤x ≤k π+2π3,k ∈Z ,故④正确.综上,正确的结论个数为3.3.(2013·浙江理)已知函数f(x)=Aco s(ωx +φ)(A>0,ω>0,φ∈R ),则“f(x)是奇函数”是“φ=π2”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 答案 B解析 f(x)是奇函数时,φ=π2+k π(k ∈Z ); φ=π2时,f(x)=Acos (ωx +π2)=-Asin ωx 为奇函数.所以“f(x)是奇函数”是“φ=π2”的必要不充分条件,选B.4.已知函数f(x)=sin(2x +φ),其中φ为实数,若f(x)≤|f(π6)|对x ∈R 恒成立,且f(π2)>f(π),则f(x)的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z )B .[k π,k π+π2](k ∈Z )C .[k π+π6,k π+2π3](k ∈Z )D .[k π-π2,k π](k ∈Z )答案 C解析 由题意知,f(x)在x =π6处取得最大值或最小值,∴x =π6是函数f(x)的对称轴.∴2×π6+φ=π2+k π,φ=π6+k π,k ∈Z .又由f(π2)>f(π),得sin φ<0.∴φ=-56π+2k π(k ∈Z ),不妨取φ=-56π.∴f(x)=sin(2x -5π6).由2k π-π2≤2x -56π≤2k π+π2,得f(x)的单调递增区间是[k π+π6,k π+2π3](k ∈Z ).5.若函数f(x)=Msin (ωx +φ)(ω>0)在区间[a ,b]上是增函数,且f(a)=-M ,f(b)=M ,则函数g(x)=Mcos (ωx +φ)在[a ,b]上( ) A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M答案 C解析 方法一(特值法):取M =2,w =1,φ=0画图像即得答案.方法二:T =2πw ,g(x)=Mcos(wx +φ)=Msin(wx +φ+π2)=Msin[w(x +π2w)+φ],∴g(x)的图像是由f(x)的图像向左平移π2w (即T4)得到的.由b -a =T2,可知,g(x)的图像由f(x)的图像向左平移b -a 2得到的.∴得到g(x)图像如图所示.选C.6.(2015·全国Ⅰ)函数f(x)=cos (ωx +φ)的部分图像如图所示,则f(x)的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(2k π-14,2k π+34),k ∈ZC .(k -14,k +34),k ∈ZD .(2k -14,2k +34),k ∈Z答案 D解析 由题图知,函数f(x)的最小正周期T =(54-14)×2=2,所以ω=π,又(14,0)可以看作是余弦函数与平衡位置的第一个交点,所以cos(π4+φ)=0,π4+φ=π2,解得φ=π4,所以f(x)=cos(πx +π4),所以由2kπ<πx +π4<2k π+π,k ∈Z ,解得2k -14<x<2k +34,k ∈Z ,所以函数f(x)的单调递减区间为(2k -14,2k +34),k ∈Z ,选D.7.(2013·江西理)函数y =sin2x +23sin 2x 的最小正周期T 为________. 答案 π解析 y =sin2x +23sin 2x =sin2x -3cos2x +3=2sin(2x -π3)+3,所以该函数的最小正周期T =2π2=π.8.(2015·天津文)已知函数f(x)=sin ωx +cos ωx (ω>0),x ∈R .若函数f(x)在区间(-ω,ω)内单调递增,且函数y =f(x)的图像关于直线x =ω对称,则ω的值为________.答案 π2解析 f(x)=sin ωx +cos ωx =2sin (ωx +π4),因为函数f(x)的图像关于直线x =ω对称,所以f(ω)=2sin (ω2+π4)=±2,所以ω2+π4=π2+k π,k ∈Z ,即ω2=π4+k π,k ∈Z ,又函数f(x)在区间(-ω,ω)内单调递增,所以ω2+π4≤π2,即ω2≤π4,取k =0,得ω2=π4,所以ω=π2.9.(2013·安徽理)已知函数f(x)=4cos ωx ·sin (ωx +π4)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,π2]上的单调性.答案 (1)1 (2)单调递增区间为[0,π8],单调递减区间为[π8,π2]解析 (1)f(x)=4cos ωx ·sin (ωx +π4)=22sin ωx ·cos ωx +22cos 2ωx =2(sin2ωx +cos2ωx)+2=2sin (2ωx +π4)+ 2.因为f(x)的最小正周期为π,且ω>0,从而有2π2ω=π,故ω=1.(2)由(1)知,f(x)=2sin(2x +π4)+ 2.若0≤x ≤π2,则π4≤2x +π4≤5π4.当π4≤2x +π4≤π2,即0≤x ≤π8时,f(x)单调递增; 当π2≤2x +π4≤5π4,即π8≤x ≤π2时,f(x)单调递减.综上可知,f(x)在区间[0,π8]上单调递增,在区间[π8,π2]上单调递减.10.(2015·安徽文)已知函数f(x)=(sinx +cosx)2+cos2x. (1)求f(x)的最小正周期; (2)求f(x)在区间[0,π2]上的最大值和最小值.解析 (1)因为f(x)=sin 2x +cos 2x +2sinxcosx +cos2x =1+sin2x +cos2x =2sin(2x +π4)+1, 所以函数f(x)的最小正周期T =2π2=π.(2)由(1)知,f(x)=2sin(2x +π4)+1.当x ∈[0,π2]时,2x +π4∈[π4,5π4],由正弦函数y =sinx 在[π4,5π4]上的图像知,当2x +π4=π2,即x =π8时,f(x)取最大值2+1;当2x +π4=5π4,即x =π2时,f(x)取最小值0.综上,f(x)在[0,π2]上的最大值为2+1,最小值为0.。
高考数学一轮复习 第四章 三角函数、解三角形 4.4 函

1 23 45
解析答案
返回
题型分类 深度剖析
题型一 函数y=Asin(ωx+φ)的图象及变换
例 1 已知函数 y=2sin2x+π3. (1)求它的振幅、周期、初相; 解 y=2sin2x+π3的振幅 A=2, 周期 T=22π=π,初相 φ=π3.
y=Asin(ωx+φ) 0
A
0
3π
_2__
_2_π_
-A
0
答案
3.函数y=sin x的图象经变换得到y=Asin(ωx+φ)(A>0,ω>0)的图象 的步骤如下:
|φ|
| |
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)利用图象变换作图时“先平移,后伸缩”与“先伸缩,后平移”中平移 的长度一致.( × ) (2)y=sinx-π4的图象是由 y=sinx+4π的图象向右平移2π个单位得到 的.( √ ) (3)由图象求解析式时,振幅A的大小是由一个周期内的图象中的最高 点的值与最低点的值确定的.( √ )
解析答案
题型二 由图象确定y=Asin(ωx+φ)的解析式
例 2 (1)已知函数 y=Asin(ωx+φ) (A>0,ω>0,|φ|<π2)的图象上一个最 高点的坐标为(2, 2),由这个最高点到其右侧相邻最低点间的图象与 x 轴交于点(6,0),则此函数的解析式为 y= 2sinπ8x+π4 . 解析 由题意得 A= 2,T4=6-2,所以 T=16,ω=2Tπ=π8. 又 sinπ8×2+φ=1,所以π4+φ=π2+2kπ (k∈Z). 又因为|φ|<2π,所以 φ=π4.
高考数学一轮复习 第四章 三角函数 4.1 三角函数的概念、同角三角函数的关系及诱导公式课件 文

∴sin
α= 13 ,则sin α
9
2
=-cos
α= 1
sin2α
= 2 2 3
.
(2)由 sin
α
cos
α
1 5
,
sin2α cos2α 1,
消去cos α整理,得
25sin2α-5sin α-12=0,
解得sin α= 4 或sin α=- 3 .
高考文数
第四章 三角函数
§4.1 三角函数的概念、同角三角函数的关系及诱导公式
知识清单
考点 三角函数的概念、同角三角函数的基本关系及诱导公式 1.象限角
2.终边相同的角
3.弧度制 (1)角度制与弧度制的互化
1°=① 180
180
rad;1 rad=② ° .
(2)弧长及扇形面积公式 弧长公式:③ l=|α|r .
例1 已知角θ的顶点与坐标原点重合,始边与x轴的非负半轴重合,终边
在直线y=2x上,则cos 2θ= ( B )
A.- 4 B.- 3 C. 2 D. 3
5
5
3
4
解题导引
方法一:在角θ的终边上任取一点P,根据直线方程
设出点P的坐标 根据三角函数定义分别
求出sin θ与cos θ 利用二倍角公式求出cos 2θ
5
5
-
2
5 5
=- 3 .
5
综上可得,cos 2θ=- 3 ,故选B.
5
解法二:因为该直线的斜率k=2=tan θ,
所以cos
2θ= ccooss22θθ
高考数学大一轮复习第四章三角函数解三角形第3讲两角和与差的正弦余弦和正切公式

(教材习题改编)已知
cos
α=-35,α
是第三象限角,则
π cos(4
+α)为( )
A.
2 10
C.7102
B.-
2 10
D.-7102
解析:选 A.因为 cos α=-35,α 是第三象限的角, 所以 sin α=- 1-cos2α=- 1-(-35)2=-45, 所以 cos(π4+α)=cos π4cos α-sin π4sin α= 22·(-35)- 22·(-45) = 102.
又 sin2α+cos2α=1,所以 sin α=255,cos α= 55,则 cosα-π4
=cos αcos π4+sin αsin π4= 55× 22+255× 22=31010.
答案:3
10 10
三角函数公式的直接应用
(1)已知 α∈π2,π,sin α=153,则 tanα+π4=(
2.若 α+β=34π,则(1-tan α)(1-tan β)的值是________. 解析:-1=tan34π=tan(α+β)=1t-antaαn+αttaannββ, 所以 tan αtan β-1=tan α+tan β. 所以 1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:2
三角函数公式的活用 (高频考点) 三角函数公式的活用是高考的热点,高考多以选择题或填空题 的形式出现,研究三角函数的性质和解三角形常应用三角函数 公式.主要命题角度有: (1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.
角度一 两角和与差公式的逆用及变形应用
(1)已知 sin α+cos α=13,则 sin2(π4-α)=(
数学一轮复习第四章三角函数解三角形4.2同角三角函数的基本关系及诱导公式学案理

4。
2同角三角函数的基本关系及诱导公式必备知识预案自诊知识梳理1。
同角三角函数的基本关系(1)平方关系:sin2α+cos2α=。
(2)商数关系:sinαcosα=(α≠π2+kπ,k∈Z)。
2.三角函数的诱导公式公式一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sin α余弦cos α正切tan α续表公式一二三四五六口诀函数名不变,符号看象限函数名改变,符号看象限1。
特殊角的三角函数值2.同角三角函数基本关系式的常用变形(1)(sin α±cos α)2=1±2sin αcos α;(2)sin α=tan αcos αα≠π2+kπ,k∈Z;(3)sin2α=sin2αsin2α+cos2α=tan2αtan2α+1;(4)cos 2α=cos 2αsin 2α+cos 2α=1tan 2α+1。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)对任意的角α,β有sin 2α+cos 2β=1。
( ) (2)若α∈R ,则tan α=sinαcosα恒成立.( )(3)sin (π+α)=-sin α成立的条件是α为锐角。
( )(4)若cos(n π—θ)=13(n ∈Z ),则cos θ=13.( )2。
(2020河北衡水中学模拟一,理3)已知cos α-π2=-2√55,α∈π,3π2,则tan α=( )A 。
2B 。
32C.1D.123。
(2020河北唐山模拟,理4)已知角α的顶点在原点,始边与x 轴的正半轴重合,终边上一点A (2sin α,3)(sin α≠0),则cos α=( )A.12B 。
-12C 。
√32D.-√324。
函数f (x )=15sin x+π3+cos x —π6的最大值为( ) A.65B.1C.35D.15关键能力学案突破考点同角三角函数基本关系式的应用【例1】(1)若tan(α-π)=12,则sin 2α+1cos 2α-sin 2α=( )A。
2020版高考数学大一轮复习第4章三角函数、解三角形第1讲三角函数的基本概念、同角三角函数的基本关系与诱导

理科数学 第
理科数学 第
理科数学 第
理科数学 第
理科数学 第
理科数学 第
理科数学 第
理科数学 第
技巧点拨 1.已知角求值问题,关键是利用诱导公式把任意角的三角函 角的三角函数值进行求解.转化过程中注意口诀“奇变偶不 的应用. 2.对给定的式子进行化简或求值时,要注意给定的角之间存 充分利用给定的式子,结合诱导公式将角进行转化.
在终边上任取一个异于原点的点时应分两种情况,进而用三
求解.若直线的倾斜角为特殊角,也可直接写出角α的值,再求
(3)若角α终边上的点的坐标中含参数,要讨论参数的各种情
数值的符号.判断三角函数值的符号或根据三角函数值的符
般利用三角函数在各象限内的符号规律进行求解.
理科数学 第
考法2 利用同角三角函数的基本系和诱导公式化简求值
理科数学 第
理科数学 第
理科数学 第
理科数学 第
C方法帮•素养大提升
方法 分类讨论思想在三角函数 应用
方法 分类讨论思想在三角函数求值化简中的应用
理科数学 第
理科数学 第
素养提升 (1)本题在三角函数的化简求值过程中,体现了分类讨论思想 种情况不符合题意,也不能省略讨论的步骤,提升数学思维的 (2)三角形中的三角函数问题,要注意隐含条件的挖掘以及三 理的应用.
C方法帮•素养大提升 方法 分类讨论思想在三角函数化简求值中的应用
理科数学 第
考情精解读
命题规律 聚焦核心素养
命题规律 考点内容
考纲要求
考题取样
1.任意角的三角函数
理解
2017北京,T12
2.同角三角函数的基 本关系
3.诱导公式
理解
2016全国Ⅲ,T5
2017版大一轮复习题组训练第四章三角函数题组19 含解析

题组层级快练(十九)1.下列各数中与sin2 016°的值最接近的是( ) A.12 B.32C .-12D .-32答案 C解析 2 016°=5×360°+180°+36°, ∴sin2 016°=-sin36°和-sin30°接近,选C. 2.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .2 答案 D3.tan(5π+α)=m ,则sin (α-3π)+cos (π-α)sin (-α)-cos (π+a )的值为( )A.m +1m -1B.m -1m +1 C .-1 D .1 答案 A解析 由tan(5π+α)=m ,∴tan α=m 原式=-sin α-cos α-sin α+cos α=sin α+cos αsin α-cos α=m +1m -1∴选A.4.1+2sin (π-3)cos (π+3)化简的结果是( ) A .sin3-cos3 B .cos3-sin3 C .±(sin3-cos3) D .以上都不对 答案 A解析 sin(π-3)=sin3,cos(π+3)=-cos3, ∴1-2sin3·cos3=(sin3-cos3)2=|sin3-cos3|. ∵π2<3<π,∴sin3>0,cos3<0. ∴原式=sin3-cos3,选A. 5.化简cos α1-sin α1+sin α+sin α1-cos α1+cos α(π<α<3π2)得( )A .sin α+cos α-2B .2-sin α-cos αC .sin α-cos αD .cos α-sin α解析 原式=cos α(1-sin α)2cos 2α+sin α(1-cos α)2sin 2α,∵π<α<32π,∴cos α<0,sin α<0.∴原式=-(1-sin α)-(1-cos α)=sin α+cos α-2. 6.记cos(-80°)=k ,那么tan100°=( ) A.1-k 2kB .-1-k 2kC.k1-k 2D .-k1-k 2答案 B解析 cos(-80°)=cos80°=k ,sin80°=1-k 2,tan80°=1-k 2k,tan100°=-tan80°=-1-k 2k.7.已知A =sin (k π+α)sin α+cos (k π+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}答案 C解析 当k 为偶数时,A =sin αsin α+cos αcos α=2; 当k 为奇数时,A =-sin αsin α-cos αcos α=-2.8.(tanx +1tanx)cos 2x =( ) A .tanx B .sinx C .cosx D.1tanx答案 D解析 (tanx +1tanx )cos 2x =sin 2x +cos 2x sinxcosx ·cos 2x =cosx sinx =1tanx.9.若A 为△ABC 的内角,且sin2A =-35,则cos(A +π4)等于( )A.255B .-255C.55D .-55解析 cos 2(A +π4)=[22(cosA -sinA)]2=12(1-sin2A)=45.又cosA<0,sinA>0,∴cosA -sinA<0. ∴cos(A +π4)=-255.10.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23 D .-2答案 A解析 由3sin α=-cos α,得tan α=-13.1cos 2α+sin2α=cos 2α+sin 2αcos 2α+2sin αcos α=1+tan 2α1+2tan α=1+191-23=103. 11.已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( ) A .-43B.54 C .-34D.45答案 D解析 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ=tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45.12.(2016·山东师大附中月考)若cos(π6-α)=m(|m|≤1),则sin(23π-α)的值为( )A .-mB .-m 2C.m2 D .m答案 D解析 sin(2π3-α)=sin(π2+π6-α)=cos(π6-α)=m ,选D.13.(2016·衡水调研卷)已知A 为锐角,lg(1+cosA)=m ,lg11-cosA =n ,则lgsinA 的值为( )A .m +1nB.12(m -n) C.12(m +1n ) D.12(m -1n) 答案 B解析 lg(1+cosA)=m ,lg(1-cosA)=-n ∴lg(1-cos 2A)=m -n ∴lgsin 2A =m -n ∴lgsinA =12(m -n)选B.14.已知sin θ=55,则sin 4θ-cos 4θ的值为________. 答案 -35解析 由sin θ=55,可得cos 2θ=1-sin 2θ=45,所以sin 4θ-cos 4θ=(sin 2θ+cos 2θ)(sin 2θ-cos 2θ)=sin 2θ-cos 2θ=15-45=-35.15.化简sin 6α+cos 6α+3sin 2αcos 2α的结果是________. 答案 1解析 sin 6α+cos 6α+3sin 2αcos 2α=(sin 2α+cos 2α)(sin 4α-sin 2αcos 2α+cos 4α)+3sin 2αcos 2α=sin 4α+2sin 2αcos 2α+cos 4α=(sin 2α+cos 2α)2=1. 16.化简1-2sin40°·cos40°cos40°-1-sin 250°为________.答案 117.若tan α+1tan α=3,则sin αcos α=________,tan 2α+1tan 2α=________.答案 13,7解析 ∵tan α+1tan α=3,∴sin αcos α+cos αsin α=3.即sin 2α+cos 2αsin αcos α=3.∴sin αcos α=13.又tan 2α+1tan 2α=(tan α+1tan α)2-2tan α1tan α=9-2=7. 18.(2016·浙江嘉兴联考)已知α为钝角,sin(π4+α)=34,则sin(π4-α)=________,cos (α-π4)=________. 答案 -74,34解析 sin(π4-α)=cos[π2-(π4-α)]=cos(π4+α),∵α为钝角,∴34π<π4+α<54π.∴cos(π4+α)<0.∴cos(π4+α)=-1-(34)2=-74.cos (α-π4)=sin[π2+(α-π4)]=sin(π4+α)=34.19.已知0<α<π2,若cos α-sin α=-55,试求2sin αcos α-cos α+11-tan α的值.答案55-95解析 ∵cos α-sin α=-55,∴1-2sin αcos α=15. ∴2sin αcos α=45.∴(sin α+cos α)2=1+2sin αcos α=1+45=95.∵0<α<π2,∴sin α+cos α=35 5.与cos α-sin α=-55联立,解得 cos α=55,sin α=255.∴tan α=2. ∴2sin αcos α-cos α+11-tan α=45-55+11-2=55-95.1.若tan α=3,则sin2αcos 2α的值等于( )A .2B .3C .4D .6答案 D 解析sin2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6,故选D.2.已知cosA +sinA =-713,A 为第四象限角,则tan α等于( )A.125B.512 C .-125D .-512答案 C解析 ∵cosA +sinA =-713,①∴(cosA +sinA)2=(-713)2,∴2cosA ·sinA =-120169.∴(cosA -sinA)2=(cosA +sinA)2-4cosAsinA. ∵A 为第四象限角,∴cosA -sinA =1713.②∴联立①②,∴cosA =513,sinA =-1213.∴tanA =sinA cosA =-125,选C.3.已知sin(π4+α)=32,则sin(3π4-α)的值为________.答案32解析 sin(3π4-α)=sin[π-(π4+α)]=sin(π4+α)=32.4.若α∈(0,π2),且sin 2α+cos2α=14,则tan α的值等于________.答案3解析 由二倍角公式可得sin 2α+1-2sin 2α=14,即-sin 2α=-34,sin 2α=34.又因为α∈(0,π2),所以sin α=32,即α=π3,所以tan α=tan π3= 3. 5.已知-π2<α<0,且函数f(α)=cos(3π2+α)-sin α·1+cos α1-cos α-1.(1)化简f(α);(2)若f(α)=15,求sin α·cos α和sin α-cos α的值.答案 (1)f(α)=sin α+cos α (2)-1225,-75解析 (1)f(α)=sin α-sin α·(1+cos α)21-cos 2α-1=sin α+sin α·1+cos αsin α-1=sin α+cos α.(2)方法一:由f(α)=sin α+cos α=15,平方可得sin 2α+2sin α·cos α+cos 2α=125,即2sinα·cos α=-2425.∴sin α·cos α=-1225.∵(sin α-cos α)2=1-2sin α·cos α=4925,又-π2<α<0,∴sin α<0,cos α>0,∴sin α-cos α<0,∴sin α-cos α=-75.方法二:联立方程⎩⎪⎨⎪⎧sin α+cos α=15,sin 2α+cos 2α=1,解得⎩⎨⎧sin α=-35,cos α=45或⎩⎨⎧sin α=45,cos α=-35.∵-π2<α<0,∴⎩⎨⎧sin α=-35,cos α=45.∴sin α·cos α=-1225,sin α-cos α=-75.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 3
.
∴ cos 2α (1 - sin 2β ) - (1 - cos2α )sin
2β=
1 .
3
∴ cos 2α- sin
2β=
1 3.
17.(2015 ·广东文 ) 已知 tan α= 2.
(1)
求
tan
(
α+
π 4)
的值;
sin2 α (2) 求 sin2 α+ sin αcosα- cos2α- 1的值.
=
2×
5=
. 5
16.已知
1 cos ( α+β)cos ( α-β ) = 3,则
cos2α- sin 2β= ________.
1 答案 3
解析
∵(cos αcos β- sin
α sin
β )(cos
α cosβ+ sin α sin
β
)
=
1 ,∴
cos
2α
cos
2β-
sin
2
3
α sin
2β=
4-2cos210° = 2-cos210° = 2.
π
33
5π
15.(2015 ·东北三校模拟 ) 若 cos ( α+ 6 ) -sin α= 5 ,则 sin ( α+ 6 ) = ________.
3 答案
5
π
33
解析 ∵ cos ( α+ 6 ) - sin α= 5 ,
3
1
33
∴ cos α- sin α- sin α= .
n 5
π=
π
=
π=
π
π
sin (α- 5 )
sin (α- 5 )
sin (α- 5 ) sin αco s 5 -cosαsi n 5
π
sin
5π
π
sin α π
π
cosα cos 5 + sin 5
2· cos πcos 5 + sin 5 5
π 3sin 5
= sin α π
π=
π
= π = 3,故选 C.
C. 1 答案 A
D. 2
解析 (tan10 °- 3) · sin40 °
(2) 求 cos β的值.
10
9 10
答案 (1) - 10 (2) 50
π 解析 (1) ∵α,β∈ (0 , 2 ) ,
π
π
从而- 2 <α-β< 2 .
1 又∵ tan ( α-β ) =- 3<0,
π ∴- 2 <α-β <0.
10 ∴ sin ( α-β ) =- .
10
3 10
(2) 由 (1) 可得, cos ( α-β ) =
答案 (1) - 3 (2) 1
解析
π
π t anα+ tan 4
2+ 1
(1)tan ( α+ 4 ) =
π = 1-2×1=- 3.
1-tan αta n 4
sin2 α (2)
sin2 α+ sin αcosα- cos2α- 1
2sin αcosα = sin2 α+ sin αcosα-( 2cos2α- 1)- 1
. 10
3
4
∵α为锐角,且 sin α= 5,∴ cos α= 5.
∴ cos β= cos [ α- ( α-β )]
= cos αcos ( α-β ) + sin α sin ( α-β)
4 3 10 3
10
= 5× 10 + 5×( - 10 )
9 10
=
.
50
1
1
1.(2015 ·重庆文 ) 若 tan α= , tan ( α+β ) = ,则 tan β= (
1
3
14.求值: (1)
-
= ________;
sin10 ° sin80 °
3-sin70 ° (2) 2-cos210° = ________.
答案 (1)4 (2)2
cos10°- 3sin10 ° 解析 (1) 原式= sin10 °cos10°
1
3
2( 2cos10°- 2 sin10 °)
题组层级快练 ( 十九 )
1.(2015 ·新课标全国Ⅰ) sin20 ° cos10 °- cos160 °sin10 °= (
)
3 A.-
2
3 B.
2
1
1
C.- 2
D. 2
答案 D 1
解析 原式= sin20 ° cos10 °+ cos20 ° sin10 °= sin(20 °+ 10° ) =2.
π
43
7π
8.已知 cos ( α- 6 ) + sin α= 5 ,则 sin ( α+ 6 ) 的值为 (
)
1
3
A. 2
B. 2
4 C.-
5
1 D.-
2
答案 C
π
3
3
43
解析 ∵ cos ( α- ) + sin α= cos α+ sin α= ,
6
2
2
5
1
3
4
∴ 2cos α+ 2 sin α= 5.
2sin αcosα =
sin2 α+ sin αcosα- 2cos2α
2tan α = tan2 α+ tan α- 2
2×2 = 22+ 2- 2= 1.
18.已知
α,β∈
(0
,
π )
2
,且
sin
3 α= 5, tan ( α-β ) =-
1 .
3
(1) 求 sin ( α-β ) 的值.
- 6 - / 11
sin47 °- sin17 °cos30°
2.(2014 ·重庆文 )
cos17°
=( )
3 A.-
2
1 B.-
2
1
3
C.
D.
2
2
答案 C
解析 sin47 °= sin(30 °+ 17° ) =sin30 °cos17 °+ cos30 °sin17 °,
sin30 °cos17°
1
∴原式=
cos17°
2
2
5
3
3
33
6
即 2 cos α- 2sin α= 5 ,得 cosα- 3sin α= 5.
- 5 - / 11
5π
5π
5π
3
1
1
∴ sin ( α+ 6 ) = sin α cos 6 +cos α sin 6 =- 2 sin α+ 2cos α= 2(cos α- 3sin α )
1 63
β,即 cos α (cos β+ sin β ) = sin α (cos β+ sin β) ,因为 β 为锐角,所以 cosβ+ sin β
≠ 0,所以 cos α= sin α,所以 tan α= 1.
5
10
π
10.(2016 ·成都一诊 ) 若 sin2 α= 5 , sin ( β-α ) = 10 ,且 α∈[4 ,π ] ,β∈ [ π,
7π
π
∴ sin( α+
6
) =- sin
( α+
) 6
3
1
4
=- ( 2 sin α+ 2cos α ) =- 5.
9.(2016 ·太原模拟 ) 设 α,β均为锐角,且 cos ( α+β ) = sin ( α-β ) ,则 tan α的值为
()
A. 2
B. 3
C. 1
2 D.
2
答案 C
解析 由 cos ( α+β ) = sin ( α-β ) 得 cos αcos β- sin α sin β= sin α cos β- cosα sin
5.在△ ABC 中, tanA + tanB + 3= 3tanAtanB ,则 C 等于 ( )
π A.
3
2π B.
3
π C.
6
π D.
4
答案 A
解析 由已知得 tanA + tanB =- 3(1 - tanAtanB) , tanA +tanB
∴ 1- tanAtanB =- 3 ,即 tan(A + B) =- 3.
3 10 =- 10 ,∴ cos ( α+β ) = cos [2 α+ ( β-α )] = cos2 α cos( β-α ) - sin2 α sin ( β-α)
25
3 10
5 10 2
5π
7π
=- 5 × ( - 10 ) - 5 × 10 = 2 ,且 α+β∈[ 4 , 2π ] ,故α+β= 4 .
cosα cos 5 - sin 5
sin 5π
sin
π
5
2·
cos π
5
- sin
5
cos 5
π1 12.(2013 ·新课标全国Ⅱ理 ) 设 θ 为第二象限角,若 tan ( θ+ 4 ) = 2,则 sin θ+ cos θ= ________.
10 答案 - 5
π 1+tan θ 1
1
1
解析 由 tan ( θ+ 4 ) = 1-tan θ =2,得 tan θ=- 3,即 sin θ=- 3cos θ.
3π
π
cos (α- 10 )
11.(2015 ·重庆理 ) 若 tan α= 2tan 5 ,则
π =(
)
sin (α- 5 )
A. 1
B. 2
C. 3
D. 4
答案 C