中考数学总复习第二轮中考题型专题专题复习二规律与猜想试

合集下载

中考数学总复习第二轮中考题型专题专题复习二规律与猜想试题及答案

中考数学总复习第二轮中考题型专题专题复习二规律与猜想试题及答案

专题复习(二) 规律与猜想1.(2016·娄底)“数学是将科学现象升华到本质认识的重要工具”.比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示(A)A.C n H2n+2 B.C n H2nC.C n H2n-n D.C n H n+32.(2016·邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B)A.y=2n+1 B.y=2n+nC.y=2n+1+n D.y=2n+n+13.(2016·凉山)观察图中正方形四个顶点所标的数字规律,可知,数2 016应标在(D)第1个正方形第2个正方形第3个正方形第4个正方形A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角4.(2016·宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.①②③5.(2016·南宁)观察下列等式:第一层1+2=3第二层4+5+6=7+8第三层9+10+11+12=13+14+15第四层16+17+18+19+20=21+22+23+24……在上述的数字宝塔中,从上往下数,2 016在第44层.6.(2016·菏泽)如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=-1.7.(2016·泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为2n+1-2.8.(2016·威海)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2 016的纵坐标为-(3)2_015.9.(2016·安徽)(1)观察下列图形与等式的关系,并填空:(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含n的代数式填空:1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=2n2+2n+1.提示:根据连续奇数的排列规律,第n行是2n-1,那么第n+1行是2n+1,第一个空填2n+1.又1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=[1+3+5+…+(2n-1)]+(2n+1)+[(2n-1)+…+5+3+1]=n2+(2n+1)+n2=2n2+2n+1.10.(2016·江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2节套管长46 cm,依此类推,每一节套管均比前一节套管少4 cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.解:(1)第5节套管的长度为34 cm.(2)解法一:50×10-4×(1+2+…+9)-9x =311,解得x =1.解法二:50+(46-x)+(42-x)+(38-x)+(34-x)+(30-x)+(26-x)+(22-x)+(18-x)+(14-x)=311,解得x =1.解法三:x =(50+46+…+18+14)-3119=320-3119=1.。

中考数学二轮专题复习 专题03 归纳猜想问题

中考数学二轮专题复习 专题03 归纳猜想问题

专题三归纳猜想问题1.观察图中正方形四个顶点所标的数字规律,可知数2 013应标在( )A.第503个正方形的左下角B.第503个正方形的右下角C.第504个正方形的左上角D.第504个正方形的右下角解析通过观察发现:正方形的左下角是4的倍数,左上角是4的倍数余3,右下角是4的倍数余1,右上角是4的倍数余2.∵2 013÷4=503…1,∴数2013应标在第504个正方形的右下角.故选D.答案 D2.已知世运会、亚运会、奥运会分别于公元2009年、2010年、2012年举办、若这三项运动会均每四年举办一次,则这三项运动会均不在下列哪一年举办?( )A.公元2070年B.公元2071年C.公元2072年D.公元2073年解析因A.2 070-2 009=61,2 070-2 010=60,2 070-2 012=58,其中60是4的倍数,所以亚运会能在2070年举办,则世运会在2069年.奥运会在2072年举办.B.2 071-2 009=62,2 071-2 010=61,2 071-2 012=59,均不是4的倍数,所以,这三项运动会均不在2071年举办.C.2 072-2 009=63,2 072-2 010=62,2 072-2 012=60,60是4的倍数,所以奥运会能在2072年举办,则世运会在2069年.亚运会在2070年举办.D.2 073-2 009=64,2 073-2 010=63,2 073-2 012=61,64是4的倍数,所以世运会能在2073年举办,则亚运会在2074年.奥运会在2076年举办.故选:B.答案 B3.观察下列算式:21=2,22=4,23=8,24=16,….根据上述算式中的规律,请你猜想210的末尾数字是( )A.2 B.4 C.8 D.6解析∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴210的末位数字是4.故选B.答案 B4.(2011·潜江)如图,已知直线l:y=33x,过点A(0,1)作y轴的垂线交直线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…;按此作法继续下去,则点A4的坐标为( )A.(0,64) B.(0,128)C.(0,256) D.(0,512)解析易求A(0,1),A1(0,4),A2(0,16)……,而2°=1,22=4,24=16……,所以28=256,点A4的坐标为(0,256).答案 C5.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A.(4,0) B.(5,0)C.(0,5) D.(5,5)解析质点运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒,2秒,3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时质点所在位置的坐标是(5,0).故选B.答案 B6.图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),…,则第n个图形的周长是( )A.2n B.4nC.2n+1D.2n+2解析下面是各图的周长:图1中周长为4;图2周长为8;图3周长为16;所以第n 个图形周长为2n +1.故选C.答案 C7.如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n 个矩形的面积为________.分析 易得第二个矩形的面积为⎝ ⎛⎭⎪⎫122,第三个矩形的面积为⎝ ⎛⎭⎪⎫124,依次类推,第n 个矩形的面积为⎝ ⎛⎭⎪⎫122n -2.解 已知第一个矩形的面积为1;第二个矩形的面积为原来的⎝ ⎛⎭⎪⎫122×2-2=14; 第三个矩形的面积是⎝ ⎛⎭⎪⎫122×3-2=116;…故第n 个矩形的面积为:⎝ ⎛⎭⎪⎫122n -2.答案 ⎝ ⎛⎭⎪⎫122n -28.下面是按一定规律排列的一列数:23,-45,87,-169,…那么第n 个数是________.解析 ∵n =1时,分子:2=(-1)2·21,分母:3=2×1+1;n =2时,分子:-4=(-1)3·22,分母:5=2×2+1; n =3时,分子:8=(-1)4·23,分母:7=2×3+1; n =4时,分子:-16=(-1)5·24,分母:9=2×4+1;…,∴第n 个数为:(-1)n +1·2n2n +1. 答案 (-1)n +1·2n 2n +19.观察下列算式: ①1×3-22=3-4=-1 ②2×4-32=8-9=-1 ③3×5-42=15-16=-1 ④__________________ …(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.分析 (1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式; (2)将(1)中,发现的规律,由特殊到一般,得出结论; (3)一定成立.利用整式的混合运算方法加以证明. 解 (1)第4个算式为:4×6-52=24-25=-1; (2)答案不唯一.如n (n +2)-(n +1)2=-1; (3)一定成立.理由:n (n +2)-(n +1)2=n 2+2n -(n 2+2n +1). =n 2+2n -n 2-2n -1=-1. 故n (n +2)-(n +1)2=-1成立.10.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a +b )n(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a +b )2=a2+2ab +b 3展开式中的系数;第四行的四个数1,3,3,1, 恰好对应着()a +b 3=a 3+3a 2b +3ab 2+b 2展开式中的系数等等.(1)根据上面的规律,写出(a +b )5的展开式.(2)利用上面的规律计算:25-5×24+10×23-10×22+5×2-1.分析 (1)由(a +b )=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3可得(a +b )n的各项展开式的系数除首尾两项都是1外,其余各项系数都等于(a +b )n -1的相邻两个系数的和,由此可得(a +b )4的各项系数依次为1、4、6、4、1;因此(a +b )5的各项系数依次为1、5、10、10、5、1.(2)将25-5×24+10×23-10×22+5×2-1写成“杨辉三角”的展开式形式,逆推可得结果.解 (1) (a +b )5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5(2)原式=25+5×24×(-1)+10×23×(-1)2+10×22×(-1)3+5×2×(-1)4+(-1)5= (2-1)5=1.11.(2012·广东佛山)规律是数学研究的重要内容之一.初中数学中研究的规律主要有一些特定的规则、符号(数)及其运算规律、图形的数值特征和位置关系特征等方面. 请你解决以下与数的表示和运算相关的问题: (1)写出奇数a 用整数n 表示的式子;(2)写出有理数b 用整数m 和整数n 表示的式子;(3)函数的研究中,应关注y 随x 变化而变化的数值规律(课本里研究函数图象的特征实际上也是为了说明函数的数值规律).下面对函数y =x 2的某种数值变化规律进行初步研究:x i 0 1 2 3 4 5 … y i 0 1 4 9 16 25 … y i +1-y i1357911…由表看出,当x 的取值从0开始每增加1个单位时,y 的值依次增加1,3,5… 请回答:当x 的 取值从0开始每增加12个单位时,y 的值变化规律是什么?当x 的取值从0开始每增加1n个单位时,y 的值变化规律是什么?分析 (1)n 是任意整数,偶数是能被2整除的数,则偶数可以表示为2n ,因为偶数与奇数相差1,所以奇数可以表示为2n +1或2n -1.(2)根据有理数是整数与分数的统称,而所有的整数都可以写成分数的形式,据此可以得到答案. (3)根据图表计算出相应的数值后即可看出y 随着x 的变化而变化的规律. 解 (1)n 是任意整数,则表示任意一个奇数的式子是:2n +1或2n -1; (2)有理数b =mn(n ≠0); (3)①当x =0时,y =0,当x =12时,y =14,当x =1时,y =1,当x =32时,y =94,故当x 的取值从0开始每增加12个单位时,y 的值依次增加14、34、54…②当x =0时y =0,当x =1n 时,y =1n2,当x =2n 时,y =4n 2,当x =3n 时,y =9n2,故当x 的取值从0开始每增加1n 个单位时,y 的值依次增加1n 2、3n 2、5n2…。

中考总复习数学02- 第二部分 专题二 规律性问题

中考总复习数学02- 第二部分 专题二 规律性问题

3
4
专题二 规律性问题—点坐标变换规律 类型三 点坐标变换规律
题型讲解
返回类型清单
点坐标变换型的题目主要考查了点的坐标规律,这类题目一般是点的坐 标在平面直角坐标系中递推变化或周期性变化.通过观察和归纳,从所给 的数据和图形中寻求规律是解答本类问题的关键.
例题 3
5
6
专题二 规律性问题—点坐标变换规律
返回类型清单
(2)若第n个图案共有基础图形2 023个,则n的值是多少? 解:当1+3n=2 023时, 解得n=674, ∴n的值为674.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
4.某矩形人行道由相同的灰色正方形地砖与相同的白色等腰直角三 角形地砖排列而成,图1表示此人行道的地砖排列方式,其中正方形 地砖为连续排列. 当正方形地砖只有1块时,等腰直角三角形地砖有6块(如图2 ); 当正方形地砖有2块时,等腰直角三角形地砖有8块(如图3 ),以此 类推.
排列,探究图形所反映的规律;另外一种是图形的变换规律,即根据一组
相关图案的变化,从中归纳图形的变换所反映的规律.在中考中以图形为
载体的数字规律最为常见.
例题 2
3
4
专题二 规律性问题—图形规律
返回类型清单
方法点拨 数形规律题的解题关键是通过观察图形发现数量关系,并用代数式归纳 出规律,再进行验证,进而解决问题;图形变换规律题的解题关键是抓住 图形的变化特征,找出规律,进而解决问题.
例题 1
1
2
专题二 规律性问题—竖式规律 例题1
返回类型清单
( 2022·河北模拟)观察 1×49=49,2×48=96,3×47=141,…,23×27=621,24×26=624,25×25= 625,26×24=624,27×23=621,…,47×3=141,28×2=96,49×1=49.

2022年中考数学总复习专题2规律探索与猜想

2022年中考数学总复习专题2规律探索与猜想

2022年中考数学总复习专题2规律探索与猜想专题二规律探索与猜想年份2022考点题号分值难易度16题利用等边三角形判定找选择题、填空16题中等题、规律,19题利16、192+4=6题19题较难题用三角形的外角性质找规律利用等腰三角填空题形的外角性质203较难题找规律此专题内容比较难,在中考中一般在选择题、填空题的最后一题出现,并且命题范围广,代数、几何均可,解题能力重在平时培养,2022年中考没有出现,预测2022年出题的可能性略小.题型未考查20222022命题规律解题策略此专题多用数形结合法,通过题目中给出的图形总结规律,用代数量化出结果.此专题有一定的难度.,重难点突破)数式规律1235813【例1】(安徽中考)按一定规律排列的一列数:2,2,2,2,2,2,,若某,y,z表示这列数中的连续三个数,猜想某,y,z满足的关系式是________.【解析】首项判断出这列数中,2的指数各项依次为1,2,3,5,8,13,,从第三个数起,每个数都是前两数之和;然后根据同底数的幂相乘,底数不变,指数相加,可得这列数中的连续三个数满足的规律.【答案】某y=z234561.(临沂中考)观察下列关于某的单项式,探究其规律:某,3某,5某,7某,9某,11某,,按照上述规律,第2016个单项式是(D)A.2015某2015B.4029某2014C.4029某2015D.4031某2016 2.(张家口一模)任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[3]=1,现对72进行如下操作:72→[72]=8→[8]=2→[2]=1,这样对72只需要进行3次操作后变为1,类似地,对数字900进行了n次操作后变为1,那么n的值为(B)A.3B.4C.5D.63.(廊坊一模)一组数1,1,2,某,5,y,,满足“从第三个数起,每个数都等于它前面的两个数之和”,那么这组数中y表示的数是(A)A.8B.9C.13D.154.(邵阳中考)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B) A.y=2n+1B.y=2+nC.y=2n+1+nD.y=2n+n+1n【方法指导】对于数式规律问题,应先将已知的几个数,分别写成与序号有关的式子,再观察所得式子,找出规律,最后应用规律解决问题.图形规律【例2】(2022石家庄四十三中二模)如图,已知∠AOB=80°,在射线OA,OB上分别取点A1,B1,使得OA1=OB1,连接A1B1,在A1B1,B1B上分别取点A2,B2,使得B1A2=B1B2,连接A2B2,,按此规律下去,设∠B1A2B2=θ1,∠B2A3B3=θ2,,∠BnAn+1Bn+1=θn,则θ10=________.【解析】先用含n的代数式表示∠BnAn+1Bn+1,再将n=10代入求解,注意等腰三角形性质的应用.50°【答案】1025.用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是(C)A.(2n+1)个B.(n-1)个C.(n2+2n)个D.(5n-2)个26.(重庆中考)观察下列一组图形,其中图①中共有2颗星,图②中共有6颗星,图③中共有11颗星,图④中共有17颗星,,按此规律,图⑧中星星的颗数是(C)A.43颗B.45颗C.51颗D.53颗【方法指导】对于图形递变规律,应先分析已知图形,分别得到n=1,2,3,4时,所求量(角度、线段长、图形个数)与n的关系,再列出关于n的代数式.坐标规律【例3】(内江中考)一组正方形按如图所示的方式放置,其中顶点B1在y轴上,顶点C1,E1,E2,C2,E3,E4,C3在某轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则正方形A2016B2016C2016D2016的边长是(D)1A.2C.201512016B.23201632015D.33B2C2B2E2D1E133===tan30°,∴B2C2=C1D1·tan30°=,∴C2D2=.同C1D1C1E1C1E133323n-132015理,B3C3=C2D2·tan30°=;由此猜想BnCn=.当n=2016时,B2016C2016=.333【答案】D【解析】易知△B2C2E2∽△C1D1E1,∴7.(河南中考)如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,,组成一条π平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2015秒时,点P的坐2标是(B)A.(2014,0)B.(2015,-1)C.(2015,1)D.(2016,0)【方法指导】求几何图形的边长(周长):①求出第一次变化前图形的边长(或周长);②计算第一次、第二次、第三次、第四次(所给出的图形)变化后的边长(或周长),归纳出第n次变化后的边长(或周长)与变化次数n的关系式;③代入所给图形中的某一个变化次数验证所归纳的关系式.教后反思_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________一、选择题1.(2022长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程378里,第一天健步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为(C)A.24里B.12里C.6里D.3里2.(2022重庆中考B卷)下列图像都是由相同大小的,第②个图形中一共有11颗形中的颗数为(B)按一定规律组成的,其中第①个图形中一共有4颗,,按此规律排列下去,第⑨个图,第③个图形中一共有21颗A.116B.144C.145D.1503.(2022自贡中考)填在下面各正方形中四个数之间都有相同的规律,根据这种规律可求出m的值为(C)A.180B.182C.184D.1864.(2022武汉中考)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为(D)A.4B.5C.6D.75.(2022西宁中考)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自D点出发沿折线DC—CB以每秒2cm的速度运动,到达B点时运动同时停止,设△AMN的面积为y(cm),运动时间为某(),则下列图像中能大致反映y与某之间的函数关系的是(A)2,A),B),C),D)6.(2022湖州中考)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距5的另一个格点的运动称为一次跳马变换.例如,在4某4的正方形网格图形中(如图①),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20某20的正方形网格图形(如图②),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是(B)A.13B.14C.15D.167.(2022连云港中考)如图所示,一动点从半径为2的⊙O上的A0点出发,沿着射线A0O方向运动到⊙O上的点A1处,再向左沿着与射线A1O 夹角为60°的方向运动到⊙O上的点A2处;接着又从A2点出发,沿着射线A2O方向运动到⊙O上的点A3处,再向左沿着与射线A3O夹角为60°的方向运动到⊙O上的点A4处;按此规律运动到点A2017处,则点A2017与点A0间的距离是(A)A.4B.23C.2D.08.(2022宁波中考)一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n个小矩形的周长,就一定能算出这个大矩形的面积,则n的最小值是(A)A.3B.4C.5D.6二、填空题9.(2022宁波中考)如图,用同样大小的黑色棋子按如图所示的规律摆放:则第⑦个图案有__19__个黑色棋子.10.(2022滨州中考)观察下列各式:。

中考数学二轮专题复习:探索规律

中考数学二轮专题复习:探索规律

35.猜想、探索规律型一、选择题1.如图,小陈从O 点出发,前进5米后向右转20O , 再前进5米后又向右转20O ,……,这样一直走下去, 他第一次回到出发点O 时一共走了( )A .60米B .100米C .90米D .120米 【答案】C.2.某校生物教师李老师在生物实验室做试验时,将水稻种子分组进行发芽试验;第1组取3粒,第2组取5粒,第3组取7粒……即每组所取种子数目比该组前一组增加2粒,按此规律,那么请你推测第n 组应该有种子数( )粒。

A 、12+nB 、12-nC 、n 2D 、2+n【关键词】探索规律型【答案】A3.下面是按一定规律排列的一列数: 第1个数:11122-⎛⎫-+ ⎪⎝⎭; 第2个数:2311(1)(1)1113234⎛⎫⎛⎫---⎛⎫-+++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭; 第3个数:234511(1)(1)(1)(1)11111423456⎛⎫⎛⎫⎛⎫⎛⎫-----⎛⎫-+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭; ……第n 个数:232111(1)(1)(1)111112342n n n -⎛⎫⎛⎫⎛⎫----⎛⎫-++++ ⎪⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭.那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是( )A .第10个数B .第11个数C .第12个数D .第13个数【答案】A4.(对于每个非零自然数n ,抛物线2211(1)(1)n n n n n y x x +++=-+与x 轴交于A n 、B n 两点,以n n A B 表示这两点间的距离,则112220092009A B A B A B +++ 的值是A .20092008 B .20082009C .20102009D .20092010【答案】DO 20o20o5.观察下列图形,则第n 个图形中三角形的个数是( )A .22n +B .44n +C .44n -D .4n【答案】D .6.古希腊著名的毕达哥拉斯学派把1、3、6、10 … 这样的数称为“三角形数”,而把1、4、9、16 … 这样的数称为“正方形数”. 从图7中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )A .13 = 3+10B .25 = 9+16C .36 = 15+21D .49 = 18+31 【答案】C二、填空题1.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。

中考数学二轮复习专题2 规律探索问题课件

中考数学二轮复习专题2 规律探索问题课件

B.(-1,-2) D.(3,-2)
9.(2021·阜新)如图,弧长为半圆的弓形在坐标系中,圆心在(0,2).将弓 形沿 x 轴正方向无滑动滚动,当圆心经过的路径长为 2021π 时,圆心的横 坐标是( D )
A.2020π C.2021π
B.1010π+2020 D.1011π+2020
10.(2021·毕节)如图,在平面直角坐标系中,点 N1(1,1)在直线 l:y=x 上,
[点评] 本题考查了规律型中的数式变化规律,解题的关键是找出等式左右 两边的数的变化规律,熟练掌握二次根式的运算.
1.(2021·济宁)按规律排列的一组数据:12,35,□,177,296,3171,…,其中□
内应填的数是( D )
A.23
B.151
C.59
D.12
2.(2021·十堰)将从 1 开始的连续奇数按如图所示的规律排列,例如,位于 第 4 行第 3 列的数为 27,则位于第 32 行第 13 列的数是( B )
图形规律型 ☞示例 2 (2016·益阳)小李用围棋子排成下列一组有规律的图案,其中第 1 个图案有 1 枚棋子,第 2 个图案有 3 枚棋子,第 3 个图案有 4 枚棋子,第 4 个图案有 6 枚棋子,…,那么第 9 个图案的棋子数是 13 枚.
[解析] 设第 n 个图形有 an 个棋子, 观察,发现规律:a1=1,a2=1+2=3,a3=3+1=4,a4=4+2=6, a5=6+1=7,…,a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数). 当 n=4 时,a9=3×4+1=13. 故第 9 个图案的棋子数是 13 枚.
[点评] 本题考查了规律型中的图形的变化类,解题的关键是找出变化规律 “a2n+1=3n+1,a2n+2=3(n+1)(n 为自然数)”.本题属于基础题,难度不 大,解决该题型题目时,找出部分图形的棋子数目 ,根据数的变化找出变 化规律是关键.

中考数学第二轮复习专题讲解归纳与猜想

中考数学第二轮复习专题讲解归纳与猜想

三.归纳与猜想一、 知识综述归纳是一种重要的推理方法,是根据具体事实和特殊现象,通过实验、观察、比较、概括出一般的原理和结论。

猜想是一种直觉思维,它是通过对研究对象的实验、观察和归纳、猜想它的规律和结论的一种思维方法。

猜想往往依据直觉来获得,而恰当的归纳可以使猜想更准确。

我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律。

二、理解掌握例1、用等号或不等号填空:(1)比较2x 与x 2+1的大小①当x =2时,2x x 2+1;②当x =1时,2x x 2+1;③当x =-1时,2x x 2+1.(2)可以推测:当x 取任意实数时,2x x 2+1.分析:本题是通过计算发现和猜想一般规律题,正确计算和发现规律是关键。

解:(1)<,=,<; (2)≤。

例2、观察下列分母有理化的计算:12121-=+,23231-=+,34341-=+,45451-=+…从计算结果中找出规律,并利用这一规律计算:1)2002)(200120021341231121(+++++++++ =____。

分析:解本题时,要抓住分每有理化后的结果都是两数之差,且可以错位相消。

还要注意相消后所剩下的是什么。

解:1)2002)(200120021341231121(+++++++++=)12002)(20012002342312(+-++-+-+-=)12002)(12002(+-=2002—1 =2001。

例3、 观察下列数表:1 2 3 4 … 第一行 2 3 4 5 … 第二行 3 4 5 6 … 第三行 4 5 6 7 … 第四行 … … … … 第一列 第二列 第三列 第四列 根据数表所反映的规律,猜想第6行与第6列的交叉点上的数应为____,第n 行与第n 列交叉点上的数应为____。

(用含正整数n 的式子表示)分析:本题要求的是同行同列交叉点上的数,因此,必须先研究同行同列交叉点上的数有什么规律,然后利用此规律解题。

专题复习(2) 规律与猜想【2021中考数学二轮复习】答案版

专题复习(2) 规律与猜想【2021中考数学二轮复习】答案版

专题复习(2) 规律与猜想【2021中考数学二轮复习】类型1 数式的变化规律1.找出等式中“变”与“不变”的部分.2.分析出“变”的规律.3.常用数字规律有:(1)正整数列规律:1,2,3,…,n ;(2)奇(偶)数列规律:1,3,5,…,2n -1(2,4,6,…,2n);(3)2,4,8,16,…,2n ;(4)3,9,27,81,…,3n ;(5)正整数和:1+2+3+…+n =n (n +1)2;(6)正奇数和:1+3+5+…+(2n -1)=n 2;(7)正偶数和:2+4+6+…+2n =n(n +1).观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533,…它是按一定规律排列的,请利用其中规律,写出第n 个数a n =n (n +1)2+2n +1.(用含n 的式子表示) 【思路点拨】 观察分母:3,5,9,17,33,…,可知规律为2n +1;观察分子:1,3,6,10,15,…,可知规律为n (n +1)2,即可求解.1.(2020·牡丹江)一列数1,5,11,19…按此规律排列,第7个数是(C )A .37B .41C .55D .712.(2020·娄底)下列各正方形中的四个数之间都有相同的规律,根据此规律,x 的值为(C )A .135B .153C .170D .1893.(2019·济宁)已知有理数a ≠1,我们把11-a 称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.如果a 1=-2,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,…,依此类推,那么a 1+a 2+…+a 100的值是(A )A .-7.5B .7.5C .5.5D .-5.54.(2020·咸宁)按一定规律排列的一列数:3,32,3-1,33,3-4,37,3-11,318,…,若a ,b ,c 表示这列数中的连续三个数,猜想a ,b ,c 满足的关系式是a ÷b =c .5.(2020·武威)已知y =(x -4)2-x +5,当x 分别取1,2,3,…,2 020时,所对应y 值的总和是2_032.6.(2020·孝感)有一列数,按一定的规律排列成13,-1,3,-9,27,-81,….若其中某三个相邻数的和是-567,则这三个数中第一个数是-81.7.(2020·滨州)观察下列各式:a 1=23,a 2=35,a 3=107,a 4=159,a 5=2611,…,根据其中的规律可得a n =n 2+(-1)n +12n +1(用含n 的式子表示).8.(2020·黔西南)如图是一个运算程序的示意图,若开始输入x的值为625,则第2 020次输出的结果为1.9.(2020·青海)观察下列各式的规律:①1×3-22=3-4=-1;②2×4-32=8-9=-1;③3×5-42=15-16=-1.请按以上规律写出第4个算式4×6-52=24-25=-1.用含有字母的式子表示第n个算式为n(n+2)-(n+1)2=-1.10.(2020·泰安)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a1,第二个数记为a2,第三个数记为a3,…,第n个数记为a n,则a4+a200=20_110.类型2图形的变化规律(1)标序号:记每组图形的序号为“1,2,3,…,n”;(2)数图形的个数:在图形数量变化时,要记出每组图形表示的个数;(3)寻找图形数量与序号数n的关系:针对寻找第n个图形表示的数量时,先将后一个图形的个数与前一个图形的个数进行比较,通常作差(商)来观察是否有恒定量的变化,然后按照定量变化推导出第n个图形的个数;(4)验证:代入序号验证所归纳的式子是否正确.(注:当图形变化规律不明显时,可把序号数n作为自变量,把第n个图形的个数看作是函数值,设函数解析式为y=an2+bn+c,再代入三组值进行计算即可,若a=0,则是一次函数)将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数.若第n 个图形中“○”的个数是78,则n的值是(B)A.11 B.12 C.13 D.14【思路点拨】第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;…第n 个图形有1+2+3+…+n =n (n +1)2个小圆. 小圆个数为78时,代入即可求出n 的值.11.(2020·济宁)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是(D )A .1100B .120C .1101D .210112.(2020·聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图○n 表示,那么图中的白色小正方形地砖的块数是(C )A .150B .200C .355D .50513.(2020·大庆)如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第20个图需要黑色棋子的个数为440.14.(2019·玉林)如图,在矩形ABCD 中,AB =8,BC =4,一发光电子开始置于AB 边的点P 处,并设定此时为发光电子第一次与矩形的边碰撞,将发光电子沿着PR 方向发射,碰撞到矩形的边时均反射,每次反射的反射角和入射角都等于45°.若发光电子与矩形的边碰撞次数经过2 019次后,则它与AB 边的碰撞次数是673.15.(2020·辽阳)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去.若矩形ABCD 的面积等于2,则△EF n B 的面积为2n +12n .(用含正整数n 的式子表示)类型3坐标的变化规律坐标的变化规律探究是数的探究和图形的探究的综合.因为点附在图形上,图形在做有规律的变化导致图形的点在做有规律的变化,所以,在探究时,先分析图形的变化规律,根据图形的变化规律求出前面几个点的坐标,然后利用分析数的变化规律的方法分析出一般的规律,再按照一般的规律写出任何一个要求的点的坐标.如图,在平面直角坐标系中,点A1,A2,A3,…,A n在x轴上,点B1,B2,B3,…,B n在直线y=33x上.若A1(1,0),且△A1B1A2,△A2B2A3,…,△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1,S2,S3,…,S n,则S n可表示为(D)A.22n3B.22n-13C.22n-23D.22n-33【思路点拨】直线y=33x与x轴的夹角∠B1OA1=30°,可得∠OB1A1=30°,…,∠OB n A n=30°,∠OB1A2=90°,…,∠OB n A n+1=90°;根据等腰三角形的性质可知B1A1=1,B2A2=OA2=2,B3A3=4,…,B n A n=2n-1;根据勾股定理可得B1B2=3,B2B3=23,…,B n B n+1=2n-13,再由面积公式即可求解.16.(2019·张家界)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2 019次得到正方形OA2 019B2 019C2 019,那么点A2 019的坐标是(A)A.(22,-22)B.(1,0)C.(-22,-22)D.(0,-1)17.(2020·衡阳)如图,在平面直角坐标系中,点P1的坐标为(22,22),将线段OP1绕点O按顺时针方向旋转45°,再将其长度伸长为OP1的2倍,得到线段OP2;又将线段OP2绕点O按顺时针方向旋转45°,长度伸长为OP2的2倍,得到线段OP3;如此下去,得到线段OP4,OP5,…,OP n(n为正整数),则点P2 020的坐标是(0,-22_019).18.(2020·怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n-1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n19.(2019·衡阳)在平面直角坐标系中,抛物线y=x2的图象如图所示.已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2 019的坐标为(-1_010,1_0102).20.(2019·潍坊)如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,…,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,…都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合.若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,…,半径为n+1的圆与l n在第一象限内交于点P n,则点P n(n为正整数)。

中考数学第二轮复习资料

中考数学第二轮复习资料

中考数学第二轮复习资料目录专题一选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略.具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考考点精讲1.(莱芜)如图,等边三角形ABC的边长为3,N为AC的三等分点,三角形边上的动点M从点A 出发,沿A→B→C的方向运动,到达点C时停止.设点M运动的路程为x,MN2=y,则y关于x的函数图象大致为A.B.C.D.2.(自贡)如图,已知A、B是反比例函数y=kx(k>0,x>0)上的两点,BC∥x轴,交y轴于C,动点P从坐标原点O出发,沿O→A→B→C匀速运动,终点为C,过运动路线上任意一点P 作PM⊥x轴于M,PN⊥y轴于N,设四边形OMPN的面积为S,P点运动的时间为t,则S关于t的函数图象大致是A.B.C.D.3.(鄂州)一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间.用x表示注水时间,用y表示浮子的高度,则用来表示y与x之间关系的选项是A.B.C.D.4.(巴中)在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是A.B.C.D.5.(宁波)下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是A.B.C.D.6.(菏泽)如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为A.15°或30°B.30°或45°C.45°或60°D.30°或60°7.(邵阳)下列四个图形中,不是轴对称图形的是A.B.C.D.8.(南宁)小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形9.(长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是A.B.C.D.10.(达州)下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.③①④②B.③②①④C.③④①②D.②④①③11.(陕西)如图,下面的几何体是由一个圆柱和一个长方体组成的,则它的俯视图是A .B .C .D .12.(黑龙江)如图,爸爸从家(点O )出发,沿着扇形AOB 上OA →弧AB →BO 的路径去匀速散步,设爸爸距家(点O )的距离为S ,散步的时间为t ,则下列图形中能大致刻画S 与t 之间函数关系的图象是A .B .C .D .13.(盐城)如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有A .4种B .5种C .6种D .7种14.(咸宁)如图,正方形ABCD 是一块绿化带,其中阴影部分EOFB ,GHMN 都是正方形的花圃.已知自由飞翔的小鸟,将随机落在这块绿化带上,则小鸟在花圃上的概率为A .1732B .12C .1736D .173815.(雅安)如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB =30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为A .12B .32C .22D .3316.(衢州)如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿A →D →C →B →A 的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是A .B .C .D .17.(柳州)如图,点P (a ,a )是反比例函数y =16x在第一象限内的图象上的一个点,以点P 为顶点作等边△P AB ,使A 、B 落在x 轴上,则△POA 的面积是A .3B .4C .123− D .33824− 18.(莱芜)下列说法错误的是A .若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B .22C .若a >|b |,则a >bD .梯形的面积等于梯形的中位线与高的乘积的一半19.(无锡)已知点A (0,0),B (0,4),C (3,t +4),D (3,t ).记N (t )为□ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则N (t )所有可能的值为A .6、7B .7、8C .6、7、8D .6、8、920.(钦州)如图,图1、图2、图3分别表示甲、乙、丙三人由甲A 地到B 地的路线图(箭头表示行进的方向).其中E 为AB 的中点,AH >HB ,判断三人行进路线长度的大小关系为A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙21.(邗江区一模)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示;(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示;(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示;(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=4π以上结论正确的有A.1个B.2个C.3个D.4个专题二 新定义型问题一、中考专题诠释 所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考考点精讲1.(湛江)阅读下面的材料,先完成阅读填空,再按要求答题:sin 30°=12,cos 30°sin 230°+cos 230°= ; ①sin 45°,cos 45°,则sin 245°+cos 245°= ;②sin 60°=2,cos 60°=12,则sin 260°+cos 260°= ; ③ …… 观察上述等式,猜想:对任意锐角A ,都有sin 2A +cos 2A = .④(1)如图,在锐角三角形ABC 中,利用三角函数的定义及勾股定理对∠A 证明你的猜想; (2)已知:∠A 为锐角(cosA >0)且sinA =35,求cosA . 2.(河北)定义新运算:对于任意实数a ,b ,都有a ⊕b =a (a -b )+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5.(1)求(-2)⊕3的值;(2)若3⊕x 的值小于13,求x 的取值范围,并在图所示的数轴上表示出来.3.(十堰)定义:对于实数a ,符号[a ]表示不大于a 的最大整数.例如:[5.7]=5,[5]=5,[-π]=-4.(1)如果[a ]=-2,那么a 的取值范围是 .(2)如果[12x+]=3,求满足条件的所有正整数x.4.(钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是A.2 B.3 C.4 D.55.(宁波)若一个四边形的一条对角线把四边形分成两个等腰三角形,我们把这条对角线叫做这个四边形的和谐线,这个四边形叫做和谐四边形.如菱形就是和谐四边形.(1)如图1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求证:BD是梯形ABCD的和谐线;(2)如图2,在12×16的网格图上(每个小正方形的边长为1)有一个扇形BAC,点A.B.C均在格点上,请在答题卷给出的两个网格图上各找一个点D,使得以A、B、C、D为顶点的四边形的两条对角线都是和谐线,并画出相应的和谐四边形;(3)四边形ABCD中,AB=AD=BC,∠BAD=90°,AC是四边形ABCD的和谐线,求∠BCD的度数.6.(舟山)对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(-5,4),B(2,-3),A⊕B=(-5+2)+(4-3)=-2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E =E⊕F=F⊕D,则C,D,E,F四点A.在同一条直线上B.在同一条抛物线上C.在同一反比例函数图象上D.是同一个正方形的四个顶点7.(常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是A.B.C.D.8.(上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 .9.(宜宾)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB =1,那么曲线CDEF 的长是 .10.(淄博)在△ABC 中,P 是AB 上的动点(P 异于A ,B ),过点P 的一条直线截△ABC ,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P 的△ABC的相似线.如图,∠A =36°,AB =AC ,当点P 在AC 的垂直平分线上时,过点P 的△ABC 的相似线最多有 条.11.(乐山)对非负实数x “四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n -12≤x <n +12,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若(12x -1)=4,则实数x 的取值范围是9≤x <11; ④当x ≥0,m 为非负整数时,有(m +2013x )=m +(2013x );⑤(x +y )=(x )+(y );其中,正确的结论有 (填写所有正确的序号).12.(莆田)定义:如图1,点C 在线段AB 上,若满足AC 2=BC •AB ,则称点C 为线段AB 的黄金分割点.如图2,△ABC 中,AB =AC =1,∠A =36°,BD 平分∠ABC 交AC 于点D .(1)求证:点D 是线段AC 的黄金分割点;(2)求出线段AD 的长.13.(大庆)对于钝角α,定义它的三角函数值如下:sinα=sin (180°-α),cosα=-cos (180°-α)(1)求sin 120°,cos 120°,sin 150°的值;(2)若一个三角形的三个内角的比是1:1:4,A ,B 是这个三角形的两个顶点,sinA ,cosB 是方程4x 2-mx -1=0的两个不相等的实数根,求m 的值及∠A 和∠B 的大小.14.(安徽)我们把由不平行于底的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B =∠C .(1)在图1所示的“准等腰梯形”ABCD中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中∠B =∠C .E 为边BC 上一点,若AB ∥DE ,AE ∥DC ,求证: AB BE DC EC=; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E .若EB =EC ,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD 是不是“准等腰梯形”,为什么?若点E 不在四边形ABCD 内部时,情况又将如何?写出你的结论.(不必说明理由)15.(北京)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下的定义:若⊙C 上存在两个点A 、B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F 0).(1)当⊙O 的半径为1时,①在点D 、E 、F 中,⊙O 的关联点是 ;②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.专题三开放型问题一、中考专题诠释开放型问题是相对于有明确条件和明确结论的封闭型问题而言的,它是条件或结论给定不完全、答案不唯一的一类问题.这类试题已成为近年中考的热点,重在考查同学们分析、探索能力以及思维的发散性,但难度适中.根据其特征大致可分为:条件开放型、结论开放型、方法开放型和编制开放型等四类.二、解题策略与解法精讲解开放性的题目时,要先进行观察、试验、类比、归纳、猜测出结论或条件,然后严格证明;同时,通常要结合以下数学思想方法:分类讨论,数形结合,分析综合,归纳猜想,构建数学模型等.三、中考考点精讲1.(盐城)写出一个过点(0,3),且函数值y随自变量x的增大而减小的一次函数关系,使得另一边EF过原矩形的(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积(2)写出如图中的三对相似三角形,并选择其中一对进行证明.6.(荆州)如图,△ABC与△CDE均是等腰直角三角形,∠ACB=∠DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.7.(徐州)请写出一个是中心对称图形的几何图形的名称:.8.(钦州)请写出一个图形经过一、三象限的正比例函数的解析式.9.(连云港)若正比例函数y=kx(k为常数,且k≠0)的函数值y随着x的增大而减小,则k的值可以10使△ABC≌△DEF.第11题第12题第13题12.(绥化)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件,使得△EAB≌△BCD.13.(义乌市)如图,已知∠B=∠C,添加一个条件使△ABD≌△ACE(不标注新的字母,不添加新的线段),你添加的条件是.14.(齐齐哈尔)如图,要使△ABC与△DBA相似,则只需添加一个适当的条件是____________(填一个即可)15.(邵阳)如图所示,弦AB、CD相交于点O,连结AD、BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是.第14题第15题第16题第17题16.(吉林)如图,AB是⊙O的弦,OC⊥AB于点C,连接OA、OB.点P是半径OB上任意一点,连接AP.若OA=5cm,OC=3cm,则AP的长度可能是cm(写出一个符合条件的数值即可) 17.(昭通)如图,AB是⊙O的直径,弦BC=4cm,F是弦BC的中点,∠ABC=60°.若动点E以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当△BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)18.(杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已19.(盐城)市交警支队对某校学生进行交通安全知识宣传,事先以无记名的方式随机调查了该校部分学生闯红灯的情况,并绘制成如图所示的统计图.请根据图中的信息回答下列问题:(1)本次共调查了多少名学生?(2)如果该校共有1500名学生,请你估计该校经常闯红灯的学生大约有多少人;(3)针对图中反映的信息谈谈你的认识.(不超过30个字)专题四探究型问题一、中考专题诠释探究型问题是指命题中缺少一定的条件或无明确的结论,需要经过推断,补充并加以证明的一类问题.根据其特征大致可分为:条件探究型、结论探究型、规律探究型和存在性探究型等四类.二、解题策略与解法精讲由于探究型试题的知识覆盖面较大,综合性较强,灵活选择方法的要求较高,再加上题意新颖,构思精巧,具有相当的深度和难度,所以要求同学们在复习时,首先对于基础知识一定要复习全面,并力求扎实牢靠;其次是要加强对解答这类试题的练习,注意各知识点之间的因果联系,选择合适的解题途径完成最后的解答.由于题型新颖、综合性强、结构独特等,此类问题的一般解题思路并无固定模式或套路,但是可以从以下几个角度考虑:1.利用特殊值(特殊点、特殊数量、特殊线段、特殊位置等)进行归纳、概括,从特殊到一般,从而得出规律.2.反演推理法(反证法),即假设结论成立,根据假设进行推理,看是推导出矛盾还是能与已知条件一致.3.分类讨论法,当命题的题设和结论不惟一确定,难以统一解答时,则需要按可能出现的情况做到既不重复也不遗漏,分门别类加以讨论求解,将不同结论综合归纳得出正确结果.4.类比猜想法,即由一个问题的结论或解决方法类比猜想出另一个类似问题的结论或解决方法,并加以严密的论证.以上所述并不能全面概括此类命题的解题策略,因而具体操作时,应更注重数学思想方法的综合运用.三、中考考点精讲1.(襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.2.(新疆)如图,□ABCD中,点O是AC与BD的交点,过点O的直线与BA、DC的延长线分别交于点E、F.(1)求证:△AOE≌△COF;(2)请连接EC、AF,则EF与AC满足什么条件时,四边形AECF是矩形,并说明理由.3.(牡丹江)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD CD=,CB=.4.(河南)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E =30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请直接写出相应的BF的长.8.(陕西)问题探究:(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,M是正方形ABCD内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD的面积四等分,并说明理由.问题解决:(3)如图③,在四边形ABCD中,AB∥CD,AB+CD=BC,点P是AD的中点,如果AB=a,CD=b,且b>a,那么在边BC上是否存在一点Q,使PQ所在直线将四边形ABCD的面积分成相等的两部分?如若存在,求出BQ的长;若不存在,说明理由.9.(西城区一模)在平面直角坐标系xOy中,有一只电子青蛙在点A(1,0)处.第一次,它从点A先向右跳跃1个单位,再向上跳跃1个单位到达点A1;第二次,它从点A1先向左跳跃2个单位,再向下跳跃2个单位到达点A2;第三次,它从点A2先向右跳跃3个单位,再向上跳跃3个单位到达点A3;第四次,它从点A3先向左跳跃4个单位,再向下跳跃4个单位到达点A4;…依此规律进行,点A6的坐标为;若点A n的坐标为(2013,2012),则n=.10.(湛江)如图,所有正三角形的一边平行于x轴,一顶点在y轴上.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1、A2、A3、A4…表示,其中A1A2与x轴、底边A1A2与A4A5、A4A5与A7A8、…是.11.(绍兴)如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.12.(茂名)如图,在□ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.(1)求证:△ADE≌△BFE;(2)若DF平分∠ADC,连接CE.试判断CE和DF的位置关系,并说明理由.13.(白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.14.(无锡)如图,四边形ABCD中,对角线AC与BD相交于点O,在①AB∥CD;②AO=CO;③AD=BC中任意选取两个作为条件,“四边形ABCD是平行四边形”为结论构造命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例;(2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)15.(宁波)已知抛物线y=ax2+bx+c与x轴交于点A(1,0),B(3,0),且过点C(0,-3).(1)求抛物线的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在直线y=-x上,并写出平移后抛物线的解析式.16.(凉山州)先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).解:在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:112b c c −−+=⎧⎨=⎩,解得:02b c =⎧⎨=⎩.所以平移后的抛物线的解析式为:y =-x 2+2. 根据以上信息解答下列问题:将直线y =2x -3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.17.(湖州)一节数学课后,老师布置了一道课后练习题:如图,已知在Rt △ABC 中,AB =BC ,∠ABC =90°,BO ⊥AC ,于点O ,点P 、D 分别在AO 和BC 上,PB =PD ,DE ⊥AC 于点E ,求证:△BPO ≌△PDE .(1)理清思路,完成解答(2)本题证明的思路可用下列框图表示:根据上述思路,请你完整地书写本题的证明过程.(2)特殊位置,证明结论若PB 平分∠ABO ,其余条件不变.求证:AP =CD .(3)知识迁移,探索新知若点P 是一个动点,点P 运动到OC 的中点P ′时,满足题中条件的点D 也随之在直线BC 上运动到点D ′,请直接写出CD ′与AP ′的数量关系.(不必写解答过程)18.(淄博)分别以□ABCD (∠CDA ≠90°)的三边AB 、CD 、DA 为斜边作等腰直角三角形△ABE 、△CDG 、△ADF .(1)如图1,当三个等腰直角三角形都在该平行四边形外部时,连接GF ,EF .请判断GF 与EF 的关系(只写结论,不需证明);(2)如图2,当三个等腰直角三角形都在该平行四边形内部时,连接GF ,EF ,(1)中结论还成立吗?若成立,给出证明;若不成立,说明理由.19.(张家界)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.20.(衡阳)如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.21.(宁夏)在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.(2)试探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?22.(南平)在矩形ABCD中,点E在BC边上,过E作EF⊥AC于F,G为线段AE的中点,连接BF、(1)证明:△BGF是等腰三角形;(2)当k为何值时,△BGF是等边三角形?(3)我们知道:在一个三角形中,等边所对的角相等;反过来,等角所对的边也相等.事实上,在一个三角形中,较大的边所对的角也较大;反之也成立.利用上述结论,探究:当△BGF分别为锐角、直角、钝角三角形时,k的取值范围.23.(德阳)如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.24.(泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;25.(梅州)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠P AB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF 的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.返回专题五数学思想方法(一)(整体思想、转化思想、分类讨论思想)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略.数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分.数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中.抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三.三、中考考点精讲1.(吉林)若a-2b=3,则2a-4b-5=.2.(福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3•(a-b)3的值是.3.(东营)如图,圆柱形容器中,高为 1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).4.(宁德质检)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AB上的任意一点,作PD⊥AC于点D,PE⊥CB于点E,连结DE,则DE的最小值为.5.(山西)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题复习(二) 规律与猜想
1.(2016·娄底)“数学是将科学现象升华到本质认识的重要工具”.比如在化学中,甲烷的化学式是CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,……,设碳原子的数目为n(n为正整数),则它们的化学式都可用下列哪个式子来表示(A)
A.C n H2n+2 B.C n H2n
C.C n H2n-n D.C n H n+3
2.(2016·邵阳)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是(B)
A.y=2n+1 B.y=2n+n
C.y=2n+1+n D.y=2n+n+1
3.(2016·凉山)观察图中正方形四个顶点所标的数字规律,可知,数2 016应标在(D)
第1个正方形第2个正方形第3个正方形第4个正方形
A.第504个正方形的左下角
B.第504个正方形的右下角
C.第505个正方形的左上角
D.第505个正方形的右下角
4.(2016·宁波)下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,…,按此规律,图案⑦需50根火柴棒.
①②③
5.(2016·南宁)观察下列等式:
第一层1+2=3
第二层4+5+6=7+8
第三层9+10+11+12=13+14+15
第四层16+17+18+19+20=21+22+23+24
……
在上述的数字宝塔中,从上往下数,2 016在第44层.
6.(2016·菏泽)如图,一段抛物线:y=-x(x-2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=-1.
7.(2016·泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在
直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为2n+1-2.
8.(2016·威海)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x 轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2 016的纵坐标为3)
9.(2016·安徽)(1)观察下列图形与等式的关系,并填空:
(2)观察下图,根据(1)中结论,计算图中黑球的个数,用含n的代数式填空:
1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=2n2+2n+1.
提示:根据连续奇数的排列规律,第n行是2n-1,那么第n+1行是2n+1,第一个空填2n+1.又1+3+5+…+(2n-1)+(2n+1)+(2n-1)+…+5+3+1=[1+3+5+…+(2n-1)]+(2n+1)+[(2n-1)+…+5+3+1]=n2+(2n+1)+n2=2n2+2n+1.
10.(2016·江西)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心管连接而成,闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图1所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图2所示).图3是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50 cm,第2节套管长46 cm,依此类推,每一节套管均比前一节套管少4 cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.
(1)请直接写出第5节套管的长度;
(2)当这根鱼竿完全拉伸时,其长度为311 cm,求x的值.。

相关文档
最新文档