新八年级数学上期中模拟试题及答案
2024年全新八年级数学上册期中试卷及答案(人教版)
2024年全新八年级数学上册期中试卷及答案(人教版)一、选择题1. 若一个数的平方根是3,那么这个数是( )A. 9B. 9C. 3D. 3答案:A2. 下列哪个数是负数?( )A. 2B. 2C. 0D. 1/2答案:B3. 若一个数的三次方是27,那么这个数是( )A. 3B. 3C. 9D. 9答案:B4. 若一个数的绝对值是5,那么这个数可能是( )A. 5B. 5C. 0D. 1答案:A5. 下列哪个数是正数?( )A. 2B. 0C. 1/2D. 1/2答案:C二、填空题1. 若a的平方根是b,那么a的立方根是_________。
答案:b2. 若a的绝对值是5,那么a可能是_________。
答案:5或53. 若a的三次方是27,那么a的平方是_________。
答案:94. 若a的平方根是b,那么b的平方根是_________。
答案:a5. 若a的绝对值是5,那么a的平方是_________。
答案:25三、解答题1. 若一个数的平方根是4,求这个数。
解:设这个数为x,根据题意,有√x = 4。
解这个方程,得到x= 4^2 = 16。
所以这个数是16。
2. 若一个数的三次方是8,求这个数。
解:设这个数为y,根据题意,有y^3 = 8。
解这个方程,得到y = 2。
所以这个数是2。
3. 若一个数的绝对值是7,求这个数的平方。
解:设这个数为z,根据题意,有|z| = 7。
由于绝对值表示数的大小,不考虑正负,所以z可以是7或7。
无论z是正数还是负数,其平方都是49。
所以这个数的平方是49。
4. 若一个数的平方根是5,求这个数的立方。
解:设这个数为w,根据题意,有√w = 5。
解这个方程,得到w= 5^2 = 25。
求w的立方,得到w^3 = 25^3 = 15625。
所以这个数的立方是15625。
5. 若一个数的绝对值是3,求这个数的立方根。
解:设这个数为v,根据题意,有|v| = 3。
由于绝对值表示数的大小,不考虑正负,所以v可以是3或3。
八年级(上)期中数学模拟试卷含答案
八年级(上)期中数学模拟试卷一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,62.下列图案中,不是轴对称图形的是()A.B.C.D.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣16.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=度.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是cm.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.参考答案与试题解析一、选择题(每题3分,共30分)1.以下列长度的三条线段为边,能组成三角形的是()A.3,3,3 B.3,3,6 C.3,2,5 D.3,2,6【考点】三角形三边关系.【分析】三角形的三条边必须满足:任意两边之和>第三边,任意两边之差<第三边.【解答】解:A中,3+3>3,能构成三角形;B中,3+3=6,不能构成三角形;C中,3+2=5,不能构成三角形;D中,3+2<6,不能构成三角形.故选A.【点评】本题主要考查对三角形三边关系的理解应用.判断是否可以构成三角形,只要判断两个较小的数的和<最大的数就可以.2.下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.在平面直角坐标系中,点P(﹣1,2)关于x轴的对称点的坐标为()A.(﹣1,﹣2)B.(1,2)C.(2,﹣1)D.(﹣2,1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.【解答】解:点P(﹣1,2)关于x轴对称的点的坐标为(﹣1,﹣2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是()A.n B.(n﹣1)C.(n﹣2)D.(n﹣3)【考点】多边形的对角线.【分析】可根据n边形从一个顶点引出的对角线与边的关系:n﹣3,可分成(n﹣2)个三角形直接判断.【解答】解:从n边形的一个顶点作对角线,把这个n边形分成三角形的个数是(n﹣2).故选C.【点评】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,经过多边形的一个顶点的所有对角线把多边形分成(n﹣2)个三角形.5.平面内点A(﹣1,2)和点B(﹣1,6)的对称轴是()A.x轴B.y轴C.直线y=4 D.直线x=﹣1【考点】坐标与图形变化-对称.【分析】观察两坐标的特点,发现横坐标相同,所以对称轴为平行与x轴的直线,即y=纵坐标的平均数.【解答】解:∵点A(﹣1,2)和点B(﹣1,6)对称,∴AB平行与y轴,所以对称轴是直线y=(6+2)=4.故选C.【点评】本题主要考查了坐标与图形变化﹣﹣对称特;解此类问题的关键是要掌握轴对称的性质:对称轴垂直平分对应点的连线.利用此性质可在坐标系中得到对应点的坐标或利用对应点的坐标求得对称轴.6.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC【考点】全等三角形的判定.【分析】本题可以假设A、B、C、D选项成立,分别证明△ABC≌△DEF,即可解题.【解答】解:∵AB∥DE,AC∥DF,∴∠A=∠D,(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;故选:C.【点评】本题考查了全等三角形的不同方法的判定,注意题干中“不能”是解题的关键.7.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A.SSS B.SAS C.AAS D.ASA【考点】全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选D.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.8.如下图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE【考点】全等三角形的性质.【分析】根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.【解答】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选D.【点评】本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.9.要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角【考点】全等三角形的应用.【分析】由已知可以得到∠ABC=∠BDE,又CD=BC,∠ACB=∠DCE,由此根据角边角即可判定△EDC≌△ABC.【解答】解:∵BF⊥AB,DE⊥BD∴∠ABC=∠BDE又∵CD=BC,∠ACB=∠DCE∴△EDC≌△ABC(ASA)故选B.【点评】本题考查了全等三角形的判定方法;需注意根据垂直定义得到的条件,以及隐含的对顶角相等,观察图形,找着隐含条件是十分重要的.10.如图,点A、B、C、D、E、F是平面上的6个点,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()A.180°B.360°C.540°D.720°【考点】三角形内角和定理.【分析】先根据三角形外角的性质得出∠A+∠B=∠1,∠E+∠F=∠2,∠C+∠D=∠3,再根据三角形的外角和是360°进行解答.【解答】解:∵∠1是△ABG的外角,∴∠1=∠A+∠B,∵∠2是△EFH的外角,∴∠2=∠E+∠F,∵∠3是△CDI的外角,∴∠3=∠C+∠D,∵∠1、∠3、∠3是△GIH的外角,∴∠1+∠2+∠3=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.故选B.【点评】本题考查的是三角形外角的性质及三角形的外角和,熟知三角形的外角和是360度是解答此题的关键.二、填空题(每题3分,共24分)11.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=270度.【考点】三角形内角和定理;多边形内角与外角.【专题】应用题.【分析】根据三角形的内角和与平角定义可求解.【解答】解:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°﹣(∠3+∠4)=360°﹣90°=270°.【点评】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.12.若等腰三角形的两边长分别为3cm和8cm,则它的周长是19cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题中没有指出哪个底哪个是腰,故应该分情况进行分析,注意应用三角形三边关系进行验证能否组成三角形.【解答】解:当3cm是腰时,3+3<8,不符合三角形三边关系,故舍去;当8cm是腰时,周长=8+8+3=19cm.故它的周长为19cm.故答案为:19cm.【点评】此题主要考查等腰三角形的性质及三角形三边关系的运用;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=55°.【考点】全等三角形的判定与性质.【分析】求出∠BAD=∠EAC,证△BAD≌△EAC,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△EAC中,∴△BAD≌△EAC(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△EAC.14.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.15.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB=×OD×BC+×OE×AC+×OF×AB=×OD×(BC+AC+AB)=×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.16.已知点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),则a+b=6.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得a与b的值.【解答】解:∵点A(a,4)关于y轴的对称点B的坐标为(﹣2,b),∴a=2,b=4,∴a+b=2+4=6,故答案为:6.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.17.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为108度.【考点】翻折变换(折叠问题).【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,然后判断出点O是△ABC的外心,根据三角形外心的性质可得OB=OC,再根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴点O在BC的垂直平分线上,又∵DO是AB的垂直平分线,∴点O是△ABC的外心,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形三线合一的性质,等边对等角的性质,以及翻折变换的性质,综合性较强,难度较大,作辅助线,构造出等腰三角形是解题的关键.18.图是平面镜里看到背向墙壁的电子钟示数,这时的实际时间应该是20:51.【考点】镜面对称.【分析】注意镜面对称的特点,并结合实际求解.【解答】解:根据镜面对称的性质,因此12:05的真实图象应该是20:51.故答案为20:51.【点评】解决此类问题要注意所学知识与实际情况的结合.三、解答题(共46分)19.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】可通过证△ABF≌△DCE,来得出∠A=∠D的结论.【解答】证明:∵BE=FC,∴BE+EF=CF+EF,即BF=CE;又∵AB=DC,∠B=∠C,∴△ABF≌△DCE;(SAS)∴∠A=∠D.【点评】此题考查简单的角相等,可以通过全等三角形来证明,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.20.如图所示,在△ABC中:(1)画出BC边上的高AD和中线AE.(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.【考点】作图—复杂作图.【分析】(1)延长BC,作AD⊥BC于D;作BC的中点E,连接AE即可;(2)可根据三角形的内角和定理求∠BAC=20°,由外角性质求∠CAD=40°,那可得∠BAD=60°.【解答】解:(1)如图:(2)∵∠B=30°,∠ACB=130°,∴∠BAC=180°﹣30°﹣130°=20°,∵∠ACB=∠D+∠CAD,AD⊥BC,∴∠CAD=130°﹣90°=40°,∴∠BAD=20°+40°=60°.【点评】此题是计算与作图相结合的探索.考查学生运用作图工具的能力,以及运用直角三角形、三角形内角和外角等基础知识解决问题的能力.21.如图,已知E是∠AOB的平分线上的一点,EC⊥OA,ED⊥OB,垂足分别是C,D.求证:OE垂直平分CD.【考点】角平分线的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】证明题.【分析】先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD 的垂直平分线.【解答】证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴DE=CE,OE=OE,在Rt△ODE与Rt△OCE中,,∴Rt△ODE≌Rt△OCE(HL),∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.22.已知:如图,AC=AB,∠1=∠2,∠3=∠4.求证:AE=AD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】根据∠1=∠2求出∠EAC=∠DAB,根据ASA推出△EAC≌△DAB即可.【解答】证明:∵∠1=∠2,∴∠1+∠BAC=∠2+∠BAC,∴∠EAC=∠DAB,在△EAC和△DAB中,,∴△EAC≌△DAB(ASA),∴AE=AD.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.全等三角形的对应边相等,对应角相等.23.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】连接AD,易证△ACD≌△ABD,根据全等三角形对应角相等的性质可得∠EAD=∠FAD,再根据∠AED=∠AFD,AD=AD,即可证明△ADE≌△ADF,根据全等三角形对应边相等的性质可得DE=DF.【解答】证明:连接AD,在△ACD和△ABD中,,∴ACD≌△ABD(SSS),∵DE⊥AE,DF⊥AF,∴∠AED=∠AFD=90°,∴在△ADE和△ADF中,,∴△ADE≌△ADF,∴DE=DF.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质.24.如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【考点】全等三角形的判定.【专题】证明题.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.25.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.【考点】全等三角形的判定与性质.【专题】证明题.【分析】(1)根据全等三角形的判定定理AAS推知:△ADC≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到:AD=CE=5cm,CD=BE.则根据图中相关线段的和差关系得到BE=AD﹣DE.【解答】(1)证明:如图,∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等).在△ADC与△CEB中,,∴△ADC≌△CEB(AAS);(2)由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.如图,∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.【点评】本题考查了全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.。
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷+答案解析
2023-2024学年江苏省南京市八年级(上)期中数学模拟试卷一、选择题:本题共7小题,每小题2分,共14分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列体育运动项目图标中,是轴对称图形的是()A. B. C. D.2.下列长度的三条线段能组成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.5,6,73.如图,,,添加下列哪一个条件可以推证≌()A.B.C.D.4.一个等腰三角形的顶角等于,则这个等腰三角形的底角度数是()A. B. C. D.5.如图,,,则下列判断正确的是()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分6.如图,中,BF、CF分别平分和,过点F作交AB于点D,交AC于点E,那么下列结论:①;②为等腰三角形;③的周长等于的周长;④其中正确的是()A.①②B.①③C.①②④D.①②③④7.如图,AD是的中线,E,F分别是AD和AD延长线上的点,且,连接BF,CE,下列说法:①和的面积相等;②;③;④其中,正确的说法有()A.1个B.2个C.3个D.4个二、填空题:本题共9小题,每小题2分,共18分。
8.如图,是的一个外角,若,,则______.9.已知≌,的周长为24cm,若,,______10.如图,,,请你添加一个条件______只填一个即可,使≌11.如图,在中,CD是斜边AB上的中线,若,则______.12.已知等腰三角形的一个外角是,则它的底角度数为______度.13.如图,在中,,线段AB的垂直平分线交AC于点N,的周长是12cm,则BC的长为______14.如图,在中,,以顶点A为圆心,适当长为半径画弧,分别交边AC,AB于点M、N,再分别以M,N为圆心,大于长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若,,则的面积为______.15.已知如图等腰,,,于点D,点P是BA延长线上一点,点O是线段AD上一点,,下面的结论:①;②;③是等边三角形.其中正确的是______填序号16.如图,透明的圆柱形容器容器厚度忽略不计的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是______三、解答题:本题共10小题,共68分。
人教版八年级上册数学期中考试试题含答案详解
人教版八年级上册数学期中考试试卷一、选择题。
(每小题只有一个正确答案,每小题3分)1.下列图形中,是轴对称图形的是()A.B.C.D.2.已知等腰三角形的两边长分别为6和1,则这个等腰三角形的周长为()A.13B.8C.10D.8或133.若一个多边形的内角和为720°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.如图,用尺规作图作已知角∠AOB的平分线OC,其根据是构造两个三角形全等,它所用到的识别方法是()A.SAS B.SSS C.ASA D.AAS5.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.50°B.60°C.85°D.80°6.如图,∠A=50°,P是等腰△ABC内一点,AB=AC,BP平分∠ABC,CP平分∠ACB,则∠BPC的度数为()A.100°B.115°C.130°D.140°7.如图,△ABC≌△DEF,若BC=12cm,BF=16cm,则下列判断错误的是()A.AB=DE B.BE=CF C.AB//DE D.EC=4cm8.如图,△ABC中,∠C=90°,AD平分∠BAC,过点D作DE⊥AB于E,测得BC=9,BD=5,则DE的长为()A.3B.4C.5D.69.如图,AB=AC,AD=AE,BE、CD交于点O,则图中全等的三角形共有( )A.四对B.三对C.二对D.一对10.如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM//BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE,其中一定正确的有()A.0个B.1个C.2个D.3个二、填空题11.已知△ABC中,AB=6,BC=4,那么边AC的长可以是(填一个满足题意的即可). 12.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是_____________.13.点M与点N(-2,-3)关于y轴对称,则点M的坐标为.14.如图,D是AB边上的中点,将△ABC沿过点D的直线折叠,DE为折痕,使点A 落在BC上F处,若∠B=40°,则∠EDF=_____度.15.已知△ABC中,∠A=12∠B=13∠C,则△ABC是_____三角形.16.如图,在Rt△ABC中,∠C=90°,∠BAC=30°,点D是BC边上的点,AB=18,将△ABC沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则BP+EP的最小值是____.三、解答题17.如图,A、F、B、D在一条直线上,AF=DB,BC=EF,AC=DE.求证:∠A=∠D.18.一个多边形,它的内角和比外角和还多180°,求这个多边形的边数.19.如图,已知△ABC,∠C=90°,AC<BC.D为BC上一点,且到A,B两点的距离相等.(1)用直尺和圆规,作出点D的位置(不写作法,保留作图痕迹).(2)连接AD,若∠B=35°,则∠CAD=°.20.△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.(1)作出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(2)求△ABC的面积.21.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.22.如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.(1)求证:AD平分∠BAC;(2)连接EF ,求证:AD 垂直平分EF .23.如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)∠ABE=15°,∠BED=55°,求∠BAD 的度数;(2)作△BED 的边BD 边上的高;(3)若△ABC 的面积为20,BD=2.5,求△BDE 中BD 边上的高.24.如图,在△ABC 中,∠BAC=120°,AB=AC=4,AD ⊥BC ,AD 到E ,使AE=2AD ,连接BE .(1)求证:△ABE 为等边三角形;(2)将一块含60°角的直角三角板PMN 如图放置,其中点P 与点E 重合,且∠NEM=60°,边NE 与AB 交于点G ,边ME 与AC 交于点F .求证:BG=AF ;(3)在(2)的条件下,求四边形AGEF 的面积.25.已知,如图,BD 是ABC ∠的平分线,AB BC =,点P 在BD 上,PM AD ⊥,PN CD ⊥,垂足分别是M 、N .试说明:PM PN =.参考答案1.B【详解】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.A【分析】分1是腰长和底边两种情况,利用三角形的三边关系判断,然后根据三角形的周长的定义列式计算即可得解.【详解】①1是腰长时,三角形的三边分别为1、1、6,不能组成三角形,②1是底边时,三角形的三边分别为6、6、1,能组成三角形,周长=6+6+1=13,综上所述,三角形的周长为13.故选A.【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.3.D【分析】利用n边形的内角和可以表示成(n-2)•180°,结合方程即可求出答案.【详解】设这个多边形的边数为n,由题意,得(n-2)180°=720°,解得:n=6,则这个多边形是六边形.故选D.【点睛】本题主要考查多边形的内角和公式,比较容易,熟记n边形的内角和为(n-2)•180°是解题的关键.4.B【分析】根据作图的过程知道:OA=OB,OC=OC,AC=CB,所以由全等三角形的判定定理SSS可以证得△OAC≌△OBC.【详解】连接AC、BC,根据作图方法可得:OA=OB,AC=CB,在△OAC和△OBC中,OA OB OC OC AC CB =⎧⎪=⎨⎪=⎩,∴△OAC ≌△OBC (SSS ).故选:B .【点睛】本题考查了作图-基本作图及全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .5.C【分析】根据三角形角平分线的性质求出∠ACD ,根据三角形外角性质求出∠A 即可.【详解】∵CE 是△ABC 的外角∠ACD 的平分线,∠ACE=60°,∴∠ACD=2∠ACE=120°,∵∠ACD=∠B+∠A ,∴∠A=∠ACD-∠B=120°-35°=85°,故选C .【点睛】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.6.B【分析】根据等腰三角形两底角相等求出∠ACB ,然后求出∠PCB+∠PBC=∠ACB ,再根据三角形的内角和定理列式计算即可得解.【详解】∵∠A=50°,△ABC 是等腰三角形,∴∠ACB=12(180°-∠A )=12(180°-50)=65°,∵∠PBC=∠PCA ,∴∠PCB+∠PBC=∠PCB+∠PCA=∠ACB=65°,∴∠BPC=180°-(∠PCB+∠PBC )=180°-65°=115°.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,准确识图并求出∠PCB+∠PBC是解题的关键.7.D【分析】根据全等三角形的性质得出AB=DE,BC=EF,∠ACB=∠F,求出AC∥DF,BE=CF,即可判断各个选项.【详解】∵△ABC≌△DEF,∴AB=DE,BC=EF,∠ACB=∠F,∴AC∥DF,BC-EC=EF-EC,∴BE=CF,∵BC=12cm,BF=16cm,∴CF=BE=4cm,∴EC=12cm-4cm=8cm,即只有选项D错误;故选D.【点睛】本题考查了全等三角形的性质,平行线的判定的应用,能正确运用性质进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.8.B【分析】先根据角平分线的性质,得出DE=DC,再根据BC=9,BD=5,得出DC=9-5=4,即可得到DE=4.【详解】∵∠C=90°,AD平分∠BAC,DE⊥AB于E,∴DE=DC,∵BC=9,BD=5,∴DC=9-5=4,故选B.【点睛】本题主要考查了角平分线的性质的运用,解题时注意:角的平分线上的点到角的两边的距离相等.9.B【分析】找出全等的三角形即可得出选项.【详解】1、因为AB=AC,AD=AE,∠A=∠A,所以△ABE≌△ACD;2、因为BD=AB-AD,CE=AC-AE,所以BD=CE,又因为AB=AC,BC=BC,所以∠B=∠C,所以△BCD≌△CBE;3、当△ABE≌△ACD时,∠ABE=∠ACD,∠OBC=∠OCB,所以OB=OC,又因为BD=CE,所以△OBD≌△OCE,所以答案选择B项.【点睛】本题考查了全等的证明,熟悉掌握SAS,SSS,ASA是解决本题的关键.10.D【分析】如图,由BD分别是∠ABC及其外角的平分线,得到∠MBD=12×180°=90°,故①成立;证明BF=CE、BF=DF,得到FD=FB,故②成立;证明BF为直角△BDM的斜边上的中线,故③成立.【详解】如图,∵BD分别是∠ABC及其外角的平分线,∴∠MBD=12×180°=90°,故MB⊥BD,①成立;∵DF∥BC,∴∠FDB=∠DBC;∵∠FBD=∠DBC,∴∠FBD=∠FDB,∴FD=BF,②成立;∵∠DBM=90°,MF=DF,∴BF=12DM,而CE=BF,∴CE=12DM,即MD=2CE,故③成立.故选D.【点睛】该题主要考查了等腰三角形的判定及其性质、直角三角形的性质等几何知识点及其应用问题;应牢固掌握等腰三角形的判定及其性质、直角三角形的性质11.3,4,···(2到10之间的任意一个数)【解析】【分析】直接利用三角形三边关系得出AC的取值范围,进而得出答案.【详解】根据三角形的三边关系可得:AB-BC<AC<AB+BC,∵AB=6,BC=4,∴6-4<AC<6+4,即2<AC<10,∴AC的长可以是3,4,•••(2到10之间的任意一个数).故答案为3,4,•••(2到10之间的任意一个数).【点睛】此题主要考查了三角形三边关系,正确得出AC的取值范围是解题关键.12.60°【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题.【详解】如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°.【点睛】本题考查等边三角形的性质和动点问题,解题的关键是知道当三点共线时PE+PC最小. 13.(2,-3).【分析】根据平面直角坐标系中任意一点P(x,y),关于y轴对称的点的坐标为(-x,y),将M的坐标代入从而得出答案.【详解】根据关于x轴、y轴对称的点的坐标的特点,∴点N(-2,-3)关于y轴对称的点的坐标是(2,-3).故答案为(2,-3).【点睛】本题主要考查了平面直角坐标系中关于y轴对称的点的坐标的特点,注意掌握任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),关于y轴对称的点的坐标为(-x,y),比较简单.14.40【分析】先根据图形翻折不变的性质可得AD=DF,根据等边对等角的性质可得∠B=∠BFD,再根据三角形的内角和定理列式计算可得∠BDF的解,再根据平角的定义和折叠的性质即可求解.【详解】∵△DEF是△DEA沿直线DE翻折变换而来,∴AD=DF,∵D是AB边的中点,∴AD=BD,∴BD=DF,∴∠B=∠BFD,∵∠B=50°,∴∠BDF=180°-∠B-∠BFD=180°-40°-40°=100°,∴∠EDF=(180°-∠BDF)÷2=40°.故答案为40.【点睛】本题考查的是图形翻折变换的图形能够重合的性质,以及等边对等角的性质,熟知折叠的性质是解答此题的关键.15.直角【分析】设∠A=x°,则∠B=2x°,∠C=3x°,利用三角形内角和为180°求的x,进而求出∠C为90°,即可得出答案.【详解】设∠A=x°,则∠B=2x°,∠C=3x°,∵∠A+∠B+∠C=180°∴x°+2x°+3x°=180°∴x°=30°∴∠C=3x°=90°∴△ABC是直角三角形故答案为直角【点睛】本题考查三角形内角和定理的运用以及三角形形状的判定,熟练掌握三角形内角和定理是解题关键.16.9【分析】根据翻折变换的性质可得点C、E关于AD对称,再根据轴对称确定最短路线问题,BC与AD的交点D即为使PB+PE的最小值的点P的位置,然后根据直角三角形两锐角互余求出∠BAC=60°,再求出∠CAD=30°,然后解直角三角形求解即可.【详解】∵将△ACD沿直线AD翻折,点C落在AB边上的点E处,∴点C、E关于AD对称,∴点D即为使PB+PE的最小值的点P的位置,PB+PE=BC,∵∠C=90°,∠BAC=30°,∴BC=12 AB,∴BC=9.∴PB+PE的最小值为9.故答案为9.【点睛】本题考查了轴对称确定最短路线问题,翻折变换的性质,解直角三角形,难点在于判断出PB+PE取得最小值时点P与点D重合.17.详见解析.【分析】已知AF=DB,则AF+FB=DB+FB,可得AB=DF,结合已知AC=DE,BC=FE可证明△ABC≌△DFE,利用全等三角形的性质证明结论.【详解】证明:∵AF=DB,∴AF+FB=DB+FB ,即AB=DF在△ABC 和△DFE 中,AC DE BC FE AB DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS ),∴∠A=∠D【点睛】本题考查了全等三角形的判定与性质.关键是由已知边相等,结合公共线段求对应边相等,证明全等三角形.18.多边形的边数为5【解析】【分析】根据多边形的外角和均为360°,已知该多边形的内角和比外角和还多180°,可以得出内角和为540°,再根据计算多边形内角和的公式(n-2)×180°,即可得出该多边形的边数.【详解】设多边形的边数为n ,则(n-2)×180°=360°+180°解得n=5答:多边形的边数为5【点睛】本题主要考查多边形的内角和和多边形的外角和.19.(1)详见解析;(2)20°.【解析】【分析】(1)线段垂直平分线的尺规作图;(2)通过线段垂直平分线的性质易得AD=BD ,从而∠BAD=∠B ,再求解即可.【详解】(1)如图,点D 即为所求.(2)在Rt△ABC中,∠B=35°,∴∠CAB=55°,又∵AD=BD,∴∠BAD=∠B=35°,∴∠CAD=∠CAB-∠DAB=55°-35°=20°.【点睛】本题主要考查了尺规作图,线段垂直平分线的作法;线段垂直平分线的性质. 20.(1)(-3,2);(2)2.5【解析】试题分析:(1)根据关于与原点对称的点横、纵坐标均为相反数求解即可;(2)△ABC的面积等于矩形的面积减去三个三角形的面积.(1)如图,C1坐标为(-3,2);(2)11123212131222 ABCS=⨯-⨯⨯-⨯⨯-⨯⨯3611 2.52=---=. 21.BE=0.8cm先证明△ACD ≌△CBE ,再求出EC 的长,解决问题.【详解】解:∵BE ⊥CE 于E ,AD ⊥CE 于D∴∠E =∠ADC =90°∵∠BCE +∠ACE =∠DAC +∠ACE =90°∴∠BCE =∠DAC∵AC =BC∴△ACD ≌△CBE∴CE =AD ,BE =CD =2.5﹣1.7=0.8(cm ).【点睛】本题考查全等三角形的性质和判定,准确找到全等条件是解题的关键.22.见解析【解析】【分析】(1)由于D 是BC 的中点,那么BD =CD ,而BE =CF ,DE ⊥AB ,DF ⊥AC ,利用HL 易证Rt Rt BDE CDF ≌,,可得DE =DF ,利用角平分线的判定定理可知点点D 在∠BAC 的平分线上,即AD 平分∠BAC ;(2)根据全等三角形的性质即可得到结论.【详解】(1)∵D 是BC 的中点∴BD =CD ,又∵BE =CF ,DE ⊥AB ,DF ⊥AC ,Rt Rt BDE CDF ≌,∴DE =DF ,∴点D 在∠BAC 的平分线上,∴AD 平分∠BAC ;(2)Rt Rt BDE CDF ≌,∴∠B =∠C ,∴AB =AC ,∴AB−BE=AC−CF,∴AE=AF,∵DE=DF,∴AD垂直平分EF.【点睛】本题考查了角平分线的性质定理:角的内部到角的两边距离相等的点在角平分线上. 23.(1)∠BAD=40°;(2)详见解析;(3)BD=2.5.【分析】(1)根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;(2)根据高线的定义,过点E作BD的垂线即可得解;(3)根据三角形的中线把三角形分成的两个三角形面积相等,先求出△BDE的面积,再根据三角形的面积公式计算即可.【详解】(1)在△ABE中,∵∠ABE=15°,∠BAD=40°,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)如图,EF为BD边上的高;(3)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD =12S△ABC,S△BDE=12S△ABD,S△BDE=14S△ABC,∵△ABC的面积为20,BD=2.5,∴S△BDE =12BD•EF=12×5•EF=14×20,解得EF=2.【点睛】本题考查了三角形的外角性质,三角形的面积,利用三角形的中线把三角形分成两个面积相等的三角形是解题的关键.24.(1)见解析;(2)见解析;(3)【解析】【分析】(1)先证明9030ABD BAE ∠=-∠= ,,可知AB =2AD ,因为AE =2AD ,所以AB =AE ,从而可知△ABE 是等边三角形.(2)由(1)可知:60ABE AEB ∠=∠= ,AE =BE ,然后求证BEG AEF ≌,即可得出BG =AF ;(3)由于S 四边形AGEF AEG AEF AEG BEG ABE S S S S S =+=+= 故只需求出△ABE 的面积即可.【详解】(1)AB =AC ,AD ⊥BC ,160,902BAE CAE BAC ADB ∴∠=∠=∠=∠= ,9030ABD BAE ∴∠=-∠= ,∴AB =2AD ,∵AE =2AD ,∴AB =AE ,60BAE ∠= ,∴△ABE 是等边三角形.(2)∵△ABE 是等边三角形,60ABE AEB ∴∠=∠= ,AE =BE ,由(1)60,CAE ∠= ∴∠ABE =∠CAE ,60NEM BEA ∠=∠= ,∴∠NEM −∠AEN =∠BEA −∠AEN ,∴∠AEF =∠BEG ,在△BEG 与△AEF 中,,GBE FAE BE AE BEG AEF ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA).BEG AEF ∴ ≌∴BG =AF ;(3)由(2)可知:BEG AEF ≌,S BEG S AEF ∴= ,∴S 四边形AGEF AEG AEF AEG BEG ABES S S S S =+=+= ∵△ABE 是等边三角形,∴AE =AB =4,11422ABE S AE BD ∴=⋅=⨯⨯= ∴S四边形AGEF =25.见详解【分析】根据角平分线的定义可得∠ABD=∠CBD ,然后利用“边角边”证明△ABD 和△CBD 全等,根据全等三角形对应角相等可得∠ADB=∠CDB ,然后根据角平分线上的点到角的两边的距离相等证明即可.【详解】证明:∵BD 为∠ABC 的平分线,∴∠ABD=∠CBD ,在△ABD 和△CBD 中,AB BC ABD CBD BD BD ⎪∠⎪⎩∠⎧⎨===∴△ABD ≌△CBD (SAS ),∴∠ADB=∠CDB ,∵点P 在BD 上,PM ⊥AD ,PN ⊥CD ,∴PM=PN .【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,确定出全等三角形并得到∠ADB=∠CDB 是解题的关键.。
浙江省宁波市2024-2025学年八年级上学期期中数学模拟试题(解析版)
2024-2025学年第一学期浙江省宁波市八年级数学期中模拟练习卷考试范围:八上第1-4章 考试时间:120分钟 试卷满分:120分一、选择题:本题共10题,每题3分,共30分.每小题只有一个选项符合题目要求.1. 下列图形中对称轴条数最多的是( )A.B. C. D. 【答案】A【解析】【分析】此题主要考查如何确定轴对称图形的对称轴条数及位置,掌握轴对称图形的概念是本题的解题关键.根据轴对称图形的定义:一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形就是轴对称图形,这条直线就是它的一条对称轴,由此找出各个图形的对称轴条数,再比较即可解答.【详解】解:A 、有5条对称轴;B 、有3条对称轴;C 、有0条对称轴;D 、有4条对称轴.故对称轴最多的有5条.故选:A .2. 若a b < )A. 11a b +<+B. 22a b −<−C. 33a b <D. 4a <4b 【答案】B【解析】【分析】根据不等式的性质逐个判断即可.【详解】解:A .∵a b <,∴11a b +<+,故本选项不符合题意; B .∵a b <,∴a b −>−,∴22a b −>−,故本选项符合题意;C .∵a b <,∴33a b <,故本选项不符合题意;D .∵a b <,∴4a <4b ,故本选项不符合题意; 故选:B .【点睛】本题考查了不等式的性质,能正确根据不等式的性质进行变形是解此题的关键,①不等式的性质1:不等式的两边都加(或减)同一个数或式子,不等号的方向不变,②不等式的性质2:不等式的两边都乘(或除以)同一个正数,不等号的方向不变,③不等式的性质3:不等式的两边都乘(或除以)同一个负数,不等号的方向改变.3. 如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了几步路,却踩伤了花草.他们少走的路长为( )A. 2mB. 3mC. 3.5mD. 4m【答案】D【解析】 【分析】本题考查勾股定理的应用,利用勾股定理求出AB 的长,再根据少走的路长为AC BC AB +−,计算即可.明确少走的路长为AC BC AB +−是解题的关键.【详解】解:如图,点C A 和点B 都在长方形的边上且6AC =,8BC =, ∴90C ∠=°,∴10AB ,∴他们少走的路长为:()68104m AC BC AB +−=+−=. 故选:D .4. 下列条件中,可以判定ABC 是等腰三角形的是( )A. 40B ∠=°,80C ∠=°B. 123A B C ∠∠∠=::::C. 2A B C ∠=∠+∠D. 三个角的度数之比是2:2:1【答案】D【解析】【分析】本题考查了等腰三角形的判定,三角形内角和定理,熟练掌握等腰三角形的判定是解题的关键.利用三角形内角和定理,等腰三角形的判定,进行计算并逐一判断即可解答.【详解】解:A .∵40B ∠=°,80C ∠=°,∴18060AC B ∠=°−∠−∠=°, ∴ABC 不是等腰三角形,故选项A 错误;B .∵123A BC ∠∠∠=::::,180A B C ∠+∠+∠=°, ∴118030123A ∠=×°=°++,218060123B ∠=×°=°++,318090123C ∠=×°=°++, ∴ABC 不是等腰三角形,故选项B 错误;C .∵2A B C ∠=∠+∠,180A B C ∠+∠+∠=°,∴2180A A ∠+∠=°,∴60A ∠=°,而无法判断B ∠与C ∠的大小,∴ABC 不是等腰三角形,故选项C 错误;D .∵三个角的度数之比是2:2:1, ∴三个角的度数分别是218072221×°=°++,72°,218072221×°=°++, ∴ABC 是等腰三角形,故选项D 错误;故选:D .5. 某商品进价为700元,出售时标价为1100元,后由于商品积压,商店准备打折销售,但要保证利润率不低于10%,则至多可打( )A. 六折B. 七折C. 八折D. 九折 【答案】B【解析】【分析】设最多可打x 折,根据题意,得110070070010%10x ×−≥×,求整数解即可. 本题考查了一元一次不等式的应用,打折问题,正确理解,列出不等式解答是关键.【详解】解:设最多可打x 折, 根据题意,得110070070010%10x ×−≥×, 解得7x ≥.故最多打7折,6. 如图,在ABC 中,AB AC =,120A ∠=°,分别以点A 和C 为圆心,以大于12AC 的长度为半径作弧,两弧相交于点P 和点Q ,作直线PQ 分别交BC ,AC 于点D 和点E .若3CD =,则AB 的长为( )A. 5B.C. 6D. 8【答案】B【解析】 【分析】连接AD ,如图,先根据等腰三角形的性质和三角形内角和定理计算出30B C ∠=∠=°,再由作法得DDDD 垂直平分AC ,所以3DA DC ==, 所以30DAC C ∠=∠=°, 从而得到90BAD ∠=°, 然后根据含30度角的直角三角形三边的关系求BD 的长,进而求出AB 的长.【详解】连接AD , 如图∵,120AB AC A =∠=°,∴30B C ∠=∠=°,由作法得DE 垂直平分AC ,∴3DADC ==, ∴30DAC C ∠=∠=°,∴1203090BAD ∠=°−°=°,在Rt ABD △中,30B ∠=°,∴26BD AD ==,AB ∴=【点睛】本题考查了作图−基本作图,勾股定理,线段垂直平分线的性质和等腰三角形的性质,含30°角直角三角形的性质,解题的关键是掌握以上知识点.7. 在Rt △ABC 中,∠C =90°,AB =15,AC =12,以A 为圆心,适当长为半径画弧,交AC ,AB 于D ,E 两点,再分别以D ,E 为圆心,大于12DE 的长为半径画弧,两弧交于点M ,作射线AM 交BC 于点F ,则线段BF 的长为()A. 5B. 4C. 3D. 2.8【答案】A【解析】 【分析】过点F 作FN ⊥AB 于N ,由作图可知,AM 是∠BAC 的平分线,由角增分线的性质可得FN =FC ,则可利用HL 定理证明Rt △ACF ≌Rt △ANF ,得出AN =AC =12,再在Rt △ACB 中,由勾股定理求出BC =9,设BF =x ,则FN =CF =BC -BF =9-x ,由勾股定理列方程求解即可.【详解】解:过点F 作FN ⊥AB 于N ,由作图可知:AM 平分∠BAC ,∵∠C =90°,∴FC ⊥AC ,∵FN ⊥AB ,∴FN =FC ,在Rt △ACF 和Rt △ANF 中,FC FN AF AF = =, ∴Rt △ACF ≌Rt △ANF (HL),∴AN =AC =12,∴BN =AB -AN =15-12=3,在Rt △ACB 中,由勾股定理,得BC ==9,设BF =x ,则FN =CF =BC -BF =9-x ,在Rt △BNF 中,由勾股定理,得x 2=32+(9-x )2,解得:x =5,故选:A .【点睛】本题考查勾股定理,全等三角形的判定与性质,用尺规作角的平分线,角平分线的性质,由作图得出,AM 是∠BAC 的平分线是解题的关键.8. 如图,ABC 是等边三角形,AD 是BC 边上的高,点E 是AC 边的中点,点P 是AD 上的一个动点,当PC PE +最小时,CPE ∠的度数是( ).A. 30°B. 45°C. 60°D. 90°【答案】C【解析】 【分析】本题主要考查了等边三角形的性质,垂直平分线的性质,最短路径问题,掌握等边三角形三线合一的性质是解题关键.连接BP ,由等边三角形的性质,得出PB PC =,进而得到PC PE PB PE BE +=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,再利用三线合一性质,得到BE AC ⊥,即可得到CPE ∠的度数.【详解】解:如图,连接BP ,ABC 是等边三角形,AD 是BC 边上的高,D ∴是BC 中点,即AD 垂直平分BC ,PB PC ∴=,PC PE PB PE BE ∴+=+≥,即当B 、P 、E 三点共线时,PC PE +有最小值,点E 是AC 边的中点,BE AC ∴⊥,90CEP CEB ∴∠=∠=°,∵等边ABC 中60ABC ACB ∠=∠=°,BE AC ⊥, ∴1302CBE ABC ∠=∠=°, ∵PB PC =,∴此时30PCB PBC ∠=∠=°,∴60CPE PBC PCB ∠=∠+∠=°.故选:C .9. 如图,在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.点P 从点A 出发,沿长方形的边顺时针运动,速度为每秒2个单位长度;点Q 从点A 出发,沿长方形的边逆时针运动,速度为每秒3个单位长度.记P Q ,在长方形边上第一次相遇时的点为1M ,第二次相遇时的点为2M ,……,则2024M 的坐标为是( )A. (1,0)B. ()0,1−C. ()1,0−D. ()1,2−【答案】B【解析】 【分析】本题考查了平面直角坐标系上点的坐标规律,求出长方形ABCD 的周长为()23210+×=,设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,根据题意列出方程,求出相遇各点坐标,得出规律,即可得出答案.【详解】解:∵在平面直角坐标系中,长方形ABCD 的四条边与两条坐标轴平行,已知()1,2A −,()1,1C −.∴()1,1B −−,()1,2D ,∴2AD BC ==,3AB CD ==,∴长方形ABCD 的周长为:()23210+×=, 设经过t 秒,P Q ,第一次相遇,则点P 走的路程为2t ,点Q 走的路程为3t ,由题意得:2310t t +=,解得:2t =,∴当2t =时,P Q ,第一次相遇,此时相遇点1M 的坐标为()1,0,当4t =时,P Q ,第二次相遇,此时相遇点2M 的坐标为()1,0−,当6t =时,P Q ,第三次相遇,此时相遇点3M 的坐标为()1,2,当8t =时,P Q ,第四次相遇,此时相遇点4M 的坐标为()0,1−,当10t =时,P Q ,第五次相遇,此时相遇点5M 的坐标为()1,2−,当12t =时,P Q ,第六次相遇,此时相遇点6M 的坐标为()1,0,…,∴五次相遇为一循环,∵202454044÷=…,∴2024M 的坐标为是()0,1−,故选:B .10. 如图,C 为线段AE 上一动点(不与A ,E 重合),在AE 同侧分别作等边ABC 和等边ECD ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ ,则有以下五个结论:①AD BE =;②PQ AE ∥;③AP BQ =;④DE DP =;⑤60AOB ∠=°.其中正确的有( )A. ①③⑤B. ①③④⑤C. ①②③⑤D. ①②③④⑤【答案】C【解析】 【分析】此题主要考查了全等三角形的判定和性质的应用,等边三角形的判定和性质.①根据全等三角形的判定方法,判断出ACD BCE △△≌,即可判断出AD BE =.②首先根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出CP CQ =;然后根据60PCQ ∠=°,可得PCQ △为等边三角形,所以60PQC DCE ∠=∠=°,据此判断出PQ AE ∥即可.③根据全等三角形的判定方法,判断出ACP BCQ ≌△△,即可判断出AP BQ =.④首先根据,60DC DE PCQ CPQ =∠=∠=°,可得60DPC ∠>°,然后判断出DP DC ≠,再根据DC DE =,即可判断出DP DE ≠.⑤60AOB DAE AEO DAE ADC DCE ∠=∠+∠=∠+∠=∠=°,据此判断即可.【详解】解:∵ABC 和ECD 都是等边三角形,∴,,60ACBC CD CE ACB DCE ====°∠∠, ∴ACB BCD DCE BCD ∠+∠=∠+∠,∴ACD BCE ∠=∠,在ACD 和BCE 中,∵,,AC BCACD BCE CD CE ∠∠===, ∴ACD BCE △△≌,∴AD BE =,结论①正确.∵ACD BCE △△≌,∴CAD CBE ∠=∠,又∵60ACB DCE °∠=∠=,∴180606060BCD ∠=°−°−°=°,∴60ACP BCQ ∠=∠=°, 在ACP △和BCQ △中,,,ACP BCQ CAP CBQ AC BC ∠=∠∠=∠,∴ACP BCQ ≌△△,∴CP CQ =,又∵60PCQ ∠=°, ∴PCQ △为等边三角形,∴60PQC DCE ∠=∠=°, ∴PQ AE ∥,结论②正确.∵ACP BCQ ≌△△,∴AP BQ =,结论③正确.∵,60DC DE PCQ CPQ =∠=∠=°, ∴60DPC ∠>°,∴DP DC ≠,又∵DC DE =,∴DP DE ≠,结论④不正确.∵60AOB DAE AEO ADC DCE ∠=∠+∠=∠+∠=∠=°,结论⑤正确.综上,可得正确的结论有4个:①②③⑤.故选:C .二、填空题:本大题共6个小题.每小题4分,共24分.把答案填在题中横线上. 11. 若不等式()11m x m −+<的解是1x >,则m 的取值范围是______.【答案】1m <【解析】【分析】先移项得(1)1m x m −<−,结合不等式的解集为1x >,可知10m −<,解之即可.【详解】解:∵()11m x m −+<,∴(1)1m x m −<−,∵不等式的解集为1x >,∴10m −<,则1m <,m<.故答案为:1【点睛】本题考查解一元一次不等式,掌握解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12. 若等腰三角形的两边长分别为4和6,则其周长是____________.【答案】14或16【解析】【分析】根据等腰三角形的性质,分两种情况:①当腰长为6时,②当腰长为4时,解答出即可.【详解】解:根据题意,①当腰长为6时,三边为6,6,4,=++=;符合三角形三边关系,周长66416②当腰长为4时,三边为4,4,6,=++=.符合三角形三边关系,周长44614故答案为:14或16.【点睛】本题主要考查了等腰三角形的性质,注意本题要分两种情况解答.13. 如图,Rt△ABC中,∠ABC=90°,AB=BC,直线l1、l2、l3分别通过A、B、C三点,且l1∥l2∥l3.若l1与l2的距离为4,l2与l3的距离为6,则Rt△ABC的面积为________.【答案】26【解析】【详解】过点B作EF⊥l2,交l1于E,交l3于F,如图,∵EF⊥l2,l1∥l2∥l3,∴EF⊥l1⊥l3,∴∠ABE+∠EAB=90°,∠AEB=∠BFC=90°,又∵∠ABC=90°,∴∠ABE+∠FBC=90°,∴∠EAB=∠FBC,在△ABE和△BCF中,{AEB BFC EAB FCB AB BC∠=∠∠=∠=,∴△ABE≌△BCF,∴BE=CF=4,AE=BF=6,在Rt△ABE中,AB2=BE2+AE2,∴AB2=52,∴S△ABC=12AB⋅BC=12AB2=26.故答案是26.14. 在△ABC中,∠B和∠C的平分线交于点F,过点F作DF∥BC ,交AB于点D,交AC于点E,若BD+CE=9,则线段DE的长为________.【答案】9【解析】【详解】∵∠B和∠C的平分线相交于点F,∴∠DBF=∠FBC,∠BCF=∠ECF;∵DE∥BC,∴∠DFB=∠FBC=∠FBD,∠EFC=∠FCB=∠ECF,∴DF=DB,EF=EC,即DE=DF+FE=DB+EC=9.故答案为9.15. 如图,在△ABC中,∠ACB=90°,边BC的垂直平分线EF交AB于点D,连接CD,如果CD=6,那么AB的长为_____.【答案】12【解析】【分析】根据线段的垂直平分线的性质得到DC =DB =6,则∠DCB =∠B ,由∠ACB =∠ACD +∠DCB =90°,得∠A +∠B =90°,从而∠A =∠ACD ,DA =DC =6,则AB =AD +DB 便可求出.【详解】解:∵EF 是线段BC 的垂直平分线,DC =6,∴DC =DB =6,∴∠DCB =∠B ,又∵∠ACB =∠ACD +∠DCB =90°,∴∠A +∠B =90°,∴∠A =∠ACD ,∴DA =DC =6,∴AB =AD +DB =6+6=12,故答案为:12.【点睛】本题考查了线段的垂直平分线的性质,等腰三角形的判定和性质,直角三角形的两锐角互余,熟记性质是解题的关键.16. 如图,Rt BDE △中,90BDE ∠=°,2DB DE ==,A 是DE 的中点,连结AB ,以AB 为直角边作等腰Rt ABC △,其中90ABC ∠=°.①AC 的长为 ______;②连结CE ,则CE 的长为 _____.【答案】 ①. ②.【解析】【分析】①根据勾股定理先计算A BAC ,解答即可;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,根据等面积法可以求得EG FB =的长,再根据勾股定理求得EF 的长,最后计算出CE 的长即可.本题考查勾股定理、等腰直角三角形性质,解答本题的关键是明确题意,求出和的长.【详解】解:①∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===根据勾股定理,得A BAC ,;②过E 点分别作AB ,BC 的垂线,垂足分别为G ,F ,∵90BDE ∠=°,2DB DE ==,A 是DE 的中点, ∴112DA AE DE ===, 四边形EGBF 是矩形,∴EG BF =,根据勾股定理,得A BBE ∴111221222ABE DBE S S ==×××= ,∴112EG =,∴EG =∴BF =,∴EF∴CE的.三、解答题:本大题共8个小题,共66分,解答应写出文字说明、证明过程或演算步骤 17. 解一元一次不等式组,并把解集表示在数轴上.(1)()2112x x −−−<; (2)4261139x x x x >− −+ ≤ 【答案】(1)2x >−,数轴见解析(2)32x −<≤,数轴见解析【解析】分析】(1)先去分母,再去括号,移项,然后合并同类项,并画出数轴,即可作答;(2)由①易得,3x >−,由②去分母,得331x x −≤+,故不等式组得解集为:32x −<≤,并画出数轴,即可作答.【小问1详解】解:去分母得,()()2212x x −−−<,去括号得,2222x x −−+<,移项得,2222x x −<+−,合并同类项得,2x −<,系数化为1得,2x >−,在数轴上表示为:;【小问2详解】 解:4261139x x x x >− −+≤①②,由①得,3x >−,【由②去分母,得331x x −≤+解得,2x ≤.故不等式组得解集为:32x −<≤.在数轴上表示:【点睛】本题考查了解一元一次不等式以及解一元一次不等式组,难度较小,正确掌握相关性质内容是解题的关键.18. 如图,在ABC 中,点D 在BC 上,点E 在AD 上,已知ABE ACE =∠∠,BED CED ∠=∠.试说明BE CE =的理由.【答案】见解析【解析】【分析】因为BED CED ∠=∠,所以AEB AEC ∠=∠,因为ABE ACE =∠∠,得证()AAS AEB AEC ≌,即可作答.【详解】证明:∵180AEB BED ∠=°−∠,180AECCED ∠=°−∠,BED CED ∠=∠ ∴AEB AEC ∠=∠,在AEB 和AEC △中,ABE ACE AEB AEC AE AE ∠=∠ ∠=∠ =, ∴()AAS AEB AEC ≌,∴BE CE =.【点睛】本题考查了全等三角形的判定与性质,难度较小,熟记全等三角形的判定与性质是解题的关键. 19. 如图,有一块凹四边形的绿地ABCD ,4m AD =,3m CD =,90ADC ∠=°,13m AB =,12m BC =,求这块绿地ABCD 的面积.为【答案】这块空地的面积是224m【解析】【分析】本题主要考查了勾股定理及其逆定理的应用,连接AC ,根据勾股定理求出AC ,再根据勾股定理的逆定理说明90ACB ∠=°,最后根据1122ABC ACD S S BC AC DC AD −=⋅−⋅ 得出答案. 【详解】解:连接AC ,∵90ADC ∠=°,4m AD =,3m CD =,∴()5m AC ,∵13m AB =,12m BC =,∴22222251213CB AC AB +=+==,∴90ACB ∠=°,∴四边形ABCD 面积为:1122ABC ACD S S BC AC DC AD −=⋅−⋅ ()2115123424m 22=××−××=. 答:这块空地面积是224m .20. 如图,网格中每个小正方格的边长都为1,点A 、B 、C 在小正方形的格点上.(1)画出与ABC 关于直线l 成轴对称的A B C ′′△;(2)求ABC 的面积;的(3)求BC 边上的高.【答案】(1)见解析 (2)4.5(3)BC 【解析】【分析】(1)利用网格特点和轴对称的性质画出点A 、B 关于直线l 的对称点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算ABC 的面积;(3)先计算出BC 的长,然后利用面积法求BC 边上的高.【小问1详解】解:如图,A B C ′′△为所作; 【小问2详解】解:ABC 的面积11134121433 4.5222=×−××−××−××=; 【小问3详解】解:设BC 边上的高为h ,∵BC,∴1 4.52h ×=,解得h =即BC 【点睛】本题考查了作图-轴对称变换:作轴对称后的图形的依据是轴对称的性质,掌握其基本作法是解决问题的关键(先确定图形的关键点;利用轴对称性质作出关键点的对称点;按原图形中的方式顺次连接对称点).也考查了勾股定理.21. 如图,在四边形ABED 中,90B E ∠=∠=°,点C 是BE 边上一点,AC CD ⊥,CB DE =.(1)求证:ABC CED △≌△.(2)若5AB =,2CB =,求AD 的长.【答案】(1)见解析;(2【解析】【分析】(1)根据“∠B=90°,AC ⊥CD”得出∠2=∠BAC ,即可得出答案;(2)由(1)可得AC=CD ,并根据勾股定理求出AC 的值,再次利用勾股定理求出AD 的值,即可得出答案.【详解】(1)证明:∵90B E ∠=∠=°,∴190BAC ∠+∠=°.∵AC CD ⊥,∴1290∠+∠=°, ∴2BAC ∠=∠.在ABC 和CED △中,2,,,BAC B E CB DE ∠=∠ ∠=∠ =()ABC CED AAS △≌△.(2)解:∵ABC CED △≌△,∴5AB CE ==,AC CD =.∵2BC =,∴在Rt ABC △中,AC∵CD =∴在Rt ACD △中,AD ==【点睛】本题考查的是全等三角形和勾股定理,解题关键是利用两个直角得出2BAC ∠=∠.22. 根据以下素材,探索完成任务.荡秋千问题素材1如图1,小丽与爸妈在公园里荡秋千,开始时小丽坐在秋千的起始位置,且起始位置与地面垂直.素材2 如图2,小丽从秋千的起始位置A 处,两脚在地面上用力一蹬,妈妈在距地面1m 高的B 处接住她后用力一推,爸爸在C 处接住她.若妈妈与爸爸到OA 的水平距离BD 、CE 分别为1.4m和1.8m ,90BOC ∠=°.问题解决任务1OBD 与COE 全等吗?请说明理由;任务2当爸爸在C 处接住小丽时,小丽距离地面有多高?【答案】任务1:OBD 与COE 全等,理由见解析;任务2:1.4m【解析】【分析】本题考查了利用三角形全等测距离的问题,理解题意及熟知全等三角形的性质与判定是解题关键. 任务1:利用AAS ,证得OBD 与COE 全等;任务2:根据全等三角形性质可求出OE 和OD 的值,进而求出OA 的值,最后根据OA OE AE −=,即可求出问题答案.【详解】解:任务1:由题意,得OB OA OC ,1m AD =, 1.4m BD =, 1.8m CE =,90BDO CEO ∠=∠=°,∴90EOC OCE ∠+∠=°,又90BOC BOD COE ∠=∠+∠=°, ∴BOD OCE ∠=∠,在OBD 与COE 中BOD OCE BDO CEO OB OC ∠=∠ ∠=∠ =, ∴()AAS OBD COE ≌ ;任务2:∵OBD COE ≌ ,∴ 1.4m BD OE ==, 1.8m OD CE ==∴1 1.8 1.4 1.4m AE AO OE AD OD OE =−=+−=+−=,即小丽距离地面有1.4m 高.23. 某电器超市销售A B 两种型号的电风扇,A 型号每台进价为200元,B 型号每台进价分别为150元,下表是近两天的销售情况: 销售时段销售数量销售收入A 种型号B 种型号 第一天3台 5台 1620元 第二天 4台 10台 2760元 (进价、售价均保持不变,利润=销售收入-进货成本)(1)求A 、B ;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润不少于1060元的目标?若能,请给出相应的采购方案;若不能,请说明理由.【答案】(1)A 、B 两种型号的电风扇销售单价分别为240元、180元;(2)18;(3)能,方案为A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台【解析】【分析】(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,根据3台A 型号5台B 型号的电扇收入1620元,4台A 型号10台B 型号的电扇收入2760元,列方程组求解即可;(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30-a )台,根据金额不多余5400元,列不等式求解即可得出答案;(3)根据利润大于等于1060元,列不等式求出a 的取值范围,结合(2)中a 的取值范围,即可确定方案.【详解】(1)设A. B 两种型号的电风扇的销售价分别为x 、y 元,由题意得3516204102760x y x y += +=解得:240180x y = =答:A 型号电风扇的销售单价为240元,B 型号电风扇的销售单价为180元.(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30−a)台则200a+150(30−a)≤5400,解得:a ≤18,答:最多采购A 种型号的电风扇18台.(3)根据题意得:(240−200)a+(180−150)(30−a)≥1060,解得a ≥16,∵在(2)的条件下a ≤18,∴16≤a ≤18∵a 为正整数,∴a 可取16,17,18,∴符合题意的方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台;答:在(2)条件下超市销售完这30台电风扇能实现利润不少于1060元的目标,方案为:A 型号16台,B 型号14台;A 型号17台,B 型号13台;A 型号18台,B 型号12台.【点睛】本题考查二元一次方程组和一元一次不等式的应用,根据售价乘以销量等于销售收入列方程组是解题的关键.24. 等腰Rt ABC △中,=AB AC ,=90BAC °∠.的(1)如图1,D ,E 是等腰Rt ABC △斜边BC 上两动点,且=45DAE ∠°,将ABE 绕点A 逆时针旋转90°后,得到AFC ,连接DF .①求证:AED AFD ≌ .②当3BE =,7CE =时,求DE 的长;(2)如图2,点D 是等腰Rt ABC △斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt ADE ,当=3BD ,=9BC 时,则DE 的长 __________.(直接给出答案). 【答案】(1)①证明见解析;②297(2)或【解析】【分析】(1)①利用全等三角形的判定定理即可求证;②证=90DCF ∠°,进而在Rt DCF 中利用勾股定理即可求解;(2)分情况讨论点E 在线段BC ,点D 在线段CB 的延长线上,即可求解.【小问1详解】 ①证明:如图1中,BAE CAF ≅ ,AE AF ∴=,BAE CAF ∠=∠, =90BAC ∠° ,=45EAD ∠°,+=+=45CAD BAE CAD CAF ∴∠∠∠∠°,DAE DAF ∴∠=∠,在AED △和AFD △中,===AE AF EAD FAD AD AD ∠∠,(SAS)AED AFD ∴≅ .②解:如图1中,设DE x =,则7CD x =−.AB AC = ,=90BAC °∠,==45B ACB ∴∠∠°,==45ABE ACF ∠∠° ,=90DCF ∴∠°,(SAS)AED AFD ≅ ,DE DF x ∴==,在Rt DCF △中,∵222DF CD CF =+,3CFBE ==, ∴()22273x x =−+,解得297x, ∴297DE =. 【小问2详解】解:①当点E 在线段BC 上时,如图2中所示,连接BE :90BAC EAD ∠=∠=°EAB DAC ∴∠=∠,AE AD AB AC ==()EAB ADC SAS ∴ ≌45,6ABE C ABC EB CD ∴∠=∠=∠=°==90EBD ∴∠°=222226345DE BE BD ∴=+=+=DE ∴②当点D 在线段CB 的延长线上,如图3中所示,连接BE :同法可证DBE 是直角三角形12,3EB CD DB ===222222123153DE BE BD ∴=+=+=DE ∴ 【点睛】本题考查了全等三角形的判定与性质、用勾股定理解三角形等知识点.分类讨论的数学思想是解决本题的重要思路.。
人教版八年级上册数学期中考试试题含答案
人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。
八年级上册数学期中测试题及答案
八年级上册数学期中测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:B2. 如果一个数的平方等于9,那么这个数可能是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 一个数的绝对值是其本身,那么这个数:A. 一定是正数B. 一定是负数C. 可以是正数或零D. 以上都不对答案:C4. 一个数的立方等于-8,那么这个数是:A. 2C. 8D. -8答案:B5. 下列哪个选项是不等式3x - 5 > 7的解集?A. x > 4B. x < 4C. x > 2D. x < 2答案:A6. 计算 (-2)^3 的结果是:A. -8B. 8C. -6D. 6答案:A7. 一个角是90°,那么它的补角是:A. 90°B. 180°C. 270°D. 360°答案:B8. 一个数的倒数是1/2,那么这个数是:B. 1/2C. 1D. 0答案:A9. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A10. 一个数的立方根是2,那么这个数是:A. 8B. -8C. 2D. -2答案:A二、填空题(每题4分,共20分)1. 一个数的平方等于16,这个数是______。
答案:±42. 如果一个角的补角是120°,那么这个角是______。
答案:60°3. 一个数的绝对值是5,这个数可以是______。
答案:±54. 一个数的立方等于27,这个数是______。
答案:35. 一个数的倒数是1/3,那么这个数是______。
答案:3三、解答题(每题10分,共50分)1. 解方程:3x - 7 = 8。
答案:x = 52. 已知一个角是45°,求它的补角。
八年级数学期中模拟卷【测试范围:第11章~第13章】(华东师大版)(全解全析)
2024-2025学年八年级数学上学期期中模拟试卷(华东师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:华东师大版第11章数的开方~第13章全等三角形。
5.难度系数:0.68。
第一部分(选择题共30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1)2.下列运算正确的是()A.a3+a2=a5B.C.a2_a3=a5D.(a2)4=a6【答案】C【解析】A.a3和a2不是同类项,不能合并,故选项错误,不符合题意;B.,故选项错误,不符合题意;C.a2_a3=a5,故选项正确,符合题意;D.(a2)4=a8,故选项错误,不符合题意;故选C.3.如图AB=DE,∠B=∠E,添加下列条件仍不能判定△ABC≌△DEF的是()A.∠A=∠D B.∠ACB=∠DFE C.D.AC=DF【答案】D【解析】A.AB=DE,∠B=∠E,∠A=∠D,可利用ASA证明△ABC≌△DEF,故该选项不符合题意;B.AB=DE,∠B=∠E,∠ACB=∠DFE,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;C.由可得出∠ACF=∠DFE,再结合AB=DE,∠B=∠E,可利用AAS证明△ABC≌△DEF,故该选项不符合题意;D.用AB=DE,∠B=∠E,AC=DF,SSA无法证明△ABC≌△DEF.故该选项符合题意;故选D.4.设a=a在两个相邻整数之间,则这两个整数是()A.2和3B.3和4C.4和5D.5和65.下列因式分解正确的是()A.2a2―4a=2(a2+a)B.―a2+4=(a+2)(a―2)C.a2―10a+25=a(a―10)+25D.a2―2a+1=(―a+1)2【答案】D【解析】A、2a2―4a=2a(a―2),该选项分解错误,不合题意;B、―a2+4=―(a2―4)=―(a+2)(a―2),该选项分解错误,不合题意;C、a2―10a+25=(a―5)2,该选项分解错误,不合题意;D、a2―2a+1=(1―a)2=(―a+1)2,该选项分解正确,符合题意;故选D.6.如图,点A 在DE 上,AC =EC ,∠1=∠2=∠3,则DE 等于( )A .BCB .ABC .DCD .AE +AC 【答案】B 【解析】令AB 、CD 交于点O ,则∵∠1=∠2,∠AOD =∠BOC,∴∠B =∠D ,∵∠2=∠3,,即∠ACB =∠ECD ,在和中,B =?D ACB =?ECD :cAC =EC,,∴AB =ED .故选B .7.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则拼成长方形的面积是( )A .4m 2+12m +9B .3m +6C .3m 2+6mD .2m 2+6m +9【解析】根据题意,得:(2m+3)2―(m+3)2=[(2m+3)+(m+3)][(2m+3)―(m+3)]=(3m+6)m=3m2+6m故选C.8.观察下列各式:,…,根据你发现的规律,若式子=a、b为正整数)符合以上规律,则a+b的平方根是().A.B.4C.―4D.∵,的平方根是;9.设a=x―2022,b=x―2024,c=x―2023.若a2+b2=16,则c2的值是( ) A.5B.6C.7D.8【答案】C【解析】,b=x―2024,c=x―2023,,a―b=2,∵a2+b2=16,∴(a―b)2+2ab=16,∴ c 2=(a ―1)(b +1)=ab +a ―b ―1=6+2―1=7,故选C .10.如图,在中,AB =AC ,点D 、F 是射线BC 上两点,且,若AE =AD ,∠BAD =∠CAF =15°,则下列结论中①是等腰直角三角形;②;③;④BC ―12EF =2AD ―CF .正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵,∴,∵∠BAD =∠CAF ,∴,又∵AB =AC ,∴是等腰直角三角形,故结论①正确;∵AB =AC ,,∴∠B =∠ACB =45°,在和中,AB =AC BAD =?CAE ADa =AE,∴,∴,∴,即,故结论②正确;∵,∴,∴,故结论,,∴,∴,第二部分(非选择题共90分)二、填空题:本题共8小题,每小题3分,共24分。
专题 期中模拟测试卷(压轴题综合测试卷)(人教版)(原卷版)-2024-2025学年八年级数学上册
专题期中模拟测试卷学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一、选择题(本大题共10小题,每小题3分,满分30分)1.(24-25八年级上·河北廊坊·阶段练习)在下列条件:①∠AA+∠BB=∠CC,②∠AA:∠BB:∠CC=5:3:2,③∠AA= 90°−∠BB,④∠AA=2∠BB=3∠CC,⑤一个外角等于与它相邻的内角.中,能确定△AABBCC是直角三角形的条件有()A.2个B.3个C.4个D.5个2.(24-25八年级上·全国·单元测试)已知数轴上点A,B,C,D对应的数字分别为−1,1,x,7,点C在线段BBBB上且不与端点重合,若线段AABB,BBCC,CCBB能围成三角形,则x可能是()A.2 B.3 C.4 D.53.(23-24八年级上·内蒙古呼伦贝尔·期中)如图,EEBB交AACC于点MM,交FFCC于点BB,∠EE=∠FF=90°,∠BB=∠CC,AAEE=AAFF,给出下列结论:①∠1=∠2;②BBEE=CCFF;③△AACCAA≌△AABBMM;④CCBB=BBAA,其中正确的有()A.①②③B.①②④C.①③④D.②③④4.(24-25八年级上·江苏无锡·阶段练习)如图,∠AA=∠BB=90°,AABB=60,EE、FF分别为线段AABB和射线BBBB上的一点,若点EE从点BB出发向点AA运动,同时点FF从点BB出发向点BB运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AACC上取一点GG,使△AAEEGG与△BBEEFF全等,则AAGG的长为()A.18 B.88 C.88或62 D.18或705.(24-25八年级上·湖北荆州·阶段练习)如图,在△AABBCC中,∠AACCBB=90°,AACC=BBCC,点C的坐标为(−2,0),点B的坐标为(1,6),则A点的坐标为()A.(8,−2)B.(−8,3)C.(−6,2)D.(−6,3)6.(23-24八年级上·福建莆田·期中)如图,在五边形AABBCCBBEE中,∠BBAAEE=142°,∠BB=∠EE=90°,AABB=BBCC,AAEE=BBEE.在BBCC,BBEE上分别找一点MM,AA,使得△AAMMAA的周长最小时,则∠AAMMAA+∠AAAAMM的度数为()A.76° B.84° C.96° D.109°7.(24-25八年级上·重庆江北·开学考试)如图,点D是△AABBCC边BBCC上的中点,点E是AABB上一点且BBEE=3AAEE,F、G是边AABB上的三等分点,若四边形FFGGBBEE的面积为14,则△AABBCC的面积是()A.24 B.42 C.48 D.56 8.(2024·江苏·模拟预测)如图,将四边形纸片AABBCCBB沿MMAA折叠,使点AA落在四边形CCBBMMAA外点AA′的位置,点BB落在四边形CCBBMMAA内点BB′的位置,若∠BB=90°,∠2−∠1=36°,则∠CC等于()A.36°B.54°C.60°D.72°9.(23-24八年级上·江苏南通·期中)如图,在△AABBCC中,∠BBAACC和∠AABBCC的平分线AAEE,BBFF相交于点OO,AAEE交BBCC 于EE,BBFF交AACC于FF,过点OO作OOBB⊥BBCC于BB,下列四个结论:①∠AAOOBB=90°+12∠CC;②当∠CC=60°时,AAFF+ BBEE=AABB;③OOEE=OOFF;④若OOBB=aa,AABB+BBCC+CCAA=2bb,则SS△AAAAAA=aabb.其中正确的结论是()A.①②③B.②③④C.①③④D.①②④10.(23-24八年级上·湖北荆门·期末)如图,C为线段AAEE上一动点(不与点A,点E重合),在AAEE同侧分别作等边△AABBCC和等边△CCBBEE,AABB交于点O,AABB与BBCC交于点P,BBEE与CCBB交于点Q,连接PPPP,OOCC.以下六个结论:①AABB=BBEE;②PPPP∥AAEE;③AAPP=BBPP;④BBEE=BBPP;⑤∠AAOOBB=60°;⑥OOCC平分∠AAOOEE,其中正确的结论的个数是()A.3个B.4个C.5个D.6个评卷人得分二、填空题(本大题共5小题,每小题3分,满分15分)11.(24-25八年级上·江苏宿迁·阶段练习)在的正方形网格中,以格点为顶点的三角形称为格点三角形,在图中画出与△AABBCC关于某条直线对称的格点三角形,最多能画个个.12.(24-25八年级上·黑龙江哈尔滨·阶段练习)风筝又称“纸鸢”、“风鸢”、“纸鹞”等,起源于中国东周春秋时期,距今已有2000多年的历史,如图是一款风筝骨架的简化图,已知AABB=AABB,BBCC=CCBB,AACC=90cm,BBBB=60cm,制作这个风筝需要的布料至少为cm2.13.(24-25八年级上·四川德阳·阶段练习)如图所示,由五个点组成的图形,则∠AA+∠BB+∠CC+∠BB+∠EE=度.14.(24-25八年级上·内蒙古呼和浩特·阶段练习)如图,在Rt△AABBCC中,∠AACCBB=90°,AACC=6,BBCC=8,AABB=10,AABB是∠BBAACC的平分线,若PP,PP分别是AABB和AACC上的动点,则PPCC+PPPP的最小值是.15.(24-25八年级上·福建福州·阶段练习)如图,在△AABBCC中,AABB=AACC,∠BBAACC=120°,AABB⊥BBCC于点D,点P是CCAA延长线上一点,点O在AABB延长线上,OOPP=OOBB,下面的结论:①∠AAPPOO−∠OOBBBB=30°;②△BBPPOO是等边三角形;③AABB−AAPP=AAOO;④SS四边形AAAAAAAA=2SS△AAAAAA,其中正确的结论是.评卷人得分三、解答题(本大题共8小题,满分55分)16.(6分)(23-24八年级上·山东菏泽·期末)如图,在平面直角坐标系中,AA(−1,4),BB(−3,3),CC(−2,1).(1)画出△AABBCC关于xx轴的对称图形△AA1BB1CC1;(2)求△AABBCC的面积;(3)在yy轴上找一点PP,使得△PPBBCC的周长最小.17.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在四边形AABBCCBB中,AACC平分∠BBAABB,过CC作CCEE⊥AABB 于EE,并且∠AABBCC+∠AABBCC=180°.(1)求证:BBCC=BBCC.(2)求证:AAEE=12(AABB+AABB).18.(6分)(24-25八年级上·湖北孝感·阶段练习)如图,△AABBBB和△CCAAEE是等腰直角三角形,其中∠BBAABB=∠CCAAEE=90°,AABB=AABB,AAEE=AACC,过A点作AAFF⊥CCBB,垂足为点F.(1)求证:△AABBCC≌△AABBEE;(2)若CCAA平分∠BBCCEE,求证:CCBB=2BBFF+BBEE.19.(6分)(24-25八年级上·福建莆田·阶段练习)如图,在△AAOOBB和△CCOOBB中,OOAA=OOBB,OOCC=OOBB,若∠AAOOBB=∠CCOOBB=60°,连接AACC、BBBB交于点P;(1)求证∶△AAOOCC≌△BBOOBB.(2)求∠AAPPBB的度数.(3)如图(2),△AABBCC是等腰直角三角形,∠AACCBB=90°,AACC=BBCC,AABB=14cm,点D是射线AABB上的一点,连接CCBB,在直线AABB上方作以点C为直角顶点的等腰直角△CCBBEE,连接BBEE,若BBBB=4cm,求BBEE的值.20.(6分)(23-24八年级上·江苏南通·阶段练习)如图:△AABBCC是边长为6的等边三角形,P是AACC边上一动点.由点A向点C运动(P与点AA、CC不重合),点Q同时以点P相同的速度,由点B向CCBB延长线方向运动(点Q不与点B重合),过点P作PPEE⊥AABB于点E,连接PPPP交AABB于点D.(1)若设AAPP的长为x,则PPCC=_________,PPCC=____________.(2)当∠BBPPBB=30°时,求AAPP的长;(3)点PP,PP在运动过程中,线段EEBB的长是否发生变化?如果不变,直接写出线段EEBB的长;如果变化,请说明理由.21.(8分)(24-25八年级上·湖北省直辖县级单位·阶段练习)如图①,在△AABBCC中,∠AABBCC与∠AACCBB的平分线相交于点P.(1)若∠AA=60°,则∠BBPPCC的度数是;(2)如图②,作△AABBCC外角∠MMBBCC,∠AACCBB的角平分线交于点Q,试探索∠PP,∠AA之间的数量关系;(3)如图③,延长线段BBPP,PPCC交于点E,在△BBPPEE中,存在一个内角等于另一个内角的3倍,请直接写出∠AA的度数是.22.(8分)(23-24八年级上·湖北黄石·期末)在平面直角坐标系中,AA(−5,0),BB(0,5),点C为x轴正半轴上一动点,过点A作AABB⊥BBCC交y轴于点E.(1)如图①,若CC(3,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OOCC<5,其它条件不变,连接BBOO,求证:BBOO平分∠AABBCC;(3)若点C在x轴正半轴上运动,当OOCC+CCBB=AABB时,求∠OOBBCC的度数.23.(9分)(24-25八年级上·山东济宁·阶段练习)(1)问题背景:如图1,在四边形AABBCCBB中,AABB=AABB,∠BBAABB= 120°,∠BB=∠AABBCC=90°,E、F分别是BBCC,CCBB上的点,且∠EEAAFF=60°,探究图中线段BBEE、EEFF、FFBB之间的数量关系.小李同学探究此问题的方法是:延长FFBB到点G,使BBGG=BBEE.连接AAGG,先证明△AABBEE≌△AABBGG,再证明△AAEEFF≌△AAGGFF,可得出结论.他的结论应是______________________.(2)如图2,在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,EE,FF分别是边BBCC,CCBB上的点,且∠EEAAFF= 12∠BBAABB.(1)中的结论是否仍然成立?请写出证明过程.(3)在四边形AABBCCBB中,AABB=AABB,∠BB+∠BB=180°,E,F分别是边BBCC,CCBB所在直线上的点,且∠EEAAFF= 12∠BBAABB.请直接写出线段EEFF,BBEE,FFBB之间的数量关系.。
2024年八年级上册数学期中考试模拟试卷 人教版
人教版2024—2025学年八年级上学期数学期中考试模拟试卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列图案不是轴对称图形的是( )A .B .C .D .2、下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm3、如图,盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条让其固定,其所运用的几何原理是( )A .三角形的稳定性B .垂线段最短C .两点确定一条直线D .两点之间,线段最短4、下列说法中,表示三角形的重心的是( )A .三角形三条中线的交点B .三角形三条高所在的直线的交点C .三角形三条角平分线的交点D .三角形三条边的垂直平分线的交点5、等腰三角形的一个内角为70°,则另外两个内角的度数分别是( )A .55°,55°B .70°,40°或70°,55°C .70°,40°D .55°,55°或70°,40°6、如图,在Rt △ABC 中,∠ABC =90°,DE 是AC 的垂直平分线,交AC 于点D ,交BC 于点E ,∠BAE =20°,则∠C 的度数是( )A .30°B .35°C .40°D .50°7、使两个直角三角形全等的条件是( )A .一个锐角对应相等B .两个锐角对应相等C .一条边对应相等D .两条边对应相等8、如图,点D 、E 分别在AC 、AB 上,已知AB =AC ,添加下列条件,不能说明△ABD ≌△ACE 的是( )A .∠B =∠C B .AD =AE C .∠BDC =∠CEB D .BD =CE9、若P =(x ﹣3)(x ﹣4),Q =(x ﹣2)(x ﹣5),则P 与Q 的大小关系是( )A .P >QB .P <QC .P =QD .由x 的取值而定10、如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补,若∠MPN 在绕点P 旋转的过程中,其两边分别与OA 、OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立;(2)OM +ON 的值不变;(3)四边形PMON 的面积不变;(4)MN 的长不变,其中正确的个数为( )A .4B .3C .2D .1二、填空题(每小题3分,满分18分)11、已知点A (a ﹣1,﹣2)与点B (﹣5,b +5)关于x 轴对称,则a +b = .12、等腰三角形的周长为11cm ,其中一边长为2cm ,则该等腰三角形的腰长为 .13、一个多边形的每一个外角都等于60°,则这个多边形的内角和为 度.14、如图,AD 平分∠CAB ,若S △ACD :S △ABD =4:5,则AB :AC = .15、如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的角平分线,若∠EAD =10°,∠C =70°,则∠B 的度数为 .16、如图,在等腰△ABC 中,AB =AC =8,∠ACB =75°,AD ⊥BC 于D ,点M 、N 分别是线段AB 、AD 上的动点,则MN +BN 的最小值是 .三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、如图,在△ABC 中,点D 为∠ABC 的平分线BD 上的一点,过点D 作EF ∥BC 交AB 于点E ,交AC 于点F ,连接CD ,若BE +CF =EF .求证:△CFD 是等腰三角形.19、如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 的对称的△A 1B 1C 1;(2)在DE 上画出点P ,使P A +PC 最小;(3)在DE 上画出点Q ,使QA ﹣QB 最大.20、如图,在△ABC 中,AB =AC ,D 是BC 上任意一点,过点D 分别向AB、AC引垂线,垂足分别为E、F,CG是AB边上的高.(1)当D点在BC什么位置时,DE=DF?并证明;(2)线段DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.21、已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)求AD的长.22、某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A,B两种园艺造型共50个,摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A种造型的成本是200元,搭配一个B种造型的成本是360元,试说明哪种方案成本最低,最低成本是多少元?23、如图,直线MN一侧有一等腰Rt△ABC,其中∠ACB=90°,CA=CB,直线MN过顶点C,分别过点A,B作AE⊥MN,BF⊥MN,垂直分别为点EF,∠CAB的角平分AG交BC于点O,交MN于点G,连接BG,满足AG⊥BG,延长AC,BG交于点D.(1)证明:CE=BF;(2)求证:AC+CO=AB;(3)若BG=2,求线段AO的长度.24、定义:有一组对角互补的四边形叫做互补四边形.(1)互补四边形ABCD中,若∠B:∠C:∠D=2:3:4,则∠A=°;(2)已知:如图1,在四边形ABCD中BD平分∠ABC,AD=CD,BC>BA.求证:四边形ABCD是互补四边形;(3)如图2,互补四边形ABCD中,∠B=∠D=90°,AB=AD,CD=3,点E,F分别是边BC,CD 的动点,且∠EAF=∠BAD,△CEF周长是否变化?若不变,请求出不变的值;若有变化,说明理由.25、在平面直角坐标系中,点A的坐标为(0,a),点B的坐标为(b,0),且a、b满足a2﹣12a+36+|a﹣b|=0.点C为x轴负半轴上一个动点,OC<OB,BD⊥AC于点D,交y轴于点E.(1)求点A、点B的坐标;(2)求证:OD平分∠CDB.(3)延长BD到点F,使得BF=AB,连接CF若此时∠ACF=∠ABF,2∠DAO=∠ABD,画出图形并证明:CD+CF=AD.。
24-25八年级数学期中模拟卷(湖北省卷专用,人教版八上第11~13章)(全解全析)
2024-2025学年八年级数学上学期期中模拟卷(湖北省卷专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:人教版第11章三角形+第12章全等三角形+第13章轴对称。
5.难度系数:0.65。
第一部分(选择题共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每个小题给出的四个选项中,只有一项符合题目要求的)1.下列长度的三条线段能首尾相接构成三角形的是( )A.1,2,3B.3,4,C.4,5,10D.6,9,2【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形,不符合题意;B、3+4>5,能构成三角形,符合题意;C、4+5<10,不能构成三角形,不符合题意;D、2+6<9,不能构成三角形,不符合题意.故选:B.2.第33届夏季奥运会于2024年7月26日至8月11日在法国巴黎举行,中国取得金牌榜第一名的好成绩,如图所示巴黎奥运会项目图标中,是轴对称图形的是( )A.B.C.D.【解答】解:A.该图形不是轴对称图形,故此选项不合题意;B.该图形不是轴对称图形,故此选项不合题意;C.该图形是轴对称称图形,故此选项符合题意;D.该图形不是轴对称图形,故此选项不合题意.故选:C.3.如图,△ACE≌△DBF,若AD=11cm,BC=5cm,则AB长为( )A.6cm B.7cm C.4cm D.3cm【解答】解:∵△ACE≌△DBF,∴AC=BD,∴AC﹣BC=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB=(11﹣5)÷2=3(cm),故选:D.4.如图,将一副三角尺按图中所示位置摆放,点C在FD的延长线上,点C、F分别为直角顶点,且∠A=60°,∠E=45°,若AB∥CF,则∠CBD的度数是( )A.15°B.20°C.25°D.30°【解答】解:∵AB∥CF,∴∠BCD=∠ABC=30°.∵∠BDF是△BCD的外角,∴∠CBD=∠EDF﹣∠BCD=45°﹣30°=15°.故选:A.5.如图,在△ABC和△DEF中,点B,F,C,E在同一直线上,∠ACB=∠DFE,BF=EC,只添加一个条件,不能判定△ABC≌△DEF的是( )A.AC=DF B.AB=DE C.∠A=∠D D.∠B=∠E【解答】解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,A、由SAS判定△ABC≌△DEF,故A不符合题意;B、∠ACB和∠DFE分别是AB和DE的对角,不能判定△ABC≌△DEF,故B符合题意;C、由AAS判定△ABC≌△DEF,故C不符合题意;D、由ASA判定△ABC≌△DEF,故D不符合题意.故选:B.6.如图,由一个正六边形和正五边形组成的图形中,∠1的度数应是( )A.72°B.84°C.82°D.94°【解答】解:如图,由题意得:∠3=360°÷6=60°,∠4=360°÷5=72°,则∠2=180°﹣60°﹣72°=48°,所以∠1=360°﹣48°﹣120°﹣108°=84°.故选:B.7.下列对△ABC的判断,不正确的是( )A.若AB=AC,∠C=60°,则△ABC是等边三角形B.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形C.若∠A=50°,∠B=80°,则△ABC是等腰三角形D.若AB=BC,∠C=40°,则∠B=40°【解答】解:A、若AB=AC,∠C=60°,则△ABC是等边三角形,说法正确,不符合题意;B、若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形,说法正确,不符合题意;C、若∠A=50°,∠B=80°,可得∠C=50°,则△ABC是等腰三角形,说法正确,不符合题意;D、若AB=BC,∠C=40°,则∠A=40°∠B= 100°,说法错误,符合题意;故选:D.8.如图,在△ABC中,PM、QN分别是线段AB、AC的垂直平分线,若∠BAC=110°,则∠PAQ的度数是( )A.40°B.50°C.60°D.70°【解答】解:∵∠BAC=110°,∴∠B+∠C=180°﹣∠BAC=70°,∵PM、QN分别是线段AB、AC的垂直平分线,∴AP=BP,CQ=AQ,∴∠BAP=∠B,∠CAQ=∠C,∴∠BAP+∠CAQ=∠B+∠C=70°,∵∠BAC=110°,∴∠PAQ=∠BAC﹣(∠BAP+∠CAQ)=110°﹣70°=40°,故选:A.9.如图,在△ABC中,AB=21cm,AC=12cm,∠A=60°,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒,当△APQ 为直角三角形时,t 的值为( )A .2.5秒B .3秒C .3或214秒D .2.5或3秒【解答】解:根据题意得:AP =AB ﹣BP =21﹣3t ,AQ =2t ,∵△APQ 为直角三角形,∠A =60°,∴当∠AQP =90°,∠APQ =30°时,则AQ =12AP ,∴2t =12(21―3t),解得:t =3,当∠APQ =90°,∠AQP =30°时,则12AQ =AP ,∴12×2t =21―3t ,解得:t =214,综上,当t 的值为3秒或214秒时,△APQ 为直角三角形,故选:C .10.如图,△ABC 中,∠ABC 、∠FCA 的角平分线BP 、CP 交于点P ,延长BA 、BC ,PM ⊥BE 于M ,PN ⊥BF 于N ,则下列结论:①AP 平分∠EAC ;②∠ABC +2∠APC =180°;③∠BAC =2∠BPC ;④S △PAC =S △MAP +S △NCP .其中正确结论的个数是( )A .1个B .2个C .3个D .4个【解答】解:①过点P 作PD ⊥AC 于D ,∵PB 平分∠ABC ,PC 平分∠FCA ,PM ⊥BE ,PN ⊥BF ,PD ⊥AC ,∴PM =PN ,PN =PD ,∴PM =PD ,∵PM ⊥BE ,PD ⊥AC ,∴AP 平分∠EAC ,故①正确;②∵PM ⊥AB ,PN ⊥BC ,∴∠ABC +90°+∠MPN +90°=360°,∴∠ABC +∠MPN =180°,在Rt △PAM 和Rt △PAD 中,PM =PD PA =PA ,∴Rt △PAM ≌Rt △PAD (HL ),∴∠APM =∠APD ,同理:Rt △PCD ≌Rt △PCN (HL ),∴∠CPD =∠CPN ,∴∠MPN =2∠APC ,∴∠ABC +2∠APC =180°,②正确;③∵BP 平分∠ABC ,CP 平分∠FCA ,∴∠ACF =∠ABC +∠BAC =2∠PCF ,∠PCF =12∠ABC +∠BPC ,∴∠BAC =2∠BPC ,③正确;④由②可知Rt △PAM ≌Rt △PAD (HL ),Rt △PCD ≌Rt △PCN (HL ),∴S △APD =S △MAP ,S △CPD =S △NCP ,∴S △PAC =S △MAP +S △NCP ,故④正确,故选:D .第二部分(非选择题 共90分)二、填空题(本大题共5小题,每小题3分,满分15分)11.已知等腰三角形的周长为18,其中一边长为5,则该等腰三角形的底边长为 .【解答】解:当腰为5时,另一腰也为5,则底为18﹣2×5=8,∵5+5>8,符合题意,当底为5时,腰为(18﹣5)÷2=6.5,符合题意,∴该三角形的底边长为8或5.故答案为:8或5.12.如图,在△ABC中,AB=BE,AD=DE.若∠A=70°,∠C=50°,则∠EDC= °.【解答】解:在△ABD和△EBD中,AB=EB AD=DE BD=BD,∴△ABD≌△EBD(SSS)∴∠DEB=∠A=70°,∵∠C=50°,∠BED=∠C+∠EDC,∴∠EDC=70°﹣50°=20°故答案为:20°13.如图,BC、AE是锐角△ABF的高,相交于点D,若AD=BF,AF=7,CF=2,则BD的长为 .【解答】解:∵BC、AE是锐角△ABF的高,∴∠DCA=∠BCF=∠AEF=90°,∵∠DAC+∠ADC=90°,∠EAF+∠F=90°∴∠ADC=∠F,在△ADC和△BFC中,∠ACD=∠BCF ∠ADC=∠FAD=BF,∴△ADC≌△BFC(AAS),∴CD=CF=2,BC=AC=AF﹣CF=7﹣2=5∴BD=BC﹣CD=5﹣2=3,故答案为:3.14.将△ABC按如图所示翻折,DE为折痕,若∠A+∠B=130°,则∠1+∠2= °.【解答】解:在△ABC中,∠A+∠B+∠C=180°,在△CDE中,∠CDE+∠CED+∠C=180°,∴∠A+∠B=∠CDE+∠CED,∵∠A+∠B=130°,∴∠CDE+∠CED=130°,∴∠BED+∠ADE=360°﹣130°=230°,由折叠的性质得,∠BED=∠B'ED,∠ADE=∠A'DE,∴∠B'ED+∠A'DE=230°,即∠1+∠CDE+∠2+∠CED=230°,∴∠1+∠2=230°﹣130°=100°,故答案为:100.15.如图,等腰三角形ABC的面积为24,底边BC=6,腰AC的垂直平分线EF分别交边AC、AB于E、F 两点,点M为线段EF上一动点,点D为BC的中点,连接CM、DM.在点M的运动过程中,△CDM 的周长存在最小值为 .【解答】解:连接AD ,AM ,∵△ABC 是等腰三角形,点D 是BC 边的中点,∴AD ⊥BC ,CD =12BC =3,∴S △ABC =12BC ⋅AD =12×6AD =24,解得AD =8,∵EF 是线段AC 的垂直平分线,∴MA =MC ,∴MC +DM =MA +DM ≥AD ,∴AD 的长为CM +MD 的最小值,∴△CDM 的周长最短为:CM +MD +CD =AD +CD =8+3=11,故答案为:11.三、解答题(本大题共9小题,满分75分.解答应写出文字说明,证明过程或演算步骤)16.(6分)如图,已知AE ∥CF ,AB =CD ,∠ADF =∠CBE .求证:△ABE ≌△CDA .【解答】证明:∵AE ∥CF ,∴∠BAE =∠C ,∵∠ADF =∠CBE ,∴180°﹣∠ADF =180°﹣∠CBE ,即∠ADC =∠EBA ,又∵AB =CD ,在△ABE 和△CDA 中,∠BAE =∠C AB =CD ∠ADC =∠EBA,∴△ABE ≌△CDA (ASA ).17.(7分)如图,在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠C =70°.(1)求∠AOB 的度数;(2)若∠ABC =50°,求∠DAE 的度数.【解答】解:(1)∵AE 、BF 是∠BAC 、∠ABC 的角平分线,∴∠OAB +∠OBA =12(∠BAC +∠ABC),在△ABC 中,∠C =70°,∴∠BAC +∠ABC =180°﹣∠C =110°,∴∠AOB =180°―∠OAB ―∠OBA =180°―12(∠BAC +∠ABC)=125°;(2)∵在△ABC 中,AD 是高,∠C =70°,∠ABC =50°,∴∠DAC =90°﹣∠C =90°﹣70°=20°,∠BAC =180°﹣∠ABC ﹣∠C =60°∵AE是∠BAC的角平分线,∴∠CAE=12∠CAB=30°,∴∠DAE=∠CAE﹣∠CAD=30°﹣20°=10°,∴∠DAE=10°.18.(8分)△ABC在平面直角坐标系中的位置如图所示.(1)作出与△ABC关于y轴对称的△A1B1C1;(2)写出点A、B、C关于x轴的对称点的坐标;(3)求出△ABC的面积.【解答】解:(1)如图所示,△A1B1C1即为所求.……………………2分(2)如图所示,A2(﹣2,﹣3),B2(﹣3,﹣2),C2(﹣1,﹣1);……………………5分(3)△ABC的面积为2×2―12×1×2―12×1×2―12×1×1=32.……………………8分19.(8分)如图,在四边形ABCD中,AD∥BC,∠A=90°,BE=AD,CE⊥BD,垂足为E.(1)求证:△ABD≌△ECB;(2)若∠DBC=50°,求∠DCE的度数.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠EBC.∵CE⊥BD,∠A=90°,∴∠A=∠CEB,在△ABD和△ECB中,∠ADB=∠EBC BE=AD∠A=∠CEB∴△ABD≌△ECB(ASA);……………………4分(2)解:∵△ABD≌△ECB,∴BC=BD,∵∠DBC=50°,∴∠EDC=12(180°﹣50°)=65°,又∵CE⊥BD,∴∠CED=90°,∴∠DCE=90°﹣∠EDC=90°﹣65°=25°.……………………8分20.(8分)如图,在△ABC中,AB=AC,点D为BC的中点,连接AD,AB的垂直平分线EF交AB于点E,交AD于点O,交AC于点F,连接OB,OC.(1)求证:△AOC为等腰三角形;(2)若∠BAD=20°,求∠COF的度数.【解答】(1)证明:∵EF是AB的中垂线,∴OA=OB,∵AB=AC,D为BC中点,∴AD⊥BC,∴AD是BC的中垂线,∴OB=OC,∴OA=OC,∴△OAC是等腰三角形.……………………4分(2)解:∵AB=AC,D为BC中点,∴∠DAC=∠BAD=20°,∴∠BAC=40°,∵EF是AB的中垂线,∴EF⊥AB,∴∠AFE=50°,∵OA=OC,∴∠OCA=∠OAC=20°,∵∠AFE=∠OCA+∠COF,∴50°=20°+∠COF,∴∠COF=30°.……………………8分21.(8分)如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,且BD=DF.(1)求证:CF=EB;(2)试判断AB与AF,EB之间存在的数量关系.并说明理由.【解答】(1)证明:∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,∴DC=DE,在Rt△FCD和Rt△BED中,DC=DE DF=DB,∴Rt△FCD≌Rt△BED(HL),∴CF=EB;……………………4分(2)解:AB=AF+2BE,……………………5分理由如下:在Rt△ACD和Rt△AED中,DC=DE AD=AD,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∴AB=AE+BE=AF+FC+BE=AF+2BE.……………………8分22.(8分)在等边三角形ABC中,点E在AB边上,点D在CB的延长线上,且DE=EC.(1)如图1,当E为AB中点时,求证:CB=2BD;(2)如图2,若AB=12,AE=2,求CD的长.【解答】解:(1)∵△ABC为等边三角形,∴∠ABC=∠A=∠ACB=60°,∵EB=AE,∴CE⊥AB,CE是∠ACB的角平分线,∴∠BEC=90°,∠BCE=30°,∴2EB=BC,∵ED=EC,∴∠EDC=∠ECD=30°,∴∠DEB=60°﹣30°=30°,∴BD=BE,∴BC=2BD;……………………4分(2)如图2,过点E作EF∥BC,交AC于点F,∵△ABC为等边三角形,∴∠AFE=∠ACB=∠ABC=60°,△AEF为等边三角形,∴∠EFC=∠EBD=120°,EF=AE,∵ED=EC,∴∠EDB=∠ECB,∠ECB=∠FEC,∴∠EDB=∠FEC,在△BDE和△FEC中,∠EBD=∠EFC ∠EDB=∠FEC ED=EC,∴△BDE≌△FEC(AAS),∴BD=EF,∴AE=BD,∴CD=BC+BD=12+2=14.……………………8分23.(10分)小明在学习过程中,对教材中的一个有趣问题做如图探究:(1)【习题回顾】已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;(2)【变式思考】如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,若∠B=40°,求∠CEF和∠CFE的度数;(3)【探究延伸】如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD 于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M,若∠M=35°,求∠CFE 的度数.【解答】(1)证明:∵∠ACB=90°,CD是高,∴∠B+∠CAB=90°,∠ACD+∠CAB=90°,∴∠B=∠ACD,∵AE是角平分线,∴∠CAF=∠DAF,∵∠CFE=∠CAF+∠ACD,∠CEF=∠DAF+∠B,∴∠CEF=∠CFE;……………………3分(2)解:∵∠B=40°,∠ACB=90°,∴∠GAB=∠B+∠ACB=40°+90°=130°,∵AF为∠BAG的角平分线,∴∠GAF=∠DAF=12×130°=65°,∵CD为AB边上的高,∴∠ADF=∠ACE=90°,∴∠CFE=90°﹣∠GAF=90°﹣65°=25°,……………………5分又∵∠CAE=∠GAF=65°,∠ACB=90°,∴∠CEF=90°﹣∠CAE=90°﹣65°=25°;……………………7分(3)证明:∵C、A、G三点共线,AE、AN为角平分线,∴∠EAN=90°,又∵∠GAN=∠CAM,∴∠M+∠CEF=90°,∵∠CEF=∠EAB+∠B,∠CFE=∠EAC+∠ACD,∠ACD=∠B,∴∠CEF =∠CFE ,∴∠M +∠CFE =90°.∴∠CFE =90°﹣∠M =90°﹣35°=55°. ……………………10分24.(12分)如图,△ABC 是等腰直角三角形,AB =BC ,直角顶点B 在x 轴上,一锐角顶点C 在y 轴上.(1)如图1,若点B 的坐标是(﹣2,0),点A 的坐标是(3,2),求点C 的坐标.(2)如图2,若y 轴恰好平分∠ACB ,AB 与y 轴交于点D ,过点A 作AE ⊥y 轴于点E ,问CD 与AE 有怎样的数量关系?并说明理由.(3)如图3,直角边BC 的两个端点在两坐标轴上滑动,使点A 在第二象限内,过点A 作AF ⊥y 轴于点F ,在滑动的过程中,OB―AF OC为定值,求出这个定值.【解答】解:(1)如图1,过点A 作AN ⊥x 轴于点N ,则∠ANB =∠BOC =90°,∴∠ABN +∠BAN =90°,∵△ABC 是等腰直角三角形,AB =BC ,∴∠ABN +∠CBO =∠ABC =90°,∴∠BAN =∠CBO ,在△BAN 和△CBO 中,∠ANB =∠BOC ∠BAN =∠CBO AB =BC,∴△BAN ≌△CBO (AAS ),∴BN =CO ,∵点B 的坐标是(﹣2,0),点A 的坐标是(3,2),∴BN =2+3=5,∴CO =5,∴点C 的坐标为(0,﹣5),……………………4分(2)CD 与AE 的数量关系为:CD =2AE ,理由如下: ……………………5分如图2,延长AE 交CB 的延长线于点G ,∵y 轴平分∠ACB ,AE ⊥y ,∴△ACG 是等腰三角形,∠AED =90°,∴AE =GE =12AG ,∠GAB +∠ADE =90°,∵△ABC 是等腰直角三角形,=BC ,∴∠CBD =∠ABG =90°,∴∠DCB +∠CDB =90°,∵∠ADE =∠CDB ,∴∠GAB =∠DCB ,在△GAB 和△DCB 中,∠ABG =∠CBDAB =BC ∠GAB =∠DCB ,∴△GAB ≌△DCB (ASA ),∴AG =CD ,∴AE =12CD ,∴CD =2AE ; ……………………8分(3)如图3,过点A 作AH ⊥OB 于点H ,则∠AHB =∠AHO =90°,∵AF ⊥y 轴,∴四边形AHOF 是矩形,∴OH =AF ,∵∠ABH +∠CBO =90°,∠CBO +∠BCO =90°,∴∠ABH =∠BCO ,在△ABH 和△BCO 中,∠AHB =∠BOC =90°∠ABH =∠BCO AB =BC ,∴△ABH ≌△BCO (AAS ),∴HB =OC ,∵HB =OB ﹣OH =OB ﹣AF ,∴OC =OB ﹣AF ,∴OB―AF OC =1. ……………………12分。
初二上期中数学试卷及答案
一、选择题(每题4分,共20分)1. 下列各数中,绝对值最小的是()A. -2B. -1C. 0D. 12. 已知a > 0,b < 0,则下列不等式中正确的是()A. a > bB. a < bC. -a > -bD. -a < -b3. 下列代数式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^24. 若x^2 - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2 或 3D. 无法确定5. 下列函数中,是二次函数的是()A. y = x^2 + 2x + 1B. y = x^2 + 2C. y = 2x^2 - 4x + 3D. y = 2x + 3二、填空题(每题4分,共20分)6. 若a = 3,b = -2,则a^2 + b^2的值为______。
7. 分数2/3的倒数是______。
8. 若x = 4,则2x + 1的值为______。
9. 若a = -3,b = 2,则a^2 - b^2的值为______。
10. 下列方程中,方程x^2 - 5x + 6 = 0的解为______。
三、解答题(每题10分,共30分)11. 简化下列代数式:(1)(a + b)(a - b)(2)(a - b)^2 - (a + b)^2(3)(x - 1)(x + 1) - (x - 2)(x + 2)12. 解下列方程:(1)2x - 5 = 3x + 1(2)x^2 - 6x + 9 = 013. 已知二次函数y = ax^2 + bx + c(a ≠ 0),若a > 0,b < 0,c > 0,则函数的图像是()A. 上升的抛物线B. 下降的抛物线C. 上升的直线D. 下降的直线四、应用题(每题10分,共20分)14. 小明骑自行车从A地到B地,若以每小时10公里的速度行驶,则全程需要3小时;若以每小时15公里的速度行驶,则全程需要2小时。
人教版数学初二上学期期中试题与参考答案(2024年)
2024年人教版数学初二上学期期中复习试题(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、题目:已知一个长方形的长为8cm,宽为5cm,求该长方形的对角线长度。
A. 6cmB. 10cmC. 12cmD. 13cm2、题目:一个班级有学生40人,其中男生人数是女生人数的1.5倍,求该班级男生和女生的人数。
A. 男生30人,女生10人B. 男生25人,女生15人C. 男生35人,女生5人D. 男生20人,女生20人3、若一个矩形的长是宽的3倍,且其周长为48厘米,则该矩形的面积是多少平方厘米?A. 64B. 108C. 128D. 1444、已知直角三角形的两个锐角之比为1∶2,那么这两个锐角分别是多少度?A. 30°, 60°B. 45°, 45°C. 60°, 30°D. 以上都不正确5、一个长方形的长是10厘米,宽是5厘米,它的面积是()A. 25平方厘米B. 50平方厘米C. 100平方厘米D. 200平方厘米6、一个正方形的周长是24厘米,那么它的边长是()A. 2厘米B. 4厘米C. 6厘米D. 8厘米7、已知一个正方形的边长为(a),如果它的边长增加到原来的1.5倍,则新正方形的面积与原正方形面积之比是多少?A.(1.5:1)B.(2.25:1)C.(3:1)D.(1.52:1)8、若一个等腰三角形的底角为(70∘),则顶角的度数是多少?A.(40∘)B.(50∘)C.(60∘)D.(70∘)9、若直角三角形的两条直角边长分别为3和4,则斜边的长度是()A. 5B. 7C. 8D. 10 10、一个长方形的长是10厘米,宽是8厘米,那么它的面积是()A. 80平方厘米B. 90平方厘米C. 100平方厘米D. 120平方厘米二、填空题(本大题有5小题,每小题3分,共15分)1、若(x−3=7),则(x=)______ 。
2024—2025学年人教版八年级上册数学期中考试模拟试卷
2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、运动会中有各种比赛项目,如图可以看作是轴对称图形的是()A.B.C.D.2、若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.83、下列条件中,不能得到等边三角形的是()A.有两个内角是60°的三角形B.三边都相等的三角形C.有一个角是60°的等腰三角形D.有两个外角相等的等腰三角形4、下列命题中,不正确的是()A.关于直线对称的两个三角形一定全等B.角是轴对称图形C.等边三角形有3条对称轴D.等腰三角形一边上的高、中线及这边所对角的角平分线重合5、等腰三角形的两边分别为3cm,4cm,则它的周长是()A.10cm B.11cmC.16cm或9cm D.10cm或11cm6、如图,已知∠A=60°,则∠D+∠E+∠F+∠G的度数为()A.180°B.240°C.300°D.360°7、在△ABC和△DEF中,已知∠A=∠D,AB=DE,下列添加的条件中,不能判定△ABC≌△DEF的是()A.BC=EF B.∠C=∠F C.AC=DF D.∠B=∠E8、如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A=()A.40°B.60°C.80°D.120°9、如图,∠AOB=30°,P是∠AOB的角平分线上的一点,PM⊥OB于点M,PN∥OB交OA于点N,若PM=1,则PN的长为()A.1B.1.5C.3D.210、如图,△ABC的面积为6cm2,BP平分∠ABC,AP⊥BP于P,连接PC,则△PBC的面积为()A.2cm2B.2.5cm2C.3cm2D.3.5cm2第8题第9题第10题二、填空题(每小题3分,满分18分)11、点P(2,3)关于x轴的对称点的坐标为.12、为了使矩形相框不变形,通常可以在相框背后加根木条固定.这种做法体现的数学原理是.13、将一副三角尺按如图所示的方式叠放在一起,则图中∠α的度数是.14、等腰三角形的一个角是70°,则它的底角是.15、如图,已知AB=AC,AD平分∠BAC,∠DEB=∠EBC=60°,若BE=7,DE=3,则BC=.16、如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是.2024—2025学年人教版八年级上册数学期中考试模拟试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、一个多边形,它的内角和比外角和的4倍多180°,求这个多边形的边数及内角和度数.18、如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.19、如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.20、如图,P为∠MON平分线上一点,P A⊥OM于A,PB⊥ON于B.(1)求证:OA=OB;(2)求证:OP垂直平分AB.21、如图,已知AC平分∠BAD,CE⊥AB于E点,∠ADC+∠B=180°.(1)求证:BC=CD;(2)2AE=AB+AD.22、如图,点E在△ABC外部,点D在边BC上,DE交AC于点F,若∠1=∠2=∠3,AB=AD,(1)求证:△ABC≌△ADE.(2)若AF=FC,EF=3DF,且S=1,则△ABC的面积是多少?△DFC23、如图,在8×8的正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(要求:A与A1,B与B1,C与C1相对应)(2)若x轴有一点P使得△P AC为等腰三角形,则x轴上满足条件的点P共有个;(3)在y轴上找一点Q,使QB+QC的值最小,请在图中标出点Q;(4)求△ABC的面积.24、如图1,在平面直角坐标系中,点A、点M在y轴的正半轴上(点M在点A的上方),点B在x轴的正半轴上,AC平分∠MAB,AC的反向延长线交∠ABO 的平分线于点D,BD交y轴于点E.(1)∠ABO=52°时,求∠ABD和∠D的度数;(2)如图2,当点A、点B分别在y轴、x轴的正半轴上任意运动时,∠D的大小是否变化?若不变化,请求出∠D的度数,若变化,请说明理由;(3)当∠ABO等于多少度时,∠DAE=∠DEA.25、如图,在平面直角坐标系中,已知A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足(a﹣b)2+|b+8|=0,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连接OC、OD.(1)A点的坐标为,∠OAB的度数为;(2)如图1,若点C在第一象限,试判断OC与OD的数量关系与位置关系,并说明理由;(3)如图2,若点C的坐标为(3,﹣2),连接CD,DE平分∠ODC,BD与OC交于点F.①求D点的坐标;②试判断DF与CE的数量关系,并说明理由.。
24-25八年级数学期中模拟卷(全解全析)【测试范围:八年级上册第1章-第3章】(青岛版)
2024-2025学年八年级数学上学期期中模拟卷(青岛版)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:青岛版八年级上册第1章~第3章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.下列图案中,是轴对称图形的是()A.B.C.D.【答案】A【详解】A.是轴对称图形,符合题意;B.不是轴对称图形,不符合题意;C. 不是轴对称图形,不符合题意;D. 不是轴对称图形,不符合题意;故选:A.2.已知等腰三角形的一个内角等于110°,则它的两个底角是()A.55°,55°B.35°,35°C.55°,35°D.30°,50°【答案】B【详解】解:∵等腰三角形的一个内角等于110°,且三角形内角和为180°,∴这个等腰三角形的顶角为110°,3.如图,已知AE=CF,AD∥BC,添加一个条件后,仍无法判定△ADF≌△CBE的是()A.DF=BE B.AD=CB C.∠B=∠D D.BE∥DF【答案】A【详解】解:∵AE=CF,∴AE+EF=CF+EF.∴AF=CE.∵AD∥BC,∴∠A=∠C,根据∠A=∠C,DF=BE,AF=CE不能推出△ADF≌△CBE,故本选项符合题意;B.∵AD=CB,∠A=∠C,AF=CE,∴△ADF≌△CBE(SAS),故本选项不符合题意;C.∵∠D=∠B,∠A=∠C,AF=CE,∴△ADF≌△CBE(AAS),故本选项不符合题意;D.∵BE∥DF,∴∠BEC=∠DFA,又∵AF=CE,∠A=∠C,∴△ADF≌△CBE(ASA),故本选项不符合题意;故选:A.4.化简x―2x÷x)A.x+2x B.x―2xC.1x―2D.1x+25.如图,在△ABC 中,AC =5,AB =7,AD 平分∠BAC ,DE ⊥AC ,DE =2,则△ABD 的面积为( )A .14B .12C .10D .7∵AD 平分∠BAC ,DE ⊥AC ,∴DF =DE =2,∴S △ABD =12AB·DF =12×7×6.如图,把长方形纸片ABCD 沿EF 对折,若∠1=52°,则∠AEF 的度数为( )A .114°B .115°C .116°D .117°∴∠AEF=180°―∠BFE=116°,故选:C.7.光明家具厂生产一批学生课椅,计划在30天内完成并交付使用.若每天多生产100把,则23天完成且还多生产200把.设原计划每天生产x把,根据题意,可列分式方程为()A.30x+200x+100=23B.30x―200x+100=23C.30x+200x―100=23D.30x―200x―100=238.已知关于x的方程2x+mx―2=3的解是正数,则m的取值范围为()A.m<-6B.m>-6C.m>-6且m≠-4D.m≠-49.如图1,四边形ABCD是长方形纸带,其中AD∥BC,∠DEF=20°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中∠CFE的度数是()图1图2图3A.110°B.120°C.140°D.150°【答案】B【详解】解:在图(1)中,∵AD∥BC,∴∠DEF=∠EFB=20°,在图(2)中∠GFC=180°―2∠EFG=140°,在图(3)中∠CFE=∠GFC―∠EFG=120°,故选:B.10.如图,在ΔABC中,AD是BC边上的高,∠BAF=∠CAG=90°,AB=AF,AC=AG.连接FG,交DA的延长线于点E,连接BG,CF.则下列结论:①BG=CF;②BG⊥CF;③EF=EG;④BC=2AE;⑤SΔABC=SΔFAG,其中正确的有( )A.①②③B.①②③④C.①②③⑤D.①②③④⑤【答案】D【详解】解:∵∠BAF=∠CAG=90°,∴∠BAF+∠BAC=∠CAG+∠BAC,即∠CAF=∠GAB,又∵AB=AF,AC=AG,∴ΔCAF≌ΔGAB(SAS),∴BG=CF,故①正确;∵ΔCAF≌ΔGAB,∴∠FCA=∠BGA,又∵BG与AC所交的对顶角相等,∴BG与FC所交角等于∠GAC,即等于90°,∴BG⊥CF,故②正确;过点F作FM⊥AE于点M,过点G作GN⊥AE交AE的延长线于点N,∵∠FMA=∠FAB=∠ADB=90°,∴∠FAM+∠BAD=90°,∠FAM+∠AFM=90°,∴∠BAD=∠AFM,又∵AF=AB,∴ΔAFM≌ΔBAD(AAS),∴AM=BD,同理ΔANG≌ΔCDA,∴NG=AD,AN=CD,∴FM=NG,∵FM⊥AE,GN⊥AE,∴∠FME=∠ENG=90°,∵∠AEF=∠NEG,∴ΔFME≌ΔGNE(AAS),∴EM=EN,∴BC=CD+BD=AN+AM=AE+EN+AE―EM=2AE.故④正确,∵ΔFME≌ΔGNE,∴EF=EG.故③正确.∵ΔAFM≌ΔBAD,ΔANG≌ΔCDA,ΔFME≌ΔGNE,∴SΔABC=SΔFAG,故⑤正确.故选:D.二、填空题(本题共6小题,每小题3分,共18分.)11.若分式4x―2有意义,则x的取值范围是.12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3=.【答案】58°/58度【详解】∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,AB=AC∠BAD=∠EACAD=AE,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.13.在平面直角坐标系中,已知点M (m ―1,2m +4)在x 轴上,则点M 的坐标为 .【答案】(―3,0)【详解】解:由题意得,2m +4=0,解得m =―2,∴m ―1=―3,∴M (―3,0),故答案为:(―3,0).14.如图,平面上有△ACD 与△BCE ,其中AD 与BE 相交于点P ,若AC =BC ,AD =BE ,CD =CE ,∠ACE =55°,∠BCD =155°,则∠ACB 的度数为 .15.如图,已知等边三角形ABC 的边长为3,过AB 边上一点P 作PE ⊥AC 于点E ,Q 为BC 延长线上一点,取PA =CQ ,连接PQ ,交AC 于点M ,则ME 的长为 .60°,∠AFP=∠ACB=60°.16.如图所示,在四边形ABCD中,AD=2,∠A=∠D=90°,∠B=60°,BC=2DC,在AD上找一点P,使PC+PB 的值最小,则PC+PB的最小值为.【答案】4【详解】解:作C关于AD的对称点C1,连接C1D、PC1、BC1,∴CD=C1D,∵∠ADC=90°,∴PC=PC1,∴PB+PC=PB+PC1,如图,∵PB+PC1≥BC1,∴当C1、P、B三点共线时,PB+PC1最小,即PB+PC最小,此时PB+PC=BC1过C1作C1E⊥AB交BA的延长线于E,过C作CF⊥AB交AB于F,∴∠E=∠AFC=∠BFC=90°,∴CC1=2CD,∵BC=2DC,∴CC1=BC,∴∠ADC=∠DAF=90°,三.解答题(本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)解方程:(1)1x =2x+1;(2)x -2x+2-16x 2-4=1.∴x=―2是原方程的增根,∴原方程无解.(10分)18.(8÷x,再从―3<x<2的范围内选取一个合适的整数代入求值.x―119.(10分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)△ABC的面积为;(2)在图中作出△ABC关于直线MN的对称图形△A′B′C′.(3)利用网格纸,在MN上找一点P,使得PB+PC的距离最短.(保留痕迹)(2)如图,△A ′B ′C ′即为所求;(7分)(3)如图,点P 即为所求.(10分)20.(10分)如图,在△ABC 中,AB =AC ,点D ,E ,F 分别在AB,BC,AC 边上,且BE =CF ,BD =CE .(1)求证:△DEF 是等腰三角形;(2)求证:∠B =∠DEF ;21.(10分)某校组织学生去郭永怀纪念馆进行研学活动.纪念馆距学校120千米,部分学生乘坐大型客车先行,出发12分钟后,另一部分学生乘坐小型客车前往,结果同时到达.已知小型客车的速度是大型客车速度的1.2倍,求大型客车的速度.22.(12分)阅读材料,并解决问题:我们知道,分子比分母小的分数叫做“真分数”,分子大于或等于分母的分数,叫做“假分数”.类似的,我们定义:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;当分子的次数小于字母的次数时,我们称之为“真分式”.如x―1x+1,x 2x+1这样的分式就是假分式;再如3x+1,2x x 2+1这样的分式就是真分式,假分数74可以化成1+34(即134)带分数的形式,类似的,假分式也可以化为带分式(整式与真分式的和或差)的形式,如:x+1x―1=x―1+2x―1=x―1x―1+2x―1=1+2x―1,再如:3x 2+4x―1x+1=3x (x+1)+x―1x+1=3x (x+1)+x+1―2x+1=3x (x+1)x+1+x+1x+1―2x+1=3x +1―2x+1,这样,分式就被拆分成了带分式(即一个整式3x +1与一个分式2x+1的差)的形式.解决问题:(1)判断:x+2x+1是真分式还是假分式: (填“真分式”或“假分式”);如果是,化成带分式的形式: ;(2)思考:当x 取什么整数时,分式5x 4+9x 2+6x 2+2的值为整数?(3)探索:当a 为何值时,分式3a 2―12a+17a 2―4a+5有最大值?最大值是多少?23.(12分)(1)问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC,CD上的点且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;(2)探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上∠BAD,上述结论是否仍然成立?说明理由;的点,且∠EAF=12(3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°(即:∠EOF=70°),试直接写出此时两舰艇之间的距离.相交于点C,。
人教版八年级上册数学期中考试试卷及答案
人教版八年级上册数学期中考试试题一、单选题1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.2.以下列四组线段的长为边,能组成三角形的是()A.1,4,7B.2,5,8C.3,6,9D.6,8,103.下列图形中具有稳定性的是()A.直角三角形B.长方形C.正方形D.平行四边形4.图中三角形的个数是()A.4个B.6个C.8个D.10个5.下列多边形中,内角和与外角和相等的是()A.三角形B.四边形C.五边形D.六边形6.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是()A.2B.3C.3D.47.如图,△ABC≌△ADE,点D 在BC 上,且∠B=60°,则∠EDC 的度数等于()A.30°B.45°C.60°D.75°8.一个等腰三角形的两边长分别是4和9,则它的周长为()A.17B.22C.27D.17或229.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A.1:1:1B.1:2:3C.2:3:4D.3:4:510.如图,已知ΔABC 和ΔDCE 均是等边三角形,点B、C、E 在同一条直线上,AE 与CD 交于点G,AC 与BD 交于点F,连接FG,则下列结论:①AE=BD;②AG =BF;③FG∥BE;④CF=CG.其中正确的结论的个数是()A.4个B.3个C.2个D.1个二、填空题11.点A(3,﹣1)关于y 轴对称的点的坐标是___________.12.如图,120ACD ∠= ,20B ∠= ,则A ∠的度数是__________.13.如图,AC DC =,BC EC =,请你添加一个适当的条件:_____,使得ABC DEC△≌△14.如图,在△ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点,且24cm ABC S =△,则S =阴影_________.15.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是________.16.已知等腰三角形的一个内角为50°,则这个等腰三角形的顶角为_________.17.如图,ABC 中,7565A B ∠=︒∠=︒,,将纸片的一角折叠,使点C 落在ABC 内,若120∠=︒,则2∠的度数是_____________.三、解答题18.如图,作∠BAC 的平分线AP (用尺规作图,保留作图痕迹,不写作法)19.如图,在△ABC 中,∠B=40°,∠C=60°,AE、AD 分别是角平分线和高.求∠DAE 的度数.20.如图,四边形ABCD 中,AB AC =,B C ∠=∠,求证:BD CD =.21.已知:如图,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC22.如图,在平面直角坐标系中,(2,4)A ,(3,1)B ,(2,1)C --.(1)在图中作出ABC 关于x 轴的对称图形111A B C △;(2)点1A ,1B ,1C 的坐标分别是______,______,______;(3)ABC 的面积为______.23.如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠.24.已知:如图,∠A=∠D=90°,点E、F 在线段BC 上,DE 与AF 交于点O,且AB=CD,BE=CF.求证:△OEF 是等腰三角形.25.如图,在Rt△ABC 中,∠C=90°,∠A=60°,AB=10cm,若点M 从点B 出发以2cm/s 的速度向点A 运动,点N 从点A 出发以1cm/s 的速度向点C 运动,设M,N 分别从点B,A 同时出发,运动的时间为ts.(1)用含t 的式子表示线段AM,AN 的长;(2)当t 为何值时,△AMN 是以MN 为底边的等腰三角形?(3)当t 为何值时,MN∥BC?26.如图,AD 与BC 相交于点O,OA OC =,A C ∠=∠,BE DE =.(1)求证:OE 是BD 的垂直平分线;(2)如图2,若OE 与BD 的交点K 是OE 的中点,写出图中所有的等腰三角形.参考答案1.B【解析】【分析】结合轴对称图形的概念进行求解即可.【详解】解:根据轴对称图形的概念可知:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.D【解析】【分析】根据三角形的任意两边之和大于第三边对各选项分析判断后即可得出答案.【详解】解:A、∵1+4=5<7,∴1,4,7不能组成三角形,故本选项错误;B、∵2+5=7<8,∴2,5,8不能组成三角形,故本选项错误;C、∵3+6=9,∴3,6,9不能组成三角形,故本选项错误;D、6+8=14>10∴6,8,10能组成三角形,故本选项正确.故选:D.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解题的关键.3.A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】此题考查了三角形的稳定性和四边形的不稳定性.4.C【解析】【分析】根据三角形的定义即可得.【详解】图中的三角形是,,,,,,,ABC ABE ACD BCF BCE BCD BDF CEF ,共8个故选:C.【点睛】本题考查了三角形的定义,掌握理解三角形的概念是解题关键.5.B【解析】【分析】根据多边形的内角和公式(n-2)•180°与多边形的外角和定理列式进行计算即可得解.【详解】解:设多边形的边数为n,根据题意得(n-2)•180°=360°,解得n=4.故选:B.6.A【分析】利用角平分线的性质解答.【详解】解:过点P作PE⊥OA于E,∵点P是∠AOB平分线OC上一点,PD⊥OB,∴PE=PD=2,故选:A.【点睛】此题考查角平分线的性质:角平分线上的点到角两边的距离相等.7.C【解析】【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】解:∵△ABC≌△ADE,∴∠B=∠ADE=60°,AB=AD,∴∠ADB=∠B=60°,∴∠EDC=60°.故选:C.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.8.B【解析】【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:(1)若4为腰长,9为底边长,由于4+4<9,则三角形不存在;(2)若9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:B.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.C【解析】【分析】过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,根据角平分线的性质:角平分线上的点到角两边的距离相等,可得:OE OF OD ==,依据三角形面积公式求比值即可得.【详解】解:过点O 作OD AC ⊥于D ,OE AB ⊥于E ,OF BC ⊥于F ,点O 是三条角平分线交点,OE OF OD \==,ABO S ∴ :BCO S △:12CAO S AB OE =⋅⋅ :12BC OF ⋅⋅:12AC OD ⋅⋅::2:3:4AB BC AC ==,故选:C.【点睛】题目主要考查角平分线的性质及三角形面积公式,理解角平分线的性质是解题关键.10.A【解析】【分析】首先根据等边三角形的性质,得到BC=AC,CD=CE,∠ACB=∠BCD=60°,然后由SAS 判定△BCD≌△ACE,根据全等三角形的对应边相等即可证得①正确;又由全等三角形的对应角相等,得到∠CBD=∠CAE,根据ASA,证得△BCF≌△ACG,即可得到②正确,证得CF=CG,得到△CFG是等边三角形,易得③④正确.【详解】解:∵△ABC和△DCE均是等边三角形,∴BC=AC,CD=CE,∠ACB=∠ECD=60°,∴∠BCD=∠ACE,∠ACD=60°,∴△BCD≌△ACE(SAS),∴AE=BD,(①正确)∠CBD=∠CAE,∵∠BCA=∠ACG=60°,AC=BC,∴△BCF≌△ACG(ASA),∴AG=BF,(②正确)CF=CG,∴△CFG是等边三角形,∴CF=CG∴∠CFG=∠FCB=60°,∴FG∥BE,(③④正确)正确的结论为①②③④,故选A.【点睛】本题考查了全等三角形的判定与性质,等边三角形的判定与性质,此题图形比较复杂,解题的关键是仔细识图,合理应用数形结合思想.11.(-3,-1)【解析】【分析】根据关于y 轴对称点的坐标特点,纵坐标不变,横坐标变为原来的相反数.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,1A -关于y 轴对称的点的坐标是()3,1--,故答案为:()3,1--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键.12.100︒【解析】【分析】根据三角形外角定理求解即可.【详解】∵120ACD B A ∠=∠+∠= ,且20B ∠= ,∴12012020100A B ∠=︒-∠=︒-︒=︒.故答案为:100︒【点睛】本题主要考查三角形外角定理,熟练掌握定理是关键.13.AB=DE(答案不唯一).【解析】【详解】解:添加条件是:AB=DE,在△ABC 与△DEC 中,AC DC BC EC AB DE =⎧⎪=⎨⎪=⎩,∴△ABC≌△DEC.故答案为AB=DE.本题答案不唯一.14.21cm 【解析】【分析】因为点F 是CE 的中点,所以△BEF 的底是△BEC 的底的一半,△BEF 高等于△BEC 的高,所以S△BEF=12S△BEC,同理可求△EBC 的面积是△ABC 面积的一半,据此求解即可.【详解】解:点F 是CE 的中点,∴△BEF 的底是EF,△BEC 的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E 是AD 的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,∵24cm ABC S =△,∴S△BEF=12cm ,即S =阴影12cm ,故答案为:21cm .本题主要考查了三角形中线的性质,三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.15.16:25:08【解析】【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【详解】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵5的对称数字为2,2的对称数字是5,镜子中数字的顺序与实际数字顺序相反,∴这时的时刻应是16:25:08.故答案为16:25:08.【点睛】本题考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反,注意2的对称数字为5,5的对称数字是2.16.50︒或80︒.【解析】【分析】讨论这个50︒的角是顶角或是底角两种情况求解即可.解:若50︒的角是顶角,则底角是18050652°-°=°,成立;若50︒的角是底角,则顶角是18025080︒-⨯︒=︒,成立;顶角为50°或80°.故答案是:50︒或80︒.【点睛】本题考查等腰三角形的性质,三角形内角和,解题的关键是掌握等腰三角形的性质.17.60︒【解析】【分析】根据题意,已知∠A=65°,∠B=75°,可结合三角形内角和定理和折叠变换的性质求解.【详解】解:∵∠A=75°,∠B=65°,∴∠C=180°-(65°+75°)=40°,∴∠CDE+∠CED=180°-∠C=140°,∴∠2=360°-(∠A+∠B+∠1+∠CED+∠CDE)=360°-300°=60°.故答案为:60°.【点睛】本题通过折叠变换考查三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.18.见解析【解析】按角平分线的画法作图即可.【详解】解:如下图,射线AP为所求作,19.10°.【分析】先根据三角形的内角和定理得到∠BAC的度数,再利用角平分线的性质可求出∠EAC=12∠BAC,而∠DAC=90°-∠C,然后利用∠DAE=∠EAC-∠DAC进行计算即可.【详解】在△ABC中,∵∠B=40°,∠C=60°∴∠BAC=180°-∠B-∠C=180°-40°-60°=80°∵AE是∠BAC的角平分线,∴∠EAC=12∠BAC=12×80°=40°,∵AD是△ABC的高,∴∠ADC=90°∴在△ADC中,∠DAC=180°-∠ADC-∠C=180°-90°-60°=30°,∴∠DAE=∠EAC-∠DAC=40°-30°=10°.20.见解析连接BC,利用等腰三角形的等边对等角证得A ABC CB =∠∠,进而证得DBC DCB ∠=∠,再根据等腰三角形的等角对等边即可得证.【详解】连接BC ,如图,∵AB AC =,∴A ABC CB =∠∠,又∵ABD ACD ∠=∠,∴DBC DCB ∠=∠,∴BD CD =.21.见解析【分析】连接CD,利用HL 定理得出Rt△ADC≌Rt△BCD 进而得出答案.【详解】证明:如图,连接CD,∵AD⊥AC,BC⊥BD,∴∠A=∠B=90°,在Rt△ADC 和Rt△BCD 中CD CDAC BD =⎧⎨=⎩,∴Rt△ADC≌Rt△BCD(HL),∴AD=BC.22.(1)见解析;(2)(2,4)-;(3,1)-;(2,1)-;(3)172.【分析】(1)首先作出A、B、C 三点关于x 轴的对称点,再顺次连接即可;(2)根据(1)得出对应点位置进而得出答案;(3)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)如图所示,(2)点1A ,1B ,1C 的坐标分别是(2,4)-;(3,1)-;(2,1)-;故答案为:(2,4)-;(3,1)-;(2,1)-;(3)S△ABC =5×5-12×4×5-12×1×3-12×2×5=172;故答案为:17 2.【点睛】此题主要考查了轴对称变换以及三角形面积求法,正确得出对应点位置是解题关键.23.见解析【解析】【分析】由题意利用角平分线的性质“角的平分线上的点到角的两边的距离相等”,以及到角两边距离相等的点在角的角平分线上进行分析证明.【详解】解:如图,过点M作ME⊥AD于F,∵∠C=90°,DM平分∠ADC,∴ME=MC,∵M是BC的中点,∴BM=CM,∴BM=EM,又∵∠B=90°,∴点M在∠BAD的平分线上,∴AM 平分∠DAB.【点睛】本题考查角平分线性质和角平分线的判定,熟练掌握角平分线的性质“角的平分线上的点到角的两边的距离相等”是解题的关键.24.见解析【解析】【分析】证明Rt△ABF≌Rt△DCE,根据全等三角形的性质得到∠AFB=∠DEC,根据等腰三角形的判定定理证明结论.【详解】证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在Rt△ABF 和Rt△DCE 中,AB DC BF CE=⎧⎨=⎩,∴Rt△ABF≌Rt△DCE(HL)∴∠AFB=∠DEC,∴OE=OF,∴△OEF 是等腰三角形.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,掌握全等三角形的判定与性质是解题的关键.25.(1)AM=10-2t,AN=t;(2)t=103;(3)t=2.5【解析】【分析】(1)根据线段的和差即可得到结论;(2)根据等腰三角形的性质得到∴AM=AN,列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】解:(1)AM=AB-BM=10-2t,AN=t;(2)∵△AMN是以MN为底的等腰三角形,∴AM=AN,即10-2t=t,解得,103 t=∴当103t=时,△AMN是以MN为底边的等腰三角形;(3)当MN⊥AC时,MN∥BC.∵∠C=90°,∠A=60°,∴∠B=30°∵MN∥BC,∴∠NMA=30°∴AN=12AM,∴t=12(10-2t),解得t=2.5,∴当t=2.5时,MN∥BC.【点睛】本题考查的是等腰三角形的判定及平行线的判定与性质,熟知等腰三角形的两腰相等是解答此题的关键.26.(1)见解析;(2)DBO ,DEB ,EBO △,DEO【解析】【分析】(1)先证△ABO 和△CDO 全等,得到BO=OD,结合BE DE =,利用垂直平分线的判定即可得解;(2)结合已知和已证及垂直平分线的性质,由图直接写出即可;【详解】解:(1)在△ABO 和△CDO 中,A C OA OC AOB COD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ABO CDO △≌△,∴OB OD =,∴点O 在线段BD 的垂直平分线上,又∵BE DE =,∴点E 在线段BD 的垂直平分线上,∴OE 是BD 的垂直平分线;(2)∵OE 是BD 的垂直平分线;又∵K 是OE 的中点,∴,,OB BE OD DE ==∵BE DE =,∴=OB BE OD DE==故等腰三角形有:DBO ,DEB ,EBO △,DEO。
人教版八年级(上)数学期中试卷(含答案)
人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。
陕西省西安市西安高新一中2024-2025学年八年级上学期期中考试数学试题(含答案)
2024-2025学年度第一学期期中考试试题八年级数学一、选择题(每小题3分,共30分)1.下列是二元一次方程的是( )A .B .C .D .2.已知点在第二象限,则点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.物理课上小新学习了利用排水法测量物体的体积(即物块的体积等于排出的水的体积).如图,他将一个正方体物块悬挂后完全浸入盛满水的圆柱形小桶中(绳子的体积忽略不计),水溢出至一个量简中,测得溢出的水的体积为.由此,可估计该正方体物块的棱长位于哪两个相邻的整数之间( )第3题图A .1和2之间B .2和3之间C .3和4之间D .4和5之间4.利用加减消元法解方程组,小致说:要消去,可以将①②;小远说:要消去,可以将①②.关于小致和小远的说法,下列判断正确的是( )A .小致对,小远不对B .小致不对,小远对C .小致和小远都对D .小致和小远都不对5.若一个正比例函数的图象经过点,则这个图象一定也经过点( )A .B .C .D .6.如图,在平面直角坐标系中,直线:与直线:交于点,则关于、的方程组的解为()3xy =21x y +=23x y +=215x -=(),4A x (),4B x --350cm 34165633x y x y -=⎧⎨+=⎩①②x 3⨯-5⨯y 3⨯+2⨯()4,5-()5,4-4,15⎛⎫-⎪⎝⎭5,14⎛⎫-⎪⎝⎭()5,4-1l 4y x =+2l y kx b =+(),3A a x y4y x y kx b =+⎧⎨=+⎩第6题图A .B .C .D .7.如图,在平面直角坐标系中,,,,点是线段上一点,直线解析式为,当随增大而增大时,点的坐标可以是( )第7题图A .B .C .D .8.如果表中给出的每一对,的值都是二元一次方程的解,则表中的值为( )012531A .B .C .0D .79.《九章算术》是人类科学史上应用数学的“算经之首”,书中有这样一个问题:若2人坐一辆车,则9人需要步行,若“……”.问:人与车各多少?小高同学设有辆车,人数为,根据题意的列方程组为,根据已有信息,题中用“……”表示的缺失条件应补为( )A .三人坐一辆车,有一车少坐2人B .三人坐一辆车,则2人需要步行C .三人坐一辆车,则有两辆空车D .三人坐一辆车,则还缺两辆车10.如图,在一场篮球比赛中,某队甲、乙两队员的位置分别在、两点处,队员甲抢到篮板后,迅速将球抛向对方半场,队员乙看到后同时快跑到点处恰好接住了球,则图中分别表示球、乙队员离点的距离(单位:米)与甲队员抛球后的时间(单位:秒)关系的大致图象是( )A .B .C .D .二、填空题(每小题3分,共21分)31x y =⎧⎨=-⎩14x y =-⎧⎨=⎩13x y =-⎧⎨=⎩13x y =-⎧⎨=-⎩()1,1A -()3,1B ()2,3P M AB PM y kx b =+y x M ()2,1-()0,1()2,1()3,1x y 3ax by -=m x y1-m7-3-x y ()2932y x y x =+⎧⎨=-⎩A B C A y x11.若是同类二次根式,请写出一个符合条件的最简二次根式为________.12.如图,是一只蝴蝶标本,已知表示蝴蝶两“翅膀尾部”,两点的坐标分别为,,则表示蝴蝶“翅膀顶端”点的坐标为________.第12题图13.将直线向左平移2个单位,再向下平移6个单位后,正好经过点,则的值为________.14.如果某个二元一次方程组的解中两个未知数的值互为相反数,我们称这个方程组为“和谐方程组”.若关于,的方程组是“和谐方程组”,则的值为________.15.若一次函数的图象不经过第一象限,则的取值范围是________.16.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图①;小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图②那样的正方形,中间还留下了一个洞,恰好是面积为的小正方形,则每个小长方形的面积为________.图①图②17.如图,在平面直角坐标系中,点,点,点为轴上一点,连接,将绕点逆时针旋转得,连接,得到等腰直角,且为直角,连接,请写出当最大时点的坐标为________.第17题图a a A B ()3,1--()3,1-C 2y kx =-()2,4k x y 343x y ax y a+=+⎧⎨-=⎩a 25y kx k =++k 225mm 2mm ()1,5B ()3,0D A y AB AB B BC AC ABC △ABC ∠CD CB CD -C三、解答题(共8小题,共69分)18.(本题满分8分)计算:(1);(2.19.(本解满分8分)解方程组:(1);(2).20.(本题满分7分)如图,在平面直角坐标系中,点的坐标为,点的坐标为,点的坐标为.(1)将先向右平移5个单位,再关于轴对称,得到,请画出;(2)直接写出,,三点的坐标分别为________,________,________;(3)的面积为________.21.(本题满分7分)定义:若两个二次根式,满足,且是有理数,则称与是关于的“友好二次根式”。
湖北省湖北省知名教联体2024-2025学年八年级上学期11月期中考试数学试题[含答案]
2024年秋季八年级期中质量检测数学试题(考试时间:120分钟 满分:120分)温馨提醒:1.答卷前,请将自己的姓名、班级、考号等信息准确填写在指定位置。
2.请保持卷面的整洁,书写工整、美观。
3.请认真审题,仔细答题,诚信应考,乐观自信,相信你一定会取得满意的成绩!一、选择题(共10小题,每题3分,共30分,在每题给出的四个选项中,只有一项符合题目要求)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .2.一个三角形的两边长分别是12和5,第三边的长恰好是7的整数倍,那么第三边的长是( )A .7B .14C .21D .14或213.若点()1,1A m n +-与点()3,2B 关于y 轴对称,则m n +的值是( )A .5-B .3-C .3D .14.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为( )A .50°B .80°C .65°或50°D .50°或80°5.如图,在ABC V 和DEF V 中,已知AB DE =,A D Ð=Ð,再添加一个条件,如果仍不能证明ABC DEF ≌△△成立,则添加的条件是( )A .AC DF ∥B .BC EF =C .AC DF =D .ACB F Ð=Ð6.如图,小益将平放在桌面上的正五边形磁力片和正六边形磁力片拼在一起(一边重合),则形成的1Ð的度数是( )A .118°B .122°C .128°D .132°7.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°8.如图,ABC DEC ≌△△,AF CD ^.若65BCE Ð=°,CAF Ð的度数为( )A .30°B .25°C .20°D .15°9.如图,ABC DCB △≌△,若96AC BE ==,,则DE 的长为( )A .3B .6C .2D .410.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,AB 的垂直平分线交BC 于点D ,连接AD ,则△ACD 的周长是( )A .7B .8C .9D .10二、填空题(共5小题,每题3分,共15分)11.已知一个n 边形的内角和是900°,则n = .12.如图,,30,80ABE FDC FCD A Ð=°Ð=°△≌△,则ABE Ð的度数是 °.13.在平面直角坐标系中,点()3,4A ,(),B a b 关于x 轴对称,则()2024a b +的值为 .14.在ABC V 中,50B Ð=°,35C Ð=°,分别以点A 和点C 为圆心,大于12AC 的长为半径画弧,两弧相交于点M ,N ,作直线MN ,交BC 于点D ,连接AD ,则BAD Ð的度数为 .15.在ABC V 中,150CA CB ACB =Ð=°,,将一块足够大的直角三角尺()9030PMN M MPN Ð=°Ð=°、按如图所示放置,顶点P 在线段AB 上滑动,三角尺的直角边PM 始终经过点C ,并且与CB 的夹角PCB a Ð=,斜边PN 交AC 于点D .在点P 的滑动过程中,若PCD △是等腰三角形,则夹角α的大小是 .三、解答题(共9题,共75分,解答应写出文字说明,证明过程或演算步骤)16.已知一个多边形的边数为n .(1)若8n =,求这个多边形的内角和.(2)若这个多边形的每个内角都比与它相邻外角的3倍还多20°,求n 的值.17.如图,已知90A D Ð=Ð=°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB DC BE CF ==,.求证:B C Ð=Ð.18.如图,在单位长度为1的方格纸中画有一个ABC V .(1)画出ABC V 关于y 轴对称的A B C ¢¢¢V ;(2)写出点A ¢、B ¢的坐标;(3)求ABC V 的面积.19.如图,DE AB ^于E ,DF AC ^于F ,若BD CD BE CF ==,.(1)求证:AD 平分BAC Ð;(2)已知 10AC =,2BE =,求AB 的长.20.(1)等腰三角形的两边长满足|a -4|+(b -9)2=0,求这个等腰三角形的周长.(2)已知a ,b ,c 是△ABC 的三边,化简:|a +b -c|+|b -a -c|-|c +b -a|.21.如图,在ABC V 中,90B Ð=°,直线CD BC ^于点,C CE 平分ACD Ð交BA 延长线于点,E EF EC ^,交CD 于点F .(1)试判断AB 与CD 的位置关系,并说明理由;(2)若34EFC BAC ÐÐ=,求AEC Ð的度数.22.如图,在ABC V 中,点E 是BC 边上的一点,连接AE ,BD 垂直平分AE ,垂足为F ,交AC 于点D . 连接DE .(1)若ABC V 的周长为19,DEC V 的周长为7,求AB 的长;(2)若30ABC Ð=°,45C Ð=°,求EAC Ð的度数.23.已知,ABC V 中,CA CB =,90ACB Ð=°,一直线过顶点C ,过A ,B 分别作其垂线,垂足分别为E ,F .(1)如图1,求证:EF AE BF =+;(2)如图2,请直接写出EF ,AE ,BF 之间的数量关系 ;(3)在(2)的条件下,若3BF AE =,4EF =,求BFC △的面积.24.如图所示,在平面直角坐标系中,()4,4P ,(1)点A 在x 的正半轴运动,点B 在y 的正半轴上,且PA PB =,①求证:PA PB ^:②求OA OB +的值;(2)点A 在x 的正半轴运动,点B 在y 的负半轴上,且PA PB =,求OA OB -的值.1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A .是轴对称图形,故A 符合题意;B .不是轴对称图形,故B 不符合题意;C .不是轴对称图形,故C 不符合题意;D .不是轴对称图形,故D 不符合题意.故选:A .【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】本题考查三角形的三边关系,根据三角形的三边关系确定第三边的取值范围,再根据第三边的长恰好是7的整数倍,进行判断即可.【详解】解:∵三角形的两边长分别是12和5,设第三边长为x ,∴125125x -<<+,即:717x <<,∵第三边的长恰好是7的整数倍,∴第三边的长是14;故选B .3.A【分析】根据关于y 轴对称的点的坐标特点可得1312m n +=-ìí-=î,解方程即可得到答案.【详解】解:∵点()1,1A m n +-与点()3,2B 关于y 轴对称,∴1312m n +=-ìí-=î,∴41m n =-ìí=-î,∴()415m n +=-+-=-,故选A .【点睛】本题主要考查了坐标与图形变化—轴对称,熟知关于y 轴对称的点横坐标互为相反数,纵坐标相同是解题的关键.4.D【分析】本题主要考查了等腰三角形的性质和三角形内角和定理,根据等腰三角形的性质分类讨论是解答本题的关键.根据等腰三角形的性质,分已知角是顶角和底角两种情况分别即可.【详解】解:∵已知三角形是等腰三角形,∴当50°是底角时,顶角()180505080=°-°+°=°;当50°是顶角时,符合题意;综上所述,等腰三角形的顶角度数为50°或80°.故选D .5.B【分析】利用三角形全等的判定定理逐一推理即可.【详解】解:∵AC DF ∥,∴ACB F Ð=Ð,∴ACB F A D AB DE Ð=ÐìïÐ=Ðíï=î,∴ABC DEF ≌△△,故A ,D 都正确,不符合题意;∵AC DF A D AB DE =ìïÐ=Ðíï=î,∴ABC DEF ≌△△,故C 正确,不符合题意;当添加BC EF =时,不符合任何一个判定定理,无法判定ABC DEF ≌△△,故B 符合题意,故选:B .【点睛】本题考查了添加条件判定全等,熟练掌握三角形全等的判定定理是解题的关键.6.D【分析】本题考查正多边形的内角和问题,根据多边形内角和公式及正多边形的性质求出2,3ÐÐ的度数,再根据123360Ð+Ð+Ð=°即可解答.【详解】解:如图,()()62180521802120,310865-´°-´°Ð==°Ð==°Q ,Q 123360Ð+Ð+Ð=°,1132\Ð=°,故选:D .7.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .8.B【分析】本题考查了全等三角形的判定和性质,垂直的定义,直角三角形的性质,由全等三角形的性质可得ACB DCE Ð=Ð,即可得BCE DCA Ð=Ð,得到65ACF Ð=°,再根据直角三角形的的性质即可求解,掌握全等三角形的性质是解题的关键.【详解】解:∵ABC DEC ≌△△,∴ACB DCE Ð=Ð,∴ACB ACE DCE ACE Ð-Ð=Ð-Ð,即BCE DCA Ð=Ð,∵65BCE Ð=°,∴65DCA Ð=°,即65ACF Ð=°,∵AF CD ^,∴90AFC Ð=°,∴906525CAF Ð=°-°=°,故选:B .9.A【分析】此题考查了全等三角形的性质,熟记“全等三角形的对应边相等”是解题的关键.根据全等三角形的性质及线段的和差求解即可.【详解】解:ABC DCB QV V ≌,9AC =,9BD AC \==,BD BE DE =+Q ,6BE =,3DE \=,故选:A .10.A【分析】先根据线段垂直平分线的性质得出AD=BD ,然后求周长即可.【详解】解:∵AB 的垂直平分线交BC 于D ,∴AD=BD ,∵AC=3,BC=4∴△ACD 的周长为:AC+CD+AD=AC+BC=7.故选A .【点睛】本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.11.7【分析】本题考查了多边形的内角和,熟记多边形的内角和公式是解题的关键;根据n 边形的内角和为180(2)n °-列出关于n 的方程,解方程即可求出边数n 的值.【详解】解:根据题意,得180(2)900n °-=°,解得7n =,故答案为:7.12.70【分析】本题考查了全等三角形的性质,掌握这性质是关键.根据三角形全等的性质,得出30E FCD Ð=Ð=°,然后求出18070ABE A E Ð=°-Ð-Ð=°即可.【详解】解:∵ABE FDC V V ≌,∴30E FCD Ð=Ð=°,∵80A Ð=°,∴18070ABE A E Ð=°-Ð-Ð=°.故答案为:70.13.1【解析】略14.60°##60度【分析】本题主要考查基本作图,线段垂直平分线的性质是解题的关键.由线段垂直平分线的性质可得AD DC =,根据等边对等角得到35DAC C Ð=Ð=°,根据内角和定理求得18095BAC B C Ð=°-Ð-Ð=°,最后根据角度的和差关系即可得到答案.【详解】解:由作图可知:MN 为线段AC 的垂线平分线,∴AD DC =,∴35DAC C Ð=Ð=°,在ABC V 中,50B Ð=°,35C Ð=°,∴18095BAC B C Ð=°-Ð-Ð=°,∴60BAD BAC DAC Ð=Ð-Ð=°,故答案为:60°.15.30°或75°或120°【分析】本题考查了等腰三角形的性质,三角形的内角和定理,用分类讨论的思想解决问题是解本题的关键.分三种情况考虑:当PC PD PD CD PC CD ===;;,分别求出夹角a 的大小即可.【详解】解:∵PCD △是等腰三角形,15030PCD CPD a Ð=°-Ð=°,,①当PC PD =时,∴18030752PCD PDC °-°Ð=Ð==°,即15075a °-=°, ∴75a =°; ②当PD CD =时,PCD △是等腰三角形,∴30PCD CPD Ð=Ð=°,即15030a °-=°,∴120a =°;③当PC CD =时,PCD △是等腰三角形,∴30CDP CPD Ð=Ð=°,∴180230120PCD Ð=-´=°°°, 即150120a °-=°,∴30a =°, 此时点P 与点B 重合,点D 和A 重合,综合所述:当PCD △是等腰三角形时,a =30°或75°或120°.故答案为:30°或75°或120°.16.(1)1080°(2)9【分析】本题考查多边形的内角和与外角的综合应用:(1)直接根据内角和公式进行计算即可;(2)设每个外角的度数为a ,根据题意,列出方程求出a ,再根据多边形的外角和为360度,求解即可.【详解】(1)解:()821801080-´°=°;(2)设每个外角的度数为a ,则每个内角的度数为320a +°,∴320180a a ++=°,∴40a =°,∴360940n ==.17.见解析【分析】本题主要考查了全等三角形的性质与判定,由BE CF =,得BF CE =,即可用HL 证明Rt Rt ABF DCE ≌△△,即可证明B C Ð=Ð.【详解】证明:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,在Rt ABF V 和Rt DCE V 中,AB DC BF CE=ìí=î,∴()Rt Rt HL ABF DCE ≌△△,∴B C Ð=Ð.18.(1)见解析(2)点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-(3)132【分析】(1)找到ABC V 中三个顶点的对称点,连接即可;(2)根据点在直角坐标系中得位置,写出坐标即可;(3)利用添补法用长方形面积减去三个三角形面积即可.【详解】(1)解:如图所示,A B C ¢¢¢V 即为所求.(2)解:由图可知点A ¢的坐标为()3,2,点B ¢的坐标为()4,3-;(3)解:ABC V 的面积为11113352315232222´-´´-´´-´´=.【点睛】本题考查了直角坐标系,相关知识带你有:图形的轴对称、割补法求三角形面积等,熟练运用直角坐标系的知识点是解题关键.19.(1)见解析(2)6【分析】(1)求出90E DFC Ð=Ð=°,根据全等三角形的判定定理得出Rt Rt BED CFD ≌△△,推出DE DF =,根据角平分线性质得出即可.(2)根据全等三角形的性质得出AE AF =,由线段的和差关系求出答案.【详解】(1)证明:DE AB ∵⊥,DF AC ^,90E DFC \Ð=Ð=°,在Rt BDE △与Rt CDF △中,BD CD BE CF =ìí=î,()Rt Rt HL BDE CDF \≌V V ,DE DF \=,又DE AB ∵⊥,DF AC ^,AD \平分BAC Ð.(2)解:Rt Rt BDE CDF ≌Q V V ,2BE =,2CF BE \==,10AC =Q ,1028AF AC CF \=-=-=,在Rt ADE V 与Rt ADF V 中,AD AD DE DF=ìí=î,()Rt Rt HL ADE ADF \≌V V ,8AE AF \==,826AB AE BE \=-=-=.【点睛】本题考查了全等三角形的性质和判定、角平分线的判定,熟练掌握全等三角形的判定及性质和角平分线的判定是解题的关键.20.(1)22;(2)22a c -.【分析】(1)根据非负数的性质求出a 、b ,再根据三角形三边关系分情况讨论求解.(2)三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵()240,90a b -³-³,且()2490a b -+-=,∴40,90a b -=-=,解得:4,9a b ==,①4是腰长时,三角形的三边分别是4、4、9,∵449+<,∴不能组成三角形.②4是底边时,三角形的三边分别是4、9、9,能组成三角形,周长99422=++=,综上所述,等腰三角形的周长是22.(2)ABC D Q 的三边长分别是a 、b 、c ,0a b c \+->,()0b a c b a c --=-+<,0c b a +->,原式[()]()a b c b a c c b a =+-+----+-a b c b a c c b a =+--++--+22a c =-.【点睛】此题主要考查了三角形三边关系与绝对值的性质.解此题的关键是根据三角形三边的关系来判定是否能构成三角形或绝对值内式子的正负.21.(1)AB CD ∥,理由见解析(2)36AEC Ð=°【分析】本题主要考查了平行线的性质和判定,角平分线的定义,解题的关键是熟练掌握平行线的判定和性质.(1)根据同旁内角互补两直线平行进行判断即可;(2)设4BAC x Ð=,则3EFC x Ð=,根据平行线的性质得出4ACD BAC x Ð=Ð=,根据角平分线的定义得出2ACE DCE x Ð=Ð=,根据平行线的性质得出2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,即3290x x +=°,求出18x =°,即可得出答案.【详解】(1)解:AB CD ∥,理由如下:∵CD BC ^,90B Ð=°,∴90BCD B Ð=Ð=°,∴180BCD B Ð+Ð=°,∴AB CD ∥.(2)解:设4BAC x Ð=,则3EFC x Ð=.∵AB CD ∥,∴4ACD BAC x Ð=Ð=,∵CE 平分ACD Ð,∴2ACE DCE x Ð=Ð=,∵AB CD ∥,∴2BEC DCE x Ð=Ð=,180CFE BEF Ð+Ð=°,∵EF EC ^,∴90CEF Ð=°,∴1809090CFE CEB Ð+Ð=°-°=°,∴3290x x +=°,解得:18x =°,∴21836AEC Ð=´°=°.22.(1)6AB =(2)30°【分析】本题考查的是线段的垂直平分线的性质,等边对等角,三角形的内角和定理的应用,三角形的外角的性质,掌握以上基础知识是解本题的关键.(1)先证明AB BE =,AD DE =,结合ABC V 的周长为19,DEC V 的周长为7,可得19712AB BE +=-=,从而可得答案;(2)先求解1803045105BAC Ð=°-°-°=°,然后利用等边对等角和三角形内角和定理得到()1180752BAE BEA ABC Ð=Ð=°-Ð=°,进而求解即可.【详解】(1)解:∵BD 是线段AE 的垂直平分线,∴AB BE =,AD DE =,∵ABC V 的周长为19,DEC V 的周长为7,∴19AB BE CE CD AD ++++=,7CD EC DE CD CE AD ++=++=,∴19712AB BE +=-=,∴6AB BE ==;(2)解:∵30ABC Ð=°,45C Ð=°,∴1803045105BAC Ð=°-°-°=°,∵AB BE=∴()1180752BAE BEA ABC Ð=Ð=°-Ð=°∴30EAC BAC BAE Ð=Ð-Ð=°.23.(1)见解析(2)EF BF AE =-,理由见解析(3)6【分析】本题考查了全等三角形的判定和性质,三角形的面积,余角的性质.熟练掌握全等三角形的判定和性质定理是解题的关键.(1)根据垂直的定义和余角的性质得到FCB EAC Ð=Ð,根据全等三角形的性质得到AE CF =,CE BF =,等量代换得到结论;(2)根据余角的性质得到CAE BCF Ð=Ð根据全等三角形的性质得到CE BF =,AE CF =,等量代换得到结论;(3)由(2)得EF AE BF =+且3BF AE =,求得3CE AE =,得到24EF AE ==,根据三角形的面积公式即可得到结论.【详解】(1)证明:90ACB Ð=°Q ,90ECA FCB \Ð+Ð=°,又AE EF ^Q ,BF EF ^,90AEF BFC \Ð=Ð=°,90ECA EAC \Ð+Ð=°,FCB EAC \Ð=Ð,在ACE △和CBF V 中,AEC BFC EAC FCB AC BC Ð=ÐìïÐ=Ðíï=î,(AAS)ACE CBF \△≌△,AE CF ∴=,CE BF =,EF EC CF =+Q ,EF AE BF \=+;(2)解:EF BF AE =-,理由如下:90AEC CFB Ð=Ð=°Q ,90ACB Ð=°,90ACE CAE ACE BCF \Ð+Ð=Ð+Ð=°,CAE BCF\Ð=Ð又AC BC =Q ,(AAS)CAE BCF \V V ≌,CE BF \=,AE CF =,EF CE CF BF AE \=-=-,即EF BF AE =-;(3)解:由(2)得EF BF AE =-且3BF AE =,3CE AE \=,CF AE =Q ,24EF AE \==,2AE CF \==,6BF =,BFC \△的面积1126622CF BF =×=´´=.24.(1)①见解析;②8OA OB +=(2)8OA OB -=【分析】本题是三角形综合题,考查了全等三角形的判定与性质、坐标与图形性质,本题综合性强,熟练掌握全等三角形的判定与性质,正确作出辅助线,构造全等三角形是解题的关键,属于中考常考题型.(1)①过点P 作PE x ^轴于E ,作PF y ^轴于F ,根据点P 的坐标可得4PE PF ==,然后利用“HL”证明Rt APE V 和Rt BPF V 全等,根据全等三角形对应角相等可得APE BPF Ð=Ð,然后求出90APB EPF Ð=Ð=°,再根据垂直的定义证明;②根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解;(2)根据全等三角形对应边相等可得AE BF =,再表示出PE 、PF ,然后列出方程整理即可得解.【详解】(1)①证明:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,∴PE PF ^,∵()4,4P ,∴4PE PF ==,在Rt APE V 和Rt BPF V ,PA PB PE PF=ìí=î,∴()Rt Rt HL APE BPF V V ≌,∴APE BPF Ð=Ð,∴90APB APE BPE BPF BPE EPF Ð=Ð+Ð=Ð+Ð=Ð=°,∴PA PB ^;②解:∵()Rt Rt HL APE BPF V V ≌,∴BF AE =,∵,OA OE AE OB OF BF =+=-,∴448OA OB OE AE OF BF OE OF +=++-=+=+=;(2)解:如图,过点P 作PE x ^轴于E ,作PF y ^轴于F ,同理得()Rt Rt HL APE BPF V V ≌,∴AE BF =,∵4,4AE OA OE OA BF OB OF OB =-=-=+=+,∴44OA OB -=+,∴8OA OB -=.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新八年级数学上期中模拟试题及答案一、选择题1.如图,把△ABC 沿EF 对折,叠合后的图形如图所示.若∠A =60°,∠1=85°,则∠2的度数( )A .24°B .25°C .30°D .35°2.下列各式中,分式的个数是( )2x ,22a b +,a b π+,1a a +,(1)(2)2x x x -++,b a b+.A .2B .3C .4D .53.李老师开车去20km 远的县城开会,若按原计划速度行驶,则会迟到10分钟,在保证安全驾驶的前提下,如果将速度每小时加快10km ,则正好到达,如果设原来的行驶速度为xkm/h ,那么可列分式方程为 A .20201010x x -=+ B .20201010x x -=+ C .20201106x x -=+ D .20201106x x -=+ 4.若分式11x x -+的值为零,则x 的值是( ) A .1B .1-C .1±D .25.如图,ABC △是一块直角三角板,90,30C A ∠=︒∠=︒,现将三角板叠放在一把直尺上,AC 与直尺的两边分别交于点D ,E ,AB 与直尺的两边分别交于点F ,G ,若∠1=40°,则∠2的度数为( )A .40ºB .50ºC .60ºD .70º6.计算b aa b b a+--的结果是 A .a-bB .b-aC .1D .-17.如图,在ABC ∆中,64A ∠=︒,ABC ∠与ACD ∠的平分线交于点1A ,得1A ∠;1A BC ∠与1A CD ∠的平分线相交于点2A ,得2A ∠;……;1n A BC -∠与1n A CD -∠的平分线交于点n A ,要使n A ∠的度数为整数,则n 的最大值为( )A .4B .5C .6D .7 8.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( ) A .1 B .2 C .8 D .11 9.若正多边形的内角和是540︒,则该正多边形的一个外角为( ) A .45︒B .60︒C .72︒D .90︒10.若2n +2n +2n +2n =2,则n=( ) A .﹣1B .﹣2C .0D .1411.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 8 12.已知a b 3132==,,则a b 3+的值为( ) A .1B .2C .3D .27二、填空题13.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.14.如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.15.已知m ﹣n=2,mn=﹣1,则(1+2m )(1﹣2n )的值为__. 16.关于x 的分式方程22kx 3x 1x 1x 1+=--+会产生增根,则k =_____. 17.若直角三角形的一个锐角为50°,则另一个锐角的度数是_____度.18.清明节期间,初二某班同学租一辆面包车前去故宫游览,面包车的租金为600元,出发时又增加了5名同学,且租金不变,这样每个同学比原来少分摊了10元车费,若设实际参加游览的同学,一共有x 人则可列分式方程________.19.若关于x的分式方程1101axx+-=-的解为正数,则a的取值范围_______.20.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题21.如图,已知AB∥CD,分别探讨下面的四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得关系中任意选取一个加以说明.22.如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA =BC,连接AC.(1)如图1,求C点坐标;(2)如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:P A=CQ;(3)在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.书店老板去图书批发市场购买某种图书,第一次用1200元购买若干本,很快售完.第二次购买时,每本书的进价比第一次提高了20%,他用1500元所购买的数量比第一次多10本.求第一次购买的图书,每本进价多少元?25.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】首先根据三角形内角和定理可得∠AEF+∠AFE=120°,再根据邻补角的性质可得∠FEB+∠EFC=360°-120°=240°,再根据由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC=240°,然后计算出∠1+∠2的度数,进而得到答案. 【详解】解:∵∠A=60°,∴∠AEF+∠AFE=180°-60°=120°, ∴∠FEB+∠EFC=360°-120°=240°,∵由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC=240°, ∴∠1+∠2=240°-120°=120°, ∵∠1=85°,∴∠2=120°-85°=35°. 故选:D . 【点睛】此题主要考查了翻折变换,关键是根据题意得到翻折以后,哪些角是对应相等的.2.B解析:B 【解析】 【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式. 【详解】22a b +, a bπ+的分母中均不含有字母,因此它们是整式,而不是分式; ba 的分子不是整式,因此不是分式.2 x ,1aa+,()()122x xx-++的分母中含有字母,因此是分式.故选B.【点睛】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子AB叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以a bπ+不是分式,是整式. 3.C解析:C 【解析】设原来的行驶速度为xkm/h,根据“原计划所用的时间-实际所用的时间=16小时”,即可得方程20201106x x-=+,故选C.点睛:本题考查了分式方程的应用,根据题意正确找出等量关系是解题的关键. 4.A解析:A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.5.D解析:D【解析】【分析】依据平行线的性质,即可得到∠1=∠DFG=40°,再根据三角形外角性质,即可得到∠2的度数.【详解】∵DF∥EG,∴∠1=∠DFG=40°,又∵∠A=30°,∴∠2=∠A+∠DFG=30°+40°=70°,故选D.【点睛】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.6.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --aa b-=b aa b--=-1,所以答案选择D.【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.7.C解析:C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,根据角平分线的定义可得∠A1BC=12∠ABC,∠A1CD=12∠ACD,然后整理得到∠A1=12∠A,由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此找出规律.【详解】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=12∠ABC,∠A1CD=12∠ACD,∴∠A1+∠A1BC=12(∠A+∠ABC)=12∠A+∠A1BC,∴∠A1=12∠A=12×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=12∠A,同理可得∠A1=2∠A2,∴∠A2=14∠A,∴∠A=2n∠A n,∴∠A n=(12)n∠A=642n︒,∵∠A n的度数为整数,∵n=6.故选C.【点睛】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的12是解题的关键.8.C解析:C【解析】【分析】根据三角形两边之和大于第三边,两边之差小于第三边可确定出第三边的范围,据此根据选项即可判断.【详解】设第三边长为x,则有7-3<x<7+3,即4<x<10,观察只有C选项符合,故选C.【点睛】本题考查了三角形三边的关系,熟练掌握三角形三边之间的关系是解题的关键. 9.C解析:C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.故选C.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.10.A解析:A 【解析】【分析】利用乘法的意义得到4•2n =2,则2•2n =1,根据同底数幂的乘法得到21+n =1,然后根据零指数幂的意义得到1+n=0,从而解关于n 的方程即可. 【详解】∵2n +2n +2n +2n =2, ∴4×2n =2, ∴2×2n =1, ∴21+n =1, ∴1+n=0, ∴n=﹣1, 故选A .【点睛】本题考查了乘法的意义以及同底数幂的乘法,熟知相关的定义以及运算法则是解题的关键.同底数幂相乘,底数不变,指数相加,即a m •a n =a m+n (m ,n 是正整数).11.D解析:D 【解析】试题分析:根据平方差公式可直接求解,即原式=(22a b -)(22a b +)(44a b +)=(44a b -)(44a b +)=88a b -. 故选D考点:平方差公式12.B解析:B 【解析】分析:由于3a ×3b =3a+b ,所以3a+b =3a ×3b ,代入可得结论. 详解:∵3a ×3b =3a+b ∴3a+b =3a ×3b =1×2 =2 故选:B .点睛:本题考查了同底数幂的乘法法则的逆用.同底数幂的乘法法则:同底数的幂相乘,底数不变,指数相加.二、填空题13.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多解析:66 【解析】 【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数. 【详解】解:∵五边形ABCDE 为正五边形, ∴108EAB ∠=度,∵AP 是EAB ∠的角平分线, ∴54PAB ∠=度, ∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒. 故答案为:66. 【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.14.145°【解析】【分析】根据直角三角形两锐角互余求出∠3再根据邻补角定义求出∠4然后根据两直线平行同位角相等解答即可【详解】∵∠1=55°∴∠3=90°-∠1=90°-55°=35°∴∠4=180°解析:145°. 【解析】 【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等解答即可. 【详解】 ∵∠1=55°,∴∠3=90°-∠1=90°-55°=35°, ∴∠4=180°-35°=145°, ∵直尺的两边互相平行, ∴∠2=∠4=145°. 故答案为145.15.9【解析】∵m−n=2mn=−1∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9故答案为9点睛:本题考查了多项式乘多项式法则合并同类项时要注意项中的指数及解析:9【解析】∵m−n=2,mn=−1,∴(1+2m)(1−2n)=1−2n+2m−4mn=1+2(m−n)−4mn=1+4+4=9.故答案为9.点睛:本题考查了多项式乘多项式法则,合并同类项时要注意项中的指数及字母是否相同.16.﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根把增根代入化为整式方程的方程即可求出k的值【详解】方程两边都乘(x+1)(x﹣1)得2(x+1)+kx=3(x﹣解析:﹣4或6【解析】【分析】根据增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,把增根代入化为整式方程的方程即可求出k的值.【详解】方程两边都乘(x+1)(x﹣1),得2(x+1)+kx=3(x﹣1),即(k﹣1)x=﹣5,∵最简公分母为(x+1)(x﹣1),∴原方程增根为x=±1,∴把x=1代入整式方程,得k=﹣4.把x=﹣1代入整式方程,得k=6.综上可知k=﹣4或6.故答案为﹣4或6.【点睛】本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.17.40°【解析】【分析】根据直角三角形两锐角互余解答【详解】∵一个锐角为50°∴另一个锐角的度数=90°-50°=40°故答案为:40°解析:40°.【解析】【分析】根据直角三角形两锐角互余解答.【详解】∵一个锐角为50°,∴另一个锐角的度数=90°-50°=40°.故答案为:40°.18.【解析】【分析】关键描述语是:每个同学比原来少分摊了10元车费;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可【详解】解:设实际参加游览的同学一共有人由题意得: 解析:600600105x x-=- 【解析】【分析】关键描述语是:“每个同学比原来少分摊了10元车费”;等量关系为:原有的同学每人分担的车费-实际每人分担的车费=20;据此列出分式方程即可.【详解】解:设实际参加游览的同学一共有x 人, 由题意得:600600105x x -=-, 故答案为:600600105x x-=-. 【点睛】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到相应的等量关系是解决问题的关键. 19.a <1且a≠−1【解析】【分析】先解分式方程根据分式方程的解为正数得出关于a 的不等式求出a 的取值范围然后再根据有增根的情况进一步求解即可【详解】解:分式方程去分母得:解得:∵关于x 的方程的解为正数∴ 解析:a <1且a ≠−1.【解析】【分析】先解分式方程,根据分式方程的解为正数得出关于a 的不等式,求出a 的取值范围,然后再根据有增根的情况进一步求解即可.【详解】解:分式方程去分母得:110ax x +-+=, 解得:21x a=-, ∵关于x 的方程1101ax x +-=-的解为正数, ∴x >0,即201a>-, 解得:a <1,当x−1=0时,x =1是增根, ∴211a≠-,即a≠−1, ∴a <1且a≠−1,故答案为:a <1且a≠−1.【点睛】本题主要考查了解分式方程及解不等式,注意不要忘记有增根的情况.20.12【解析】试题解析:根据题意得(n-2)•180-360=1260解得:n=11那么这个多边形是十一边形考点:多边形内角与外角解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.三、解答题21.图()1结论360APC PAB PCD ∠+∠+∠=o ;图()2结论APC PAB PCD ∠=∠+∠;图()3结论PAB APC PCD ∠=∠+∠;图()4结论PCD PAB APC ∠=∠+∠.证明见解析.【解析】【分析】关键是过转折点作平行线,根据两直线平行,内错角相等,同位角相等,同旁内角互补或结合三角形的外角性质求证即可.【详解】解:图()1结论360.APC PAB PCD ∠+∠+∠=o图()2结论.APC PAB PCD ∠=∠+∠图()3结论.PAB APC PCD ∠=∠+∠图()4结论.PCD PAB APC ∠=∠+∠如图1:过点P 做.PF AB P,AB CD Q ∥.PF CD ∴P180.APF A ∴∠+∠=o 180.CPM C ∠+∠=o 两式相加得360.A C APM CPM ∠+∠+∠+∠=o即360.APC PAB PCD ∠+∠+∠=o 如图2:过点P 做.PE AB P因为,PE AB CD P P所以,.BAP APE EPC PCD ∠=∠∠=∠,APE EPC BAP PCD ∠+∠=∠+∠即.APC PAB PCD ∠=∠+∠如图3: PAB APC PCD ∠=∠+∠.延长BA 与PC 交于点F .AB CD Q P ,.PFA PCD ∴∠=∠(两直线平行,同位角相等),又,PAB APC PFA ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PAB APC PCD ∴∠=∠+∠.如图4:,AB CD Q ∥.PFB PCD ∴∠=∠(两直线平行,同位角相等),又PFB APC PAB ∠=∠+∠Q (三角形的一个外角等于与它不相邻的两个内角的和).PCD APC PAB ∴∠=∠+∠.【点睛】本题考查平行线的性质.熟练掌握平行线的性质并能灵活运用是解决此题的关键.22.(1)C (1,-4).(2)证明见解析;(3)∠APB=135°,P (1,0).【解析】【分析】(1)作CH ⊥y 轴于H ,证明△ABO ≌△BCH ,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH ,得到C 点坐标;(2)证明△PBA ≌△QBC ,根据全等三角形的性质得到PA=CQ ;(3)根据C 、P ,Q 三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP ,得到P 点坐标.【详解】(1)作CH ⊥y 轴于H ,则∠BCH+∠CBH=90°,∵AB ⊥BC ,∴∠A BO+∠CBH=90°,∴∠ABO=∠BCH ,在△ABO 和△BCH 中,ABO BCH AOB BHC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABO ≌△BCH ,∴BH=OA=3,CH=OB=1,∴OH=OB+BH=4,∴C 点坐标为(1,﹣4);(2)∵∠PBQ=∠ABC=90°,∴∠PBQ ﹣∠ABQ=∠ABC ﹣∠ABQ ,即∠PBA=∠QBC ,在△PBA 和△QBC 中,BP BQ PBA QBC BA BC =⎧⎪∠=∠⎨⎪=⎩,∴△PBA ≌△QBC ,∴PA=CQ ;(3)∵△BPQ 是等腰直角三角形,∴∠BQP=45°,当C 、P ,Q 三点共线时,∠BQC=135°,由(2)可知,△PBA ≌△QBC ,∴∠BPA=∠BQC=135°,∴∠OPB=45°,∴OP=OB=1,∴P 点坐标为(1,0).【点睛】本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.第一次购买的图书,每本进价为5元.【解析】【分析】设第一次购买的图书的单价为x元/本,则第二次购买图书的单价为1.2x元/本,根据数量=总价÷单价结合第二次比第一次多购进10本,即可得出关于x的分式方程,解之经检验后即可得出结论;【详解】设第一次购买的图书的进价为x元/本,则第二次购买图书的进价为1.2x元/本,根据题意得:1500120010 1.2x x-=解得:x=5,经检验,x=5是原分式方程的解,且符合题意.答:第一次购买的图书,每本进价为5元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程.25.见解析.【解析】【分析】要证明AC=BD,只需要证明△ADB≌△BAC即可.【详解】在△ADB和△BCA中,AD=BC,∠DAB=∠CBA,AB=BA∴△ADB≌△BAC(SAS)∴AC=BD.【点睛】全等三角形的判定与性质.。