2016年秋季新版浙教版九年级上学期第3章、圆的基本性质单元复习试卷4
浙教版九年级数学上册《第三章圆的基本性质》期末复习试卷(含解析)
浙教版九年级数学上册《第三章圆的基本性质》期末复习试卷一、单选题(共10题;共30分)1.已知⊙O的半径为5,若PO=4,则点P与⊙O的位置关系是()A. 点P在⊙O内B. 点P在⊙O上C. 点P在⊙O外D. 无法判断2.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC等于()A. 20°B. 40°C. 60°D. 80°3.如图,AB是圆0的直径,弦CD ⊥AB于点E,则下列结论正确的是( )A. OE=BEB. BC=BDC. △BOC是等边三角形D. 四边形ODBC是菱形4.如图,在⊙O中,点B,O,C和点A,O,D分别在同一条直线上,则图中有()条弦A. 2B. 3C. 4D. 55.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A. 2B. 2C. 2 2D. 36.如图,△ABC内接于⊙O,若∠OAB=28°,则∠C的大小为()A. 28°B. 56°C. 60°D. 62°7.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图扇形的圆心角是()A.90°B.120°C.150°D.180°8.如图,AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠BOD等于()A. 30°B. 40°C. 45°D. 50°9.如图,CD为⊙O的直径,CD⊥EF,垂点为G,∠EOD=40°,则∠DCF ()A. 80°B. 50°C. 40°D. 20°10.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A. 80°B. 50°C. 40°D. 20°二、填空题(共10题;共30分)11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=________.12.如图,AB是⊙O的直径,点C为⊙O上一点,∠AOC=50°,则∠ABC= ________.13.如图,AB是⊙O的弦,AB=10,点C是⊙O上的一个动点,且∠ACB=45°,若点M,N分别是AB、BC 的中点,则MN长的最大值是________.14.平面直角坐标系中,以点P(0,1)为中心,把点A(5,1)逆时针旋转90°,得到点B,则点B的坐标为________.15.一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角是________°16.如图,点A,B,C,D在⊙O上,∠ABO=40∘,∠BCD=112∘,E是AD中点,则∠DOE的度数为________.17.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=________.18.如图,⊙O是正方形ABCD的外接圆,点E是上任意一点,则∠BEC的度数为________.19.如图,P是等边三角形ABC中的一个点,PA=2,PB=23,PC=4,则三角形ABC的边长为________20.如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,An分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为________三、解答题(共8题;共60分)21.(2017•宁波)在4×4的方格中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.22.如图,已知AB是⊙O的直径,CD⊥AB ,垂足为点E,如果BE=OE ,AB=12,求△ACD的周长23.已知,AB、AC是圆O的两条弦,AB=AC,过圆心O作OH⊥AC于点H.(1)如图1,求证:∠B=∠C;(2)如图2,当H、O、B三点在一条直线上时,求∠BAC的度数;(3)如图3,在(2)的条件下,点E为劣弧BC上一点,CE=6,CH=7,连接BC、OE交于点D,求BE的长和DE的值.OD24.如图所示,△ABC中,AB=AC=10,BC=12,求△ABC外接圆的半径.25.如图,△ABC中,AB=AC,将△ABC绕点A按逆时针方向旋转100°,得到△ADE,连接BD、CE.求证:BD=CE.26.如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.27.如图,在菱形ABCD中,∠A=110°,点E是菱形ABCD内一点,连结CE绕点C顺时针旋转110°,得到线段CF,连结BE,DF,若∠E=86°,求∠F的度数.28.如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,交OA于点F,连接EF并延长EF交AB于G,且EG⊥AB.(1)求证:直线AB是⊙O的切线;(2)若EF=2FG,AB= 123,求图中阴影部分的面积;(3)若EG=9,BG=12,求BD的长.答案解析部分一、单选题1.【答案】A【考点】点与圆的位置关系【解析】【解答】解:∵⊙O的半径为5,若PO=4,∴4<5,∴点P与⊙O的位置关系是点P在⊙0内,故选A.【分析】已知圆O的半径为r,点P到圆心O的距离是d,①当r>d时,点P在⊙O内,②当r=d时,点P在⊙O上,③当r<d时,点P在⊙O外,根据以上内容判断即可.2.【答案】D【考点】圆周角定理【解析】【分析】由⊙O是△ABC的外接圆,若∠ABC=40°,根据圆周角定理,即可求得答案。
浙教版九年级数学上册第三章圆的基本性质单元测试(含答案)
第 3 章圆的基天性质( 3.1 — 3.7 )测试一、选择题(每题 4 分,共28 分)1、在数轴上,点 A 所表示的实数为3,点B 所表示的实数为a,⊙ A 的半径为2,以下说法中不正确的选项是()A 、当a< 5 时,点B 在⊙ A内 B 、当1< a< 5 时,点 B 在⊙ A内C、当a< 1 时,点 B 在⊙ A外 D 、当a> 5 时,点 B 在⊙ A外2、以下命题中不正确的选项是()A 、圆有且只有一个内接三角形B 、三角形只有一个外接圆C、三角形的外心是这个三角形随意两边的垂直均分线的交点D、等边三角形的外心也是三角形的三条中线、高、角均分线的交点3、⊙ O内一点M 到圆的最大距离为10cm,最短距离为8cm,那么过M 点的最短弦长为()A 、1cmB 、85 cm C、41 cm D、 9cm4、如图,梯形ABCD中, AB∥ DC ,AB⊥ BC, AB= 2cm, CD=4cm,以BC上一点O 为圆心的圆经过A、 D两点,且∠AOD = 90°,则圆心O 到弦AD的距离是()A 、 6 cm B、10 cm C、2 3cmD 、25 cm(第 4 题图)(第5 题图)(第 6 题图)(第7 题图)5、如下图,以O 为圆心的两个齐心圆中,小圆的弦AB 的延伸线交大圆于C,若AB= 3,BC= 1,则与圆环的面积最靠近的整数是()A 、9B 、 10C、 15D、 136、如图,圆上由⌒⌒7 A、B、C、D 四点,此中∠ BAD = 80°,若ABC,ADC的长度分别为,⌒的长度为()11 ,则BADA 、4B 、8C、10D、157、如图,在平面直角坐标系中,⊙P 的圆心是( 2, a)( a> 2),半径为 2,函数 y= x 的图象被⊙ P 截得的弦 AB 的长为2 3 ,则a的值是()A 、2 3B 、2 2 2C、22 D 、23二、填空题(每题 4 分,共 60 分)8、如图,⊙ O 的半径 OA=6,以 A 为圆心, OA 为半径的弧交⊙O 于 B、 C,则 BC 的长是.(第 8 题图)(第9题图)(第12题图)⌒9、如图,点 A、B、C、D 都在⊙ O 上,CD的度数等于84°,CA 是∠ OCD 的均分线,则∠ ABD+∠ CAO=.10、已知, A、 B、 C 是⊙ O 上不一样的三点,∠AOC= 100 °,则∠ABC =.11、在⊙ O 中,弦 CD 与直径 AB 订交于点E,且∠ AEC= 30°, AE= 1cm, BE= 5cm,那么弦 CD 的弦心距OF=cm,弦 CD 的长为cm.12、如图,小量角器的零度线在大批角器的零度线上,且小量角器的中心在大批角器的外缘边上.假如它们外缘边上的公共点P 在校量角器上对应的度数为65°,那么在大批角器上对应的度数为(只要写出0°~90°的角度).13、如图,在以 AB 为直径的半圆中,有一个边长为 1 的内接正方形CDEF ,则 AC=,BC=.(第 13 题)(第14题)(第15题)14、在圆柱形油槽内装有一些油,截面如图,油面宽AB 为 6 分米,假如再注入一些油后,油面 AB 上涨 1 分米,油面宽变成 8 分米,圆柱形油槽的直径MN 为 .15、如图 AB 、CD 是⊙ O 的两条相互垂直的弦,∠AOC = 130 °,AD 、CB 的延伸线订交于点P ,∠ P =.16、如图,弦 ⌒ ⌒.AB 、 CD 订交于点 E , AD =60°, BC = 40°,则∠ AED =(第 16 题图) (第 17 题图) (第 18 题图) (第 19 题图)17、如图,弦 CD ⊥ AB 于 P , AB = 8, CD =8,⊙ O 半径为 5,则 OP 的长为 .18、如图,矩形 ABCD 的边 AB 过⊙ O 的圆心, E 、F 分别为 AB 、CD 与⊙ O 的交点,若 AE= 3cm , AD = 4cm , DF =5cm ,则⊙ O 的直径等于.⌒的中点, E 是 BA延伸线上一19、如图,⊙ O 是△ ABC 的外接圆, AO ⊥ BC 于 F ,D 为 AC 点,∠ DAE = 114°,则∠ CAD 等于.20、半径为 R 的圆内接正三角形的面积是.21、一个正多边形的全部对角线都相等,则这个正多边形的内角和为.22、AC 、BD 是⊙ O 的两条弦,且 AC ⊥ BD ,⊙O 的半径为 1,则 AB 2CD 2 的值为 .2三、解答题(共 32 分)23、( 10 分)某地有一座圆弧形拱桥, 桥下水面宽度 AB 为 7.2m ,拱顶超出水面 2.4m ,OC ⊥ AB ,现有一艘宽 3m ,船舱顶部为正方形并超出水面 2m 的货船要经过这里,此货船能顺利经过这座桥吗?24、( 10 分)已知,如,△ ABC 内接于⊙ O,AB 直径,∠ CBA 的均分交 AC 于点 F ,交⊙ O 于点 D,DE⊥ AB 于点 E,且交 AC 于点 P,接 AD.(1)求:∠ DAC=∠ DBA ;(2)求: P 是段 AF 的中点.25、( 12 分)如,AD是⊙ O 的直径.(1)如①,垂直于AD的两条弦B1C1, B 2 C 2把周 4 均分,∠B1的度数是,∠ B 2的度数是.(2)如②,垂直于 AD 的三条弦B1C1,B2C2,B3C3把周 6 均分,分求∠B1,∠B2,∠ B 3的度数;(3)如③,垂直于 AD 的 n 条弦B1C1,B2C2,B3C3,⋯,B n C n把周 2n 均分,你用含 n 的代数式表示∠B n的度数(只要直接写出答案).参照答案1~7: AABBDCC8、6 39、48°10、 50°或 130 °11、1cm4 2 cm12、50°515114、 10分米15、 40°16、 50°17、3 2 13、2218、 10cm19、 38°20、 3 3R221、360 °或 540°22、 1423、解:如图,连结ON, OB,∵OC⊥ AB, D 为 AB 中点,∵ AB= 7.2m,∴BD =1AB= 3.6m,又∵ CD= 2.4m,2设OB= OC= ON=r,则 OD =( r- 2.4) m,在 Rt△ BOD 中,依据勾股定理得:r 2(r 2.4) 2 3.6 2,解得:r=3.9∵CD = 2.4m,船舱顶部为正方形并超出水面2m,∴ CH = 2.4- 2= 0.4m,∴OH = r - CH= 3.9- 0.4= 3.5m,在 Rt△ OHN 中,HN2ON 2OH 2 3.92 3.52 2.96,∴HN = 2.96 m,∴ MN = 2HN =2×2.96 ≈3.44m>3m.∴此货船能顺利经过这座桥.24、证明:( 1)∵ BD 均分∠ CBA ,∴∠ CBD =∠ DBA ,∵∠ DAC 与∠ CBD 都是弧 CD 所对的圆周角,∴∠DAC=∠ CBD,∴∠ DAC =∠ DBA .( 2 )∵ AB为直径,∴∠ ADB=90°,又∵ DE⊥AB于点 E ,∴∠ DEB = 90°,∴∠ADE +∠EDB =∠ABD+∠EDB=90°,∴∠ADE=∠ABD =∠DAP ,∴PD =PA ,又∵∠ DFA +∠ DAC =∠ADE +∠ PDF =90°且∠ ADE =∠ DAP ,∴∠ PDF =∠PFD ,∴ PD =PF ,∴PA =PF ,即 P 是点段 AF 的中点.25、( 1)∠B1=22.5 °,∠B2= 67.5 °(; 2)∠B1= 15°,∠B2= 45°,∠B3= 75°;(3)B n C n把圆周 2n 均分,则弧B n D 的度数是360,则∠ B n AD =360,4n8n∴∠ B n=90°-360=90°-45 8n n7、我们各样习惯中再没有一种象战胜骄傲那麽难的了。
第3章 圆的基本性质 浙教版数学九年级上册章末训练题(含答案)
第3章 圆的基本性质班级 学号 得分 姓名一、选择题(本大题有10小题,每小题3分,共30分)1. 下列三个命题:①圆既是轴对称图形又是中心对称图形;②垂直于弦的直径平分弦;③相等的圆心角所对的弧相等.其中真命题是( )A. ①②B. ②③C. ①③D. ①②③2. 如图,AB 是⊙O 的直径,C,D 是⊙O 上位于AB 异侧的两点,下列四个角中一定与∠ACD 互余的是 ( )A. ∠ADCB. ∠ABDC. ∠BACD. ∠BAD3.如图,点A,B,C,D,E 均在⊙O 上,∠BAC=15°,∠CED=30°,则∠BOD 的度数为( )A. 45°B. 60°C. 75°D. 90°4.如图,AB 是圆O 的弦,OC ⊥AB,交圆O 于点C,连结OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°5. 如图,点A ,B ,S 在圆上,若弦AB 的长度等于圆半径 2₂倍,则∠ASB 的度数是( )A. 22.5°B. 30°C. 45°D. 60°6.(2020·中考)如图,在等腰△ABC 中, AB =AC =25,BC =8,,按下列步骤作图:①以点 A 为圆心,适当的长度为半径作弧,分别交 AB ,AC 于点E ,F ,再分别以点 E ,F 为圆心,大 12₂EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点 A ,B 为圆心,大 12₂AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心线段OA 的长为半径作圆,则⊙O 的半径为( )A.25B. 10C. 4D. 57. 如图,在⊙O 中,AE 是直径,半径OC 垂直于弦AB 于点 D,连结BE,若 AB =27,CD =1,则BE 的长是( )A. 5B. 6C. 7D. 88.已知⊙O 中,弦AB 的长等于半径,P 为弦AB 所对的弧上一动点,则∠APB 的度数为( )A. 30°B. 150°C. 30°或150°D. 60°或120°9. 已知⊙O 的直径CD=10cm,AB 是⊙O 的弦,AB ⊥CD,垂足为M,且AB=8cm,则AC 的长为…… ( ) A.25cm B.45cmC.25cm 或 45cmD.23cm 或 43cm10. 如图,AB为⊙O的直径,AC交⊙O于点E,BC交⊙O于点D,CD=BD,∠C=70°,现给出以下三个结论:①∠A=45°;②AC=AB;③AE=BE.其中正确的有( )A. 1个B. 2 个C. 3个D. 0个二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,一次函数y= kx+b的图象与x轴,y轴分别相交于A,B两点,⊙O经过A,B两点,已知AB=2,则 kb的值为 .12. 如图,AB是⊙O的直径,点C,D在圆上,∠D=65°,则∠BAC等于度.13. 如图,已知矩形ABCD的边AB=3,AD=4.(1)以点 A为圆心,4为半径作圆A,则点B,C,D与圆A 的位置关系分别是;(2)若以A点为圆心作圆A,使B,C,D三点中至少有一个点在圆内,且至少有一个点在圆外,则圆A的半径r的取值范围是 .14. 如图,BC是半圆O 的直径,D,E是BC上两点,连结BD,CE 并延长交于点A,连结OD,OE.如果∠A=70°,那么∠DOE的度数为 .15. 如图所示,AB是⊙O 的直径,弦CD⊥AB 于点H, ∠A=30∘,CD=23,则⊙O的半径是 .16. 如图所示,⊙O的直径AB=16cm,P是OB 中点,∠ABP=45°,则CD= cm.三、解答题(本大题有8小题,共66分)17.(6分)如图,点A,B,C都在⊙O上,OC⊥OB,点A 在劣弧BC上,且OA=AB,求∠ABC的度数.18. (6分)如图,在同一平面内,有一组平行线l₁,l₂,l₃,,相邻两条平行线之间的距离均为4,点O在直线l₁上,⊙O与直线l₃的交点为A,B,AB=12,求⊙O的半径.19.(6分)如图,在△ABC的外接圆上AB,BC,CA三弧的度数比为12:13:11.在劣弧BC上取一点D,过点D分别作直线AC,直线AB的平行线,分别交 BC于E,F两点,求∠EDF的度数.20. (8分)如图, △ABC内接于⊙O,AB=AC,,D在弧AB 上,连结CD交AB 于点E,B 是弧CD 的中点,求证:∠B=∠BEC.21.(8分)已知:如图,点M是/AB的中点,过点M的弦MN交AB 于点C,设⊙O的半径为4cm,. MN=43cm.(1)求圆心 O到弦MN的距离;(2)求∠ACM的度数.22.(10分)如图,已知方格纸中每个小正方形的边长为1个单位, Rt △ABC 的三个顶点A(-2,2), B(0,5),C(0,2).(1)将 △ABC 以C 为旋转中心旋转 180°,得到 △A₁B₁C,请画出 △A₁B₁C;(2)平移 △ABC,使点 A 的对应点. A₂的坐标为 (―2,―6),请画出平移后对应的图形 △A₂B₂C₂;(3)若将 △A₁B₁C 绕某一点旋转可得到 △A₂B₂C₂.请直接写出旋转中心的坐标.23.(10分)如图,已知AB 是⊙O 的直径,C 是圆周上的动点,P 是 ABC 的中点.(1)求证: OP//BC;(2)如图,连结PA,PC 交直径AB 于点D,当( OC =DC 时,求 ∠A 的度数.24.(12分)我们学习了“弧、弦、圆心角的关系”,实际上我们还可以得到“圆心角、弧、弦,弦心距之间的关系”如下:圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦或两条弦的弦心距中有一组量相等,那么它们对应的其余各组量也相等弦心距指从圆心到弦的距离 如图(1)中的 OC , OC ′,弦心距也可以说成圆心到弦的垂线段的长度 l 请直接运用圆心角、弧、弦、弦心距之间的关系解答下列问题.如图(2),点O 是 ∠EPF 的平分线上一点,以点O 为圆心的圆与角的两边分别交于点A ,B ,C ,D.(1)求证: AB =CD.(2)若角的顶点 P 在圆上或圆内,上述结论还成立吗? 若不成立,请说明理由;若成立,请加以证明.第3章 圆的基本性质1. A2. D3. D4. D5. C6. D7. B8. C9. C 10. A 11. 1212. 25 13. (1)B 在圆内、C 在圆外、D 在圆上(2)3<r<5 14. 40° 15. 2 16. 1417. 解:∵OA=OB,OA=AB,∴OA=OB=AB,即△OAB 是等边三角形,∴∠AOB=60°,∵OC ⊥OB,∴∠COB= 90°,∴∠COA = 90°- 60°= 30°,∴∠ABC=15°.18. 解:如图,连结 OA,过点O 作OD ⊥AB 于点 D.∵ AB =12,∴AD =12AB =12×12=6.相邻两条平行线之间的距离均为4,∴OD=8.在 Rt △AOD 中,∵AD =6,OD =8,∴OA =AD 2+OD = 62+82=10.∴⊙O 的半径为 10.19. 解: ∵AB ,BC ,CA 三弧的度数比为12:13:11,∴ ABm.1212+13+11×360∘=120∘,AC ―m m 1112+13+11×360∘=110∘,∴∠ACB =12×120∘= 0∘,∠ABC =12×110∘=55∘,∵ACED,AB D F,∴∠FED=∠ACB=60°,∠EFD=∠ABC= 55°,∴∠EDF =180°―60°―55°=65°20. 证明:∵B 是弧 CD 的中点, ∴BC =BD ,∴∠BCE = =∠BAC.:∠BEC =180°―∠BCE,∠ACE ,=180°-∠BAC--∠B,∴∠BEC=∠ACB,∵AB=AC,∴∠B=∠ACB,∴∠B=∠BEC.21. 解:(1)连结 OM.∵点 M 是. AB 的中点,∴OM ⊥AB.过点 O 作OD ⊥MN 于点 D,由垂径定理,得MD =12MN =23cm,在Rt △ODM 中,OM=4cm, MD =23cm,∴OD =OM 2―MD 2=2(cm ).故圆心 O 到弦MN 的距离为 2cm. (2)∵OD=2cm,OM=4cm,∴∠M=30°,∴∠ACM=60°.22. 解:(1)(2)图略.(3)旋转中心的坐标为(0,-2).23. (1)证明:连结AC,延长 PO 交AC 于点 H,如图,∵P 是 ABC 的中点,∴PH ⊥AC,∵AB是⊙O 的直径,∴∠ACB=90°,∴BC ⊥AC,∴OP ∥BC. (2)解:∵P 是 ABC 的中点, P C,∴∠PAC=∠PCA,:OA=OC, ∴ ∠OAC= ∠OCA,∴∠PAO=∠C O=CD 时,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD =2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x.在△POC 中,x+x+5x=180°,解得 x =180∘7,即 ∠PAO =180∘7.24. (1)证明:过点 O 作OM ⊥AB 于点M,ON ⊥CD 于点 N,连结OB,OD,则∠OMB=∠OND=90°,∵PO 平分∠E PF,∴OM=ON,∵OM ⊥AB,ON ⊥CD,∴AB=CD.(2)成立.当点 P 在圆上时如图;作OM ⊥PB,ON ⊥PD,垂足分别为M,N,∵PC 平分∠EPF,∴OM=ON,∵OM ⊥AB,ON ⊥CD,∴PB=PD;当点 P 在圆内时:过点 O作OM⊥AB,ON⊥CD,∵PO平分∠BPF,∴OM=ON.∵OM⊥AB,ON⊥CD,∴AB=CD.。
【浙教版】九年级数学上册 第三章 圆的基本性质单元综合测试(含答案)
第三章圆的基本性质单元综合测试一.选择题(共10小题)1.如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°(第1题) (第2题) (第4题)2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB.C.D.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2π C. 3π D. 12π4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 55.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V26.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°(第6题) (第12题) (第15题)7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. π C. D.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是_________ (结果保留π).12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= _________ 度.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是_________ .14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为_________ .15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是_________ .16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为_________ cm2.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.18.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.19.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.20.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC 绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.22.如图,A.B是圆O上的两点,∠AOB=120°,C是AB弧的中点.(1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.23.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.24.如图,AB是半圆O的直径,C.D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE 的长.25.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.26.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB 和∠CAD的度数.参考答案与试题解析一.选择题(共10小题)1.(2014•重庆)如图,△ABC的顶点A.B.C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC的大小是()A. 30°B. 45°C. 60°D. 70°考点:圆周角定理.专题:计算题.分析:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解答:解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.故选C.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.如图,...均为以O点为圆心所画出的四个相异弧,其度数均为60°,且G在OA上,C.E在AG上,若AC=EG,OG=1,AG=2,则与两弧长的和为何?()A. πB . C . D .考点:弧长的计算.分析:设AC=EG=a,用a表示出CE=2﹣2a,CO=3﹣a,EO=1+a,利用扇形弧长公式计算即可.解答:解:设AC=EG=a,CE=2﹣2a,CO=3﹣a,EO=1+a,+=2π(3﹣a)×+2π(1+a)×=(3﹣a+1+a)=.故选B.点评:本题考查了弧长的计算,熟悉弧长的计算公式是解题的关键.3.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为()A. B. 2πC. 3πD. 12π考点:弧长的计算.分析:根据弧长公式l=,代入相应数值进行计算即可.解答:解:根据弧长公式:l==3π,故选:C.点评:此题主要考查了弧长计算,关键是掌握弧长公式l=.4.如图,在⊙O中,AB是直径,BC是弦,点P是上任意一点.若AB=5,BC=3,则AP的长不可能为()A. 3B. 4C.D. 5考点:圆周角定理;勾股定理;圆心角.弧.弦的关系.分析:首先连接AC,由圆周角定理可得,可得∠C=90°,继而求得AC 的长,然后可求得AP的长的取值范围,继而求得答案.解答:解:连接AC,∵在⊙O中,AB是直径,∴∠C=90°,∵AB=5,BC=3,∴AC==4,∵点P是上任意一点.∴4≤AP≤5.故选A.点评:此题考查了圆周角定理以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.5.有一直圆柱状的木棍,今将此木棍分成甲.乙两段直圆柱状木棍,且甲的高为乙的高的9倍.若甲.乙的表面积分别为S1.S2,甲.乙的体积分别为V1.V2,则下列关系何者正确?()A. S1>9S2B. S1<9S2C. V1>9V2D. V1<9V2考点:圆柱的计算.分析:根据两圆柱的底面积相同,且甲的高为乙的高的9倍设圆柱的底面半径为r,乙圆柱的高为h,从而得到甲圆柱的高为9h,然后利用圆柱的体积和表面积的计算方法即可得到正确的选项.解答:解:∵两圆柱的底面积相同,且甲的高为乙的高的9倍,∴设圆柱的底面半径为r,乙圆柱的高为h,∴甲圆柱的高为9h,∴甲圆柱的表面积S1为2πr×9h+2πr2=2πr(9h+r),体积V1为9πr2h;甲圆柱的表面积S2为2πrh+2πr 2=2πr(h+r),体积V1为πr2h;∴S1<9S2,V1=9V2,故选B.点评:本题考查了圆柱的计算,了解圆柱的表面积和体积的计算方法是解答本题的关键.6.如图所示,点A,B,C在圆O上,∠A=64°,则∠BOC的度数是()A. 26°B. 116°C. 128°D. 154°考点:圆周角定理.分析:根据圆周角定理直接解答即可.解答:解:∵∠A=64°,∴∠BOC=2∠A=2×64°=128°.故选:C.点评:本题考查了圆周角定理,知道同弧所对的圆周是圆心角的一半是解题的关键.7.在半径为2的圆中,弦AB的长为2,则的长等于()A. B. C. D.考点:弧长的计算.分析:连接OA.OB,求出圆心角∠AOB的度数,代入弧长公式求出即可.解答:解:连接OA.OB,∵OA=OB=AB=2,∴△AOB是等边三角形,∴∠AOB=60°,∴的长为:=,故选:C.点评:本题考查了弧长公式,等边三角形的性质和判定的应用,注意:已知圆的半径是R,弧AB对的圆心角的度数是n°,则弧AB的长=.8.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是()A. 6πB. 8πC. 12πD. 16π考点:圆锥的计算.专计算题.题:分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.解答:解:此圆锥的侧面积=•4•2π•2=8π. 故选:B.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.9.一个扇形的半径为8cm,弧长为cm,则扇形的圆心角为()A. 60°B. 120°C. 150°D. 180°考点:弧长的计算.分析:首先设扇形圆心角为n°,根据弧长公式可得:=,再解方程即可.解答:解:设扇形圆心角为n°,根据弧长公式可得:=,解得:n=120°,故选:B.点评:此题主要考查了弧长计算,关键是掌握弧长计算公式:l=.10.已知扇形的圆心角为60°,半径为1,则扇形的弧长为()A. B. πC. D.考点:弧长的计算.分析:利用弧长公式l=即可直接求解.解答:解:弧长是:=. 故选:D.点评:本题考查了弧长公式,正确记忆公式是关键.二.填空题(共6小题)(除非特别说明,请填准确值)11.已知圆锥的底面半径是4,母线长是5,则该圆锥的侧面积是20π(结果保留π).考点:圆锥的计算.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:∵底面圆的半径为4,∴底面周长=8π,∴侧面面积=×8π×5=20π. 故答案为:20π.点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式求解.12.如图,A.B.C是⊙O上的三点,∠AOB=100°,则∠ACB= 50 度.考点:圆周角定理.分析:根据圆周角定理即可直接求解.解答:解:∠ACB=∠AOB=×100°=50°. 故答案是:50.点评:此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.13.若圆锥的轴截面是一个边长为4的等边三角形,则这个圆锥的侧面展开后所得到的扇形的圆心角的度数是180°.考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到扇形的弧长为4π,扇形的半径为4,再根据弧长公式求解.解答:解:∵轴截面是一个边长为4的等边三角形,∴母线长为4,圆锥底面直径为4,∴底面周长为4π,即扇形弧长为4π.设这个圆锥的侧面展开后所得到的扇形的圆心角的度数为n ,根据题意得4π=,解得n=180°.故答案为:180°.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.在半径为2的圆中,弦AC长为1,M为AC中点,过M点最长的弦为BD,则四边形ABCD的面积为 2 .考点:垂径定理;勾股定理.分析:先由直径是圆中最长的弦得出BD=4,再根据垂径定理的推论得出AC⊥BD,则四边形ABCD的面积=AC•BD.解答:解:如图.∵M为AC中点,过M点最长的弦为BD,∴BD是直径,BD=4,且AC⊥BD,∴四边形ABCD的面积=AC•BD=×1×4=2.故答案为:2.点评:本题考查了垂径定理,四边形的面积,难度适中.得出BD是直径是解题的关键.15.如图,已知A.B.C三点在⊙O上,AC⊥BO于D,∠B=55°,则∠BOC 的度数是70°.考点:圆周角定理.专题:计算题.分析:根据垂直的定义得到∠ADB=90°,再利用互余的定义计算出∠A=90°﹣∠B=35°,然后根据圆周角定理求解.解答:解:∵AC⊥BO,∴∠ADB=90°,∴∠A=90°﹣∠B=90°﹣55°=35°,∴∠BOC=2∠A=70°.故答案为:70°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.考点:圆锥的计算.分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:圆锥的侧面积=π×6×10=60πcm2.点评:本题考查圆锥侧面积公式的运用,掌握公式是关键.三.解答题(共10小题)(选答题,不自动判卷)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.考点:垂径定理;勾股定理;圆周角定理.分析:(1)先根据CD=16,BE=4,得出OE的长,进而得出OB的长,进而得出结论;(2)由∠M=∠D,∠DOB=2∠D,结合直角三角形可以求得结果;解答:解:(1)∵AB⊥CD,CD=16,∴CE=DE=8,设OB=x,又∵BE=4,∴x2=(x﹣4)2+82,解得:x=10,∴⊙O的直径是20.(2)∵∠M=∠BOD,∠M=∠D,∴∠D=∠BOD,∵AB⊥CD,∴∠D=30°.点评:本题考查了圆的综合题:在同圆或等圆中,相等的弧所对的圆周角相等,直径所对的圆周角为直角;垂直于弦的直径平分弦,并且平分弦所对的弧;18.已知A,B,C,D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证:AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.考点:垂径定理;勾股定理;圆周角定理.分析:(1)根据题意不难证明四边形ABCD是正方形,结论可以得到证明;(2)作直径DE,连接CE.BE.根据直径所对的圆周角是直角,得∠DCE=∠DBE=90°,则BE∥AC,根据平行弦所夹的弧相等,得,则CE=AB.根据勾股定理即可求解.解答:解:(1)∵∠ADC=∠BCD=90°,∴AC.BD是⊙O的直径,∴∠DAB=∠ABC=90°,∴四边形ABCD是矩形,∵AD=CD,∴四边形ABCD是正方形,∴AC⊥BD;(2)作直径DE,连接CE.BE. ∵DE是直径,∴∠DCE=∠DBE=90°,∴EB⊥DB,又∵AC⊥BD,∴BE∥AC,∴,∴CE=AB.根据勾股定理,得CE2+DC2=AB2+DC2=DE2=20,∴DE=,∴OD=,即⊙O的半径为.点评:此题综合运用了圆周角定理的推论.垂径定理的推论.等弧对等弦以及勾股定理.学会作辅助线是解题的关键.19.如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.(1)求∠ACB的度数;(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.考点:三角形的外接圆与外心;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理.分析:(1)首先得出△AEB≌△DEC,进而得出△EBC为等边三角形,即可得出答案;(2)由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.解答:(1)证明:在△AEB和△DEC中,∴△AEB≌△DEC(ASA),∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,作BM⊥AC于点M,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.点评:此题主要考查了全等三角形的判定与性质以及等边三角形的性质和勾股定理以及锐角三角函数关系等知识,得出CM,BM的长是解题关键.20.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ABC的三个顶点A,B,C都在格点上,将△ABC 绕点A按顺时针方向旋转90°得到△AB′C′.(1)在正方形网格中,画出△AB′C′;(2)计算线段AB在变换到AB′的过程中扫过区域的面积.考点:作图-旋转变换;扇形面积的计算.分析:(1)根据旋转的性质得出对应点旋转后位置进而得出答案;(2)利用勾股定理得出AB=5,再利用扇形面积公式求出即可. 解答:解:(1)如图所示:△AB′C′即为所求;(2)∵AB==5,∴线段AB在变换到AB′的过程中扫过区域的面积为:=π.点评:此题主要考查了扇形面积公式以及图形的旋转变换等知识,熟练掌握扇形面积公式是解题关键.21.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,PB与CD交于点F,∠PBC=∠C.(1)求证:CB∥PD;(2)若∠PBC=22.5°,⊙O的半径R=2,求劣弧AC的长度.考点:垂径定理;圆周角定理;弧长的计算.分析:(1)先根据同弧所对的圆周角相等得出∠PBC=∠D,再由等量代换得出∠C=∠D,然后根据内错角相等两直线平行即可证明CB∥PD;(2)先由垂径定理及圆周角定理得出∠BOC=2∠PBC=45°,再根据邻补角定义求出∠AOC=135°,然后根据弧长的计算公式即可得出劣弧AC的长度.解答:解:(1)∵∠PBC=∠D,∠PBC=∠C,∴∠C=∠D,∴CB∥PD;(2)∵AB是⊙O的直径,弦CD⊥AB于点E,∴=,∵∠PBC=∠C=22.5°,∴∠BOC=∠BOD=2∠C=45°,∴∠AOC=180°﹣∠BOC=135°,∴劣弧AC的长为:=.点评:本题考查了圆周角定理,平行线的判定,垂径定理,弧长的计算,难度适中.(2)中求出∠AOC=135°是解题的关键.22.如图,A.B是圆O上的两点,∠AOB=120°,C是AB弧的中点. (1)求证:AB平分∠OAC;(2)延长OA至P使得OA=AP,连接PC,若圆O的半径R=1,求PC的长.考点:菱形的判定与性质;等边三角形的判定与性质;圆心角.弧.弦的关系;圆周角定理.分析:(1)求出等边三角形AOC和等边三角形OBC,推出OA=OB=BC=AC,即可得出答案;(2)求出AC=OA=AP,求出∠PCO=90°,∠P=30°,即可求出答案.解答:(1)证明:连接OC,∵∠AOB=120°,C是AB弧的中点,∴∠AOC=∠BOC=60°,∵OA=OC,∴△ACO是等边三角形,∴OA=AC,同理OB=BC,∴OA=AC=BC=OB,∴四边形AOBC是菱形,∴AB平分∠OAC;(2)解:连接OC,∵C为弧AB中点,∠AOB=120°,∴∠AOC=60°,∵OA=OC,∴OAC是等边三角形,∵OA=AC,∴AP=AC,∴∠APC=30°,∴△OPC是直角三角形,∴.点评:本题考查了圆心角.弧.弦之间的关系,勾股定理,等边三角形的性质和判定的应用,主要考查学生运用定理进行推理和计算的能力,题目比较典型,难度适中.23.如图,点D是线段BC的中点,分别以点B,C为圆心,BC长为半径画弧,两弧相交于点A,连接AB,AC,AD,点E为AD上一点,连接BE,CE.(1)求证:BE=CE;(2)以点E为圆心,ED长为半径画弧,分别交BE,CE于点F,G.若BC=4,∠EBD=30°,求图中阴影部分(扇形)的面积.考点:全等三角形的判定与性质;等边三角形的性质;扇形面积的计算.专题:证明题.分析:(1)由点D是线段BC的中点得到BD=CD,再由AB=AC=BC可判断△ABC为等边三角形,于是得到AD为BC的垂直平分线,根据线段垂直平分线的性质得BE=CE;(2)由EB=EC,根据等腰三角形的性质得∠EBC=∠ECB=30°,则根据三角形内角和定理计算得∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,根据含30°的直角三角形三边的关系得到ED=BD=,然后根据扇形的面积公式求解.解答:(1)证明:∵点D是线段BC的中点,∴BD=CD,∵AB=AC=BC,∴△ABC为等边三角形,∴AD为BC的垂直平分线,∴BE=CE;(2)解:∵EB=EC,∴∠EBC=∠ECB=30°,∴∠BEC=120°,在Rt△BDE中,BD=BC=2,∠EBD=30°,∴ED=BD•tan30°=BD=,∴阴影部分(扇形)的面积==π.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.也考查了等边三角形的判定与性质.相等垂直平分线的性质以及扇形的面积公式.24.如图,AB是半圆O的直径,C.D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=4,AC=3,求DE的长.考点:圆周角定理;平行线的性质;三角形中位线定理.分析:(1)根据圆周角定理可得∠ACB=90°,则∠CAB的度数即可求得,在等腰△AOD中,根据等边对等角求得∠DAO的度数,则∠CAD 即可求得;(2)易证OE是△ABC的中位线,利用中位线定理求得OE的长,则DE即可求得.解答:解:(1)∵AB是半圆O的直径,∴∠ACB=90°,又∵OD∥BC,∴∠AEO=90°,即OE⊥AC,∠CAB=90°﹣∠B=90°﹣70°=20°,∠AOD=∠B=70°.∵OA=OD,∴∠DAO=∠ADO===55°∴∠CAD=∠DAO﹣∠CAB=55°﹣20°=35°;(2)在直角△ABC中,BC===.∵OE⊥AC,∴AE=EC,又∵OA=OB,∴OE=BC=.又∵OD=AB=2,∴DE=OD﹣OE=2﹣.点评:本题考查了圆周角定理以及三角形的中位线定理,正确证明OE 是△ABC的中位线是关键.25.已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;等边三角形的判定与性质;勾股定理.分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角.弧.弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;(Ⅱ)如图②,连接OB,OD.由圆周角定理.角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.解答:解:(Ⅰ)如图①,∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵在直角△CAB中,BC=10,AB=6,∴由勾股定理得到:AC===8. ∵AD平分∠CAB,∴=,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴易求BD=CD=5;(Ⅱ)如图②,连接OB,OD.∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5.点评:本题综合考查了圆周角定理,勾股定理以及等边三角形的判定与性质.此题利用了圆的定义.有一内角为60度的等腰三角形为等边三角形证得△OBD是等边三角形.26.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连接CB,BD是⊙O的直径,∠D=40°,求:∠AO1B,∠ACB 和∠CAD的度数.考圆周角定理;圆内接四边形的性质.点:分析:本题用到的知识点为:圆内接四边形的对角互补,同弧所对的圆周角等于圆心角的一半.解答:解:连接OA.∵∠D=40°,∠AO1B=180°﹣∠D=140°;∴∠ACB=∠AO1B=70°;∵OA=OD;∴∠OAD=∠D=40°,∠CAD=∠DAO+∠CAO=130°.点评:注意把所求角分割成和半径与切线的夹角有关的角.。
浙教版九年级数学上册第三章-圆的基本性质单元检测试卷有答案
D. 18 的长为( )
A. π
B. π
C. π
D. π
4.如图,△ ABC 是⊙O 的内接三角形,若∠ ABC=70°,则∠ AOC 的大小是( )
A. 20°
B. 35°
C. 130°
D. 140°
)
5.如图,△ ABC 的顶点 A,B,C 均在⊙O 上,若∠ ABC+∠ AOC=90°,则∠ AOC 的大小是( )
~
23.如图,在⊙O 中,AD 是直径,弧 AB=弧 AC,求证:AO 平分∠ BAC.
;
24.如图,P 是⊙O 的直径 AB 延长线上一点,点 C 在⊙O 上,AC=PC,∠ ACP=120°.
(1)求证:CP 是⊙O 的切线; (2)若 AB=4cm,求图中阴影部分的面积. 25.在⊙O 的内接四边形 ABCD 中,AB=AD,∠ C=110°,若点 E 在 上,求∠ E 的度数.
浙教版九年级数学上册第三章 圆的基本性质单元检测试卷
一、单选题(共 10 题;共 30 分)
1.用半径为 6 的半圆围成一个圆锥的侧面,则圆锥的底面半径等于
A. 3
B.
C. 2
D.
°的圆心角对的弧长是 6π,则此弧所在圆的半径是( )
<
A. 3
B. 4
C. 9
3.如图,AB 为⊙O 的直径,点 C 在⊙O 上,若∠ OCA=50°,AB=4,则
A.
B.
C.
D.
…
10.(2017•葫芦岛)如图,点 A,B,C 是⊙O 上的点,∠ AOB=70°,则∠ ACB 的度数是( )
A. 30°
B. 35°
二、填空题(共 10 题;共 30 分)
浙教版九年级上《第三章圆的基本性质》期末复习试卷(含解析)
(1)如图 1,求证:∠B=∠C;
(2)如图 2,当 H、O、B 三点在一条直线上时,求∠BAC 的度数;
7.圆锥的主视图与左视图都是边长为 4 的等边三角形,则圆锥的侧面展开图扇形的圆心角是( )
A.90° B.120° C.150° D.180°
13.如图,AB 是⊙O 的弦,AB=10,点 C 是⊙O 上的一个动点,且∠ACB=45°,若点 M,N 分别是 AB、BC
的中点,则 MN 长的最大值是________.
16.如图,点 A , B , C , D 在 ⊙ O 上, ∠ABO = 40 ∘ , ∠BCD = 112 ∘ , E 是 AD 中点,
则 ∠DOE 的度数为________.
17.如图,Rt△ABC 中,∠ACB=90°,AC=3,BC=4,将△ABC 绕点 A 逆时针旋转得到△AB′C′,AB′与 BC 相交于
4.如图,在⊙O 中,点 B,O,C 和点 A,O,D 分别在同一条直线上,则图中有( )条弦
A. 2 B. 3 C. 4 D. 5
14.平面直角坐标系中,以点 P(0,1)为中心,把点 A(5,1)逆时针旋转 90°,得到点 B,则点 B 的坐
标为________.
15.一个圆锥的侧面积是底面积的 2 倍,则圆锥侧面展开图扇形的圆心角是________°
(3)若⊙O 的半径为 4,∠BAC=30°,则圆周上到直线 AC 距离为 3 的点有多少个?请说明理由.
A. 点 P 在⊙O 内 B. 点 P 在⊙O 上 C. 点 P 在⊙O 外 D. 无法判断
2.如图,⊙O 是△ABC 的外接圆,若∠ABC=40°,则∠AOC 等于( )
n 个正方形重叠形成的重叠部分的面积和为 ________
【浙教版】九年级数学上册 第三章《圆的基本性质》单元综合测试卷(含答案)-
第三章圆的基本性质单元综合测试卷班级_________ 姓名_____________ 得分___________ 一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.1﹒⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定2﹒下列命题中,正确的个数有()①过两点可以作无数个圆;②经过三点一定可以作圆;③任意一个三角形有一个外接圆,而且只有一个外接圆;④任意一个圆有且只有一个内接三角形.A.1个B.2个C.3个D.4个3﹒下列命题中,正确的个数有()①圆是轴对称图形,它的对称轴是直径;②半径相等的两个半圆是等弧;③在同圆或等圆中,相等的圆心角所对的弧相等;④三角形的外心到三角形各顶点的距离都相等.A.1个B.2个C.3个D.4个4﹒如图,AB是⊙O的直径,D.C在⊙O上,AD∥OC,∠DAB=60°,连结AC,则∠DAC等于()A.15°B.30°C.45°D.60°第4题图第5题图第6题图第7题图5﹒如图,⊙O的直径垂直于弦CD,垂足为E,∠A=22.5°,OC=4,CD的长为()A.22B.4C.42D.86﹒如图,在⊙O中,AB AC=,∠AOB=50°,则∠ADC的度数是()A.50°B.40°C.30°D.25°7﹒如图,△ABD的三个顶点在⊙O上,AB是直径,点C在⊙O上,且∠ABD=52°,则∠BCD等于()A.38°B.32°C.66°D.52°8﹒如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A.45°B.50°C.60°D.75°第8题图第9题图第10题图9﹒如图,点A.B.C都在⊙O上,⊙O的半径为2,∠ACB=30°,则AB的长是()A.2πB.πC.13π D.23π10.如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=43,则阴影部分的面积为()A.πB.4πC.43π D.163π二.认真填一填(本题有6个小题,每小题4分,共24分)11.如图,在⊙O中,A B为直径,C D为弦,已知∠ACD=40°,则∠BAD=________度.第11题图第12题图第13题图12.如图,⊙O的弦AB与半径OC的延长线相交于点D,且BD=OA.若∠AOC=120°,则∠D=_____度.13.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为____________.14.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则BD的度数为___________.第14题图第15题图第16题图15. 如图,在⊙O的内接五边形ABCDE中,∠CAD=35°,则∠B+∠E=____________.16. 如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交AB于点E,以点O为圆心,OC的长为半径作CD交OB于点D.若OA=2,则阴影部分的面积为______.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.17.( 6分)如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为BC 上一点,CE⊥AD于E,求证:AE=BD+DE.18.( 8分)如图,在⊙O中,点C是AB的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.19.( 8分)如图,四边形ABCD内接于⊙O,并且AD是⊙O的直径,C是弧BD的中点,AB和DC的延长线交⊙O外一点E.求证:BC=EC.20.( 10分)如图,点G,H分别是正六边形ABCDEF的边BC,CD上的点,且BG=CH,AG交BH于点P.(1)求证:△ABG≌△BCH;(2)求∠APH的度数.21.( 10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,垂足为点O,连结AF并延长交⊙O于点D,连结OD交BC于点E,∠B=30°,FO =23.(1)求AC的长度;(2)求图中阴影部分面积.(计算结果保留根号)22.( 12分)如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.(1)求证:BE=CE;(2)试判断四边形BFCD的形状,并说明理由;(3)若BC=8,AD=10,求CD的长.23.( 12分)如图,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC =∠CPB=60°.(1)判断△ABC的形状:________________;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于AB的什么位置时,四边形APBC的面积最大?求出最大面积.备用图参考答案一.仔细选一选(本题有10个小题,每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案ABCBCDACDD二.认真填一填(本题有6个小题,每小题4分,共24分) 11. 50; 12. 20; 13. 52;14. 50°; 15. 215°; 16. 3122π+; 三.全面答一答(本题有7个小题,共66分)17.解答:证明:如图,在AE 上截取AF =BD ,连结CF ,CD , 在△ACF 和△BCD 中,∵AC BC CAF CBD AF BD =⎧⎪∠=∠⎨⎪=⎩, ∴△ACF ≌△BCD (SAS ), ∴CF =CD , ∵CE ⊥AD , ∴EF =DE ,∴AE =AF +EF =BD +DE .18.解答:连结AO ,∵点C 是AB 的中点,半径OC 与AB 相交于点D , ∴OC ⊥AB ,∴AB=12,∴AD=BD=6,设⊙O的半径为R,∵CD=2,∴在Rt△AOD中,由勾股定理得:AD2=OD2+AD2, 即:R2=(R-2)2+62,解得:R=10,答:⊙O的半径长为10.19.解答:证明:连结AC,∵AD是⊙O的直径,∴∠ACD=90°=∠ACE,∵四边形ABCD内接于⊙O,∴∠D+∠ABC=180°,又∠EBC+∠ABC=180°, ∴∠EBC=∠D,∵C是BD的中点,∴∠1=∠2,∴∠1+∠E=∠2+∠D=90°,∴∠E=∠D,∴∠EBC=∠E,∴BC=EC.20.解答:(1)证明:∵ABCDEF 是正六边形, ∴AB =BC ,∠ABC =∠C =120°, 在△ABG 和△BCH 中,∵120AB BCABC C BG CH ︒=⎧⎪∠=∠=⎨⎪=⎩, ∴△ABG ≌△BCH (SAS ), (2)解:由(1)△ABG ≌△BCH , ∴∠BAG =∠HBC , ∴∠BPG =∠ABG =120°, ∴∠APH =∠BPG =120°. 21.解答:(1)∵OF ⊥AB , ∴∠BOF =90°, ∵∠B =30°,FO =23,∴OB =6,AB =2OB =12, 又∵AB 为⊙O 的直径, ∴∠ACB =90°, ∴AC =12AB =6,(2)∵由(1)可知:AB =12, ∴AO =6,即AC =AO ,在Rt △ACF 和Rt △AOF 中, ∵AF =AF ,AC =AO ,∴Rt △ACF ≌Rt △AOF (HL ), ∴∠FAO =∠FAC =30°, ∴∠DOB =60°, 过点D 作DG ⊥AB 于点G , ∵OD =6,∴DG =33,∴S △ACF +S △OFD =S △AOD =12×6×33=93,即阴影部分的面积为93.22.解答:(1)证明:∵AD 是直径, ∴∠ABD =∠ACD =90°, 在Rt △ABD 和Rt △ACD 中,AB ACAD AD =⎧⎨=⎩,∴Rt △ABD ≌Rt △ACD (HL ), ∴∠BAD =∠CAD , ∵AB =AC , ∴BE =CE ;(2)四边形BFCD 是菱形. 证明:∵AD 是直径,AB =AC , ∴AD ⊥BC ,BE =CE , ∵CF ∥BD ,∴∠FCE =∠DBE ,在△BED 和△CEF 中,90FCE DBEBE CEBED CEF ︒⎧∠=∠⎪=⎨⎪∠=∠=⎩, ∴△BED ≌△CEF (ASA ),∴CF =BD ,∴四边形BFCD 是平行四边形,∵∠BAD =∠CAD ,∴BD =CD ,∴四边形BFCD 是菱形;(3)解:∵AD 是直径,AD ⊥BC ,BE =CE ,∴CE 2=DE AE ,设DE =x ,∵BC =8,AD =10,∴42=x (10﹣x ),解得:x =2或x =8(舍去)在Rt △CED 中,CD =22CE DE +=2242+=25.23.解答:(1)证明:(1)△ABC 是等边三角形. 证明如下:在⊙O 中∵∠BAC 与∠CPB 是BC 所对的圆周角,∠ABC 与∠APC 是AC 所对的圆周角,∴∠BAC =∠CPB ,∠ABC =∠APC ,又∵∠APC =∠CPB =60°,∴∠ABC =∠BAC =60°,∴△ABC为等边三角形;(2)在PC上截取PD=AP,如图1,又∵∠APC=60°,∴△APD是等边三角形,∴AD=AP=PD,∠ADP=60°,即∠ADC=120°. 又∵∠APB=∠APC+∠BPC=120°,∴∠ADC=∠APB,在△APB和△ADC中,APD ADCABP ACPAP AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APB≌△ADC(AAS),∴BP=CD,又∵PD=AP,∴CP=BP+AP;(3)当点P为AB的中点时,四边形APBC的面积最大. 理由如下,如图2,过点P作PE⊥AB,垂足为E,过点C作CF⊥AB,垂足为F.∵S△APB =12AB PE ,S△ABC=12AB CF,∴S四边形APBC=12AB(PE+CF),当点P为AB的中点时,PE+CF=PC,PC为⊙O的直径, ∴此时四边形APBC的面积最大.又∵⊙O的半径为1,∴其内接正三角形的边长AB=3,∴S四边形APBC=12×2×3=3.。
【易错题】浙教版九年级上《第三章圆的基本性质》单元试卷(学生用)
【易错题解析】浙教版九年级数学上册第三章圆的基本性质单元测试卷一、单选题(共10题;共30分)1.如图,⊙O是△ABC的外接圆,已知∠ABO=30°,则∠ACB的大小为()A. 60°B. 30°C. 45°D. 50°2.如图,水平地面上有一面积为30π㎝2的扇形AOB,半径OA=6㎝,且OA与地面垂直,在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为()A. 20cmB. 24cmC. 10πcmD. 30πcm3.一条水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC 的的长是()A. 4B. 5C. 6D. 84.一个半径为2cm的圆的内接正六边形的面积是()A. 24cm2B. 63cm2C. 123cm2D. 83cm25.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. 15B. 2 5C. 2 15D. 86.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为()A. M在⊙O上B. M在⊙O内C. M在⊙O外D. M在⊙O右上方7.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是BAC的中点,连接DB,DC,则∠DBC的度数为()A. 30°B. 45°C. 50°D. 70°8.如图,四边形ABCD是⊙O的内接四边形,若∠DAB=64°,则∠BCD的度数是()A. 64°B. 90°C. 136°D. 116°9.如图,在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A. 100°B. 110°C. 120°D. 130°10.如图,AB切⊙O于点B,OA=23,∠A=30°,弦BC∥OA,则劣弧的弧长为A. 33π B. 32π C. π D. 32π二、填空题(共10题;共30分)11.已知扇形的半径为8 cm,圆心角为45°,则此扇形的弧长是________cm.12.如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.13.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为________.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为________.15.如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O 逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是________.16.在半径为6cm的圆中,圆心角为120°的扇形的面积是________ cm2.17.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为________,则图中阴影部分的面积是________.18.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r下.(填“<”“=”“<”)19.在平面直角坐标系中,点A坐标为(-2,4),与原点的连线OA绕原点顺时针转90°,得到线段OB ,连接线段AB ,若直线y=kx-2与△OAB有交点,则k的取值范围是________.20.如图,在扇形OAB中,C是OA的中点,CD⊥OA,CD与AB交于点D,以O为圆心,OC的长为半径作CE交OB于点E,若OA=4,∠AOB=120∘,则图中阴影部分的面积为________ .(结果保留π)三、解答题(共9题;共60分)21.如图,已知AD是△ABC的中线.(1)画出以点D为对称中心与△ABD成中心对称的三角形.(2)画出以点B为对称中心与(1)所作三角形成中心对称的三角形.(3)问题(2)所作三角形可以看作由△ABD作怎样的变换得到的?22.已知:如图所示,AD=BC。
浙教版九年级上册第3章《圆的基本性质》测试卷(含答案)
九年級上冊第3章《圓の基本性質》測試卷滿分100分,考試時間90分鐘一、選擇題(每小題3分,共30分) 1.下列命題中,是真命題の為( ) A .同弦所對の圓周角相等 B .一個圓中只有一條直徑C .圓既是軸對稱圖形,又是中心對稱圖形D .同弧所對の圓周角與圓心角相等2.已知⊙O の半徑為5釐米,A 為線段OP の中點,當OP =6釐米時,點A 與⊙O の位置關係是( ) A .點A 在⊙O 內 B .點A 在⊙O 上 C .點A 在⊙O 外 D .不能確定 3.已知弧の長為3πcm ,弧の半徑為6cm ,則圓弧の度數為( ) A .45° B .90 ° C .60 ° D .180° 4.如圖,OAB △繞點O 逆時針旋轉80°得到OCD △,若110A ∠=°,40D ∠=°,則∠αの度數是( ) A .30° B .40° C .50° D .60°5.如圖,圓O の直徑CD 過弦EF の中點G ,∠DCF =20°,則∠EOD 等於( ) A .10° B .20°C .40°D .80°第5題圖6.鐘面上の分針の長為1,從9點到9點30分,分針在鐘面上掃過の面積是( ) A .12πB .14πC .18πD .π7.如圖,一種電子遊戲,電子螢幕上有一正六邊形ABCDEF ,點P 沿直線AB 從右向左移動,當出現點P 與正六邊形六個頂點中の至少兩個頂點距離相等時,就會發出警報,則直線AB 上會發出警報の點P 有( ) A .3個 B .4個 C .5個 D .6個第10题E CDFP8.如圖,A、B、P是半徑為2の⊙O上の三點,∠APB=45°,則弦ABの長為()A.2B.2 C.22D.4第8題圖9.如圖,在平面直角坐標系中,⊙A經過原點O,並且分別與x軸、y軸交於B、C兩點,已知B(8,0),C(0,6),則⊙Aの半徑為()A.3 B.4 C.5 D.8第9題圖10.如圖,⊙Oの半徑OD⊥弦AB於點C,連結AO並延長交⊙O於點E,連結E C.若AB=8,CD=2,則ECの長為()A.215B.8 C.210D.213第10題圖二、填空題(每小題3分,共30分)11.一條弧所對の圓心角為72°,則這條弧所對圓周角為°.12.已知⊙Oの面積為36π,若PO=7,則點P在⊙O.13.一紙扇柄長30cm,展開兩柄夾角為120°,則其面積為cm2.14.如圖,AB為⊙Oの直徑,弦CD⊥AB於點E,若CD=6,且AE:BE =1:3,則AB= .第14題圖15.如圖,AB是⊙Oの直徑,點C是圓上一點,∠BAC=70°,則∠OCB= °.第15題圖16.已知:如圖,圓內接四邊形ABCD中,∠BCD =110°,則∠BAD = °.第16題圖17.如圖,OC是⊙Oの半徑,AB是弦,且OC⊥AB,點P在⊙O上,∠APC=26°,則∠BOC= .第17題圖18.如圖,⊙O中,弦AB、DCの延長線相交於點P,如果∠AOD=120°,∠BDC=25°,那麼∠P= °.第18題圖19.如圖,AD、AC分別是直徑和絃,∠CAD=30°,B是AC上一點,BO⊥AD,垂足為O,BO=5cm,則CD 等於cm.第19題圖20.如圖:在⊙O中,AB、AC為互相垂直且相等の兩條弦,OD⊥AB,OE⊥AC,垂足分別為D、E,若AC =2 cm,則⊙Oの半徑為cm.第20題圖三、解答題(共40分) 21.(6分)某居民社區一處圓柱形の輸水管道破裂,維修人員為更換管道,需確定管道圓形截面の半徑,下圖是水準放置の破裂管道有水部分の截面. (1)請你補全這個輸水管道の圓形截面;(2)若這個輸水管道有水部分の水面寬AB =16cm ,水面最深地方の高度為4cm ,求這個圓形截面の半徑.22.(6分)如圖所示,AB =AC ,AB 為⊙O の直徑,AC 、BC 分別交⊙O 於E 、D ,連結ED 、BE .(1) 試判斷DE 與BD 是否相等,並說明理由; (2) 如果BC =6,AB =5,求BE の長.23.(6分)如圖,⊙O の直徑AB 為10cm ,弦AC 為6cm ,∠ACB の平分線交⊙O 於D ,求BC ,AD ,BDの長.24.(6分)如圖,將小旗ACDB 放於平面直角坐標系中,得到各頂點の座標為A (-6,12),B (-6,0),C (0,6),D (-6,6).以點B 為旋轉中心,在平面直角坐標系內將小旗順時針旋轉90°. (1)畫出旋轉後の小旗A ′C ′D ′B ′,寫出點C ′の座標; (2)求出線段BA 旋轉到B ′A ′時所掃過の扇形の面積.AOBCDE25.(8分)如圖,AB為⊙Oの直徑,點C在⊙O上,延長BC至點D,使DC=CB,延長DA與⊙Oの另一個交點為E,連接AC,CE.(1)求證:∠B=∠D;(2)若AB=4,BC-AC=2,求CEの長.26.(8分)在⊙O中,AB為直徑,點C為圓上一點,將劣弧沿弦AC翻折交AB於點D,連結CD.(1)如圖1,若點D與圓心O重合,AC=2,求⊙Oの半徑r;(2)如圖2,若點D與圓心O不重合,∠BAC=25°,請直接寫出∠DCAの度數.资料内容仅供您学习参考,如有不当之处,请联系改正或者删除九年級上冊第3章《圓の基本性質》測試卷1.C2.A3.B4.C5.C6.A7.C资料内容仅供您学习参考,如有不当之处,请联系改正或者删除20.221.(1)圖略;(2)10cm .22.(1)連結AD . ∵AB 是⊙O の直徑,∴AD ⊥BC ,BE ⊥AC .∵AB=AC ,∴BD=CD ,∴DE=BD .(2)由畢氏定理,得BC 2-CE 2=BE 2=AB 2-AE 2.設AE =x ,則62-(5-x )2=52-x 2,解得x =75.∴BE 22245AB AE -=. 23.∵ AB 是直徑.∴ ∠ACB =∠ADB =90°.在Rt △ABC 中,BC 22221068AB AC -=-=(cm ).∵ CD平分∠ACB ,∴ AD BD =.∴ AD =BD .又在Rt △ABD 中,AD 2+BD 2=AB 2,∴ AD =BD =52(cm ). 24.(1)圖略,C ′(0,-6);(2)∵A (-6,12),B (-6,0),∴AB =12.∴線段BA 旋轉到B ′A ′時所掃過の扇形の面積=2901236360⋅π⋅=π.25.(1)∵AB 為⊙O の直徑,∴∠ACB =90°,∴AC ⊥BC ,∵DC =CB ,∴AD =AB ,∴∠B =∠D ;(2)解:設BC =x ,則AC =x -2,在Rt △ABC 中,AC 2+BC 2=AB 2,∴(x -2)2+x 2=42,解得:x 17x 2=17,∵∠B =∠E ,∠B =∠D ,∴∠D =∠E ,∴CD =CE ,∵CD =CB ,∴CE =CB 7. 26.(1)過點O 作OE ⊥AC 於E ,則AE =21AC =21×2=1,∵翻折後點D 與圓心O 重合,∴OE =21r ,在Rt △AOE 中,AO 2=AE 2+OE 2,即r 2=12+(21r )2,解得r 233(2)連接BC ,∵AB 是直徑,∴∠ACB =90°,∵∠BAC =25°,∴∠B =90°-∠BAC =90°-25°=65°,根據翻折の性質,⌒AC 所對の圓周角等於ADC 所對の圓周角,∴∠DCA =∠B -∠A =65°-25°=40°.。
浙教版数学九年级上册 第3章测试卷 圆的基本性质(含答案)
第3章测试卷圆的基本性质班级学号得分姓名一、选择题(本大题有10小题,每小题3分,共30分)1.已知⊙O的直径为10,点P到点O的距离大于8,那么点P的位置( )A. 一定在⊙O的内部B. 一定在⊙O的外部C. 一定在⊙O上D. 不能确定2.正六边形的每个内角度数为( )A. 90°B. 108°C. 120°D. 150°3.如图,AB为⊙O的直径,C,D为⊙O上两点,若∠BCD=40°,则∠ABD的大小为( )A. 60°B. 50°C. 40°D. 20°4.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,AE=1,则弦CD的长是( )A7 B. 7 C. 6 D. 85. 下列有关圆的一些结论:①与半径长相等的弦所对的圆周角是30°;②圆内接正六边形的边长与该圆半径相等;③垂直于弦的直径平分这条弦;④平分弦的直径垂直于弦.其中正确的是( )A. ①②③B. ①③④C. ②③D. ②④6. 如图,正方形ABCD 内接于⊙O,AB=22,则AB的长是( )A. πB.32π C. 2π D127.如图,已知 BC 是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点 A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则( )A. 3α+β=180°B. 2α+β=180°C. 3α-β=90°D. 2α-β=90°8. 如图,在扇形 AOB中,∠AOB=90°,点C 是弧AB 的中点,点 D 在OB 上,点 E 在OB 的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为( )A. π-2B. 2π—2C. π—4D. 2π-49. 如图,四边形ABCD内接于⊙O,点I是△ABC角平分线的交点,∠AIC=124°,点 E 在AD 的延长线上,则∠CDE的度数为( )A. 56°B. 62°C. 68°D. 78°10. 如图,AB是半圆O 的直径,点 P 从点O 出发,沿OA→AB→BO(的路径匀速运动一周.设OP 的长为s,运动时间为t,则下列图象能大致地刻画s与t之间关系的是( )二、填空题(本大题有6小题,每小题4分,共24分)11. 如图,点 A,B,C在⊙O上,BC=6,∠BAC=30°,则⊙O的半径为 .12. 如图,在⊙O中,已知半径为5,弦AB的长为8,那么圆心O到AB 的距离为 .13. 如图,在四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC 交于点E,四边形AECD是平行四边形,AB=6,则扇形(图中阴影部分)的面积是 .14.如图,在⊙O中,弦AB=1,点C在AB上移动,连结OC,过点C作CD⊥OC交⊙O于点D,则CD的最大值为 .15.如图,在半径2₂的圆形纸片中,剪一个圆心角为90°的最大扇形(阴影部分),则这个扇形面积为 .16. 如图所示,E,F分别是正方形ABCD 的边AB,BC上的点,BE=CF,连结CE,DF.将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转了.三、解答题(本大题有8小题,共66分)17. (6分)已知扇形的半径为6cm,面积为10πcm²,求该扇形的弧长.18. (6分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,点O,M也在格点上.(1)画出△ABC关于直线OM 对称的△A₁B₁C₁;(2)画出△ABC绕点O按顺时针方向旋转 90°后所得的△A₂B₂C₂.19. (6分)中国的拱桥始建于东汉中后期,已有一千八百余年的历史,如图,一座拱桥在水面上方部分是.AB,拱桥在水面上的跨度AB为8米,拱桥AB与水面的最大距离为3米.(1)用直尺和圆规作出AB所在圆的圆心O;(2)求拱桥 AB所在圆的半径.20.(8分)如图所示,在△ABC中,AB=AC,∠A=30°,,以AB为直径的⊙O交BC于点D,交AC于点E,连结DE,过点 B作BP 平行于DE,交⊙O于点P,连结OP,CP.(1)求证:BD=DC;(2)求∠BOP的度数.21.(8分)如图,AB是⊙O的直径,C是.AE的中点,CD⊥AB于点D,交AE于点F,连结AC.求证:AF=CF.22.(10分)如图,A,P,B,C是⊙O上的四点,且满足∠BAC=∠APC=60°.(1) 试判断△ABC是否为等边三角形? 为什么?(2)若⊙O的半径OD⊥BC于点E,BC=8,,求⊙O的半径长.23.(10分)如图,在△ABC中,AB=AC,E在AC上,经过A,B,E三点的⊙O交BC 于点D,且.BD= DE.(1)求证:AB为⊙O的直径;(2)若AB=8,∠BAC=45°,,求阴影部分的面积.24.(12分)如图,点A,B,C是⊙O上的三点,AB∥OC.(1)求证:AC平分∠OAB;(2)如图,过点O作(OE⊥AB于点E,交AC于点 P.若AB=2,∠AOE=30°,求 PE的长.第3章测试卷 圆的基本性质1. B2. C3. B4. B5. C6. A7. D8. A9. C 10. C 11. 6 12. 3 13. 6π14 12 15. π 16. 9017. 解:由 S =12l ⋅R 得 l =2S R =2×106=103π(cm ).18. 解:(1)如图, △A₁B₁C₁即为所求作的三角形.(2)如图, △A₂B₂C₂即为所求作的三角形.19. 解:(1)如图1所示,点 O 即为所求;(2)如图2 所示,取 AB 的中点D ,连结OD 交AB 于点 E,连结OA,则 OD ⊥AB,且AE=EB=4米,由题意得,DE=3米,设圆的半径为r 米,在 Rt△AEO 中, AE +EO²=OA²,即 4²+(r−3)²=r²,解得 r =256.即拱桥AB 所在圆的半径为 256米.20. (1)证明:如图,连结 AD.∵AB 为⊙O 的直径,∴∠ADB=90°,即 AD⊥BC,∵AB=AC,∴BD=CD. (2)解:∵∠BAC= 30°,AB= AC,∴ ∠ABC =12×(180∘−30∘)=75°.∵四边形 ABDE 为圆O 的内接四边形,∴∠EDC=∠BAC=30°.∵BP∥DE,∴∠PBC=∠EDC=30°,∴∠OBP=∠ABC--∠PBC=45°.∵OB =OP,∴∠OPB=∠OBP=45°,∴∠BOP =90°21. 证明:延长CD 交⊙O 于点 H,∵C 是 AE 的中点, ∴AC =CE ,∵CD ⊥AB,∴AC =AH ,∴CE =AH ,∴∠ACD=∠CAE,∴AF=CF.22. 解:(1)△ABC 是等边三角形.理由:∵∠BAC=∠APC=60°,又∵∠APC=∠ABC,∴∠ABC=60°,∴∠ACB =180°−∠BAC−∠ABC =180°− 60°−60°=60°,∴△ABC 是等边三角形. (2)如图,连结OB,∵△ABC 为等边三角形,⊙O 为其外接圆,∴BO 平分∠ABC,∴∠OBC=30°,∵OD ⟂BC,∴BD =CD,BE =CE = 4,∠BOD =60∘,∴OE =433, OB =833.∴OO|的半径长 833.23. (1)证明:如图,连结.AD, ∵⌢BD =DE ,∴∠BAD =∠CAD.又∵AB = AC, ∴AD ⊥ BC, ∴∠ADB=90°,∴AB 为⊙O 的直径. (2)解:∵AB 为⊙O 的直径,∴O 在AB 上,如图,连结OE,∵AB=8,∠BAC=45°,∴∠AOE=∠BOE= ∴1∘∴AB =8,∴BO =EO =4,S 扇形AOE =90×π×42360 =4π,S BOE =12OB 2=12×16=8,∴S 阴影=S BOE24. (1)证明:∵AB∥OC,∴∠C=∠BAC.∵OA=OC,∴∠C=∠OAC,∴∠BAC=∠OAC,即AC 平分∠OAB. (2)解: COE⟂AB,∴AE =BE =12AB =1,又∵∠AOE 、30°,∠PEA=90°,∴∠OAE= 60∘,∴∠EAP =3∠OAE =30∘,∴PE =12PA.设PE=x,则 PA=2x,根据勾股定理得 x²+1²=(2x)²,解得 x =33,∴PE =33.。
浙教版九上数学 第3章 圆的基本性质 单元试卷(含解析)
① 平分 ,② , ,③ .
以此三个中的两个为条件,另一个为结论,可构成三个命题,即:
①② ③,①③ ②,②③ ①.
试判断上述三个命题是否正确(直接作答);
请证明你认为正确的命题.
26.如图 ,边长均为 的正 和正 原来完全重合.如图 ,现保持正 不动,使正 绕两个正三角形的公共中心点 按顺时针方向旋转,设旋转角度为 .(注:除第 题中的第②问,其余各问只要直接给出结果即可)
【详解】∵四边形ABCD为正方形,且面积为3
∴∠D=∠B=∠BAD=90°,AD=AB=BC=CD= ,且AE=AF,
①当F在线段BC上时,如图1,
在Rt△ADE和Rt△ABF中,
,
∴Rt△ADE≌Rt△ABF(HL),
∴∠DAE=∠BAF,BF=DE=1,
又∵在Rt△ADE中,DE=1,AD= ,
二、填空题(共10小题,每小题3分,共30分)
11.如图,正方形 的面积为 ,点 是 边上一点, ,将线段 绕点 旋转,使点 落在直线 上,落点记为 ,则 ________, 的长为________.
【答案】(1).30°或90°;(2). -1或 +1.
【解析】
【分析】
当点F在线段BC上时,由旋转的性质可得△ADE≌△ABF,可得到BF=DE,∠DAE=∠BAF=30°,可求得答案;当点F在线段CB的延长线上时,可证得△ABF≌△ADE,则可求得∠EAF=90°,此时FC=BF+BC,可求得答案.
8.如图,已知 为 的外心, 为 上的高, , ,则 为( )
A.32°B.26°C.28°D.34°
9.一个直角三角形两条直角边为 , ,分别以它的两条直角边所在直线为轴,旋转一周,得到两个几何体,它们的表面面积相应地记为 和 ,则有( )
浙教版数学九年级上册单元试卷第3章圆的基本性质
浙教版数学九年级上册单元试卷第3章圆的基本性质题号一二三总分得分评卷人得分一、单选题(共30分)1.(本题3分)已知O的半径为3cm,点P到圆心O的距离2cmOP=,则点P()A.在O外B.在O 上C.在O内D.不能确定2.(本题3分)如图,ABC是O的内接三角形,AD是O的直径,若50CAD∠=︒,则ABC∠的度数是()A.30°B.40°C.50°D.60°3.(本题3分)《九章算术》是我国古代著名数学著作,书中记载:今有圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?用数学语言可表述为:如图,CD为⊙O的直径,弦AB⊥DC于E,ED=1寸,AB=6寸,求直径CD的长.则CD的长是()A.5寸B.8寸C.10寸D.12寸4.(本题3分)如图,点,,,A B C D在O上,AC是O的直径,若25CAD︒∠=,则ABD∠的度数为()A.25°B.50°C.65°D.75°5.(本题3分)如图,AB是O的直径,点C在圆上,若32CAB∠=︒,则CBA∠的度数为()A.32°B.64°C.68°D.58°第1页共10页◎第2页共10页第3页 共10页 ◎ 第4页 共10页6.(本题3分)如图,四边形ABCD 是O 的内接四边形,125A ∠=︒,则BOD ∠的度数为( )A .55︒B .65︒C .110︒D .125︒ 7.(本题3分)下列事件中,属于必然事件的是( )A .三个点确定一个圆B .相等的圆心角所对的弧相等C .平分弦的直径垂直于弦D .直径所对的圆周角是直角 8.(本题3分)如图,已知弧AB 的半径为5,所对的弦AB 长为8,点P 是弧AB 的中点,将弧AB 绕点A 逆时针旋转90°后得到弧AB ′则在该旋转过程中,点P 的运动路径长是( )A .5πB .5πC .25πD .2π 9.(本题3分)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π10.(本题3分)如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B 5C .2.5D .23 评卷人得分 二、填空题(共32分) 11.(本题4分)已知扇形的弧长为10cm π,面积为230cm π,则扇形的圆心角为______.12.(本题4分)边长为2的正方形ABCD的外接圆半径是____________.13.(本题4分)如图,将一块三角板和半圆形量角器按图中方式叠放,点A、O在三角板上所对应的刻度分别是10cm、4cm.若弧AB为120°,则阴影部分的面积为________2cm.14.(本题4分)如图,PA,PB是⊙O的切线,切点为A,B,∠P=58°,C 是⊙O上异于A,B的点,则∠ACB的度数为_________.15.(本题4分)如图,⊙O的直径CD垂直于弦AB,垂足为P,若⊙O的半径为5cm,AB=8cm,则PD的长为____cm.16.(本题4分)如图,点D为AC上一点,点O为边AB上一点,AD=DO.以O为圆心,OD长为半径作圆,交AC于另一点E,交AB于点F,G,连接EF.若∠BAC=22°,则∠EFG =_ .17.(本题4分)如图,△ABC的3个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B顺时针旋转到△的位置,且点、仍落在格点上,则线段AB扫过的图形面积是平方单位(结果保留π).18.(本题4分)如图是小芳学习时使用的圆锥形台灯灯罩的示意图,则围成这个灯罩的铁皮的面积为________ cm2(不考虑接缝等因素,计算结果用π表示).第5页共10页◎第6页共10页第7页 共10页 ◎ 第8页 共10页评卷人得分三、解答题(共58分) 19.(本题10分)如图,ABC 中,90ACB ∠=︒,15cm CA =,20cm CB =,以CA 为半径的C 交AB 于D ,求AD 的长.20.(本题10分)石拱桥是中国传统桥梁四大基本形式之一.如图,一石拱桥的桥顶到水面的距离CD 为8m ,水面宽AB 为8m ,求桥拱的半径.21.(本题12分)如图,两个同心圆,大圆的弦AB 和AC 分别切小圆于点D ,E . 求证:DE ∥BC22.(本题12分)如图,以Rt△ABC的直角边AB为直径的半圆O,与斜边AC交于D,E是BC边上的中点,连结DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明理由;(2)若AD、AB的长是方程x2-10x+24=0的两个根,求直角边BC的长. 23.(本题14分)如图,已知AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°,①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.第9页共10页◎第10页共10页参考答案1.解:∵O 的半径为3cm ,点P 到圆心O 的距离2cm OP =,23<, ∴点P 在O 内,故选:C .2.解:∵AD 是O 的直径,∴∠ABD =90°,∵∠DBC =∠DAC =50°, ∴∠ABC =90°-∠DBC =40°.故选:B .3.解:连接OA ,∵AB CD ⊥ ,且6AB = ,∴3AE BE == ,设圆O 的半径OA 的长为x ,则OC OD x == ,∵1DE = ,∴1OE x =- ,在RT AOE 中,根据勾股定理得:22213x x --=(),解得:5x =;∴5210CD =⨯=(寸).故选C . 4.解:∵AC 是O 的直径,∴90ADC ∠=︒,∵25CAD ∠=︒,∴9065ACD CAD ∠=︒-∠=︒,∴65ABD ACD ∠=∠=︒,故选:C5.∵AB 是O 的直径,点C 在圆上∴∠C=90°∴∠CAB+∠CBA=90°∴∠CBA=90°-∠CAB=90°-32°=58°故选:D . 6.解:∵四边形ABCD 为⊙O 的内接四边形,∠A =125°,∴∠C =180°−∠A =55°, ∴∠BOD =2∠C =110°.故选:C .7.解:A 、∵不在同一条直线上的三个点确定一个圆,∴选项A 不正确;B 、∵在同圆或等圆中,相等的圆心角所对的弧相等,∴选项B 不正确;C 、∵平分弦(不是直径)的直径垂直于弦,∴选项C 不正确;D 、∵直径所对的圆周角是直角,∴选项D 正确;故选:D .8.解:如图,设弧AB 的圆心为O ,连接OP ,OA ,AP',AP ,AB' ∵圆O 半径为5,所对的弦AB 长为8,点P 是弧AB 的中点,根据垂径定理,得AC =12AB =4,PO ⊥AB .∴OC =22OA AC -=3. ∴PC =OP−OC =5−3=2.∴AP =22AC PC +=25.∵将弧AB 绕点A 逆时针旋转90°后得到弧AB ′,∴∠PAP ′=∠BAB ′=90°. ∴弧PP ′的长为:9025180π⨯=5π.则在该旋转过程中,点P 的运动路径长是5π. 故选:B .9.解:如图,连结CD . ∵OC=OD ,∠O=60°,∴△OCD 是等边三角形,∴OC=OD=CO=3cm ,∴OA=OC+AC=15cm ,∴OB=OA=15cm ,∴S 阴影=S 扇形OAB -S 扇形OCD =226015603360360ππ⋅⋅⋅⋅-=236cm π.故选C . 10.解:如图:延长CP 交O 于N ,连接DN .AB CN ⊥,CP PN ∴=,CM DM =, 12PM DN ∴=,∴当DN 为直径时,PM 的值最大,最大值为52.故选:C .11.∵S 扇=12lr ,∴30π=12×10π×r ∴r=6,∵弧长公式l =180n r π,∴610180n ππ⨯⨯= 解得n=300故答案为:300.12.解:如图:连接AC 、BD 交于点O ,即为正方形ABCD 外接圆的圆心,∴OA 、OB 、OC 、OD 为正方形ABCD 外接圆的半径∵四边形ABCD 是正方形, ∴OA=OC ,∠AOC =90°在Rt △AOC 中,AC 2=OA 2+OC 2,∵AC =2,OA=OC , ∴4=2 OA 2,∴OA =2即正方形ABCD 外接圆的半径为2故答案为213.解:∵三角板上所对应的刻度分别是10cm 、4cm ,∴扇形的半径为10-4=6(cm ),∵弧AB 所对的扇形圆心角∠AOB=120°,∴扇形AOB 的面积=2120?6=12360ππ 故答案为:12π14.连接OA 、OB ,在AB 弧上任取一点C ,连接AC 、BC ,∵P A 、PB 是O 的切线,A 、B 为切点,∴90OAP OBP ∠=∠=, ∵58P ∠=,∴在四边形OAPB 中,360122AOB P OAP OBP ∠=-∠-∠-∠=,①若C 点在优弧AB 上,则1612ACB AOB ∠=∠=, ②若C 点在劣弧AB 上,则18061119ACB ∠=-=;故答案为61°或119°. 15.∵CD ⊥AB ,∴∠APO =90°,P A =PB =4,在Rt △OAP 中,OP 2+P A 2=OA 2, ∴OP 2+42=52,解得OP =3,∴PD =OD ﹣OP =5﹣3=2(cm ).故答案为2.16.∵AD=DO ,∴∠DOA=∠BAC=22°,∴∠AEF=12∠DOA=11°,∵∠EFG=∠BAC+∠AEF ,∴∠EFG=33°.故答案为33 17.在Rt △ABC 中,由勾股定理,得22223213AC BC +=+ 由图形可知,线段AB 扫过的图形为扇形ABA′,旋转角为90°,∴线段AB 扫过的图形面积=22n 90(13)133604AB πππ⨯⋅⋅==故填:134π. 18.解:由图知,底面直径=30cm ,母线长=20cm ,则底面周长=30πcm ,侧面面积=×30π×20=300πcm 219.解:∵在Rt △ABC 中,∠ACB =90°,AC =8,BC =15,∴AB =22AC BC +=221520+=25.过C 作CM ⊥AB ,交AB 于点M ,如图所示,∵CM ⊥AB ,∴M 为AD 的中点,∵S △ABC =12AC•BC =12AB•CM ,且AC =15,BC =20,AB =25, ∴CM =152025⨯=12, 在Rt △ACM 中,根据勾股定理得:AC 2=AM 2+CM 2,即225=AM 2+144, 解得:AM =9,∴AD =2AM =18.20.解:由题意得:CD ⊥AB ,CD=8m ,AB=8m ,∴AD=DB=4m , 连接OA ,如图所示:设OA=r ,则OD=8-r ,∴在Rt △ODA 中,222OA AD OD =+,即()22248r r =+-,解得:r=5,∴桥拱的半径为5m .21.证明:连接OD 、OE 则OD ⊥AB ,OE ⊥AC ∴AD=BD,AE=CE ∴DE ∥BC22.(1)证明:DE 与半圆O 相切,理由为: 连接OD ,BD ,如图所示:答案第5页,总5页∵AB 为圆O 的直径,∴∠ADB=90°,在Rt △BDC 中,E 为BC 的中点,∴DE=BE=12BC ,∴∠EBD=∠EDB ,∵OB=OD ,∴∠OBD=∠ODB , 又∵∠ABC=90°,即∠OBD+∠EBD=90°,∴∠EDB+∠ODB=90°,即∠ODE=90°, ∴DE 为圆O 的切线;(2)解:方程x 2-10x+24=0,因式分解得:(x-4)(x-6)=0,解得:x 1=4,x 2=6, ∵AD 、AB 的长是方程x 2-10x+24=0的两个根,且AB >AD ,∴AD=4,AB=6,∵AB 是直径,∴∠ADB=90°,在Rt △ABD 中,根据勾股定理得:BD=22=25AB AD -,∵△ABD ∽△ACB ,∴BC AB BD AD=,即6425= 23.(1)证明:∵CD 是⊙O 的切线,∴OC ⊥CD .∵AD ⊥CD ,∴AD ∥OC .∴∠DAC =∠OCA .∵OC =OA ,∴∠OCA =∠OAC .∴∠OAC =∠DAC .∴AC 平分∠DAO .(2)①∵AD ∥OC ,∴∠EOC =∠DAO =105°.∵∠E =30°,∴∠OCE =180°-∠EOC -∠E =45°.②作OG ⊥CE 于点G ,∵OC =2OCE =45°,∴CG =OG =2.∴FG =2.在Rt △OGE 中,∠E =30°,∴GE =3EF =GE−FG =32.【点睛】本题考查了圆的切线的性质、平行线的判定与性质、垂径定理等知识,熟练掌握切线的性质、平行线的判定与性质、垂径定理是解题的关键.。
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案
浙教版九年级数学上册第3章圆的基本性质单元测试卷-带参考答案一、单选题1.如图,图中的弦共有( )A .1条B .2条C .3条D .4条2.平面直角坐标系中,O 为坐标原点,点A 的坐标为( 3,1),将OA 绕原点O 按逆时针方向旋转90°得OB ,则点B 的坐标为( )A .(1, 3 )B .(-1, 3)C .(- 3 ,1)D .( 3 ,-1)3.如图,⊙O 的直径为10,AB 为弦,OC ⊙AB ,垂足为C ,若OC =3,则弦AB 的长为( )A .8B .6C .4D .104.在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是⊙ABC 的( )A .三条高的交点B .重心C .内心D .外心5.如图,点A ,B ,C 是⊙O 上的三点,已知⊙AOB=100°,那么⊙ACB 的度数是( )A .30°B .40°C .50°D .60°6.半径为 a 的圆的内接正六边形的边心距是( )A .2aB .22aC 3aD .a7.如图所示,在O 中30AB AC A ︒=∠=,,则B ∠的度数为( ).A.150︒B.75︒C.60︒D.15︒8.下列语句中,正确的有( )(1)相等的圆心角所对的弧相等;(2)平分弦的直径垂直于弦;(3)长度相等的两条弧是等弧(4) 圆是轴对称图形,任何一条直径都是对称轴A.0个B.1个C.2个D.3个9.下列说法不正确的是()A.过不在同一直线上的三点能确定一个圆B.平分弦的直径垂直于弦C.圆既是轴对称图形又是中心对称图形D.相等的弧所对的弦相等10.如图,在Rt⊙ABC中,⊙ACB=90°,将⊙ABC绕顶点C逆时针旋转得到⊙A'B'C,M是BC的中点,P是A'B'的中点,连接PM.若BC=2,⊙BAC=30°,则线段PM的最大值是()A.4B.3C.2D.1二、填空题11.如图,在梯形ABCD中,AD⊙BC,将这个梯形绕点D按顺时针方向旋转,使点C落在边AD上的点C′处,点B落在点B′处,如果直线B′C′经过点C,那么旋转角等于度.12.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且⊙EDF=45°,将⊙DAE绕点D逆时针旋转90°,得到⊙DCM.若AE=1,则FM的长为.13.如图,将矩形ABCD绕点A旋转至矩形AB′C′D′位置,此时AC′的中点恰好与D点重合,AB′交CD 于点E.若AB=6,则⊙AEC的面积为.14.如图,在扇形BOC中,⊙BOC=60°,点D是BC的中点,点E,F分别为半径OC,OB上的动点.若OB=2,则⊙DEF周长的最小值为.三、解答题15.已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.16.如图,AB是⊙O的直径,弦CD⊙AB于E,⊙CDB=30°,CD=3,求阴影部分的面积.17.如图,在平面直角坐标系中,⊙ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)请画出⊙A1B1C1,使⊙A1B1C1与⊙ABC关于x轴对称;(2)将⊙ABC绕点O逆时针旋转90°,画出旋转后得到的⊙A2B2C2,并直接写出点B旋转到点B2所经过的路径长.18.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,⊙APC=⊙CPB=60°.判断⊙ABC 的形状,并证明你的结论;19.如图,射线PG 平分⊙EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与⊙EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA⊙PE(1)求证:AP=AO ;(2)若弦AB=12,求tan⊙OPB 的值.四、综合题20.如图,在⊙ABC 中,以AB 为直径的⊙O 分别与BC ,AC 相交于点D ,E ,BD =CD ,过点D 作⊙O 的切线交边AC 于点F.(1)求证:DF⊙AC ;(2)若⊙O 的半径为5,⊙CDF =30°,求弧BD 的长(结果保留π).21.如图,在 O 中 AC CB = , CD OA ⊥ 于点D , CE OB ⊥ 于点E.(1)求证: CD CE = ;(2)若 120,2AOB OA ∠=︒= ,求四边形 DOEC 的面积.22.如图,将矩形ABCD 绕点B 旋转得到矩形BEFG ,点E 在AD 上,延长DA 交GF 于点H.(1)求证:ABE FEH ≅;(2)连接BH ,若30EBC ∠=︒,求ABH ∠的度数.23.如图1,⊙O 的直径AB 为4,C 为⊙O 上一个定点,⊙ABC=30°,动点P 从A 点出发沿半圆弧 AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)求证:⊙ABC⊙⊙PDC(2)如图2,当点P 到达B 点时,求CD 的长;(3)设CD 的长为 x .在点P 的运动过程中, x 的取值范围为(请直接写出案).答案解析部分1.【答案】B【解析】【解答】解:图形中有弦AB和弦CD,共2条故答案为:B.【分析】由连接圆上任意两点间的距离就是弦即可判断得出答案.2.【答案】B【解析】【解答】过点B作BC⊙x轴于点C,过点B作BC⊙y轴于点F∵点A的坐标为( 3,1),将OA绕原点O逆时针旋转90°到OB的位置∴BC 3=,CO=1∴点B的坐标为:(﹣1,3).故答案为:B.【分析】先根据旋转的性质作图,利用图象则可求得点B的坐标.3.【答案】A【解析】【解答】解:连接OA∵OA=5,OC=3,OC⊙AB∴AC=22-=4OA OC∵OC⊙AB∴AB=2AC=2×4=8.故答案为:A.【分析】连接OA,利用勾股定理求出AC的长,根据垂径定理可得AB=2AC,从而求出AB的长. 4.【答案】D【解析】【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等∴凳子应放在⊙ABC 的三条垂直平分线的交点最适当.故答案为:D .【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边中垂线的交点上.5.【答案】C【解析】【解答】解:∵⊙AOB 与⊙ACB 都对 AB ,且⊙AOB=100°∴⊙ACB= 12 ⊙AOB=50°故选C【分析】根据图形,利用圆周角定理求出所求角度数即可.6.【答案】C【解析】【解答】解:如图,连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距.∵六边形ABCDEF 为正六边形∴60AOB ∠=︒ ,OA=OB=AB=a ,AH=BH= 2a ∴2222233()24aOH OA AH a a =-=-== 即半径为 a 3a . 故答案为:C.【分析】连接OA 、OB ,过点O 作OH 垂直AB 于点H ,OH 即为正六边形边心距,根据正六边形的性质用勾股定理可求解.7.【答案】B【解析】【解答】解:∵AB AC =∴AB=AC∴⊙B=⊙C=12(180°-⊙A)=12(180°-30°)=75°.故答案为B:.【分析】利用同圆和等圆中,相等的弧所对的弦相等,可证得AB=AC,利用等边对等角及三角形的内角和定理可求出⊙B的度数.8.【答案】A【解析】【解答】(1)、不符合题意,需要添加前提条件,即在同圆或等圆中;(2)、不符合题意,平分的弦不能是直径;(3)、不符合题意,等弧是指长度和度数都相等的弧;(4)、不符合题意,圆的对称轴是直径所在的直线.故答案为:A.【分析】在同圆或等圆中,相等的圆心角所对的弧相等,据此判断(1);平分弦(不是直径)的直径垂直于弦,据此判断(2);能重合的弧叫做等弧,据此判断(3);圆是轴对称图形,任何一条直径所在的直线都是对称轴,据此判断(4).9.【答案】B【解析】【解答】解:A、过不在同一直线上的三点能确定一个圆,正确,不符合题意;B、平分弦(不是直径)的直径垂直于弦,故原命题错误,符合题意;C、圆既是轴对称图形又是中心对称图形,正确,不符合题意;D、相等的弧所对的弦相等,正确,不符合题意.故答案为:B.【分析】根据确定圆的条件可判断A;根据垂径定理可判断B;根据轴对称图形、中心对称图形的概念可判断C;根据弧、弦的关系可判断D.10.【答案】B【解析】【解答】解:如图连接PC.在Rt⊙ABC中,∵⊙A=30°,BC=2∴AB=4根据旋转不变性可知,A′B′=AB=4∴A′P=PB′∴PC=12A′B′=2∵CM=BM=1又∵PM≤PC+CM,即PM≤3∴PM的最大值为3(此时P、C、M共线).故答案为:B.【分析】连接PC,根据⊙A=30°,BC=2,可知AB的值,根据旋转的性质可知A′B′=AB,进而可知A′P、PB′、PC的知,结合图形和三角形三边关系即可得出PM的取值范围,进而可知P、C、M共线时,PM值最大,即可选出答案.11.【答案】60【解析】【解答】解:连接CC′,如图所示:则B′、C′、C在一条直线上由旋转的性质得:⊙1=⊙2,DC′=DC∴⊙3=⊙4∵A′D′⊙B′C′∴⊙2=⊙3∴⊙1=⊙3=⊙4∴⊙CDC′是等边三角形∴⊙CDC′=60°;故答案为:60.【分析】根据旋转的性质“对应点与旋转中心连线所成的角度都等于旋转的角度”可求解。
浙教版九年级数学上册 第三章 圆的基本性质单元测试(含答案)
二、填空题(每题 4 分,共 60 分) 8、如图,⊙O 的半径 OA=6,以 A 为圆心,OA 为半径的弧交⊙O 于 B、C,则 BC 的长 是 .
(第 8 题图)
(第 9 题图)
(第 12 题图)
⌒ CD 9、如图,点 A、B、C、D 都在⊙O 上, 的度数等于 84°,CA 是∠OCD 的平分线,则 ∠ABD+∠CAO= . .
21、一个正多边形的所有对角线都相等,则这个正多边形的内角和为 22、AC、BD 是⊙O 的两条弦,且 AC⊥BD,⊙O 的半径为 . 三、解答题(共 32 分)
1ห้องสมุดไป่ตู้,则 AB 2 CD 2 的值为 2
23、(10 分)某地有一座圆弧形拱桥,桥下水面宽度 AB 为 7.2m,拱顶高出水面 2.4m,OC⊥AB,现有一艘宽 3m,船舱顶部为正方形并高出水面 2m 的货船要经过这里, 此货船能顺利通过这座桥吗?
18、如图,矩形 ABCD 的边 AB 过⊙O 的圆心,E、F 分别为 AB、CD 与⊙O 的交点,若 AE=3cm,AD=4cm,DF=5cm,则⊙O 的直径等于 19、如图,⊙O 是△ABC 的外接圆,AO⊥BC 于 F,D 为 点,∠DAE=114°,则∠CAD 等于 20、半径为 R 的圆内接正三角形的面积是 . . . ⌒ AC . 的中点,E 是 BA 延长线上一
(2)如图②,垂直于 AD 的三条弦 B1C1 , B 2 C 2 , B 3 C 3 把圆周 6 等分,分别求 ∠ B1 ,∠ B 2 ,∠ B 3 的度数; (3)如图③,垂直于 AD 的 n 条弦 B1C1 , B 2 C 2 , B 3 C 3 ,…, B n C n 把圆周 2n 等分, 请你用含 n 的代数式表示∠ B n 的度数(只需直接写出答案).
浙教版九年级上《第三章圆的基本性质》单元检测试卷有答案(数学)
第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1.△ABC 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( ) A.80° B.160° C.100° D.80°或100°2.如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( ) A.50° B.60° C.65° D.70°3. 下列四个命题中,正确的有( ) ①圆的对称轴是直径; ②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4.如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( ) A.20° B.25° C.30° D.40°在⊙中,直径垂直弦5.如图,于点,连接,已知⊙的半径为2,32,则∠的大小为( )A.B.C.D.6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( ) A.23B.3C.32D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( ) A.4个B.3个C.2个D.1个8. 如图,在Rt△ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P 在⊙O 内 B.点P 在⊙O 上 C.点P 在⊙O 外 D.无法确定9. 圆锥的底面圆的周长是4π cm,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( ) A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cm B.C.27 D.25二、填空题(每小题3分,共24分)11.如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =,OC =1,则半径OB 的长为 .12.(2012·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB 是⊙O 的直径,点C ,D 是圆上两点,∠AOC =100°,则∠D = _______.14.如图,⊙O 的半径为10,弦AB 的长为12,OD ⊥AB ,交AB 于点D ,交⊙O 于点C ,则OD =_______,CD =_______.15.如图,在△ABC 中,点I 是外心,∠BIC =110°,则∠A =_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA 剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比 为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的),点O 是这段弧的圆心,C 是上一点,,垂足为,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽 (如图所示),则这个纸帽的高是 .三、解答题(共46分)19.(8分) (2012·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(2012·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,是⊙O的一条弦,,垂足为C,交⊙O于点D,点E在⊙O上.(1)若,求的度数;(2)若,,求的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且.求证:△OEF是等腰三角形.23.(8分)如图,已知都是⊙O的半径,且试探索与之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形、,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为、,试比较与的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =∠AOC =×160°=80°或∠ABC =×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =∠AOC =×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =∠BOC =×60°=30°.5.A 解析:由垂径定理得∴,∴.又∴.6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知,故选B .7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP=2125,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27(cm).二、填空题11. 2 解析:∵ BC =AB =,∴ OB ===2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°. 又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°.14.8;2解析:因为OD ⊥AB ,由垂径定理得,故,.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得. 16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1.17.250 解析:依据垂径定理和勾股定理可得.18. 4解析:扇形的弧长l==4π(cm),所以圆锥的底面半径为4π÷2π=2(cm),所以这个圆锥形纸帽的高为= 4(cm).三、解答题19.分析:连接BD,易证∠BDC=∠C,∠BOC=2∠BDC=2∠C,∴∠C=30°, 从而∠ADC=60°.解:连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF.∴∠BDC=∠C.又∵∠BDC=∠BOC,∴∠C=∠BOC.∵AB⊥CD,∴∠C=30°,∴∠ADC=60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对的圆心角等于圆周角的2倍.20. 解:连接AE,则AE⊥BC.由于E是BC的中点,则AB=AC,∠BAE=∠CAE,则BE=DE=EC,S弓形BE=S弓形DE,∴S阴影=S△DCE.由于∠BED=120°,则△ABC与△DEC都是等边三角形,∴S△DCE=×2×=.21.分析:(1)欲求∠DEB,已知一圆心角,可利用圆周角与圆心角的关系求解.(2)利用垂径定理可以得到,从而的长可求.解:(1)连接,∵,∴,弧AD=弧BD,∴又,∴.(2)∵,∴.又,∴.22.分析:要证明△OEF是等腰三角形,可以转化为证明,通过证明△OCE≌△ODF即可得出.证明:如图,连接OC、OD,则,∴∠OCD=∠ODC.在△OCE和△ODF中,∴△OCE≌△ODF(SAS),∴,从而△OEF是等腰三角形.23.分析:由圆周角定理,得,;已知,联立三式可得.解:.理由如下:∵,,又,∴.24.解:(1)已知桥拱的跨度AB=16米,拱高CD=4米,∴AD=8米.利用勾股定理可得,解得OA=10(米).故桥拱的半径为10米.(2)当河水上涨到EF位置时,因为∥,所以,∴(米),连接OE,则OE=10米,(米).又,所以(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是,则,∴n=120,即圆锥侧面展开图的圆心角是120°.∴∠APB=60°.在圆锥侧面展开图中,AP=9,PC=4.5,可知∠ACP=90°.∴.故从A点到C点在圆锥的侧面上的最短距离为239.点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.解:设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为240°,则它的弧长=,解得,由勾股定理得,.设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为120°,则它的弧长=,解得,由勾股定理得,所以>.。
九年级数学上第三章圆的基本性质单元试卷(浙教版学生用)
【易错题解析】浙教版九年级数学上册第三章圆的基本性质单元测试卷一、单选题(共10题;共30分)1.如图,⊙O是△ABC的外接圆,已知∠ABO=30°,则∠ACB的大小为()A. 60°B. 30°C. 45°D. 50°2.如图,水平地面上有一面积为30π㎝2的扇形AOB,半径OA=6㎝,且OA与地面垂直,在没有滑动的情况下,将扇形向右滚动至OB与地面垂直为止,则O点移动的距离为()A. 20cmB. 24cmC. 10πcmD. 30πcm3.一条水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC的的长是()A. 4B. 5C. 6D. 84.一个半径为2cm的圆的内接正六边形的面积是()A. 24cm2B. 6cm2C. 12cm2D. 8cm25.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B. 2 C. 2 D. 86.已知⊙O是以坐标原点O为圆心,5为半径的圆,点M的坐标为(﹣3,4),则点M与⊙O的位置关系为()A. M在⊙O上B. M在⊙O内C. M在⊙O外D. M在⊙O右上方7.如图,A,B,C三点在已知的圆上,在△ABC中,∠ABC=70°,∠ACB=30°,D是的中点,连接DB,DC,则∠DBC的度数为()A. 30°B. 45°C. 50°D. 70°8.如图,四边形ABCD是⊙O的内接四边形,若∠DAB=64°,则∠BCD的度数是()A. 64°B. 90°C. 136°D. 116°9.如图,在⊙O中,∠AOB=120°,P为弧AB上的一点,则∠APB的度数是()A. 100°B. 110°C. 120°D. 130°10.如图,AB切⊙O于点B,OA=,∠A=30°,弦BC∥OA,则劣弧的弧长为A. B. C. D.二、填空题(共10题;共30分)11.已知扇形的半径为8 cm,圆心角为45°,则此扇形的弧长是________cm.12.如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE=________°.13.如图,四边形ABCD内接于⊙O,若⊙O的半径为6,∠A=130°,则扇形OBAD的面积为________.14.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,若∠C=22.5°,AB=6cm,则阴影部分面积为________.15.如图,线段AB的端点A、B分别在x轴和y轴上,且A(2,0),B(0,4),将线段AB绕坐标原点O逆时针旋转90°得线段A'B',设线段AB'的中点为C,则点C的坐标是________.16.在半径为6cm的圆中,圆心角为120°的扇形的面积是________ cm2.17.在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B 经过的路径为________,则图中阴影部分的面积是________.18.如图所示的两段弧中,位于上方的弧半径为r上,下方的弧半径为r下,则r上________r.(填“<”“=”“<”)下19.在平面直角坐标系中,点A坐标为(-2,4),与原点的连线OA绕原点顺时针转90°,得到线段OB ,连接线段AB ,若直线y=kx-2与△OAB有交点,则k的取值范围是________.20.如图,在扇形OAB中,C是OA的中点,,CD与交于点D,以O为圆心,OC的长为半径作交OB于点E,若,∠,则图中阴影部分的面积为________ 结果保留π三、解答题(共9题;共60分)21.如图,已知AD是△ABC的中线.(1)画出以点D为对称中心与△ABD成中心对称的三角形.(2)画出以点B为对称中心与(1)所作三角形成中心对称的三角形.(3)问题(2)所作三角形可以看作由△ABD作怎样的变换得到的?22.已知:如图所示,AD=BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3章 圆的基本性质检测题(本检测题满分:120分,时间:120分钟)一、 选择题(每小题3分,共30分)1. (2012·湖北襄阳中考)△AB C 为⊙O 的内接三角形,若∠AOC =160°,则∠ABC 的度数是( ) A.80° B.160° C.100° D.80°或100°2. (2012· 浙江台州中考)如图所示,点A ,B ,C 是⊙O 上三点,∠AOC =130°,则∠ABC 等于( ) A.50° B.60° C.65° D.70°3. 下列四个命题中,正确的有( ) ①圆的对称轴是直径; ②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等; ④半径相等的两个半圆是等弧.A.4个B.3个C.2个D.1个4. (2012·江苏苏州中考)如图所示,已知BD 是⊙O 直径,点A ,C 在⊙O 上,弧AB =弧BC ,∠AOB =60°,则∠BDC 的度数是( ) A.20° B.25° C.30° D.40°5.如图,在⊙中,直径垂直弦于点,连接,已知⊙的半径为2,32,则∠的大小为( ) A.B.C.D.6.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O 的半径为3,则弦CD 的长为( ) A.23B.3C.32D.9 7.如图,已知⊙O 的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦AB 所在直线的距离为2的点有( )A.4个B.3个C.2个D.1个8. 如图,在Rt △ABC 中,∠ACB =90°,AC =6,AB =10,CD 是斜边AB 上的中线,以AC 为直径作⊙O ,设线段CD 的中点为P ,则点P 与⊙O 的位置关系是( ) A.点P在⊙O内B.点P 在⊙O 上C.点P 在⊙O 外D.无法确定9. 圆锥的底面圆的周长是4π cm ,母线长是6 cm ,则该圆锥的侧面展开图的圆心角的度数是( )A.40°B.80°C.120°D.150°10.如图,长为4 cm ,宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木块挡住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ) A.10 cmB.C.27D.25二、填空题(每小题3分,共24分)11.(2012·成都中考)如图所示,AB 是⊙O 的弦,OC ⊥AB 于C .若AB =,OC =1,则半径OB 的长为 .12.(2012·安徽中考)如图所示,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD +∠OCD = °13.如图,AB 是⊙O 的直径,点C ,D 是圆上两点,∠AOC =100°,则∠D = _______.14.如图,⊙O 的半径为10,弦AB 的长为12,OD ⊥AB ,交AB 于点D ,交⊙O 于点C ,则OD =_______,CD =_______.15.如图,在△ABC中,点I是外心,∠BIC=110°,则∠A=_______.16.如图,把半径为1的四分之三圆形纸片沿半径OA剪开,依次用得到的半圆形纸片和四分之一圆形纸片做成两个圆锥的侧面,则这两个圆锥的底面积之比为_______.17. 如图,一条公路的转弯处是一段圆弧(图中的),点O是这段弧的圆心,C是上一点,,垂足为,则这段弯路的半径是_________.18.用圆心角为120°,半径为6 cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是.三、解答题(共46分)19.(8分) (2012·宁夏中考)如图所示,在⊙O中,直径AB⊥CD于点E,连结CO并延长交AD于点F,且CF⊥A D.求∠D的度数.20.(8分)(2012·山东临沂中考)如图所示,AB是⊙O的直径,点E是BC的中点,AB=4,∠BED=120°,试求阴影部分的面积.21.(8分)如图所示,是⊙O的一条弦,,垂足为C,交⊙O于点D,点E在⊙O上.(1)若,求的度数;(2)若,,求的长.22.(8分)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且.求证:△OEF 是等腰三角形.23.(8分)如图,已知都是⊙O的半径,且试探索与之间的数量关系,并说明理由.24.(8分)如图是一跨河桥,桥拱是圆弧形,跨度AB为16米,拱高CD为4米,求:⑴桥拱的半径;⑵若大雨过后,桥下河面宽度EF为12米,求水面涨高了多少?25.(8分)如图,已知圆锥的底面半径为3,母线长为9,C为母线PB的中点,求从A点到C点在圆锥的侧面上的最短距离.26.(10分)如图,把半径为r的圆铁片沿着半径OA、OB剪成面积比为1︰2的两个扇形、,把它们分别围成两个无底的圆锥.设这两个圆锥的高分别为、,试比较与的大小关系.第3章 圆的基本性质检测题参考答案一、选择题1. D 解析:∠ABC =∠AOC =×160°=80°或∠ABC =×(360°-160°)=100°.2. C 解析:∵ ∠AOC =130°,∴ ∠ABC =∠AOC =×130°=65°.3.C 解析:③④正确.4 C 解析:连接OC ,由弧AB =弧BC ,得∠BOC =∠AOB =60°,故∠BDC =∠BOC =×60°=30°.5.A 解析:由垂径定理得∴,∴.又∴.6.B 解析: 在Rt △COE 中,∠COE =2∠CDB =60°,OC =3,则OE =23,2322=-=OE OC CE .由垂径定理知,故选B .7.B 解析:在弦AB 的两侧分别有1个和2个点符合要求,故选B.8.A 解析:因为OA =OC ,AC =6,所以OA =OC =3.又CP =PD ,连接OP ,可知OP 是△ADC 的中位线,所以OP =2125,所以OP <OC ,即点P 在⊙O 内. 9.C 解析:设圆心角为n °,则,解得n =120.10.C 解析: 第一次转动是以点B 为圆心,AB 为半径,圆心角是90度,所以弧长=90π55π1802⋅=,第二次转动是以点C 为圆心,A 1C 为半径,圆心角为60度,所以弧长=π1803π60=⋅,所以走过的路径长为5π2+π=27(cm). 二、填空题11. 2 解析:∵ BC =AB =,∴ OB ===2.12. 60 解析:∵ 四边形OABC 为平行四边形,∴ ∠B =∠AOC ,∠BAO =∠BCO . ∵ AOC ∠=2∠D ,∠B +∠D =180°,∴ ∠B =∠A O C =120°,∠B A O =∠B C O =60°. 又∵ ∠BAD +∠BCD =180°,∴ ∠OAD +∠OCD =(∠BAD +∠BCD )-(∠BAO +∠BCO )=180°-120°=60°. 13.40° 解析:因为∠AOC =100°,所以∠BOC =80°.又∠D =21∠BOC ,所以∠D =40°.14.8;2解析:因为OD ⊥AB ,由垂径定理得,故,.15.55° 解析:根据同弧所对的圆周角等于圆心角的一半可得. 16. 4︰1 解析: 由题意知,小扇形的弧长为2π,则它组成的圆锥的底面半径=41,小圆锥的底面面积=16π;大扇形的弧长为π,则它组成的圆锥的底面半径=21,大圆锥的底面面积=4π,∴ 大圆锥的底面面积︰小圆锥的底面面积=4︰1.17.250 解析:依据垂径定理和勾股定理可得. 18. 4解析:扇形的弧长l ==4π(cm ),所以圆锥的底面半径为4π÷2π=2(cm ),所以这个圆锥形纸帽的高为= 4(cm ).三、解答题19.分析:连接BD ,易证∠BDC =∠C ,∠BOC =2∠BDC =2∠C ,∴ ∠C =30°, 从而∠ADC =60°.解:连接BD .∵ AB 是⊙O 的直径,∴ BD ⊥AD . 又∵ CF ⊥AD ,∴ BD ∥CF .∴ ∠BDC =∠C . 又∵ ∠BDC =∠BOC ,∴ ∠C =∠BOC .∵ AB ⊥CD ,∴ ∠C =30°,∴ ∠ADC =60°.点拨:直径所对的圆周角等于90°,在同一个圆中,同一条弧所对 的圆心角等于圆周角的2倍.20. 解:连接AE ,则AE ⊥BC .由于E 是BC 的中点,则AB =AC ,∠BAE =∠CAE ,则BE =DE =EC ,S 弓形BE =S 弓形DE ,∴ S 阴影=S △DCE .由于∠BED =120°,则△ABC 与△DEC 都是等边三角形,∴ S △DCE =×2×=.21.分析:(1)欲求∠DEB ,已知一圆心角,可利用圆周角与圆心角的关系求解. (2)利用垂径定理可以得到,从而的长可求.解:(1)连接,∵,∴,弧AD=弧BD,∴又,∴.(2)∵,∴.又,∴.22.分析:要证明△OEF是等腰三角形,可以转化为证明,通过证明△OCE≌△ODF 即可得出.证明:如图,连接OC、OD,则,∴∠OCD=∠ODC.在△OCE和△ODF中,∴△OCE≌△ODF(SAS),∴,从而△OEF是等腰三角形.23.分析:由圆周角定理,得,;已知,联立三式可得.解:.理由如下:∵,,又,∴.24.解:(1)已知桥拱的跨度AB=16米,拱高CD=4米,∴AD=8米.利用勾股定理可得,解得OA=10(米).故桥拱的半径为10米.(2)当河水上涨到EF位置时,因为∥,所以,∴(米),连接OE,则OE=10米,(米).又,所以(米),即水面涨高了2米.25.分析:最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离问题.需先算出圆锥侧面展开图的扇形半径.看如何构成一个直角三角形,然后根据勾股定理进行计算.解:由题意可知圆锥的底面周长是,则,∴n=120,即圆锥侧面展开图的圆心角是120°.∴∠APB=60°.在圆锥侧面展开图中,AP=9,PC=4.5,可知∠ACP=90°.∴.故从A点到C点在圆锥的侧面上的最短距离为239.点评:本题需注意最短距离的问题最后都要转化为平面上两点间的距离的问题.26.分析:利用圆锥侧面展开图的弧长=底面周长得到圆锥底面半径和母线长的关系,进而利用勾股定理可求得各个圆锥的高,比较即可.解:设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为240°,则它的弧长=,解得,由勾股定理得,.设扇形做成圆锥的底面半径为,由题意知,扇形的圆心角为120°,则它的弧长=,解得,由勾股定理得,所以>.。