五年级奥数 第19讲 组合图形的面积(二)
五年级奥数举一反三-第19讲--组合图形的面积(二)
第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)【思路导航】按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。
其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。
面积是:6×3÷2=9平方厘米。
练习1:1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
【思路导航】三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。
阴影部分的面积是:7.5÷(1+1.5)×1.5=45。
练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)【思路导航】1.因为三角形ABD与三角形ACD等底等高,所以面积相等。
小学五年级奥数第19讲 组合图形的面积(二)(含答案分析)
第19讲组合图形的面积(二)一、知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1.两个三角形等底、等高,其面积相等;2.两个三角形底相等,高成倍数关系,面积也成倍数关系;3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)练习1:1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。
练习2:1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)练习3:1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
(提高版)第19讲 组合图形的认识、表面积与体积(通用版,含详解)
提高版(通用)2021-2022学年小升初数学精讲精练专题汇编讲义第19讲组合图形的认识、表面积与体积小学阶段所学的立体图形主要有长方体、正方体、圆柱体和圆锥体,这四种立体图形的表面积和体积的计算是小升初数学的热点内容,特别是涉及到立体图形的切拼时,立体图形的表面积和体积发生了变化,牢固掌握这些立体图形的特征和有关的计算方法及切拼时表面积和体积的变化规律是解题的关键,本讲将在前面两讲学习的基础上进一步总结整理立体图形切拼时表面积和体积的变化规律。
知识点一:立体图形的表面积和体积计算常用公式:立体图形表面积体积长方体S=2)(bhahab++a:长 b:宽 h:高 S:表面积V abh=V Sh=正方体S=26aa:棱长 S:表面积3V a=V Sh=圆柱hr222π2πS rh r=+=+圆柱侧面积个底面积2πV r h=圆柱圆锥hr22ππ360nS l r=+=+圆锥侧面积底面积注:l是母线,即从顶点到底面圆上的线段长21π3V r h=圆锥体知识点二:解决立体图形的表面积和体积问题时的注意事项知识精讲(1)要充分利用正方体六个面的面积都相等,每个面都是正方形的特点.(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍;反之,把两个立体图形拼合到一起,减少的表面积等于重合部分面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来;若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
2.解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积;把物体从水中取出,水面下降部分的体积等干物体的体积,这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么排开水的体积就等于浸在水中的那部分物体的体积. (2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变.(3)求一些不规则物体体积时,可以通过变形的方法求体积。
组合图形的面积——小学奥数专题
组合图形的面积(一)例1一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?练习一1、求四边形ABCD的面积。
(单位:厘米)2、已知正方形ABCD的边长是7厘米,求正方形EFGH的面积。
3、有一个梯形,它的上底是5厘米,下底7厘米。
如果只把上底增加3厘米,那么面积就增加4.5平方厘米。
求原来梯形的面积。
例2正图正方形中套着一个长方形,正方形的边长是12厘米,长方形的四个角的顶点把正方形的四条边各分成两段,其中长的一段是短的2倍。
求中间长方形的面积。
练习二1、已知大正方形的边长是12厘米,求中间最小正方形的面积。
2、如下图长方形ABCD的面积是16平方厘米,E、F都是所在边的中点,求三角形AEF的面积。
3、求下图长方形ABCD的面积(单位:厘米)。
例3四边形ABCD和四边形DEFG都是正方形,已知三角形AFH的面积是7平方厘米。
三角形CDH的面积是多少平方厘米?1、图中两个正方形的边长分别是6厘米和4厘米,求阴影部分面积。
2、下图中两个完全一样的三角形重叠在一起,求阴影部分的面积。
3、下图中,甲三角形的面积比乙三角形的面积大多少平方厘米?例4下图中正方形的边长为8厘米,CE为20厘米,梯形BCDF的面积是多少平方厘米?练习四1、如下图,正方形ABCD中,AB=4厘米,EC=10厘米,求阴影部分的面积。
2、在一个直角三角形铁皮上剪下一块正方形,并使正方形面积尽可能大,正方形的面积是多少?(单位:厘米)3、图中BC=10厘米,EC=8厘米,且阴影部分面积比三角形EFG的面积大10平方厘米。
求平行四边形的面积。
例5图中ABCD是长方形,三角形EFD的面积比三角形ABF的面积大6平方厘米,求ED的长。
练习五1、如图,平行四边形BCEF中,BC=8厘米,直角三角形中,AC=10厘米,阴影部分面积比三角形ADH的面积大8平方厘米。
求AH长多2,图中三个正方形的边长分别是1厘米、2厘米和3厘米,求图中阴影部分的面积。
苏教版五年级《组合图形的面积》说课稿
《组合图形的面积》说课稿赵彦光一、说教材1、教材分析《组合图形的面积》是义务教育课程标准实验教科书,苏教版五年级上册第二单元(多边形的面积计算)的第九课时的内容,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。
在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。
教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。
2、学情分析根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。
所以在探索组合图形面积的计算方法时,我通过课件直观、自主探索、小组合作交流等方式达到方法的多样化。
重视让每个学生都积极地参与到学习活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
因此我设计本节课的教学目标如下:3、教学目标(1)在自主探索的活动中,归纳计算组合图形面积的多种方法,懂得“分割法和添补法”的作用,并运用计算方法解决生活中的实际问题。
(2)通过学生动手拼一拼,分一分,画一画的方法,引导学生探究组合图形面积的计算方法。
(3)进一步渗透转化的数学思想。
培养学生探索数学问题的积极性,增强学生学习数学的信心和兴趣。
4、教学重、难点针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为教学重点:掌握组合图形面积的计算方法。
教学难点:理解、运用“分割”与“添补”法,正确计算组合图形的面积.二、说教法、学法1、说教法(1)多媒体教学法在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
五年级上册数学《组合图形的面积》教案(通用12篇)
五年级上册数学《组合图形的面积》教案(通用12篇)五年级上册数学《组合图形的面积》篇1教学内容:《义务教育课程标准实验教科书数学五年级上册》第92~94页。
教学目标:1.使学生结合生活实际认识组合图形,会把组合图形分解成学过的平面图形并计算出面积。
2.综合运用平面图形面积计算的知识,进一步发展学生的空间观念。
3.培养学生的认真观察、独立思考的能力。
教具准备:、图片等。
教学过程:一、展示汇报建立概念师:大家搜集了许多有关生活中的组合图形的图片,谁来给大家展示并汇报一下。
(指名回答)生1:这枝铅笔的面是由一个长方形和一个三角形组成的。
生2:这条小鱼的面是由两个三角形组成的。
……师:同桌的同学互相看一看,说一说,你们搜集的组合图形分别是由哪些图形组成的?(设计意图:根据学生已有的知识经验和生活经验,让学生在课前进行搜集生活中的组合图形的图片,学生热情高涨、兴趣盎然。
通过学生查、拼、摆、画、剪、找等活动,使学生在头脑中对组合图形产生感性认识。
)师:老师也搜集了一些生活中物品的图片,( 课件出示:房子、队旗、风筝、空心方砖、指示牌、火箭模型)这些物品的表面,都有哪些图形?谁来选一个说说。
生1:小房子的表面是由一个三角形和一个正方形组成的。
生2:风筝的面是由四个小三角形组成的。
生3:火箭模型的面是由一个梯形、一个长方形和一个三角形组成的。
……师:这几个都是组合图形,通过大家的介绍,你觉得什么样的图形是组合图形?生1:由两个或两个以上的图形组成的是组合图形。
生2:有几个平面图形组成的图形是组合图形。
……师小结:组合图形是由几个简单的图形组合而成的。
说一说,生活中有哪些地方的表面有组合图形?(学生自由回答)师:同学们认识组合图形了,那么大家还想了解有关组合图形的哪些知识?生1:我想了解组合图形的周长。
生2:我想知道组合图形的面积怎样计算。
……这节课我们重点学习组合图形的面积。
(设计意图:唤起学生学习数学的好奇心和积极的探究态度,鼓励学生自己提出问题,使学生认知活动中的智力因素和非智力因素都处于状态,形成强烈的求知欲。
举一反三-五年级奥数分册~第19周 组合图形的面积
第十九周组合图形的面积专题简析:在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:1,两个三角形等底、等高,其面积相等;2,两个三角形底相等,高成倍数关系,面积也成倍数关系;3,两个三角形高相等,底成倍数关系,面积也成倍数关系。
例题1 如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)分析按照一般解法,首先要求出梯形的面积,然后减去空白部分的面积即得所求面积。
其实,只要连接AC,显然三角形AEC与三角形DEC同底等高其面积相等,这样,我们把两个阴影部分合成了一个三角形ABC。
面积是:6×3÷2=9平方厘米。
练习一1,求下图中阴影部分的面积。
2,求图中阴影部分的面积。
(单位:厘米)3,下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
例题2 下图中,边长为10和15的两个正方体并放在一起,求三角形ABC(阴影部分)的面积。
分析三角形ADC的面积是10×15÷2=75,而三角形ABC的高是三角形BCD高的15÷10=1.5倍,它们都以BC为边为底,所以,三角形ABC的面积是三角形BCD的1.5倍。
阴影部分的面积是:7.5÷(1+1.5)×1.5=45。
练习二1,下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2,图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3,图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
例题3 两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)分析1,因为三角形ABD与三角形ACD等底等高,所以面积相等。
因此,三角形ABO的面积和三角形DOC的面积相等,也是6平方厘米。
苏教版五年级下册数学《组合图形的面积》
8π÷4×3 =2π×3 =6π =18.84(平方厘米)
求下面半环的面积.
15厘米
C=18.84分米
18.84÷π÷2=3(分米)
32π=9π=28.26(平方分米)
下面两个图形,你见过吗?
圆环具有哪些特点?
(1)两个圆的圆心在同一个点上。
(同心圆)
(2)两个圆间的距离处处相等。
·
·
·
例10:下图是王师傅加工的一个圆环 形铁片。它的外圆半径是10厘米,内 圆半径是6厘米。你会求这个铁片的 面积吗?
外圆面积:
102π=100π ( cm2)
内圆面积:
62π=36π (cm2)
圆环形铁片的面积:
100π-36π=64π =200.96 (cm2)
R
102π-62π
r
=(102-62)π
长方形的面积:
4
8×4=32(平方厘米)
半圆的面积:
42×π÷2=25.12(平方厘米)
涂色部分的面积:
32-25.12=6.88(平方厘米)
综合算式:
8×4-42π÷2
直角三角形的面积:
3
6×6÷2=18(平方厘米)
半圆的面积:
32×π÷2=14.13(平方厘米)
涂色部分的面积:
18+14.13=32.13(平方厘米)
•
10、低头要有勇气,抬头要有低气。2021/5/22021/5/22021/5/25/2/2021 2:27:00 PM
•
11、人总是珍惜为得到。2021/5/22021/5/22021/5/2M ay-212-May-21
•
12、人乱于心,不宽余请。2021/5/22021/5/22021/5/2Sunday, May 02, 2021
五年级上册数学《组合图形的面积》教案
五年级上册数学《组合图形的面积》教案五年级上册数学《组合图形的面积》教案(7篇)作为一名辛苦耕耘的教育工作者,时常会需要准备好教案,借助教案可以有效提升自己的教学能力。
那么写教案需要注意哪些问题呢?以下是小编精心整理的五年级上册数学《组合图形的面积》教案,欢迎阅读,希望大家能够喜欢。
五年级上册数学《组合图形的面积》教案1教学目标:知识与能力1、结合生活实际认识组合图形,初步掌握用分解发和割补法计算组合图形的面积。
2、能综合运用平面图性积计算的知识,培养分析。
综合的能力,发展学生的空间观念。
过程与方法1、通过拼一拼。
找一找的过程,体会各种图案之间的内在联系,知道生活中各种物体的组合规律。
2、培养动手操作能力,合作交流能力和空间想象能力。
情感态度与价值观通过学习,体验生活中美丽图案的组合规律,激发主动学习的兴趣,培养审美观念和热爱学习数学的思想情。
教学重难点:初步掌握组合图形面积的计算方法。
正确、灵活地把组合图形转化为所学过的基本图形,并能根据各种组合图形的条件,有效地选择计算方法。
教学准备:多媒体课件、练习题卡片。
教学过程:一、复习导入,巩固基础1、我们已经学习了哪些基本的平面图形?2、他们的面积计算公式分别是什么?(请学生说一说)3、计算下面各图形的面积。
(出示所学过的图形)师:这些单个的图形称之为简单的基本图形。
师:在我门的生活中,有许多物体的表面是由这些简单的图形组合而成的,我们称之为组合图形。
同学们,仔细观擦一下我们的教室,看一看哪些地方有组合图形。
二、阅读质疑,自主探究师:同学们,我们刚才观察了教室内的组合图形,在我们的课本上也有几副美丽的图案,我们一起来看一看。
1、同学们阅读课本。
2、同桌交流图案的组成。
3、小组和作,拼一拼,讲一讲所拼图形的组成。
4、用自己的话说一说什么是组和图形?三、合作探究1、出示例题4的图。
师:这是一间房子侧面墙的形状,它是什么图形?怎样求它的面积?先独立想一想再小组交流。
人教版五年级奥数教案:组合图形面积
人教版五年级奥数教案:组合图形面积
专题知识点详解:
组合图形是由两个或两个以上的简单的几何图形组合而成的。
组合的形式分为两种:一是拼合组合,二是重叠组合。
由于组合图形具有条件相等的特点,往往使得问题的解决无从下手。
要正确解答组合图形的面积,应该注意以下几点:
1,切实掌握有关简单图形的概念、公式,牢固建立空间观念;
2,仔细观察,认真思考,看清所求图形是由哪几个基本图形组合而成的;
3,适当采用增加辅助线等方法帮助解题;
4,采用割、补、分解、代换等方法,可将复杂问题变得简单。
例1 一个等腰直角三角形,最长的边是12厘米,这个三角形的面积是多少平方厘米?
分析与解答由于此三角形中只知道最长的边是12厘米,所以,不能用三角形的面积公式来计算它的面积。
我们可以假设有4个这样的三角形,且拼成了下图正方形。
显然,这个正方形的面积是12×12,那么,一个三角形的面积就是12×12÷4=36平方厘米。
《组合图形的面积》(教学设计)北师大版数学五年级上册
《组合图形的面积》教学设计【教学内容】北师大版小学数学五年级上册第六单元《组合图形的面积》第88-89页。
【教材分析】《组合图形的面积》是北师大版五年级上册第六单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第四单元又学习了平行四边形、三角形与梯形的面积计算,在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将“转化”的思考策略渗透其中,提高学生的综合能力。
【学情分析】本节课的主要内容是探究解决“组合图形的面积”的策略。
学生已经学习了长方形、正方形、平行四边形、三角形与梯形的面积计算方法,在此基础上探索组合图形面积的计算方法,能通过自主探索、合作交流,达到方法的多样化。
但是对于方法的交流、借鉴、反思及优化上需要教师的引导,所以,要重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。
【教学目标】1.在探索组合图形面积计算的方法中,体会割补法的应用。
2.能根据组合图形的条件,灵活运用割补法正确计算其面积。
3.能解决生活中与组合图形有关的实际问题,认识数学的价值。
【教学重点】在探索活动中,理解组合图形面积计算的多种方法。
【教学难点】理解计算组合图形面积的多种计算方法,并选择优化方法。
【教学准备】课件,学习单【教学过程】一、复习旧知,引入课题1.回忆平面图形,复习长方形、正方形、平行四边形、三角形、梯形的面积公式。
2.观看组合图形,在图中,你能找到我们学过的图形吗?3.出示组合图形,你知道这幅图是由什么图形组成的吗?4.明确概念,揭示课题:组合图形的面积。
二、自主探究,尝试多种算法解决问题(一)估算组合图形的面积1.播放老爷爷打算在客厅铺地板的视频。
2.这是一个什么图形呢?你能估一估,客厅地板的面积大约有多大吗?3.学生估算,并说说依据。
(二)自主探索,合作交流1.学生独立思考,在学习单上画一画、算一算它的面积是多少。
小学五年级奥数举一反三第19周 组合图形(二)
=10(平方厘米)
举一反三3
1.下图中每个长方形小格的面积都是1平方厘米,求阴影部 分的面积。 2.把等边三角形ABC的每条边6等分,组成如下图所示的三 角形网。如果图中每个小三角形的面积都是1平方厘米,求 图中三角形DEF的面积。 3.如图所示,在长方形ABCD中,AD=15厘米,AB=8厘米, 图中阴影部分的面积为68平方厘米,四边形EFGO的面积是 多少平方厘米?
王牌例题4: 在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是 20平方厘米,求三角形ABC的面积。
【思路导航】(1)因为CE=3AE,所以,三 角形ADC的面积是三角形ADE面积的4倍,是 20×(1+3)=80平方厘为; (2)又因为DC=2BD,所以,三角形ABD的面积是三角形 ADC面积的一半,是80÷2=40平方厘米。因此,三角形 ABC的面积是80+40=120平方厘主。
王牌例题5: 边长是9厘米的正三角形的面积是边长为3厘米的正三角形 面积的多少倍?
【思路导航】题中的已知条件不能计算 出两种三角形的面积,我们可以用边长 是3厘米的正三角形拼一个边长是9厘米 的正三角形,从而看出它们之间的倍数关系。从下图中可 以看出:边长9厘米的正三角形是边长3厘米的正三角形面 积的9倍。
五邯郸市峰峰矿区 杨桂林
知识要点
在组合图形中,三角形的面积出现的机会很多,解题时 我们还可以记住下面三点: 1,两个三角形等底、等高,其面积相等; 2,两个三角形底相等,高成倍数关系,面积也成倍数 关系; 3,两个三角形高相等,底成倍数关系,面积也成倍数 关系。
举一反三 5
1.边长是8厘米的正三角形的面积是边长为2厘米的正三角形 面积的多少倍? 2.一个梯形与一个三角形等高,梯形下底的长是上底的2倍, 梯形上底的长又是三角形底长的2倍。这个梯形的面积是三 角形面积的多少倍? 3.如下图所示,有两种自然的放法将正方形内接于等腰直角 三角形。已知等腰直角三角形的面积是36平方厘米,两个正 方形的面积分别是多少?
五年级奥数 第19讲 组合图形的面积(2)
五年级奥数第19讲组合图形面积(二)知识要点在组合图形中,三角形的面积出现的机会很多,解题时我们还需要记住下面三点:1、两个三角形等底、等高,其面积相等;2、两个三角形底相等,高成倍数关系,面积也成倍数关系;3、两个三角形高相等,底成倍数关系,面积也成倍数关系。
例1、如图所示,已知三角形ABC的面积是88平方厘米,是平行四边形DEFC的两倍,求阴影部分的面积。
练习:1、下图中,梯形的下底为12厘米,高为8厘米,求阴影部分的面积。
2、如图所示,四边形ABCD是直角梯形,AD=9厘米,CD=12厘米,求阴影部分的面积。
3、求图中阴影部分的面积。
(单位:厘米)例2、下图中,边长为10和15的两个正方形并放在一起,求三角形ABC(阴影部分)的面积。
练习:1、下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB =9厘米,FB=FE,求三角形AFE的面积。
2、图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3、图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米。
求阴影部分的面积(ADFC是长方形)。
例3、下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积练习:1、下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积。
2、把等边三角形ABC的每条边6等分,组成如下图所示的三角形网。
如果图中每个小三角形的面积都是1平方厘米,求图中三角形DEF的面积。
3、如图所示,在长方形ABCD中,AD=15厘米,AB=8厘米图中阴影部分面积为68平方厘米,四边形EFGO的面积是多少平方厘米?例4、在三角形ABC中(如下图所示),DC=2BD,CE=3AE,阴影部分的面积是20平方厘米。
求三角形ABC的面积。
练习:1、把下图三角形的底边BC四等分,在下面括号里填上“>”“<”或“=”。
2、如图所示,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
(基础版)第19讲 组合图形的认识、表面积与体积(通用版,含详解)
基础版(通用)2021-2022学年小升初数学精讲精练专题汇编讲义第19讲组合图形的认识、表面积与体积小学阶段所学的立体图形主要有长方体、正方体、圆柱体和圆锥体,这四种立体图形的表面积和体积的计算是小升初数学的热点内容,特别是涉及到立体图形的切拼时,立体图形的表面积和体积发生了变化,牢固掌握这些立体图形的特征和有关的计算方法及切拼时表面积和体积的变化规律是解题的关键,本讲将在前面两讲学习的基础上进一步总结整理立体图形切拼时表面积和体积的变化规律。
知识点一:立体图形的表面积和体积计算常用公式:立体图形表面积体积长方体S=2)(bhahab++a:长 b:宽 h:高 S:表面积V abh=V Sh=正方体S=26aa:棱长 S:表面积3V a=V Sh=圆柱hr222π2πS rh r=+=+圆柱侧面积个底面积2πV r h=圆柱圆锥hr22ππ360nS l r=+=+圆锥侧面积底面积注:l是母线,即从顶点到底面圆上的线段长21π3V r h=圆锥体知识点二:解决立体图形的表面积和体积问题时的注意事项知识精讲(1)要充分利用正方体六个面的面积都相等,每个面都是正方形的特点.(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍;反之,把两个立体图形拼合到一起,减少的表面积等于重合部分面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来;若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
2.解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积;把物体从水中取出,水面下降部分的体积等干物体的体积,这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么排开水的体积就等于浸在水中的那部分物体的体积. (2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变.(3)求一些不规则物体体积时,可以通过变形的方法求体积。
五年级数学奥数第19讲: 组合图形面积
AB 6325厘米10厘米4020A第19周 组合图形面积(二)专题简析在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点: 1. 两个三角形底、等高,其面积相等。
2. 两个三角形底相等,高成倍数关系,面积也成倍数关系。
3. 两个三角形相等,底成倍数关系,面积也成倍数关系。
例题1如图,ABCD 是直角梯形,求阴影部分的面积。
(单位:厘米)疯狂操练11. 求下图中阴影部分的面积。
2. 求图中阴影部分的面积。
(单位:厘米)3. 下图的长方形是一块草坪,中间有 两条宽1米的走道。
求植草的面积。
例题2下图中,边长为10和15的两个正方形并放在一起,求三角形ABC (阴影部分)的面积。
疯狂操练21. 下图中,三角形ABC 的面积是36平方厘米,三角形ABE 与三角形ABC 的面积相等,如果AB=9厘米,FB=FE ,求三角形AFE 的面积。
2. 图中两个正方形的边长分别是10厘米和63. 图中三角形ABC 的面积是36平方厘米,AC 长8厘米,DE 长3厘米,求阴影部分的面积。
(ADFC 不是正方形)例题3下图中每个长方形小格的面积都是1平方厘米,求阴影部分的面积。
疯狂操练31.下图中每个长方形小格的面积都是1平方厘米,求阴影部分面积。
2.把等边三角形ABC的每条边6等分,组成如下图的三角形网。
如果图中每个小三角形的面积都是1平方厘米,求图中三角形DEF的面积。
3.如图,在长方形ABCD中,AD=15厘米,AB=8厘米,图中阴影部分面积为68平方厘米,四边形EFGD的面积是多少平方厘米?例题4在三角形ABC中(见右图),DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC 的面积。
疯狂操练41.把下图三角形的底边BC四等分,在下面括号里填上“<”“>”或“=”。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
已知三角形ABC的面积是108平方厘米,求三角形CDE的面积。
(公开课课件)五年级上册数学《组合图形的面积》(共19张PPT)精选全文完整版
19
2021/6/20
谢谢大家
20
2021/6/20
(1)0.96公顷=( )平方米。(2)一个梯形上底与下底的和是18厘米,高是6.8厘米,面积是( )平方厘米。(3)平行四边形的底是2.5分米,高是底的1.2倍,它的面积是( )平方厘米。
9600
61.2
750
15
2021/6/20
课后作业
2 . 求下面图形的面积。(单位:cm)
【解析】这个组合图形可以把它看成一个三角形和一个长方形,然后求出各自的面积再加到一起。答案:12×6+12×6÷2 =108(cm²)
6
2021/6/20
知识梳理
【小练习】求出这个图形的面积。(单位m)
答案:32×10÷2+32×20=800(㎡)
7
2021/6/20
知识梳理
知识点2:添补法。
添补法是通过画辅助线,把组合图形变成一个大的简单图形,然后再用这个大的简单图形减去一个或几个简单的小图形求出组合图形面积的方法。
2021/6/20
课堂练习
2 . 有一块青菜地,中间有一个小池塘,如右图,平均每平方米菜地能产出8千克的青菜,这块地的面积是多少平方米?这块地能产出多少千克的青菜?
答案:60×45=2700(平方米) (8+10)×7÷2=63(平方米)2700-63=2637(平方米) 2637×8=21096(千克)
6.4组合图形的面积
教材第99~101页
第六单元 多边形的面积
1
2021/6/20
课题引入
生活中有许多组合图形,大家观察一下上面的图,这些组合组图形是由哪些简单图形组成的?如果求它们的面积可以怎样求?先小组交流一下,然后再全班汇报。
2019年数学五年级组合图形的面积精品教育.ppt
7×6-3×3 =42-9 =33(cm2)
3cm 3cm
7cm
怎样把这个图形转化成已学过的图形?
4m
4m
4m
6m
6m
6m
3m
3m
3m
7m
7m
方法一:分割成两个 正方形
7m
方法三:分割成两 个梯形
4m
分割法
6m
添补法
3m
7m
方法四:补上一个小正方形,使它成为一 个大长方形
5m
子侧面墙的形状。它的面
积是多少平方米?
5×5+5×2÷2 我的算法是: =25+5
=30(m2)
组合图形面积的计算
右图表示的是一间房 子侧面墙的形状。它的面 积是多少平方米?
我的算法是:
(5+7)×2.5÷2×2
5m 2m
5m
5m
?
组合图形面积的计算
上面两种算法有什么共同点?
小结:两种算法的共同点是用分 割的方法计算组合图形的 面积(即将组合图形分割 成已学过的简单图形,然 后再算这些简单图形的面 积的和)。
3cm 3cm
7cm
练一练
方法二 分割成一个长方形 和一个正方形
4cm
4×6+3×3
3cm
6cm
=24+9
3cm
=33(cm2)
7cm
练一练
方法三 分割成两个梯形 (3+7)×3÷2+(3+6)×4÷2
3cm
4cm 3cm
6cm
3cm
7cm
练一练
方法四 分割成一个长方形 和一个正方形
4cm 3cm 6cm
小结
计算组合图形的面积时, 要根据图形本身的特点,灵 活地选择计算方法(分割法 和添补法)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19讲组合图形的面积(二)
一、知识要点
在组合图形中,三角形的面积出现的机会很多,解题时我们还可以记住下面三点:
1.两个三角形等底、等高,其面积相等;
2.两个三角形底相等,高成倍数关系,面积也成倍数关系;
3.两个三角形高相等,底成倍数关系,面积也成倍数关系。
二、精讲精练
【例题1】如图,ABCD是直角梯形,求阴影部分的面积和。
(单位:厘米)
练习1:
1.求下图中阴影部分的面积。
2.求图中阴影部分的面积。
(单位:厘米)
3.下图的长方形是一块草坪,中间有两条宽1米的走道,求植草的面积。
【例题2】下图中,边长为10和15的两个正方体并放在一起,求三角形ABC (阴影部分)的面积。
练习2:
1.下图中,三角形ABC的面积是36平方厘米,三角形ABE与三角形AEC的面积相等,如果AB=9厘米,FB=FE,求三角形AFE的面积。
2.图中两个正方形的边长分别是10厘米和6厘米,求阴影部分的面积。
3.图中三角形ABC的面积是36平方厘米,AC长8厘米,DE长3厘米,求阴影部分的面积(ADFC不是正方形)。
【例题3】两条对角线把梯形ABCD分割成四个三角形。
已知两个三角形的面积(如图所示),求另两个三角形的面积各是多少?(单位:平方厘米)
练习3:
1.如下图,图中BO=2DO,阴影部分的面积是4平方厘米,求梯形ABCD的面积是多少平方厘米?
2.下图的梯形ABCD中,下底是上底的2倍,E是AB的中点。
那么梯形ABCD的面积是三角形BDE面积的多少倍?
3.下图梯形ABCD中,AD=7厘米,BC=12厘米,梯形高8厘米,求三角形BOC的面积比三角形AOD的面积大多少平方厘米?
【例题4】在三角形ABC中,DC=2BD,CE=3AE,阴影部分的面积是20平方厘米,求三角形ABC的面积。
练习4:
1.把下图三角形的底边BC四等分,在下面括号里填上“>”、“<”或“=”。
甲的面积()乙的面积。
2.如图,在三角形ABC中,D是BC的中点,E、F是AC的三等分点。
已知三角形的面积是108平方厘米,求三角形CDE的面积。
3.下图中,BD=2厘米,DE=4厘米,EC=2厘米,F是AE的中点,三角形ABC的BC边上的高是4厘米,阴影面积是多少平方厘米?
【例题5】边长是9厘米的正三角形的面积是边长为3厘米的正三角形面积的多少倍?
练习5:
1.边长是8厘米的正三角形的面积是边长为2厘米的正三角形面积的多少倍?
2.一个梯形与一个三角形等高,梯形下底的长是上底的2倍,梯形上底的长又是三角形底长的2倍。
这个梯形的面积是三角形面积的多少倍?
3.有两种自然的放法将正方形内接于等腰直角三角形。
已知等腰直角三角形的面积是36平方厘米,两个正方形的面积分别是多少?。