《概率论与数理统计教程》沈恒范著-期末复习重点

合集下载

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳1.概率论的基础概念-随机事件、样本空间和事件的关系。

-频率和概率的关系,概率的基本性质。

-古典概型和几何概型的概念。

-条件概率和乘法定理。

-全概率公式和贝叶斯公式。

-随机变量和概率分布函数的概念。

-离散型随机变量和连续型随机变量的定义、概率质量函数和概率密度函数的性质。

2.随机变量的数字特征-随机变量的数学期望、方差、标准差和切比雪夫不等式。

-协方差、相关系数和线性变换的数学期望和方差公式。

-两个随机变量的和、差、积的数学期望和方差公式。

3.大数定律和中心极限定理-大数定律的概念和三级强大数定律。

-中心极限定理的概念和中心极限定理的两种形式。

4.数理统计的基本概念和方法-总体、样本和抽样方法的概念。

-样本统计量和抽样分布的概念。

-点估计和区间估计的概念。

-假设检验的基本思想和步骤。

-正态总体的参数的假设检验和区间估计。

5.参数估计和假设检验的方法和推广-极大似然估计的原理和方法。

-矩估计的原理和方法。

-最小二乘估计的原理和方法。

-一般参数的假设检验和区间估计。

6.相关分析和回归分析-相关系数和线性相关的概念和性质。

-回归分析的一般原理。

-简单线性回归的估计和检验。

7.非参数统计方法-秩和检验和符号检验的基本思想和应用。

-秩相关系数的计算和检验。

8.分布拟合检验和贝叶斯统计-卡方拟合检验的原理和方法。

-正态总体参数的拟合优度检验。

-贝叶斯估计的基本思想和方法。

9.时间序列分析和质量控制-时间序列的基本性质和分析方法。

-时间序列预测的方法和模型。

-质量控制的基本概念和控制图的应用。

以上是概率论与数理统计总复习知识点的归纳,希望对你的复习有所帮助。

概率论与数理统计重点笔记

概率论与数理统计重点笔记

概率论与数理统计重点笔记
概率论与数理统计是数学中的重要分支,它涉及到随机现象的
规律性和统计规律的研究。

在学习概率论与数理统计时,重点笔记
可以包括以下内容:
1. 概率论的基本概念,包括样本空间、随机事件、事件的概率、事件的运算规律等内容。

重点理解事件的概率定义、概率的性质和
概率的运算法则。

2. 随机变量及其分布,重点掌握随机变量的定义、离散随机变
量和连续随机变量的概念,以及它们的分布律、密度函数、分布函
数等。

还要重点理解常见的离散分布(如二项分布、泊松分布)和
连续分布(如正态分布、指数分布)。

3. 大数定律和中心极限定理,重点掌握大数定律和中心极限定
理的表述和应用,理解随机变量序列的收敛性质,以及大样本时样
本均值的渐近正态性质。

4. 参数估计,包括点估计和区间估计的基本概念和方法,重点
理解最大似然估计、矩估计等常用的参数估计方法。

5. 假设检验,理解假设检验的基本思想、原理和步骤,掌握显著性水平、拒绝域、接受域等相关概念,重点理解假设检验的错误类别和势函数的概念。

6. 相关性和回归分析,重点理解相关系数、回归方程、残差分析等内容,掌握相关性和回归分析的基本原理和方法。

总之,在学习概率论与数理统计的过程中,重点笔记应该围绕着基本概念、常用分布、极限定理、参数估计、假设检验和回归分析展开,全面理解这些内容并掌握其应用是十分重要的。

希望以上内容能够帮助你更好地理解概率论与数理统计。

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理

统计学复习资料概率论与数理统计重点知识点整理概率论与数理统计是统计学的基础课程之一,也是应用最为广泛的数学工具之一。

下面将对概率论与数理统计的重点知识点进行整理,以供复习使用。

一、概率论的基本概念1. 样本空间和事件:样本空间是指随机试验的所有可能结果构成的集合,事件是样本空间的子集。

2. 古典概型和几何概型:古典概型是指样本空间中的每个结果具有相同的概率,几何概型是指采用几何方法进行分析的概率模型。

3. 概率公理和条件概率:概率公理是概率论的基本公理,条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。

4. 独立事件和全概率公式:独立事件是指两个事件的发生与否互不影响,全概率公式是用于计算复杂事件的概率的公式。

5. 随机变量和概率分布函数:随机变量是对样本空间中的每个结果赋予一个数值,概率分布函数是随机变量的分布情况。

二、概率分布的基本类型1. 离散型概率分布:包括二项分布、泊松分布和几何分布等。

2. 连续型概率分布:包括正态分布、指数分布和均匀分布等。

三、多维随机变量及其分布1. 边缘分布和条件分布:边缘分布是指多维随机变量中的某一个或几个变量的分布,条件分布是指在已知某些变量取值的条件下,其他变量的分布。

2. 二维随机变量的相关系数:相关系数用于刻画两个随机变量之间的线性关系的强度和方向。

3. 多维随机变量的独立性:多维随机变量中的各个分量独立时,称为多维随机变量相互独立。

四、参数估计与假设检验1. 参数估计方法:包括点估计和区间估计,点估计是通过样本数据得到参数的估计值,区间估计是对参数进行一个范围的估计。

2. 假设检验的基本概念:假设检验是用于对统计推断的一种方法,通过与某个假设进行比较来得出结论。

3. 假设检验的步骤:包括建立原假设和备择假设、选择显著性水平、计算检验统计量和做出统计决策等步骤。

五、回归分析与方差分析1. 简单线性回归分析:简单线性回归分析是研究两个变量之间的线性关系的方法,通过建立回归方程来拟合数据。

概率论与数理统计复习要点

概率论与数理统计复习要点

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21 ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

概率论与数理统计期末复习重要知识点及公式整理讲解

概率论与数理统计期末复习重要知识点及公式整理讲解

概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。

2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。

两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。

记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,.k kn k n P x k C p p k n -==-=二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。

5.常用的连续型分布: (1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为22()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。

概率论与数理统计教程第四版(沈恒范)(超全免费版)

概率论与数理统计教程第四版(沈恒范)(超全免费版)
若事件 、 相互独立,且 ,则有
若事件 、 相互独立,则可得到 与 、 与 、 与 也都相互独立。
必然事件 和不可能事件Ø与任何事件都相互独立。
Ø与任何事件都互斥。
②多个事件的独立性
设ABC是三个事件,如果满足两两独立的条件,
P(AB)=P(A)P(B);P(BC)=P(B)P(C);P(CA)=P(C)P(A)
分布函数具有如下性质:
1° ;
2° 是单调不减的函数,即 时,有 ;
3° , ;
4° ,即 是右连续的;
5° 。
对于离散型随机变量, ;
对于连续型随机变量, 。
(5)八大分布
0-1分布
P(X=1)=p, P(X=0)=q
二项分布
在 重贝努里试验中,设事件 发生的概率为 。事件 发生的次数是随机变量,设为 ,则 可能取值为 。
记为(X,Y)~N(
由边缘密度的计算公式,可以推出二维正态分布的两个边缘分布仍为正态分布,
即X~N(
但是若X~N( ,(X,Y)未必是二维正态分布。
(10)函数分布
Z=X+Y
根据定义计算:
对于连续型,fZ(z)=
两个独立的正态分布的和仍为正态分布( )。
n个相互独立的正态分布的线性组合,仍服从正态分布。
若 ,则 的分布函数为
。。
参数 、 时的正态分布称为标准正态分布,记为 ,其密度函数记为
, ,
分布函数为

是不可求积函数,其函数值,已编制成表可供查用。
Φ(-x)=1-Φ(x)且Φ(0)= 。
如果 ~ ,则 ~ 。

(6)分位数
下分位表: ;
上分位表: 。
(7)函数分布

《概率论与数理统计》期末复习重点总结

《概率论与数理统计》期末复习重点总结

概率论与数理统计第一章:掌握概率的性质、条件概率公式、全概率公式和贝叶斯公式,会用全概率公式和贝叶斯公式计算问题。

第二章:一维随机变量包括离散型和连续型;离散型随机变量分布律的性质;连续性随机变量密度函数的性质;常见的三种离散型分布及连续型分布;会计算一维随机变量函数的分布(可以出大题);第三章:多维随机变量掌握离散型和连续型变量的边缘分布;条件分布及两个变量独立的定义;重点掌握两个随机变量函数的分布(掌握两个随机变量和、差的密度函数的求法;了解两个随机变量乘、除的分布;掌握多个随机变量最大、最小的分布的密度函数的求法);第四章:重点掌握期望、方差、协方差的计算公式、性质;了解协方差矩阵的构成;第六章:掌握统计量的定义、三大分布的定义和性质;教材142页的四个定理及式3.19、3.20务必记住;第七章:未知参数的矩估计法和最大似然估计法是考点,还要掌握估计量的无偏性、有效性的定义;教材的例题及习题:19页例5;26页19、23、24、36;43页例1;51页例2;53页例5;58页25、36;63页例2;66页例2;77页例1、例2;87页22;99页例12;114页6;147页4、6;151页例2、例3;153页例4、例5;173页5、11样题一、填空1. 设A ,B 相互独立,且2.0)(,8.0)(==A P B A P ,则=)(B P __________.2. 已知),2(~2σN X ,且3.0}42{=<<X P ,则=<}0{X P __________.3.已知B A ,两个事件满足条件()()B A P AB P =,且()p A P =,则()=B P _________.4.设随机变量X 的密度函数为()2,01,0,x x f x <<⎧=⎨⎩其他,用Y 表示对X 的3次独立重复观察中事件⎭⎬⎫⎩⎨⎧≤21X 出现的次数,则()2P Y == . 5、设连续型随机变量X 的分布函数为 , ,则A=B= ;X 的密度函数为 。

概率论与数理统计期末复习提纲

概率论与数理统计期末复习提纲

推论: P( B A) P( B) P( AB ) 4) P( A) 1 5) P( A) 1 P( A ) 6) P( A B) P( A) P( B) P( AB)
第二章 一维随机变量及其分布

一维随机变量


离散型随机变量
随机变量的分布函数 连续性随机变量 随机变量函数的分布
pij P{X xi , Y y j }, i, j 1, 2,
满足规范性条件 pij 1 ,则称 ( X , Y ) 为二维离散型
i , j 1
随机变量。
定义
设 ( X ,Y ) 为二维离散型随机变量,其所有可 能取值为 ( xi , yi )(i, j 1, 2,) ,则称 pij (i, j 1, 2,) 为 ( X , Y )的联合分布律。
3 x p ( x ) dx 1 ke dx 1 , 解:(1) , 0
ke 3 x , p( x ) 0,
x0
x 0,
1 3x k e 3
0
1,
k 3,

3e 3 x , p( x ) 0,

0
0
数学期望的性质
1. 设C是常数,则E(C)=C; 请注意: 2. 若k是常数,则E(kX)=kE(X); 由E(XY)=E(X)E(Y) 不一定能推出X,Y 3. E(X+Y) = E(X)+E(Y); 独立 n n 推广 : E[ X i ] EX i
i 1 i 1
4. 设X、Y 相互独立,则 E(XY)=E(X)E(Y);
0 1
0 1
x
1 2 x 2x 1 2

概率论与数理统计复习要点知识点doc

概率论与数理统计复习要点知识点doc

第一章 随机事件及其概率一、随机事件及其运算 1. 样本空间、随机事件①样本点:随机试验的每一个可能结果,用ω表示; ②样本空间:样本点的全集,用Ω表示; 注:样本空间不唯一.③随机事件:样本点的某个集合或样本空间的某个子集,用A,B,C,…表示; ④必然事件就等于样本空间;不可能事件()∅是不包含任何样本点的空集; ⑤基本事件就是仅包含单个样本点的子集。

2. 事件的四种关系①包含关系:A B ⊂,事件A 发生必有事件B 发生; ②等价关系:A B =, 事件A 发生必有事件B 发生,且事件B 发生必有事件A 发生;③互不相容(互斥): AB =∅ ,事件A 与事件B 一定不会同时发生。

④互逆关系(对立):A ,事件A 发生事件A 必不发生,反之也成立;互逆满足A A AA ⎧⋃=Ω⎨=∅⎩注:互不相容和对立的关系(对立事件一定是互不相容事件,但互不相容事件不一定是对立事件。

) 3. 事件的三大运算①事件的并:A B ⋃,事件A 与事件B 至少有一个发生。

若AB =∅,则A B A B ⋃=+;②事件的交:A B AB ⋂或,事件A 与事件B 都发生; ③事件的差:-A B ,事件A 发生且事件B 不发生。

4. 事件的运算规律①交换律:,A B B A AB BA ⋃=⋃=②结合律:()(),()()A B C A B C A B C A B C ⋃⋃=⋃⋃⋂⋂=⋂⋂③分配律:()()(),()()()A B C A B A C A B C A B A C ⋃⋂=⋃⋂⋃⋂⋃=⋂⋃⋂ ④德摩根(De Morgan )定律:,A B AB AB A B⋃==⋃对于n 个事件,有1111,n ni i i i nni ii i A A A A ======U IIU二、随机事件的概率定义和性质1.公理化定义:设试验的样本空间为Ω,对于任一随机事件),(Ω⊂A A 都有确定的实值P(A),满足下列性质: (1) 非负性:;0)(≥A P (2) 规范性:;1)(=ΩP(3)有限可加性(概率加法公式):对于k 个互不相容事件k A A A ,,21Λ,有∑∑===ki i ki i A P A P 11)()(.则称P(A)为随机事件A 的概率. 2.概率的性质 ①()1,()0P P Ω=∅= ②()1()P A P A =-③若A B ⊂,则()(),()()()P A P B P B A P B P A ≤-=-且 ④()()()()P A B P A P B P AB ⋃=+-()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ⋃⋃=++---+注:性质的逆命题不一定成立的. 如 若),()(B P A P ≤则B A ⊂。

《工程数学》(概率统计)期末复习提要共12页word资料

《工程数学》(概率统计)期末复习提要共12页word资料

《工程数学》(概率统计)期末复习提要工科普专的《工程数学》(概率统计)课程的内容包括《概率论与数理统计》(王明慈、沈恒范主编,高等教育出版社)教材的全部内容 . 在这里介绍一下教学要求,供同学们复习时参考 .第一部分:随机事件与概率⒈了解随机事件的概念学习随机事件的概念时,要注意它的两个特点:⑴在一次试验中可能发生,也可能不发生,即随机事件的发生具有偶然性;⑵在大量重复试验中,随机事件的发生具有统计规律性 .⒉掌握随机事件的关系和运算,掌握概率的基本性质要了解必然事件、不可能事件的概念,事件间的关系是指事件之间的包含、相等、和、积、互斥(互不相容)、对立、差等关系和运算 .在事件的运算中,要特别注意下述性质:概率的主要性质是指:①对任一事件,有③对于任意有限个或可数个事件,若它们两两互不相容,则⒊了解古典概型的条件,会求解简单的古典概型问题在古典概型中,任一事件的概率为其中是所包含的基本事件个数,是基本事件的总数 .⒋熟练掌握概率的加法公式和乘法公式,理解条件概率,掌握全概公式⑴加法公式:对于任意事件,有特别地,当时有⑵条件概率:对于任意事件,若,有称为发生的条件下发生条件概率 .⑶乘法公式:对于任意事件,有(此时),或(此时) .⑷全概公式:事件两两互不相容,且,则⒌理解事件独立性概念,会进行有关计算若事件满足(当时),或(当时),则称事件与相互独立 . 与相互独立的充分必要条件是.第二部分:随机变量极其数字特征⒈理解随机变量的概率分布、概率密度的概念,了解分布函数的概念,掌握有关随机变量的概率计算常见的随机变量有离散型和连续型两种类型 . 离散型随机变量用概率分布来刻画,满足:连续型随机变量用概率密度函数来刻画,满足:随机变量的分布函数定义为对于离散型随机变量有对于连续型随机变量有⒉了解期望、方差与标准差的概念,掌握求随机变量期望、方差的方法⑴期望:随机变量的期望记为,定义为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度) .⑵方差:随机变量的方差记为,定义为(离散型随机变量),(连续型随机变量) .⑶随机变量函数的期望:随机变量是随机变量的函数,即,若存在,则在两种形式下分别表示为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度),由此可得方差的简单计算公式⑷期望与方差的性质①若为常数,则;②若为常数,则;③若为常数,则.⒊掌握几种常用离散型和连续型随机变量的分布以及它们的期望与方差,熟练掌握正态分布的概率计算,会查正态分布表(见附表)常用分布:⑴二项分布的概率分布为特别地,当时,,叫做两点分布;⑵均匀分布的密度函数为⑶正态分布的密度函数为其图形曲线有以下特点:① ,即曲线在x 轴上方;② ,即曲线以直线为对称轴,并在处达到极大值;③在处,曲线有两个拐点;④当时,,即以轴为水平渐近线;特别地,当时,,表示是服从标准正态分布的随机变量 .将一般正态分布转化为标准正态分布的线性变换:若,令,则,且Y 的密度函数为服从标准正态分布的随机变量的概率为那么一般正态分布的随机变量的概率可以通过下列公式再查表求出常见分布的期望与方差:二项分布:;均匀分布:;正态分布:;⒋了解随机变量独立性的概念,了解两个随机变量的期望与方差及其性质对于随机变量,若对任意有则称与相互独立 .对随机变量,有若相互独立,则有第三部分:统计推断⒈理解总体、样本,统计量等概念,知道分布,分布,会查表所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本 . 样本中所含的样品个数称为样本容量 .统计量就是不含未知参数的样本函数 .⒉掌握参数的最大似然估计法最大似然估计法:设是来自总体(其中未知)的样本,而为样本值,使似然函数达到最大值的称为参数的最大似然估计值 . 一般地,的最大似然估计值满足以下方程⒊了解估计量的无偏性,有效性概念参数的估计量若满足则称为参数的无偏估计量 .若都是的无偏估计,而且,则称比更有效 .⒋了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法当置信度确定后,方差已知条件下单正态总体期望的置信区间是其中是总体标准差,是样本均值,是样本容量,由确定 .方差未知条件下单正态总体期望的置信区间是其中称为样本标准差,满足.⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法单正态总体均值的检验方法包括检验法和检验法:⑴ 检验法:设是正态总体的一个样本,其中未知,已知 . 用检验假设(是已知数),。

概率论与数理统计期末复习大纲

概率论与数理统计期末复习大纲

概率论与数理统计期末复习大纲第一章:掌握事件间的关系与运算、概率的公理化定义;掌握概率的性质及其计算;掌握条件概率的公式、乘法定理、全概率公式与贝叶斯公式、事件的独立性的概念、会用事件的独立性计算概率练习1-2:4,5练习1-3:6,14练习1-4:4,9,10练习1-5:8,9第二章:2.1节:掌握本节的定理例题结论;练习2-1:5,6,8,122.2节:掌握本节的定理例题结论;练习2-2:12.3节:掌握常用的离散型分布的密度函数,数学期望、方差及相关性质(重点:两点分布二项分布与泊松分布练习2-3:62.4节:掌握常用的连续型分布的密度函数,数学期望、方差及相关性质(尤其是正态分布);练习2-4:1,练习2-5:2,3,4,5第三章:3.1节:掌握本节的定理例题结论;练习3-15,6,73.2节:条件概率密度的计算不考,但要掌握公式,此外本节的定理例题结论要掌握;练习3-2:1,5,6,13,153.3节:掌握离散型随机向量函数的分布,随机向量函数的数学期望,及数学期望的性质;练习3-3:8,3.4节:掌握协方差相关系数的概念及性质;练习3-4:1,4,5第四章:练习4-1:4,5,64.3节:掌握2χ分布F分布t分布的构成及性质;练习4-3:5,84.4节:掌握定理4.1和4.2的结论第五章:5.1节:掌握关于无偏性、有效性的定义和例题;练习5-1:15.2节:会求最大似然估计、矩估计;练习5-2:25.3节:掌握置信区间公式;练习5-3:2,3,μ的假设检验;练习5-5:65.5节:单正态分布的关于)),σ(=2≤,(=≥,。

沈恒范 概率论与数理统计

沈恒范 概率论与数理统计

沈恒范概率论与数理统计
概率论与数理统计是数学中的一个分支,它研究随机现象的规律性和统计推断的方法。

它将概率论和数理统计两个学科结合在一起,通过概率的思想和统计的方法,研究和分析随机事件的概率分布和统计规律。

概率论主要研究随机现象的概率规律和统计规律,包括概率空间的构建、随机变量的定义和性质、概率分布函数、数学期望和方差等内容。

通过概率论的方法,可以对随机现象的概率进行量化,从而研究其规律性。

数理统计主要研究统计推断的方法和理论,包括参数估计、假设检验、置信区间等内容。

通过数理统计的方法,可以根据样本数据对总体特征进行推断和分析,从而了解总体的统计规律。

概率论与数理统计在实际应用中具有广泛的应用,例如在金融领域中,可以利用概率论和数理统计的方法对股票价格、利率等随机变量的波动进行分析和预测;在医学领域中,可以利用统计的方法对疾病的传播规律和治疗效果进行评估等。

总体而言,概率论与数理统计是一门重要的学科,广泛应用于各个领域的研究和实践中。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理

概率论与数理统计各章重点知识整理(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除概率论与数理统计各章重点知识整理第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件():每次试验中一定不会发生的事件.二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A-B(差事件)事件A 发生而B 不发生.5. AB=(A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德•摩根律 B A B A = B A B A = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,当P(A)>0, P(B i )>0时,六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0).(3)X~N (μ,σ2)参数为μ,σ的正态分布 222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0.特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(z α)=1-α , z 1- α= -z α. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性 ∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dy y f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称P{X=x i |Y=y j } 为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称 P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义,}{},{jji j j i p p y Y P y Y x X P •=====,}{},{•=====i j i i j i p p x X P y Y x X P随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛)函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) .2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) 1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n pn p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/125.X 服从参数为θ的指数分布 θ θ26.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (μ,σ2 ) ,则 X ~ N (μ, σ2 /n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2). ③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P 的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点.3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2)时, nS X μ-~ t (n-1) .③两个正态总体 相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点. 注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效.(3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量. 二.区间估计1.求参数θ的置信水平为1-α的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,θ),其中只有一个待估参数θ未知,且其分布完全确定. (2)利用双侧α分位点找出W 的区间(a,b),使P{a<W <b}=1-α. (3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求. 2.单个正态总体待估参数 其它参数 W 及其分布 置信区间μ σ2已知 nX σμ-~N (0,1) (2/ασz n X ±) μ σ2未知 nS X μ-~ t (n-1))1((2/-±n t n S X α σ2 μ未知 22)1(σS n -~ χ2(n-1) ))1()1(,)1()1((22/1222/2-----n Sn n S n ααχχ 3.两个正态总体 (1)均值差μ 1-μ 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±-未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③.(2) μ 1,μ 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比σ12/σ22的置信区间为))1,1(1,)1,1(1(212/12221212/2221----⋅-n n F S S n n F S S αα 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标α/2改为α,另外的下(上)限取为-∞ (∞)即可.。

《工程数学》(概率统计)期末复习提要

《工程数学》(概率统计)期末复习提要

《工程数学》(概率统计)期末复习提要工科普专的《工程数学》(概率统计)课程的内容包括《概率论与数理统计》(王明慈、沈恒范主编,高等教育出版社)教材的全部内容 . 在这里介绍一下教学要求,供同学们复习时参考 .第一部分:随机事件与概率⒈了解随机事件的概念学习随机事件的概念时,要注意它的两个特点:⑴在一次试验中可能发生,也可能不发生,即随机事件的发生具有偶然性;⑵在大量重复试验中,随机事件的发生具有统计规律性 .⒉掌握随机事件的关系和运算,掌握概率的基本性质要了解必然事件、不可能事件的概念,事件间的关系是指事件之间的包含、相等、和、积、互斥(互不相容)、对立、差等关系和运算 .在事件的运算中,要特别注意下述性质:,.概率的主要性质是指:①对任一事件,有;② ;③对于任意有限个或可数个事件,若它们两两互不相容,则.⒊了解古典概型的条件,会求解简单的古典概型问题在古典概型中,任一事件的概率为,其中是所包含的基本事件个数,是基本事件的总数 .⒋熟练掌握概率的加法公式和乘法公式,理解条件概率,掌握全概公式⑴加法公式:对于任意事件,有,特别地,当时有;⑵条件概率:对于任意事件,若,有,称为发生的条件下发生条件概率 .⑶乘法公式:对于任意事件,有(此时),或(此时) .⑷全概公式:事件两两互不相容,且,则.⒌理解事件独立性概念,会进行有关计算若事件满足(当时),或(当时),则称事件与相互独立 . 与相互独立的充分必要条件是.第二部分:随机变量极其数字特征⒈理解随机变量的概率分布、概率密度的概念,了解分布函数的概念,掌握有关随机变量的概率计算常见的随机变量有离散型和连续型两种类型 . 离散型随机变量用概率分布来刻画,满足:① ,② ;连续型随机变量用概率密度函数来刻画,满足:① ,② .随机变量的分布函数定义为,对于离散型随机变量有,对于连续型随机变量有.⒉了解期望、方差与标准差的概念,掌握求随机变量期望、方差的方法⑴期望:随机变量的期望记为,定义为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度) .⑵方差:随机变量的方差记为,定义为(离散型随机变量),(连续型随机变量) .⑶随机变量函数的期望:随机变量是随机变量的函数,即,若存在,则在两种形式下分别表示为(离散型随机变量,是的概率分布),(连续型随机变量,是的概率密度),由此可得方差的简单计算公式.⑷期望与方差的性质①若为常数,则;②若为常数,则;③若为常数,则.⒊掌握几种常用离散型和连续型随机变量的分布以及它们的期望与方差,熟练掌握正态分布的概率计算,会查正态分布表(见附表)常用分布:⑴二项分布的概率分布为,特别地,当时,,叫做两点分布;⑵均匀分布的密度函数为;⑶正态分布的密度函数为.其图形曲线有以下特点:① ,即曲线在x 轴上方;② ,即曲线以直线为对称轴,并在处达到极大值;③在处,曲线有两个拐点;④当时,,即以轴为水平渐近线;特别地,当时,,表示是服从标准正态分布的随机变量 .将一般正态分布转化为标准正态分布的线性变换:若,令,则,且Y 的密度函数为;服从标准正态分布的随机变量的概率为;那么一般正态分布的随机变量的概率可以通过下列公式再查表求出.常见分布的期望与方差:二项分布:;均匀分布:;正态分布:;⒋了解随机变量独立性的概念,了解两个随机变量的期望与方差及其性质对于随机变量,若对任意有,则称与相互独立 .对随机变量,有;若相互独立,则有.第三部分:统计推断⒈理解总体、样本,统计量等概念,知道分布,分布,会查表所研究对象的一个或多个指标的全体称为总体,组成整体的基本单位称为个体,从总体中抽取出来的个体称为样品,若干个样品组成的集合称为样本 . 样本中所含的样品个数称为样本容量 .统计量就是不含未知参数的样本函数 .⒉掌握参数的最大似然估计法最大似然估计法:设是来自总体(其中未知)的样本,而为样本值,使似然函数达到最大值的称为参数的最大似然估计值 . 一般地,的最大似然估计值满足以下方程.⒊了解估计量的无偏性,有效性概念参数的估计量若满足则称为参数的无偏估计量 .若都是的无偏估计,而且,则称比更有效 .⒋了解区间估计的概念,熟练掌握方差已知条件下单正态总体期望的置信区间的求法,掌握方差未知条件下单正态总体期望的置信区间的求法当置信度确定后,方差已知条件下单正态总体期望的置信区间是,其中是总体标准差,是样本均值,是样本容量,由确定 .方差未知条件下单正态总体期望的置信区间是,其中称为样本标准差,满足.⒌知道假设检验的基本思想,掌握单正态总体均值的检验方法,会作单正态总体方差的检验方法单正态总体均值的检验方法包括检验法和检验法:⑴ 检验法:设是正态总体的一个样本,其中未知,已知 . 用检验假设(是已知数),。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率论与数理统计教程》期末复习提要第一章 随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A 2.运算规则 (1)BA AB A B B A =⋃=⋃(2))()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃(3)))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率 6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|(7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)第二章 随机变量及其分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F =5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。

第三章 随机向量1. 二维离散随机向量,联合分布列ij j i p y Y x X P ===),(,边缘分布列⋅==i i p x X P )(,j j p y Y P ⋅==)(有(1)0≥ij p ;(2)∑=ijijp1;(3)∑=⋅jij i p p ,∑=⋅iij j p p 2. 二维连续随机向量,联合密度),(y x f ,边缘密度)( ),(y f x f Y X ,有 (1)0),(≥y x f ;(2)⎰⎰+∞∞-+∞∞-=1),(y x f ;(3)⎰⎰=∈Gdxdy y x f G Y X P ),()),((;(4)⎰+∞∞-=dy y x f x f X ),()(,⎰+∞∞-=dx y x f y f Y ),()(3. 二维均匀分布⎪⎩⎪⎨⎧∈=其它 0, ),( ,)(1),(G y x G m y x f ,其中)(G m 为G 的面积4. 二维正态分布),,,,(~) ,(222121ρσσμμN Y X ,其密度函数(牢记五个参数的含义)⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-+-------=2222212121212221)())((2)()1(21ex p 121),(σμσσμμρσμρρσπσy y x x y x f 且),(~ ),,(~222211σμσμN Y N X ;5. 二维随机向量的分布函数 ),(),(y Y x X P y x F ≤≤=有 (1)关于y x ,单调非降;(2)关于y x ,右连续; (3)0),(),(),(=-∞-∞=-∞=-∞F y F x F ;(4)1),(=+∞+∞F ,)(),(x F x F X =+∞,)(),(y F y F Y =+∞;(5)),(),(),(),() ,(111221222121y x F y x F y x F y x F y Y y x X x P +--=≤<≤<;(6)对二维连续随机向量,yx y x F y x f ∂∂∂=),(),(26.随机变量的独立性 Y X ,独立)()(),(y F x F y x F Y X =⇔ (1) 离散时 Y X ,独立j i ij p p p ⋅⋅=⇔(2) 连续时 Y X ,独立)()(),(y f x f y x f Y X =⇔(3) 二维正态分布Y X ,独立0=⇔ρ,且),(~222121σσμμ+++N Y X 7.随机变量的函数分布(1) 和的分布 Y X Z +=的密度⎰⎰+∞∞-+∞∞--=-=dx x z x f dy y y z f z f Z ),(),()((2) 最大最小分布第四章 随机变量的数字特征1.期望(1) 离散时 ∑=iii px X E )(,∑=iiipx g X g E )())(( ;(2) 连续时⎰+∞∞-=dx x xf X E )()(,⎰+∞∞-=dx x f x g X g E )()())((;(3) 二维时∑=ji ij j i p y x g Y X g E ,),()),((,dy dx y x f y x g Y X g E ⎰⎰+∞∞-+∞∞-=),(),()),(((4)C C E =)(;(5))()(X CE CX E =; (6))()()(Y E X E Y X E +=+; (7)Y X ,独立时,)()()(Y E X E XY E = 2.方差(1)方差222)()())(()(EX X E X E X E X D -=-=,标准差)()(X D X =σ;(2))()( ,0)(X D C X D C D =+=; (3))()(2X D C CX D =;(4)Y X ,独立时,)()()(Y D X D Y X D +=+ 3.协方差(1))()()())]())(([(),(Y E X E XY E Y E Y X E X E Y X Cov -=--=; (2)),(),( ),,(),(Y X abCov bY aX Cov X Y Cov Y X Cov ==; (3)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+;(4)0),(=Y X Cov 时,称Y X ,不相关,独立⇒不相关,反之不成立,但正态时等价;(5)),(2)()()(Y X Cov Y D X D Y X D ++=+ 4.相关系数 )()(),(Y X Y X Cov XY σσρ=;有1||≤XY ρ,1)( ,,1||=+=∃⇔=b aX Y P b a XY ρ5.k 阶原点矩)(k k X E =ν,k 阶中心矩kk X E X E ))((-=μ第五章 大数定律与中心极限定理1.Chebyshev 不等式 2)(}|)({|εεX D X E X P ≤≥- 或2)(1}|)({|εεX D X E X P -≥<-2.大数定律3.中心极限定理(1)设随机变量n X X X ,,,21 独立同分布2)( ,)(σμ==i i X D X E ,则) ,(~21σμn n N X ni i ∑=近似, 或) ,(~121n N X n n i i σμ∑=近似 或)0,1(~ 1N n n X ni i近似σμ∑=-,(2)设m 是n 次独立重复试验中A 发生的次数,p A P =)(,则对任意x ,有)(}{lim x x npqnp m P n Φ=≤-∞→或理解为若),(~p n B X ,则),(~npq np N X 近似第六章 样本及抽样分布1.总体、样本(1) 简单随机样本:即独立同分布于总体的分布(注意样本分布的求法); (2) 样本数字特征:样本均值∑==ni i X n X 11(μ=)(X E ,nX D 2)(σ=);样本方差∑=--=ni i X X n S 122)(11(22)(σ=S E )样本标准差∑=--=ni i X X n S 12)(11 样本k 阶原点矩∑==n i k i k X n 11ν,样本k 阶中心矩∑=-=n i ki k X X n 1)(1μ2.统计量:样本的函数且不包含任何未知数3.三个常用分布(注意它们的密度函数形状及分位点定义)(1)2χ分布 )(~2222212n X X X n χχ+++= ,其中n X X X ,,,21 独立同分布于标准正态分布)1,0(N ,若)(~ ),(~2212n Y n X χχ且独立,则)(~212n n Y X ++χ;(2)t 分布 )(~/n t nY X t =,其中)(~ ),1,0(~2n Y N X χ且独立;(3)F 分布 ),(~//2121n n F n Y n X F =,其中)(~),(~2212n Y n X χχ且独立,有下面的性质),(1),( ),,(~11221112n n F n n F n n F F αα=- 4.正态总体的抽样分布(1))/,(~2n N X σμ; (2))(~)(11222n Xni i∑=-χμσ;(3))1(~)1(222--n S n χσ且与X 独立; (4))1(~/--=n t nS X t μ;(5))2(~)()(21212121-++---=n n t n n n n S Y X t ωμμ,2)1()1(212222112-+-+-=n n S n S n S ω (6))1,1(~//2122222121--=n n F S S F σσ 第七章 参数估计1.矩估计:(1)根据参数个数求总体的矩;(2)令总体的矩等于样本的矩;(3)解方程求出矩估计 2.极大似然估计:(1)写出极大似然函数;(2)求对数极大似然函数(3)求导数或偏导数;(4)令导数或偏导数为0,解出极大似然估计(如无解回到(1)直接求最大值,一般为min }{i x 或max }{i x ) 3.估计量的评选原则(1)无偏性:若θθ=)ˆ(E ,则为无偏; (2) 有效性:两个无偏估计中方差小的有效;。

相关文档
最新文档