八年级数学下册 期中检测题 (新版)新人教版1

合集下载

最新人教版八年级下学期数学期中考试试卷(含答卷)

最新人教版八年级下学期数学期中考试试卷(含答卷)

最新人教版八年级下学期数学期中考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列二次根式中,属于最简二次根式的是()A.B.C.D.2、一次函数y=﹣x+2的图象是()A.B.C.D.3、下列图形中的图象不表示y是x的函数的是()A.B.C.D.4、若函数y=(m﹣1)x|m|是正比例函数,则m的值为()A.1B.﹣1C.±1D.25、已知点M(﹣3,a),N(2,b)是一次函数y=2x﹣1的图象上的两个点,则a,b的大小关系是()A.a=b B.a>b C.a<b D.不能确定6、下列命题中正确的是()A.对角线相等的四边形是平行四边形B.对角线相等的平行四边形是正方形C.对角线互相垂直的四边形是菱形D.四个角相等的四边形是矩形7、如果△ABC的三个顶点A,B,C所对的边分别为a,b,c,那么下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=32:42:52B.∠A:∠B:∠C=1:2:3C.a=,b=,c=D.∠A=15°,∠B=75°8、如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE,若BC=5cm,AB=3cm,则EC的长()A.B.C.1.3cm D.1.5cm9、一次函数y=2x+b的图象与坐标轴围成的三角形面积为1,则b的值为()A.2B.﹣2或C.D.2或﹣210、如图,已知正方形ABCD的边长为2,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为4;③△APD一定是等腰三角形;④AP=EF;⑤EF的最小值为.其中正确结论的序号为()A.①②③④B.①②④⑤C.②④⑤D.①②④二、填空题(每小题3分,满分18分)11、一个三角形的三边长分别为,则它的周长是cm.12、若三角形的两边长为4和5,要使其成为直角三角形,则第三边的长为13、把直线y=﹣x﹣1沿着y轴向上平移2个单位,所得直线的函数解析式为14、若直线y=3x+4和直线y=﹣2x﹣6交于点A,则点A的坐标.15、如图,菱形ABCD对角线AO=4cm,BO=3cm,则菱形高DE长为.16、如图1所示,在边长为4的正方形ABCD中,点E,F分别为CD、BC的中点,AE和DF相交于点G;如图2所示,将图1中边长为4的正方形ABCD 折叠,使得点D落在边BC的中点D'处,点A落在点A'处,折痕为MN.现有四个结论:图1中:①AE=DF;②AE⊥DF;③DG=;图2中:④MN=2.其中正确的结论有:.(填序号)最新人教版八年级下学期数学期中考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、18、如图,在△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于点D.求:(1)AB的长;(2)CD的长.19、如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.20、直线AB与x轴交于点A(2,0),与y轴交于点B(0,﹣4).(1)求直线AB的解析式;(2)若x轴负半轴上存在点C,使△ABC的面积等于10,求点C的坐标.21、如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.22、某书店计划在“世界读书日”前夕,同时购进A,B两类图书,已知购进1本A类图书和2本B类图书共需135元;购进3本A类图书和4本B类图书共需305元.(1)A,B两类图书每本的进价各是多少元?(2)该书店计划购进A,B两类图书共90本,且A类图书的购进数量不少于B类图书的购进数量的.已知A类图书每本的售价为40元,B类图书每本的售价为58元,求如何进货才能使书店所获利润最大,最大利润为多少元?23、如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC于点F,以DE、EF为邻边作矩形DEF G,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.(3)若F点恰为BC中点,求CG的长度.24、已知一次函数y1=(a﹣1)x﹣2a+1,其中a≠1.(1)若点(1,﹣)在y1的图象上,求a的值;(2)当﹣2≤x≤3时,若函数有最大值2,求y1的函数表达式;(3)对于一次函数y2=(m+1)(x﹣1)+2,其中m≠﹣1,若对一切实数x,y1<y2都成立,求a,m需满足的数量关系及a的取值范围.25、如图,已知直线与x轴交于点A,与y轴交于点B,点M是线段AB的中点,点P为x轴负半轴上一动点,点P的横坐标记作m,过点A作A Q∥BP交PM的延长线于Q,PM交y轴于点C,连接OM.(1)线段OM的长;(2)①证明:四边形AQBP是平行四边形;②当m取何值时,四边形AQBP是菱形;(3)若点M坐标为(3,4),当﹣3≤m≤﹣2时,记(其中OC表示线段OC的长度),求s的最大值.。

八年级下册数学期中测试卷及答案(新人教版)

八年级下册数学期中测试卷及答案(新人教版)

初二网权威发布八年级下册数学期中测试卷及答案新人教版,更多八年级下册数学期中测试卷及答案新人教版相关信息请访问一、选择题本大题共6小题,每小题2分,共12分1.下列图形中,是中心对称图形但不是轴对称的图形是.等边三角形.正方形.圆.平行四边形【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解、不是中心对称图形,是轴对称的图形,故本选项错误;、是中心对称图形,也是轴对称的图形,故本选项错误;、是中心对称图形,也是轴对称的图形,故本选项错误;、是中心对称图形但不是轴对称的图形,故本选项正确.故选.2.下面有四种说法①了解某一天出入南京市的人口流量适合用普查方式;②抛掷一个正方体骰子,点数为奇数的概率是③打开电视机,正在播放关于篮球巨星科比退役的相关新闻是随机事件.④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.其中正确说法是.①②④.①②④.②③④.②④【考点】概率的意义;全面调查与抽样调查;随机事件.【分析】根据调查方式的选择、必然事件、不可能事件、随机事件的概念分别进行解答即可.【解答】解①了解某一天出入南京市的人口流量适合用抽样调查的方式,故本选项错误;②抛掷一个正方体骰子,点数为奇数的概率是,正确;③打开电视机,正在播放关于篮球巨星科比退役的相关新闻是随机事件,正确;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件,正确;故选.3.下列各式从左到右的变形正确的是.=1.=.=+.=【考点】分式的基本性质.【分析】原式变形变形得到结果,即可作出判断.【解答】解、原式==1,正确;、原式=,错误;、原式为最简结果,错误;、原式=,错误,故选4.下列命题中,假命题是.对角线互相垂直且相等的四边形是正方形.对角线相等且互相平分的四边形是矩形.对角线互相垂直平分的四边形是菱形.对角线互相平分的四边形是平行四边形【考点】命题与定理;平行四边形的判定;菱形的判定;矩形的判定;正方形的判定.【分析】根据平行四边形,矩形,菱形和正方形的对角线矩形判断即可.【解答】解对角线互相垂直平分且相等的四边形是正方形,所以为假命题;对角线相等且互相平分的四边形是矩形,所以为真命题;对角线互相垂直平分的四边形是菱形,所以为真命题;对角线互相平分的四边形为平行四边形,所以为真命题.故选.5.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是.频率就是概率.频率与试验次数无关.概率是随机的,与频率无关.随着试验次数的增加,频率一般会越来越接近概率【考点】利用频率估计概率;随机事件.【分析】根据大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率解答即可.【解答】解∵大量重复试验事件发生的频率逐渐稳定到某个常数附近,可以用这个常数估计这个事件发生的概率,∴选项说法正确.故选.6.四边形中,对角线、相交于点,给出下列四个条件①∥;②=;③=;④=,从中任选两个条件,能使四边形为平行四边形的选法有.6种.5种.4种.3种【考点】平行四边形的判定.【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.【解答】解①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形为平行四边形;①③可证明△≌△,进而得到=,可利用一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;①④可证明△≌△,进而得到=,可利用一组对边平行且相等的四边形是平行四边形判定出四边形为平行四边形;∴有4种可能使四边形为平行四边形.故选.二、填空题共10小题,每小题2分,共20分7.若分式有意义,则的取值范围是≠﹣1;当=﹣1时,分式的值为0.【考点】分式的值为零的条件;分式有意义的条件.【分析】根据分式有意义的条件可得1+≠0,再解即可;根据分式值为零的条件可得2﹣1=0,且﹣1≠0,再解即可.【解答】解由题意得1+≠0,解得≠﹣1;由题意得2﹣1=0,且﹣1≠0,解得=﹣1,故答案为≠﹣1;﹣1.8.已知▱中,∠比∠小20°,那么∠=80°.【考点】平行四边形的性质.【分析】根据∠+∠=180°,∠=∠﹣20°,解方程组即可解决问题.【解答】解∵四边形是平行四边形,∴∥,∠=∠,∴∠+∠=180°,又∵∠=∠﹣20°,∴∠=80°,∠=100°,∴∠=∠=80°.故答案为80°.9.在一个不透明的口袋里装了2个红球和1个白球,每个球除了颜色外都相同,将球摇匀,据此,请你写出一个发生的可能性小于的随机事件求摸到白球的概率.【考点】可能性的大小;随机事件.【分析】发生的可能性小于的随机事件就是摸出的球的个数占总数的一半以下,据此求解.【解答】解一个不透明的口袋里装了2个红球和1个白球,摸到白球的概率为=<,故答案为求摸到白球的概率.10.一个样本的50个数据分别落在5个组内,第1、2、3、4组数据的个数分别是2、8、15、5,则第5组数据的频数为20,频率为04.【考点】频数与频率.【分析】总数减去其它四组的数据就是第5组的频数,用频数除以数据总数就是频率.【解答】解根据题意可得第1、2、3、4组数据的个数分别是2、8、15、5,共2+8+15+5=30,样本总数为50,故第5小组的频数是50﹣30=20,频率是=04.故答案为20,04.11.如图,在矩形中,对角线、交于点,已知∠=60°,=8,则的长为4.【考点】矩形的性质.【分析】由矩形的性质可得到=,于是可证明△为等边三角形,于是可求得=4,然后依据勾股定理可求得的长.【解答】解∵四边形为矩形,∴===4.∵=,∠=60°,∴△为等边三角形.∴=4.在△中,==4.故答案为4.12.如图,将▱折叠,使点、分别落在点、处点、都在所在的直线上,折痕为,若∠=50°,则∠=65°.【考点】平行四边形的性质.【分析】由平行四边形与折叠的性质,易得∥∥,然后根据平行线的性质,即可求得∠=∠=∠,又由平角的定义,根据∠=50°,求得∠的度数,然后可求得∠的度数.【解答】解∵四边形是平行四边形,∴∥,根据折叠的性质可得∥,∠=∠,∴∥∥,∴∠=∠=∠,∵∠=50°,∴∠=180°﹣∠=130°,∴∠=∠=∠=65°,故答案为65.13.如图,在菱形中,与相交于点,点是的中点,=3,则菱形的周长是24.【考点】菱形的性质.【分析】根据菱形的性质可得⊥,===,再根据直角三角形的性质可得=2,进而得到长,然后可算出菱形的周长.【解答】解∵四边形是菱形,∴⊥,===,∵点是的中点,∴=2,∵=3,∴=6,∴菱形的周长是4×6=24,故答案为2414.用平行四边形的定义和课本上的三个定理可以判断一个四边形是平行四边形,请探索并写出一个与它们不同的平行四边形的判定方法答案不,如两组对角分别相等的四边形是平行四边形等.【考点】平行四边形的判定.【分析】根据平行四边形的定义以及判定方法得出即可.【解答】解答案不,如两组对角分别相等的四边形是平行四边形等;理由∵∠=∠,∠=∠,∠+∠+∠+∠=360°,∴∠+∠=180°,∠+∠=180°,∴∥,∥,∴四边行是平行四边形.故答案为答案不,如两组对角分别相等的四边形是平行四边形等.15.若顺次连接四边形各边中点所得到的四边形是矩形,则原四边形必须满足的条件是对角线互相垂直.【考点】中点四边形;矩形的判定.【分析】根据矩形的性质和三角形中位线定理求解;首先根据三角形中位线定理知所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直.【解答】解由于、、、分别是、、、的中点,根据三角形中位线定理得∥∥,∥∥,∴四边形是平行四边形,∵四边形是矩形,即⊥,∴⊥,故答案为对角线互相垂直.16.已知在平面直角坐标系中,点、、、的坐标依次为﹣1,0,,,﹣1,10,﹣7,,且≤.若以、、、四个点为顶点的四边形是菱形,则的值是2,5,18.【考点】菱形的判定;坐标与图形性质.【分析】利用菱形的性质结合,点坐标进而得出符合题意的的值.【解答】解如图所示当﹣7,2,′﹣7,5时,都可以得到以、、、四个点为顶点的四边形是菱形,同理可得当﹣7,8则对应点的坐标为;﹣7,18可以得到以、、、四个点为顶点的四边形是菱形,故的值为2,5,18.故答案为2,5,18.三、解答题本大题共10小题,共68分17.计算1•2﹣﹣3.【考点】分式的混合运算.【分析】1先约分,再计算即可;2化为同分母的分式,再进行相加即可.【解答】解1原式=﹣;2原式=﹣﹣===﹣2.18.先化简,再求值÷﹣1,然后从2,1,﹣1,﹣2中选一个你认为合适的数作为的值代入求值.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,最后选出合适的的值代入进行计算即可.【解答】解原式=÷=•=﹣,当=﹣2时,原式=﹣=1.19.矩形定义,有一个角是直角的平行四边形是矩形.已知如图,▱中,且=.求证▱是矩形.【考点】矩形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质结合全等三角形的判定与性质得出∠=∠=90°,再利用矩形的判定方法得出答案.【解答】证明∵四边形是平行四边形,∴=,∥,在△和△中,∴△≌△,∴∠=∠,∵∥,∴∠=∠=90°,∴▱是矩形.20.如图,线段绕点顺时针旋转一定的角度得到线段11点的对应点为1.1请用直尺和圆规作出旋转中心不写作法,保留作图痕迹;2连接、1、、1,并根据旋转的性质用符号语言写出2条不同类型的正确结论.【考点】作图-旋转变换.【分析】1连接1、1,再分别作1、1中垂线,两中垂线交点即为点;2根据旋转的性质可知,对应角都相等都等于旋转角,对应点到旋转中心距离相等,据此可知.【解答】解1如图,点即为所求;2=1、∠1=∠1.21.在▱中,、分别是、的中点,与相交于点,与相交于点.1求证四边形是平行四边形;2若四边形是矩形,则▱应满足什么条件?不需要证明【考点】平行四边形的判定与性质;矩形的判定.【分析】1通过证明两组对边分别平行,可得四边形是平行四边形;2当平行四边形是矩形,并且=2时,先证明四边形是正方形,得出有一个内角等于90°,从而证明菱形为一个矩形.【解答】解1∵四边形是平行四边形,∴∥,=,∵是中点,是中点,∴=,∴四边形是平行四边形,∴∥.同理可得∥,∴四边形是平行四边形;2当平行四边形是矩形,并且=2时,平行四边形是矩形.∵,分别为,的中点,且=,∴=,且∥,∴四边形为平行四边形,∴=,又∵=2,为中点,则=2,于是有==,这时,====,∠=∠=90°,∴四边形是正方形,∴==,⊥,∠=90°,∴此时,平行四边形是矩形.22.某校有1000名学生.为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了100名学生进行抽样调查.整理样本数据,得到下列图表频数分布表中部分划记被污染渍盖住1本次调查的个体是每名学生的上学方式;2求扇形统计图中,乘私家车部分对应的圆心角的度数;3请估计该校1000名学生中,选择骑车和步行上学的一共有多少人?【考点】频数率分布表;用样本估计总体;扇形统计图.【分析】1每一个调查对象称为个体,据此求解;2首先求得私家车部分所占的百分比,然后乘以周角即可求得圆心角的度数;3用学生总数乘以骑车和步行上学所占的百分比的和即可求得人数.【解答】解1本次调查的个体是每名学生的上学方式;21﹣15﹣29﹣30﹣6×360°=72°;答乘私家车部分对应的圆心角的度数为72°;31000×15+29=440人.答估计该校1000名学生中,选择骑车和步行上学的一共有440人.23.已知如图,在四边形中,∥,对角线的垂直平分线与边、分别相交于点、.求证1∠1=∠2.2四边形是菱形.【考点】菱形的判定;线段垂直平分线的性质.【分析】1由平行线的性质内错角相等即可证明;2由于知道了垂直平分,因此只要证出四边形是平行四边形即可得出是菱形的结论.【解答】证明1∵∥,∴∠1=∠2;2∵是对角线的垂直平分线,∴=,⊥,∵∥,∴∠=∠,在△和△中,,∴△≌△,∴=,∴四边形是平行四边形,又∵⊥,∴四边形是菱形.24.如图①,已知△是等腰三角形,∠=90°,点是的中点,作正方形,使点、分别在和上,连接、.1试猜想线段和的关系为;2如图②,将正方形绕点按逆时针方向旋转α0°<α≤90°,判断1中的结论是否仍然成立,证明你的结论.【考点】四边形综合题.【分析】1由等腰直角三角形的性质及正方形的性质就可以得出△≌△就可以得出结论;2如图2,连接,由等腰直角三角形的性质及正方形的性质就可以得出△≌△就可以得出结论.【解答】解1=.理由∵△是等腰直角三角形,∠=90°,点是的中点,∴⊥,=,∴∠=∠=90°.∵四边形是正方形,∴=.在△和△中,,∴△≌△,∴=;2成立=.理由如图②,连接,∵在△中,为斜边中点,∴=,⊥,∴∠+∠=90°.∵四边形为正方形,∴=,且∠=90°,∴∠+∠=90°,∴∠=∠.在△和△中,,∴△≌△,∴=.25.浴缸有两个水龙头,一个放热水,一个放冷水,两水龙头放水速度放热水的是升分,放冷水的速度是升分,下面有两种放水方式方式一先开热水,使热水注满浴缸的一半,后一半容积的水接着开冷水龙头注放.方式二前一半时间让热水龙头注放,后一半时间让冷水龙头注放.1在方式一中设浴缸容积为升,则先开热水,热水注满浴缸一半所需的时间为分;2两种方式中,哪种方式更节省时间?请说明理由.【考点】分式的混合运算.【分析】1根据题意即可得到结论;2首先浴缸容积为,然后求出方式一和方式二注满时间为、′,最后作差比较.【解答】解1先开热水注满浴缸一半所需的时间为分;故答案为;2方式一设浴缸容积为,注满时间为,依题意,得=+,方式二同样设浴缸容积为,注满总时间为′,依题意得′+′=所以′=,故﹣′=+﹣==, 分类讨论Ⅰ当=时,﹣′=0,即=′Ⅱ当≠时,>0,即>′综上所述 1 当放热水速度与放冷水速度不相等时,选择方式二节约时间.2 当 两水龙头放水速度相等时,选其中任一方式都可以,因为此时注满水 的时间相等.26.在正方形中,、是对角线上的两点.1 如图①,=,连接并 延长,交于点,连接并延长,交于点,连接、.求证①四边形为菱形 ②△≌△.2 如图②,≠,连接并延长交于点,连接并延长交于点.连 接、,若∠=105°,∠=115°,则∠﹢∠的度数是80 °.【考点】四边形综合题.【分析】1①如图①中,连接交于, 先证明四边形是平行四边形,再根据⊥即可证明.②先证明四边形是 平行四边形,得到∠=∠,再证明=,∠=∠即可解决问题.2 分别求 出∠、∠即可解决问题.【解答】1①证明如图①中,连接交于.∵ 四边形是正方形,∴=,=,⊥,∵=,∴=,∵=,∴四边形是平行四 边形,∵⊥,∴四边形是菱形.②证明∵四边形是菱形,∴∥,=, ∠=∠,∴∠=∠,∵∥,∴四边形是平行四边形,∴∠=∠,在△和 △中,,∴△≌△.2 如图②中,∵四边形是正方形,∴∠=∠,=, 在△和△中,,∴△≌△,∴∠=∠=115°,同理可证∠=∠=105°, ∵∠=180°﹣∠=65°,∴∠=∠﹣∠=50°,∴∠=105°﹣75°=30°, ∴∠﹢∠=30°+50°=80°.故答案为 80.【八年级下册数学期中测 试卷及答案新人教版】。

新人教版八年级下册数学期中测试卷及答案)

新人教版八年级下册数学期中测试卷及答案)

新人教版八年级下册数学期中测试卷及答案)八年级下册数学期中测试卷(1)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是()A。

1B。

2√2C。

4D。

52、二次根式x+3有意义的条件是()A.x>3B。

x>-3C。

x≥-3D。

x≥33、正方形面积为36,则对角线的长为()A.6B.6√2C.9D.9√24、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A。

12B。

10C。

7.5D。

55、下列命题中,正确的个数是()①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。

A、2个B、3个C、4个D、5个6、下列条件中能判断四边形是平行四边形的是()A)对角线互相垂直B)对角线相等C)对角线互相垂直且相等D)对角线互相平分7、在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A)1cmB)2cmC)3cmD)4cm8、如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.249、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为()A.6B.8C.10D.1210、如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空:(每题2分,共20分)11、ABCD中一条对角线分∠A为35°和45°,则∠B=100度。

12、矩形的两条对角线的夹角为60度,较短的边长为12cm,则对角线的长为12√3 cm。

2022-2023年人教版八年级数学下册期中测试卷及答案【完美版】

2022-2023年人教版八年级数学下册期中测试卷及答案【完美版】

2022-2023年人教版八年级数学下册期中测试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有两个不相等的实数根,则k 的取值范围是( )A .k >12B .k ≥12C .k >12且k ≠1D .k ≥12且k ≠1 4.下列说法:①实数和数轴上的点是一一对应的;②无理数是开方开不尽的数;③负数没有立方根;④16的平方根是±4,用式子表示是16=±4;⑤某数的绝对值,相反数,算术平方根都是它本身,则这个数是0,其中错误的是( )A .0个B .1个C .2个D .3个5.已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( )A .(4,-2)B .(-4,2)C .(-2,4)D .(2,-4) 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图是一张直角三角形的纸片,两直角边AC =6 cm 、BC =8 cm ,现将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则BE 的长为( )A .4 cmB .5 cmC .6 cmD .10 cm 9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为( )A .40海里B .60海里C .70海里D .80海里二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,△ABC 中,∠BAC =90°,∠B =30°,BC 边上有一点P (不与点B ,C 重合),I 为△APC 的内心,若∠AIC 的取值范围为m °<∠AIC <n °,则m +n =________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在Rt △ABC 中,∠C=90°,AC=3,BC=5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -.2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c 是13的整数部分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.4.如图,在平面直角坐标系中,一次函数y=kx+b 的图象经过点A (﹣2,6),且与x 轴相交于点B ,与正比例函数y=3x 的图象相交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.8 32 29.6 28 …售价x(元/千…22.6 24 25.2 26 …克)(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、D5、A6、A7、C8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、03、a (a ﹣b )2.4、255.56、85三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、11a -,1.3、(1)a=5,b=2,c=3 ;(2)±4.4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、(1) k 的值为3,m 的值为1;(2)0<n ≤1或n ≥3.6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

新人教版八年级数学下册期中考试题(加答案)

新人教版八年级数学下册期中考试题(加答案)

新人教版八年级数学下册期中考试题(加答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.一次函数()224y k x k =++-的图象经过原点,则k 的值为( )A .2B .2-C .2或2-D .32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤- 3.等式33=11x x x x --++成立的x 的取值范围在数轴上可表示为( ) A .B .C .D . 4.把38a 化为最简二次根式,得 ( )A .22a aB .342aC .322aD .24a a5.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥37.若a 72b 27a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab-ac-bc的值是()A.0 B.1 C.2 D.39.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到A n.则△OA2A2018的面积是()A.504m2B.10092m2C.10112m2D.1009m2二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.以正方形ABCD的边AD作等边△ADE,则∠BEC的度数是__________.3.若m+1m=3,则m2+21m=________.4.如图,正方形ABCD中,点E、F分别是BC、AB边上的点,且AE⊥DF,垂足为点O,△AOD的面积为7,则图中阴影部分的面积为________.5.如图,在△ABC 中,AB =5,AC =13,BC 边上的中线AD =6,则△ABD 的面积是________.6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.化简求值:[4(xy-1)2-(xy+2)(2-xy)]÷14xy,其中x=-2, y=15.3.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.4.已知:在ABC ∆中,AB AC = ,D 为AC 的中点,DE AB ⊥ ,DF BC ⊥ ,垂足分别为点,E F ,且DE DF =.求证:ABC ∆是等边三角形.5.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.6.随着人们生活水平的不断提高,人们对生活饮用水质量要求也越来越高,更多的居民选择购买家用净水器.一商家抓住商机,从生产厂家购进了A,B两种型号家用净水器.已知购进2台A型号家用净水器比1台B型号家用净水器多用200元;购进3台A型号净水器和2台B型号家用净水器共用6600元,(1)求A,B两种型号家用净水器每台进价各为多少元?(2)该商家用不超过26400元共购进A,B两种型号家用净水器20台,再将购进的两种型号家用净水器分别加价50%后出售,若两种型号家用净水器全部售出后毛利润不低于12000元,求商家购进A,B两种型号家用净水器各多少台?(注:毛利润=售价-进价)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、A5、A6、D7、D8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、1a 4<<2、30°或150°.3、745、156、18三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、20xy-32,-40.3、21024x x --,-24、略.5、(1)见详解;(2)见详解6、(1)A 型号家用净水器每台进价为1000元,B 型号家用净水器每台进价为1800元;(2)则商家购进A 型号家用净水器12台,购进B 型号家用净水器8台;购进A 型号家用净水器13台,购进B 型号家用净水器7台;购进A 型号家用净水器14台,购进B 型号家用净水器6台;购进A型号家用净水器15台,购进B型号家用净水器5台.。

新人教版八年级数学下册期中试卷【加答案】

新人教版八年级数学下册期中试卷【加答案】

新人教版八年级数学下册期中试卷【加答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是()A.2019 B.-2019 C.12019D.12019-2.在平面直角坐标系中,点P(-2,2x+1)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3| B.﹣2 C.0 D.π4.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.65.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.6.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.13207.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A .甲和乙B .乙和丙C .甲和丙D .只有丙8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.将长方形ABCD 纸片沿AE 折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB 的大小是( )A .60°B .50°C .75°D .55°10.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.函数132y xx=--+中自变量x的取值范围是__________.3.若23(1)0m n-++=,则m-n的值为________.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC 上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于12AB长为半径作弧,两弧交于点P.若点C的坐标为(,23a a-),则a的值为________.三、解答题(本大题共6小题,共72分)1.解下列方程组() 32219612x yyx y ⎧-+=⎪⎨++=-⎪⎩2.先化简2728333x xxx x-⎛⎫+-÷⎪--⎝⎭,再从04x≤≤中选一个适合的整数代入求值.3.已知a 、b 、c 满足2225(32)0a b c -+-+-=(1)求a 、b 、c 的值.(2)试问:以a 、b 、c 为三边长能否构成三角形,如果能,请求出这个三角形的周长,如不能构成三角形,请说明理由.4.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.5.如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B .(1)求证:△AED ≌△EBC ;(2)当AB=6时,求CD 的长.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、D6、B7、B8、A9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、23x -<≤3、44、15、706、3三、解答题(本大题共6小题,共72分)1、12x y =⎧⎨=-⎩2、42x x +;1x =时,原式52=(或当2x =时,原式32=.)3、(1)a =,b =5,c =;(2)能;.4、(1)略(2-15、(1)略;(2)CD =36、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

新人教版八年级数学下册期中考试卷及答案【汇总】

新人教版八年级数学下册期中考试卷及答案【汇总】

新人教版八年级数学下册期中考试卷及答案【汇总】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.9210.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.33x x -=-,则x 的取值范围是________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、B6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7523、3x≤45、36、AB=BC(或AC⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、(12)3、3a-b+c的平方根是±4.4、略.5、(12m6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案略。

新人教版八年级数学下册期中试卷及答案【完整】

新人教版八年级数学下册期中试卷及答案【完整】

新人教版八年级数学下册期中试卷及答案【完整】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知3y=,则2xy的值为()A.15-B.15C.152-D.1522.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为()A.74610-⨯B.74.610-⨯C.64.610-⨯D.50.4610-⨯4.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.1000100030x x-+=2 B.1000100030x x-+=2C.1000100030x x--=2 D.1000100030x x--=25.若一个直角三角形的两直角边的长为12和5,则第三边的长为()A.13B.13或15 C.13 D.156.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%7.下面四个手机应用图标中是轴对称图形的是()A .B .C .D .8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .13二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.已知x ,y 都是实数,且y 3x -3x -+4,则y x =________.3.若m+1m =3,则m 2+21m=________. 4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,△ABC 三边的中线AD ,BE ,CF 的公共点G ,若12ABC S =△,则图中阴影部分面积是 ____________.6.如图,在一次测绘活动中,某同学站在点A 的位置观测停放于B 、C 两处的小船,测得船B 在点A 北偏东75°方向900米处,船C 在点A 南偏东15°方向1200米处,则船B 与船C 之间的距离为______米. 三、解答题(本大题共6小题,共72分) 1.解不等式(1)7252x x -+≥ (2)11132x x -+-<2.先化简,再求值:(1﹣11x -)÷22441x x x -+-,其中x 5 23.已知关于x 的方程x 2-(m +2)x +(2m -1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.4.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.5.如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当AB=6时,求CD的长.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、C4、A5、C6、C7、D8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、x (x+2)(x ﹣2)2、643、745、46、1500三、解答题(本大题共6小题,共72分)1、(1)2x ≥;(2)11x >-2、12x x +-,55+3、(1)略;(2)4或4+.4、(1)见解析(2)成立(3)△DEF 为等边三角形5、(1)略;(2)CD =36、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

新人教版八年级数学下册期中考试卷(完整版)

新人教版八年级数学下册期中考试卷(完整版)

新人教版八年级数学下册期中考试卷(完整版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.不等式3(x ﹣1)≤5﹣x 的非负整数解有( )A .1个B .2个C .3个D .4个3.若α、β为方程2x 2-5x-1=0的两个实数根,则2235++ααββ的值为( )A .-13B .12C .14D .154.下列选项中,矩形具有的性质是( )A .四边相等B .对角线互相垂直C .对角线相等D .每条对角线平分一组对角5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是( )A .54573x x -=-B .54573x x +=+C.45357x x++= D.45357x x--=7.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A.12 B.10 C.8 D.68.如图是一张直角三角形的纸片,两直角边AC=6 cm、BC=8 cm,现将△ABC 折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4 cm B.5 cm C.6 cm D.10 cm9.如图,△ABC中,BD是∠ ABC的角平分线,DE ∥ BC,交AB 于 E,∠A=60º,∠BDC=95º,则∠BED的度数是()A.35°B.70°C.110°D.130°10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)11x-x的取值范围是_______.2.若不等式组130x abx->⎧⎨+≥⎩的解集是﹣1<x≤1,则a=_____,b=_____.3.若关于x的分式方程2222x mmx x+=--有增根,则m的值为_______.4.如图,▱ABCD中,AB=3cm,BC=5cm,BE平分∠ABC交AD于E点,CF平分∠BCD交AD于F点,则EF的长为________m.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠FAE=19°,则∠C=______度.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22121244x x xx x x+-⎛⎫-÷⎪--+⎝⎭,其中3x=3.已知:关于x的方程2x(k2)x2k0-++=,(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,两个边长b,c恰好是这个方程的两个根,求△ABC的周长.4.如图,在▱ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、C5、C6、B7、B8、B9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、1x ≥2、-2 -33、14、15、46、24三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3x3、(1)略;(2)△ABC 的周长为5.4、略.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

新人教版八年级数学下册期中测试卷(附答案)

新人教版八年级数学下册期中测试卷(附答案)

新人教版八年级数学下册期中测试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若二次根式51x-有意义,则x的取值范围是()A.x>15B.x≥15C.x≤15D.x≤52.若关于x的不等式组721x mx-<⎧⎨-≤⎩的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤7 3.已知三角形的三边长分别为2,a-1,4,则化简|a-3|+|a-7|的结果为()A.2a-10 B.10-2aC.4 D.-44.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>05.已知一个多边形的内角和为1080°,则这个多边形是()A.九边形B.八边形C.七边形D.六边形6.如图,∠AOB=60°,点P是∠AOB内的定点且OP=3,若点M、N分别是射线OA、OB上异于点O的动点,则△PMN周长的最小值是()A.362B.332C.6 D.37.已知=2{=1xy是二元一次方程组+=8{=1mx nynx my-的解,则2m n-的算术平方根为()A.±2 B .2C.2 D.48.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ABCD为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°9.如图,将△ABC绕点C顺时针旋转90°得到△EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是()A.55°B.60°C.65°D.70°10.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<1二、填空题(本大题共6小题,每小题3分,共18分)1.若613x,小数部分为y,则(213)x y+的值是________.2.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.3x2-x的取值范围是________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=_________.6.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.先化简:221-21-11a a a a a a ⎛⎫++÷ ⎪++⎝⎭,再从-1,0,1中选取一个数并代入求值.3.已知关于x 的一元二次方程2(4)240x m x m -+++=.(1)求证:该一元二次方程总有两个实数根;(2)若12,x x 为方程的两个根,且22124n x x =+-,判断动点(,)P m n 所形成的数图象是否经过点(5,9)A -,并说明理由.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.某商场计划销售A,B两种型号的商品,经调查,用1500元采购A型商品的件数是用600元采购B型商品的件数的2倍,一件A型商品的进价比一件B 型商品的进价多30元.(1)求一件A,B型商品的进价分别为多少元?(2)若该商场购进A,B型商品共100件进行试销,其中A型商品的件数不大于B型的件数,已知A型商品的售价为200元/件,B型商品的售价为180元/件,且全部能售出,求该商品能获得的利润最小是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、C4、B5、B6、D7、C8、A9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、32、03、x2≥4、135°5、40°6、45︒三、解答题(本大题共6小题,共72分)1、32 x=-2、13、(1)见解析;(2)经过,理由见解析4、(1)8;(2)6;(3),40cm,80cm2.5、略.6、(1) B型商品的进价为120元, A型商品的进价为150元;(2) 5500元.。

人教版八年级数学下册期中测试卷(完整版)

人教版八年级数学下册期中测试卷(完整版)

人教版八年级数学下册期中测试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.若关于x的方程3m(x+1)+5=m(3x-1)-5x的解是负数,则m的取值范围是()A.m>-54B.m<-54C.m>54D.m<543.下列命题中,真命题是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或55A(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列对一元二次方程x2+x﹣3=0根的情况的判断,正确的是()A.有两个不相等实数根B.有两个相等实数根C.有且只有一个实数根D.没有实数根7.如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为( )A .20°B .30°C .45°D .50°9.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .6410.如图,Rt △ABC 中,∠C=90°,AD 平分∠BAC ,交BC 于点D ,AB=10,S △ABD =15,则CD 的长为( )A .3B .4C .5D .6二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是________.2.将命题“同角的余角相等”,改写成“如果…,那么…”的形式_____.323(1)0m n -+=,则m -n 的值为________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图:在△ABC 中,∠ABC ,∠ACB 的平分线交于点O ,若∠BOC =132°,则∠A 等于_____度,若∠A =60°时,∠BOC 又等于_____。

新人教版八年级数学下册期中测试卷及答案【完整】

新人教版八年级数学下册期中测试卷及答案【完整】

新人教版八年级数学下册期中测试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.在△ABC 中,AB=10,,BC 边上的高AD=6,则另一边BC 等于( )A .10B .8C .6或10D .8或105.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根7.在平面直角坐标中,点M(-2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a、b的实数的点在数轴上的位置如图所示,那么化简|a﹣b|+2()a b+的结果是________.2.比较大小:3133.如果不等式组841x xx m+<-⎧⎨>⎩的解集是3x>,那么m的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组22{20x m xx+----<<的解集为________.5.如图,在△ABC和△DBC中,∠A=40°,AB=AC=2,∠BDC=140°,BD=CD,以点D为顶点作∠MDN=70°,两边分别交AB,AC于点M,N,连接MN,则△AMN的周长为___________.6.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.已知,a、b互为倒数,c、d互为相反数,求31ab c d+的值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、C5、D6、A7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、<3、3m≤.4、﹣2<x<25、46、15.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、1 23、0.4、略.5、CD的长为3cm.6、(1)乙队单独完成需90天;(2)在不超过计划天数的前提下,由甲、乙合作完成最省钱.。

新人教版八年级数学下册期中考试卷附答案

新人教版八年级数学下册期中考试卷附答案

新人教版八年级数学下册期中考试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间2.若点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,则m+n的值是()A.﹣5 B.﹣3 C.3 D.13.下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cm B.8cm,8cm,15cm C.5cm,5cm,10cm D.6cm,7cm,14cm 4.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是()A.5-313B.3 C.313-5 D.-35.方程组33814x yx y-=⎧⎨-=⎩的解为()A.12xy=-⎧⎨=⎩B.12xy=⎧⎨=-⎩C.21xy=-⎧⎨=⎩D.21xy=⎧⎨=-⎩6.如图,菱形ABCD的对角线AC、BD的长分别为6和8,则这个菱形的周长是()A.20 B.24 C.40 D.48751-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等51的值()A .在1.1和1.2之间B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.比较大小:3133.计算:))201820195-252的结果是________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

人教新版八年级下册数学期中试卷及答案详解(PDF可打印)

人教新版八年级下册数学期中试卷及答案详解(PDF可打印)

2021-2022学年湖北省武汉市武昌区八校联考八年级(下期中数学试卷一、选择题(每小题3分,共30分)1.(3分)若在实数范围内有意义,则a的取值范围是()A.a≥﹣1B.a>﹣1C.a≠﹣1D.a≤﹣1 2.(3分)下列二次根式为最简二次根式的是()A.B.C.D.3.(3分)下列计算正确的是()A.B.C.D.4.(3分)△ABC中,∠A、∠B、∠C所对的边分别是a,b,c,则满足下列条件的△ABC 不是直角三角形的是()A.a=3、b=2、c=1B.a2:b2:c2=4:3:1C.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C5.(3分)下列说法正确的是()A.对角线相等的平行四边形是正方形B.对角线互相垂直的四边形是菱形C.平行四边形的对角线互相平分D.顺次连接对角线相等的四边形各边的中点所得到的四边形是矩形6.(3分)如图,平行四边形ABCD中,E、F是对角线AC上的两点,如果添加一个条件使四边形BEDF是平行四边形,则添加的条件不能是()A.DE=BF B.AE=CF C.AF=CE D.∠ADE=∠CBF 7.(3分)如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()A.7.5尺B.8尺C.8.5尺D.9尺8.(3分)如图,矩形AEFG的顶点E、F分别在菱形ABCD的边AB和对角线BD上,连接EG、CF,若EG=5,则CF的长为()A.4B.5C.D.9.(3分)在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是线段CA 上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,连接CG并延长交直线AB 于点H.若AE=6,CH=10,则边AC的长为()A.16B.11C.14D.1310.(3分)如图,在△ABC中,∠A=60°,BD为AC边上的高,E为BC边的中点,点F 在AB边上,∠EDF=60°,若AF=2,BF=,则BC边的长为()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)计算:=.12.(3分)设长方形的面积为S,相邻的两边长分别为a、b,若S=4,a=,则b=.13.(3分)如图,点D、E、F分别是直角△ABC各边的中点,∠C=90°,EF=6cm,DE =7.5cm,则DF的长为.14.(3分)如图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为.15.(3分)在△ABC中,AB=4,AC=5,高AD=4,则底边BC的长是.16.(3分)如图,四边形ABCD中,∠B=∠C=90°,点E是BC边上一点,△ADE是等边三角形,若,=.三、解答题(共8个小题,共72分)17.(8分)计算:(1);(2).18.(8分)如图,四边形ABCD中,若∠B=90°,AB=20,BC=15,CD=7,AD=24.(1)判断∠D是否是直角,并说明理由;(2)求∠A+∠C的度数.19.(8分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.20.(8分)如图,矩形ABCD内三个相邻的正方形的边长分别为m、n和1.(1)求:图中阴影部分的面积(用含m和n的式子表示);(2)若m=,n=,且=,求阴影部分的面积.21.(8分)如图,是一个17×6的网格图,图中已画出了线段AB和线段EG,其端点A,B,E,G均在小正方形的顶点上,请按要求画出图形并计算:(1)画出以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH(点F在EG的左侧),且面积与(1)中正方形的面积相等;(3)在(1)和(2)的条件下,连接CF,DF,请直接写出△CDF的周长.22.(10分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AE是折痕.(1)如图1,若AB=4,AD=5,求折痕AE的长;(2)如图2,若AE=,且EC:FC=3:4,求矩形ABCD的周长.23.(10分)已知正方形ABCD,点P在对角线BD上,AP交DC于C,PE⊥PA交BC于E,PF⊥BC,垂足为F点,求证:(1)EF=FC;(2)BC+BE=BP;(3)PE2﹣PG2=EG•GC.24.(12分)如图1,在平面直角坐标系中,四边形AOCB为正方形.(1)点E、F分别在边OC、BC上,若OE=BF,∠EAF=60°,①若AE=2,求EC 的长;②点G在线段FC上,∠AGC=120°,求证:AG=EG+FG;(2)如图2,在平面直角坐标系中,OC=3,点E、F分别是边OC、BC上的动点,且OE=CF,AE与OF相交于点P.若点M为边OC的中点,点N为边BC上任意一点,则MN+PN的最小值等于.2021-2022学年湖北省武汉市武昌区八校联考八年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)若在实数范围内有意义,则a的取值范围是()A.a≥﹣1B.a>﹣1C.a≠﹣1D.a≤﹣1【考点】二次根式有意义的条件.【分析】根据二次根式的被开方数是非负数即可得出答案.【解答】解:∵a+1≥0,∴a≥﹣1.故选:A.2.(3分)下列二次根式为最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.【解答】解:A:原式=2,故A不符合题意.B、原式=,故B不符合题意.C、原式=,故C不符合题意.D、是最简二次根式,故D符合题意.故选:D.3.(3分)下列计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】直接利用二次根式的乘除以及二次根式加减运算法则分别判断得出答案.【解答】解:A.+2=3,故此选项不合题意;B.4﹣3=,故此选项不合题意;C.5×2=5×2×(×)=10×3=30,故此选项不合题意;D.÷===,故此选项符合题意.故选:D.4.(3分)△ABC中,∠A、∠B、∠C所对的边分别是a,b,c,则满足下列条件的△ABC 不是直角三角形的是()A.a=3、b=2、c=1B.a2:b2:c2=4:3:1C.∠A:∠B:∠C=1:2:3D.∠A=2∠B=3∠C【考点】勾股定理的逆定理;三角形内角和定理.【分析】满足两个较小边的平方和等于较大边的平方的为直角三角形,有一个角是直角的三角形是直角三角形,根据此可判断出直角三角形.【解答】解:A、12+(2)2=32,故本选项不符合题意.B、1+3=4,故本选项不符合题意.C、∠C=180°÷(1+2+3)×3=90°.故本选项不符合题意.D、最大角不为90°,故本选项符合题意.故选:D.5.(3分)下列说法正确的是()A.对角线相等的平行四边形是正方形B.对角线互相垂直的四边形是菱形C.平行四边形的对角线互相平分D.顺次连接对角线相等的四边形各边的中点所得到的四边形是矩形【考点】中点四边形;平行四边形的判定与性质;菱形的判定;矩形的判定;正方形的判定.【分析】根据矩形、菱形、正方形的判定定理、平行四边形的性质判断即可.【解答】解:A、对角线相等的平行四边形是矩形,不一定是正方形,故本选项说法错误,不符合题意;B、对角线互相垂直的平行四边形是菱形,故本选项说法错误,不符合题意;C、平行四边形的对角线互相平分,本选项说法正确,符合题意;D、顺次连接对角线相等的四边形各边的中点所得到的四边形是菱形,故本选项说法错误,不符合题意;故选:C.6.(3分)如图,平行四边形ABCD中,E、F是对角线AC上的两点,如果添加一个条件使四边形BEDF是平行四边形,则添加的条件不能是()A.DE=BF B.AE=CF C.AF=CE D.∠ADE=∠CBF 【考点】平行四边形的判定与性质;全等三角形的判定与性质.【分析】可以针对平行四边形的各种判定方法,给出条件.答案可以有多种,主要条件明确,说法有理即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF;又∵DE=BF,不能得出△ADE≌△CBF,∴不能得出四边形DEBF是平行四边形,故A错误;∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF;又∵AE=CF,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,DE=BF,∴∠DEF=∠BFE;∴DE∥BF;∴四边形DEBF是平行四边形,故B正确;∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF;又∵AF=CE,∴AE=CF,∴△ADE≌△CBF(SAS),∴∠AED=∠CFB,DE=BF,∴∠DEF=∠BFE;∴DE∥BF;∴四边形DEBF是平行四边形,故C正确;∵四边形ABCD是平行四边形,∴AD=BC,∠DAE=∠BCF;又∵∠ADE=∠CBF,∴△ADE≌△CBF(ASA),∴DE=CF,∠AED=∠BFC;∴∠DEF=∠BFE;∴DE∥CF;∴四边形DEBF是平行四边形,故D正确;故选:A.7.(3分)如图,有一个水池,水面是边长为8尺的正方形,在水池中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,这根芦苇的长度是()A.7.5尺B.8尺C.8.5尺D.9尺【考点】勾股定理的应用.【分析】找到题中的直角三角形,设芦苇的长度为x尺,根据勾股定理解答.【解答】解:设芦苇的长度为x尺,则AB为(x﹣1)尺,根据勾股定理得:(x﹣1)2+()2=x2,解得:x=8.5,芦苇的长度=8.5尺,故选:C.8.(3分)如图,矩形AEFG的顶点E、F分别在菱形ABCD的边AB和对角线BD上,连接EG、CF,若EG=5,则CF的长为()A.4B.5C.D.【考点】矩形的性质;菱形的性质.【分析】连接AF,由菱形的性质得出∠ABF=∠CBF,AB=BC,可证明△ABF≌△CBF (SAS),由全等三角形的性质得出AF=CF,由矩形的性质得出EG=AF,则可得出答案.【解答】解:连接AF,∵四边形ABCD是菱形,∴∠ABF=∠CBF,AB=BC,又∵BF=BF,∴△ABF≌△CBF(SAS),∴AF=CF,∵四边形DEFGAEFG为矩形,∴EG=AF,∴EG=CF,∵EG=5,∴CF=5,故选:B.9.(3分)在△ABC中,AC=BC,∠ACB=90°,CD为边AB上的中线,若E是线段CA 上任意一点,DF⊥DE,交直线BC于F点,G为EF的中点,连接CG并延长交直线AB 于点H.若AE=6,CH=10,则边AC的长为()A.16B.11C.14D.13【考点】全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理;等腰直角三角形.【分析】连接DG,易证G是Rt△DCH的斜边CH的中点,可得CG=5,进一步可知EF=10,证明△ADE≌△CDF(ASA),可得CF=AE=6,根据勾股定理,可得CE=8,即可求出AC.【解答】解:连接DG,如图所示:∵DF⊥DE,∴∠EDF=90°,∵∠ACB=90°,G是EF的中点,∴CG=DG,在△ABC中,AC=BC,∠ACB=90°,且CD为边AB上的中线,∴CD⊥AB,CD=AD,∴∠CDG+∠HDG=90°,∠DCH+∠DHC=90°,∵CG=DG,∴∠HCD=∠CDG,∴∠CHD=∠HDG,∴GH=GD,∴H是CH的中点,∵CH=10,∴CG=5,∴EF=10,∵AC=BC,∠ACB=90°,∴∠A=45°,∠ACD=45°,∠DCF=45°,∴∠A=∠DCF,∵∠EDF=∠ADC=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴CF=AE=6,在△ECF中,根据勾股定理得CE=8,∴AC=AE+CE=6+8=14,故选:C.10.(3分)如图,在△ABC中,∠A=60°,BD为AC边上的高,E为BC边的中点,点F 在AB边上,∠EDF=60°,若AF=2,BF=,则BC边的长为()A.B.C.D.【考点】全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;直角三角形斜边上的中线;三角形中位线定理.【分析】过点D作DM⊥AB,垂足为M,取AB的中点H,连接EH,DH,根据已知可求出AB=,先在Rt△ABD中求出AD,AH的长,从而可得△ADH是等边三角形,进而可得AD=DH,∠ADH=∠AHD=60°,然后利用利用等腰三角形的三线合一性质求出AM的长,从而求出DM,DF的长,最后证明手拉手模型﹣旋转型全等△ADF≌△HDE,从而利用全等三角形的性质可得DE=DF=,进而利用直角三角形斜边上的中线,即可解答.【解答】解:过点D作DM⊥AB,垂足为M,取AB的中点H,连接EH,DH,∵AF=2,BF=,∴AB=AF+BF=,∵BD⊥AC,∴∠ADB=∠CDB=90°,∵∠A=60°,∴∠ABD=90°﹣∠A=30°,∴AD=AB=,∵点H是AB的中点,∴AH=BH=AB=,∴AD=AH,∴△ADH是等边三角形,∴AD=DH,∠ADH=∠AHD=60°,∴AM=MH=AH=,∴DM=AM=,∵AF=2,∴MF=AF﹣AM=2﹣=,∴DF===,∵点H是AB的中点,点E是BC的中点,∴EH是△ABC的中位线,∴EH∥AC,∴∠DHE=∠ADH=60°,∴∠ADH=∠A=60°,∵∠EDF=∠ADH=60°,∴∠ADH﹣∠FDH=∠EDF﹣∠FDH,∴∠ADF=∠HDE,∴△ADF≌△HDE(ASA),∴DE=DF=,∵∠CDB=90°,∴BC=2DE=,故选:D.二、填空题(每小题3分,共18分)11.(3分)计算:=5.【考点】二次根式的性质与化简.【分析】根据二次根式的基本性质进行解答即可.【解答】解:原式==5.故答案为:5.12.(3分)设长方形的面积为S,相邻的两边长分别为a、b,若S=4,a=,则b=.【考点】二次根式的乘除法.【分析】根据题意得:S=ab,将S=4,a=代入即可得到b的值.【解答】解:∵S=ab,∴4=b,∴b=.故答案为:.13.(3分)如图,点D、E、F分别是直角△ABC各边的中点,∠C=90°,EF=6cm,DE =7.5cm,则DF的长为 4.5cm.【考点】三角形中位线定理.【分析】利用三角形中位线定理和矩形的判定与性质求得∠DFE=90°,则在直角△DEF 中利用勾股定理求解即可.【解答】解:∵点D、E、F分别是直角△ABC各边的中点,∴DF∥BC,EF∥CD.∴四边形CDFE是平行四边形.∵∠C=90°,∴四边形CDFE是矩形.∴∠DFE=90°.∵EF=6cm,DE=7.5cm,∴DF===4.5(cm).故答案是:4.5cm.14.(3分)如图,把菱形ABCD沿AE折叠,点B落在BC边上的F处,若∠BAE=15°,则∠FDC的大小为22.5°.【考点】翻折变换(折叠问题);菱形的性质.【分析】根据翻折变换的性质可得AB=AF,然后根据等腰三角形两底角相等求出∠B=∠AFE=75°,可得∠C,根据AF=AD,求出∠AFD,由三角形外角等于不相邻的两个内角的和即可得答案.【解答】解:∵菱形ABCD沿AE折叠,B落在BC边上的点F处,∴AD=AB=AF,∠AEB=90°=∠AEF,∠FAE=∠BAE=15°,∴∠B=∠AFE=75°,在菱形ABCD中,AB∥CD,AD∥BC,∴∠DAF=∠AFE=75°,∠C=180°﹣∠B=105°,∵AF=AD,∴∠ADF=∠AFD==52.5°,∴∠DFB=∠AFE+∠AFD=127.5°,∴∠FDC=∠DFB﹣∠B=22.5°,故答案为:22.5°.15.(3分)在△ABC中,AB=4,AC=5,高AD=4,则底边BC的长是11或5.【考点】勾股定理.【分析】分两种情况考虑:如图1所示,此时△ABC为锐角三角形,在直角三角形ABD 与直角三角形ACD中,利用勾股定理求出BD与DC的长,由BD+DC求出BC的长即可;如图2所示,此时△ABC为钝角三角形,同理由BD﹣CD求出BC的长即可.【解答】解:分两种情况考虑:如图1所示,此时△ABC为锐角三角形,在Rt△ABD中,根据勾股定理得:BD==8;在Rt△ACD中,根据勾股定理得:CD==3,此时BC=BD+DC=8+3=11;如图2所示,此时△ABC为钝角三角形,在Rt△ABD中,根据勾股定理得:BD==8;在Rt△ACD中,根据勾股定理得:CD==3,此时BC=BD﹣DC=8﹣3=5,综上,BC的长为11或5.故答案为:11或5.16.(3分)如图,四边形ABCD中,∠B=∠C=90°,点E是BC边上一点,△ADE是等边三角形,若,=.【考点】等边三角形的性质;解直角三角形;全等三角形的判定与性质.【分析】作∠BAM=∠CDN=30°,交CB的延长线于点,交BC的延长线于点N,根据已知可得∠M=∠N=60°,再利用等边三角形的性质可得∠AED=60°,AE=DE,从而可得∠MAE=∠DEN,然后证明△AME≌△END,利用全等三角形的性质可得AM=EN,ME=DN,再根据已知设AB=n,CD=m,从而在Rt△AMB和Rt△DCN中,利用锐角三角函数的定义进行计算求出AM,BM,CN,DN的长,从而求出BE,CE的长,进行计算即可解答.【解答】解:如图:作∠BAM=∠CDN=30°,交CB的延长线于点,交BC的延长线于点N,∵∠ABC=∠DCB=90°,∴∠ABM=∠DCN=90°,∴∠M=90°﹣∠BAM=60°,∠N=90°﹣∠CDN=60°,∴∠MAE+∠AEM=180°﹣∠M=120°,∵△AED是等边三角形,∴∠AED=60°,AE=DE,∴∠AEM+∠DEN=180°﹣∠AED=120°,∴∠MAE=∠DEN,∵∠M=∠N=60°,∴△AME≌△END(AAS),∴AM=EN,ME=DN,∵,∴设AB=n,CD=m,在Rt△AMB中,BM===n,AM===n,∴AM=EN=n,在Rt△DCN中,CN===m,DN===m,∴ME=DN=m,∴CE=EN﹣CN=n﹣m,BE=EM﹣BM=m﹣n,∴===,∴=,故答案为:.三、解答题(共8个小题,共72分)17.(8分)计算:(1);(2).【考点】二次根式的混合运算.【分析】(1)先化简,再算加减即可;(2)先化简,再算乘法与除法,最后算加减即可.【解答】解:(1)==;(2)=﹣=﹣2.18.(8分)如图,四边形ABCD中,若∠B=90°,AB=20,BC=15,CD=7,AD=24.(1)判断∠D是否是直角,并说明理由;(2)求∠A+∠C的度数.【考点】勾股定理的逆定理;勾股定理.【分析】(1)连接AC.首先根据勾股定理求得AC的长,再根据勾股定理的逆定理求得∠D=90°;(2)根据四边形内角和为360°求出∠BAD+∠BCD=180°.【解答】解:(1)∠D是直角,理由见解答:连接AC.∵AB=20,BC=15,∠B=90°,∴由勾股定理,得AC2=202+152=625.又∵CD=7,AD=24,∴CD2+AD2=625,∴AC2=CD2+AD2,∴∠D=90°;(2)∠BAD+∠BCD=360°﹣180°=180°.19.(8分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质得出∠AEF=∠CFE,进而利用ASA证明△ABE与△CDF全等,进而利用全等三角形的性质和平行四边形的判定解答即可;(2)根据勾股定理得出BD=4,进而利用三角形面积公式解答即可.【解答】(1)证明:∵AE∥FC,∴∠AEF=∠CFE,∴∠AEB=∠CFD,∵AB∥CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AB=CD,∴四边形ABCD是平行四边形;(2)解:∵∠DBC=90°,BC=3,CD=5,∴BD=,∵BH⊥CD,∴,即BH=,故答案为:.20.(8分)如图,矩形ABCD内三个相邻的正方形的边长分别为m、n和1.(1)求:图中阴影部分的面积(用含m和n的式子表示);(2)若m=,n=,且=,求阴影部分的面积.【考点】分式的加减法.【分析】(1)利用矩形面积减去三个正方形面积即可求解;(2)根据m,n的关系式,利用乘法公式先将m求出来,再代入(1)中所求面积即可求解.【解答】解:(1)∵矩形的长为(m+n+1),宽为m,∴矩形的面积为:m(m+n+1),∴图中阴影部分的面积为:m(m+n+1)﹣m2﹣n2﹣12=﹣n2+mn+m﹣1,(2)∵m=,n=,=,∴n2=()2=()2=6,∴m2=()2=()2+4=10,∴m=或m=﹣(舍去),∴﹣n2+mn+m﹣1=﹣6+×+﹣1=2+﹣7,∴阴影部分的面积为2+﹣7.21.(8分)如图,是一个17×6的网格图,图中已画出了线段AB和线段EG,其端点A,B,E,G均在小正方形的顶点上,请按要求画出图形并计算:(1)画出以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH(点F在EG的左侧),且面积与(1)中正方形的面积相等;(3)在(1)和(2)的条件下,连接CF,DF,请直接写出△CDF的周长.【考点】作图—应用与设计作图;勾股定理;菱形的判定.【分析】(1)直接利用正方形的性质得出符合题意的图形;(2)直接利用菱形的性质结合正方形面积得出符合题意的图形;(3)直接利用三角形面积求法得出答案.【解答】解:(1)如图所示,正方形ABCD即为所求;(2)如图所示,菱形EFGH即为所求;(3)∵由勾股定理可得,CD=2,DF=2,而CF=2,∴△CDF的周长为2+2+2.22.(10分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,AE是折痕.(1)如图1,若AB=4,AD=5,求折痕AE的长;(2)如图2,若AE=,且EC:FC=3:4,求矩形ABCD的周长.【考点】翻折变换(折叠问题);矩形的性质.【分析】(1)由勾股定理求出BF,CF的长,设EF=DE=x,则CE=4﹣x,得出22+(4﹣x)2=x2,解方程即可得解;(2)设EC=3x,则FC=4x,得出EF=DE=5x,设AF=AD=y,则BF=y﹣4x,在Rt △ABF中,得出(8x)2+(y﹣4x)2=y2,则y=10x,得出(10x)2+(5x)2=()2,解出x的值,求出AD和AB的长,则答案可求出.【解答】解:(1)∵四边形ABCD是矩形,∴∠ABC=90°,AB=CD=4,AD=BC=5,由折叠可知,AD=AF=5,DE=EF,∴BF===3,∴FC=BC﹣BF=5﹣3=2,设EF=DE=x,则CE=4﹣x,∵CF2+CE2=EF2,∴22+(4﹣x)2=x2,解得:x=,∴DE=,∴AE===;(2)∵EC:FC=3:4,∴设EC=3x,则FC=4x,∴EF==5x,∴DE=5x,∴AB=CD=8x,设AF=AD=y,则BF=y﹣4x,在Rt△ABF中,AB2+BF2=AF2,∴(8x)2+(y﹣4x)2=y2,解得y=10x,在Rt△ADE中,AD2+DE2=AE2,∴(10x)2+(5x)2=()2,解得x=或x=﹣(舍去),∴AD=10x=2,AB=8x=,∴矩形ABCD的周长为(2+)×2=.23.(10分)已知正方形ABCD,点P在对角线BD上,AP交DC于C,PE⊥PA交BC于E,PF⊥BC,垂足为F点,求证:(1)EF=FC;(2)BC+BE=BP;(3)PE2﹣PG2=EG•GC.【考点】四边形综合题.【分析】(1)利用全等三角形的性质,分别证明PA=PE,PA=PC,推出PE=PC,再利用等腰三角形的三线合一的性质证明即可;(2)证明四边形PHBF是正方形,推出BH=BF,PB=BH,再证明△PHA≌△PFE,推出AH=EF,可得结论;(3)如图2中,设PF交EG于点J,过点P作PL⊥EG于点L,GK⊥PF于点K,连接CJ.证明△PKG≌△GLP(AAS),推出PL=GK,PK=GL,证明△PFE≌△ELP(AAS),推出PF=EL,可得结论.【解答】证明:(1)过点P作PH⊥AB于点H,连接CP.∵四边形ABCD是正方形,∴AB=BC,∠ABD=∠CBD=45°,∵PF⊥BC,PH⊥AB,∴PH=PF,∵AP⊥PE,∴∠APE=∠HPF=90°,∴∠APH=∠EPF,在△PHA和△PFE中,,∴△PHA≌△PFE(ASA),∴PA=PE,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∴PE=PC,∵PF⊥EC,∴EF=FC;(2)∵∠PHB=∠HBF=∠PFB=90°,∴四边形PHBF是矩形,∵PH=PF,∴四边形PHBF是正方形,∴BH=BF,PB=BH,∵△PHA≌△PFE,∴AH=EF,∵BH=BF,∴BC+BC=BC+AB=BF﹣EF+BH+AH=2BH=PB;(3)如图2中,设PF交EG于点J,过点P作PL⊥EG于点L,GK⊥PF于点K,连接CJ.∵PF⊥BC,EF=FC,∴JE=JC,∴∠JEC=∠JCE,∵∠JEC+∠CGJ=90°,∠JCE+∠JCG=90°,∴∠JCG=∠JGC,∴JC=JG,∴JE=JG,∵∠EPG=90°,∴PJ=JE=JG,∴∠JEP=∠JPE,∠JPG=∠JGP,∵PL⊥GJ,GK⊥JP,∴∠PLG=∠PKG=90°,在△PKG和△GLP中,,∴△PKG≌△GLP(AAS),∴PL=GK,PK=GL,∵∠GCF=∠CFK=∠GKF=90°,∴四边形FCGK是矩形,∴GK=CF=EF,CG=FK,在△PFE和△ELP中,,∴△PFE≌△ELP(AAS),∴PF=EL,∵PE2﹣PG2=(PF2+EF2)﹣(PK2+KG2)=PF2﹣PK2=(PF+PK)(PF﹣PK)=(EL+GL)•CG=EG•CG.24.(12分)如图1,在平面直角坐标系中,四边形AOCB为正方形.(1)点E、F分别在边OC、BC上,若OE=BF,∠EAF=60°,①若AE=2,求EC 的长;②点G在线段FC上,∠AGC=120°,求证:AG=EG+FG;(2)如图2,在平面直角坐标系中,OC=3,点E、F分别是边OC、BC上的动点,且OE=CF,AE与OF相交于点P.若点M为边OC的中点,点N为边BC上任意一点,则MN+PN的最小值等于﹣.【考点】四边形综合题.【分析】(1)①首先证明△AEF是等边三角形,再证明△EFC是等腰直角三角形即可解决问题;②在AG上截取GH=FG,连接FH,可得△FGH是等边三角形,根据等边三角形的性质可得FH=FG,∠FHG=60°,再求出∠AFH=∠EFG,然后利用“边角边”证明△AFH和△EFG全等,根据全等三角形对应边相等AH=GE,然后证明即可;(2)作M关于BC的对称点Q,取OA的中点H,连接PQ与BC交于点N',连接PH,HQ,当H、P、N'、Q四点共线时,MN+NP=PQ的值最小,根据勾股定理HQ,再证明△AOE≌△OCF,进而得△APO为直角三角形,由直角三角形的性质,求得PH,进而求得PQ.【解答】(1)①解:在正方形AOCB中,AB=AO,∠B=∠AOC,在△ABF和△AOE中,,∴△ABF≌△AOE(SAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形,∴EF=AE=2,∵OE=BF,BC=OC,∴BC﹣BF=OC﹣OE,即CE=CF,∴△CEF是等腰直角三角形,∴EC=EF=×2=;②证明:在AG上截取GH=FG,连接FH,∵∠AGC=120°,∴∠AGF=60°,∴△FGH是等边三角形,∴FH=FG,∠FHG=60°,∵△AEF是等边三角形,∴∠AFE=60°,AF=EF,∴∠AFE=∠GFH=60°,∴∠AFE﹣∠EFH=∠GFH﹣∠EFH,即∠AFH=∠EFG,在△AFH和△EFG中,,∴△AFH≌△EFG(SAS),∴AH=GE,∴AG=AH+GH=EG+FG,即AG=EG+FG;(2)解:作M关于BC的对称点Q,取OA的中点H,连接PQ与BC交于点N',连接PH,HQ,则MN'=QN',∵四边形AOCB是正方形,∴OA=OC,OA∥BC,∠AOC=∠OCB=90°,在△AOE和△OCF中,,∴△AOE≌△OCF(SAS),∴∠AEO=∠OFC,∵OA∥BC,∴∠AOP=∠OFC=∠AEO,∵∠OAE+∠AEO=90°,∴∠OAE+∠AOP=90°,∴∠APO=90°,∴PH=OA=,∵M点是OC的中点,∴OM=MC=CQ=OC=,∴OQ=,∵PH+PQ≥HQ,∴当H、P、Q三点共线时,PH+PQ=HQ ===的值最小,∴PQ 的最小值为﹣,此时,若N与N'重合时,MN+PN=MN'+PN'=QN'+PN'=PQ =﹣的值最小,故答案为:﹣.第31页(共31页)。

人教版八年级数学下册期中测试卷及答案【完整版】

人教版八年级数学下册期中测试卷及答案【完整版】

人教版八年级数学下册期中测试卷及答案【完整版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12B .15C .12或15D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =7.下列图形中,是轴对称图形的是( )A .B .C .D .8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中90E ∠=,90C ∠=,45A ∠=,30D ∠=,则12∠+∠等于( )A .150B .180C .210D .2709.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.下列图形中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.计算:16=_______.3.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为_________.4.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 _________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图,平行四边形ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB=AF ;(2)若AG=AB ,∠BCD=120°,判断四边形ACDF 的形状,并证明你的结论.5.如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、B5、A6、C7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、43、如果两条直线平行于同一条直线,那么这两条直线平行.4、180°56、42.三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、x+2;当1x=-时,原式=1.3、(1)12b-≤≤;(2)24、(1)略;(2)结论:四边形ACDF是矩形.理由见解析.5、(1)略;(2)四边形ACEF是菱形,理由略.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

新人教版八年级数学下册期中考试题及答案【新版】

新人教版八年级数学下册期中考试题及答案【新版】

新人教版八年级数学下册期中考试题及答案【新版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若32a3a+=﹣a3a+,则a的取值范围是()A.﹣3≤a≤0 B.a≤0 C.a<0 D.a≥﹣3 2.(-9)2的平方根是x,64的立方根是y,则x+y的值为()A.3 B.7 C.3或7 D.1或7 3.对于函数y=2x﹣1,下列说法正确的是()A.它的图象过点(1,0)B.y值随着x值增大而减小C.它的图象经过第二象限D.当x>1时,y>04.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣345.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.下列图形中,是轴对称图形的是( )A .B .C .D .8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C 2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.若|x |=3,y 2=4,且x >y ,则x ﹣y =__________. 3.若m+1m =3,则m 2+21m=________. 4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x y x y -=⎧⎨-=⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、D6、B7、B8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、1或5.3、74、20°.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)55xy=⎧⎨=⎩;(2)64xy=⎧⎨=⎩.2、-3.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、(1)略(2)等腰三角形,理由略6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。

新人教版八年级数学下册期中试卷及答案【新版】

新人教版八年级数学下册期中试卷及答案【新版】

新人教版八年级数学下册期中试卷及答案【新版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.下列运算正确的是( )A .4=±2B .(4)2=4C .2(4)-=﹣4D .(﹣4)2=﹣44.若点1(3,)A y -,2(2,)B y -,3(1,)C y 都在反比例函数12y x=-的图象上,则1y ,2y ,3y 的大小关系是( ) A .213y y y << B .312y y y << C .123y y y << D .321y y y <<5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=6.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于( )A .55°B .70°C .110°D .125°7.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知,如图长方形ABCD 中,AB=3cm ,AD=9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .23cmB .24cmC .26cmD .212cm9.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图在△ABC 中,BO ,CO 分别平分∠ABC ,∠ACB ,交于O ,CE 为外角∠ACD 的平分线,BO 的延长线交CE 于点E ,记∠BAC=∠1,∠BEC=∠2,则以下结论①∠1=2∠2,②∠BOC=3∠2,③∠BOC=90°+∠1,④∠BOC=90°+∠2正确的是( )A .①②③B .①③④C .①④D .①②④二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:x 2-2x+1=__________.2.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________.3.如果5的小数部分为a ,13的整数部分为b ,则5a b +-=________4.如图,已知∠1=75°,将直线m 平行移动到直线n 的位置,则∠2﹣∠3=________°.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)三、解答题(本大题共6小题,共72分)1.解分式方程:2216124x x x --=+-2.先化简,再求值:(x+y )(x-y )-(4x 3y-8xy 3)÷2xy ,其中x=-1,y=12.3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.如图,直线y=kx+6分别与x 轴、y 轴交于点E ,F ,已知点E 的坐标为(﹣8,0),点A 的坐标为(﹣6,0).(1)求k 的值;(2)若点P (x ,y )是该直线上的一个动点,且在第二象限内运动,试写出△OPA 的面积S 关于x 的函数解析式,并写出自变量x 的取值范围.(3)探究:当点P 运动到什么位置时,△OPA 的面积为,并说明理由.5.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF的形状,并说明理由.6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、A6、B7、D8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、(x-1)2.2、(3,7)或(3,-3)3、14、1055、26、AC=DF(答案不唯一)三、解答题(本大题共6小题,共72分)1、原方程无解2、223x y-+,14-.3、(1)a≥2;(2)-5<x<14、(1)k=;(2)△OPA的面积S=x+18 (﹣8<x<0);(3)点P坐标为(,)或(,)时,三角形OPA的面积为.5、(1)略(2)等腰三角形,理由略6、(1)A型学习用品20元,B型学习用品30元;(2)800.。

新人教版八年级数学下册期中试卷及答案【精品】

新人教版八年级数学下册期中试卷及答案【精品】

新人教版八年级数学下册期中试卷及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.函数1y x =-的自变量x 的取值范围是( )A .1x >B .1x <C .1x ≤D .1≥x2.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=- B .5{1+52x y x y =+= C .5{2-5x y x y =+= D .-5{2+5x y x y == 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .6.下列长度的三条线段能组成直角三角形的是( )A .3, 4,5B .2,3,4C .4,6,7D .5,11,127.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC8.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A. B.C. D.9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个10.用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.AAS C.ASA D.SSS二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为__________.5.如图,在□ABCD 中,BE 平分∠ABC ,BC=6,DE=2,则□ABCD 的周长等于__________.6.在Rt ABC △中,∠ACB=90°,BC=2cm ,CD ⊥AB ,在AC 上取一点E ,使EC=BC ,过点E 作EF ⊥AC 交CD 的延长线于点F ,若EF=5cm ,则AE=________cm .三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2361693x x x x -⎛⎫÷- ⎪+++⎝⎭,其中23x .3.已知关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩. (1)若x ,y 为非负数,求a 的取值范围;(2)若x y >,且20x y +<,求x 的取值范围.4.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .5.在△ABC 中,AB=AC ,点D 是直线BC 上一点(不与B 、C 重合),以AD 为一边在AD 的右侧..作△ADE ,使AD=AE ,∠DAE =∠BAC ,连接CE . (1)如图1,当点D 在线段BC 上,如果∠BAC=90°,则∠BCE=________度;(2)设BAC α∠=,BCE β∠=.①如图2,当点在线段BC 上移动,则α,β之间有怎样的数量关系?请说明理由;②当点在直线BC 上移动,则α,β之间有怎样的数量关系?请直接写出你的结论.6.因魔幻等与众不同的城市特质,以及抖音等新媒体的传播,重庆已成为国内外游客最喜欢的旅游目的地城市之一.著名“网红打卡地”磁器口在2018年五一长假期间,接待游客达20万人次,预计在2020年五一长假期间,接待游客将达28.8万人次.在磁器口老街,美食无数,一家特色小面店希望在五一长假期间获得好的收益,经测算知,该小面成本价为每碗6元,借鉴以往经验:若每碗卖25元,平均每天将销售300碗,若价格每降低1元,则平均每天多销售30碗.(1)求出2018至2020年五一长假期间游客人次的年平均增长率;(2)为了更好地维护重庆城市形象,店家规定每碗售价不得超过20元,则当每碗售价定为多少元时,店家才能实现每天利润6300元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、A4、B5、D6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-2、-1或5或13-3、720°.4、135、206、3.三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=.2、13x +,2.3、(1)a ≥2;(2)-5<x <14、(1)略(2)略5、(1)90;(2)①180αβ+=︒,理由略;②当点D 在射线BC.上时,a+β=180°,当点D 在射线BC 的反向延长线上时,a=β.6、(1)年平均增长率为20%;(2)每碗售价定为20元时,每天利润为6300元.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

期中检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是( A)A. 5B.8C.12D.0.32.(2016·泸州)如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是( B)A.10 B.14 C.20 D.22,第2题图) ,第5题图),第8题图) ,第9题图) 3.在下列以线段a,b,c的长为三边的三角形中,不能构成直角三角形的是( D) A.a=9,b=41,c=40 B.a=5,b=5,c=5 2C.a∶b∶c=3∶4∶5 D.a=11,b=12,c=154.(2016·南充)下列计算正确的是( A)A.12=2 3B.32=32C.-x3=x-xD.x2=x5.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC 的周长是( C)A.8 B.10 C.12 D.146.(2016·益阳)下列判断错误的是( D)A.两组对边分别相等的四边形是平行四边形 B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形 D.两条对角线垂直且平分的四边形是正方形7.若x-1-1-x=(x+y)2,则x-y的值为( C)A.-1 B.1 C.2 D.38.如图,在△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是( A) A.2 3 B.3 3 C.4 D.4 39.如图,在Rt△ABC中,∠ACB=90°,点D是AB的中点,且CD=52,如果Rt△ABC的面积为1,则它的周长为( D)A.5+12B.5+1C.5+2D.5+310.(2016·眉山)如图,在矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO.若∠COB =60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE =EF ;④S △AOE ∶S △BCM =2∶3.其中正确结论的个数是( B )A .4个B .3个C .2个D .1个 二、填空题(每小题3分,共24分)11.若代数式xx -1有意义,则x 的取值范围为__x ≥0且x ≠1__.12.如图,在平行四边形ABCD 中,AB =5,AD =3,AE 平分∠DAB 交BC 的延长线于点F ,则CF =__2__.,第12题图) ,第13题图),第14题图) ,第15题图)13.如图,以△ABC 的三边为边向外作正方形,其面积分别为S 1,S 2,S 3,且S 1=9,S 3=25,当S 2=__16__时,∠ACB =90°.14.如图,它是一个数值转换机,若输入的a 值为2,则输出的结果应为__-233__.15.如图,四边形ABCD 是对角线互相垂直的四边形,且OB =OD ,请你添加一个适当的条件__答案不唯一,如:OA =OC __,使ABCD 成为菱形.(只需添加一个即可)16.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,则线段DH 的长为__1__.,第16题图) ,第17题图),第18题图)17.(2016·南京)如图,菱形ABCD 的面积为120 cm 2,正方形AECF 的面积为50 cm 2,则菱形的边长为__13__ cm.18.如图,在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A ,C 的坐标分别为A(10,0),C(0,4),点D 是OA 的中点,点P 为线段BC 上的点.小明同学写出了一个以OD 为腰的等腰三角形ODP 的顶点P 的坐标(3,4),请你写出其余所有符合这个条件的P 点坐标__(2,4)或(8,4)__.三、解答题(共66分) 19.(8分)计算:(1)8+23-(27-2); (2)(43-613)÷3-(5+3)(5-3).解:(1)32- 3 (2)020.(8分)已知a =7-5,b =7+5,求值: (1)b a +a b; (2)3a 2-ab +3b 2. 解:a +b =27,ab =2,(1)b a +a b =(a +b )2-2ab ab=12 (2)3a 2-ab +3b 2=3(a +b )2-7ab =7021.(8分)如图,四边形ABCD 是平行四边形,E ,F 为对角线AC 上两点,连接ED ,EB ,FD ,FB.给出以下结论:①BE ∥DF ;②BE =DF ;③AE =CF.请你从中选取一个条件,使∠1=∠2成立,并给出证明.解:答案不唯一,如:补充条件①BE ∥DF.证明:∵BE ∥DF ,∴∠BEC =∠DFA ,∴∠BEA =∠DFC ,∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BAE =∠DCF ,∴△ABE ≌△CDF (AAS ),∴BE =DF ,∴四边形BFDE 是平行四边形,∴ED ∥BF ,∴∠1=∠222.(7分)如图,在B 港有甲、乙两艘渔船,若甲船沿北偏东60°的方向以每小时8海里的速度前进,乙船沿南偏东某方向以每小时15海里的速度前进,2小时后甲船到M 岛,乙船到P 岛,两岛相距34海里,你能知道乙船沿哪个方向航行吗?解:(1)由题意得BM =2×8=16(海里),BP =2×15=30(海里),∵BM 2+BP 2=162+302=1156,MP 2=342=1156,∴BM 2+BP 2=MP 2,∴∠MBP =90°,∴乙船沿南偏东30°的方向航行23.(8分)如图,四边形ABCD 是菱形,BE ⊥AD ,BF ⊥CD ,垂足分别为点E ,F.(1)求证:BE =BF ;(2)当菱形ABCD 的对角线AC =8,BD =6时,求BE 的长.解:(1)由AAS 证△ABE ≌△CBF 可得 (2)∵四边形ABCD 是菱形,∴OA =12AC =4,OB=12BD =3,∠AOB =90°,∴AB =OA 2+OB 2=5,∵S 菱形ABCD =AD ·BE =12AC ·BD ,∴5BE =12×8×6,∴BE =24524.(8分)如图,在四边形ABCD 中,AB =AD =2,∠A =60°,BC =25,CD =4.(1)求∠ADC 的度数;(2)求四边形ABCD 的面积.解:(1)连接BD ,∵AB =AD =2,∠A =60°,∴△ABD 是等边三角形,∴BD =2,∠ADB=60°,在△BDC 中,BD =2,DC =4,BC =25,∴BD 2+DC 2=BC 2,∴△BDC 是直角三角形,∴∠BDC =90°,∴∠ADC =∠ADB +∠BDC =150° (2)S 四边形ABCD =S △ABD +S △BDC =12×2×3+12×2×4=3+425.(9分)如图,在▱ABCD 中,O 是CD 的中点,连接AO 并延长,交BC 的延长线于点E. (1)求证:△AOD ≌△EOC ;(2)连接AC ,DE ,当∠B =∠AEB=____°时,四边形ACED 是正方形,请说明理由.解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠D =∠OCE ,∠DAO =∠E ,∵O 是CD 的中点,∴OD =OC ,∴△AOD ≌△EOC (AAS ) (2)当∠B =∠AEB =45°时,四边形ACED 是正方形,理由:∵△AOD ≌△EOC ,∴OA =OE ,又∵OC =OD ,∴四边形ACED 是平行四边形,∵∠B =∠AEB =45°,∴AB =AE ,∠BAE =90°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB =CD ,∴∠COE =∠BAE =90°,∴▱ACED 是菱形,∵AB =AE ,AB =CD ,∴AE =CD ,∴菱形ACED 是正方形26.(10分)已知正方形ABCD 和正方形EBGF 共顶点B ,连接AF ,H 为AF 的中点,连接EH ,正方形EBGF 绕点B 旋转.(1)如图①,当F 点落在BC 上时,求证:EH =12CF ;(2)如图②,当点E 落在BC 上时,连接BH ,若AB =5,BG =2,求BH 的长.解:(1)延长FE 交AB 于点Q ,∵四边形EBGF 是正方形,∴EF =EB ,∠EFB =∠EBF =45°,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴∠BQF =∠QBE =45°,∴QE =EB ,∴QE =EF ,又∵AH =FH ,∴EH =12AQ ,∵∠BQF =∠BFQ =45°,∴BQ =BF ,∵AB =BC ,∴AQ=CF ,∴EH =12CF (2)延长EH 交AB 于点N ,∵四边形EBGF 是正方形,∴EF ∥BG ,EF =EB=BG =2,∵EF ∥AG ,∴∠FEH =∠ANH ,∠EFH =∠NAH.又∵AH =FH ,∴△ANH ≌△FEH (AAS ),∴NH =EH ,AN =EF.∵AB =5,AN =EF =2,∴BN =AB -AN =3,∵∠NBE =90°,BE =2,BN=3,∴EN =22+32=13.∵∠NBE =90°,EH =NH ,∴BH =12EN =132。

相关文档
最新文档