2019-2020年高考数学一轮总复习第7章不等式推理与证明第3节简单的线性规划模拟创新题理
2019-2020年高考数学一轮总复习第七章不等式及推理与证明题组训练44合情推理与演绎推理理
9 =
b+
9a-
10=(b+9 Nhomakorabea)(1
ab
a- 1 b- 1 ab- a- b+ 1
4.若 2x+ 2y= 1,则 x+ y 的取值范围是 (
)
A. [0 , 2]
B. [ -2, 0]
C. [ - 2,+∞ ) 答案 D
D. ( -∞,- 2]
解析
∵2x+2y≥ 2 2x·2y= 2 2x+y( 当且仅当 2x= 2y 时等号成立 ) ,∴
2x
+
y
≤
1 2,∴
2x+
y≤
1 4
,
得 x+y≤- 2,故选 D.
2.下列函数中,最小值为 4 的是 (
)
4 A. y= x+x C. y = 4ex+ e- x 答案 C
4 B. y=sinx + sinx (0<x< π) D. y=log 3x + log x3(0<x<1)
解析 注意基本不等式等号成立的条件是“ a=b”,同时考虑函数的定义域, A 中 x 的定义
5.若
x, y 是正数,则
(x
+
1 )
2y
2+ (y
+
1 )
2x
2
的最小值是
(
)
7
A. 3
B. 2
9
C. 4
D.
2
答案 C
解析
原式=
x
2+
x y
+
1 4y2+
y2+
y1 x+4x2≥ 4.
1 当且仅当 x= y= 时取“=”号.
2
1 6.已知 a>0,且 b>0,若 2a+b= 4,则 的最小值为 ( )
2020版高考数学(理)一轮总复习(课件+层级快练)第七章 不等式及推理与证明 (3)
题组层级快练(四十三)1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.若0<m <1,则不等式(x -m)(x -1m )<0的解集为( )A .{x|1m <x <m}B .{x|x>1m 或x <m}C .{x|x>m 或x <1m }D .{x|m <x <1m }答案 D解析 当0<m<1时,m<1m .3.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1] 答案 C解析 由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B. 5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎪⎨⎪⎧2x -1>0,1-|x|<0或⎩⎪⎨⎪⎧2x -1<0,1-|x|>0.∴⎩⎪⎨⎪⎧x>12,x>1或x<-1或⎩⎪⎨⎪⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C 解析x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x -1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( ) A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1}答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理,得⎩⎨⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎪⎨⎪⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0. 可知x =-1,x =12是对应方程的根,∴选A.8.(2019·辽宁抚顺一模)已知一元二次不等式f(x)<0的解集为{x|x<-1或x>13},则f(e x )>0的解集为( )A .{x|x<-1或x>-ln3}B .{x|-1<x<-ln3}C .{x|x>-ln3}D .{x|x<-ln3}答案 D解析 设-1和13是方程x 2+ax +b =0的两个实数根,∴a =-(-1+13)=23,b =-1×13=-13,∵一元二次不等式f(x)<0的解集为{x|x<-1或x>13},∴f(x)=-(x 2+23x -13)=-x 2-23x +13,∴f(x)>0的解集为x ∈(-1,13).不等式f(e x )>0可化为-1<e x <13.解得x<ln 13,∴x<-ln3,即f(e x )>0的解集为{x|x<-ln3}.9.(2019·保定模拟)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( ) A .(-235,+∞)B .[-235,1]C .(1,+∞)D .(-∞,-235]答案 A解析 由Δ=a 2+8>0,知方程恒有两个不等实根,又知两根之积为负, 所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0,即a>-235.10.(2019·郑州质检)不等式f(x)=ax 2-x -c>0的解集为{x|-2<x<1},则函数y =f(-x)的图像为()答案 C解析 由题意得⎩⎨⎧a<0,-2+1=1a,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值范围是( ) A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12.(2019·福州一模)在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值范围是( ) A .(3,4) B .(-2,-1)∪(3,4) C .(3,4] D .[-2,-1)∪(3,4] 答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a ≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a ∈[-2,-1)∪(3,4].13.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.14.已知-12<1x <2,则实数x 的取值范围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值范围是x<-2或x>12.15.若不等式a·4x -2x +1>0对一切x ∈R 恒成立,则实数a 的取值范围是________. 答案 a>14解析 不等式可变形为a>2x -14x =(12)x -(14)x ,令(12)x =t ,则t>0.∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a>14.16.(2019·安徽毛坦厂中学月考)已知关于x 的不等式kx 2-2x +6k<0(k ≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x ∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围.答案 (1)k =-25 (2)k =-66 (3)k<-66 (4)k ≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x ∈R ,x ≠1k},所以⎩⎪⎨⎪⎧k<0,Δ=4-24k 2=0,解得k =-66.(3)由题意,得⎩⎪⎨⎪⎧k<0,Δ=4-24k 2<0,解得k<-66.(4)由题意,得⎩⎪⎨⎪⎧k>0,Δ=4-24k 2≤0,解得k ≥66.17.已知不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,求实数a的取值范围. 答案 (-∞,9]解析 不等式组⎩⎪⎨⎪⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a ≤0,∴a ≤9.。
2019届高考数学一轮复习 第七章 不等式 推理与证明 7-3 二元一次不等式(组)与简单的线性规划
[知识梳理] 1.二元一次不等式(组)表示的平面区域
[温馨提示] 一个口诀:直线定界,特殊点定域;同侧同号, 异侧异号.
(1)已知点(-3,-1)和(4,-6)分别在直线 3x-2y-a=0 的 两侧,则 a 的取值范围为 (-7,24) .
提示:因为(-3,-1)和(4,-6)分别在直线 3x-2y-a=0 两侧,所以[3×(-3)-2×(-1)-a]×[3×4-2×(-6)-a]<0,即 (a+7)(a-24)<0,解得-7<a<24.
(2)如图所示的平面区域(阴影部分),用不等式表示为 2x-y-3>0 .
提示:由 2×0-0-3<0,平面区域为原点所在的另一侧区域, 所以不等式为 2x-y-3>0.
2.线性规划中的基本概念
[小题速练] 1.下列结论错误的是( ) A.不等式 Ax+By+C>0 表示的平面区域一定在直线 Ax+By +C=0 的上方 B.第二、四象限表示的平面区域可以用不等式 xy<0 表示 C.线性目标函数的最优解可能是不唯一的 D.线性目标函数取得最值的点一定在可行域的顶点或边界 上
[解析] Ax+By+C>0 表示的区域在直线 Ax+By+C=0 的 上方还是下方,可用特殊点代入来确定.
[答案] A
2.不等式组xx+ +3y-y-2>6≤0 0, 表示的平面区域是(
)
[解析] 不等式 x+3y-6≤0 表示直线 x+3y-6=0 以及该直 线左下方的区域,不等式 x+y-2>0 表示直线 x+y-2=0 的右上 方区域,故选 B.
4.(2017·北京卷)若 x,y 满足xx+≤y3≥,2, y≤x,
则 x+2y 的最大
2019-2020年高考高考数学一轮总复习第7章不等式推理与证明第三节简单的线性规划课件理
【例 3】 (1)(2016·河南郑州二模)若实数 x,y 满足2y≥x-x,y≥0, 且 y≥-x+b,
z=2x+y 的最小值为 4,则实数 b 的值为( )
5
A.1
B.2
C.2
D.3
(2)(2016·山东日照模拟)已知不等式组xx-+yy≥≤-1,1,所表示的平 y≥0,
的约束条件
目标函数 关于x、y的解析式
线性目标函数 关于x、y的一次解析式 可行解 满足 线性约束条件 的解(x,y) 可行域 所有 可行解 组成的集合 最优解 使目标函数达到 最大值 或 最小值 的可行解 线性规 求线性目标函数在线性约束条件下的 最大值 或 Z最小值 划问题 的问题
2.线性规划的实际应用 (1)在线性规划的实际问题中,主要掌握两种类型 一是给定一定数量的人力、物力资源,问怎样运用这些资源 能使完成的任务量最大,收到的效益最大;二是给定一项任 务,问怎样统筹安排,能使完成这项任务耗费的人力、物力 资源最小. (2)用图解法解决线性规划问题的一般步骤 ①分析并将已知数据列出表格; ②确定线性约束条件; ③确定线性目标函数; ④画出 可行域 ; ⑤利用线性目标函数(直线)求出 最优解 ; ⑥实际问题需要整数解时,应适当调整,以确定最优解.
各个不等式所表示平面区域的___公__共__部__分___
2.二元一次不等式表示的平面区域的确定 二元一次不等式所表示的平面区域的确定,一般是取不在直 线上的点(x0,y0)作为测试点来进行判定,满足不等式的,则 平面区域在测试点位于直线的一侧,反之在直线的另一侧.
►一个口诀:直线定界,特殊点定域;同侧同号,异侧异号. (1)已知点(-3,-1)和(4,-6)分别在直线3x-2y-a=0的两 侧,则a的取值范围为________. 解析 因为(-3,-1)和(4,-6)分别在直线3x-2y-a=0两 侧,所以[3×(-3)-2×(-1)-a]×[3×4-2×(-6)-a]<0, 即(a+7)(a-24)<0,解得-7<a<24. 答案 (-7,24)
高考数学一轮复习 第七章 不等式 推理与证明 7-3 二元一次不等式(组)与简单的线性规划课件 文
x-1≥0,
5.(2015·全国卷Ⅰ)若 x,y 满足约束条件x-y≤0,
则
x+y-4≤0,
yx的最大值为________.
[解析] 由约束条件可画出可行域,利用yx的几何意义求解. 画出可行域如图阴影所示,∵yx表示过点(x,y)与原点(0,0)的 直线的斜率, ∴点(x,y)在点 A 处时xy最大.
[跟踪演练]
x≤0, 已知由不等式组yy≥-0kx,≤2,
y-x-4≤0
确定的平面区域 Ω 的面积为
7,则 k 的值为( ) A.-3 B.-1 C.3 D.1
[解析]
x≤0, 作出不等式组y≥0,
y-x-4≤0
所表示的平面区域,如
图阴影部分所示,可知该区域是等腰直角三角形且面积为 8.由于
[答案] -23,23
3 . (2018·山 东 聊 城 期 末 ) 如 果 点 P(x , y) 在 平 面 区 域
2x-y+2≥0, x-2y+1≤0, x+y-2≤0
上,则 x2+(y+1)2 的最大值和最小值分别是
()
A.3,
3 5
B.9,95
C.9,2
∴zmax=2×6-(-3)=15.
[答案] 15
[ 拓 展 探 究 2] ________.
本
例
条
件
不
变
,
求
y+6 x-2
的
取
值
范
围
是
[解析] 如图,yx+ -62的几何意义为可行域内的点 M(x,y)与点 P(2,-6)连线的斜率,由本例知 B(6,-3),A(-6,-3),∴kPB =-63-+26=34,kPA=- -36+ -62=-38.
【第一方案】高三数学一轮复习-第七章-不等式、推理与证明第三节-二元一次不等式(组)与简单的线性规划
【第一方案】高三数学一轮复习-第七章-不等式、推理与证明第三节-二元一次不等式(组)与简单的线性规划问题第三节 二元一次不等式(组)与简单的线性规划问题一、选择题(6×5分=30分)1.(2010·重庆高考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x -y ≥0,2x -y -2≤0,则z =3x -2y 的最大值为( )A .0B .2C .4D .6解析:作出如图阴影所示的可行域,易得A (2,2),B (0,-2),把B 坐标代入目标函数,得z max =3×0-2×(-2)=4,故选C.答案:C答案:D3.(2010·改编题)已知点P 在平面区域⎩⎪⎨⎪⎧x -1≤03x +4y ≥4y -2≤0上,点Q 在曲线(x +2)2+y 2=1上,那么|PQ |的最小值是( )A .1B .2C.2103-1 D.2103解析:如图,画出平面区域(阴影部分所示),由圆心C (-2,0)向直线3x +4y -4=0作垂线,圆心C (-2,0)到直线3x +4y -4=0的距离为|3×-2+4×0-4|32+42=2,又圆的半径为1,所以可求得|PQ |的最小值是1.答案:A4.已知点P (x ,y )满足⎩⎪⎨⎪⎧x -1≤0.2x +3y -5≤0,4x +3y -1≥0,点Q (x ,y )在圆(x +2)2+(y +2)2=1上,则|PQ |的最大值与最小值为( )A .6,3B .6,2C .5,3D .5,2解析:可行域如图阴影部分,设|PQ |=d ,则由图中圆心C (-2,-2)到直线4x +3y -1=0的距离最小,则到点A 距离最大.由⎩⎨⎧2x +3y -5=0,4x +3y -1=0,得A (-2,3).∴d max =|CA |+1=5+1=6, d min =|-8-6-1|5-1=2.答案:B5.(2009·福建高考)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解析:由⎩⎨⎧ y =ax +1,x =1,得A (1,a +1),由⎩⎨⎧x =1,x +y -1=0,得B (1,0),由⎩⎨⎧y =ax +1,x +y -1=0,得C (0,1).∵△ABC 的面积为2,且a >-1, ∴S △ABC =12|a +1|=2,∴a =3.答案:D6.(2009·陕西高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,x -y ≥-1,2x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( )A .(-1,2)B .(-4,2)C .(-4,0]D .(-2,4)解析:可行域为△ABC ,如图.当a =0时,显然成立.当a >0时,直线ax +2y -z =0的斜率k =-a2>k AC =-1,a <2.当a <0时,k =-a2<k AB =2,∴a >-4.综合得-4<a <2. 答案:B二、填空题(3×5分=15分)7.(2011·济宁模拟)设z =x +y ,其中x ,y满足⎩⎪⎨⎪⎧x +2y ≥0x -y ≤00≤y ≤k,若z 的最大值为6,则z 的最小值为________.解析:如图,x +y =6过点A (k ,k ),k =3,z =x +y 在点B 处取得最小值,B 点在直线x +2y =0上,B (-6,3),∴z min =-6+3=-3. 答案:-38.(2011·安徽师大附中第一次质检)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y +2≥0,x +2y +1≤0,y ≥0,则z =(x +1)2+(y -2)2的最小值是_______________________.解析:作出约束条件的可行域如图,z =(x+1)2+(y -2)2,可看作可行域内的点到定点A (-1,2)的距离的平方,其最小值为点A (-1,2)到直线x +2y +1=0的距离的平方,∴z min =(|-1+2×2+1|12+22)2=165. 答案:1659.(2011·大连调研)若P 为不等式组⎩⎪⎨⎪⎧x ≤0y ≥0y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过P 中的那部分区域的面积为________.解析:根据题意作图.图中阴影部分为所求的区域,设其面积为S,S=S△AOD -S△ABC=12×2×2-12×1×12=74.答案:74三、解答题(共37分)10.(12分)当x,y满足约束条件⎩⎪⎨⎪⎧x≥0y≤x2x+y+k≤0(k为负常数)时,能使z=x+3y的最大值为12,试求k的值.解析:在平面直角坐标系中画出不等式组所表示的平面区域(如图所示)当直线y =-13x +13z 经过区域中的点A (-k 3,-k 3)时,z 取到最大值,等于-4k 3. 令-4k 3=12,得k =-9. ∴所求实数k 的值为-9.11.(12分)某电视机厂计划在下一个生产周期内生产两种型号电视机,每台A 型或B 型电视机所得利润分别为6和4个单位,而生产一台A 型或B 型电视机所耗原料分别为2和3个单位;所需工时分别为4和2个单位,如果允许使用的原料为100单位,工时为120单位,且A 或B 型电视的产量分别不低于5台和10台,应当生产每种类型电视机多少台,才能使利润最大?解析:设生产A 型电视机x 台,B 型电视机y台,则根据题意线性约束条件为⎩⎪⎨⎪⎧ 2x +3y ≤100,4x +2y ≤120,x ≥5,y ≥10,即⎩⎪⎨⎪⎧ 2x +3y ≤100,2x +y ≤60,x ≥5,y ≥10.线性目标函数为z =6x +4y .根据约束条件作出可行域如图所示,作3x +2y =0.当直线l 0平移至过点A 时,z 取最大值,解方程组⎩⎨⎧ 2x +3y =100,2x +y =60,得⎩⎨⎧ x =20.y =20.生产两种类型电视机各20台,所获利润最大.12.(13分)(2011·深圳模拟)某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?解析:设搭载产品A x 件,产品B y 件,预计总收益z =80x +60y .则⎩⎪⎨⎪⎧ 20x +30y ≤300,10x +5y ≤110,x ∈N ,y ∈N ,作出可行域,如图.作出直线l 0:4x +3y =0并平移,由图象得,当直线经过M 点时z 能取得最大值,⎩⎨⎧ 2x +3y =30,2x +y =22,解得⎩⎨⎧ x =9,y =4,即M (9,4).所以z max =80×9+60×4=960(万元).∴搭载产品A 9件,产品B 4件,可使得总预计收益最大,为960万元.。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习 第七章 不等式、推理与证明7.4 基本不等式 考试要求 1.掌握基本不等式及常见变型.2.会用基本不等式解决简单的最值问题. 知识梳理1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b 2叫做正数a ,b 的算术平均数,ab 叫做正数a ,b 的几何平均数. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ).(2)b a +a b≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22 (a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ).以上不等式等号成立的条件均为a =b .3.利用基本不等式求最值(1)已知x ,y 都是正数,如果积xy 等于定值P ,那么当x =y 时,和x +y 有最小值2P .(2)已知x ,y 都是正数,如果和x +y 等于定值S ,那么当x =y 时,积xy 有最大值14S 2. 注意:利用不等式求最值应满足三个条件“一正、二定、三相等”.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)不等式ab ≤⎝⎛⎭⎫a +b 22与ab ≤a +b 2等号成立的条件是相同的.( × ) (2)y =x +1x的最小值是2.( × ) (3)若x >0,y >0且x +y =xy ,则xy 的最小值为4.( √ )(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.( × ) 教材改编题1.已知x >2,则x +1x -2的最小值是( ) A .1 B .2 C .2 2 D .4答案 D解析 ∵x >2,∴x +1x -2=x -2+1x -2+2≥2x -21x -2+2=4, 当且仅当x -2=1x -2,即x =3时,等号成立. 2.函数y =4-x -1x(x <0)( ) A .有最小值2B .有最小值6C .有最大值2D .有最大值6答案 B解析 y =4+(-x )+1-x ≥4+2-x ·⎝⎛⎭⎫-1x =6. 当且仅当-x =1-x,即x =-1时取等号. 3.若a ,b ∈R ,下列不等式成立的是________.①b a +a b ≥2; ②ab ≤a 2+b 22; ③a 2+b 22≥⎝⎛⎭⎫a +b 22;④2ab a +b≤ab . 答案 ②③ 解析 当b a为负时,①不成立. 当ab <0时,④不成立.题型一 利用基本不等式求最值命题点1 配凑法例1 (1)(2022·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为( ) A.94 B .4 C.92D .9 答案 C解析 y =4x (3-2x )=2·2x ·(3-2x )≤2·⎝⎛⎭⎫2x +3-2x 22=92. 当且仅当2x =3-2x ,即x =34时取等号, ∴当x =34时,y max =92. (2)若x <23,则f (x )=3x +1+93x -2有( ) A .最大值0B .最小值9C .最大值-3D .最小值-3解析 ∵x <23, ∴3x -2<0, f (x )=3x -2+93x -2+3=-⎣⎡⎦⎤2-3x +92-3x +3≤-22-3x ·92-3x +3=-3.当且仅当2-3x =92-3x ,即x =-13时取“=”.(3)(2022·绍兴模拟)若-1<x <1,则y =x 2-2x +22x -2的最大值为________.答案 -1解析 因为-1<x <1,则0<1-x <2,于是得y =-12·1-x 2+11-x=-12⎣⎡⎦⎤1-x +11-x≤-12·21-x ·11-x =-1,当且仅当1-x =11-x ,即x =0时取“=”,所以当x =0时,y =x 2-2x +22x -2有最大值-1.命题点2 常数代换法例2 (2022·重庆模拟)已知a >0,b >0,且a +b =2,则2a +12b 的最小值是() A .1 B .2C.94 D.92解析 因为a >0,b >0,且a +b =2,所以a +b 2=1, 所以2a +12b =12(a +b )⎝⎛⎭⎫2a +12b =12⎝⎛⎭⎫2b a +a 2b +52 ≥12×⎝⎛⎭⎫2+52=94, 当且仅当a =43,b =23时,等号成立.命题点3 消元法例3 已知x >0,y >0且x +y +xy =3,则x +y 的最小值为________.答案 2解析 方法一 (换元消元法)∵x +y +xy =3,则3-(x +y )=xy ≤⎝⎛⎭⎫x +y 22,即(x +y )2+4(x +y )-12≥0,令t =x +y ,则t >0,∴t 2+4t -12≥0,解得t ≥2,∴x +y 的最小值为2.方法二 (代入消元法)由x +y +xy =3得y =3-x x +1, ∵x >0,y >0,∴0<x <3,∴x +y =x +3-x x +1=x +4x +1-1=x +1+4x +1-2≥2x +1·4x +1-2=2,当且仅当x +1=4x +1,即x =1时取等号,∴x +y 的最小值为2.延伸探究 本例条件不变,求xy 的最大值.解 ∵x +y +xy =3,∴3-xy =x +y ≥2xy ,当且仅当x =y 时取等号,令t =xy ,则t >0,∴3-t 2≥2t ,即t 2+2t -3≤0, 即0<t ≤1,∴当x =y =1时,xy 最大值为1.教师备选1.(2022·哈尔滨模拟)已知x >0,y >0,且2x +8y -xy =0,则当x +y 取得最小值时,y 等于() A .16 B .6 C .18 D .12答案 B解析 因为x >0,y >0,2x +8y =xy ,所以2y +8x =1,所以x +y =(x +y )⎝⎛⎭⎫2y +8x =10+2xy +8yx≥10+22xy ·8yx =10+2×4=18,当且仅当⎩⎪⎨⎪⎧2x y =8y x ,2x +8y -xy =0,即⎩⎪⎨⎪⎧ x =12,y =6时取等号,所以当x +y 取得最小值时,y =6.2.已知函数f (x )=-x 2x +1(x <-1),则( ) A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4 答案 A解析 f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎫x -1+1x +1=-⎝⎛⎭⎫x +1+1x +1-2 =-(x +1)+1-x +1+2. 因为x <-1,所以x +1<0,-(x +1)>0,所以f (x )≥21+2=4,当且仅当-(x +1)=1-x +1,即x =-2时,等号成立. 故f (x )有最小值4.思维升华 (1)前提:“一正”“二定”“三相等”.(2)要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.(3)条件最值的求解通常有三种方法:一是配凑法;二是将条件灵活变形,利用常数“1”代换的方法;三是消元法.跟踪训练1 (1)已知函数f (x )=22x -1+x (2x >1),则f (x )的最小值为________. 答案 52解析 ∵2x >1,∴x -12>0, f (x )=22x -1+x =1x -12+x -12+12 ≥21x -12·⎝⎛⎭⎫x -12+12=2+12=52, 当且仅当1x -12=x -12,即x =32时取“=”. ∴f (x )的最小值为52. (2)已知x >0,y >0且x +y =5,则1x +1+1y +2的最小值为________. 答案 12解析 令x +1=m ,y +2=n ,∵x >0,y >0,∴m >0,n >0,则m +n =x +1+y +2=8,∴1x +1+1y +2=1m +1n =⎝⎛⎭⎫1m +1n ×18(m +n )=18⎝⎛⎭⎫n m +m n +2≥18×(21+2)=12. 当且仅当n m =m n,即m =n =4时等号成立. ∴1x +1+1y +2的最小值为12. 题型二 基本不等式的常见变形应用例4 (1)(2022·宁波模拟)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b 2≥ab (a >0,b >0) B .a 2+b 2≥2ab (a >0,b >0)C.2ab a +b ≤ab (a >0,b >0)D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知,OF =12AB =12(a +b ),OC =12(a +b )-b =12(a -b ),在Rt △OCF 中,由勾股定理可得,CF =⎝⎛⎭⎫a +b 22+⎝⎛⎭⎫a -b 22=12a 2+b 2,∵CF ≥OF ,∴12a 2+b 2≥12(a +b )(a >0,b >0).(2)(2022·广州模拟)已知0<a <1,b >1,则下列不等式中成立的是() A .a +b <4aba +bB.ab <2aba +bC.2a 2+2b 2<2abD .a +b <2a 2+2b 2答案 D解析 对于选项A ,因为0<a <1,b >1,所以(a +b )2=a 2+2ab +b 2>4ab ,故选项A 错误;对于选项B ,ab >21a +1b=2aba +b,故选项B 错误;对于选项C ,2a 2+b 2>2×2ab =2ab ,故选项C 错误;对于选项D,2a 2+2b 2>a 2+2ab +b 2=(a +b )2,所以a +b <2a 2+2b 2,故选项D 正确.教师备选若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2ab C.1a +1b >2abD.b a +a b≥2 答案 D解析 a 2+b 2≥2ab ,所以A 错误;ab >0,只能说明两实数同号,同为正数,或同为负数,所以当a <0,b <0时,B 错误;同时C 错误;a b 或b a都是正数,根据基本不等式求最值, a b +b a ≥2a b ×b a =2,故D 正确. 思维升华 基本不等式的常见变形(1)ab ≤⎝⎛⎭⎫a +b 22≤a 2+b 22. (2)21a +1b ≤ab ≤a +b 2≤a 2+b 22(a >0,b >0). 跟踪训练2 (1)(2022·浙南名校联盟联考)已知命题p :a >b >0,命题q :a 2+b 22>⎝⎛⎭⎫a +b 22,则p是q 成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 ∵a >b >0,则a 2+b 2>2ab ,∴2(a 2+b 2)>a 2+b 2+2ab ,∴2(a 2+b 2)>(a +b )2, ∴a 2+b 22>⎝⎛⎭⎫a +b 22, ∴由p 可推出q ,当a <0,b <0时,命题q 成立,如a =-1,b =-3时,a 2+b 22=5>⎝⎛⎭⎫a +b 22=4,∴由q 推不出p ,∴p 是q 成立的充分不必要条件.(2)(2022·漳州质检)已知a ,b 为互不相等的正实数,则下列四个式子中最大的是( )A.2a +bB.1a +1bC.2abD.2a 2+b 2答案 B解析 ∵a ,b 为互不相等的正实数,∴1a +1b >2ab, 2a +b <22ab =1ab <2ab, 2a 2+b 2<22ab =1ab <2ab, ∴最大的是1a +1b.柯西不等式是法国著名的数学家、物理学家、天文学家柯西(Cauchy,1789-1857)发现的,故命名为柯西不等式.柯西不等式是数学中一个非常重要的不等式,除了用柯西不等式来证明一些不等式成立外,柯西不等式还常用于选择、填空求最值的问题中,借助柯西不等式的技巧可以达到事半功倍的效果.1.(柯西不等式的代数形式)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.推广一般情形:设a 1,a 2,…,a n ,b 1,b 2,…,b n ∈R ,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2(当且仅当b i=0(i =1,2,…,n )或存在一个实数k ,使得a i =kb i (i =1,2,…,n )时,等号成立).2.(柯西不等式的向量形式)设α,β为平面上的两个向量,则|α||β|≥|α·β|,其中当且仅当β是零向量,或存在实数k ,使α=k β时等号成立.3.(柯西不等式的三角不等式)设x 1,y 1,x 2,y 2,x 3,y 3为任意实数,则: x 1-x 22+y 1-y 22+x 2-x 32+y 2-y 32 ≥x 1-x 32+y 1-y 32.一、利用柯西不等式求最值例1 已知x ,y 满足x +3y =4,则4x 2+y 2的最小值为________.答案 6437 解析 (x +3y )2≤(4x 2+y 2)⎝⎛⎭⎫14+9,所以4x 2+y 2≥16×437=6437, 当且仅当y =12x 时,等号成立,所以4x 2+y 2的最小值为6437. 例2 已知正实数x ,y ,z 满足x 2+y 2+z 2=1,正实数a ,b ,c 满足a 2+b 2+c 2=9,则ax +by +cz 的最大值为________.答案 3解析 (ax +by +cz )2≤(a 2+b 2+c 2)·(x 2+y 2+z 2)=9,∴ax +by +cz ≤3,当且仅当a =3x ,b =3y ,c =3z 时取“=”,∴ax +by +cz 的最大值为3.例3 函数y =5x -1+10-2x 的最大值为________. 答案 6 3 解析 y 2=(5x -1+10-2x )2=(5x -1+2·5-x )2≤(52+2)(x -1+5-x )=108,当且仅当x =12727时等号成立,∴y ≤6 3.二、利用柯西不等式证明不等式例4 已知a 1,a 2,b 1,b 2为正实数,求证:(a 1b 1+a 2b 2)·⎝⎛⎭⎫a 1b 1+a 2b 2≥(a 1+a 2)2. 证明 (a 1b 1+a 2b 2)⎝⎛⎭⎫a 1b 1+a 2b 2=[(a 1b 1)2+(a 2b 2)2]⎣⎡⎦⎤⎝⎛⎭⎫a 1b 12+⎝⎛⎭⎫a 2b 22 ≥⎝⎛⎭⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22 =(a 1+a 2)2.当且仅当b 1=b 2时,等号成立.例5 已知a 1,a 2,…,a n 都是实数,求证:1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 证明 根据柯西不等式,有()12+12+…+12n 个 (a 21+a 22+…+a 2n )≥(1×a 1+1×a 2+…+1×a n )2, 所以1n(a 1+a 2+…+a n )2≤a 21+a 22+…+a 2n . 课时精练1.下列函数中,最小值为2的是( )A .y =x +2xB .y =x 2+3x 2+2C .y =e x +e -xD .y =log 3x +log x 3(0<x <1)答案 C解析 当x <0时,y =x +2x<0,故A 错误; y =x 2+3x 2+2=x 2+2+1x 2+2≥2, 当且仅当x 2+2=1x 2+2, 即x 2=-1时取等号,∵x 2≠-1,故B 错误;y =e x +e -x ≥2e x ·e -x =2,当且仅当e x =e -x ,即x =0时取等号,故C 正确;当x ∈(0,1)时,y =log 3x <0,故D 错误.2.(2022·汉中模拟)若a >0,b >0且2a +b =4,则ab 的最大值为( )A .2 B.12 C .4 D.14答案 A解析 4=2a +b ≥22ab ,即2≥2ab ,平方得ab ≤2,当且仅当2a =b ,即a =1,b =2时等号成立,∴ab 的最大值为2.3.(2022·苏州模拟)若a ,b 是正常数,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥a +b 2x +y ,当且仅当a x =b y 时取等号.利用以上结论,函数f (x )=2x +91-2x ,x ∈⎝⎛⎭⎫0,12取得最小值时x 的值为( ) A.15 B.14 C.24 D.13答案 A解析 f (x )=2x +91-2x =42x +91-2x ≥2+322x +1-2x =25,当且仅当22x =31-2x ,即x =15时等号成立.4.(2022·重庆模拟)已知x >2,y >1,(x -2)(y -1)=4,则x +y 的最小值是() A .1 B .4C .7D .3+17答案 C解析 ∵x >2,y >1,(x -2)(y -1)=4,∴x +y =(x -2)+(y -1)+3≥2x -2y -1+3=7,当且仅当⎩⎪⎨⎪⎧x =4,y =3时等号成立. 5.已知函数f (x )=14x +9x -1(x <1),下列结论正确的是( )A .f (x )有最大值114B .f (x )有最大值-114C .f (x )有最小值132D .f (x )有最小值74答案 B解析 f (x )=x -14+9x -1+14=-⎝ ⎛⎭⎪⎫1-x 4+91-x +14≤-21-x 4·91-x+14=-114,当且仅当x =-5时等号成立.6.已知函数f (x )=xx 2-x +4(x >0),则( )A .f (x )有最大值3B .f (x )有最小值3C .f (x )有最小值13 D .f (x )有最大值13答案 D解析 f (x )=xx 2-x +4=1x +4x -1≤124-1=13,当且仅当x =4x ,即x =2时等号成立,∴f (x )的最大值为13.7.(2022·济宁模拟)已知a ,b 为正实数,则“aba +b ≤2”是“ab ≤16”的() A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件答案 B解析 由a ,b 为正实数,∴a +b ≥2ab ,当且仅当a =b 时等号成立,若ab ≤16,可得aba +b ≤ab2ab =ab2≤162=2,故必要性成立;当a =2,b =10,此时aba +b ≤2,但ab =20>16,故充分性不成立,因此“ab a +b ≤2”是“ab ≤16”的必要不充分条件. 8.已知正实数a ,b 满足a >0,b >0,且a +b =1,则下列不等式恒成立的有( ) ①2a +2b ≥22;②a 2+b 2<1; ③1a +1b<4; ④a +1a >2. A .①②B .①③C .①②④D .②③④答案 C解析 ∵2a +2b ≥22a ·2b =22a +b =22,当且仅当a =b 时取等号,∴①正确; ∵a 2+b 2<a 2+b 2+2ab =(a +b )2=1,∴②正确;∵1a +1b =(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥2+2b a ×a b =4, 当且仅当a =b 时取等号,∴③错误;∵a >0,b >0,a +b =1,∴0<a <1,∵a +1a ≥2a ·1a=2,当且仅当a =1时取等号, ∴a +1a>2,④正确. 9.若0<x <2,则x 4-x 2的最大值为________.答案 2解析 ∵0<x <2,∴x 4-x 2=x 24-x 2≤x 2+4-x 22=2, 当且仅当x 2=4-x 2,即x =2时取“=”.10.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为________. 答案 4解析 依题意ab =a +b ,∴a +b =ab ≤⎝⎛⎭⎫a +b 22, 即a +b ≤a +b 24,∴a +b ≥4,当且仅当a =b 时取等号,∴a +b 的最小值为4.11.已知x >0,y >0且3x +4y -xy =0,则3x +y 的最小值为________. 答案 27解析 因为x >0,y >0,3x +4y =xy ,所以3y +4x=1, 所以3x +y =(3x +y )⎝⎛⎭⎫3y +4x =15+9x y +4y x ≥15+29x y ·4y x=27, 当且仅当⎩⎪⎨⎪⎧ 9x y =4y x ,3x +4y -xy =0即⎩⎪⎨⎪⎧x =6,y =9时取等号, 所以3x +y 的最小值为27.12.(2021·天津)若a >0,b >0,则1a +a b2+b 的最小值为________. 答案 2 2解析 ∵a >0,b >0,∴1a +a b 2+b ≥21a ·a b 2+b =2b +b ≥22b·b =22, 当且仅当1a =a b 2且2b=b ,即a =b =2时等号成立, ∴1a +a b2+b 的最小值为2 2.13.(2022·南京模拟)若实数x ,y 满足x 2+y 2+xy =1,则x +y 的取值范围是( )A.⎣⎡⎦⎤-233,233 B.⎝⎛⎭⎫-233,233 C.⎣⎡⎦⎤-223,223 D.⎝⎛⎭⎫-223,223 答案 A解析 ∵x 2+y 2+xy =1⇔xy =(x +y )2-1,又∵xy ≤⎝⎛⎭⎫x +y 22,∴(x +y )2-1≤⎝⎛⎭⎫x +y 22,令x +y =t , 则4t 2-4≤t 2,∴-233≤t ≤233, 即-233≤x +y ≤233,当且仅当x =y 时,取等号, ∴x +y 的取值范围是⎣⎡⎦⎤-233,233. 14.设a >0,b >0,则下列不等式中一定成立的是________.(填序号)①a +b +1ab ≥22; ②2ab a +b >ab ; ③a 2+b 2ab≥a +b ; ④(a +b )⎝⎛⎭⎫1a +1b ≥4.答案 ①③④解析 因为a >0,b >0,所以a +b +1ab ≥2ab +1ab≥22, 当且仅当a =b 且2ab =1ab ,即a =b =22时取等号,故①正确; 因为a +b ≥2ab >0, 所以2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 故②错误;因为2ab a +b ≤2ab 2ab=ab ,当且仅当a =b 时取等号, 所以a 2+b 2a +b =a +b 2-2ab a +b =a +b -2ab a +b≥ 2ab -ab =ab ,当且仅当a =b 时取等号,所以a 2+b 2a +b ≥ab ,即a 2+b 2ab≥a +b ,故③正确; 因为(a +b )⎝⎛⎭⎫1a +1b =2+b a +a b≥ 2+2b a ·a b=4,当且仅当a =b 时取等号,故④正确.15.已知a >0,b >0,且a +b =1,则1a +1b+ab 的最小值为____________. 答案 174解析 因为a >0,b >0,且a +b =1,所以1=a +b ≥2ab ,即0<ab ≤14,当且仅当a =b 时取等号, 令t =ab ,则1a +1b +ab =1ab +ab =1t+t ,t ∈⎝⎛⎦⎤0,14, 因为函数y =1t+t 在⎝⎛⎦⎤0,14上为减函数,所以当t =14时,函数y =1t +t 取得最小值,即y min =14+4=174. 16.(2022·沙坪坝模拟)若x >0,y >0且x +y =xy ,则x x -1+2y y -1的最小值为________. 答案 3+2 2解析 因为x >0,y >0且x +y =xy ,则xy =x +y >y ,即有x >1,同理y >1,由x +y =xy 得,(x -1)(y -1)=1,于是得x x -1+2y y -1=1+1x -1+2+2y -1=3+⎝⎛⎭⎫1x -1+2y -1 ≥3+21x -1·2y -1=3+22, 当且仅当1x -1=2y -1, 即x =1+22,y =1+2时取“=”, 所以x x -1+2y y -1的最小值为3+2 2.。
高考数学一轮总复习:第七章 不等式及推理与证明
高考数学一轮总复习:第七章 不等式及推理与证明目 录第1课时 不等式与不等关系 第2课时 一元二次不等式的解法 第3课时 简单的线性规划 第4课时 基本不等式第5课时 合情推理与演绎推理 第6课时 直接证明与间接证明第1课时 不等式与不等关系1.已知a ,b ,c ,d 均为实数,有下列命题: ①若ab>0,bc -ad>0,则c a -db >0;②若ab>0,c a -db >0,则bc -ad>0;③若bc -ad>0,c a -db >0,则ab>0.其中正确命题的个数是( ) A .0 B .1 C .2 D .3答案 D解析 对于①,∵ab>0,bc -ad>0,c a -d b =bc -adab >0,∴①正确;对于②,∵ab>0,又c a -d b >0,即bc -ad ab >0,∴②正确;对于③,∵bc -ad>0,又c a -db >0,即bc -adab>0,∴ab>0,∴③正确.2.若a ,b 是任意实数,且a>b ,则下列不等式成立的是( )A .a 2>b 2B.b a <1 C .lg(a -b)>0 D .(13)a <(13)b答案 D解析 方法一:利用性质判断.方法二(特值法):令a =-1,b =-2,则a 2<b 2,ba>1,lg(a -b)=0,可排除A ,B ,C 三项.故选D.3.设a∈R ,则a>1是1a <1的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 若a>1,则1a <1成立;反之,若1a <1,则a>1或a<0.即a>1⇒1a <1,而1a <1a>1,故选A.4. 设a ,b ∈R ,若a +|b|<0,则下列不等式成立的是( ) A .a -b>0 B .a 3+b 3>0 C .a 2-b 2<0 D .a +b<0 答案 D5.设a ,b 为实数,则“0<ab<1”是“b<1a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 D解析 一方面,若0<ab<1,则当a<0时,0>b>1a ,∴b<1a 不成立;另一方面,若b<1a,则当a<0时,ab>1,∴0<ab<1不成立,故选D.6. 设a ,b ∈R ,则“a>b”是“a|a|>b|b|”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析当b<0时,显然有a>b⇔a|a|>b|b|;当b=0时,显然有a>b⇔a|a|>b|b|;当b>0时,由a>b有|a|>|b|,所以a>b⇔a|a|>b|b|.综上可知a>b⇔a|a|>b|b|,故选C.7.已知0<a<b,且a+b=1,下列不等式成立的是( ) A.log2a>0 B.2a-b>1C.2ab>2 D.log2(ab)<-2答案 D解析方法一(特殊值法):取a=14,b=34验证即可.方法二:(直接法)由已知,0<a<1,0<b<1,a-b<0,0<ab<14,log2(ab)<-2,故选D.8.设0<b<a<1,则下列不等式成立的是( )A.ab<b2<1 B.log12b<log12a<0C.2b<2a<2 D.a2<ab<1 答案 C解析方法一(特殊值法):取b=14,a=12.方法二(单调性法):0<b<a⇒b2<ab,A不对;y=log12x在(0,+∞)上为减函数,∴log12b>log12a,B不对;a>b>0⇒a2>ab,D不对,故选C.9.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,若两人步行速度、跑步速度均相同,则( ) A.甲先到教室B.乙先到教室C.两人同时到教室D.谁先到教室不确定答案 B解析设步行速度与跑步速度分别为v1和v2显然0<v1<v2,总路程为2s,则甲用时间为sv 1+sv2,乙用时间为4sv1+v2,而sv1+sv2-4sv1+v2=s(v1+v2)2-4sv1v2v1v2(v1+v2)=s(v1-v2)2v1v2(v1+v2)>0,故sv1+sv2>4sv1+v2,故乙先到教室.10.下列四个数中最大的是( )A.lg2 B.lg 2 C.(lg2)2D.lg(lg2) 答案 A解析因为lg2∈(0,1),所以lg(lg2)<0;lg2-(lg2)2=lg2(12-lg2)>lg2(12-lg10)=0,即lg2>(lg2)2;lg2-lg2=12lg2>0,即lg2>lg 2.所以最大的是lg2.11.设a=log36,b=log510,c=log714,则( )A.c>b>a B.b>c>a C.a>c>b D.a>b>c 答案 D解析a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,则只要比较log32,log52,log72的大小即可,在同一坐标系中作出函数y=log3x,y=log5x,y=log7x的图像,由三个图像的相对位置关系,可知a>b>c,故选D.12.已知实数x,y,z满足x+y+z=0,且xyz>0,设M=1x+1y+1z,则( )A .M>0B .M<0C .M =0D .M 不确定答案 B解析 ∵(x+y +z)2=x 2+y 2+z 2+2(xy +yz +zx)=0,∴xy +yz +zx<0,∴M =1x +1y +1z =yz +zx +xy xyz<0. 13.(1)若角α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 (-3π2,π2) 解析 ∵-π2<α<β<π2,∴-π<α-β<0.∵2α-β=α+α-β,∴-3π2<2α-β<π2. (2)若1<α<3,-4<β<2,则α-|β|的取值范围是________. 答案 (-3,3)解析 ∵-4<β<2,∴0≤|β|<4.∴-4<-|β|≤0.又∵1<α<3,∴-3<α-|β|<3.(3)若-1<a +b<3,2<a -b<4,则2a +3b 的取值范围为________. 答案 (-92,132)解析 设2a +3b =x(a +b)+y(a -b), 则⎩⎨⎧x +y =2,x -y =3,解得⎩⎪⎨⎪⎧x =52,y =-12.又因为-52<52(a +b)<152,-2<-12(a -b)<-1,所以-92<52(a +b)-12(a -b)<132.即-92<2a +3b<132.14.设α∈(0,12),T 1=cos(1+α),T 2=cos(1-α),则T 1与T 2的大小关系为________.答案 T 1<T 2解析 T 1-T 2=(cos1cosα-sin1sinα)-(cos1cosα+sin1sinα)=-2sin1sinα<0.15.(1)若a>1,b<1,则下列两式的大小关系为ab +1________a +b. 答案 <解析 (ab +1)-(a +b) =1-a -b +ab =(1-a)(1-b), ∵a>1,b<1,∴1-a<0,1-b>0, ∴(1-a)(1-b)<0,∴ab +1<a +b.(2)若a>0,b>0,则不等式-b<1x <a 的解集为________.答案 (-∞,-1b )∪(1a ,+∞)解析 由已知,得-b<0,a>0,∴1x ∈(-b ,a)=(-b ,0)∪{0}∪(0,a). ∴x ∈(-∞,-1b )∪(1a,+∞).16.设a>b>c>0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z>y>x解析 方法一(特值法):取a =3,b =2,c =1验证即可.方法二(比较法):∵a>b>c>0,∴y 2-x 2=b 2+(c +a)2-a 2-(b +c)2=2c(a -b)>0,∴y 2>x 2,即y>x.z 2-y 2=c 2+(a +b)2-b 2-(c +a)2=2a(b -c)>0, 故z 2>y 2,即z>y ,故z>y>x.17.已知a +b>0,比较a b 2+b a 2与1a +1b 的大小.答案 a b 2+b a 2≥1a +1b解析a b 2+b a 2-⎝ ⎛⎭⎪⎫1a +1b =a -b b 2+b -a a2= (a -b)⎝ ⎛⎭⎪⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2.∵a +b>0,(a -b)2≥0,∴(a +b )(a -b )2a 2b 2≥0.∴a b 2+b a 2≥1a +1b. 18.已知a>0且a≠1,比较log a (a 3+1)和log a (a 2+1)的大小. 答案 log a (a 3+1)>log a (a 2+1) 解析 当a>1时,a 3>a 2,a 3+1>a 2+1. 又y =log a x 为增函数, 所以log a (a 3+1)>log a (a 2+1); 当0<a<1时,a 3<a 2,a 3+1<a 2+1. 又y =log a x 为减函数, 所以log a (a 3+1)>log a (a 2+1).综上,对a>0且a≠1,总有log a (a 3+1)>log a (a 2+1).第2课时 一元二次不等式的解法1.下列不等式中解集为R 的是( ) A .-x 2+2x +1≥0 B .x 2-25x +5>0 C .x 2+6x +10>0 D .2x 2-3x +4<0答案 C解析 在C 项中,Δ=36-40=-4<0,所以不等式解集为R . 2.若0<m <1,则不等式(x -m)(x -1m)<0的解集为( )A .{x|1m <x <m}B .{x|x>1m 或x <m}C .{x|x>m 或x <1m }D .{x|m <x <1m}答案 D解析 当0<m<1时,m<1m .3.函数y =ln (x +1)-x 2-3x +4的定义域为( )A .(-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]答案 C解析 由⎩⎨⎧x +1>0,-x 2-3x +4>0,解得-1<x<1.4.关于x 的不等式x 2+px -2<0的解集是(q ,1),则p +q 的值为( ) A .-2 B .-1 C .1 D .2答案 B解析 依题意得q ,1是方程x 2+px -2=0的两根,q +1=-p ,即p +q =-1,选B.5.不等式(2x -1)(1-|x|)<0成立的充要条件是( ) A .x>1或x<12B .x>1或-1<x<12C .-1<x<12D .x<-1或x>12答案 B解析 原不等式等价于⎩⎨⎧2x -1>0,1-|x|<0或⎩⎨⎧2x -1<0,1-|x|>0.∴⎩⎨⎧x>12,x>1或x<-1或⎩⎨⎧x<12,-1<x<1.∴x>1或-1<x<12,故选B.6.不等式x 2-x -6x -1>0的解集为( )A.{}x|x<-2或x>3B.{}x|x<-2或1<x<3C.{}x|-2<x<1或x>3D.{}x|-2<x<1或1<x<3答案 C解析 x 2-x -6x -1>0⇒(x -3)(x +2)x -1>0⇒(x +2)·(x-1)(x -3)>0,由数轴标根法,得-2<x<1或x>3.7.已知不等式ax 2+bx +2>0的解集为{x|-1<x<2},则不等式2x 2+bx +a<0的解集为( )A .{x|-1<x<12}B .{x|x<-1或x>12}C .{x|-2<x<1}D .{x|x<-2或x>1} 答案 A解析 由题意知x =-1,x =2是方程ax 2+bx +2=0的根.由韦达定理,得⎩⎪⎨⎪⎧-1+2=-ba ,(-1)×2=2a⇒⎩⎨⎧a =-1,b =1.∴不等式2x 2+bx +a<0,即2x 2+x -1<0. 可知x =-1,x =12是对应方程的根,∴选A.8. 已知一元二次不等式f(x)<0的解集为{x|x<-1或x>13},则f(e x )>0的解集为( )A .{x|x<-1或x>-ln3}B .{x|-1<x<-ln3}C .{x|x>-ln3}D .{x|x<-ln3} 答案 D解析 设-1和13是方程x 2+ax +b =0的两个实数根,∴a =-(-1+13)=23,b=-1×13=-13,∵一元二次不等式f(x)<0的解集为{x|x<-1或x>13 },∴f(x)=-(x2+23x-13)=-x2-23x+13,∴f(x)>0的解集为x∈(-1,13 ).不等式f(e x)>0可化为-1<e x<1 3 .解得x<ln 1 3,∴x<-ln3,即f(e x)>0的解集为{x|x<-ln3}.9.若不等式x2+ax-2>0在区间[1,5]上有解,则a的取值范围是( )A.(-235,+∞) B.[-235,1]C.(1,+∞) D.(-∞,-23 5]答案 A解析由Δ=a2+8>0,知方程恒有两个不等实根,又知两根之积为负,所以方程必有一正根、一负根.于是不等式在区间[1,5]上有解,只需满足f(5)>0,即a>-23 5.10.不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图像为( )答案 C解析 由题意得⎩⎪⎨⎪⎧a<0,-2+1=1a ,-2×1=-ca,解得a =-1,c =-2. 则函数y =f(-x)=-x 2+x +2.11.已知a 1>a 2>a 3>0,则使得(1-a i x)2<1(i =1,2,3)都成立的x 的取值范围是( )A .(0,1a 1)B .(0,2a 1)C .(0,1a 3)D .(0,2a 3)答案 B12. 在关于x 的不等式x 2-(a +1)x +a<0的解集中恰有两个整数,则a 的取值范围是( )A .(3,4)B .(-2,-1)∪(3,4)C .(3,4]D .[-2,-1)∪(3,4] 答案 D解析 由题意得,原不等式化为(x -1)(x -a)<0,当a>1时,解得1<x<a ,此时解集中的整数为2,3,则3<a≤4;当a<1时,解得a<x<1,此时解集中的整数为0,-1,则-2≤a<-1,故a∈[-2,-1)∪(3,4].13.不等式2x 2-3|x|-35>0的解集为________. 答案 {x|x<-5或x>5}解析 2x 2-3|x|-35>0⇔2|x|2-3|x|-35>0⇔(|x|-5)(2|x|+7)>0⇔|x|>5或|x|<-72(舍)⇔x>5或x<-5.14.已知-12<1x <2,则实数x 的取值范围是________.答案 x<-2或x>12解析 当x>0时,x>12;当x<0时,x<-2.所以x 的取值范围是x<-2或x>12.15.若不等式a·4x -2x +1>0对一切x∈R 恒成立,则实数a 的取值范围是________.答案 a>14解析 不等式可变形为a>2x -14x =(12)x -(14)x,令(12)x=t ,则t>0.∴y =(12)x -(14)x =t -t 2=-(t -12)2+14,因此当t =12时,y 取最大值14,故实数a 的取值范围是a>14.16. 已知关于x 的不等式kx 2-2x +6k<0(k≠0). (1)若不等式的解集为{x|x<-3或x>-2},求k 的值; (2)若不等式的解集为{x|x∈R ,x ≠1k },求k 的值;(3)若不等式的解集为R ,求k 的取值范围; (4)若不等式的解集为∅,求k 的取值范围. 答案 (1)k =-25 (2)k =-66 (3)k<-66(4)k≥66解析 (1)因为不等式的解集为{x|x<-3或x>-2}, 所以k<0,且-3与-2是方程kx 2-2x +6k =0的两根, 所以(-3)+(-2)=2k ,解得k =-25.(2)因为不等式的解集为{x|x∈R ,x ≠1k},所以⎩⎨⎧k<0,Δ=4-24k 2=0,解得k =-66. (3)由题意,得⎩⎨⎧k<0,Δ=4-24k 2<0,解得k<-66. (4)由题意,得⎩⎨⎧k>0,Δ=4-24k 2≤0,解得k≥66. 17.已知不等式组⎩⎨⎧x 2-4x +3<0x 2-6x +8<0的解集是不等式2x 2-9x +a <0的解集的子集,求实数a 的取值范围.答案 (-∞,9]解析 不等式组⎩⎨⎧x 2-4x +3<0x 2-6x +8<0的解集为(2,3),令g(x)=2x 2-9x +a ,其对称轴为x =94,∴只需g(3)=-9+a≤0,∴a ≤9.第3课时 简单的线性规划1.下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C.2. 二元一次不等式组⎩⎨⎧(x -y +3)(x +y )≥0,0≤x ≤4,表示的平面区域是( )A .矩形B .三角形C .直角梯形D .等腰梯形 答案 D解析 由(x -y +3)(x +y)≥0,得⎩⎨⎧x -y +3≥0,x +y≥0或⎩⎨⎧x -y +3≤0,x +y≤0,且0≤x≤4,表示的区域如图阴影部分所示,故所求平面区域为等腰梯形,故选D.3. 设x ,y 满足约束条件⎩⎨⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是()A .-15B .-9C .1D .9答案 A解析 作出可行域如图所示,作出直线l 0:y =-2x ,平移l 0经过点A 时,z 有最小值,此时, 由⎩⎨⎧y +3=0,2x -3y +3=0,得⎩⎨⎧x =-6,y =-3. 即A(-6,-3),∴z min =2×(-6)-3=-15.4. 已知x ,y 满足约束条件⎩⎨⎧x -y≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是()A .-1B .-2C .-5D .1答案 A解析 作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z 取得最大值,故z max =-2×1+1=-1.5. 实数x ,y 满足⎩⎨⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( )A .(1,0)B .(0,-2)C .(0,0)D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x 中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).6. 已知实数x ,y 满足⎩⎨⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).7. 设变量x ,y 满足约束条件⎩⎨⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为()A .10B .8C .6D .4答案 B解析不等式组⎩⎨⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min=-2-3×2=-8,所以-8≤m≤4,所以|m|≤8,即z max =8.8. x ,y 满足约束条件⎩⎨⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( )A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.9. 已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎨⎧x +|y|≤1,x ≥0,则z =OA →·OP →的最大值为( )A .-2B .-1C .1D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.10.已知实数x ,y 满足条件⎩⎨⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( )A .3+ 2B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =yx -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k2.解得k =34.11. 设x ,y 满足约束条件⎩⎨⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m =( )A.32 B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.12. 设实数x ,y 满足⎩⎨⎧x -y≤0,x +y≥0,y ≤a ,若z =x +2y 的最大值为3,则a 的值是________.答案 1解析依题意得a>0,在平面直角坐标系内大致画出不等式组⎩⎨⎧x -y≤0,x +y≥0,y ≤a ,表示的平面区域,结合图形可知,直线z =x +2y 经过直线y =a 与直线x -y =0的交点,即点(a ,a)时,z =x +2y 取得最大值3,因此a +2a =3,a =1.13. 点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________.答案92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.14.已知整数x ,y 满足⎩⎨⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案 116解析 z =4-x·(12)y=2-2x ·2-y =2-2x -y .设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 经过点B 时,m 最小,由⎩⎨⎧2x -y =0,x -3y +5=0,解得⎩⎨⎧x =1,y =2,即B(1,2),此时m =-2-2=-4,所以z =4-x ·(12)y的最小值为2-4=116.15.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省?答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z ,则约束条件为⎩⎨⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值. 解方程组⎩⎨⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.第4课时 基本不等式1.已知a ,b ∈(0,1)且a≠b,下列各式中最大的是( ) A .a 2+b 2 B .2ab C .2ab D .a +b答案 D解析 只需比较a 2+b 2与a +b.由于a ,b ∈(0,1),∴a 2<a ,b 2<b ,∴a 2+b 2<a +b.2. 设0<a<b ,则下列不等式中正确的是( ) A .a<b<ab<a +b2B .a<ab<a +b2<bC.a<ab<b<a+b2D.ab<a<a+b2<b答案 B解析方法一(特值法):代入a=1,b=2,则有0<a=1<ab=2<a+b 2=1.5<b=2.方法二(直接法):我们知道算术平均数a+b2与几何平均数ab的大小关系,其余各式作差(作商)比较即可,答案为B.3.下列函数中,最小值为4的是( )A.y=x+4xB.y=sinx+4sinx(0<x<π)C.y=4e x+e-x D.y=log3x+logx3(0<x<1)答案 C解析注意基本不等式等号成立的条件是“a=b”,同时考虑函数的定义域,A中x的定义域为{x|x∈R,且x≠0},函数没有最小值;B中若sinx=4sinx取到最小值4,则sin2x=4,显然不成立.D中没有最小值.故选C.4.若2x+2y=1,则x+y的取值范围是( )A.[0,2] B.[-2,0]C.[-2,+∞) D.(-∞,-2]答案 D解析∵2x+2y≥22x·2y=22x+y(当且仅当2x=2y时等号成立),∴2x+y≤1 2,∴2x+y≤14,得x+y≤-2,故选D.5.若x,y是正数,则(x+12y)2+(y+12x)2的最小值是( ) A.3 B.72C.4 D.92答案 C解析原式=x2+xy+14y2+y2+yx+14x2≥4.当且仅当x=y=12时取“=”号.6.已知a>0,且b>0,若2a+b=4,则1ab的最小值为( )A.14B.4C.12D.2答案 C解析∵4=2a+b≥22ab,∴ab≤2,1ab≥12,当且仅当a=1,b=2时取等号.7.若x<0,则函数y=x2+1x2-x-1x的最小值是( )A.-94B.0C.2 D.4 答案 D解析y=x2+1x2-x-1x≥2x2·1x2+2(-x)(-1x)=4,当且仅当x=-1时取等号.8.函数y=x2+2x-1(x>1)的最小值是( )A.23+2 B.23-2 C.2 3 D.2答案 A解析∵x>1,∴x-1>0.∴y=x2+2x-1=x2-2x+2x+2x-1=x2-2x+1+2(x-1)+3x-1=(x-1)2+2(x-1)+3x-1=x-1+3x-1+2≥2(x-1)(3x-1)+2=23+2.当且仅当x-1=3x-1,即x=1+3时,取等号.9.已知不等式(x+y)(1x+ay)≥9对任意正实数x,y恒成立,则正实数a的最小值为( )A.2 B.4C.6 D.8答案 B解析(x+y)(1x+ay)=1+a·xy+yx+a≥1+a+2a=(a+1)2,当且仅当a·xy=yx,即ax2=y2时“=”成立.∴(x+y)(1x+ay)的最小值为(a+1)2≥9.∴a≥4.10.设实数x,y,m,n满足x2+y2=1,m2+n2=3,那么mx+ny的最大值是( )A. 3 B.2C. 5D.10 2答案 A解析方法一:设x=sinα,y=cosα,m=3sinβ,n=3cosβ,其中α,β∈R.∴mx+ny=3sinβsinα+3cosβcosα=3cos(α-β).故选A.方法二:由已知(x2+y2)·(m2+n2)=3,即m2x2+n2y2+n2x2+m2y2=3,∴m2x2+n2y2+2(nx)·(my)≤3,即(mx+ny)2≤3,∴mx+ny≤ 3.11.已知x,y,z∈(0,+∞),且满足x-2y+3z=0,则y2xz的最小值为( )A.3 B.6 C.9 D.12 答案 A12.若正数a,b满足1a+1b=1,则1a-1+9b-1的最小值为( )A.16 B.9 C.6 D.1 答案 C解析方法一:因为1a+1b=1,所以a+b=ab,即(a-1)·(b-1)=1,所以1a-1+9b-1≥21a-1×9b-1=2×3=6.方法二:因为1a+1b=1,所以a+b=ab,1a-1+9b-1=b-1+9a-9ab-a-b+1=b+9a-10=(b+9a)(1a+1b)-10≥16-10=6.方法三:因为1a+1b=1,所以a-1=1b-1,所以1a-1+9b-1=(b-1)+9b-1≥29=2×3=6.13.某城镇人口第二年比第一年增长m%,第三年比第二年增长n%,若这两年的平均增长率为p%,则p与m+n2的大小关系为( )A.p>m+n2B.p=m+n2C.p≤m+n2D.p≥m+n2答案 C解析依题意得(1+m%)(1+n%)=(1+p%)2,所以1+p%=(1+m%)(1+n%)≤1+m%+1+n%2=1+m%+n%2,当且仅当m=n时等号成立,所以p≤m+n2,故选C.14.(1)当x>1时,x+4x-1的最小值为________;(2)当x≥4时,x+4x-1的最小值为________.答案(1)5 (2)16 3解析(1)∵x>1,∴x-1>0.∴x+4x-1=x-1+4x-1+1≥24+1=5.(当且仅当x-1=4x-1.即x=3时“=”号成立)∴x+4x-1的最小值为5.(2)∵x≥4,∴x-1≥3.∵函数y=x+4x在[3,+∞)上为增函数,∴当x-1=3时,y=(x-1)+4x-1+1有最小值163.15.若a>0,b>0,a+b=1,则ab+1ab的最小值为________.答案17 4解析ab≤(a+b2)2=14,当且仅当a=b=12时取等号.y=x+1x在x∈(0,14]上为减函数.∴ab+1ab的最小值为14+4=174.16.已知a>b>0,求a2+16b(a-b)的最小值.答案16思路由b(a-b)求出最大值,从而去掉b,再由a2+64a2,求出最小值.解析∵a>b>0,∴a-b>0.∴b(a-b)≤[b+(a-b)2]2=a24.∴a2+16b(a-b)≥a2+64a2≥2a2·64a2=16.当a2=64a2且b=a-b,即a=22,b=2时等号成立.∴a2+16b(a-b)的最小值为16.17.设x,y均为正实数,且12+x+12+y=13,求xy的最小值.答案16解析由12+x+12+y=13,化为3(2+y)+3(2+x)=(2+y)·(2+x),整理为xy=x+y+8.∵x,y均为正实数,∴xy=x+y+8≥2xy+8,∴(xy)2-2xy -8≥0,解得xy≥4,即xy≥16,当且仅当x=y=4时取等号,∴xy的最小值为16.18.某健身器材厂研制了一种足浴气血生机,具体原理是:在足浴盆右侧离中心x(0<x<20)厘米处安装臭氧发生孔,产生的臭氧对双脚起保健作用.根据检测发现,该臭氧发生孔工作时会对泡脚的舒适程度起到干扰作用.已知臭氧发生孔工作时,对左脚的干扰度与x2成反比,比例系数为4;对右脚的干扰度与400-x2成反比,比例系数为k,且当x=102时,对左脚和右脚的干扰度之和为0.065.(1)将臭氧发生孔工作时对左脚和右脚的干扰度之和y表示为x的函数;(2)求臭氧发生孔对左脚和右脚的干扰度之和y的最小值.答案(1)y=4x2+9400-x2(0<x<20) (2)116解析(1)由题意得y=4x2+k400-x2(0<x<20),当x=102时,y=0.065,代入上式,得k=9.所以y=4x2+9400-x2(0<x<20).(2)y=4x2+9400-x2=1400(4x2+9400-x2)[(400-x2)+x2]=1400[4+9+4(400-x2)x2+9x2400-x2]≥1400[13+24(400-x2)x2·9x2400-x2]=116,当且仅当4(400-x2)x2=9x2400-x2,即x=410时取“=”.所以臭氧发生孔对左脚和右脚的干扰度之和y的最小值为1 16 .第5课时合情推理与演绎推理1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如下图),试求第七个三角形数是( )A.27 B.28C.29 D.30答案 B解析观察归纳可知第n个三角形数为1+2+3+4+…+n=n(n+1)2,∴第七个三角形数为7×(7+1)2=28.2.已知a1=3,a2=6,且an+2=an+1-an,则a2 019=( )A.3 B.-3 C.6 D.-6 答案 A解析∵a1=3,a2=6,∴a3=3,a4=-3,a5=-6,a6=-3,a7=3,…,∴{an }是以6为周期的周期数列.又2 019=6×336+3,∴a2 019=a3=3.选A.3.定义一种运算“*”:对于自然数n满足以下运算性质:①1*1=1,②(n+1)*1=n*1+1,则n*1等于( )A.n B.n+1C.n-1 D.n2答案 A解析由(n+1)*1=n*1+1,得n*1=(n-1)*1+1=(n-2)*1+2=…=1*1+(n-1).又∵1*1=1,∴n*1=n.4.两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位如图所示,则下列座位号码符合要求的应当是( )A.48,C.75,76 D.84,85答案 D解析由已知图中座位的排序规律可知,被5除余1的数和能被5整除的座位号靠窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号知,只有D项符合条件.5.观察(x2)′=2x,(x4)′=4x3,(cosx)′=-sinx,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x) B.-f(x)C.g(x) D.-g(x)答案 D解析由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).6.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )C.123 D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.7.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为an ,则9a2a3+9a3a4+9a4a5+…+9a2 017a2 018=( )A.2 0152 016B.2 0162 017C.2 0172 018D.2 0182 017答案 B解析由图案可得第n个图案中的点数为3n,则an=3n-3,∴93(n-1)×3n =1n(n-1)=1n-1-1n,∴9a2a3+9a3a4+9a4a5+…+9a2 017a2 018=(11-12)+(12-13)+…+(12 016-12 017)=1-12 017=2 0162 017,故选B. 8.如图,根据图中的数构成的规律,a表示的数是( ) 12 23 4 34 12 12 45 48 a 48 5C .60D .144答案 D9. 已知“整数对”按如下规律排列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第70个“整数对”为( )A .(3,9)B .(4,8)C .(3,10)D .(4,9)答案 D解析 因为1+2+…+11=66,所以第67个“整数对”是(1,12),第68个“整数对”是(2,11),第69个“整数对”是(3,10),第70个“整数对”是(4,9).故选D.10.已知a ,b ,c 是△ABC 的内角A ,B ,C 对应的三边,若满足a 2+b 2=c 2,即(a c )2+(bc )2=1,则△ABC 为直角三角形,类比此结论可知,若满足a n +b n =c n (n∈N ,n ≥3),则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .以上都有可能 答案 A解析 由题意知角C 最大,a n +b n =c n (n∈N ,n ≥3)即(a c )n +(bc )n =1(n∈N ,n ≥3),又c>a ,c>b ,所以(a c )2+(b c )2>(a c )n +(bc )n =1,即a 2+b 2>c 2,所以cosC=a 2+b 2-c 22ab >0,所以0<C<π2,故△ABC 为锐角三角形.11.学习合情推理后,甲、乙两位同学各举了一个例子.甲:由“若三角形周长为l ,面积为S ,则其内切圆半径r =2Sl”,类比可得“若三棱锥表面积为S ,体积为V ,则其内切球半径r =3VS ”;乙:由“若直角三角形两直角边长分别为a ,b ,则其外接圆半径r =a 2+b 22”,类比可得“若三棱锥三条侧棱两两垂直,侧棱长分别为a,b,c,则其外接球半径r=a2+b2+c23”.这两位同学类比得出的结论是( )A.两人都对B.甲错、乙对C.甲对、乙错D.两人都错答案 C解析利用等面积与等体积法可推得甲同学类比推理的结论是正确的;把三条侧棱两两垂直的三棱锥补成一个长方体,则此三棱锥的外接球半径等于长方体的外接球半径,可求得其半径r=a2+b2+c22,因此乙同学类比推理的结论是错误的,故选C.12.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推,例如6 613用算筹表示就是,则8 335用算筹可表示为( )答案 B解析由题意得千位和十位用横式表示,百位和个数用纵式表示,所以千位的8表示为,百位的3表示为,十位的3表示为,个位的5表示为,故选B.13.为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设确定原信息为a0a1a2,ai∈{0,1}(i=0,1,2),传输信息为h0aa1a2h1,其中h=a⊕a1,h1=h⊕a2,⊕运算规则为:0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( )A.11010 B.01100C.10111 D.00011答案 C解析对于选项C,传输信息是10111,对应的原信息是011,由题目中运算规则知h0=0⊕1=1,而h1=h⊕a2=1⊕1=0,故传输信息应是10110.14.如图所示,坐标纸上的每个单元格的边长为1,由下往上的六个点:1,2,3,4,5,6的横、纵坐标分别对应数列{an}(n∈N*)的前12项,如下表所示:按如此规律下去,则a2 017=( )A.502 B.503C.504 D.505答案 D解析由a1,a3,a5,a7,…组成的数列恰好对应数列{xn},即xn=a2n-1,当n为奇数时,xn =n+12.所以a2 017=x1 009=505.15.有一个游戏:将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中; 丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么甲、乙、丙、丁4个人拿到卡片上的数字依次为______.答案 4,2,1,3解析 由甲、丁的预测不正确可得丁拿到标有3的卡片,由乙的预测不正确可得乙拿到标有2的卡片,由丙的预测不正确可知甲拿到标有4的卡片,故丙拿到标有1的卡片,即甲、乙、丙、丁4个人拿到卡片上的数字依次为4,2,1,3.16. 对∀a ,b ∈R ,定义运算:a⊕b=⎩⎨⎧a ,a ≥b ,b ,a<b ;a ⊗b =⎩⎨⎧a -b ,a ≥b ,b -a ,a<b.则下列判断正确的是________.①2 015⊕(2 014⊗2 015)=2 014; ②(a⊕a)⊗a =0; ③(a⊕b)⊗a =a⊕(b ⊗a). 答案 ②解析 对于①,由定义的运算可知,2 014⊗2 015=2 015-2 014=1, 故2 015⊕(2 014⊗2 015)=2 015⊕1=2 015,故①错误. 对于②,因为a⊕a=a ,故(a⊕a)⊗a =a ⊗a =a -a =0,故②正确. 由于③,当a≥b 时,a ⊕b =a ,故(a⊕b)⊗a =a ⊗a =0, 而b ⊗a =a -b ,故a⊕(b ⊗a)=a⊕(a -b). 显然,若b≥0,则a≥a-b ,所以a⊕(a-b)=a , 若b<0,则a<a -b ,所以a⊕(a-b)=a -b. 故(a⊕b)⊗a≠a⊕(b ⊗a).故③错误.17.顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交给顾客.两件原料每道工序所需时间(单位:工作日)如下:答案42解析最短交货期为先由徒弟完成原料B的粗加工,共需6天,然后工艺师加工该件工艺品,需21天;徒弟可在这几天中完成原料A的粗加工;最后由工艺师完成原料A的精加工,需15个工作日.故交货期为6+21+15=42个工作日.第6课时直接证明与间接证明1.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证:b2-ac<3a”“索”的“因”应是( )A.a-b>0 B.a-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0答案 C解析b2-ac<3a⇔b2-ac<3a2⇔(a+c)2-ac<3a2⇔a2+2ac+c2-ac-3a2<0⇔-2a2+ac+c2<0⇔2a2-ac-c2>0⇔(a-c)(2a+c)>0⇔(a-c)(a-b)>0.2.要证a2+b2-1-a2b2≤0只要证明( )A.2ab-1-a2b2≤0 B.a2+b2-1-a4+b42≤0C.(a+b)22-1-a2b2≤0 D.(a2-1)(b2-1)≥0答案 D3.下列不等式不成立的是( )A.12<ln2 B.3+1>2 2C.233<322D.sin1>cos1答案 B4.若P=a+a+7,Q=a+3+a+4(a≥0),则P,Q的大小关系是( ) A.P>Q B.P=QC.P<Q D.由a的取值确定答案 C解析要比较P,Q的大小关系,只要比较P2,Q2的大小关系,只要比较2a +7+2a(a+7)与2a+7+2(a+3)(a+4)的大小,只要比较a(a+7)与(a+3)(a+4)的大小,即比较a2+7a与a2+7a+12的大小,只要比较0与12的大小,∵0<12,∴P<Q.5.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角B.假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角答案 B解析注意到:“至多有一个”的否定应为“至少有两个”知需选B.6.若a>0,b>0,a+b=1,则下列不等式不成立的是( )A.a2+b2≥12B.ab≤14C.1a+1b≥4 D.a+b≤1答案 D解析a2+b2=(a+b)2-2ab=1-2ab≥1-2·(a+b2)2=12,∴A成立;ab≤(a+b2)2=14,∴B成立;1 a +1b=a+bab=1ab≥1(a+b2)2=4,∴C成立;(a+b)2=a+b+2ab=1+2ab>1,∴a +b>1,故D 不成立.7. 设x ,y ,z ∈R +,a =x +1y ,b =y +1z ,c =z +1x ,则a ,b ,c 三个数( )A .至少有一个不大于2B .都小于2C .至少有一个不小于2D .都大于2答案 C解析 假设a ,b ,c 三个数都小于2. 则6>a +b +c =x +1y +y +1z +z +1x ≥2x ·1x+2y ·1y+2z ·1z=6, 即6>6,矛盾.所以a ,b ,c 三个数中至少有一个不小于2. 8.设a>0,b>0,求证:lg(1+ab )≤12[lg(1+a)+lg(1+b)].答案 略证明 要证lg(1+ab )≤12[lg(1+a)+lg(1+b)],只需证1+ab ≤(1+a )(1+b ), 即证(1+ab)2≤(1+a)(1+b), 即证2ab ≤a +b , 而2ab ≤a +b 成立,∴lg(1+ab )≤12[lg(1+a)+lg(1+b)].9. 已知x 1,x 2,x 3为正实数,若x 1+x 2+x 3=1,求证:x 22x 1+x 32x 2+x 12x 3≥1.答案 略解析 ∵x 22x 1+x 1+x 32x 2+x 2+x 12x 3+x 3≥2x 22+2x 32+2x 12=2(x 1+x 2+x 3)=2,∴x 22x 1+x 32x 2+x 12x 3≥1. 10.(1)设x 是正实数,求证:(x +1)(x 2+1)(x 3+1)≥8x 3.(2)若x∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3是否仍然成立?如果成立,请给出证明;如果不成立,请举出一个使它不成立的x 的值.答案 (1)略 (2)成立,证明略解析 (1)证明:x 是正实数,由均值不等式,得 x +1≥2x ,x 2+1≥2x,x 3+1≥2x 3.故(x +1)(x 2+1)(x 3+1)≥2x ·2x ·2x 3=8x 3(当且仅当x =1时等号成立). (2)解:若x∈R ,不等式(x +1)(x 2+1)(x 3+1)≥8x 3仍然成立. 由(1)知,当x>0时,不等式成立; 当x≤0时,8x 3≤0,而(x +1)(x 2+1)(x 3+1)=(x +1)2(x 2+1)(x 2-x +1)=(x +1)2(x 2+1)[(x -12)2+34]≥0, 此时不等式仍然成立.11. 已知等差数列{a n }的前n 项和为S n ,a 3=5,S 8=64. (1)求数列{a n }的通项公式; (2)求证:1S n -1+1S n +1>2S n (n≥2,n ∈N *). 答案 (1)a n =2n -1 (2)略解析 (1)设等差数列{a n }的公差为d , 则⎩⎨⎧a 3=a 1+2d =5,S 8=8a 1+28d =64,解得⎩⎨⎧a 1=1,d =2. 故所求的通项公式为a n =2n -1. (2)证明:由(1)可知S n =n 2, 要证原不等式成立,只需证1(n -1)2+1(n +1)2>2n2,只需证[(n +1)2+(n -1)2]n 2>2(n 2-1)2. 只需证(n 2+1)n 2>(n 2-1)2. 只需证3n 2>1.而3n 2>1在n≥1时恒成立, 从而不等式1S n -1+1S n +1>2S n (n≥2,n ∈N *)恒成立.。
2019年高考数学 第七章 不等式、推理与证明 专题25 简单的线性规划考场高招大全.doc
2019年高考数学第七章不等式、推理与证明专题25 简单的线性规划考场高招大全考点55 二元一次不等式(组)表示的区域考场高招1 探求与平面区域相关问题的解题规律1.解读高招2.典例指引1(1)设平面点集A=,B={(x,y)|(x-1)2+(y-1)2≤1},则A∩B所表示的平面图形的面积为.(2)若不等式组表示的平面区域是一个三角形,则(2)不等式组表示的平面区域如图所示(阴影部分).解得A;解得B(1,0).若原不等式组表示的平面区域是一个三角形,则直线x+y=a中的a的取值范围是0<a≤1或a≥.【答案】 (1)(2)(0,1]∪3.亲临考场1.(2013安徽,理9)在平面直角坐标系中,O是坐标原点,两定点A,B满足||=||==2,则点集{P|=λ+μ,|λ|+|μ|≤1,λ,μ∈R}所表示的区域的面积是 ()A.2B.2C.4D.42.(2013北京,理8)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是()A. B.C. D.考点56利用线性规划求目标函数的最值考场高招2 2巧用几何意义解决目标函数最值问题1.解读高招·=b对形如x-a域内的点(x,y)到直型的目标函数(x,y)(=2.典例指引2(1)若x,y满足则z=x+2y的最小值为()A.8B.7C.2D.1(2)(2017河北唐山模拟)设实数x,y满足约束条件则z=x2+y2的最小值为()A. B.10 C.8 D.5(3)若实数x,y满足不等式组则z=|x+2y-4|的最大值为.(4)设x,y满足约束条件若z=的最小值为,则a的值为.(2)作出不等式组表示的平面区域,如图所示,因为z=x2+y2表示区域内的点到原点距离的平方.由图知,当区域内的点与原点的连线与直线3x+y-10垂直时,z=x2+y2取得最小值,所以z min==10,故选B.(3)作出不等式组表示的平面区域,如图中阴影部分所示.z=|x+2y-4|=,即其几何含义为阴影区域内的点到直线x+2y-4=0的距离的倍.由得点B坐标为(7,9),显然点B到直线x+2y-4=0的距离最大,此时z max=21.(4)∵=1+,而表示过点(x,y)与(-1,-1)连线的斜率,易知a>0,∴可作出可行域,如图阴影部分所示.由题意知,的最小值是,即.解得a=1.【答案】 (1)D(2)B(3)21(4)13.亲临考场1(2017课标Ⅱ,理5)设x,y满足约束条件则z=2x+y的最小值是()A.-15B.-9C.1D.92.(2014课标Ⅱ,理9)设x,y满足约束条件则z=2x-y的最大值为()A.10B.8C.3D.23.(2013课标Ⅱ,理9)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a=()A. B. C.1 D.2考点57以可行域为载体与其他知识交汇问题考场高招3 确定最优整数解的方法对数函数的性质及其应用规律1.解读高招方法解读典例指引与可行域的交线相交得到一个小范围的区域2.典例指引3(1)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为()A.12万元B.16万元C.17万元D.18万元(2)某运输公司有12名驾驶员和19名工人,有8辆载质量为10吨的甲型卡车和7辆载质量为6吨的乙型卡车.某天需运往A地至少72吨的货物,派用的每辆车需满载且只运送一次.派用的每辆甲型卡车需配2名工人,运送一次可得利润450元;派用的每辆乙型卡车需配1名工人,运送一次可得利润350元.该公司合理计划当天派用两类卡车的车辆数,可得最大利润z=()A.4 650元B. 4 700元C.4 900元D.5 000元【解析】 (1)假设每天生产甲、乙两种产品分别为x,y吨,由已知得利润z=3x+4y.由线性约束条件画出如图可行域,利用调整优值法(或者检验优值法),可知z在点A(2,3)处取得最大值,此时z max=3×2+4×3=18(万元).【答案】 (1)D(2)C3.亲临考场1.(2016山东,理4)若变量x,y 满足则x2+y2的最大值是()A.4B.9C.10D.122.(2016课标Ⅰ,理16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为元.考场高招4 探求含参线性规划的两个类型的处理规律1.解读高招2.典例指引4(1)(2016河南六市一模)若实数x,y满足使z=ax+y取得最大值的最优解有两个,则m=ax+y+1的最小值为()A.0B.-2C.1D.-1(2)若x,y满足不等式组且y+x的最大值为2,则实数m的值为.【解析】 (1)如图所示,画出不等式组所表示的区域.∵z=ax+y取得最大值的最优解有两个,∴-a=1,即a=-1,∴当x=1,y=0或x=0,y=-1时,z=ax+y=-x+y有最小值-1,∴ax+y+1的最小值是0.故选A.【答案】 (1)A(2)3.亲临考场1.(2017河北石家庄质检)若x,y满足且z=3x-y的最大值为2,则实数m的值为()A. B. C.1 D.22.(2017山西临汾五校联考)已知实数x,y满足若x-2y≥m恒成立,则实数m的取值范围是()A.(-∞,-3]B.(-∞,-4]C.(-∞,6]D.[0,6]。
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。
2019高考数学一轮复习第7章不等式及推理与证明第3课时简单的线性规划课件理
思 考 题 1 (1)(2018·沧 州 七 校 联 考 ) 若 不 等 式 组
x-y≥0, 2x+y≤2, y≥0, 表示的平面区域的形状是三角形,则 a 的取值范围 x+y≤a,
是________.
【解析】 作出不等式组
x2- x+y≥ y≤0, 2,表示的平面区域(中图中阴影 y≥0, 部分).由图知,要使原不等式组表示的平 面区域的形状为三角形,只需动直线 l:x+y=a 在 l1,l2 之间(包 括 l2,不包含 l1)或 l3 上方(包含 l3).故 0<a≤1 或 a≥43.
(2)代数式(x-a)2+(y-b)2 为点(x,y)与点(a,b)距离的平方; yx--ba为点(x,y)与点(a,b)连线的斜率;|Ax+By+C|表示点(x, y)到直线 Ax+By+C=0 的距离的 A2+B2倍.
思考题 2 (1)(2017·课标全国Ⅲ)设 x,y 满足约束条件
3x+2y-6≤0,
授人以渔
题型一 用二元一次不等式(组)表示平面区域
x-y+5≥0, 画出不等式组x+y≥0, 表示的平面区域,并回答
x≤3, 下列问题:
(1)指出 x,y 的取值范围; (2)平面区域内有多少个整点? (3)求所围平面区域的面积.
【思路】 (1)数形结合. (2)整点是指横、纵坐标均为整数的点. 【解析】 (1)不等式 x-y+5≥0 表示直线 x-y+5=0 上及 右下方的平面区域.x+y≥0 表示直线 x+y=0 上及右上方的平 面区域,x≤3 表示直线 x=3 上及左方的平面区域. 所以不等式组xx-+yy+≥50≥,0,
(2)13,131
3 (3)5
(4)[45,2165]
(5)[394,
754 25 ]
高考数学一轮复习 第七章 不等式、推理与证明7
高考数学一轮复习第七章不等式、推理与证明7.6推理与证明考试要求 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单的演绎推理.3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.4.了解反证法的思考过程和特点.知识梳理1.合情推理类型定义特点归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.4.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(4)用反证法证明结论“a>b”时,应假设“a<b”.(×)教材改编题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.2.给出下列命题:“①正方形的对角线相等;②矩形的对角线相等,③正方形是矩形”,按照三段论证明,正确的是()A.①②⇒③B.①③⇒②C.②③⇒①D.以上都不对答案 C解析“矩形的对角线相等”是大前提,“正方形是矩形”是小前提,“正方形的对角线相等”是结论.所以②③⇒①.3.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根.题型一合情推理与演绎推理命题点1归纳推理例1如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断,第n个图形的顶点个数为(n+2)(n+3).命题点2类比推理例2(2022·铜仁质检)在△ABC中,BC⊥AC,AC=a,BC=b,则△ABC的外接圆的半径r=a2+b22,将此结论类比推广到空间中可得:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC=c,则四面体P-ABC的外接球的半径R=________.答案a2+b2+c22解析可以类比得到:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC =c,四面体P-ABC的外接球的半径R=a2+b2+c22.下面进行证明:可将图形补成以P A,PB,PC为邻边的长方体,则四面体P-ABC的外接球即为长方体的外接球,所以半径R=a2+b2+c22.命题点3演绎推理例3下面是小明同学利用三段论模式给出的一个推理过程:①若{a n}是等比数列,则{a n+a n+1}是等比数列(大前提),②若b n=(-1)n,则数列{b n}是等比数列(小前提),③所以数列{b n +b n+1}是等比数列(结论),以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 B解析大前提错误:当a n=(-1)n时,a n+a n+1=0,此时{a n+a n+1}不是等比数列;小前提正确:∵b n=(-1)n,∴b nb n-1=-1n-1n-1=-1(n≥2,n∈N*)为常数,∴数列{b n}是首项为-1,公比为-1的等比数列;结论错误:b n+b n+1=(-1)n+(-1)n+1=0,故数列{b n+b n+1}不是等比数列.教师备选1.观察下列各式:72=49,73=343,74=2 401,…,则72 023的末两位数字为()A.01 B.43 C.07 D.49答案 B解析∵72=49,73=343,74=2 401,75=16 807,76=117 649,78=823 543,…,∴7n(n≥2,n∈N*)的末两位数字具备周期性,且周期为4,∵2 023=4×505+3,∴72 023和73的末两位数字相同,故72 023的末两位数字为43.2.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-n(n<19且n∈N*)B.b1·b2·…·b n=b1·b2·…·b21-n(n<21且n∈N*)C.b1+b2+…+b n=b1+b2+…+b19-n(n<19且n∈N*)D.b1+b2+…+b n=b1+b2+…+b21-n(n<21且n∈N*)答案 B解析在等差数列{a n}中,若s+t=p+q(s,t,p,q∈N*),则a s+a t=a p+a q,若a m=0,则a n+1+a n+2+…+a2m-2-n+a2m-1-n=0,所以a1+a2+…+a n=a1+a2+…+a2m-1-n成立,当m=10时,a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,在等比数列{b n}中,若s+t=p+q(s,t,p,q∈N*),则b s b t=b p b q,若b m=1,则b n+1b n+2·…·b2m-2-n b2m-1-n=1,所以b1b2·…·b n=b1b2·…·b2m-1-n成立,当m=11时,b1b2·…·b n=b1b2·…·b21-n(n<21且n∈N*)成立.3.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C. 思维升华(1)归纳推理问题的常见类型及解题策略①与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号.②与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律.③与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验法验证其真伪性.(2)类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比;数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练1(1)(2022·南昌模拟)已知x>0,不等式x+1x≥2,x+4x2≥3,x+27x3≥4,…,可推广为x+ax n≥n+1,则a的值为()A.n2B.n n C.2n D.22n-2答案 B解析由题意,当分母的指数为1时,分子为11=1;当分母的指数为2时,分子为22=4;当分母的指数为3时,分子为33=27;据此归纳可得x+ax n≥n+1中,a的值为n n.(2)类比是学习探索中一种常用的思想方法,在等差数列与等比数列的学习中我们发现:只要将等差数列的一个关系式中的运算“+”改为“×”,“-”改为“÷”,正整数改为正整数指数幂,相应地就可以得到与等比数列的一个形式相同的关系式,反之也成立.在等差数列{a n}中有a n -k +a n +k =2a n (n >k ),借助类比,在等比数列{b n }中有________.答案 b n -k b n +k =b 2n (n >k )解析 由题设描述,将左式加改乘,则相当于a n -k +a n +k 改写为b n -k b n +k ;将右式正整数2改为指数,则相当于2a n 改写为b 2n ,∴等比数列{b n }中有b n -k b n +k =b 2n (n >k ).(3)(2022·银川模拟)一道四个选项的选择题,赵、钱、孙、李各选了一个选项,且选的恰好各不相同.赵说:“我选的是A.”钱说:“我选的是B ,C ,D 之一.”孙说:“我选的是C.”李说:“我选的是D.”已知四人中只有一人说了假话,则说假话的人可能是________.答案 孙、李解析 赵不可能说谎,否则由于钱不选A ,则孙和李之一选A ,出现两人说谎. 钱不可能说谎,否则与赵同时说谎;所以可能的情况是赵、钱、孙、李选择的分别为(A ,C ,B ,D)或(A ,D ,C ,B),所以说假话的人可能是孙、李.题型二 直接证明与间接证明命题点1 综合法例4 设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13; (2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13, 当且仅当“a =b =c ”时等号成立.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 当且仅当“a 2=b 2=c 2”时等号成立,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 命题点2 分析法例5 用分析法证明:当x ≥0,y ≥0时,2y ≥x +2y -x .证明 要证不等式成立, 只需证x +2y ≥x +2y 成立,即证(x +2y )2≥(x +2y )2成立,即证x +2y +22xy ≥x +2y 成立, 即证2xy ≥0成立,因为x ≥0,y ≥0,所以2xy ≥0,所以原不等式成立.命题点3 反证法例6 已知非零实数a ,b ,c 两两不相等.证明:三个一元二次方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都只有一个实根.证明 假设三个方程都只有一个实根,则⎩⎪⎨⎪⎧ b 2-ac =0, ①c 2-ab =0, ②a 2-bc =0. ③①+②+③,得a 2+b 2+c 2-ab -bc -ca =0,④ ④化为(a -b )2+(b -c )2+(c -a )2=0.⑤ 于是a =b =c ,这与已知条件相矛盾.因此,所给三个方程不可能都只有一个实根. 教师备选(2022·贵州质检)请在综合法、分析法、反证法中选择两种不同的方法证明:(1)如果a >0,b >0,则lg a +b 2≥lg a +lg b 2; (2)22-7>10-3.解 (1)方法一 (综合法)因为a >0,b >0,所以a +b 2≥ab , 所以lg a +b 2≥lg ab . 因为lg ab =12lg(ab )=12(lg a +lg b ), 所以lg a +b 2≥lg a +lg b 2. 方法二 (分析法)要证lg a +b 2≥lg a +lg b 2, 即证lg a +b 2≥12lg(ab )=lg ab , 即证a +b 2≥ab , 由a >0,b >0,上式显然成立,则原不等式成立.(2)方法一 (分析法)要证22-7>10-3,即证22+3>10+7,即证(22+3)2>(10+7)2.即证17+122>17+270,即证122>270,即证62>70.因为(62)2=72>(70)2=70,所以62>70成立.由上述分析可知22-7>10-3成立.方法二 (综合法)由22-7=122+7,且10-3=110+3, 由22<10,7<3, 可得22+7<10+3, 可得122+7>110+3, 即22-7>10-3成立.思维升华 (1)综合法证题从已知条件出发,分析法从要证结论入手,证明一些复杂问题,可采用两头凑的方法.(2)反证法适用于不好直接证明的问题,应用反证法证明时必须先否定结论.跟踪训练2 (1)已知a >0,b >0,求证:a +b 2≥2ab a +b; (2)已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.证明 (1)∵a >0,b >0,要证a +b 2≥2ab a +b, 只要证(a +b )2≥4ab ,只要证(a +b )2-4ab ≥0,即证a 2-2ab +b 2≥0,而a 2-2ab +b 2=(a -b )2≥0恒成立,故a +b 2≥2ab a +b成立. (2)假设a ,b ,c 不全是正数,即至少有一个不是正数,不妨先设a ≤0,下面分a =0和a <0两种情况讨论,如果a =0,则abc =0与abc >0矛盾,所以a =0不可能,如果a <0,那么由abc >0可得,bc <0,又因为a +b +c >0,所以b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这和已知ab +bc +ca >0相矛盾,因此,a <0也不可能,综上所述,a >0,同理可证b >0,c >0,所以原命题成立.课时精练1.指数函数都是增函数(大前提),函数y =⎝⎛⎭⎫1e x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫1e x 是增函数(结论).上述推理错误的原因是( )A .小前提不正确B .大前提不正确C .推理形式不正确D .大、小前提都不正确答案 B解析 大前提错误.因为指数函数y =a x (a >0,且a ≠1)在a >1时是增函数,而在0<a <1时为减函数.2.(2022·大庆联考)用反证法证明命题:“若a 2+b 2+c 2+d 2=0,则a ,b ,c ,d 都为0”.下列假设中正确的是( )A .假设a ,b ,c ,d 都不为0B .假设a ,b ,c ,d 至多有一个为0C .假设a ,b ,c ,d 不都为0D .假设a ,b ,c ,d 至少有两个为0答案 C解析 需假设a ,b ,c ,d 不都为0.3.若一个带分数的算术平方根等于带分数的整数部分乘以分数部分的算术平方根,则称该带分数为“穿墙数”,例如223=223.若一个“穿墙数”的整数部分等于log 28,则分数部分等于( )A.37B.49C.38D.716答案 C解析 因为log 28=3,所以可设这个“穿墙数”为3+n m, 则3+n m =3n m , 等式两边平方得3+n m =9n m , 即n m =38. 4.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④答案 C解析 ①为类比推理,从特殊到特殊,正确;②④为归纳推理,从特殊到一般,正确;③不符合类比推理和归纳推理的定义,错误.5.(2022·普宁模拟)有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么丁拿到卡片上的数字为( )A .1B .2C .3D .4答案 C解析 乙、丙、丁所说为假⇒甲拿4,甲、乙所说为假⇒丙拿1,甲所说为假⇒乙拿2, 故甲、乙、丙、丁4个人拿到的卡片上的数字依次为4,2,1,3.6.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第2 023项是( )A .61B .62C .63D .64答案 D解析 由规律可得,数字相同的数的个数依次为1,2,3,4,…,n .由n n +12≤2 023,得n ≤63,且n ∈N *, 当n =63时,共有63×642=2 016项, 则第2 017项至第2 080项均为64,即第2 023项是64.7.观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=________.答案 29解析 观察发现,1+3=4,3+4=7,4+7=11,又7+11=18,11+18=29,∴a 7+b 7=29.8.若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积S =12(a +b +c )r ,利用类比思想:若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V =________.答案 13R (S 1+S 2+S 3+S 4) 解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.9.选用恰当的证明方法,证明下列不等式.(1)证明:6+7>22+5;(2)设a ,b ,c 都是正数,求证:bc a +ac b +ab c≥a +b +c . 证明 (1)要证6+7>22+5,只需证明(6+7)2>(22+5)2,即证明242>240,也就是证明42>40,式子显然成立,故原不等式成立.(2)2⎝⎛⎭⎫bc a +ac b +ab c =⎝⎛⎭⎫bc a +ac b +⎝⎛⎭⎫bc a +ab c +⎝⎛⎭⎫ac b +ab c≥2abc 2ab +2acb 2ac +2bca 2bc=2c +2b +2a , 所以bc a +ac b +ab c≥a +b +c ,当且仅当a =b =c 时,等号成立. 10.若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立. 解 假设1+x y <2和1+y x<2都不成立, 即1+x y ≥2和1+y x≥2同时成立. ∵x >0且y >0,∴1+x ≥2y,1+y ≥2x .两式相加得2+x +y ≥2x +2y ,即x +y ≤2.此与已知条件x +y >2相矛盾, ∴1+x y <2和1+y x<2中至少有一个成立.11.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,类比上述解决方法,则正数1+11+11+…等于( ) A.1+32B.1+52C.-1+52D.-1+32答案 B解析 依题意1+1x=x ,其中x 为正数, 即x 2-x -1=0,解得x =1+52(负根舍去). 12.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( )A .9B .10C .11D .12答案 B解析 因为底数为2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,所以m 3有m 个奇数,则从底数是2到底数是m 一共有2+3+4+…+m =2+m m -12个奇数,又2n +1=103时,有n =51,则奇数103是从3开始的第52个奇数, 因为9+29-12=44,10+210-12=54,所以第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m =10.13.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19,…,则在这个子数列中第2 022个数是( )A .3 976B .3 978C .3 980D .3 982答案 C解析 由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了1+2+3+…+n =n n +12个数,且第n 次取的最后一个数为n 2, 当n =63时,63×63+12=2 016, 即前63次共取了2 016个数,第63次取的数都为奇数,并且最后一个数为632=3 969, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,3 978,3 980,…,所以第2 022个数是3 980.14.(2022·平顶山模拟)某市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周六和周日不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可推测出今天是星期________.答案 四解析 由题意,A ,C 只能在每周前三天限行,又昨天B 限行,E 车明天可以上路,因此今天不能是一周的前3天,因此今天是周四.这样周一、周二A ,C 限行,周三B 限行,周四E 限行,周五D 限行.满足题意.15.已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a ≥-2,则下列结论成立的是( ) A .a ,b ,c 同号 B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定答案 A解析 由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且c a <0,则-b a>0,-c a>0,⎝⎛⎭⎫-b a +⎝⎛⎭⎫-c a ≥2⎝⎛⎭⎫-b a ·⎝⎛⎭⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a >0且c a>0,即a ,b ,c 同号.16.已知α,β为锐角,求证:1cos 2α+1sin 2αsin 2βcos 2β≥9. 解 要证1cos 2α+1sin 2αsin 2βcos 2β≥9, 只需证1cos 2α+4sin 2αsin 22β≥9, ① 考虑到sin 22β≤1,可知4sin 2αsin 22β≥4sin 2α, 因而要证①应先证1cos 2α+4sin 2α≥9, 即证sin 2α+cos 2αcos 2α+4sin 2α+cos 2αsin 2α≥9,又sin2α+cos2αcos2α+4sin2α+cos2αsin2α=sin2αcos2α+4cos2αsin2α+5≥9,所以原不等式成立.。
高考数学一轮总复习第7章不等式推理与证明第3节简单的线性规划高考AB卷理
【2019最新】精选高考数学一轮总复习第7章不等式推理与证明第3节简单的线性规划高考AB卷理简单的线性规划问题1.(2013·全国Ⅱ,9)已知a>0,x,y满足约束条件若z=2x+y的最小值为1,则a等于( )A. B.C.1D.2解析作出约束条件表示的可行域如图所示,是△ABC的内部及边界.由目标函数,得y=-2x+z,当直线l:y=-2x+z过点B(1,-2a)时,目标函数z=2x+y的最小值为1.∴2-2a=1,则a=.答案B2.(2016·全国Ⅲ,13)若x,y满足约束条件则z=x+y的最大值为________.解析满足约束条件的可行域为以A(-2,-1),B(0,1),C为顶点的三角形内部及边界,过C时取得最大值为.答案323.(2016·全国Ⅰ,16)某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.解析设生产A产品x件,B产品y件,根据所耗费的材料要求、工时要求等其他限制条件,得线性约束条件为目标函数z=2 100x +900y.作出可行域为图中的四边形,包括边界,顶点为(60,100),(0,200),(0,0),(90,0),在(60,100)处取得最大值,zmax=2 100×60+900×100=216 000(元).答案216 0004.(2015·全国Ⅰ,15)若x,y满足约束条件则的最大值为________.解析约束条件下的可行域如下图,由=,则最大值为3.答案35.(2014·大纲全国,14)设x、y满足约束条件则z=x+4y的最大值为________.解析作出约束条件下的平面区域,如图所示.由图可知当目标函数z=x+4y经过点B(1,1)时取得最大值,且最大值为1+4×1=5.答案5与线性规划有关的综合性问题6.(2014·全国Ⅰ,9)不等式组的解集记为D.有下面四个命题:p1:∀(x,y)∈D,x+2y≥-2,p2:∃(x,y)∈D,x+2y≥2,p3:∀(x,y)∈D,x+2y≤3,p4:∃(x,y)∈D,x+2y≤-1.其中的真命题是( )A.p2,p3B.p1,p4C.p1,p2D.p1,p3解析画出可行域如图中阴影部分所示,由图可知,当目标函数z =x+2y经过可行域内的点A(2,-1)时,取得最小值0,故x+2y≥0,因此p1,p2是真命题,选C.答案C简单的线性规划问题1.(2015·广东,6)若变量x,y满足约束条件则z=3x+2y的最小值为( )A. B.6C. D.4解析不等式组所表示的可行域如下图所示,由z=3x+2y得y=-x+,依题当目标函数直线l:y=-x+经过A时,z取得最小值即zmin=3×1+2×=,故选C.答案C2.(2015·北京,2)若x,y满足则z=x+2y的最大值为( )A.0B.1C.D.2解析可行域如图所示.目标函数化为y=-x+z,当直线y=-x+z,过点A(0,1)时,z取得最大值2.答案D3.(2015·福建,5)若变量x,y满足约束条件则z=2x-y的最小值等于( )A.-B.-2C.-D.2解析如图,可行域为阴影部分,线性目标函数z=2x-y可化为y =2x-z,由图形可知当y=2x-z过点时z最小,zmin=2×(-1)-=-,故选A.答案A4.(2015·山东,6)已知x,y满足约束条件若z=ax+y的最大值为4,则a=( )A.3B.2C.-2D.-3解析不等式组表示的平面区域如图阴影部分所示.易知A(2,0),由得B(1,1).由z=ax+y,得y=-ax+z.∴当a=-2或a=-3时,z=ax+y在O(0,0)处取得最大值,最大值为zmax=0,不满足题意,排除C,D选项;当a=2或3时,z =ax+y在A(2,0)处取得最大值,∴2a=4,∴a=2,排除A,故选B.答案B5.(2015·陕西,10)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元C.17万元D.18万元解析设甲、乙的产量分别为x吨,y吨,由已知可得⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x≥0,y≥0,目标函数z =3x +4y ,线性约束条件表示的可行域如图阴影部分所示:可得目标函数在点A 处取到最大值. 由得A(2,3).则zmax =3×2+4×3=18(万元). 答案 D6.(2014·广东,3)若变量x ,y 满足约束条件且z =2x +y 的最大值和最小值分别为m 和n ,则m -n =( ) A.5 B.6 C.7D.8解析 作出可行域(如图中阴影部分所示)后,结合目标函数可知,当直线y =-2x +z 经过点A 时,z 的值最大,由⇒则m =zmax =2×2-1=3.当直线y =-2x +z 经过点B 时,z 的值最小,由⇒则n =zmin =2×(-1)-1=-3,故m -n =6. 答案 B7.(2014·安徽,5)x ,y 满足约束条件若z =y -ax 取得最大值的最优解不唯一,则实数a 的值为( ) A.或-1 B.2或 C.2或1D.2或-1解析 法一 由题中条件画出可行域,可知A(0,2),B(2,0),C(-2,-2),则zA =2,zB =-2a ,zC =2a -2,要使目标函数取得最大值的最优解不唯一,只要zA =zB>zC 或zA =zC>zB 或zB =zC>zA ,解得a =-1或a =2.法二目标函数z=y-ax可化为y=ax+z,令l0:y=ax,平移l0,则当l0∥AB或l0∥AC时符合题意,故a=-1或a=2.答案D8.(2016·山东,4)若变量x,y满足则x2+y2的最大值是( )A.4B.9C.10D.12解析满足条件的可行域如图阴影部分(包括边界),x2+y2是可行域上动点(x,y)到原点(0,0)距离的平方,显然,当x=3,y=-1时,x2+y2取最大值,最大值为10.故选C.答案C9.(2016·北京,2)若x,y满足则2x+y的最大值为( )A.0B.3C.4D.5解析不等式组表示的可行域如图中阴影部分所示.令z=2x+y,则y=-2x+z,作直线2x+y=0并平移,当直线过点A时,截距最大,即z取得最大值,由得所以A点坐标为(1,2),可得2x+y 的最大值为2×1+2=4.答案C10.(2014·湖南,14)若变量x,y满足约束条件且z=2x+y的最小值为-6,则k=________.解析画出可行域(图略),由题意可知不等式组表示的区域为一三角形,平移参照直线2x+y=0,可知在点(k,k)处z=2x+y取得最小值,故zmin=2k+k=-6.解得k=-2.答案-2与线性规划有关的综合性问题11.(2016·四川,7)设p:实数x,y满足(x-1)2+(y-1)2≤2,q:实数x,y满足则p是q的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析如图,(x-1)2+(y-1)2≤2①表示圆心为(1,1),半径为的圆内区域所有点(包括边界);②表示△ABC内部区域所有点(包括边界).实数x,y满足②则必然满足①,反之不成立.则p是q的必要不充分条件.故选A.答案A12.(2014·山东,9)已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时,a2+b2的最小值为( )A.5B.4C. D.2解析法一不等式组表示的平面区域如图所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a+b=2,两端平方得4a2+b2+4ab=20,又4ab=2×a×2b≤a2+4b2,所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值为4,当且仅当a=2b,即b=,a=时等号成立.法二把2a+b=2看作平面直角坐标系aOb中的直线,则a2+b2的几何意义是直线上的点与坐标原点距离的平方,显然a2+b2的最小值是坐标原点到直线2a+b=2距离的平方,即=4.答案B13.(2013·北京,8)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0-2y0=2,求得m的取值范围是( )A. B.⎝ ⎛⎭⎪⎫-∞,13 C.D.⎝ ⎛⎭⎪⎫-∞,-53 解析 图中阴影部分表示可行域,要求可行域内包含y =x -1上的点,只需要可行域的边界点(-m ,m)在y =x -1下方,也就是m<-m -1,即m<-.故选C. 答案 C14.(2013·浙江,13)设z =kx +y ,其中实数x ,y 满足若z 的最大值为12,则实数k =________.解析 约束条件所表示的可行域为如图所示的△ABC,其中点A(4,4),B(0,2),C(2,0).目标函数z =kx +y ,化为y =-kx +z.当-k≤即k≥-时,目标函数z =kx +y ,在点A(4,4)取得最大值12,故4k +4=12,k =2,满足题意;当-k>即k<-时,目标函数z =kx +y 在点B(0,2)取得最大值12,故k·0+2=12,无解,综上可知,k =2. 答案 2。
2019高考数学一轮复习 第7章 不等式及推理与证明 第3课时 简单的线性规划练习 理
第3课时 简单的线性规划1.(2018·沈阳四校联考)下列各点中,与点(1,2)位于直线x +y -1=0的同一侧的是( ) A .(0,0) B .(-1,1) C .(-1,3) D .(2,-3)答案 C解析 点(1,2)使x +y -1>0,点(-1,3)使x +y -1>0,所以此两点位于x +y -1=0的同一侧.故选C. 2.不等式(x +2y +1)(x -y +4)≤0表示的平面区域为()答案 B解析 方法一:可转化为①⎩⎪⎨⎪⎧x +2y +1≥0,x -y +4≤0或②⎩⎪⎨⎪⎧x +2y +1≤0,x -y +4≥0.由于(-2,0)满足②,所以排除A ,C ,D 选项.方法二:原不等式可转化为③⎩⎪⎨⎪⎧x +2y +1≥0,-x +y -4≥0或④⎩⎪⎨⎪⎧x +2y +1≤0,-x +y -4≤0.两条直线相交产生四个区域,分别为上下左右区域,③表示上面的区域,④表示下面的区域,故选B.3.(2017·天津,理)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y≥0,x +2y -2≥0,x ≤0,y ≤3,则目标函数z =x +y 的最大值为( )A.23 B .1 C.32 D .3答案 D解析 作出约束条件所表示的可行域如图中阴影部分所示,由z =x +y 得y =-x +z ,作出直线y =-x ,平移使之经过可行域,观察可知,最大值在B(0,3)处取得,故z max =0+3=3,选项D 符合.2好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析4.设关于x ,y 的不等式组⎩⎪⎨⎪⎧2x -y +1>0,x +m<0,y -m>0,表示的平面区域内存在点P(x 0,y 0),满足x 0-2y 0=2,则m 的取值范围是( ) A .(-∞,43)B .(-∞,13)C .(-∞,-23)D .(-∞,-53)答案 C解析 作出可行域如图.图中阴影部分表示可行域,要求可行域包含y =12x -1的上的点,只需要可行域的边界点(-m ,m)在y =12x -1下方,也就是m<-12m -1,即m<-23.5.(2016·北京,理)若x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0,则2x +y 的最大值为( )A .0B .3C .4D .5答案 C解析 不等式组⎩⎪⎨⎪⎧2x -y≤0,x +y≤3,x ≥0表示的可行域如图中阴影部分所示(含边界),由⎩⎪⎨⎪⎧2x -y =0,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,故当目标函数z =2x +y 经过点A(1,2)时,z 取得最大值,z max =2×1+2=4.故选C.36.(2018·西安四校联考)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,则目标函数z =y -2x 的最小值为( )A .-7B .-4C .1D .2答案 A解析 画出由x ,y 满足的约束条件⎩⎪⎨⎪⎧3x +y -6≥0,x -y -2≤0,y -3≤0,如图所示,得它们的交点分别为A(2,0),B(5,3),C(1,3).可知z =y -2x 过点B(5,3)时,z 最小值为3-2×5=-7.7.(2017·贵阳监测)已知实数x ,y 满足:⎩⎪⎨⎪⎧x -2y +1≥0,x<2,x +y -1≥0,则z =2x -2y -1的取值范围是( )A .[53,5]B .[0,5]C .[53,5)D .[-53,5)答案 D解析 画出不等式组所表示的区域,如图中阴影部分所示,作直线l :2x -2y -1=0,平移l 可知2×13-2×23-1≤z<2×2-2×(-1)-1,即z 的取值范围是[-53,5).8.(2017·南昌调研)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,则z =|x -3y|的最大值为( )A .10B .84好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析C .6D .4答案 B解析 不等式组⎩⎪⎨⎪⎧y≥x,x +3y≤4,x ≥-2,所表示的平面区域如图中阴影部分所示.当平移直线x -3y =0过点A 时,m =x -3y 取最大值; 当平移直线x -3y =0过点C 时,m =x -3y 取最小值.由题意可得A(-2,-2),C(-2,2),所以m max =-2-3×(-2)=4,m min =-2-3×2=-8,所以-8≤m≤4,所以|m|≤8,即z max =8.9.(2014·安徽,理)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则实数a的值为( ) A.12或-1 B .2或12C .2或1D .2或-1答案 D解析 作出约束条件满足的可行域,根据z =y -ax 取得最大值的最优解不唯一,通过数形结合分析求解.如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a>0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2;当a<0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.10.(2015·福建)变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,mx -y≤0,若z =2x -y 的最大值为2,则实数m 等于( )A .-2B .-1C .1D .2答案 C解析 如图所示,目标函数z =2x -y 取最大值2即y =2x -2时,画出⎩⎪⎨⎪⎧x +y≥0,x -2y +2≥0,表示的区域,由于mx5-y≤0过定点(0,0),要使z =2x -y 取最大值2,则目标函数必过两直线x -2y +2=0与y =2x -2的交点A(2,2),因此直线mx -y =0过点A(2,2),故有2m -2=0,解得m =1.11.(2017·泉州质检)已知O 为坐标原点,A(1,2),点P 的坐标(x ,y)满足约束条件⎩⎪⎨⎪⎧x +|y|≤1,x ≥0,则z =OA →·OP→的最大值为( ) A .-2 B .-1 C .1 D .2答案 D解析 作出可行域如图中阴影部分所示,易知B(0,1),z =OA →·OP →=x +2y ,平移直线x +2y =0,显然当直线z =x +2y 经过点B 时,z 取得最大值,且z max =2.故选D.12.已知实数x ,y 满足条件⎩⎪⎨⎪⎧(x -3)2+(y -2)2≤1,x -y -1≥0,则z =yx -2的最小值为( )A .3+ 2B .2+ 2 C.34 D.43答案 C解析 不等式组表示的可行域如图阴影部分所示.目标函数z =y x -2=y -0x -2表示在可行域取一点与点(2,0)连线的斜率,可知过点(2,0)作半圆的切线,切线的斜率为z =y x -2的最小值,设切线方程为y =k(x -2),则A 到切线的距离为1,故1=|k -2|1+k2.解得k =34.13.(2018·苏州市高三一诊)实数x ,y 满足⎩⎪⎨⎪⎧y≥0,x -y≥0,2x -y -2≤0,则使得z =2y -3x 取得最小值的最优解是( )A .(1,0)B .(0,-2)C .(0,0)D .(2,2)答案 A解析 约束条件所表示的可行域为三角形,其三个顶点的坐标分别为(0,0),(1,0),(2,2),将三个顶点的坐标分别代入到目标函数z =2y -3x中,易得在(1,0)处取得最小值,故取得最小值的最优解为(1,0).6好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析14.(2018·湖北宜昌市)设x ,y 满足约束条件⎩⎪⎨⎪⎧y -x≤1,x +y≤3,y ≥m ,若z =x +3y 的最大值与最小值的差为7,则实数m=( ) A.32 B .-32C.14 D .-14答案 C解析 作出不等式组表示的平面区域(图略),由图易得目标函数z =x +3y 在点(1,2)处取得最大值;z max =1+3×2=7,在点(m -1,m)处取得最小值,z min =m -1+3m =4m -1.又由题知7-(4m -1)=7,解得m =14,故选C.15.(2018·兰州模拟)已知M(-4,0),N(0,-3),P(x ,y)的坐标x ,y 满足⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12,则△PMN 面积的取值范围是( ) A .[12,24] B .[12,25] C .[6,12] D .[6,252]答案 C解析 作出不等式组⎩⎪⎨⎪⎧x≥0,y ≥0,3x +4y≤12表示的平面区域如图中阴影部分所示.又过点M(-4,0),N(0,-3)的直线的方程为3x +4y +12=0,而它与直线3x +4y =12平行,其距离d =|12+12|32+42=245,所以当P 点在原点O 处时,△PMN 的面积最小,其面积为△OMN 的面积,此时S △OMN =12×3×4=6;当P 点在线段AB 上时,△PMN 的面积最大,为12×32+42×245=12,故选C.16.(2017·陕西质检一)点(x ,y)满足不等式|x|+|y|≤1,Z =(x -2)2+(y -2)2,则Z 的最小值为________. 答案 92解析 |x|+|y|≤1所确定的平面区域如图中阴影部分所示,7目标函数Z =(x -2)2+(y -2)2的几何意义是点(x ,y)到点P(2,2)距离的平方,由图可知Z 的最小值为点P(2,2)到直线x +y =1距离的平方,即为(|2+2-1|2)2=92.17.已知整数x ,y 满足⎩⎪⎨⎪⎧2x -y≤0,x -3y +5≥0,则z =4-x·(12)y 的最小值为________.答案116解析 z =4-x ·(12)y =2-2x ·2-y =2-2x -y.设m =-2x -y ,要使z 最小,则只需m 最小.作出不等式组所表示的平面区域如图中阴影部分所示.由m =-2x -y 得y =-2x -m ,平移可知当直线y =-2x -m 经过点B 时,m 最小,由⎩⎪⎨⎪⎧2x -y =0,x -3y +5=0,解得⎩⎪⎨⎪⎧x =1,y =2,即B(1,2),此时m =-2-2=-4,所以z =4-x ·(12)y 的最小值为2-4=116.18.某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料为A ,B 两种规格金属板,每张面积分别为2 m 2与3 m 2.用A 种规格金属板可造甲种产品3个、乙种产品5个;用B 种规格金属板可造甲、乙两种产品各6个.问A ,B 两种规格金属板各取多少张才能完成计划,并使总用料面积最省? 答案 A ,B 两种金属板各取5张.解析 设A ,B 两种金属板各取x 张,y 张,总用料面积为z , 则约束条件为⎩⎪⎨⎪⎧3x +6y≥45,5x +6y≥55,x ,y ∈N ,目标函数z =2x +3y.作出不等式组的可行域,如图所示.将z =2x +3y 化成y =-23x +z 3,得到斜率为-23,在y 轴上截距为z3,且随z 变化的一组平行直线.当直线z =2x +3y 经过可行域上点M 时,截距最小,z 取得最小值.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得点M 的坐标为(5,5).此时z min =2×5+3×5=25.所以两种金属板各取5张时,总用料面积最省.8好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析1.(2018·兰州市高考诊断考试)设变量x ,y 满足不等式组⎩⎪⎨⎪⎧x +y≥3,x -y≥-1,2x -y≤3,则x 2+y 2的最小值是( )A.322B.92 C. 5 D .2 5答案 B解析 约束条件所表示的可行域为一个三角形,而目标函数可视为可行域内的点到原点的距离的平方,其距离的最小值为原点到直线x +y =3的距离.∵原点到直线x +y =3的距离为32=322,∴x 2+y 2的最小值为92. 2.(课本习题改编)不等式x -2y +6>0表示的区域在直线x -2y +6=0的( ) A .左下方 B .左上方 C .右下方 D .右上方答案 C解析 画出直线及区域范围,如:当B<0时,Ax +By +C>0表示直线Ax +By +C =0的下方区域;Ax +By +C<0表示直线Ax +By +C =0的上方区域.故选C.3.(2014·安徽,文)不等式组⎩⎪⎨⎪⎧x +y -2≥0,x +2y -4≤0,x +3y -2≥0表示的平面区域的面积为________.答案4解析 不等式组表示的平面区域如图阴影部分所示.由⎩⎪⎨⎪⎧x +3y -2=0,x +2y -4=0,得A(8,-2). 由x +y -2=0,得B(0,2).又|CD|=2, 故S 阴影=12×2×2+12×2×2=4.4.(2016·课标全国Ⅲ,理)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x -2y≤0,x +2y -2≤0,则z =x +y 的最大值为________.答案 329解析 约束条件对应的平面区域是以点(1,12)、(0,1)和(-2,-1)为顶点的三角形,当目标函数y =-x +z经过点(1,12)时,z 取得最大值32.5.(2017·沈阳质检)在满足不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,的平面点集中随机取一点M(x 0,y 0),设事件A 为“y 0<2x 0”,那么事件A 发生的概率是( ) A.14 B.34 C.13 D.23答案 B解析 不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,表示的平面区域的面积为12×(1+3)×2=4;不等式组⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≤0,y ≥0,y ≤2x ,表示的平面区域的面积为12×3×2=3,因此所求的概率等于34,选B.6.(2015·陕西)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元 C .17万元 D .18万元答案 D解析 设该企业每天生产甲、乙两种产品分别为x ,y 吨,则利润z =3x +4y.由题意可列⎩⎪⎨⎪⎧3x +2y≤12,x +2y≤8,x ≥0,y ≥0,其表示如图阴影部分区域:.当直线3x +4y -z =0过点A(2,3)时,z 取得最大值,所以z max =3×2+4×3=18,故选D 项.10好教育云平台——教育因你我而变2017年高考“最后三十天”专题透析7.(2015·安徽,文)已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y≥0,x +y -4≤0,y ≥1,则z =-2x +y 的最大值是( )A .-1B .-2C .-5D .1答案 A解析 作出满足条件的可行域,如图中阴影部分所示,易知在点A(1,1)处,z 取得最大值,故z max =-2×1+1=-1.8.(2016·课标全国Ⅱ,文)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.答案 -5解析 通性通法:作出可行域,如图中阴影部分所示,由z =x -2y 得y =12x -12z ,作直线y =12x 并平移,观察可知,当直线经过点A(3,4)时,z min =3-2×4=-5.光速解法:因为可行域为封闭区域,所以线性目标函数的最值只可能在边界点处取得,易求得边界点分别为(3,4),(1,2),(3,0),依次代入目标函数可求得z min =-5. 9.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,x +y -4≥0,2x -y -5≤0,目标函数z =y -ax(a∈R ).若z 取最大值时的唯一最优解是(1,3),则实数a 的取值范围是________. 答案 (1,+∞)解析 作出可行域,可行域为三条直线所围成的区域,则它的最大值在三条直线的交点处取得,三个交点分别为(1,3),(7,9),(3,1),所以⎩⎪⎨⎪⎧3-a>9-7a ,3-a>1-3a.所以a>1.11 10.(2018·安徽安庆模拟)若实数x ,y 满足⎩⎪⎨⎪⎧y -2x≤-2,y ≥1,x +y≤4,则z =x 2+y 2xy 的取值范围是________. 答案 [2,103] 解析 因为z =x 2+y 2xy =x y +y x ,所以令k =y x ,则z =k +1k,其中k 表示可行域内的点与坐标原点连线的斜率.根据不等式组画出可行域,则A(2,2),B(3,1),C(32,1),如图.由图形可知,13≤k ≤1,根据函数z =1k +k 的单调性得2≤z≤103.所以z∈[2,103].。
2020版高考数学一轮总复习第七单元不等式与推理证明课时3简单的线性规划问题课件文新人教A版
考点三·线性规划在实际问题中的应用
【例 3】某企业生产甲、乙两种产品均需用 A,B 两种
原料,已知生产 1 吨每种产品所需原料及每天原料的可用限
额如表所示.如果生产 1 吨甲、乙产品可获利润分别为 3
万元、4 万元,则该企业每天可获得最大利润为( )
甲 乙 原料限额
A(吨) 3 2 12
B(吨) 1 2 8
D.(2,-1)
解:将上述各点代入不等式检验,若满足不等式,则点
在所表示的平面区域内,否则,不在.
因为(0,0),(-1,1),(2,-1)都满足不等式,所以这些
点都在所表示的平面区域内,而(-1,3)不满足不等式,故选 C.
答案:C
2.如图所示,不等式 2x-y<0 表示的平面区域是( )
解:直线定界,因为 2x-y=0 不经过(2,1)点排除 D,2x -y<0 不包括边界,排除 A,
所以 S 阴=21×4-43×1=34.
答案:C
4.目标函数 z=x+2y,将其看成直线方程时,z 的意
义是( )
A.该直线的截距
B.该直线的纵截距
C.该直线纵截距的 2 倍 D.该直线纵截距的21 解:将 z=x+2y 化为 y=-12x+2z,可知 z=2b,
表示该直线的纵截距的 2 倍.
则yx的
最大值为____________.
解:画出可行域如图阴影所示, 因为yx表示过点(x,y)与原点(0,0)的直线的斜率, 所以点(x,y)在点 A 处时yx最大. 由xx= +1y-,4=0, 得xy= =13,. 所以 A(1,3). 所以yx的最大值为 3. 答案:3
点评:求非线性目标函数的最值问题,关键是从目标函 数联想到相对应的几何意义,常见的是两点连线的斜率和两 点间的距离,在此基础上再利用数形结合的思想方法进行求 解.
2020版高考文科数学第一轮复习课件:第七章 不等式、推理与证明7-3
当且仅当12x=5x0,即 x=10 时,取“=”. 故销售量至少应达到443万件时,才能使技术革新后的销售收 入等于原销售收入与总投入之和.
利用基本不等式求解实际问题的 2 个注意点 (1)利用基本不等式解决实际问题时,应明确其中的数量关 系,并引入变量,依题意列出相应的函数关系式,然后用基本不 等式求解. (2)在求所列函数的最值时,若用基本不等式时,等号取不到, 可利用函数单调性求解.
[对点训练]
1.(2018·天津月考)已知 a,b 是正数,且 4a+3b=6,则 a(a
+3b)的最大值是( )
9 A.8
9 B.4
C.3
D.9
[解析] ∵a>0,b>0,4a+3b=6,∴a(a+3b)=13·3a(a+3b)≤13
3a+a2+3b2=13×622=3,当且仅当 3a=a+3b,即 a=1,b=23时, a(a+3b)的最大值是 3.故选 C.
[答案] (1)4 (2)6
(1) 利用基本( 均值)不等式时一定要注意应用的前提“一 正”“二定”“三相等”.所谓“一正”是指正数,“二定”是 指应用基本(均值)不等式求最值时,和或积为定值,“三相等” 是指满足等号成立的条件.
(2)在利用基本(均值)不等式求最值时,要根据式子的特征灵 活变形,配凑出积、和为常数的形式,然后再利用基本(均值)不 等式.
[答案] C
2.若实数 a,b 满足1a+2b= ab,则 ab 的最小值为(
)
A. 2 B.2 C.2 2 D.4
[解析] 解法一:由已知得1a+2b=b+ab2a= ab,且 a>0,b>0,
∴ab ab=b+2a≥2 2 ab,当且仅当 a=4 2,b=24 2时“=” 成立.∴ab≥2 2.故选 C.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在 y 轴上的截距从- 1 变化到 1,动直线 x+ y= a 扫过 A中的那部分区域是阴影部分 .
1 2 21
1
又△ AGF≌△ BDE, BE= 1,S△ = BDE 2× 2 × 2 = 4,S△ = AOB 2×2×2= 2,
13 ∴阴影面积为 2-2× 4= 2.
3 答案 2
专项提升测试
C.3
D.4
解析 不等式组表示的可行域如图, A(1 , 2) , B(1 ,- 1) , C(3 , 0)
∵目标函数 z= kx- y 的最小值为 0,∴目标函数 z=kx- y 的最小值可能在 A或 B 时取得;
∴①若在 A上取得,则 k- 2= 0,则 k= 2,此时, z= 2x- y 在 C点有最大值, z=2×3-
时,直线为 x=- 1,此时直线和平面区域没有公共点,故 m≠0, x+my+ 1=0 的斜截式
11
1
方程为 y=- mx- m,斜率 k=- m.
要使直线和平面区域有公共点,
则直线 x+my+ 1= 0 的斜率 k> 0,
1 即 k=- m> 0,即 m<0,满足 kCD≤ k≤ kAP,
x+ y- 3= 0,
∴
(
x
2
+
y
2
)
= min
|0 - 0+ 1| 2
21 = 2.
1 答案 2
创新导向题
利用斜率求目标函数最值问题
6. 设变量 x, y 满足约束条件
x+ y≤3, x- y≥- 1, 则目标函数 y≥ 1,
y+1
z=x+
的最大值为 1
________.
解析 作出不等式组对应的平面区域如图 ( 阴影部分 ABC) :则 z 的几何意义为区域内的点
2019-2020 年高考数学一轮总复习第 7 章不等式推理与证明第 3 节简
单的线性规划模拟创新题理
一、选择题
x- 2y+1≥0, 1. (xx ·江苏无锡模拟 ) 已知实数 x, y 满足 x< 2,
x+ y-1≥0,
则 z= 2x-2y- 1 的取值范围是 ( ) 5
A. 3, 5
B.[0 , 5]
0= 6,成立;②若在 B 上取得,则 k+ 1=0,则 k=- 1,此时, z=- x- y,在 B 点取得
的应是最大值,故不成立,∴ k= 2,故答案为 B.
答案 B
x-y≤1,
x+y≥1,
4. (xx ·北京海淀二模 ) 若整数 x, y 满足
则 z= 2x+y 的最大值是 ( )
3
y≤2,
A.1
答案 B
二、填空题
5. (xx ·北京朝阳二模
) 若实数
x, y 满足
x-
y+
1≤
0, 则
x 2+
y2 的最小值是
________.
x≤ 0,
解析 原不等式组所表示的平面区域如图中阴影部分所示
.
∵ x2+ y2 表示可行域内任意一点 P( x, y) 与原点 (0 ,0) 距离的平方,
∴当 P在线段 AB上且 OP⊥AB时, x2+y2 取得最小值,
, 3
3 解得- 3≤ m≤- 4,故选 D.
答案 D
二、填空题
9. (xx ·浙江余姚模拟 ) 已知约束条件
x- 3y+4≥0, x+ 2y-1≥0, 若目标函数 z= x+ ay( a≥0) 恰好在点 3x+ y-8≤0,
P 到定点 D( - 1,- 1) 的直线的斜率,由线经过点
A时的斜率最大, 由
y= 1, 解得
x- y=- 1,
x= 0, 即 A(0 ,1) ,此时 AD的斜率
y= 1,
z=
1+ 0+
1 1
= 2,故答案为 2.
答案 2
求平面区域的面积问题
7. 已知 A 为不等式组
2x+ y-2≥0, x- 2y+4≥0, 上的一个 3x- y-3≤0
动点,则 | AM| 的最小值是 ( )
A.5
B.3
C.2 2
65 D.
5
解析
2x+ y-2≥0, 不等式组 x- 2y+4≥0, 表示的平面区域如图, 结合图象可知 | AM| 的最小值为点 A
3x- y-3≤0
|2 ×(- 2)+ 0- 2| 6 5
B.5
C.2
D.3
解析 根据限制条件画出可行域,如图所示,
由于 x, y 为整数,故在上述可行域内的整数点有:
(0 , 1) , (1 , 0) , (1 , 1) , (2 , 1). 画出直线 l 0: 2x+ y= 0,
经平移知,在点 (2 ,1) 处 z 取得最大值,∴ z = max 2×2+ 1= 5. 故选 B.
5
C.
,5 3
5
D.
- ,5 3
1
2
解析 画出不等式组所表示的区域, 如图中阴影部分所示, 可知 2× 3-2× 3-1≤ z<2×2
5 -2×( - 1) - 1,即 z 的取值范围是 -3, 5 .
答案 D
2. (xx ·江南十校模拟 ) 已知点 A( - 2, 0) ,点 M( x, y) 为平面区域
x= 2,
由
解得
x- 2= 0
y= 1,
0-1 1
即 C(2 , 1) , CD的斜率 kCD=
=,
- 1- 2 3
2x- y= 0,
x= 2,
由
解得
即 A(2 ,4) ,
x- 2= 0,
y= 4,
4- 0
4
AD的斜率 kAD= 2-(- 1) = 3,
1
4 1 14
即
≤ 3
k≤
,则 3
≤- 3
m≤
到直线 2x+ y- 2= 0 的距离,即 | AM| = min
5
=5.
答案 D
3. (xx ·河南郑州模拟 ) 如果实数 x, y 满足不等式组
x+ y-3≤0, x- 2y-3≤0, 目标函数 z= kx- y 的 x≥ 1,
最大值为 6,最小值为 0,则实数 k 的值为 ( )
A.1
B.2
模拟精选题
一、选择题
8. (xx ·山东潍坊五中月考
) 直线 x+ my+ 1= 0 与不等式组
x+ y-3≥0, 2x- y≥0, 表示的平面区域有 x-2≤0
公共点,则实数 m的取值范围是 ( )
14 A. ,
33
41 B. - ,-
33
3 C. 4, 3
3 D. - 3,- 4
解析 即直线 x+ my+ 1= 0 过定点 D( - 1,0) 作出不等式组对应的平面区域如图: 当 m= 0
x≤ 0, y≥ 0, 表示的平面区域,则当 y- x≤2
a 从- 1 连续变化到 1 时,动直线 x+
y= a 扫过 A 中的那部分区域的面积为 ________.
解析
x≤0, 不等式组 y≥ 0, 表示的平面区域是△ AOB,( 如图 ) 动直线 x+ y= a( 即 y=- x+ a)
y- x≤2