保罗看高考 之函数(答案)
2024年高考数学复习培优讲义专题39---马尔科夫链(与数列结合的概率递推问题)(含解析)
专题8-1 马尔科夫链(与数列结合的概率递推问题)如果要评选出 2023 年各地模拟题中最“成功”的题目,我想非“马尔科夫链”莫属了,尽管2023 年新高考I 卷出乎了很多“命题专家”的意料,但第 21 题考察了马尔科夫链,可谓为广大“专家”“名卷”“押题卷”挽回了一些颜面。
2023年新高考I 卷第21题的投篮问题是马尔可夫链;再往前的热点模考卷中,2023年杭州二模第21题的赌徒输光问题是马尔可夫链,2023年茂名二模的摸球问题是马尔可夫链;再往更前的2019年全国I 卷药物试验也是马尔可夫链,在新人教A 版选择性必修三 P91 页 拓展探索中的第10题是传球问题,是马尔科夫链的典型模型,可以看出自从新教材引入全概率公式(新人教A 版选择性必修三 P49 页),可想而知,未来会有越来越多的递推型概率难题出现模考试题中!因此,在复习备考中全概率等系列内容需要格外关注马尔科夫链作为一种命题模型出现了,马尔科夫链在题中的体现可以简单的概括为全概率公式+数列递推,对于高中生而言,马尔科夫链其实也不难理解。
本文主要介绍了马尔科夫链和一维随机游走模型在高考中的几种具体的应用情形,希望对各位接下来的复习和备考有一些帮助。
基本原理虽然贝叶斯公式不做要求,但是全概率公式已经是新高考考查内容了,利用全概率公式,我们既可以构造某些递推关系求解概率,还可以推导经典的一维随机游走模型,即:设数轴上一个点,它的位置只能位于整点处,在时刻0=t 时,位于点)(+∈=N i i x ,下一个时刻,它将以概率α或者β(1),1,0(=+∈βαα)向左或者向右平移一个单位. 若记状态i t X =表示:在时刻t 该点位于位置)(+∈=N i i x ,那么由全概率公式可得:)|()()|()()(1111111+==++=−==+−==+⋅+⋅=i t i t i t i t i t i t i t X X P X P X X P X P X P另一方面,由于αβ==+==+−==+)|(,)|(1111i t i t i t i t X X P X X P ,代入上式可得:11−+⋅+⋅=i i i P P P βα.进一步,我们假设在0=x 与),0(+∈>=N m m m x 处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,1,00==m P P .随机游走模型是一个典型的马尔科夫过程.进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为a ,原地不动,其概率为b ,向右平移一个单位,其概率为c ,那么根据全概率公式可得:11+−++=i i i i cP bP aP P2023·新高考Ⅰ卷T211.乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投籃,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率; (3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==−===⋅⋅⋅,则11n ni i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y.2019·全国Ⅰ卷2.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1−分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1−分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列.(2)若甲药、乙药在试验开始时都赋予4分,)0,1,2,,8(i p i =⋅⋅⋅表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11()127i i i i p ap bp cp i ==++⋯-+,,,,其中)1(a P X ==-,(0)b P X == (1)c P X ==. 假设0.5α=,0.8β=.①证明:1)0{,1,2,,}7(i i p p i −=⋅⋅⋅+为等比数列; ②求4p ,并根据4p 的值解释这种试验方案的合理性.课本原题:人教A 版数学《选择性必修三》P913.甲、乙、丙三人相互做传球训练,第1次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人.求n 次传球后球在甲手中的概率.1.(2024届·武汉高三开学考)有编号为1,2,3,...,18,19,20的20个箱子,第一个箱子有2个黄球1个绿球,其余箱子均为2个黄球2个绿球,现从第一个箱子中取出一个球放入第二个箱子,再从第二个箱子中取出一个球放入第三个箱子,以此类推,最后从第19个箱子取出一个球放入第20个箱子,记i p 为从第i 个箱子中取出黄球的概率. (1)求23,p p ;(2)求20p .重点题型·归类精讲2024届·山东省实验中学高三第一次诊断2.某品牌女装专卖店设计摸球抽奖促销活动,每位顾客只用一个会员号登陆,每次消费都有一次随机摸球的机会.已知顾客第一次摸球抽中奖品的概率为27;从第二次摸球开始,若前一次没抽中奖品,则这次抽中的概率为12,若前一次抽中奖品,则这次抽中的概率为13.记该顾客第n 次摸球抽中奖品的概率为n P .(1)求2P 的值,并探究数列{}n P 的通项公式;(2)求该顾客第几次摸球抽中奖品的概率最大,请给出证明过程.3.从甲、乙、丙等5人中随机地抽取三个人去做传球训练.训练规则是确定一人第一次将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,每次必须将球传出. (1)记甲乙丙三人中被抽到的人数为随机变量X ,求X 的分布列;(2)若刚好抽到甲乙丙三个人相互做传球训练,且第1次由甲将球传出,记n 次传球后球在甲手中的概率为,1,2,3,n p n =,①直接写出123p p p ,,的值;②求1n p +与n p 的关系式*()n N ∈,并求n p *()n N ∈.2023届惠州一模4.为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐. 已知某同学每天中午会在食堂提供的两种套餐中选择,已知他第一天选择米饭套餐的概率为23,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为14,前一天选择面食套餐后一天继续选择面食套餐的概率为12,如此往复.(1)求该同学第二天中午选择米饭套餐的概率(2)记该同学第n天选择米饭套餐的概率为n P(Ⅰ)证明:25nP⎧⎫−⎨⎬⎩⎭为等比数列;(Ⅱ)证明:当2n≥时,512nP≤.2023届佛山二模·165.有n 个编号分别为1,2,3,,n ⋅⋅⋅的盒子,第1个盒子中有2个白球1个黑球,其余盒子均为1个白球1个黑球,现从第1个盒中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第n 个盒子中取到白球的概率是 .2023·唐山调研6.甲、乙、丙三人玩传球游戏,第1次由甲传出,每次传球时,传球者都等可能地将球传给另外两人中的任何一人.设第k 次传球后球在甲手中的概率为*N k p k ∈,,则下列结论正确的有( ) A.10p = B. 213p = C. 121k k p p ++= D. 202313p >2024届武汉高三九月调研T16 7.甲,乙,丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中,投掷n 次骰子后(),记球在甲手中的概率为,则 ; .2024届·湖北荆荆恩高三9月起点联考·218.甲、乙两个盒子中都装有大小、形状、质地相同的2个黑球和1个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作后,记甲盒子中黑球的个数为,甲盒中恰有2个黑球的概率为,恰有3个黑球的概率为.(1)求;(2)设,证明:;(3)求的数学期望的值.*n ∈N n p 3p =n p =()*n n ∈N n X n p n q 11,p q 2n n n c p q =+11233n n c c +=+n X ()n E X9.2022年2月6日,中国女足通过点球大战6:5惊险战胜日本女足.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有12的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X 的分布列和期望; (2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为n p ,易知121,0==p p .①试证明14n p ⎧⎫−⎨⎬⎩⎭为等比数列;②设第n 次传球之前球在乙脚下的概率为n q ,比较10p 与10q 的大小.2023·济南开学考10.甲、乙两人进行抛掷骰子游戏,两人轮流地掷一枚质均匀的骰子.规定:先掷出点数6的获胜,游戏结束.(1)记两人抛掷骰子的总次数为X,若每人最多抛掷两次骰子,求比赛结束时,X的分布列和期望;(2)已知甲先掷,求甲恰好抛掷n 次骰子并获得胜利的概率.2023届·杭州二模11.马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X −,1t X −,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()t 1t 2t 1t t 1t ,,,X X X X X X P P +−−+=∣∣. 现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为*(,)A A N A B ∈<元,赌博过程为如图所示的数轴.当赌徒手中有n 元()0,n B n N ≤≤∈时,最终输光的概率为()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值;(2)证明(){}P n 是一个等差数列,并写出公差d ;(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →+∞时,()P A 的统计含义.12.校足球队中的甲、乙、丙、丁四名球员将进行传球训练,第1次由甲将球传出,每次传球时,传球者都等可能的将球传给另外三个人中的任何一人,如此不停地传下去,且假定每次传球都能被接到。
狄克拉函数
狄克拉函数
狄拉克函数(Dirac function),也称为广义函数,是一种在数学和物理学中常用的函数。
它由英国物理学家保罗·狄拉克(Paul Dirac)于20世纪20年代引入并研究。
狄拉克函数通常表示为δ(x),其中x是自变量。
狄拉克函数的定义如下:
1.若x = 0,则δ(x) = +∞;
2.若x ≠ 0,则δ(x) = 0。
即狄拉克函数在x = 0处“集中”成无穷大的脉冲,而在其他点上为零。
需要强调的是,狄拉克函数并不是一个实际的函数,而是一种分布(分布理论中的概念),常用作数学上的工具。
狄拉克函数具有一些非常有用的性质,例如:
1.归一性:∫δ(x)dx = 1。
狄拉克函数的积分在实数轴上等于1。
2.平移性:δ(x - a)表示在x = a处的狄拉克函数。
通过平移函
数,可以表示在不同的位置上的狄拉克脉冲。
3.放大性:δ(ax) = δ(x) / |a|。
通过放大或缩小自变量,可以
改变狄拉克函数脉冲的幅度。
狄拉克函数在物理学中有重要的应用,特别是在量子力学中的波函数描述中。
例如,它可以用于描述粒子位置的位置本征态、粒子间的相互作用等现象。
c-d生产函数计算
c-d生产函数计算C-D(Cobb-Douglas)生产函数是一种经济学模型,用于描述生产过程中投入与产出之间的关系。
该函数最早由经济学家查尔斯·康宁·科布和保罗·道格拉斯于1928年提出,并用于研究并描述各种产业和经济体系中的生产函数。
C-D生产函数的一般形式可以表示为:Y=A*K^α*L^β其中,Y表示产出量,A表示技术水平,K表示资本投入量,L表示劳动投入量,α和β则是表示影响资本与劳动投入的弹性系数。
C-D生产函数的计算方法可以通过以下步骤进行:1.收集数据:首先,需要收集各种产业或经济体系中的生产要素数据,包括资本投入量(K)和劳动投入量(L)。
2.确定技术水平:技术水平(A)是C-D生产函数中的一个重要参数,它代表了技术发展水平。
在计算时,通常需要通过额外的数据和研究来确定技术水平的合理值。
3.定义弹性系数:α和β是C-D生产函数中的两个弹性系数,它们分别表示资本与劳动投入对产出的影响程度。
这两个系数通常需要通过经验或经济理论来确定。
一般来说,α和β的取值范围是0到1,且两者之和等于14.进行计算:将收集到的数据带入C-D生产函数的公式中进行计算,即Y=A*K^α*L^β。
根据实际需求,可以计算不同时间点或不同产业等条件下的Y值。
5.分析结果:根据计算出的产出量,可以进一步分析生产过程中资本和劳动投入对产出的贡献度、投入回报率等指标。
这些结果可以为企业、政府或研究机构提供有关生产决策、资源配置等方面的参考。
需要注意的是,C-D生产函数是一个简化的经济模型,基于一些假设和前提条件。
它假设生产过程中的技术水平是固定且不变的,而现实中的技术水平往往是随时间推移而变化的。
此外,C-D生产函数忽略了其他可能影响产出量的因素,如自然资源、管理能力等。
总之,C-D生产函数是衡量投入与产出关系的一种常用经济模型。
通过对C-D生产函数的计算,可以帮助我们深入了解产出与投入之间的关系,并为决策提供参考依据。
2013年高考真题2:函数 Word版含答案
2013年高考解析分类汇编2:函数一、选择题错误!未指定书签。
.(2013年高考重庆卷(文1))函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。
要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C. 错误!未指定书签。
.(2013年高考重庆卷(文9))已知函数3()s i n 4(,)f x a x b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .4 【答案】C【命题立意】本题考查函数的奇偶性以及对数的运算性质。
因为22lg10lg(log 10)lg(lg 2)lg(log 10lg 2)lg(lg 2)lg1012g +=⋅=⨯==,所以2l g (lg 2)l g (l o g 10)=-。
设2lg(log 10),t =则lg(lg 2)t =-。
由条件可知()5f t =,即3()sin 45f t at b t =++=,所以2si n 1a tb t +=,所以3()s i n 4143f t a t b t -=--+=-+=,选C. 错误!未指定书签。
.(2013年高考大纲卷(文6))函数()()()-121log 10=f x x f x x ⎛⎫=+> ⎪⎝⎭的反函数( )A .()1021x x >- B .()1021xx ≠- C .()21x x R -∈ D .()210x x -> 【答案】A)0)(11(log )(2>+==y x x f y ,所以y x 211=+,所以121-=y x,所以)0(121>-=y x y ,所以)0(121>-=x y x ,即)0(121)(1>-=-x x f x ,故选A.错误!未指定书签。
狄拉克delta函数
狄拉克delta函数狄拉克(Dirac)δ函数是由英国理论物理学家保罗·狄拉克提出的一种特殊的数学函数,一种奇异函数。
狄拉克δ函数在物理、工程和数学等领域起着重要的作用。
它在量子力学、信号处理、微积分和控制工程等领域具有广泛的应用。
狄拉克δ函数由以下性质定义:∫δ(x)dx = 1∫f(x)δ(x−a)dx = f(a)这意味着狄拉克δ函数是一个以0为中心,并在x=0处取无穷大值的奇异函数。
它在其他地方为0。
通过与其他函数的乘积进行积分运算,可以得到在特定点处取有限值的结果。
狄拉克δ函数在量子力学中的应用非常重要。
在量子力学中,波函数描述了粒子的位置和性质。
波函数的平方表示了在给定位置上找到粒子的概率。
狄拉克δ函数可以用来描述点状粒子,例如电子或光子。
在空间中的给定位置上,粒子可以被认为是局部集中的,因此可以使用狄拉克δ函数来描述其位置。
例如,假设有一个处于位置a的电子,其波函数可以表示为Ψ(x)。
那么,当我们在位置a处测量电子的位置时,根据量子力学原理,有一个非常高的概率它将处于a附近的一个微小区域内。
通过使用狄拉克δ函数,我们可以将测量电子位置的结果表示为Ψ(a)。
狄拉克δ函数还可以用来解决微积分中的问题,尤其是当涉及到奇异函数、积分和广义函数时。
例如,在积分运算中,狄拉克δ函数可以用来表示极限。
狄拉克δ函数可以与其他函数进行卷积运算。
卷积运算用于描述两个函数之间的关系。
通过与一个函数进行卷积,我们可以将狄拉克δ函数应用于另一个函数,并得到一个新的函数作为结果。
在信号处理中,狄拉克δ函数被广泛用于描述连续信号和离散信号之间的关系。
通过狄拉克δ函数,我们可以将一个连续信号转换为离散信号,并将离散信号转换为连续信号。
狄拉克δ函数还与控制工程密切相关。
在控制系统中,经常需要对信号进行滤波和处理。
通过将狄拉克δ函数应用于输入信号,我们可以估计系统对这个信号的响应。
这对于设计和分析控制系统非常重要。
全国卷历年高考函数与导数解答题真题归类分析(含答案)
全国卷历年高考函数与导数解答题真题归类分析(含答案)全国卷历年高考函数与导数解答题真题归类分析(含答案)(2015年-2019年,14套)一、函数单调性与最值问题1.(2019年3卷20题)已知函数$f(x)=2x^3-ax^2+b$.1)讨论$f(x)$的单调性;2)是否存在$a,b$,使得$f(x)$在区间$[0,1]$的最小值为$-1$且最大值为$1$?若存在,求出$a,b$的所有值;若不存在,说明理由.解析】1)对$f(x)=2x^3-ax^2+b$求导得$f'(x)=6x^2-2ax=2x(3x-a)$。
所以有:当$a<0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减;当$a=0$时,$(-\infty,+\infty)$区间上单调递增;当$a>0$时,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减.2)若$f(x)$在区间$[0,1]$有最大值$1$和最小值$-1$,所以,若$a<0$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$[0,1]$上单调递增,所以$f(0)=-1$,$f(1)=1$代入解得$b=-1$,$a=\frac{1}{3}$,与$a<0$矛盾,所以$a<0$不成立.若$a=0$,$(-\infty,+\infty)$区间上单调递增;在区间$[0,1]$,所以$f(0)=-1$,$f(1)=1$代入解得$\begin{cases}a=0\\b=-1\end{cases}$.若$0<a\leq2$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(1)$而$f(0)=b$,$f(1)=2-a+b\geq f(0)$,故所以区间$[0,1]$上最大值为$f(1)$.若$2<a\leq3$,$(-\infty,0)$区间上单调递增,$(0,+\infty)$区间上单调递减,此时在区间$(0,1)$单调递减,在区间$(1,+\infty)$单调递增,所以区间$[0,1]$上最小值为$f(0)$而$f(0)=b$,$f(1)=2-a+b\leq f(0)$,故所以区间$[0,1]$上最大值为$f(0)$.已知函数$f(x)=x^3+ax+\frac{1}{4},g(x)=-\ln x$。
高考历史真题练习带答案讲解
高考历史真题练习带答案讲解高考历史选择题真题练习1.(2015重庆10)1727年春,伏尔泰参加了牛顿的葬礼,随后访问了牛顿的外甥女凯瑟琳并聆听了苹果坠地的故事。
该故事通过伏尔泰的著作迅速传遍世界,成为家喻户晓的科学佳话。
这则材料可以用来说明()A.科学团体推动了欧洲启蒙运动的发展B.跨国文化交流促进了科学思想的传播C.18世纪早期英国启蒙运动已接近尾声D.18世纪早期法国思想自由度逊于英国【答案】B【讲解】材料内容反映了伏尔泰的著作使牛顿的科学故事传遍世界,并不是科学推动了启蒙运动的发展,所以A项错误。
C项是无关项,材料内容没有涉及到。
18世纪的启蒙运动中心在法国,所以D项错误,故答案选择B项。
2.(2015江苏15)“科学革命引发了观念形态的革命:宗教神秘主义的面纱和覆盖真相的无知之幕被理性之手撩开一角,传统的权威受到撼动,人类第一次从对自然恐惧的阴影下走出来,重新审视自身的价值和能力。
”此处“科学革命”的代表人物是()A.牛顿B.达尔文C.爱因斯坦D.普朗克【讲解】本题考查解读史料获取信息的能力。
材料中“理性之手”“第一次从对自然恐惧的阴影下走出来”的信息说明牛顿经典力学中观察实验理性方法得到实践,开启了人类历史第一次自然大综合,故A项正确。
3.(2015四川11)1933年希特勒上台后,犹太科学家爱因斯坦选择移居美国,放弃愿意为他提供避难所的欧洲国家。
悉知该消息时,法国物理学家保罗朗之万评价道:“这是一个重大事件,其重要程度就如同把梵蒂冈从罗马搬到新大陆一样。
”在此,朗之万()A.谴责纳粹德国迫害犹太科学家B.担心欧洲大陆的战争威胁日益临近C.意识到世界科学中心即将转移D.觉察到科学家全球流动为大势所趋【答案】C【讲解】本题主要考查学生解读题干材料,获取有效信息,认识历史事物本质和规律,并作出正确认知和准确判断的能力。
题干材料的主题,即“科学”,再根据关键信息“这是一个重大事件,其重要程度就如同把梵蒂冈从罗马搬到新大陆一样”等,分析判断选项可知C项客观正确。
高考真题求函数解析式答案
高考真题求函数解析式答案高考是每个学生都非常重视的一场考试,其中数学科目是让很多学生感到头疼的一门科目。
在数学题目中,函数解析式是一个需要运用数学知识和推理能力解答的问题。
本文将通过分析高考真题,讨论如何求函数解析式的答案。
在高考数学试卷中,常常会出现一类题目,要求求解一个函数的解析式。
这类题目一般会给出函数的一些性质或条件,然后要求根据这些条件来确定函数的表达式。
首先,我们先来看一个例题:已知函数f(x)满足条件f(x+1)=2f(x)+3,且f(0)=1,求f(x)的解析式。
对于这类题目,我们可以通过反复代入来解决。
首先,我们将f(x)替换为f(x+1)的表达式,得到f(x+1)=2(2f(x)+3)+3。
接着,我们对f(x)进行进一步代入,得到f(x+1)=4f(x)+9。
观察左右两边的表达式,我们可以发现一个规律:每往后迈一步,右边的表达式都变为4倍,并且会有一个常数项的增加。
因此,我们猜测f(x)可能是一个关于4的幂函数,即f(x)=a*4^x。
接下来,我们将f(x)代入到原方程中,得到a*4^(x+1)=2*(a*4^x)+3。
接着,我们对等式进行化简,得到a*4^(x+1)=8*a*4^x+3。
观察右边的表达式,我们可以发现:每往后迈一步,右边的表达式都变为8倍,并且会有一个常数项的增加。
因此,我们可以得到方程a*4^x=8*a*4^(x-1)+3。
通过进一步观察和化简,我们可以发现一个递归的关系:a*4^x=2^3*a*4^(x-1)+3。
由此可得递归公式a*4^x=2^k*a*4^(x-k)+3*(2^(k-1)),其中k为正整数。
然后我们希望找到一个k的取值,使得满足a*4^x和a*4^(x-k)的系数相等。
我们知道,4=2^2,所以将k取为2,即可使得a*4^x=2^2*a*4^(x-2)+3*(2^(2-1))。
对比系数可得a=a+3,解得a=3。
于是,我们可以得出函数f(x)的解析式为f(x)=3*4^x。
高考文科数学函数专题讲解及高考真题精选(含答案)
函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法函数的 性 质定义图象判定方法yxo 函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作m a x ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义 图象 判定方法性 质函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;0的n 次方根是0;负数a 没有n 次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:()n n a a =;当n 为奇数时,nn a a =;当n 为偶数时,(0)|| (0) nn a a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,mn m na a a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,m m m nn n aa m n N a a-+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数函数名称指数函数定义 函数(0xy a a =>且1)a ≠叫做指数函数图象1a > 01a <<〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =定义域 R 值域 (0,)+∞过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性 非奇非偶单调性在R 上是增函数在R 上是减函数函数值的 变化情况1(0)1(0)1(0)x x x a x a x a x >>==<< 1(0)1(0)1(0)x x x a x a x a x <>==>< a 变化对 图象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.xa y =xy(0,1)O1y =x a y =xy(0,1)O1y =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数函数名称 对数函数定义函数log (0a y x a =>且1)a ≠叫做对数函数图象1a > 01a <<定义域 (0,)+∞值域 R过定点 图象过定点(1,0),即当1x =时,0y =.奇偶性 非奇非偶单调性在(0,)+∞上是增函数在(0,)+∞上是减函数函数值的 变化情况log 0(1)log 0(1)log 0(01)a a a x x x x x x >>==<<<log 0(1)log 0(1)log 0(01)a a a x x x x x x <>==><<a 变化对 图象的影响 在第一象限内,a 越大图象越靠低;在第四象限内,a 越大图象越靠高.(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;x yO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a ∆=-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②02b x a->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =①若02b x a -≤,则()m f q = ②02b x a ->,则()m f p =.x>O-=f(p) f (q)()2b f a-x>O-=f (p)f (q)()2bf a-x>O-=f (p)f (q)()2b f a-x>O-=f(p)f (q)()2bf a-0x x>O-=f(p) f(q)()2b f a-0x x<O-=f (p)f(q)()2b f a-x<O-=f (p)f(q)()2b f a-x<Of (p)f()2bf a-x x<O-=f (p)f (q)()2b f a-x<Of (q)()2b f a-x第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高考文科数学函数专题讲解与高考真题精选含答案资料全
函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:利用常见函数的值域来求一次函数y=ax+b(a ≠0)的定义域为R ,值域为R ; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R ,当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}②配方法:③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.转化成型如:)0(>+=k xkx y ,利用平均值不等式公式来求值域;⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象. (7)求函数解析式的题型有:1)已知函数类型,求函数的解析式:待定系数法;2)已知()f x 求[()]f g x 或已知[()]f g x 求()f x :换元法、配凑法;3)已知函数图像,求函数解析式;4)()f x 满足某个等式,这个等式除()f x 外还有其他未知量,需构造另个等式解方程组法;5)应用题求函数解析式常用方法有待定系数法等yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,-∞、)+∞上为增函数,分别在[、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.1 (4)证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -,判断正负号②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数 (5)求单调区间的方法:定义法、导数法、图象法(6)复合函数[])(x g f y =在公共定义域上的单调性:①若f 与g 的单调性相同,则[])(x g f 为增函数;②若f 与g 的单调性相反,则[])(x g f 为减函数(7)一些有用的结论:①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数;减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数;减函数-)(x f 增函数)(x g 是减函数④函数)0,0(>>+=b a x bax y 在,⎛⎫-∞+∞ ⎪⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减【1.3.2】奇偶性②若奇函数()f x 的定义域包含0,则(0)0f =.()f x 为偶函数()(||)f x f x ⇔=③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇判断函数的奇偶性有时可以用定义的等价形式:()()0f x f x ±-=,()1()f x f x =±- 函数周期性定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去①y=f(x) 轴x →y=f(x); ②y=f(x) 轴y →y=f(x);③y=f(x)ax =→直线y=f(2a x); ④y=f(x)xy =→直线y=f 1(x);⑤y=f(x) 原点→y= f(x)(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义(2(3①一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p y x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a-+∞上递增,当2bx a =-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a=- ③若2bq a ->,则()m f q =①若02b x a -≤,则()M f q = ②0b x ->,则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->,则()M f q =①若02x a -≤,则()m f q = ②02x a ->,则(m f =xxxxxfxfxfxx第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高考数学 夺分法宝 函数、三角函数、立体几何(解析版)
2013高考数学 夺分法宝 函数、三角函数、立体几何(解析版)【2011高考真题——新课标卷】一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只需一项是符合标题要求的。
(1)复数212ii +-的共轭复数是 (A )35i - (B )35i (C )i - (D )i 解析:212i i+-=(2)(12),5i i i ++=共轭复数为C (2)以下函数中,既是偶函数又在+∞(0,)单调递增的函数是 (A )3y x = (B) 1y x =+ (C )21y x =-+ (D) 2x y -= 解析:由影像知选B(3)履行左面的程序框图,如果输出的N 是6,那么输出的p 是(A )120 (B )720 (C )1440 (D )5040解析:框图表示1n n a n a -=⋅,且11a =所求6a =720 选B(4)有3个兴味小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相反,则这两位同学参加同一个兴味小组的概率为(A )13 (B )12 (C )23(D )34解析;每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只需3种,所求的概率为p=3193=选A(5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则cos 2θ=解析:由题知tan 2θ=,222222cos sin 1tan 3cos2cos sin 1tan 5θθθθθθθ--===-++选B (A )45- (B )35- (C )35(D )45(6)在一个几何体的三视图中,重视图和俯视图如右图所示,则相应的侧视图可以为解析:条件对应的几何体是由底面棱长为r 的正四棱锥沿底面对角线截出的部分与底面为半径为r 的圆锥沿对称轴截出的部分构成的。
故选D(7)设直线L 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,L 与C 交于A ,B 两点,AB为C 的实轴长的2倍,则C 的离心率为(A(B (C )2 (D )3解析:通径|AB|=222b a a =得2222222b a a c a =⇒-=,选B(8)512a x x x x ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭的展开式中各项系数的和为2,则该展开式中常数项为(A )-40 (B )-20 (C )20 (D )40解析1.令x=1得a=1.故原式=511()(2)x x x x +-。
科布-道格拉斯生产函数
科布-道格拉斯生产函数柯布—道格拉斯生产函数最初是美国数学家柯布和经济学家保罗·道格拉斯共同探讨投入和产出的关系时创造的生产函数,是以美国数学家C.W.柯布和经济学家保罗.H.道格拉斯的名字命名的。
是在生产函数的一般形式上作出的改进,引入了技术资源这一因素。
柯布一道格拉斯生产函数主要用于测定生产过程中资本投入量和劳动投入量对产出量的影响;亦可测定科技进步、资本增长、劳动增长对产出增长的贡献率。
柯布一道格拉斯生产函数用来预测国家和地区的工业系统或大企业的生产和分析发展生产的途径的一种经济数学模型,简称生产函数。
是经济学中使用最广泛的一种生产函数形式,它在数理经济学与经济计量学的研究与应用中都具有重要的地位。
柯布-道格拉斯生产函数的基本形式为:Y=A(t)LαKβμ式中Y是工业总产值,At是综合技术水平,L是投入的劳动力数(单位是万人或人),K是投入的资本,一般指固定资产净值(单位是亿元或万元,但必须与劳动力数的单位相对应,如劳动力用万人作单位,固定资产净值就用亿元作单位),α是劳动力产出的弹性系数,β是资本产出的弹性系数,μ表示随机干扰的影响,μ≤1。
从这个模型看出,决定工业系统发展水平的主要因素是投入的劳动力数、固定资产和综合技术水平(包括经营管理水平、劳动力素质、引进先进技术等)。
根据α和β的组合情况,它有三种类型:①α+β>1,称为递增报酬型,表明按现有技术用扩大生产规模来增加产出是有利的。
②α+β<1,称为递减报酬型,表明按现有技术用扩大生产规模来增加产出是得不偿失的。
③α+β=1,称为不变报酬型,表明生产效率并不会随着生产规模的扩大而提高,只有提高技术水平,才会提高经济效益。
柯布—道格拉斯生产函数模型具有以下的特点:1、柯布—道格拉斯生产函数模型中,a,b1,b2是固定参数。
2、可线性化。
3、参数估计和其它代数方程相比,计算比较方便。
4、运用柯布—道格拉斯生产函数模型进行技术经济分析,由于数据特性,计算分析结论更准确。
保罗看高考 之三角函数(答案)
2013年高考解析分类汇编3:三角函数一、选择题1 .(2013年高考大纲卷)已知a 是第二象限角,5sin ,cos 13a a ==则( ) A .1213-B .513-C .513D .1213【答案】A因为135sin =α,α为第二象限角,所以1312cos -=α.故选A.2 .(2013年高考陕西卷)设△ABC 的内角A , B , C 所对的边分别为a , b , c , 若cos cos sin b C c B a A +=, 则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .不确定【答案】A因为cos cos sin b C c B a A +=,所以A A B C C B sin sin cos sin cos sin =+又A C B B C C B sin )sin(cos sin cos sin =+=+。
联立两式得A A A sin sin sin =。
所以2,1sin π==A A 。
选A3 .(2013年高考辽宁卷)在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=,a b B >∠=且则( )A .6πB .3π C .23π D .56π【答案】A边换角后约去sin B ,得1sin()2A C+=,所以1sin 2B =,但B 非最大角,所以6B π=。
4 .(2013年高考课标Ⅱ卷)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1 【答案】B因为,64B C ππ==,所以712A π=.由正弦定理得sinsin64b c ππ=,解得c=。
所以三角形的面积为117sin22212bc Aπ=⨯⨯.因为72231s i n s i n(()123222πππ=++,所以11sin()12222bc A=+=,选B.5.(2013年高考课标Ⅱ卷)已知2sin23α=,则2cos()4πα+=()(A)16(B)13(C)12(D)23【答案】A因为21cos2()1cos(2)1sin242cos()4222ππααπαα++++-+===,所以2211sin213cos()4226παα--+===,选A.6.(2013年高考广东卷)已知51sin()25πα+=,那么cosα=()A.25-B.15-C.15D.25【答案】C考查三角函数诱导公式,51sin()sin(2+)sin cos2225πππαπααα⎛⎫+=+=+==⎪⎝⎭,选C.7.(2013年高考大纲卷)若函数()()sin0=y xωϕωω=+>的部分图像如图,则()A.5B.4C.3D.2【答案】B4420ππ=-+=xxT,所以2π=T,所以22πωπ=,所以4=ω.故选B.8.(2013年高考天津卷)函数()sin 24f x x π⎛⎫=- ⎪⎝⎭在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值是( )A .1-B .CD .0【答案】B当0,2x π⎡⎤∈⎢⎥⎣⎦时,02x π≤≤,32444x πππ-≤-≤,所以当244x ππ-=-时,函数()sin 24f x x π⎛⎫=- ⎪⎝⎭的最小值为sin()42y π=-=-,选B.9.(2013年高考安徽)设ABC ∆的内角,,A B C 所对边的长分别为,,a b c ,若2,3sin 5sin b c a A B +==,则角C =( )A .3πB .23πC .34π D .56π 【答案】BB A sin 5sin 3= 由正弦定理,所以b a b a 35,53==即;因为a c b 2=+,所以a c 37=,212cos 222-=-+=ab c b a C ,所以32π=C ,答案选择B 10.(2013年高考课标Ⅰ卷)已知锐角ABC ∆的内角,,A B C 的对边分别为,,a b c ,223cos cos 20A A +=,7a =,6c =,则b = ( )A .10B .9C .8D .5【答案】D由223cos cos 20A A +=得,即2223cos 2cos 10A A +-=,所以225c o s 1A =,所以21cos 25A =,即1co s 5A =,由余弦定理可知2222cos a b c bc A =+-,即214936265b b =+-⨯⨯,所以2512650b b --=,即(5)(513)0b b -+=,解得5b =,选D.11.(2013年高考浙江卷)函数f(x)=sin xcos x+32cos 2x 的最小正周期和振幅分别是( ) A .π,1B .π,2C .2π,1D .2π,2【答案】A1()sin 22sin(2)223f x x x x π=+=+,所以振幅为1,周期222T πππω===,所以选A. 二、填空题12.(2013年高考课标Ⅱ卷)函数cos(2)()y x ϕπϕπ=+-≤<的图像向右平移2π个单位后,与函数sin(2)3y x π=+的图像重合,则||ϕ=___________.【答案】56π函数co s (2)y x ϕ=+,向右平移2π个单位,得到s i n (2)3y x π=+,即s i n (2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=。
2024-2025学年浙江省高考模拟卷及参考答案
2024-2025学年浙江省高考模拟卷及参考答案一、现代文阅读(35分) 2024.11(一) 现代文阅读Ⅰ (本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:“科技向善”一词最早由影响力投资者保罗·米勒于2013年正式提出,并很快得到了科技企业的广泛认同和响应。
所谓科技向善,就是企业在追求科技创新的同时,主动且负责任地利用科技创新解决社会问题,如生态环境、公共健康、教育、就业、医疗、安全等方面的社会需求和薄弱环节。
近年来,政府、社会和企业界对科技向善的关注度逐渐提高,这一方面是源于对科技伦理认识的深化。
当前,新一轮科技革命和产业变革突飞猛进,新技术、新业态、新模式不断涌现,给经济社会发展带来了深远的影响,科技创新从未像今天这样深刻影响着国家实力和人民福祉。
但如何才能确保科技为人服务、造福人民? 面对这个问题,党的十八大以来,中国逐步明确了科技造福人民的价值取向,以及科技发展为了人民、依靠人民,科技成果由人民共享的科技伦理观。
2024年4月,三大交易所正式发布《上市公司可持续发展报告指引(试行)》,《指引》强调了科技创新的作用,并明确提出“鼓励披露主体积极践行创新驱动发展战略,持续提升创新能力和竞争力,在创新决策和实践中遵守科学伦理规范,尊重科学精神,发挥科学技术的正面效应”。
方向已经明确,共识业已建立。
但企业在践行科技向善的过程中依然面临着很多矛盾。
首先,需要平衡国家发展战略需要与企业资源有限的矛盾。
在当前推动中国式现代化的进程中,科技创新将发挥更大的作用。
然而;在某一特定时间、空间,企业的资源是有限的,这就需要企业从战略角度思考如何在保障企业生存成长的前提下,坚持长期主义,加大科技创新投入。
其次,作为行业龙头企业成关键企业,需要平衡产业可持续发展和自身可持续发展的关系,通过带动产业链上下游企业高质量发展,提升企业自身的可持续竞争力。
第三,需要平衡追求利润最大化与承担社会责任的关系,在企业发展的同时积极回报社会,增进社会民生福祉。
高考文科数学函数专题讲解及高考真题精选(含答案)
函 数【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集, 如果按照某种对应法则f , 对于集合A 中任何一个数x , 在集合B 中都有唯一确定的数()f x 和它对应, 那么这样的对应(包括集合A , B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数, 记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同, 且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数, 且a b <, 满足a x b ≤≤的实数x 的集合叫做闭区间, 记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间, 记做(,)a b ;满足a x b ≤<, 或a x b <≤的实数x 的集合叫做半开半闭区间, 分别记做[,)a b , (,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b , 前者a 可以大于或等于b , 而后者必须a b <.(3)求函数的定义域时, 一般遵循以下原则:①()f x 是整式时, 定义域是全体实数.②()f x 是分式函数时, 定义域是使分母不为零的一切实数.③()f x 是偶次根式时, 定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零, 当对数或指数函数的底数中含变量时, 底数须大于零且不等于1. ⑤tan y x =中, ()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时, 则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题, 一般步骤是:若已知()f x 的定义域为[,]a b , 其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数, 求其定义域, 根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数, 其定义域除使函数有意义外, 还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上, 如果在函数的值域中存在一个最小(大)数, 这个数就是函数的最小(大)值.因此求函数的最值与值域, 其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数, 我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和, 然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=, 则在()0a y ≠时, 由于,x y 为实数, 故必须有2()4()()0b y a y c y ∆=-⋅≥, 从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的, 三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法, 常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合, 如果按照某种对应法则f , 对于集合A 中任何一个元素, 在集合B 中都有唯一的元素和它对应, 那么这样的对应(包括集合A , B 以及A 到B 的对应法则f )叫做集合A 到B 的映射, 记作:f A B →.②给定一个集合A 到集合B 的映射, 且,a A b B ∈∈.如果元素a 和元素b 对应, 那么我们把元素b 叫做元素a 的象, 元素a 叫做元素b 的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时, 都有f(x ...1.)<f(x .....2.)., 那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2, 当x .1.< x ..2.时, 都有f(x ...1.)>f(x .....2.)., 那么就说f(x)在这个区间上是减.函数... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内, 两个增函数的和是增函数, 两个减函数的和是减函数, 增函数减去一个减函数为增函数, 减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =, 令()u g x =, 若()y f u =为增, ()u g x =为增, 则[()]y f g x =为增;若()y f u =为减, ()u g x =为减, 则[()]y f g x =为增;若()y f u =为增, ()u g x =为减, 则[()]y f g x =为减;若()y f u =为减, ()u g x =为增, 则y =(2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数, 分别在[,0)a -减函数.(3)最大(小)值定义①一般地, 设函数()y f x =的定义域为I , 如果存在实数M 意的x I ∈, 都有()f x M ≤;(2)存在0x I ∈, 使得0()f x M =.那么, 我们称M 是函数(f x max ()f x M =.②一般地, 设函数()y f x =的定义域为I , 如果存在实数m 满足:(1)对于任意的x I ∈, 都有()f x m ≥;(2)存在0x I ∈, 使得0()f x m =.那么, 我们称m 是函数()f x 的最小值, 记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象 判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x , 都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x , 都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数, 且在0x =处有定义, 则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同, 偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内, 两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数), 两个偶函数(或奇函数)的积(或商)是偶函数, 一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象 ()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象, 要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性, 注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质, 为研究数量关系问题提供了“形”的直观性, 它是探求解题途径, 获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>, 且n N +∈, 那么x 叫做a 的n 次方根.当n 是奇数时,a 的n n 是偶数时, 正数a 的正的n 负的n 次方根用符号0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数, a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时, 0a ≥.③根式的性质:n a =;当n 为奇数时,a =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,mna a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数, 指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且, 则x 叫做以a 为底N 的对数, 记作log a x N =, 其中a 叫做底数, N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =, log 1a a =, log b a a b =.(3)常用对数与自然对数常用对数:lg N , 即10log N ;自然对数:ln N , 即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>, 那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A , 值域为C , 从式子()y f x =中解出x , 得式子()x y ϕ=.如果对于y 在C 中的任何一个值, 通过式子()x y ϕ=, x 在A 中都有唯一确定的值和它对应, 那么式子()x y ϕ=表示x 是y 的函数, 函数()x y ϕ=叫做函数()y f x =的反函数, 记作1()x f y -=, 习惯上改写成1()y fx -=.(7)反函数的求法①确定反函数的定义域, 即原函数的值域;②从原函数式()y f x =中反解出1()x fy -=;③将1()x fy -=改写成1()y f x -=, 并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上, 则'(,)P b a 在反函数1()y f x -=的图象上.④一般地, 函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义y x =叫做幂函数, 其中x 为自变量, α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限, 第四象限无图象.幂函数是偶函数时, 图象分布在第一、二象限(图象关于y 轴对称);是奇函数时, 图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时, 图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义, 并且图象都通过点(1,1).③单调性:如果0α>, 则幂函数的图象过原点, 并且在[0,)+∞上为增函数.如果0α<, 则幂函数的图象在(0,)+∞上为减函数, 在第一象限内, 图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时, 幂函数为奇函数, 当α为偶数时, 幂函数为偶函数.当qpα=(其中,p q互质, p 和q Z ∈), 若p 为奇数q 为奇数时, 则q p y x =是奇函数, 若p 为奇数q 为偶数时, 则q py x =是偶函数, 若p 为偶数q 为奇数时, 则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞, 当1α>时, 若01x <<, 其图象在直线y x =下方, 若1x >, 其图象在直线y x =上方, 当1α<时, 若01x <<, 其图象在直线y x =上方, 若1x >, 其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时, 宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时, 常使用顶点式. ③若已知抛物线与x 轴有两个交点, 且横线坐标已知时, 选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线, 对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时, 抛物线开口向上, 函数在(,]2b a -∞-上递减, 在[,)2b a-+∞上递增, 当2bx a =-时, 2min 4()4ac b f x a -=;当0a <时, 抛物线开口向下, 函数在(,]2b a -∞-上递增, 在[,)2ba -+∞上递减,当2bx a=-时, 2max 4()4ac b f x a -=.③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时, 图象与x 轴有两个交点11221212(,0),(,0),||||M x M x M M x x =-. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容, 这部分知识在初中代数中虽有所涉及, 但尚不够系统和完整, 且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用, 下面结合二次函数图象的性质, 系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x , 且12x x ≤.令2()f x ax bx c =++, 从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M , 最小值为m , 令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<, 则()m f p = ②若2b p q a ≤-≤, 则()2b m f a=- ③若2bq a ->, 则()m f q =①若02b x a -≤, 则()M f q = ②0b x ->, 则()M f p =(Ⅱ)当0a <时(开口向下) ①若2b p a -<, 则()M f p = ②若2b p q a ≤-≤,则()2b M f a=- ③若2bq a ->, 则()M f q =①若02x a -≤, 则()m f q = ②02x a ->, 则m f =xxxxxfxfxfxx第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=, 把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。
高考数学试卷语文答案
一、选择题1. 下列各式中,不是函数的有()A. y = x^2B. y = |x|C. y = 1/xD. y = √x答案:C解析:函数的定义是,对于每一个自变量x的值,都有唯一的一个因变量y与之对应。
在选项C中,当x=0时,y没有定义,因此不满足函数的定义。
2. 已知函数f(x) = x^3 - 3x,求f(x)的极值。
答案:极大值0,极小值-2。
解析:首先求导数f'(x) = 3x^2 - 3,令f'(x) = 0,得x = ±1。
然后求二阶导数f''(x) = 6x,当x = 1时,f''(1) = 6 > 0,所以x = 1是极小值点,f(1) = 1^3 - 31 = -2;当x = -1时,f''(-1) = -6 < 0,所以x = -1是极大值点,f(-1) = (-1)^3 - 3(-1) = 0。
3. 已知数列{an}的通项公式为an = n^2 + n,求前n项和S_n。
答案:S_n = n(n+1)(2n+1)/6。
解析:利用数列的求和公式,有S_n = a_1 + a_2 + ... + a_n = (1^2 + 1) +(2^2 + 2) + ... + (n^2 + n) = (1^2 + 2^2 + ... + n^2) + (1 + 2 + ... + n)。
由求和公式得,1^2 + 2^2 + ... + n^2 = n(n+1)(2n+1)/6,1 + 2 + ... +n = n(n+1)/2,代入得S_n = n(n+1)(2n+1)/6。
4. 已知圆的方程x^2 + y^2 - 4x - 6y + 9 = 0,求圆的半径。
答案:半径为2。
解析:将圆的方程配方,得(x - 2)^2 + (y - 3)^2 = 4,因此圆心坐标为(2, 3),半径为√4 = 2。
5. 已知函数f(x) = x^3 - 6x^2 + 9x - 1,求f(x)的图像。
狄拉克函数中括号
狄拉克函数中括号全文共四篇示例,供读者参考第一篇示例:狄拉克函数中的括号,在物理学和数学领域中被广泛应用,是一种特殊的数学符号,用来描述复杂和抽象的物理现象和数学理论。
狄拉克函数是由英国物理学家保罗·狄拉克在20世纪提出的,它是一种广义函数,用来描述点源、冲击和离散极限等物理现象。
在狄拉克函数中,括号被用来表示内积和外积等操作,是一种非常有用的数学工具。
狄拉克函数中的括号有两种,分别是尖括号和圆括号。
尖括号通常用来表示内积,即两个向量之间的点积或区分向量和函数的操作。
而圆括号则通常用来表示外积,即两个向量之间的叉积或在泛函分析中的积分操作。
这两种括号都具有特殊的性质和规则,可以方便地进行计算和推导。
在量子力学中,狄拉克函数中的括号被广泛应用于描述波函数和态矢之间的关系。
波函数被表示为矢量空间中的一个态矢,而态矢之间的内积和外积可以用括号来表示。
一个态矢在另一个态矢上的投影可以用内积来表示,而两个态矢的叠加可以用外积来表示。
这种表示方法可以方便地描述各种量子力学现象,如叠加态、量子隧穿等。
狄拉克函数中的括号是一种非常有用的数学工具,可以方便地描述复杂和抽象的物理现象和数学理论。
通过使用括号,我们可以更加直观地理解各种数学关系和物理定律,同时也可以简化计算和推导过程。
熟练掌握狄拉克函数中的括号是非常重要的,可以帮助我们更好地理解和应用各种数学和物理知识。
第二篇示例:狄拉克函数中的括号是指在狄拉克函数表达式中所出现的括号。
狄拉克函数是一种在物理学和数学领域中广泛应用的特殊函数,它由英国物理学家保罗·狄拉克在20世纪初提出,并被称为“广义函数”。
在狄拉克函数中,括号的作用是用来表示积分操作中的被积函数。
狄拉克函数可以看作是一种特殊的函数,其定义方式将在积分操作中的被积函数直接代入函数表达式中,而不是对函数进行传统的积分运算。
括号在狄拉克函数中扮演着非常重要的角色。
狄拉克函数的一般形式可以表示为:\[f(x) = \int_{-\infty}^{\infty} g(x') \delta(x-x') dx'\]f(x)是狄拉克函数,g(x')是被积函数,\delta(x-x')是狄拉克函数,括号中的内容表示积分操作。
2025版高考数学一轮复习课后限时集训57古典概型文含解析北师大版
课后限时集训(五十七)(建议用时:60分钟)A 组 基础达标一、选择题1.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( )A .12 B.13 C .34 D.25B [点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种状况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.] 2.(2024·厦门月考)甲、乙两名同学分别从“象棋”“文学”“摄影”三个社团中随机选取一个社团加入,则这两名同学加入同一个社团的概率是( )A .14B .13C .12D .23 B [由题意,甲、乙两名同学各自等可能地从“象棋”“文学”“摄影”三个社团中选取一个社团加入,共有3×3=9(种)不同的结果,这两名同学加入同一个社团有3种状况,则这两名同学加入同一个社团的概率是39=13.] 3.(2024·红河州检测)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.从以上五张卡片中任取两张,这两张卡片颜色不同且标号之和小于4的概率为( )A .13B .110C .310D .23C [从五张卡片中任取两张的全部可能状况有如下10种:红1红2,红1红3,红1蓝1,红1蓝2,红2红3,红2蓝1,红2蓝2,红3蓝1,红3蓝2,蓝1蓝2.其中两张卡片的颜色不同且标号之和小于4的有3种状况:红1蓝1,红1蓝2,红2蓝1,故所求的概率为P =310,故选C .] 4.(2024·抚州一模)小亮、小明和小红约好周六骑共享单车去森林公园郊游,他们各自等可能地从小黄车、小蓝车、小绿车这3种颜色的单车中选择1种,则他们选择相同颜色单车的概率为( )A .13B .19C .23D .49B [由题意,小亮、小明和小红各自等可能地从小黄车、小蓝车、小绿车这3种颜色的单车中选择1种,有27种不同的结果,他们选择相同颜色的单车,有3种不同的结果,故他们选择相同颜色单车的概率为327=19,故选B.] 5.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A .110B .18C .16D .15D [从正六边形的6个顶点中随机选择4个顶点,方法有15种,它们作为顶点的四边形是矩形的方法种数为3,所以所求概率等于315=15.] 二、填空题6.从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 16[从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有2,3;2,8;2,9;3,8;3,9;8,9;3,2;8,2;9,2;8,3;9,3;9,8,共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故P =212=16.] 7.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a ,放回后,乙从今口袋中再摸出一个小球,其号码为b ,则使不等式a -2b +4<0成立的事务发生的概率为________.14[由题意知(a ,b )的全部可能结果有4×4=16个.其中满意a -2b +4<0的有(1,3),(1,4),(2,4),(3,4)共4种结果.故所求事务的概率P =416=14.] 8.(2024·成都月考)如图的茎叶图是甲、乙两人在4次模拟测试中的成果,其中一个数字被污损,则甲的平均成果不超过乙的平均成果的概率为________.0.3 [依题意,记题中的被污损数字为x ,若甲的平均成果不超过乙的平均成果,则有(8+9+12+11)-(5+3+10+x +15)≤0,x ≥7,即此时x 的可能取值是7,8,9,因此甲的平均成果不超过乙的平均成果的概率P =310=0.3.] 三、解答题9.移动公司在国庆期间推出4G 套餐,对国庆节当日办理套餐的客户进行实惠,实惠方案如下:选择套餐1的客户可获得实惠200元,选择套餐2的客户可获得实惠500元,选择套餐3的客户可获得实惠300元.国庆节当天参与活动的人数统计结果如图所示,现将频率视为概率.(1)求从中任选1人获得实惠金额不低于300元的概率;(2)若采纳分层抽样的方式从参与活动的客户中选出6人,再从该6人中随机选出2人,求这2人获得相等实惠金额的概率. [解] (1)设事务A 为“从中任选1人获得实惠金额不低于300元”,则P (A )=150+10050+150+100=56. (2)设事务B 为“从这6人中选出2人,他们获得相等实惠金额”,由题意按分层抽样方式选出的6人中,获得实惠200元的有1人,获得实惠500元的有3人,获得实惠300元的有2人,分别记为:a 1,b 1,b 2,b 3,c 1,c 2,从中选出2人的全部基本领件如下:a 1b 1,a 1b 2,a 1b 3,a 1c 1,a 1c 2,b 1b 2,b 1b 3,b 1c 1,b 1c 2,b 2b 3,b 2c 1,b 2c 2,b 3c 1,b 3c 2,c 1c 2共15个.其中使得事务B 成立的有b 1b 2,b 1b 3,b 2b 3,c 1c 2,共4个.则P (B )=415. 故这2人获得相等实惠金额的概率为415. 10.(2024·西安质检)某校高一年级学生全部参与了体育科目的达标测试,现从中随机抽取40名学生的测试成果,整理数据并按分数段[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成果的折线图如图所示.(1)体育成果大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1 000名学生,试估计该校高一年级中“体育良好”的学生人数;(2)为分析学生平常的体育活动状况,现从体育成果在[60,70)和[80,90)的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成果在[60,70)的概率.[解] (1)由折线图,知样本中体育成果大于或等于70分的学生有14+3+13=30(人).所以该校高一年级中,“体育良好”的学生人数大约有1 000×3040=750(人). (2)设“至少有1人体育成果在[60,70)”为事务M ,记体育成果在[60,70)的数据为A 1,A 2,体育成果在[80,90)的数据为B 1,B 2,B 3,则从这两组数据中随机抽取2个,全部可能的结果有10种,即(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),(B 1,B 2),(B 1,B 3),(B 2,B 3).而事务M 的结果有7种,即(A 1,A 2),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3),因此事务M 的概率P (M )=710. B 组 实力提升1.甲邀请乙、丙、丁三人加入了微信群聊“兄弟”,为庆祝兄弟相聚甲发了一个9元的红包,被乙、丙、丁三人抢完,已知三人均抢到整数元,且每人至少抢到2元,则丙获得“手气王”(即丙领到的钱数不少于其他任何人)的概率是( )A .13B .310C .25D .34C [全部基本领件有(2,2,5),(2,5,2),(5,2,2),(2,3,4),(2,4,3),(3,2,4),(3,4,2),(4,2,3),(4,3,2),(3,3,3),共10个,其中丙获得“手气王”的基本领件有(2,2,5),(2,3,4),(3,2,4),(3,3,3),共4个,故所求概率为P =410=25.] 2.(2024·威海月考)从集合{2,3,4,5}中随机抽取一个数a ,从集合{1,3,5}中随机抽取一个数b ,则向量m =(a ,b )与向量n =(1,-1)垂直的概率为( )A .16B .13C .14D .12A [由题意可知m =(a ,b )有:(2,1),(2,3),(2,5),(3,1),(3,3),(3,5),(4,1),(4,3),(4,5),(5,1),(5,3),(5,5),共12种状况.因为m ⊥n ,即m·n =0,所以a ×1+b ×(-1)=0,即a =b ,满意条件的有(3,3),(5,5)共2个.故所求的概率为16.] 3.已知集合M ={1,2,3},N ={1,2,3,4},定义映射f :M →N ,则从中任取一个映射满意由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的概率为________.316[∵集合M ={1,2,3},N ={1,2,3,4},∴映射f :M →N 有43=64种,∵由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC ,∴f (1)=f (3)≠f (2),∵f (1)=f (3)有4种选择,f (2)有3种选择,∴从中任取一个映射满意由点A (1,f (1)),B (2,f (2)),C (3,f (3))构成△ABC 且AB =BC 的事务有4×3=12种,∴所求概率为1264=316.]4.(2024·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采纳分层抽样的方法从中抽取7名同学去某敬老院参与爱心活动.(1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(2)设抽出的7名同学分别用A ,B ,C ,D ,E ,F ,G 表示,现从中随机抽取2名同学担当敬老院的卫生工作.①试用所学字母列举出全部可能的抽取结果;②设M 为事务“抽取的2名同学来自同一年级”,求事务M 发生的概率.[解] (1)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采纳分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(2)①从抽取的7名同学中随机抽取2名同学的全部可能结果为{A ,B },{A ,C },{A ,D },{A ,E },{A ,F },{A ,G },{B ,C },{B ,D },{B ,E },{B ,F },{B ,G },{C ,D },{C ,E },{C ,F },{C ,G },{D ,E },{D ,F },{D ,G },{E ,F },{E ,G },{F ,G }共21种.②由①,不妨设抽出的7名同学中,来自甲年级的是A ,B ,C ,来自乙年级的是D ,E ,来自丙年级的是F ,G ,则从抽出的7名同学中随机抽取的2名同学来自同一年级的全部可能结果为{A ,B },{A ,C },{B ,C },{D ,E },{F ,G },共5种.所以,事务M 发生的概率P (M )=521。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年高考分类汇编1:函数一、选择题1 .(2013年高考重庆卷)函数21log (2)y x =-的定义域为( )A .(,2)-∞B .(2,)+∞C .(2,3)(3,)+∞ D .(2,4)(4,)+∞【答案】C【命题立意】本题考查函数的定义域。
要使函数有意义则,220log (2)0x x ->⎧⎨-≠⎩,即2021x x ->⎧⎨-≠⎩,即2x >且3x ≠,所以选C.2 .(2013年高考辽宁卷))已知函数())()1ln31,.lg 2lg 2f x x f f ⎛⎫=++=⎪⎝⎭则( )A .1-B .0C .1D .2【答案】D()3)1f x x -=++所以()()2f x f x +-=,因为lg 2,1lg 2为相反数,所以所求值为2.3 .(2013年高考天津卷)设函数22,()ln )3(x x g x x x x f e +-=+-=. 若实数a , b 满足()0,()0f a g b ==, 则( )A .()0()g a f b <<B .()0()f b g a <<C .0()()g a f b <<D .()()0f b g a <<【答案】A由220,()ln (30)x x g x x e x f x +-==+=-=得22,ln 3x x x e x =-+=-+,分别令122(),()x f x e f x x =-+=,221()ln ,()3g x x g x x ==-+。
在坐标系中分别作出函数122(),()x f x e f x x =-+=,221()ln ,()3g x x g x x ==-+的图象,由图象知01,12a b <<<<。
此时21()()g a g a <,所以()0g a <又。
12()()f b f b >,所以()0f b >,即()0()g a f b <<,选A.4 .(2013年高考陕西卷)设全集为R , 函数()f x =M , 则C M R 为( )A .(-∞,1)B .(1, + ∞)C .(,1]-∞D .[1,)+∞【答案】B),1(],1,(.1,0-1∞=-∞=≤∴≥MR C M x x 即 ,所以选B5 .(2013年高考湖北卷)x 为实数,[]x 表示不超过x 的最大整数,则函数()[]f x x x =-在R上为( )A .奇函数B .偶函数C .增函数D .周期函数【答案】D【命题立意】本题考查函数的性质与判断。
在12x ≤<时,()1f x x =-,在23x ≤<时,()2f x x =-,在34x ≤<时,()3f x x =-。
在1n x n ≤<+时,()f x x n =- 。
画出图象由图象可知函数没有奇偶性,在[n,n+1)上单调递增,是周期函数,周期是1.选D.6 .(2013年高考四川卷)设函数()f x =(a R ∈,e 为自然对数的底数).若存在[0,1]b ∈使(())f f b b =成立,则a 的取值范围是( ) A .[1,]e B .[1,1]e +C .[,1]e e +D .[0,1]【答案】A7.(2013年高考北京卷)下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( )A .1y x=B .x y e-=C .21y x =-+D .lg ||y x =【答案】C可以排除A ,B ,由于||lg x y =,当0>x 时单调递增,排除D.8.(2013年高考福建卷)函数)1ln()(2+=x x f 的图象大致是( )A .B .C .D .【答案】A本题考查的是对数函数的图象.由函数解析式可知)()(x f x f -=,即函数为偶函数,排除C ;由函数过)0,0(点,排除B,D .9.(2013年高考山东卷)已知函数)(x f 为奇函数,且当0>x 时,xx x f 1)(2+=,则=-)1(f ( )A .2B .1C .0D .-2【答案】D2)111()1()1(2-=+-=-=-f f ,故选D.10.(2013年高考广东卷)函数lg(1)()1x f x x +=-的定义域是( ) A .(1,)-+∞ B .[1,)-+∞ C .(1,1)(1,)-+∞ D .[1,1)(1,)-+∞【答案】 C对数真数大于零,分母不等于零,选C !11.(2013年高考山东卷(文5))函数()f x =的定义域为( ) A .(-3,0] B .(-3,1] C .(,3)(3,0]-∞-- D .(,3)(3,1]-∞--【答案】A120,30x x ⎧-≥⎨+>⎩解得0,3.x x ≤⎧⎨>-⎩故选A 。
12.(2013年高考课标Ⅱ卷)设3log 2a =,5log 2b =,2log 3c =,则( ) (A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >>【答案】 D因为321log 21log 3=<,521log 21log 5=<,又2log 31>,所以c 最大。
又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,选D. 13.(2013年高考天津卷)已知函数()f x 是定义在R 上的偶函数, 且在区间[0,)+∞单调递增. 若实数a 满足212(log )(log )2(1)f a f f a ≤+, 则a 的取值范围是( )A .[1,2]B .10,2⎛⎤ ⎥⎝⎦C .1,22⎡⎤⎢⎥⎣⎦D .(0,2]【答案】C因为函数()f x 是定义在R 上的偶函数,且122l o g l o g a a=-,所以222122(log )(log )(log )(log )2(log )2(1)f a f a f a f a f a f +=+-=≤,即2(log )(1)f a f ≤,因为函数在区间[0,)+∞单调递增,所以2(log )(1)f a f ≤,即2log 1a ≤,所以21log 1a -≤≤,解得122a ≤≤,即a 的取值范围是1,22⎡⎤⎢⎥⎣⎦,选C.14.(2013年高考课标Ⅰ卷)已知函数22,0,()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是 ( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-【答案】D;作出函数|()|f x 的图象,如图,要使|()|f x ax ≥成立,则必有0a ≤。
当0x ≤时,222|()|222f x x x x x x x =-+=-=-,设22y x x =-,则'222y x =-≥-,解0x ≤时,切线的斜率2k ≥-,所以此时有2a ≥-,综上20a -≤≤,即a 的取值范围是[2,0]-,选D.15.(2013年高考安徽)函数()y f x =的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,,,n x x x ,使得1212()()()n nf x f x f x x x x ===,则n 的取值范围为( ) A .{}2,3B .{}2,3,4C .{}3,4D .{}3,4,5【答案】B1111()()0f x f x x x -=-表示11(,())x f x 到原点的斜率; 1212()()()n nf x f x f x x x x ===表示1122(,())(,())(,())n nx f x x f x x f x ,,,与原点连线的斜率,而1122(,())(,())(,())n n x f x x f x x f x ,,,在曲线图像上,故只需考虑经过原点的直线与曲线的交点有几个,很明显有3个,故选B.16.(2013年高考湖南)已知f(x)是奇函数,g(x)是偶函数,且f(-1)+g(1)=2,f(1)+g(-1)=4,则g(1)等于 ( ) A . 4 B .3 C .2 D .1 【答案】B【命题立意】本题考查函数的奇偶性以及应用。
因为函数f (x )是奇函数,g (x )是偶函数,所以由f (-1)+g (1)=2,f (1)+g (-1)=4得(1)(1)2,(1)(1)4f g f g -+=+=,解得(1)3g =。
选B.二、填空题17.(2013年高考安徽)定义在R 上的函数()f x 满足(1)2()f x f x +=.若当01x ≤≤时.()(1)f x x x =-,则当10x -≤≤时,()f x =________________. 【答案】(1)()2x x f x +=-当10x -≤≤,则011x ≤+≤,故(1)(1)(11)(1)f x x x x x +=+--=-+又(1)2()f x f x +=,所以(1)()2x x f x +=-18.(2013年高考北京卷)函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 。
【答案】(-∞,2)当121log 0x x ≥≤时,,当12xx <<<时,02,故值域是)2,(-∞。
19.(2013年高考安徽)函数1ln(1)y x=++的定义域为_____________.【答案】(]0,12110011011x x xx x ⎧+>⇒><-⎪⎨⎪-≥⇒-≤≤⎩或,求交集之后得x 的取值范围(]0,1 【考点定位】考查函数定义域的求解,对数真数位置大于0,分母不为0,偶次根式底下大于等于0.20.(2013年高考福建卷)已知函数⎪⎩⎪⎨⎧<≤-<=20,tan 0,2)(3πx x x x x f ,则=))4((πf f ________ 【答案】2-本题考查的是分段函数求值.2)1(2)1()4tan())4((3-=-=-=-=f f f f ππ.21.(2013年高考四川卷)___________.【答案】1110lg 205lg 20lg 5lg ==⨯=+.故填1.22.(2013年上海高考数学试题)方程91331x x+=-的实数解为_______. 【答案】3log 499133131333103131x x x x xx +=⇒=-⇒-=±⇒=±+>--,所以334log 4x x =⇒=。