014年中考数学二轮专题复习试卷--概率与统计(五份附问卷与答卷)

合集下载

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案

中考数学高频考点《统计与概率》专题训练-带答案一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为( )A .3B .4C .5D .72.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为( )A .87次B .110次C .112次D .120次3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12 4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是( )A .920B .1019C .13D .12 5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是( )A .众数和中位数B .平均数和中位数C .众数和方差D .众数和平均数6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x 个/分钟,落在130<x ⩽140的范围内的数据有( )A .6个B .5个C .4个D .3个7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( )A .摸到白球的可能性最大B .摸到红球和黄球的可能性相同C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13 8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( )A .18B .16C .14D .12 9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( )A .12B .13C .14D .15 10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数67 9 12人数 6 7 10 7 则投篮20次投中的次数的中位数和众数分别是( )A .8,9B .10,9C .7,12D .9,911.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( )A .平均数B .中位数C .极差D .众数12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( )A .点数的和为1B .点数的和为6C .点数的和大于12D .点数的和小于1313.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19 14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12 15.(2024•石家庄二模)下列说法正确的是( )A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是 ;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 . 17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 .三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园 乙茶园 平均数 85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.19.(2024•裕华区二模)某中学为了解初三同学的体育中考准备情况,随机抽取该年级某班学生进行体育模拟测试(满分30分),根据测试成绩(单位:分)绘制成两幅不完整的统计图(如图1和图2),已知图2中得28分的人数所对圆心角为90°,回答下列问题:(1)条形统计图有一部分污损了,求得分27分的人数;直接写出所调查学生测试成绩中位数和众数.(2)一同学因病错过考试,补测后与之前成绩汇总,发现中位数变大了,求该名同学的补测成绩.(3)已知体育测试的选考项目有:①足球运球绕杆:②篮球运球绕杆;③排球正面双手垫球,求小明和小亮选择同一项目的概率.20.(2024•石家庄二模)某班组织开展课外体育活动,在规定时间内,进行定点投篮,对投篮命中数量进行了统计,并制成下面的统计表和如图不完整的折线统计图(不含投篮命中个数为0的数据).投篮命中数量/个 1 2 3 4 5 6学生人数 1 2 3 7 6 1 根据以上信息,解决下面的问题:(1)在本次投篮活动中,投篮命中的学生共有人,并求投篮命中数量的众数和平均数;(2)补全折线统计图;(3)嘉淇在统计投篮命中数量的中位数时,把统计表中相邻两个投篮命中的数量m,n错看成了n,m (m<n)进行计算,结果错误数据的中位数与原数据的中位数相比发生了改变,求m,n的值.21.(2024•新华区二模)“惜餐为荣,敛物为耻.”为了解落实“光盘行动”的情况,某校调研了七、八年级部分班级某一天的厨余垃圾质量,并作出如下统计分析.【收集数据】七、八年级各随机抽取10个班厨余垃圾质量的数据(单位:kg).【整理数据】进行整理和分析(厨余垃圾质量用x表示,共分为四个等级:A.x<1;B.1≤x<1.5;C.1.5≤x<2;D.x≥2).【描述数据】下面给出了部分信息,绘制如下统计图:七年级10个班厨余垃圾质量:0.6,0.7,0.7,0.7,1.3,1.3,1.6,1.7,2,2.4.八年级10个班厨余垃圾质量中B等级包含的所有数据为:1.1,1.1,1.1,1.3.【分析数据】七、八年级抽取的班级厨余垃圾质量统计表如下:年级平均数中位数众数方差A等级所占百分比七年级 1.3 1.3 a0.352 40%八年级 1.3 b 1.1 0.24 m%根据以上信息,解答下列问题:(1)填空:a=,b=,m=;(2)该校八年级共有30个班,估计八年级这一天厨余垃圾质量符合A等级的班级数;(3)根据以上信息,请你任选一个统计量,分析在此次“光盘行动”中,该校七、八年级的哪个年级落实得更好?并说明理由.22.(2024•桥西区二模)小亮所在的学校共有900名初中学生,小亮同学想了解本校全体初中学生的年龄构成情况、他从全校学生中随机选取了部分学生,调查了他们的年龄(单位:岁),绘制出如图所示的学生年龄扇形统计图.(1)直接写出m的值,并求全校学生中年龄不低于15岁的学生大约有多少人;(2)利用该扇形统计图,你能求出样本的平均数、众数和中位数中的哪些统计量?请直接写出相应的结果;(3)小红认为无法利用该扇形统计图求出样本的方差.你认同她的看法吗?若认同,请说明理由;若不认同,请求出方差.23.(2024•裕华区二模)2024年3月20日,天都一号、二号通导技术试验星由长征八号遥三运载火箭在中国文昌航天发射场成功发射升空,卫星作为深空探测实验室的首发星,将为月球通导技术提供先期验证!临邑县某中学为了解学生对航天知识的掌握情况,学校随机抽取了部分学生进行问卷调查,并将调查结果绘制成了下列两幅统计图(不完整),请根据图中信息,解答下列问题:(1)本次调查一共抽取了名学生,扇形统计图中“比较了解”所对应的圆心角度数是.(2)请你将条形统计图补充完整;(3)若该学校共有1200名学生,根据抽样调查的结果,请问该学校选择“不了解”项目的学生约有多少名?(4)在本次调查中,张老师随机抽取了4名学生进行感悟交流,其中“非常了解”的1人,“比较了解”的2人,“了解”的1人.若从这4人中随机抽取2人,请用画树状图或列表法,求抽取的2人全是“比较了解”的概率.24.(2024•正定县二模)某市教育局以“学习强国”学习平台知识内容为依托,要求市直辖学校利用“豫事办”手机客户端开展“回顾二十大”全民知识竞赛活动,市教育局随机抽取了两所学校各10名教师进行测试(满分10分),并对相关数据进行了如下整理:收集数据:一中抽取的10名教师测试成绩:9.1,7.8,8.5,7.5,7.2,8.4,7.9,7.2,6.9,9.5二中抽取的10名教师测试成绩:9.2,8.0,7.6,8.4,8.0,7.2,8.5,7.4,7.5,8.2分析数据:两组数据的相关统计量如下(规定9.0分及其以上为优秀):平均数中位数方差优秀率一中8.0 7.85 0.666 c二中8.0 b0.33 10%问题解决:根据以上信息,解答下列问题:(1)若绘制分数段频数分布表,则一中分数段0≤x<8.0的频数a=;(2)填空:b=,c=;(3)若一中共有教师280人,二中共有教师350人,估计这两个学校竞赛成绩达到优秀的教师总人数为多少人?(4)根据以上数据,请你对一、二中教师的竞赛成绩做出分析评价.(写出两条即可)25.(2024•新华区二模)在“书香进校园”读书活动中,为了解学生课外读物的阅读情况,随机调查了部分学生的课外阅读量.绘制成不完整的扇形统计图(图1)和条形统计图(图2),其中条形统计图被墨汁污染了一部分.(1)条形统计图中被墨汁污染的人数为人.“8本”所在扇形的圆心角度数为°;(2)求被抽查到的学生课外阅读量的平均数和中位数;(3)随后又补查了m名学生,若已知他们在本学期阅读量都是10本,将这些数据和之前的数据合并后,发现阅读量的众数没改变,求m的最大值.26.(2024•平山县二模)某班进行中考体育适应性练习,球类运动可以在篮球、足球、排球中选择一种.该班体委将测试成绩进行统计后,发现选择足球的同学测试成绩均为7分、8分、9分、10分中的一种(满分为10分),并依据统计数据绘制了如下不完整的扇形统计图(如图1)和条形统计图(如图2).(1)该班选择足球的同学共有人,其中得8分的有人;(2)若小宇的足球测试成绩超过了参加足球测试的同学半数人的成绩,则他的成绩是否超过了所有足球测试成绩的平均分?通过计算说明理由.27.(2024•裕华区二模)为了保护学生视力,防止学生沉迷网络和游戏,促进学生身心健康发展,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A表示“一等奖”,B表示“二等奖”,C表示“三等奖”,D表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为人,m=,A所对的圆心角度数是°;(2)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.28.(2024•藁城区二模)甲、乙两个不透明的袋子中,分别装有大小材质完全相同的小球,其中甲口袋中小球编号分别是1、2、3、4,乙口袋中小球编号分别是2、3、4,先从甲口袋中任意摸出一个小球,记下编号为m,再从乙袋中摸出一个小球,记下编号为n.(1)请用画树状图或列表的方法表示(m,n)所有可能情况;(2)规定:若m、n都是方程x2﹣5x+6=0的解时,小明获胜;m、n都不是方程x2﹣5x+6=0的解时,小刚获胜,请说明此游戏规则是否公平?29.(2024•新华区二模)如图,A,B两个带指针的转盘分别被分成三个面积相等的扇形,转盘A上的数字分别是﹣6,﹣1,5,转盘B上的数字分别是6,﹣7,4(两个转盘除表面数字不同外,其他完全相同).小聪和小明同时转动A,B两个转盘,使之旋转(规定:指针恰好停留在分界线上,则重新转一次).(1)转动转盘,转盘A指针指向正数的概率是;(2)若同时转动两个转盘,转盘A指针所指的数字记为a,转盘B指针所指的数字记为b,若a+b>0,则小聪获胜;若a+b<0,则小明获胜;请用列表法或树状图法说明这个游戏是否公平.30.(2024•新乐市二模)打造书香文化,培养阅读习惯.崇德中学计划在各班建图书角,开展“我最喜欢的书籍”为主题的调查活动,学生根据自己的爱好选择一类书籍(A:科技类,B:文学类,C:政史类,D:艺术类,E:其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m=,n=,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A,B,C三类书籍中随机选择一种,乙同学从B,C,D三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.31.(2024•桥西区二模)为加强体育锻炼,某校体育兴趣小组,随机抽取部分学生,对他们在一周内体育锻炼的情况进行问卷调查,根据问卷结果,绘制成如下统计图.请根据相关信息,解答下列问题:某校学生一周体育锻炼调查问卷以下问题均为单选题,请根据实际情况填写(其中0~4表示大于等于0同时小于4)问题:你平均每周体育锻炼的时间大约是A.0~4小时B.4~6小时C.6~8小时D.8小时及以上问题2:你体育锻炼的动力是_____E.家长要求F.学校要求G.自己主动H.其他(1)参与本次调查的学生共有人,选择“自己主动”体育锻炼的学生有人;(2)已知该校有2600名学生,若每周体育锻炼8小时以上(含8小时)可评为“运动之星”,请估计全校可评为“运动之星”的人数;(3)请写出一条你对同学体育锻炼的建议.参考答案与试题解析一.选择题(共15小题)1.(2024•新华区二模)已知三个数﹣3、5、7,若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为()A.3 B.4 C.5 D.7【解答】解:∵﹣3<5<7∴若添加一个数组成一组新数据,且这组新数据唯一的众数与中位数相等,则这个新数据为5.故选:C.2.(2024•新华区二模)某校八年级学生参加每分钟跳绳的测试,并随机抽取部分学生的成绩制成了频数分布直方图(如图),若取每组的组中值作为本小组的均值,则抽取的部分学生每分钟跳绳次数的平均数(结果取整数)为()A .87次B .110次C .112次D .120次【解答】解:x =62×2+87×8+112×12+137×6+162×22+8+12+6+2≈110次 故选:B .3.(2024•长安区二模)班主任邀请甲、乙、丙三位同学参加圆桌会议.如图,班主任坐在D 座位,三位同学随机坐在A 、B 、C 三个座位,则甲、乙两位同学座位相邻的概率是( )A .23B .13C .14D .12【解答】解:画树状图如下:共有6种等可能的结果,其中甲、乙两位同学座位相邻的结果有4种,即AB 、BA 、BC 、CB ∴甲、乙两位同学座位相邻的概率为46=23故选:A .4.(2024•桥西区二模)如图,某十字路口有交通信号灯,在东西方向上,红灯开启27秒后,紧接着绿灯开启30秒,再紧接着黄灯开启3秒,然后接着又是红灯开启27秒…按这样的规律循环下去,在不考虑其他因素的前提下,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是()A.920B.1019C.13D.12【解答】解:由题意得,当一辆汽车沿东西方向随机行驶到该路口时,遇到绿灯开启的概率是3027+30+3= 12.故选:D.5.(2024•裕华区二模)为深入开展全民禁毒宣传教育,某校举行了禁毒知识竞赛,嘉嘉说:“我们班100分的同学最多,一半同学成绩在96分以上”,嘉嘉的描述所反映的统计量分别是()A.众数和中位数B.平均数和中位数C.众数和方差D.众数和平均数【解答】解:在一组数据中出现次数最多的数是这组数据的众数,中位数即位于中间位置的数故选:A.6.(2024•裕华区二模)某班开展了两次跳绳比赛,从班级里随机抽取了20名学生两次跳绳的成绩(单位:个/分钟),并对数据进行整理、描述和分析.如图是这些学生第一次和第二次比赛成绩情况统计图,设每名学生两次跳绳的平均成绩是x个/分钟,落在130<x⩽140的范围内的数据有()A .6个B .5个C .4个D .3个【解答】解:观察统计图,可以发现两次活动平均成绩在130<x ⩽140的范围内的数据有5个 故选:B .7.(2024•石家庄二模)一个不透明盒子里,共装有10个白球,5个红球,5个黄球,这些球仅颜色不同.小明从中任取一球,下列说法错误的是( ) A .摸到白球的可能性最大 B .摸到红球和黄球的可能性相同 C .摸到白球的可能性为12D .摸到白球、红球、黄球的可能性都为13【解答】解:∵一个不透明盒子里,共装有10个白球,5个红球,5个黄球 ∴共有20个球 ∴摸到白球的概率为1020=12,摸到红球的概率为520=14,摸到黄球的概率为520=14∵12>14∴摸到白球的可能性最大,摸到红球和黄球的可能性相同,摸到白球的可能性为12故选:D .8.(2024•藁城区二模)从分别写有“大”“美”“江”“汉”汉字的四张卡片中,随机抽出两张,抽出的卡片上的汉字能组成“江汉”的概率是( ) A .18B .16C .14D .12【解答】解:列表如下:大 美 江 汉 大 美大 江大 汉大 美 大美 江美 汉美 江 大江 美江 汉江 汉大汉美汉江汉由表知,共有12种等可能结果,其中抽出的卡片上的汉字能组成“江汉”的有2种结果 所以抽出的卡片上的汉字能组成“江汉”的概率为212=16故选:B .9.(2024•新华区二模)2024年河北省初中学业水平体育与健康科目考试的抽考项目包含①②③④共四项,由各市教育行政部门抽签决定.某市教育行政部门从四个项目中随机抽取一项,抽到项目①的概率为( ) A .12B .13C .14D .15【解答】解:∵市教育行政部门从四个项目中随机抽取一项的可能结果共有4种,抽到项目①的可能结果只有1种∴抽到项目①的概率为14.故选:C .10.(2024•新乐市二模)在一次体育课上,小明随机调查了30名同学投篮20次投中的次数,数据如表所示:投篮20次投中的次数 679 12人数67 10 7 则投篮20次投中的次数的中位数和众数分别是( ) A .8,9B .10,9C .7,12D .9,9【解答】解:将这30人投篮20次投中的次数从小到大排列后,处在之间位置的两个数的平均数为9+92=9(次),因此中位数是9次这30人投篮20次投中的次数是9次的出现的次数最多,共有10人,因此众数是9次 综上所述,中位数是9,众数是9故选:D .11.(2024•裕华区二模)七位评委对参加普通话比赛的选手评分,比赛规则规定要去掉一个最高分和一个最低分,然后计算剩下了5个分数的平均分作为选手的比赛分数,规则“去掉一个最高分和一个最低分”一定不会影响这组数据的( ) A .平均数B .中位数C .极差D .众数【解答】解:去掉一个最高分和一个最低分一定会影响到平均数、极差,可能会影响到众数 一定不会影响到中位数 故选:B .12.(2024•新华区二模)掷两枚质地均匀的骰子,下列事件是随机事件的是( ) A .点数的和为1 B .点数的和为6 C .点数的和大于12D .点数的和小于13【解答】解:A 、两枚骰子的点数的和为1,是不可能事件,故不符合题意;B 、两枚骰子的点数之和为6,是随机事件,故符合题意;C 、点数的和大于12,是不可能事件,故不符合题意;D 、点数的和小于13,是必然事件,故不符合题意;故选:B .13.(2024•新华区二模)如图,桌面上有3张卡片,1张正面朝上.任意将其中1张卡片正反面对调一次后,这3张卡片中出现2张正面朝上的概率是( )A .1B .23C .13D .19【解答】解:∵任意将其中1张卡片正反面对调一次,有3种对调方式,其中只有对调反面朝上的2张卡片才能使3张卡片中出现2张正面朝上 ∴P =23 故选:B .14.(2024•桥西区二模)有数字4,5,6的三张卡片,将这三张卡片任意摆成一个三位数,摆出的三位数是5的倍数的概率是( )A .16B .14C .13D .12【解答】解:三位数有6个,是5的倍数的三位数是:465,645; 三位数是5的倍数的概率为:26=13;故选:C .15.(2024•石家庄二模)下列说法正确的是( ) A .了解一批灯泡的使用寿命,应采用抽样调查的方式B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票一定会中奖C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则乙组数据较稳定 D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是必然事件【解答】解:A .了解一批灯泡的使用寿命,应采用抽样调查的方式,是正确的,因此选项A 符合题意;B .如果某彩票的中奖概率是1%,那么一次购买100张这种彩票也不一定会中奖,因此选项B 不符合题意;C .若甲、乙两组数据的平均数相同,S 甲2=2.5,S 乙2=8.7,则甲组数据较稳定,因此选项C 不符合题意;D .“任意掷一枚质地均匀的骰子,掷出的点数是7”是不可能事件,因此选项D 不符合题意;故选:A .二.填空题(共2小题)16.(2024•平山县二模)已知一个不透明的袋子中装有4个只有颜色不同的小球,其中1个白球,3个红球.(1)从袋子中随机摸出1个小球是红球的概率是34;(2)若在原袋子中再放入m 个白球和m 个红球(m >1),搅拌均匀后,使得随机从袋子中摸出1个小球是白球的概率为25,则m 的值为 3 .【解答】解:(1)由题意可得从袋子中随机摸出1个小球是红球的概率是31+3=34故答案为:34;(2)由题意可得1+m 1+m +3+m =25解得m =3 故答案为:3.17.(2024•石家庄二模)经过某T 字路口的汽车,可能向左转或向右转,如果两种可能性大小相同,则两辆汽车经过这个T 字路口时,“行驶方向相同”的概率是 12.【解答】解:画树状图为:共有4种等可能的结果数,其中行驶方向相同的有2种 ∴“行驶方向相同”的概率是 24=12故答案为:12.三.解答题(共14小题)18.(2024•石家庄二模)为了解甲、乙两个茶园种植的“龙井”茶叶的品质,现从两个茶园里分别随机抽取了20份茶叶样本,对它们的品质进行评分(满分100分,分数越高代表品质越好)评分用x 表示,共分为四组,A 组:60≤x <70,B 组:70≤x <80,C 组:80≤x <90,D 组:90≤x ≤100.甲茶园20份茶叶的评分从小到大分别为:65,68,72,75,78,80,82,85,85,88,90,90,90,92,95,95,95,95,98,100;乙茶园20份茶叶中有3份的评分为100分,评分在C 组中的数据是:85,88,80,85,82,83. 甲、乙两茶园随机抽取的茶叶评分数据统计分析如下表所示,乙茶园抽取的茶叶评分扇形统计图如图所示:甲茶园乙茶园平均数85.9 87.6中位数89 b众数a95根据以上信息解答下列问题:(1)直接写出统计表中a,b的值;(2)若甲、乙两茶园的茶叶总共有2400份,请估计甲、乙两茶园评分在D组的茶叶共有多少份;(3)本次抽取的40份茶叶样本中,评分为100分的视为“精品茶叶”.茶农要在“精品茶叶”中任选两份参加茶叶展销会,用列表法(或画树状图)求这两份茶叶全部来自乙茶园的概率.【解答】解:(1)由题意可得,a=95.由扇形统计图可知,乙茶园评分在A组有20×10%=2(份),在B组有20×20%=4(份).将乙茶园评分按照从小到大的顺序排列,排在第10和11的分数为85分和85分∴b=(85+85)÷2=85.(2)乙茶园评分在D组的茶叶有(1﹣10%﹣20%﹣30% )×20=8(份)甲茶园评分在D组的茶叶有10份∴估计甲、乙两茶园评分在D组的茶叶共约有2400×8+1020+20=1080(份).(3)由题意知,甲茶园评分为100分的有1个,乙茶园评分为100分的有3个.将甲茶园“精品茶叶”记为a,乙茶园“精品茶叶”分别记为b,c,d列表如下:a b c da(a,b)(a,c)(a,d)b(b,a)(b,c)(b,d)。

2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率

2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率

2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,甲2=2,乙2=2.5,则甲组数据较稳定【答案】D【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.【详解】解:A、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B、抛出的篮球会下落是必然事件,故B不符合题意;C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;2=2,乙2=2.5,则甲组数据较稳定,故D符合题意;D、若甲、乙两组数据的平均数相同,甲故选:D.【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【详解】解:样本是从中抽取的150名师生的国家安全知识掌握情况.故选:C.【点睛】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选C.【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.4.【原创题】长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是()A.这周最高气温是32℃B.这组数据的中位数是30C.这组数据的众数是24D.周四与周五的最高气温相差8℃【答案】B【分析】根据折线统计图,可得答案.【详解】解:A、由纵坐标看出,这一天中最高气温是32℃,说法正确,故A不符合题意;B、这组数据的中位数是27,原说法错误,故B符合题意;C、这组数据的众数是24,说法正确,故C不符合题意;D、周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32−24=8(℃),说法正确,故D不符合题意;故选:B.【点睛】此题主要考查了折线统计图,由纵坐标看出气温,横坐标看出时间是解题的关键.5.【创新题】若一组数据1,2,3,⋯,的方差为2,则数据1+3,2+3,3+3,⋯,+3的方差是()A.2B.5C.6D.11【答案】A【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为 ,现在的平均数为 +3,原来的方差12=1(1− )2+(2− )2+…+(− )2=2,现在的方差22=11+3− −32+2+3− −32+…++3− −32,=1− )2+(2− )2+⋯+(− )2,=2.故选:A.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分2和乙2,则甲2与乙2的大小关系是()别记为甲测试次数12345甲510938乙868672>乙2B.甲2<乙2C.甲2=乙2D.无法确定A.甲【答案】A【分析】先分别求出甲、乙的平均数,再求出甲、乙的方差即可得出答案.【详解】解:甲的平均数为5+10+9+3+85=7,2=−72+10−72+9−72+3−72+8−72=6.8,甲的方差为乙的平均数为8+6+8+6+7=7,2=−72+6−72+8−72+6−72+7−72=0.8,乙的方差为∵0.8<6.8,2>乙2.∴甲故选:A.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,1,2,…的平均数为=1+2+⋯,则方差2=1−+2+⋯+−2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:3+2+5=10(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:210=15,摸出“高铁”小球的概率为:510=12,因此摸出“高铁”小球的可能性最大.故选C.【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.8.【原创题】剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A.45B.35C.25D.15【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C.【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:0≤<3,3≤<6,6≤<9,9≤<12,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A.0.6B.0.5C.0.4D.0.32【答案】A【分析】利用概率公式进行计算即可.【详解】解:由题意,得:=10+2010+20+14+6=35=0.6;故选A.【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.10.【原创题】在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是()A.试验次数越多,f越大B.f与P都可能发生变化C.试验次数越多,f越接近于PD.当试验次数很大时,f在P附近摆动,并趋于稳定【答案】D【分析】根据频率的稳定性解答即可.【详解】解:在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定这个性质称为频率的稳定性.【点睛】本题考查了频率与概率,掌握频率的稳定性是关键.二.填空题(共6小题,满分18分,每小题3分)11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命<10001000≤<16001600≤<22002200≤<2800≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则=.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+=25,去分母,得6×5=26+,经检验=9是所列分式方程的根,∴=9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目综合知识工作经验语言表达应聘者甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.【答案】乙【分析】分别计算甲、乙、丙三名应聘者的成绩的加权平均数,比较大小即可求解.【详解】解:甲=75×510+80×210+80×310=77.5,乙=85×510+80×210+70×310=79.5,丙=70×510+78×210+70×310=71.6,∵71.6<77.5<79.5∴被录用的是乙,故答案为:乙.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算方法是解题的关键.14.【原创题】小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是.【答案】72°/72度【分析】根据“新材料”的占比乘以360°,即可求解.【详解】解:“新材料”所对应扇形的圆心角度数是20%×360°=72°,故答案为:72°.【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.【答案】800【分析】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设该湿地约有x只A种候鸟,则200:10=x:40,解得x=800.故答案为:800.【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:Fol⋅m﹣2⋅s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).【答案】乙【分析】分别求甲、乙两品中的方差即可判断;【详解】解:甲2=32−252+30−252+25−252+18−252+20−252=29.6乙2=−252+25−252+26−252+24−252+22−252=4甲2>乙2∴乙更稳定;故答案为:乙.【点睛】本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.【答案】(1)23(2)23【分析】(1)直接由概率公式求解即可;(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,∴从中随机抽取1张,抽得扑克牌上的数字为3的概率为23,故答案为:23;(2)解:画树状图如下:如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,∴抽得2张扑克牌的数字不同的概率为=46=23.【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【答案】34【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34,即两次分数之和不大于3的概率为34.【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.19.【原创题】甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?【答案】(1)14(2)公平.理由见解析【分析】(1)用列表法或画树状图法列举出所有等可能的结果,再用乙选中球拍C的结果数除以总的结果数即可;(2)分别求出甲先发球和乙先发球的概率,再比较大小,如果概率相同则公平,否则不公平.【详解】(1)解:画树状图如下:一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,∴乙选中球拍C的概率=312=14;(2)解:公平.理由如下:画树状图如下:一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,∴甲先发球的概率=24=12,乙先发球的概率=4−24=12,∵12=12,∴这个约定公平.【点睛】本题考查列表法或画树状图法求等可能事件的概率,游戏的公平性,掌握列表法或画树状图法求等可能事件的概率的方法是解题的关键.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4+7+10+14+20=55(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.72−11.52=0.2(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【创新题】如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4∗2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21.0克.【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【详解】(1)解:平均数:15×45.4+48.1+45.1+44.6+45.5=45.74mm;这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,其中2.3mm出现了2次,出现的次数最多,∴这5枚古钱币的厚度的众数为2.3mm;将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,∴这5枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;(2)名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.其余四个盒子质量的平均数为:34.3+34.1+34.3+34.14=34.2g,55.2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;(2)游戏公平,理由见解析【分析】(1)列表列出所有等可能结果即可;(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.【详解】(1)解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)由表格可知,(a,b)所有可能出现的结果总数有8种;(2)解:游戏公平,由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,概率相同,都是48=12,所以游戏公平.【点睛】本题主要考查游戏的公平性及概率的计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)丙【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.【详解】(1)解:丙的平均数:10+10+10+9+9+8+3+9+8+1010=8.6,则=8.6.2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04,(2)甲2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,乙∵甲2<乙2,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625,乙:7+7+7+9+9+10+10+108=8.625,丙:10+10+9+9+8+9+8+108=9.125,∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,故答案为:丙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【详解】(1)从小到大排序,。

中考数学总复习《概率》专项测试卷带答案

中考数学总复习《概率》专项测试卷带答案

中考数学总复习《概率》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是( )A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝2上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为( )A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.6.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.7.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________ ;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________ ,“B:龙凤古镇”对应圆心角的度数是_________ ;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.参考答案A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是(D)A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是(C)A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是(A)A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为(A)A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是3,则袋子中至少有3个绿球.56.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同.时选择景点B的概率为197.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________;【解析】(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是1.4答案:14(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解析】(2)四张卡片内容中是化学变化的有A,D画树状图如图所示共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有AD,DA,共2种∴小夏抽取两张卡片内容均为化学变化的概率为212=1 6 .B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为(D)A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是(B)A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于14.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是25.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________,“B:龙凤古镇”对应圆心角的度数是_________;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【解析】(1)∵30÷30%=100(人)∴本次被抽样调查的学生总人数为100;∵出游C景点的人数为100-(12+20+20+8+30)=10×100=10;∴m=10100×360°=72°∵20100∴“B:龙凤古镇”对应圆心角的度数是72°.答案:1001072°(2)由(1)知:出游景点C的人数为10补全条形统计图如图所示(3)8100×1 800=144(人)答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如图所示一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果∴P(选择同一景点)=416=1 4 .。

2014年中考数学二轮考点分类训练专题07 统计与概率(答案详解+名师点评)-1.doc

2014年中考数学二轮考点分类训练专题07 统计与概率(答案详解+名师点评)-1.doc

浙教版2014年中考数学二轮考点分类训练专题专题07 统计与概率班级姓名一、选择题C.上城区与下城区的人口数之和超过江干区的人口数D.杭州市区的人口数已超过600万【考点】众数。

【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是8,故这组数据的众数为8。

故选C。

4. 随机掷两枚硬币,落地后全部正面朝上的概率是【】A.1B.12C.13D.145. 下列调查中,适合用全面调查方式的是【】A.了解某班学生“50米跑”的成绩B.了解一批灯泡的使用寿命C.了解一批炮弹的杀伤半径D.了解一批袋装食品是否含有防腐剂【答案】A。

【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查。

因此,6. 将1、2、3三个数字随机生成的点的坐标,列成下表.如果每个点出现的可能性相等,那么从中任意取一点,则这个点在函数y=x图象上的概率是【】(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)(3,1)(3,2)(3,3)A.0.3 B.0.5 C.13D.23A. 12B.14C.34D.110. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:这些运动员跳高成绩的中位数和众数分别是【】A.1.65,1.70 B.1.70,1.65 C.1.70,1.70 D.3,5二、填空题1. 下列几个命题中正确的个数为▲个.①“掷一枚均匀骰子,朝上点数为负”为必然事件(骰子上各面点数依次为1,2,3,4,5,6).②5名同学的语文成绩为90,92,92,98,103,则他们平均分为95,众数为92.③射击运动员甲、乙分别射击10次,算得甲击中环数的方差为4,乙击中环数的方差为16,则这一过程中乙较甲更稳定.④某部门15名员工个人年创利润统计表如下,其中有一栏被污渍弄脏看不清楚数据,所以对于“该部门员工个人年创利润的中位数为5万元”的说法无法判断对错.2. 甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0、1、2、3,先由甲心中任-≤,则称选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_折线统计图-单选题专训及答案折线统计图单选题专训1、(2019呼和浩特.中考真卷) 某学校近几年来通过“书香校园”主题系列活动,倡导学生整本阅读纸质课外书籍.下面的统计图是该校2013年至2018年纸质书人均阅读量的情况,根据统计图提供的信息,下列推断不合理的是()A . 从2013年到2016年,该校纸质书人均阅读量逐年增长B . 2013年至2018年,该校纸质书人均阅读量的中位数是46.7本C . 2013年至2018年,该校纸质书人均阅读量的极差是45.3本D . 2013年至2018年,该校后三年纸质书人均阅读量总和是前三年纸质书人均阅读量总和的倍2、(2020磴口.中考模拟) 如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()A . 2010年至2014年间工业生产总值逐年增加B . 2014年的工业生产总值比前一年增加了40亿元C . 2012年与2013年每一年与前一年比,其增长额相同D . 从2011年至2014年,每一年与前一年比,2014年的增长率最大3、(2019通州.中考模拟) 小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,如图为二人测试成绩折线统计图,下列说法合理的是( )①小亮测试成绩的平均数比小明的高;②小亮测试成绩比小明的稳定;③小亮测试成绩的中位数比小明的高;④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理.A . ①③B . ①④C . ②③D . ②④4、(2021额尔古纳.中考模拟) 在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A . 18,18,1B . 18,17.5,3C . 18,18,3D . 18,17.5,15、(2019常熟.中考模拟) 在2019年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、平均数依次是()A . 48,48,48B . 48,47.5,47.5C . 48,48,48.5D . 48,47.5,48.56、(2017高邮.中考模拟) 体育委员把全班45名同学的体育锻炼时间,并绘制了如图所示的折线统计图,则全班45名同学一周的体育锻炼总时间的众数和中位数分别是()A . 9,9B . 9,10C . 18,9D . 18,187、(2019婺城.中考模拟) 如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是()A . 30,28B . 26,26C . 31,30D . 26,228、(2019秀洲.中考模拟) 某电动车厂2018年第三、四季度各月产量情况如图所示。

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(含答案)

中考数学二轮专题复习试卷:统计与概率(时间:120分钟 满分:120分)一、选择题(本大题共15个小题,每小题3分,共45分) 1.(四川遂宁)以下问题,不适合用全面调查的是( ) A.了解全班同学每周体育锻炼的时间 B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.(山东菏泽)在我市举行的中学生春季田径运动会上,参加男子跳高的15名运动员的成绩如表所示:这些运动员跳高的中位数和众数分别是( )A.1.70,1.65B.1.70,1.70C.1.65,1.70D.3,4 3.(山东济宁)下列说法正确的是( ) A.中位数就是一组数据中最中间的一个数 B.8,9,9,10,10,11这组数据的众数是9 C.如果x 1,x 2,x 3,…,x n 的平均数是x,那么()12n x x (x x x x 0-+-+⋯+-=())D.一组数据的方差是这组数据的极差的平方4.(山东青岛)一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有( )个.A.45B.48C.50D.555.(四川内江)今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近4万名考生是总体C.每位考生的数学成绩是个体D.1 000名学生是样本容量6.(重庆)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽出50株,分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙的方差分别是 3.5、10.9,则下列说法正确的是( ) A.甲秧苗出苗更整齐 B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐7.(浙江温州)小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图,由图可知,该班同学最喜欢的球类项目是( )A.羽毛球B.乒乓球C.排球D.篮球8.(山东日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是( )A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校全体教职工总人数的20%C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组9.(陕西)我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是( )A.71.8B.77C.82D.95.710.(山东枣庄)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球为白球的概率是23,则黄球的个数为( )A.16B.12C.8D.411.(福建漳州)某日福建省九地市的最高气温统计如下表:针对这组数据,下列说法正确的是( )A.众数是30B.极差是1C.中位数是31D.平均数是2812.(山东泰安)某校开展“节约每一滴水”活动,为了了解开展活动一个月以来节约用水的情况,从八年级的400名同学中选出20名同学统计了各自家庭一个月的节水情况,见表:请你估计这400名同学的家庭一个月节约用水的总量大约是( )A.130 m3B.135 m3C.65 m3D.260 m313.(甘肃天水)一组数据:3,2,1,2,2的众数,中位数,方差分别是( )A.2,1,0.4B.2,2,0.4C.3,1,2 D.2,1,0.214.(山东淄博)假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,则三只雏鸟中恰有两只雌鸟的概率是( )1352A. B. C. D.688315.(辽宁铁岭)在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个二、填空题(本大题共6个小题,每小题3分,共18分)16.(浙江湖州)某市号召居民节约用水,为了解居民用水情况,随机抽查了20户家庭某月的用水量,结果如表,则这20户家庭这个月的平均用水量是_______t.17.(山东青岛)某校对甲、乙两名跳高运动员的近期跳高成绩进行统计分析,结果如下:,,,2===x1.69 m x1.69 m s0.000 6甲乙甲,则这两名运动员中________的成绩更稳定.2s0.003 15=乙18.(浙江宁波)如图是七(1)班学生参加课外兴趣小组人数的扇形统计图.如果参加外语兴趣小组的是12人,那么参加绘画兴趣小组的人数是______人.19.(湖南株州)市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如表.请你根据表中数据选一人参加比赛,最合适的人选是_______.20.甲乙丙丁平均数8.28.08.08.2方差2.11.81.61.420.(湖南岳阳)如图所示的3×3方格形地面上,阴影部分是草地,其余部分是空地,一只自由飞翔的小鸟飞下来落在草地上的概率为______.21.(浙江温州)赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图.由图可知,成绩不低于90分的共有________人.三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(浙江嘉兴)小敏为了解本市的空气质量情况,从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示优的扇形的圆心角度数;(3)请估计该市这一年(365天)达到优和良的总天数.23.(本小题满分10分)(宁夏)某校要从九年级(一)班和(二)班中各选取10名女同学组成礼仪队,选取的两班女生的身高如下:(单位:厘米)(一)班:168 167 170 165 168 166 171 168 167 170(二)班:165 167 169 170 165 168 170 171 168 167(1)补充完成下面的统计分析表(2)请选一个合适的统计量作为选择标准,说明哪一个班能被选取.24.(本小题满分10分)(浙江温州)一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现在袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率不小于1.3问至少取出了多少黑球?25.(本小题满分12分)(四川雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有_____人;(2)请你将条形统计图(2) 补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率( 用树状图或列表法解答).26.(本小题满分15分)(浙江衢州)据衢州市国民经济和社会发展统计公报显示,衢州市新开工的住房有商品房、廉租房、经济适用房和公共租赁房四种类型.老王对这四种新开工的住房套数和比例进行了统计,并将统计结果绘制成下面两幅统计图,请你结合图中所给信息解答下列问题:(1)求经济适用房的套数,并补全频数分布直方图;(2)假如申请购买经济适用房的对象中共有950人符合购买条件,老王是其中之一.由于购买人数超过房子套数,购买者必须通过电脑摇号产生,如果对新开工的经济适用房进行电脑摇号,那么老王被摇中的概率是多少?(3)如果新开工廉租房建设的套数比增长10%,那么新开工廉租房有多少套?参考答案1.D2.A3.C4.A5.C6.A7.D8.D9.C10.D 11.A 12.A 13.B 14.B 15.D16.5.8 17.甲 18.5 19.丁 20.1321.2722.解:(1)∵扇形图中空气质量为良所占比例为64%,条形图中空气质量为良的天数为32天,∴被抽取的总天数为:32÷64%=50(天);(2)轻微污染天数是50-32-8-3-1=5天,表示优的圆心角度数为:850×360°=57.6°. 补全条形统计图,如图所示:(3)∵样本中优和良的天数分别为8和32天, ∴一年(365天)达到优和良的总天数:832365292().50+⨯=天 23.解:(1)一班的方差=110[(168-168)2+(167-168)2+(170-168)2+…+(170-168)2]=3.2; 二班的极差为171-165=6; 二班的中位数为168; 补全表格如下:(2)选择方差做标准,∵一班方差<二班方差, ∴一班可能被选取.24.解:(1)摸出一个球是黄球的概率:51P .513228==++(2)设取出x 个黑球.由题意,得:5x 1,403+≥ 解得:25x ,3≥∴x 的最小正整数解是x=9. 答:至少取出9个黑球. 25.解:(1)200 (2)C:60人(3) 所有情况如表所示:由上表可知, 所有结果为 12 种, 其中符合要求的只有2种, ∴P(恰好选中甲、乙)=21.126=26.解:(1)根据题意得:住房总数为1 500÷24%=6 250(套),则经济适用房的数量为6 250×7.6%=475(套),所以经济适用房共有475套.补全直方图(2)老王被摇中的概率为:4751.9502(3)廉租房共有6 250×8%=500(套). 500(1+10%)=550, 所以新开工廉租房550套.。

最新中考二轮专题统计与概率试题.doc

最新中考二轮专题统计与概率试题.doc

统计与概率专题测练一、选择题:1.把一个质地均匀的骰子掷两次,至少有一次骰子的点数为2的概率是 ( ) A .21 B .51 C .361 D .3611 2.有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,若将这六张牌背面向上洗匀后,从中任意抽取一张,那么这张牌正面上的数字是3的倍数的概率为( )A .32 B .21 C .41 D .313.已知一组数据2,2,3,x ,5,5,6的众数是2,则x 是( )A .5B .4C .3D .24.如图,两个用来摇奖的转盘,其中说法正确的是( ) A 、转盘(1)中蓝色区域的面积比转盘(2)中的蓝色区域面积要大,所以摇转盘(1)比摇转盘(2)时,蓝色区域得奖的可能性大 B 、两个转盘中指针指向蓝色区域的机会一样大C 、转盘(1)中,指针指向红色区域的概率是31 D 、在转盘(2)中只有红、黄、蓝三种颜色,指针指向每种颜色的概率都是31 5.把一个沙包丢在如图所示的某个方格中(每个方格除颜色外完全一样),那么沙包落在黑色格中的概率是( ) A .21 B .31 C .41 D .51 6.沃尔玛商场为了了解本商场的服务质量,随机调查了本商场 的100名顾客,调查的结果如图,根据图中给出的信息,这 100名顾客中对该商场的服务质量表示不满意的有( ) A .6人 B .11人 C .39人 D .44人 二、填空题7.在体育测试中,2分钟跳160次为达标,小敏记录了她预测时2分钟跳的次数分别为145,155,140,162,164,则她在该次预测中达标的概率是________。

8.某口袋中有红色、黄色、蓝色玻璃共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有________个。

9.某校九年级(2)班(1)组女生的体重(单位:kg )为:38,40,35,36,65,42,42,则这组数据的中位数是________.10.口袋里有红、绿、黄三种颜色的球,其中红球4个,绿球5个,任意摸出一个绿球的概率是31,则摸出一个黄球的概率是________。

2024年中考数学专项复习训练:统计与概率-试卷

2024年中考数学专项复习训练:统计与概率-试卷

2024年中考数学专项复习训练:统计与概率一、选择题(每题3分,共18分)1. (2023•株洲)数据12、15、18、17、10、19的中位数为( )A.14B.15C.16D.172. (2023秋•昌图县期末)小明对本班同学阅读兴趣进行调查统计后,欲通过统计图来反映同学感兴趣的各类图书所占百分比,最适合的统计图是( )A.条形统计图B.折线统计图C.扇形统计图D.频数直方图3. (2023·湖北十堰·统考中考真题)某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是( )A.8,15B.8,14C.15,14D.15,154. (2023·湖北随州·统考中考真题)小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为( )A.97和99B.97和100C.99和100D.97和1015. (2023•潍坊)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是( )A.平均数是144B.众数是141C.中位数是144.5D.方差是5.46. (2023七上·岷县开学考)为了了解本校八年级学生的体能情况,随机抽查了其中30名学生,测试了1 min仰卧起坐次数,并绘制如图所示的频数分布直方图,请根据图中的信息,计算仰卧起坐次数在∽次的百分比是( )A.40%B.30%C.20%D.10%二、填空题(每题3分,共30分)7. (2023秋•法库县期末)已知一组数据从小到大依次为﹣2,0,4,x,6,8,其中位数为5.则众数为.8. (2023·湖北黄冈·统考二模)期中考试结束后,老师统计了全班40人的数学成绩,这40个数据共分为6组,第1至第4组的频数分别为10,5,7,6,第5组的频率为0.1,那么第6组的频率是______.9. (2023·湖北武汉·统考中考真题)某体育用品专卖店在一段时间内销售了20双学生运动鞋,各种尺码运动鞋的销售量如下表.则这20双运动鞋的尺码组成的一组数据的众数是_________.10. (2023•衢州)某班五个兴趣小组的人数分别为4,4,5,x,6.已知这组数据的平均数是5,则这组数据的中位数是.11. (2023•武汉)热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是.12. (2023广西贺州)某老师对九年级1班55名学生的数学成绩进行统计,得到频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有______名.13. (2023•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上.每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14. (2023•天津)不透明袋子中装有8个球,其中有3个红球、5个黑球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.15. (2023浙江)在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ.两次摸球的所有可能的结果如表,则两次摸出的球都是红球的概率是.16. (2023九上·长沙期中)农科院计划为某地选择合适的水果玉米种子,通过实验,甲、乙、丙、丁四种水果玉米种子每亩平均产量都是1500kg,方差分别为S2甲=0.02,S2乙=0.02,S2 =0.03,S2丁=0.01,则这四种水果玉米种子产量最稳定的是.(填“甲”“乙”丙“丙”“丁”)三、解答题(第17—20题每题10分,第21题12分,共52分)17. (2023秋•大东区期末)某公司想招聘一名新职员,对甲、乙、丙三名应试者进行了面试、笔试和才艺三个方面的量化考核,他们的各项得分(百分制,单位:分)如表所示:(1)请通过计算三项得分的平均分,从低到高确定应聘者的排名顺序;(2)公司规定:面试、笔试、才艺得分分别不得低于80分、80分、70分,并按照50%、40%,10%的比例计入个人总分,请你确定谁会被录用?并说明理由.18. (2023•玄武区一模)某班有甲、乙两名同学报名参加100米跑步比赛,他们在赛前进行了10次训练.将两人的10次训练成绩分别绘制成如图统计图.(1)根据统计图把下列表格补充完整:(2)从两个不同角度评价甲、乙两名同学的训练成绩.19. (2023•铜仁市)某校计划组织学生参加学校书法、摄影、篮球、乒乓球四个课外兴趣小组,要求每人必须参加并且只能选择其中的一个小组,为了了解学生对四个课外小组的选择情况,学校从全体学生中随机抽取部分学生进行问卷调查,并把调查结果制成如图所示的两幅不完整的统计图,请你根据给出的信息解答下列问题:(1)求该校参加这次问卷调查的学生人数,并补全条形统计图(画图后请标注相应的数据);(2)m=,n=;(3)若该校共有2000名学生,试估计该校选择“乒乓球”课外兴趣小组的学生有多少人?20. (2023•营口)随着“新冠肺炎”疫情防控形势日渐好转,各地开始复工复学,某校复学后成立“防疫志愿者服务队”,设立四个“服务监督岗”:①洗手监督岗,②戴口罩监督岗,③就餐监督岗,④操场活动监督岗.李老师和王老师报名参加了志愿者服务工作,学校将报名的志愿者随机分配到四个监督岗.(1)李老师被分配到“洗手监督岗”的概率为;(2)用列表法或面树状图法,求李老师和王老师被分配到同一个监督岗的概率.21. (2023•陕西)王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?22. (2023•苏州)为增强学生垃圾分类意识,推动垃圾分类进校园.某初中学校组织全校1200名学生参加了“垃圾分类知识竞赛”,为了解学生的答题情况,学校考虑采用简单随机抽样的方法抽取部分学生的成绩进行调查分析.(1)学校设计了以下三种抽样调查方案:方案一:从初一、初二、初三年级中指定部分学生成绩作为样本进行调查分析;方案二:从初一、初二年级中随机抽取部分男生成绩及在初三年级中随机抽取部分女生成绩进行调查分析;方案三:从三个年级全体学生中随机抽取部分学生成绩进行调查分析.其中抽取的样本具有代表性的方案是.(填“方案一”、“方案二”或“方案三”) (2)学校根据样本数据,绘制成下表(90分及以上为“优秀”,60分及以上为“及格”):请结合表中信息解答下列问题:①估计该校1200名学生竞赛成绩的中位数落在哪个分数段内;②估计该校1200名学生中达到“优秀”的学生总人数.。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_频数与频率-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_频数与频率-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_频数与频率-综合题专训及答案频数与频率综合题专训1、(2018龙港.中考模拟) 未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和频率分布直方图(如(1)补全频率分布表;(2)在频率分布直方图中,长方形ABCD的面积是;这次调查的样本容量是;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.2、(2018大庆.中考模拟) 在大课间活动中,同学们积极参加体育锻炼,小明就本班同学“我最喜爱的体育项目”进行了一次调查统计,下面是他通过收集数据后,绘制的两幅不完整的统计图.请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为;(4)学校将举办体育节,该班将推选5位同学参加乒乓球活动,有3位男同学(A,B,C)和2位女同学(D,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.3、(2017邳州.中考模拟) 人民网为了解百姓对时事政治关心程度,特对18~35岁的青年人每天发微博数量进行调查,设一个人的“日均发微博条数”为m,规定:当m≥10时为甲级,当5≤m<10时为乙级,当0≤m<5时为丙级,现随机抽取20个符合年龄条件的青年人开展调查,所抽青年人的“日均发微博条数”的数据如下:0 82 810137 5 7 31210711 3 68141512(1)样本数据中为甲级的频率为;(直接填空)(2)求样本中乙级数据的中位数和众数.(3)从样本数据为丙级的人中随机抽取2人,用列举法或树状图求抽得2个人的“日均发微博条数”都是3的概率.4、(2019吴兴.中考模拟) 某校九年级八个班共有320名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.(1)收集数据调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是__________(填字母);(2)整理、描述数据抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:77 83 80 64 86 90 75 92 83 81 85 86 88 62 65 86 97 96 82 7386 84 89 86 92 73 57 77 87 82 91 81 86 71 53 72 90 76 68 78整理数据,如下表所示:请将表格空缺数据填写完整.(3)分析数据、得出结论调查小组将统计后的数据与去年同期九年级学生的体质健康测试成绩(上方直方图)进行对比分析.若规定80分以上(包括80分)为合格健康体质。

备考2024年中考数学二轮复习-统计与概率_概率_游戏公平性-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_游戏公平性-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_游戏公平性-综合题专训及答案游戏公平性综合题专训1、(2014盐城.中考真卷) 如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等.(1)现随机转动转盘一次,停止后,指针指向1的概率为;(2)小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由.2、(2017迁安.中考模拟) 小伟和小欣玩一种抽卡片游戏:将背面完全相同、正面分别写有1,2,3,4的四张卡片背面向上洗匀后,小伟和小欣各自随机抽取一张(不放回).将小伟的数字作为十位数字,小欣的数字作为个位数字,组成一个两位数.如果所组成的两位数为偶数,则小伟胜;否则小欣胜.(1)当小伟抽取的卡片数字为2时,问两人谁获胜的可能性大?(2)通过计算判断这个游戏对小伟和小欣是否公平.3、(2017东胜.中考模拟) 为了调查学生对雾霾天气的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾的了解程度百分比A.非常了解5%A.比较了解15%C.基本了解45%D.不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有人,n=;扇形统计图中D部分扇形所对应的圆心角是度;(2)请补全条形统计图;(3)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球标上数字1,2,3,4,然后放到一个不透明的袋中,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.4、(2017南京.中考模拟) 小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:此次实验中,“1点朝上”的频率是;(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.5、(2019萧山.中考模拟) 阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.6、(2017含山.中考模拟) A,B两个口袋中,都装有三个相同的小球,分别标有数字1,2,3,小刚、小丽两人进行摸球游戏.游戏规则是:小刚从A袋中随机摸一个球,同时小丽从B袋中随机摸一个球,当两个球上所标数字之和为奇数时小刚赢,否则小丽赢.(1)这个游戏对双方公平吗?通过列表或画树状图加以说明.(2)若公平,请你改变本题的游戏规则,使其对小丽有利;若不公平,也请你改变本的题的游戏规则,使游戏对双方公平.(无论怎么设计,都请说明理由)7、(2012.中考真卷) 为了纪念中国共产主义青年团成立90周年,某校初三(1)、(2)班团支部组织了一次联欢会,小乐为活动设计了一个游戏:把两个可以自由转动的转盘各等分成三个扇形,分别标上1,2,3和4,5,6,每班级各派一名选手参加,每人同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,指针指向的数字之和为偶数时(1)班获胜,数字之和为奇数时(2)班获胜,小乐设计的游戏规则公平吗?请用树状图或列表分析说明,若认为不公平,请修改规则使游戏变得公平.8、(2012资阳.中考真卷) 为了决定谁将获得仅有的一张科普报告入场券,甲和乙设计了如下的一个游戏:口袋中有编号分别为1、2、3的红球三个和编号为4的白球一个,四个球除了颜色或编号不同外,没有任何别的区别,摸球之前将小球搅匀,摸球的人都蒙上眼睛.先甲摸两次,每次摸出一个球;把甲摸出的两个球放回口袋后,乙再摸,乙只摸一个球.如果甲摸出的两个球都是红色,甲得1分,否则,甲得0分;如果乙摸出的球是白色,乙得1分,否则,乙得0分;得分高的获得入场券,如果得分相同,游戏重来.(1)运用列表或画树状图求甲得1分的概率;(2)这个游戏是否公平?请说明理由.9、(2017贵州.中考模拟) 在一个不透明的口袋里装有四个分别标有1、2、3、4的小球,它们的形状、大小等完全相同.小明先从口袋里随机不放回地取出一个小球,记下数字为x;小红在剩下有三个小球中随机取出一个小球,记下数字y.(1)计算由x、y确定的点(x,y)在函数y=﹣x+6图象上的概率;(2)小明、小红约定做一个游戏,其规则是:若x、y满足xy>6,则小明胜;若x、y满足xy<6,则小红胜.这个游戏规则公平吗?说明理由;若不公平,怎样修改游戏规则才对双方公平?10、(2018云南.中考模拟) 某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.11、(2017陕西.中考模拟) 如图,小华和小丽两人玩游戏,她们准备了A、B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.12、(2017靖远.中考模拟) 在一只不透明的袋中,装着标有数字3,4,5,7的质地、大小均相同的小球,小明和小东同时从袋中随机各摸出1个球,并计算这两个球上的数字之和,当和小于9时小明获胜,反之小东获胜.(1)请用树状图或列表的方法,求小明获胜的概率;(2)这个游戏公平吗?请说明理由.13、(2017吴忠.中考模拟) 如图,小华和小丽两人玩游戏,她们准备了A,B两个分别被平均分成三个、四个扇形的转盘.游戏规则:小华转动A盘、小丽转动B盘.转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止.两个转盘停止后指针所指区域内的数字之和小于6,小华获胜.指针所指区域内的数字之和大于6,小丽获胜.(1)用树状图或列表法求小华、小丽获胜的概率;(2)这个游戏规则对双方公平吗?请判断并说明理由.14、(2020陕西.中考模拟) 小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.(1)请你用画树状图或列表的方法,求出这两数和为6的概率.(2)如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.15、元旦联欢会上,明明和磊磊玩掷骰子的游戏.现有一枚均匀的正方体骰子,每个面上分别标上数字1、2、3、4、5、6.游戏规则是:明明和磊磊各掷一次骰子,若两次朝上的点数之和是3的倍数,则明明获胜,否则磊磊获胜.(1)用画树状图或列表的方法表示所有可能的结果;(2)你认为这个游戏规则对明明和磊磊公平吗?请说明理由.游戏公平性综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率公式-综合题专训及答案概率公式综合题专训1、(2012阜新.中考真卷) 自开展“学生每天锻炼1小时”活动后,我市某中学根据学校实际情况,决定开设A:毽子,B:篮球,C:跑步,D:跳绳四种运动项目.为了了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图统计图.请结合图中信息解答下列问题:(1)该校本次调查中,共调查了多少名学生?(2)请将两个统计图补充完整;(3)在本次调查的学生中随机抽取1人,他喜欢“跑步”的概率有多大?2、(2018苏州.中考真卷) 如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).3、(2019泸西.中考模拟) 一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果;(2)求点A落在第四象限的概率.4、(2016苏州.中考真卷) 在一个不透明的布袋中装有三个小球,小球上分别标有数字﹣1、0、2,它们除了数字不同外,其他都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字2的小球的概率为;(2)小丽先从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的横坐标.再将此球放回、搅匀,然后由小华再从布袋中随机摸出一个小球,记下数字作为平面直角坐标系内点M的纵坐标,请用树状图或表格列出点M所有可能的坐标,并求出点M落在如图所示的正方形网格内(包括边界)的概率.5、(2017满洲里.中考模拟) 有3张不透明的卡片,除正面写有不同的数字外,其它均相同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标有的数字记作一次函数表达式中的k,第二次从余下的两张卡片中再随机抽取一张,上面标有的数字记作一次函数表达式中的b.(1)写出k为负数的概率;(2)求一次函数y=kx+b的图象经过二、三、四象限的概率.(用树状图或列表法求解)6、(2019兰州.中考模拟) 2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.7、(2019张家港.中考模拟) 一只不透明的口袋里装有1个红球、1个黄球和若干个白球,这些球除颜色外其余都相同,搅匀后从中任意摸出一个是白球的概率为(1)试求袋中白球的个数(2)搅匀后从中任意摸出1个球(不放回),再从余下的球中任意摸出1个球,试用画树状图或列表格的方法,求两次摸出的2个球恰好是1个白球、1个红球的概率,8、(2019金华.中考模拟) 某校5月份举行了八年级生物实验考查,有A和B两个考查实验,规定每位学生只参加其中一个实验的考查,并由学生自己抽签决定具体的考查实验,小明、小丽、小华都参加了本次考查.(1)小丽参加实验A考查的概率是;(2)用列表或画树状图的方法求小明、小丽都参加实验A考查的概率;(3)他们三人都参加实验A考查的概率是.9、(2013温州.中考真卷) 一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?10、(2018合肥.中考模拟) 小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.11、(2017北.中考模拟) 某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?12、(2017金乡.中考模拟) 一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)求从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.13、(2017贵州.中考真卷) 由于只有1张市运动会开幕式的门票,小王和小张都想去,两人商量采取转转盘(如图,转盘盘面被分为面积相等,且标有数字1,2,3,4的4个扇形区域)的游戏方式决定谁胜谁去观看.规则如下:两人各转动转盘一次,当转盘指针停止,如两次指针对应盘面数字都是奇数,则小王胜;如两次指针对应盘面数字都是偶数,则小张胜;如两次指针对应盘面数字是一奇一偶,视为平局.若为平局,继续上述游戏,直至分出胜负.如果小王和小张按上述规则各转动转盘一次,则(1)小王转动转盘,当转盘指针停止,对应盘面数字为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.14、(2020云南.中考模拟) 如图,可以自由转动的转盘被平均分成了三等分标有数字﹣2,3,﹣1的扇形区域转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是3的概率;(2)转动转盘两次,设第一次得到的数字为x,第二次得到的数字为y,点M的坐标为(x,y),请用树状图或列表法求点M在反比例函数y=﹣的图象上的概率.15、(2017罗平.中考模拟) 现有A,B两组卡片共5张,A中三张分别写有数字2,4,6,B中两张分别写有3,5,它们除数字外完全一样.(1)随机地从A中抽取一张,求抽到数字为2的概率;(2)随机地分别从A、B中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?若不公平,你认为怎样制定游戏规则,对甲乙双方才公平?概率公式综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2024年中考数学二轮复习-统计与概率_概率_概率的意义-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率的意义-单选题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_概率的意义-单选题专训及答案概率的意义单选题专训1、(2011连云港.中考真卷) 已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是()A . 连续抛一均匀硬币2次必有1次正面朝上B . 连续抛一均匀硬币10次都可能正面朝上C . 大量反复抛一均匀硬币,平均100次出现正面朝上50次D . 通过抛一均匀硬币确定谁先发球的比赛规则是公平的2、(2014徐州.中考真卷) 抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率()A .大于 B . 等于 C . 小于 D . 不能确定3、(2013泰州.中考真卷) 事件A:打开电视,它正在播广告;事件B:抛掷一个均匀的骰子,朝上的点数小于7;事件C:在标准大气压下,温度低于0℃时冰融化.3个事件的概率分别记为P(A)、P(B)、P(C),则P(A)、P(B)、P(C)的大小关系正确的是()A . P(C)<P(A)=P(B)B . P(C)<P(A)<P(B)C . P(C)<P(B)<P(A)D . P(A)<P(B)<P(C)4、(2018台州.中考模拟) 下列说法正确的是()A . “买一张电影票,座位号为偶数”是必然事件B . 若甲、乙两组数据的方差分别为s =0.3、s =0.1,则甲组数据比乙组数据稳定 C . 一组数据2,4,5,5,3,6的众数是5 D . 若某抽奖活动的中奖率为,则参加6次抽奖一定有1次能中奖5、(2017邗江.中考模拟) 下列说法正确的是()A . 要了解一批灯泡的使用寿命,采用全面调查的方式B . 要了解全市居民对环境的保护意识,采用抽样调查的方式C . 一个游戏的中奖率是1%,则做100次这样的游戏一定会中奖D . 若甲组数据的方差S甲2=0.05,乙组数据的方差S乙2=0.1,则乙组数据比甲组数据稳定6、(2019海曙.中考模拟) 下列说法中,正确的是()A . 一个游戏中奖的概率是,则做l0次这样的游戏一定会中奖B . 为了了解一批炮弹的杀伤半径,应采用全面调查的方式C . 一组数据8,8,7,l0,6,8,9的众数是8D . 一组数据的方差越大说明这组数据的波动越小7、(2017绍兴.中考真卷) 在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其它均相同,从中任意摸出一个球,则摸出黑球的概率是()A .B .C .D .8、(2019成都.中考模拟) 下列说法中,正确的是()A .不可能事件发生的概率为0 B . 随机事件发生的概率为 C . 概率很小的事件不可能发生 D . 投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次9、(2019滨州.中考模拟) 下列说法中正确的是()A . “打开电视,正在播放新闻节目”是必然事件B . “抛一枚硬币,正面向上的概率为 ”表示每抛两次就有一次正面朝上C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为 ”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近 D . 为了解某种节能灯的使用寿命,选择全面调查10、(2017赤壁.中考模拟) 下列说法中,正确的是()A . “打开电视,正在播放新闻联播节目”是必然事件B . 某种彩票中奖概率为10%是指买10张一定有一张中奖C . 了解某种节能灯的使用寿命应采用全面检查D . 一组数据3,5,4,6,7的中位数是5,方差是211、(2017罗山.中考模拟) 下列说法正确的是( )A .一个游戏的中奖概率是,则做100次这样的游戏一定会中奖 B . 为了解全国中学生的心理健康情况,应该采用普查的方式 C . 一组数据 8,8,7,10,6,8,9 的众数和中位数都是8 D . 若甲组数据的方差s2=0.01,乙组数据的方差s2=0.1,则乙组数据比甲组数据稳定12、(2014河南.中考真卷) 下列说法中,正确的是()A . “打开电视,正在播放河南新闻节目”是必然事件B . 某种彩票中奖概率为10%是指买十张一定有一张中奖C . 神舟飞船发射前需要对零部件进行抽样调查D . 了解某种节能灯的使用寿命适合抽样调查13、(2017武汉.中考模拟) 下列说法中正确的是()A . “打开电视机,正在播放《动物世界》”是必然事件 B . 某种彩票的中奖概率为,说明每买1000张,一定有一张中奖 C .抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为 D . 想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查14、(2017广水.中考模拟) 气象台预报“本市明天降水概率是30%”,对此消息下列说法正确的是()A . 本市明天将有30%的地区降水B . 本市明天将有30%的时间降水C . 本市明天有可能降水D . 本市明天肯定不降水15、(2017孝感.中考模拟) 下列说法正确的是()A . 如果一件事不是必然发生的,那么它就不可能发生B . 人有可能得病,也有可能不得病,因此得病与不得病的概率各占50%C . 某抽奖箱中有100张抽奖券,中奖概率是25%,首先甲抽取一张没中,接下来乙抽剩下的奖券,中奖的概率大于25%D . 某彩票的中奖机会是1%,买100张这种彩票一定是99张彩票不中奖,1张彩票中奖16、(2017冷水滩.中考模拟) 下列说法正确的是()A . 要了解我市九年级学生的身高,应采用普查的方式B . 若甲队成绩的方差为5,乙队成绩的方差为3,则甲队成绩不如乙队成绩稳定C . 如果明天下雨的概率是99%,那么明天一定会下雨D . 一组数据4,6,7,6,7,8,9的中位数和众数都是6 17、(2018衡阳.中考真卷) 已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是A . 连续抛一枚均匀硬币2次必有1次正面朝上B . 连续抛一枚均匀硬币10次都可能正面朝上C . 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次D . 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的18、(2019中山.中考模拟) 下列说法正确的是()A . 一组数据2,5,5,3,4的众数和中位数都是5B . “掷一次骰子,向上一面的点数是1”是必然事件C . 掷一枚硬币正面朝上的概率是表示每抛硬币2次就有1次正面朝上 D . 计算甲组和乙组数据,得知 = =10, =0.1, =0.2,则甲组数据比乙组数据稳定19、(2017深圳.中考模拟) 将一质地均匀的正方体骰子朝上一面的数字,与3相差1的概率是()A .B .C .D .20、(2020遵化.中考模拟) 下列说法正确的是()A . “367人中有2人同月同日生”为必然事件B . 检测某批次灯泡的使用寿命,适宜用全面调查C . 可能性是1%的事件在一次试验中一定不会发生D . 数据3,5,4,1,-2的中位数是421、(2020泰兴.中考模拟) 下列说法:①事件发生的概率与实验次数有关;②掷10次硬币,结果正面向上出现3次,反面向上出现7次,由此可得正面向上的概率是0.3;③如果事件A发生的概率为,那么大量反复做这种实验,事件A平均每100次发生5次.其中正确的个数为()A . 0个B . 1个C . 2个D . 3个22、(2020石家庄.中考模拟) 若点A(﹣7,y1),B(﹣4,y2),C(5,y3)在反比例函数y=的图象上,则y1, y2, y3的大小关系是( )A . y1<y3<y2B . y2<y1<y3C . y3<y2<y1D . y1<y2<y323、(2020石家庄.中考模拟) 如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的,分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是()A . 甲的速度为20km/hB . 甲和乙同时出发C . 甲出发1.4h时与乙相遇D . 乙出发3.5h时到达A地24、(2021谷城.中考模拟) 下列说法正确的是()A . 明天的降水概率为80%,则明天80%的时间下雨,20%的时间不下雨B . 抛掷一枚质地均匀的硬币两次,必有一次正面朝上C . 了解一批花炮的燃放质量,应采用抽样调查方式D . 一组数据的众数一定只有一个25、(2022南京.中考模拟) 下列说法正确的是( )A . 一组数据2,2,3,4的众数是2,中位数是2.5B . 了解某市市民知晓“礼让行人”交通新规的情况,适合全面调查C . 甲、乙两人跳远成绩的方差分别为甲 , 乙 ,说明乙的跳远成绩比甲稳定 D . 可能性是1%的事件在一次试验中一定不会发生26、(2020武昌.中考模拟) 下列说法正确的是( )A . 打开电视机,它正在播广告是必然事件B . “明天降水概率80%”,是指明天有80%的时间在下雨C . 方差越大数据的波动越大,方差越小数据的波动越小D . 在抽样调查过程中,样本容量越小,对总体的估计就越准确27、(2021郴州.中考真卷) 下列说法正确的是( )A . “明天下雨的概率为80%”,意味着明天有80%的时间下雨B . 经过有信号灯的十字路口时,可能遇到红灯,也可能遇到绿灯C . “某彩票中奖概率是1%”,表示买100张这种彩票一定会有1张中奖D . 小明前几次的数学测试成绩都在90分以上这次数学测试成绩也一定在90分以上28、(2021罗平.中考模拟) 下列说法中,正确的是( )A . “三角形中,任意两边之和大于第三边”属于必然事件B . 随机投掷一枚质地均匀的硬币20次,全是正面朝上,那么第21次投掷这枚硬币,一定是正面朝上C . 为了解某班学生身高情况,可随机抽取10名男生的身高进行调查D . 为了解今年十月份本县的气温变化情况,适合选用条形统计图进行分析29、抛掷一枚质地均匀的硬币时,正面向上的概率是0.5.则下列判断正确的是( )A . 连续掷2次时,正面朝上一定会出现1次B . 连续掷100次时,正面朝上一定会出现50次C . 连续掷次时,正面朝上一定会出现次 D . 当抛掷次数越大时,正面朝上的频率越稳定于0.530、王刚是一名职业足球队员,根据以往比赛数据统计,王刚的进球率为20%,他明天将参加一场比赛,下面几种说法正确的是( )A . 王刚明天的进球率为20%B . 王刚明天每射球20次必进球1次C . 王刚明天有可能进球D . 王刚明天肯定进球概率的意义单选题答案1.答案:A2.答案:B3.答案:B4.答案:C5.答案:B6.答案:C7.答案:B8.答案:A9.答案:C 10.答案:D 11.答案:C 12.答案:D 13.答案:D 14.答案:C 15.答案:C 16.答案:B 17.答案:A 18.答案:D 19.答案:D 20.答案:A 21.答案:22.答案:23.答案:24.答案:25.答案:26.答案:27.答案:28.答案:29.答案:30.答案:。

备考2024年中考数学二轮复习-统计与概率_概率_几何概率-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_几何概率-填空题专训及答案

备考2024年中考数学二轮复习-统计与概率_概率_几何概率-填空题专训及答案几何概率填空题专训1、(2019本溪.中考真卷) 如图所示的点阵中,相邻的四个点构成正方形,小球只在点阵中的小正方形内自由滚动时,则小球停留在阴影区域的概率为________.2、(2017葫芦岛.中考真卷) 如图是由若干个全等的等边三角形拼成的纸板,某人向纸板上投掷飞镖(每次飞镖均落在纸板上),飞镖落在阴影部分的概率是________.3、(2015朝阳.中考真卷) 小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是 ________.4、(2015营口.中考真卷) 如图,正方形的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为 ________.5、(2018常州.中考真卷) 中华文化源远流长,如图是中国古代文化符号的太极图,圆中的黑色部分和白色部分关于圆心中心对称.在圆内随机取一点,则此点取黑色部分的概率是________.6、(2017天津.中考模拟) 如图,有甲,乙两个可以自由转动的转盘,若同时转动,则停止后指针都落在阴影区域内的概率是________.,7、(2019吴兴.中考模拟) 欧阳修在卖油翁中写道:“ 翁乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿” 如图所示,可见卖油翁的技艺之高超,若铜钱直径为4cm,中间有边长为1cm的正方形小孔,随机向铜钱上滴一滴油油滴大小忽略不计,则油恰好落入口中的概率是________ .8、(2019湖州.中考模拟) 在一个不透明的盒子里装有5个分别写有数字﹣2,﹣1,1,2,3的小球,它们除数字不同外其余全部相同,现从盒子里随机取出一个小球,将该小球上的数字作为点P的横坐标,将该数的绝对值作为点P的纵坐标,则点P落在抛物线y=﹣x2+2x+4与x轴所围成的区域内(不含边界)的概率是________.9、(2011福州.中考真卷) 已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则落在陆地上的概率是________.10、(2017天桥.中考模拟) 一只小狗在如图所示的矩形草地ABCD内自由的玩耍,点P是矩形的边CD上一点,点E、点F分别为PA,PB的中点,连接EF,则这只小狗跑到△PEF内的概率是________.11、(2017老河口.中考模拟) 如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为________.12、(2018中.中考模拟) 如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,每块方砖大小、质地完全一致,那么它最终停留在黑色区域的概率是________.13、(2017成都.中考真卷) 已知⊙O的两条直径AC,BD互相垂直,分别以AB,BC,CD,DA为直径向外作半圆得到如图所示的图形,现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为P1,针尖落在⊙O内的概率为P2,则 =________.14、(2017宁夏回族自治区.中考真卷) 如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是________.15、(2019东台.中考模拟) 已知点C为线段AB的黄金分割点,且AC>BC,若P点为线段AB上的任意一点,则P点出现在线段AC上的概率为________.16、(2019成都.中考模拟) 小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是________.17、(2020肇东.中考模拟) 如图,正方形内的阴影部分是由四个直角边长都是1和3的直角三角形组成的,假设可以在正方形内部随意取点,那么这个点取在阴影部分的概率为.18、(2021苏州.中考模拟) 如图,把大正方形平均分成9个小正方形,其中有2个小正方形已被涂黑,在剩余的7个白色小正方形中任选一个也涂黑,则使整个涂黑部分成为轴对称图形的概率是.19、(2021江都.中考模拟) 如图,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,,,小明蒙上眼睛用棍子击中了锣面,他击中阴影部分的概率是.20、如图是由四个直角边长分别为2和4的全等的直角三角形拼成的“赵爽弦图”飞镖板,小明站在投镖线上向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上),则针扎在阴影部分的概率是.几何概率填空题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:16.答案:17.答案:18.答案:19.答案:20.答案:。

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据收集与处理_用样本估计总体-综合题专训及答案用样本估计总体综合题专训1、(2015葫芦岛.中考真卷) 某超市计划经销一些特产,经销前,围绕“A:绥中白梨,B:虹螺岘干豆腐,C:绥中六股河鸭蛋,D:兴城红崖子花生”四种特产,在全市范围内随机抽取了部分市民进行问卷调查:“我最喜欢的特产是什么?”(必选且只选一种).现将调查结果整理后,绘制成如图所示的不完整的扇形统计图和条形统计图.(1)请补全扇形统计图和条形统计图;(2)若全市有280万市民,估计全市最喜欢“虹螺岘干豆腐”的市民约有多少万人?(3)在一个不透明的口袋中有四个分别写上四种特产标记A、B、C、D的小球(除标记外完全相同),随机摸出一个小球然后放回,混合摇匀后,再随机摸出一个小球,则两次都摸到“A”的概率为_____.2、(2018齐齐哈尔.中考真卷) 初三上学期期末考试后,数学老师把一班的数学成绩制成如图所示不完整的统计图(满分120分,每组含最低分,不含最高分),并给出如下信息:①第二组频率是0.12;②第二、三组的频率和是0.48;③自左至右第三,四,五组的频数比为9:8:3;请你结合统计图解答下列问题:(1)全班学生共有人;(2)补全统计图;(3)如果成绩不少于90分为优秀,那么全年级700人中成绩达到优秀的大约多少人?(4)若不少于100分的学生可以获得学校颁发的奖状,且每班选派两名代表在学校新学期开学式中领奖,则该班得到108分的小强同学能被选中领奖的概率是多少?3、(2017山西.中考模拟) 雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康,太原市会持续出现雾霾天气吗?在2016年2月周末休息期间,某校九年级1班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察并回答下列问题:类别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC城中村燃煤问题15%D其他(绿化不足等)n(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;(2)若太原市有300万人口,请你估计持有A,B两类看法的市民共有多少人?(3)学校要求小颖同学在A,B,C,D这四个雾霾天气的主要成因中,随机抽取两项作为课题研究的项目进行考察分析,请用画树状图或列表的方法,求出小颖同学刚好抽到B(汽车尾气排放),C(城中村燃煤问题)的概率.(用A,B,C,D表示各项目)4、(2016海拉尔.中考模拟) 某市为提高学生参与体育活动的积极性,2011年9月围绕“你最喜欢的体育运动项目(只写一项)”这一问题,对初一新生进行随机抽样调查,下图是根据调查结果绘制成的统计图(不完整).请你根据图中提供的信息解答下列问题:(1)本次抽样调查的样本容量是多少?(2)根据条形统计图中的数据,求扇形统计图中“最喜欢足球运动”的学生数所对应扇形的圆心角度数.(3)请将条形统计图补充完整.(4)若该市2011年约有初一新生21000人,请你估计全市本届学生中“最喜欢足球运动”的学生约有多少人.5、(2019海门.中考模拟) 我校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请根据这两幅图形解答下列问题:(1)在本次调查中,体育老师一共调查了多少名学生?(2)将两个不完整的统计图补充完整;(3)求出乒乓球在扇形中所占的圆心角的度数?(4)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共计多少人?6、(2019宁波.中考模拟) 某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了一次问卷调查,要求学生选出自己最喜欢的一个版面,将调查数据进行了整理、绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该调查的样本容量为,,“第一版”对应扇形的圆心角为;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.7、(2016漳州.中考真卷) 国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t≤1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为人;(2)补全条形统计图;(3)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是(4)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有人.8、(2019河南.中考模拟) 在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.月信息消费额分组统计表组别消费额(元)A 10≤x<100B 100≤x<200C 20≤x<300D 300≤x<400E x≥400请结合图表中相关数据解答下列问题:(1)这次接受调查的有户;(2)在扇形统计图中,“E”所对应的圆心角的度数是;(3)请你补全频数直方图;(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?9、(2017信阳.中考模拟) “戒烟一小时,健康亿人行”,今年国际无烟日,某市团委组织人员就公众对在超市吸烟的态度进行了随机抽样调查,主要由四种态度:A.顾客出面制止;B.劝说进吸烟室;C.超市老板出面制止;D.无所谓.他将调查结果绘制请你根据统计图、表提供的信息解答下列问题:(1)这次抽样的公众有人.(2)请将统计表和扇形统计图补充完整;(3)在统计图中“B”部分所对应的圆心角是度.(4)若该市有120万人,估计该市态度为“A.顾客出面制止”的有万人.10、(2017东湖.中考模拟) 为了了解某学校七年级4个班共180人的体质健康情况,从各班分别抽取同样数量的男生和女生组成一个样本,如图是根据样本绘制的条形图和扇形图.(1)本次抽查的样本容量是.(2)请补全条形图和扇形图中的百分数;(3)请你估计全校七年级共有多少人优秀.11、(2020温州.中考模拟) 随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为;(2)将条形统计图补充完整;(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.12、(2011钦州.中考真卷) 某校为了解九年级800名学生的体育综合素质,随机抽查了50名学生进行体育综合测试,所得成绩整理分成五组,并制成如下频数分布表和扇形统计图,请根据所提供的信息解答下列问题:组别成绩(分)频数A50≤x<603B60≤x<70mC70≤x<8010D80≤x<90nE90≤x<10015(1)频数分布表中的m=,n=;(2)样本中位数所在成绩的级别是,扇形统计图中,E组所对应的扇形圆心角的度数是;(3)请你估计该校九年级的学生中,体育综合测试成绩不少于80分的大约有人13、(2020通辽.中考模拟) 某校有名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有人,其中选择类的人数有人;(2)在扇形统计图中,求类对应的扇形圆心角的度数,并补全条形统计图;(3)若将这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.14、(2020朝阳.中考真卷) 由于疫情的影响,学生不能返校上课,某校在直播授课的同时还为学生提供了四种辅助学习方式:A网上自测,B网上阅读,C网上答疑,D网上讨论.为了解学生对四种学习方式的喜欢情况,该校随机抽取部分学生进行问卷调查,规定被调查学生从四种方式中选择自己最喜欢的一种,根据调查结果绘制成如下两幅不完整的统计图:根据统计图提供的信息,解答下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,m的值是________,D对应的扇形圆心角的度数是________;(3)请补全条形统计图;(4)若该校共有2000名学生,根据抽样调查的结果,请你估计该校最喜欢方式D的学生人数.15、雾霾天气严重影响市民的生活质量.在今年寒假期间,某校八年一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察分析并回答下列问题.组别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放C炉烟气排放15%D其他(滥砍滥伐等)(1)本次被调查的市民共有多少人?(2)分别补全条形统计图和扇形统计图,并计算图2中区域B所对应的扇形圆心角的度数.(3)若该市有100万人口,请估计持有A.B两组主要成因的市民有多少人?用样本估计总体综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案

备考2024年中考数学二轮复习-统计与概率_数据分析_方差-综合题专训及答案方差综合题专训1、(2018义乌.中考模拟) 某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.(1)求出下列成绩统计分析表中a,b的值:组别平均分中位数方差合格率优秀率甲组 6.8a 3.7690%30%乙组b7.5 1.9680%20%(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.2、(2014扬州.中考真卷) 八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4分2,则成绩较为整齐的是队.3、(2014徐州.中考真卷) 甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).4、(2017西城.中考模拟) 某科研小组计划对某一品种的西瓜采用两种种植技术种植.在选择种植技术时,该科研小组主要关心的问题是:西瓜的产量和产量的稳定性,以及西瓜的优等品率.为了解这两种种植技术种出的西瓜的质量情况,科研小组在两块自然条件相同的试验田进行对比试验,并从这两块实验田中各随机抽取20个西瓜,分别称重后,将称重的结果记录如下:表1 甲种种植技术种出的西瓜质量统计表编号123456789103.54.85.4 4.9 4.2 5.0 4.9 4.8 5.8 4.8西瓜质量.(单位:kg)编号111213141516171819205.0 4.8 5.2 4.9 5.1 5.0 4.86.0 5.7 5.0西瓜质量.(单位:kg)表2 乙种种植技术种出的西瓜质量统计表编号123456789104.4 4.9 4.8 4.15.2 5.1 5.0 4.5 4.7 4.9西瓜质量.(单位:kg)编号111213141516171819205.4 5.5 4.0 5.3 4.8 5.6 5.2 5.7 5.0 5.3西瓜质量.(单位:kg)回答下列问题:(1)若将质量为4.5~5.5(单位:kg)的西瓜记为优等品,完成下表:优等品西瓜个数平均数方差甲种种植技术种出的西瓜质量 4.980.27乙种种植技术种出的西瓜质量15 4.970.21(2)根据以上数据,你认为该科研小组应选择哪种种植技术,并请说明理由.5、(2019杭州.中考真卷) 称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年中考数学二轮专题复习试卷——概率与统计(5)
考试范围:概率与统计 考试分值:120分 考试时间:120分钟 试题难度:★★★
姓名 班级 得分
一、选择题:(本大题共6题,每小题3分,共18分)
1.702班某兴趣小组有7名成员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,则他们年龄的众数和中位数分别为( )
A .13,14
B .14,13
C .13,13.5
D .13,13 2.一条葡萄藤上结有五串葡萄,每串葡萄的粒数如图所示(单位:粒).则这组数据的中位数为( )
A .37
B .35
C .33.5
D .32 3.某班的9名同学的体重分别是(单位:千克)
根据所学的统计知识,这组数据的众数和中位数分别是( )
A .59,61
B .59,63
C .59,65
D .57,61
4.下列调查中,适宜采用全面调查(普查)方式的是( ) A .调查一批新型节能灯泡的使用寿命 B .调查长江流域的水污染情况 C .调查重庆市初中学生的视力情况
D .为保证“神舟7号”的成功发射,对其零部件进行检查
5.一个不透明口袋中装着只有颜色不同的2个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为( ) A .
32 B .2
1 C .31
D .1
6.下列说法正确的是( )
A 、要调查人们对“低碳生活”的了解程度,宜采用普查方式
B 、一组数据:3,4,4,6,8,5的众数和中位数都是3
C 、必然事件的概率是100%,随机事件的概率是50%
D 、若甲组数据的方差S 甲2=0.128,乙组数据的方差是S 乙2
=0.036,则乙组数据比甲组数据稳定
二、填空题:(本大题共6题,每小题3分,共18分)
7.体育课上训练毽球,小明记录了自己6次练习的成绩,数据如下:13、11、13、10、13、12,则这组数据的众数是 . 8.“明天会下雨”是 事件(填“必然”或“不可能”或“不确定”)
9.为了了解全县30000名九年级学生的视力情况,随机抽查500名学生的视力进行统计分析,在这个问题中样本容量是 。

10.某公司全体员工年薪的具体情况如下表:
则该公司全体员工年薪的中位数是 万元
11.数据 3、4、5、5、6、
7 的方差是 .
12.把一个转盘平均分成三等份,依次标上数字1、2、3.自由转动转盘两次,把第一次转动停止后指针指向的数字记作x ,把第二次转动停止后指针指向的数字的2倍记作y ,以长度分别为x 、y 、5的三条线段能构成三角形的概率为_________.(注:长度单位一致)
三、计算题:(本大题共5题,每小题6分,共30分) 13.下图是小华作的一周的零用钱的统计图(单位:元) 分析上图,请回答下列问题: (1)周几小华用的零用钱最多,是多少?他零用钱花得最少的一天是多少元? (2)哪几天他花的零用钱是一样的?分别是多少? (3)你能帮小华算一算一周平均每天用多少零用钱吗?
(4)估计一下,小华一月用去多少零用钱?(一个月按30天计算)
12 10 8 6 周一 周二 周三 周四 周五 周六 周日
14.为庆祝建党90周年,某校团委计划在“七·一”前夕举行“唱响红歌”班级歌咏比赛,要确定一首喜欢人数最多的歌曲为每班必唱歌曲。

为此提供代号为A、B、C、D四首备选曲目让学生选择,经过抽样调查,并将采集的数据绘制如下两幅不完整的统计图。

请根据图①,图②所提供的信息,解答下列问题:

(1)本次抽样调查的学生有_________名,其中选择曲目代号为A的学生占抽样总数的百分比是________%;
(2)请将图②补充完整;
(3)若该校共有1200名学生,根据抽样调查的结果估计全校共有多少名学生选择此必唱歌曲?(要有解答过程)
15.课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速
取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的
29

(1)在这段时间中他们抽查的车有 辆;
(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是( )
A .30.5~40.5
B .40.5~50.5
C .50.5~60.5
D .60.5~70.5 (3)补全频数分布直方图,并在图中画出频数折线图;
(4)如果全天超速(车速大于60千米/时)的车有240辆,则当天的车流量约为多少辆?
16.我省课改实验区于2005年起实行初中毕业生综合素质评价,结果分为A ,B ,C ,D 四个等级。

我省某区教育局为了解评价情况,从全区3600名初三毕业生中任意抽取了200名学生的评价结果进行统计,得到如图所示扇形统计图:根据图中提供的信息,
(1)请你求出样本中评定为D 等级的学生占样本人数的百分之几?有多少人?
(2)请你说明样本中众数落在哪一个等级?估计该区初三毕业生中众数所在等级的总人数大约是多少?
/时)
4 8 12 16 20 0
17.有一张明星演唱会的门票,小明和小亮都想获得这张门票,亲自体验明星演唱会的热烈气氛,小红为他们出了一个主意,方法就是:从印有1、2、3、4、5、4、6、7的8张扑克牌中任取一张,抽到比4大的牌,小明去;否则,小亮去.
(1)求小明抽到4的概率
(2)你认为这种方法对小明和小亮公平吗?请说明理由;若不公平,请你修改游戏规则,使游戏对双方都公平
四、解答题:(本大题共6题,18—22每小题8分,23题14分,共54分)解答应写出文
字说明,证明过程或演算步骤.
18.不透明的袋中装有3个大小相同的小球,其中两个为白色,一个为红色,随机地从袋中摸取一个小球后放回,再随机地摸取一个小球,(用列表或树形图求下列事件的概率)(1)两次取的小球都是红球的概率;
(2)两次取的小球是一红一白的概率.
19.为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对这三种水果7天的销
售量进行了统计,统计结果如图所示.
(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是();
A.西瓜B.苹果C.香蕉
(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?
20.如图,随机闭合开关S1、S2、S3中的两个,求能让灯泡 发光的概率.(用树形图或列表法)
21.在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑
球1只,它们除了颜色之外没有其它区别。

从袋中随机地摸出1只球,记录下颜色后放回搅匀,再第二个球并记录颜色。

求两次都摸出白球的概率。

22.2011年5月31日是第24 个世界无烟日,也是我国从5月1日开始在公共场所禁止吸烟满一个月的日子.为创建国家级卫生城市,搞好公共场所卫生管理,某实验学校九年级(1)班社会实践小组对某社区居民开展了“你支持哪种戒烟方式”的问卷调查,图9是根据调查结果绘制的两幅不完整的统计图.请根据以上条形统计图和扇形统计图提供的信息,解答下列问题:
(1)九年级(1)班社会实践小组一共调查了名社区居民.
(2)扇形统计图中,表示支持“替代品戒烟”的扇形的圆心角的度数为.
(3)请将条形统计图补充完整.
23.某中学在一次“爱护环境,节约能源”的活动中,开展了“垃圾分类知多少”专题调查,
“基本了解”、D“不太了解”四个阶段,并根据统计数据绘制了图①和图②两幅尚不完整的统计图.
(1)这次随机进行的问卷调查中的样本容量是_______.
(2)调查结果为“基本了解”的频数在扇形图中所对应的扇形圆心角度数是_____,并将图①和图②的统计图补充完整.
在“比较了解”的调查结果里,初一年级学生共有4人,其中2男2女,在这4人中,打算随机选出2位进行采访,则所选两位同学中至少有一位是男同学的概率是_______.。

相关文档
最新文档