3.2.1解一元一次方程(一)合并同类项导学案[1]

合集下载

《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册

《3.2解一元一次方程(一)——合并同类项与移项》作业设计方案-初中数学人教版12七年级上册

《3.2 解一元一次方程(一)——合并同类项与移项》作业设计方案(第一课时)一、作业目标本作业设计旨在巩固学生在学习一元一次方程时,掌握合并同类项与移项的基本方法。

通过实际操作,提高学生的计算能力和逻辑思维能力,为后续学习一元一次方程的解法打下坚实的基础。

二、作业内容本作业主要包括以下几个部分:1. 复习与巩固:要求学生回顾并复习一元一次方程的基本概念,包括合并同类项的定义和方法。

2. 实践操作:设计一系列练习题,让学生通过实际操作,掌握合并同类项的技巧。

练习题包括填空题、选择题和计算题等。

3. 移项练习:设计一系列关于移项的练习题,包括将常数项移至等式另一侧的练习,以及将未知数项移至等式另一侧的练习。

4. 实际问题应用:设计一些实际问题,让学生运用所学知识解决实际问题,如购物找零、行程问题等。

三、作业要求为确保学生能够有效地完成本作业,特提出以下要求:1. 学生在完成作业时,需按照步骤和顺序进行,先复习巩固基础知识,再逐一完成实践操作部分的练习题。

2. 学生在合并同类项时,应理解同类项的概念,准确判断同类项并进行合并。

在移项时,应正确运用移项的规则,确保等式两边的平衡。

3. 在实际问题应用部分,学生应理解问题的背景和要求,运用所学知识进行解答。

在解答过程中,应注重解题思路的清晰和解题步骤的规范。

4. 学生在完成作业后,需进行自我检查和修正,确保答案的准确性。

如有疑问或困难,可向老师或同学请教。

四、作业评价本作业的评价标准主要包括以下几个方面:1. 基础知识的掌握程度;2. 实践操作的准确性和熟练程度;3. 解题思路的清晰度和规范性;4. 实际问题的解决能力和应用能力。

五、作业反馈为确保学生能够及时了解自己的学习情况并加以改进,老师需在批改作业后进行以下反馈:1. 对学生的作业进行逐一评价,指出优点和不足;2. 对学生的解题思路和步骤进行点评和指导;3. 对学生的实际问题的解决能力进行评价和建议;4. 对学生的学习提出进一步的建议和要求。

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

人教版数学七年级上册3-2-1 解一元一次方程—合并同类项 教案

3.2.1 解一元一次方程—合并同类项【教学目标】1.会根据实际问题找相等关系列一元一次方程,会利用合并同类项解一元一次方程。

2.体会方程中的化归思想,会用合并同类项解决“ax+bx=c”型方程,进一步认识如何用方程解决实际问题。

3.通过对实际问题的分析,体会一元一次方程作为实际问题的数学模型的作用。

【教学重、难点】会列一元一次方程解决实际问题,并会合并同类项解一元一次方程。

【教学准备】课本、练习本、练习册【教学过程】一、忆旧识新再设疑——新课导入1.复习回顾(1)同类项:所含字母____,并且_____的指数也分别相同的项叫____。

(2)合并同类项:合并同类项时,只把_____相加减,字母与字母的指数_____。

2.创设情境,提出问题约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程。

这本书的拉丁文译本取名为《对消与原》。

“对消”与“还原”是什么意思呢?【设计意图】学生通过复习旧知识,进一步巩固了同类项的相关概念,为准备本课的学习做好铺垫。

二、曲径通幽细探寻——问题探究某校近三年共购买计算机140台,去年的购买量是前年的2倍,今年的购买量又是去年的2倍,前年这个学校购买了多少台计算机? 活动1:推理验证问题1:可以怎样设未知数?【学生活动】独立思考,同桌交流归纳。

分析:设前年购买计算机x台。

则去年购买计算机2x台,今年购买计算机4x台。

问题2:题目中的等量关系是什么?【学生活动】独立思考,小组交流归纳。

前年购买量+去年购买量+今年购买量=140台问题3:如何根据等量关系列方程?由题意得,x+2x+4x=140活动2:集思广益,寻找解一元一次方程的办法问题1:怎样解这个方程?如何将这个方程转化为x=a的形式?合并同类项,得7x=140系数化为1,得x=20答:所以前年这个学校购买了20台计算机。

思考:以上解方程中的“合并”起了什么作用?它把含未知数的项合并为一项,从而向x=a的形式迈进了一步,起到了化简的作用。

3.2解一元一次方程(一)——合并同类项与移项(第1课时)教案 2021-2022学年人教版数学七

3.2解一元一次方程(一)——合并同类项与移项(第1课时)教案  2021-2022学年人教版数学七

3.2解一元一次方程(一)——合并同类项与移项(第1课时)【学习目标】1. 能够根据题意找出实际问题中的相等关系,列出一元一次方程;2. 运用合并同类项解形如ax+bx=c的一元一次方程.【教学重难点】重点:运用合并同类项解形如ax+bx=c的一元一次方程.难点:列方程解决实际问题.【教学方法】自主探究法、活动探究法、小组合作法.【教学过程】第一环节:导入新课约公元825年,中亚细亚数学家阿尔-花拉子米写了一本代数书,重点论述怎样解方程.这本书的拉丁文译本取名为《对消与还原》.“对消”与“还原”是什么意思呢?第二环节:自主学习1、认真阅读课本86---87页,思考:(1)解方程:2x+5x=10+4并说清每一步恒等变形的理论依据.______________________(化成ax=b的形式即合并同类项)_________________________(化成x=c的形式即系数化1)(2)完成课本第88页的练习1.2、例题讲解.出示教材第86页问题1:①引导学生分析题中的等量关系式,学生发言设未知数②教师让学生独立完成解答,指名板演解题过程.(3)回顾解方程的过程,思考“合并同类项”起了什么样的作用?合并同类项的目的就是化简方程,它是一种恒等变形,可以使方程变得简单,并逐步使方程x=a的形式转化.第三环节:精讲例题2x -25x =6-8 7x -2.5x +3x -1.5x =-15×4-6×3(教师板书例题的解答过程,为学生提供示范.)第四环节:合作探究例2 有一列数,按一定规律排成1,-3,9,-27,81,-243,…其中某三个相邻数想和是-1701,这三个数各是多少?分析:1.知道三个数中的某个,就能知道另两个吗?2.我们需要分析这组数的规律.第五环节:课堂检测1.解“问题2”的另两个方程.2.教科书第92页习题3.2第1、7题.第六环节:课堂小结1.你今天学习的解方程有哪些步骤?2.合并同类项在解方程的过程中起到了什么作用?第七环节:作业布置课本第99页习题19.2第7、9题.1.三个连续整数之和为36,求:这三个整数分别是多少?2.做这一课时的基础训练.【板书设计】3.2解一元一次方程(一)---合并同类项与移项(第1课时)1.解一元一次方程的步骤:(1)合并同类项(2)系数化为1【课后反思】本节课首先请学生独立思考,然后互相交流解题思路.集体讲评,理清每一步恒等变形的理论依据,会分析实际问题中的等量关系式,规范解题过程.纠正自身存在的错误.对于例2的处理先让学生独立思考然后合作交流,最后书写过程.。

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

2014版新人教版七年级上3.2解一元一次方程(一)——合并同类项与移项第1课时学案配套课件

知识点 1 用合并同类项解一元一次方程
【例1】解方程:(1)-3x+0.5x=10.
(2)3y-4y=-25-20.
【思路点拨】先合并同类项,然后系数化为1,求得方程的解.
【自主解答】(1)合并同类项得-2.5x=10, 系数化为1,得x=-4. (2)合并同类项得-y=-45, 系数化为1,得y=45.
【总结提升】解“总量等于各部分量的和”问题的四个步骤 1.设:弄清问题中的总量及各分量,适当设未知数 . 2.列:根据“总量等于各部分量的和”这一相等关系正确列出 方程. 3.解:解方程,求出未知数的值. 4.答:按问题要求作答.
题组一:用合并同类项解一元一次方程 1.下列合并同类项,结果正确的是( A.3a+3b=6ab C.2y+3y+y=5y B.3m-2m=1 D. ax 1.5ax 0
2.一个水池有甲、乙两个水龙头,单独开甲水龙头2小时可把 空池灌满;单独开乙水龙头3小时可把空池灌满,若同时开放 两个水龙头,灌满水池需( A. 6 小时
5
)
B. 5 小时
6
C.2小时
D.3小时
【解析】选A.设同时开放两个水龙头,灌满水池需x小时,则
1 1 6 x x 1, 所以x . 2 3 5
(打“√”或“×”) (1)-3x+7x的结果等于10x.( × ) (2)解方程2x+x=9时,合并同类项得,3x=9.( √ ) (3)解方程 x 4 得,x=2.( × ) (4)方程x-4x=15的解是x=-5.( √ ) (5)方程-x+6x=-2-8的解是x=-1.( × )
1 2
【总结提升】合并同类项解一元一次方程的实质 合并同类项是一种恒等变形,就是利用乘法分配律把含有 未知数的项结合在一起、把常数项结合在一起 ,最终化为“ax=b (a≠0)”,再根据等式的性质2,两边同除以a,把系数化为1,

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

2020年七年级数学上册 第3章 一元一次方程 3.2 解一元一次方程(一)—合并同类项与移项 第1课时 合并同类

1.下列各方程合并同类项不正确的是( C )
A.由3x-2x=4,合并同类项,得x=4
B.由2x-3x=3,合并同类项,得-x=3
C.由5x-2x+3x=-10-2,合并同类项,得6x=-8.
D.由-7x+2x=5,合并同类项,得-5x=5
2.下列解为x=4方程是( B )
A.7x-3x=-4
B.x+x=5+3
7.若关于x的方程2mx-3m=3x+2的解是8,则m的值为( A )
A.2
B.8
C.-2
D.-8
8.关于x的方程3-x=2a与方程x+3x=28的解相同,则a的值为( B )
A.2
B.-2
C.5
D.-5
9. (长沙中考)中国古代数学著作《算法统宗》中有这样一段记载:“三百
七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大
C.x=-1+3
D.-2x=8
3.挖一条长1210m的水渠,由甲、乙两队从两头同时施工.甲队每天挖
130m,乙队每天挖90m,需几天才能挖好?设需用x天才能挖好,则所列方
程正确的是( A )
A.130x+90x=1210
B.130+90x=1210
C.130x+90=1210
D.(130-90)x=1210
除以a
,从而得到x=
b a
.
自我诊断1. 方程2x+x=-6的解是( D )
A.x=0
B.x=1
C.x=2
D.x=-2
利用总分关系列方程
总量=各部分量的 和 .
自我诊断2. 若三个连续奇数的和是15,则它们的积为( A )
A.105
B.15
C.35
D.75

3.2.1解一元一次方程(一)----合并同类项与移项课件

3.2.1解一元一次方程(一)----合并同类项与移项课件

系数化为1,得:
5x = 4
1.5x=-0.3
系数化为1,得:
X=4/5
X = - 0.2
(3) 3 x 1.3 x 5 x 2.7 x 12 3 6 4 解:合并同类项,得:
4x = - 60
系数化为1,得:
X = - 15
x 3x 7; (4) 2 2
解:合并同类项,得: 2X=7 系数化为1,得: X=7/2
合并同类项,得: 5x=25 系数化为1,得: X=5
[练习二] 解下列方程:
(1)x 2 3 x (2) x 1 2 x
5 5 3x (4) x 2 x 1 2 x (3) 3
(5) x 3x 1.2 4.8 5 x (6) 5x-200=2x+100
[思考]
[ 思 考 :方程 3x 20 ]
4 x 25 的两边都含有的项(3x与4 x )
和常数项( 20与 25),
怎样才能把它化成
x a (a为常数)的形式呢?
解:利用等式的性质1,得 3x+20-4x=4x+25-4x 3x+20 -4x =25 。 3x+20-4x-20=25-20 。 3x-4x=25 -20。
解:(1)合并同类项得: 两边除以4 ,得 ∴ X= 2; (2) 合并同类项得:
(1)9x—5 x =8 ; (2)4x-6x-x =-15;
4x=
=
8
x的系数化为1,得 ∴ X=
-3x
-15
5(1) 6x —x = 4 ;
解:合并同类项,得: (2)-4x + 6x-0.5x =-0.3; 解:合并同类项,得:

【七年级数学上册】《3.2 解一元一次方程(1)-合并同类项与移项》导学案 新人教版

【七年级数学上册】《3.2 解一元一次方程(1)-合并同类项与移项》导学案 新人教版

《3.2 解一元一次方程(1)─合并同类项与移项》导学案【学习目标】1.会列一元一次方程解决实际问题,•并会合并同类项解一元一次方程;2.培养学生观察、分析、概括的能力;3.初步渗透特殊—一般—特殊的辩证唯物主义思想【学习重点】:会合并同类项解一元一次方程;【学习难点】:会列一元一次方程解决实际问题;【使用说明与学法指导】1、先认真阅读学习目标;2、再认真阅读86—87页内容,并用红笔标注重点;3、阅读教材后认真完成导学案.预习案【预习自学】1.等式性质 1:2:2.解方程:(1)x-9=8;(2) 3x+1=4;3.下列各题中的两个项是不是同类项?(1)3x y与-3x y (2)0.2a b与0.2ab(3)11abc与9bc (4)3m n 与-n m(5)4xy z与4 x yz (6)6 与x4.能把上题中的同类型合并成一项吗?如何合并?5.合并同类型的法则是什么?依据是什么【我的疑惑】________________________________________________________探究案探究点:合并解一元一次方程问题1:某校三年级共购买计算机140台,去年购买数量是前年的2倍,•今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?分析:设前年这个学校购买了x台计算机,已知去年购买数量是前年的2倍,那么购买___台,又知今年购买数量是去年的2倍,则今年购买了______(即____)台;题目中的相等关系为:三年共购买计算机140台,即前年购买量+去年购买量+今年购买量=140列方程:_____________如何解这个方程呢?根据分配律,x+2x+4x=(______)x=7x;这样就可以把含x的项合并为一项,合并时要注意x的系数是1,不是0;下面的框图表示了解这个方程的具体过程:x+2x+4x=140↓合并同类项7x=140↓系数化为1x=20由上可知,前年这个学校购买了20台计算机.上面解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a、b是常数.2.自己试着完成例1 解下列方程:(1)2x-5/2x=6-8; (2)7x-2.5x+3x-1.5x=-15×4-6×3合并同类项,得系数化为1,得所以-3x= ,9x=答:这三个数是、、讨论:以上列方程解决实际问题的关键。

人教版七年级数学上册《合并同类项解一元一次方程(一)》教学设计

人教版七年级数学上册《合并同类项解一元一次方程(一)》教学设计

解一元一次方程(一)——合并同类项一、内容及内容解析人教版义务教育课程标准实验教科书,七年级上册《3.2一元一次方程——合并同类项与移项》第1课时.方程是应用广泛的数学工具,生活中,很多问题借助于方程来解决.一元一次方程是最简单的方程,也是所有代数方程的基础.二元一次方程组(七年级下)和一元二次方程(九年级上)都是将其化归为一元一次方程来解决.因此它在义务教育阶段的数学课程中占重要地位。

而本节课用合并同类项解一元一次方程是解一元一次方程的基本步骤之一,为后面解一元一次方程奠定基础.在解方程的过程中,渗透转化的数学思想。

经历用方程解决实际问题,体会方程的应用价值.二、目标及目标解析1.目标:(1)掌握利用合并同类项解一元一次方程.(2)应用一元一次方程解决实际问题.2.目标解析:目标(1)是通过观察、类比、自主探究出利用合并同类项解一元一次方程的方法,渗透转化的数学思想,培养学生归纳、概括的能力.目标(2)是进一步让学生感受并尝试多角度解决问题的方法,初步体会方程的应用价值.通过学生之间相互交流,培养他们的合作意识.三、教学问题诊断分析在之前,学生已经学习了合并同类项和利用等式的性质解方程,这两个知识点综合到一起,就是本节用合并同类项解一元一次方程,故学生容易掌握.但学生在小学阶段习惯于列算式解决实际问题,用方程的思想来解决问题比较陌生,因此是本节的难点.由上确定本节课的重、难点如下:教学重点:1 合并同类项解一元一次方程.2列方程解决实际问题的思想方法.教学难点:分析实际问题中的已知量和未知量,找出相等关系,列出方程。

使学生逐步建立列方程解决实际问题的思想方法.四、教学支持条件分析利用多媒体展示教学的部分环节,如创设情境等,支持课堂教学.五、教学方法:引导发现法,合作学习与自主探究相结合.教学流程:六、教学过程:(一) 创设情境,提出问题活动一练习: 1将下列各式合并同类项(1)5x —2x=_____(2)-x+23 x+21x =______ 2一个正方形的周长为24cm ,问:边长是多少?【设计意图】:由练习1复习合并同类项,为进一步学习利用合并同类项解一元一次方程做铺垫.利用练习2引出用方程解决问题,为问题1做准备.播放2015年阅兵视频【设计意图】:对学生进行爱国主义教育,同时借助阅兵式中,空中梯队、文艺表演方队、群众游行方队之间的数量间的关系,编写应用题,引入新知.(二)自主探索,获取新知问题1 阅兵式中,空中梯队的个数是文艺表演方队个数的2倍,而群众游行方队的个数是空中梯队个数的3倍。

七年级数学第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时移项导学案

七年级数学第三章一元一次方程3.2解一元一次方程一合并同类项与移项第2课时移项导学案

3.2 解一元一次方程(一)—-合并同类项与移项第2课时移项一、新课导入1。

课题导入:前面,我们学习了利用合并同类项解一元一次方程,所见到的方程基本上都是含有未知数的项在等号的一边(左边),常数项在等号的另一边(右边),如果等号两边都有含有未知数的项和常数项,那么这样的方程该怎样求解呢?这节课我们继续学习解一元一次方程的方法——移项(板书课题)。

2。

三维目标:(1)知识与技能①会解“ax+b=cx+d”类型的一元一次方程.②建立方程解决实际问题.(2)过程与方法①通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性。

②掌握移项方法,学会解“ax+b=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想.(3)情感态度体会方程中蕴涵的化归思想。

3.学习重、难点:重点:确定实际问题中的相等关系,建立形如ax+b=cx+d的方程,并利用移项和合并同类项的方法解一元一次方程。

难点:确定相等关系并列出一元一次方程,正确地进行移项并解出方程。

二、分层学习1。

自学指导:(1)自学内容:教材第88页“问题2"至教材第89页例3之前的内容。

(2)自学时间:8分钟。

(3)自学指导:认真阅读“问题2"的问题分析和解题过程,认识“表示同一个量的不同的式子相等”这一相等关系,思考在解题过程中是如何“移项”的,以及“移项”起了什么作用?(4)自学参考提纲:①“问题2”是根据什么相等关系来列方程的?图书的本数是一定的.②课本上是怎样解方程3x+20=4x-25的?有哪几个步骤?移项;合并同类项;系数化为1。

③什么叫移项?移项的依据是什么?有何作用?把等式一边的某项变号后移到另一边,叫做移项.移项的依据是等式的性质1。

移项可以使方程变得更简单。

④仿照问题2中的解方程的过程,解下列方程.a.3x+7=32-2x;b。

x-3=3x+1.2解:a.x=5;b。

x=—8.2.自学:学生可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生自学情况和存在的问题。

3.2.1解一元一次方程(一)导学案(合并同类项)

3.2.1解一元一次方程(一)导学案(合并同类项)

3.2.1解一元一次方程(一)----合并同类项学习目标:1、 会利用合并同类项解ax+bx=c 类型的一元一次方程;2、 通过合并同类项解方程,体会化归思想在解方程中的作用;3、经历运用方程解决实际问题的过程,增强抽象、分析和解决问题的能力重点难点:用合并同类项和系数化为1的方法解一元一次方程。

学习过程[问题1某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍.前年这个学校购买了多少台计算机?分析:设前年这个学校购买了计算机x 台,则去年购买计算机_____台,今年购买计算机_____台,等量关系:列得方程:要解这个方程,可以先把方程左边合并同类项,再用等式的性质解出x 的值,解法如下:思考:上面解方程中“合并同类项”起了什么作用?练习1: 解下列方程:(1)9x —5 x =8 ; (2)4x -6x -x =-15;(3)364155.135.27⨯-⨯-=-+-x x x x解:(1)合并同类项得: =两边 ,得,∴=x ;(2) 合并同类项得: =x 的系数化为1,得=x ;(3)练习2 (1)某工厂的产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三年的总产值为550万元.前年的产值是多少?(2)请欣赏一首诗:太阳下山晚霞红,我把鸭子赶回笼;一半在外闹哄哄,一半的一半进笼中;剩下十五围着我,请算多少帮我忙。

你能列出方程来解决这个问题吗?(3)一个数,它的三分之二,它的一半,它的七分之一,它的全部,加起来总共是33,求这个数。

小结:1、你今天学习的解方程有哪些步骤?2、列方程解应用题分哪些步骤?作业:P91页第1题P112页第8题课后反思:。

名师辅导3.2 解一元一次方程(一)——合并同类项与移项 第1课时 合并同类项 训练参考答案

名师辅导3.2 解一元一次方程(一)——合并同类项与移项 第1课时 合并同类项 训练参考答案

3.2 解一元一次方程(一)——合并同类项与移项第1课时 合并同类项课前预习用合并同类项的方法解方程的步骤:(1)合并同类项,即把方程中含有相同字母的项合并,常数项合并,把方程化为ax=b (a ≠0)的形式;(2)系数化为1,根据等式的性质2把方程两边都 除以a ,得到x=a b . 课堂练习知识点1 利用合并同类项解简单的一元一次方程1.对方程8x+6x-10x=8合并同类项正确的是( B )A.3x=8B.4x=8C.8x=8D.2x=82.在下列方程中,合并同类项正确的是( D )A.由3x-x=-1+3,得2x=4B.由32x+x=-7-4,得35x=-3 C.由25-31=-x+32x ,得613=31x D.由6x-4x=-1+1,得2x=0 3.解下列方程:(1)-x+3x=7-1;解:合并同类项,得2x=6.系数化为1,得x=3.(2)0.3x-0.4x=0.6;解:合并同类项,得-0.1x=0.6.系数化为1,得x=-6.(3)-x+52x=6. 解:合并同类项,得-53x=6. 系数化为1,得x=-10.知识点2 列方程解“总量=各部分量的和”问题4.学校机房今年和去年共购置了100台计算机,已知今年购置计算机的数量是去年购置计算机数量的3倍,则今年购置计算机的数量是( C )A.25台B.50台C.75台D.100台5.若三个正整数的比是1∶2∶4,它们的和是84,则这三个数中最大的数是 48 .6.(2021 昆明五华区期末)《孙子算经》中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?解:设城中有x 户人家.根据题意,得 x+3x =100. 合并同类项,得34x=100. 系数化为1,得x=75.答:城中有75户人家.课时作业练基础1.下列方程中直接用合并同类项可解的是( B ) A.x+0.5x=6-2x B.3x-2x=1 C.5y+2y=3y+7 D.21 x =41+71 2.如果x=m 是关于x 的方程21x-m=1的解,那么m 的值是( C ) A.0 B.2 C.-2 D.-63.关于x 的方程3x+6x=-3与2mx+3m=-1的解相同,则m 的值为( B ) A.73 B.-73 C.37 D.-37 4.如图,把8块相同的长方形地砖拼成了一个长方形图案(地砖间的缝隙忽略不计),求每块地砖的宽.设每块地砖的宽为x cm.根据题意,列出的方程为( C )A.x+x=60B.x+2x=60C.x+3x=60D.3x=605.一元一次方程2x-x=4-2的解是 x=2 .6.若-3x ,4x ,-5x 的和为13,则x= -413 . 7.某人把360 cm 长的铁丝分成两段,每段分别做成一个正方形,已知两个正方形的边长之比是4∶5,则这两个正方形的边长分别是 40 cm 和50 cm .8.解下列方程:(1)-9x+5x=24;解:合并同类项,得-4x=24.系数化为1,得x=-6.(2)6y+12y-9y=10+2+6;解:合并同类项,得9y=18.系数化为1,得y=2.(3)16x-3.5x-6.5x=7-(-5);解:合并同类项,得6x=12.系数化为1,得x=2.(4)x-52x=3+6. 解:合并同类项,得53x=9. 系数化为1,得x=15.9.已知关于x 的方程(m+3)x |m+4|-18=0是一元一次方程.(1)求m 的值;(2)当6y-12y=m-4-3时,求y的值.解:(1)根据题意,得|m+4|=1.所以m=-3或-5.又因为m+3≠0,即m≠-3.所以m=-5;(2)由(1)知6y-12y=-5-4-3.合并同类项,得-6y=-12.系数化为1,得y=2.10.甲,乙、丙三位爱心人士向贫困山区的希望小学捐赠图书,已知甲、乙、丙这三位爱心人士捐赠图书的册数之比是5∶8∶9.如果他们共捐了748册图书,那么这三位爱心人士各捐了多少册图书?解:设甲捐书5x本,则乙捐书8x本,丙捐书9x本.根据题意,得5x+8x+9x=748.合并同类项,得22x=748.系数化为1,得x=34.甲捐书5x=5×34=170(册),乙捐书8x=8×34=272(册),丙捐书9x=9×34=306(册).答:这三位爱心人士各捐了170册、272册和306册图书.11.一个三位数,三个数位上的数字之和为17,百位上的数字比十位上的数字大7,个位上的数字是十位上数字的3倍,求这个三位数.解:设这个三位数的十位上的数字是x,则百位上的数字是(x+7),个位上的数字是3x.根据“三个数位上的数字之和为17”列方程,得x+7+x+3x=17.合并同类项,得5x+7=17.方程两边减7,得5x=10.系数化为1,得x=2.所以百位上的数字是2+7=9,个位上的数字是3×2=6.9×100+2×10+6=926.答:这个三位数为926.提能力12.(教材拓展题)按规律排列的一列数:2,-4,8,-16,32,-64,128,…,其中某四个相邻的数的和是-640,求这四个数中最大数与最小数的和.解:设相邻四个数中的第1个数为x,则后面的三个数依次为-2x,4x,-8x.根据题意,得x-2x+4x-8x=-640.解得x=128.则-2x=-256,4x=512,-8x=-1 024.512+(-1 024)=-512.即这四个数中最大数与最小数的和是-512.。

解一元一次方程导学案

解一元一次方程导学案

3.2 解一元一次方程(一)—合并同类项与移项(3)七 年级备课人: 审核: 审批: 班级:____________ 姓名:____________ 时间: 年 月导学目标知识点:1、领悟列方程解应用题的一般方法及步骤.2、学会依据数中包含的规律列方程解决求数的问题.课时:1课时导学方法:启发式教学导学过程:一、课前导学:1、已学过的解方程的步骤是什么?依据分别是什么?2、解方程:(1)5476-=-x x (2)x x 43621=-二、课堂导学:问题:有一列数,按一定规律排列:1,-3,9,-27,81,-243……,其中某三个相邻数的和是-1701,这三个数各是多少?观察:从符号和绝对值两方面观察,这列数有什么规律?如果设其中一个为x ,那么它后面与它相邻的数是__________.师生共析:设这三个相邻数中的第一个数为x ,那么第二个数就是__________,第三个数就是__________,本题哪个相等关系可作为列方程的依据?方程:______________________________________________________________________ 解方程:____________________________________________________________________思考:你还有自己独特的解法吗? 三、教师引导、学生自我小结: 四、课堂练习: 1、如图的日历中,任意圈出一列上下相邻的三个 日 一 二 三 四 五 六 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 2627 28 29 30 31数,其中某列上下相邻三个数之和是60,这三个数是多少?观察:任意圈出一列上下相邻的三个数,你有什么发现?思考:如何设未知数列方程?规律技巧:__________________________________________________________________ 2、三个连续自然数和是24,则这三个数分别是多少?五、课外练习1、明明说:我参加科技夏令营,外出一个星期,这七天的日期之和是84,你知道我是几号出去的?2、斌斌说:我假期去北京玩了7天,日期数的和再加上月份数也是84,你猜我是几号回家的?3、有人问小明的生日是几号,小明说:“我的生日连同上、下、左、右5个日期之和为21.”可这个人说小明在撒谎,他是怎么知道的?请分析原因?课后反思:小组评价:教师评价:。

3.2.1解一元一次方程(一)-合并同类项课件

3.2.1解一元一次方程(一)-合并同类项课件

思考:怎样解 这个方程呢?
“总量=分量的和”是一个基本的相等关系.
x 2 x 4 x 140
合并同类项
分析:解方程,就是把 方程变形,变为 x = a (a为常数)的形式.
7 x 140
系数化为1
x 20
想一想:
解方程中“合并同类项”起了什 么作用?
使方程变得简单,更接近x
= a的形式
答: Ⅰ型1500台,Ⅱ型3000台,Ⅲ型21000台。
约公元825年,中亚细亚 数学家阿尔—花拉子米写 了一本代数书,重点论述 怎样解方程。这本书的拉 丁译本为《对消与还原》。 “对消”与“还原”是什 么意思呢?
3.2解一元一次方程
-------合并同类项
温习
合并同类项 (1) x 5 x 3
(3) y 5 y 2 y
(2)-3x 7 x
问题1: 某校三年共购买计算机140台,去年购买数量 是前年的2倍,今年购买数量又是去年的2倍,前 年这个学校购买了多少台计算机? 设前年购买x台。可以表示出:去年购买计算 机 2 x 台,今年购买计算机 4 x 台。 你能找出问题中的相等关系吗?
前年购买量+去年购买量+今年购买量=140台
x+2x+4x=140
例1:解方程 解:
3x 2x 8x 7
合并, 得 3x 7
7 系数化1, 得x 3
小试牛刀 2
1 3 x x 7 2 2
解:合并同类项,得
你一定会! 系数化为1,得
3x 9 x3
(2)合并同类项,得 2x 7 系数化为1,得
系数化为1,得
y 5
试一试:
洗衣厂今年计划生产洗衣机25500台,其中Ⅰ型,Ⅱ型,Ⅲ 型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划 各生产多少台?

人教版数学七年级上册导学人教版数学七年级上册导学案3.2解一元一次方程(一)合并同类项与移项 导学案

人教版数学七年级上册导学人教版数学七年级上册导学案3.2解一元一次方程(一)合并同类项与移项 导学案

3. 2解一元一次方程----合并同类项与移项学习目标:1.学会探究数列中的规律,建立等量关系。

2.能够正确求解一元一次方程并判断解的合理性。

一、自主学习:阅读课本91页例3,完成下面的问题:1.有一列数,按一定规律排列:1,-3,9,-27,81,-243,…,其中某3个相邻的数的和为-1701,这三个数是多少?从符号和绝对值两方面观察,这列数有什么规律?试着列方程解决以上问题:二、合作探究:1.三个连续奇数的和是27,求这三个奇数。

2.小明和小红做游戏,小明拿出一张日历:“我用笔圈出了2×2的一个正方形,它们数字的和是76,你知道我圈出的是哪几个数字吗?”你能帮小红解决吗?三、即时训练:基础训练1.三个连续整数的和是54,则这三个数是()A.15,16,17B.16,17,18C.17,18,19D.18,19,202.一棵小树现在高为150cm,预计今年后每年能长10cm,则长到210cm需要经过()A.5年B.6年C.7年D.8年3.有一个两位数,个位上的数是十位上的数的一半,如果把十位上的数与个位上的数对调,那么得到的两位数比原来的两位数小36,求原来的两位数。

若设原来的两位数的个位上的数为x ,根据题意,下面所列方程正确的是( )A. 36210210++=+⨯x x x xB. x x x 21036210+=+⨯C. 3622-+=+x x x xD. 362010210-+=+⨯x x x x4.三个连续偶数的和是30,求这三个偶数。

5.在某月内,李老师要参加三天的学习培训,现在知道这三天的日期的数字之和是39;(1)培训时间是连续的三天,你知道这几天分别是当月的哪几号吗?(2)若培训时间是连续三周的周六,那这几天又分是当月的哪几号?能力拓展1.有一些卡片分别标有5,10,15,20,…的卡片,小明拿到了相邻的3张卡片,且卡片上的数字之和为255.小明拿到的3张卡片上的数分别是多少?四、评点总结附:学后反思3. 2解一元一次方程----合并同类项与移项学习目标:1.学会解决方案选择问题。

专题3.2 解一元一次方程(一)——合并同类项与移项

专题3.2 解一元一次方程(一)——合并同类项与移项

1.解一元一次方程(1)一般步骤:去分母、去括号、移项、合并同类项、___________,这是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向___________形式转化.(2)在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即___________.使方程逐渐转化为ax=b的最简形式,体现化归思想.2.移项:把等式一边的某项___________后移到另一边,叫做移项.3.合并同类项:把方程中含有的同类项合并,使方程变得简单,更接近于“x=a”的形式,合并时要牢记合并同类项的法则:同类项的系数___________,字母及字母的指数___________.(1)合并同类项的实质是系数的合并,字母及其指数都不变.(2)含不同未知数的项不能合并.(3)系数是负数时,合并时注意不能丢了负号.4.实际问题列方程的基本步骤:(1)设未知数;(2)找相等关系;(3)列方程.K知识参考答案:1.(1)系数化为1,x=a(2)(a+b)x=c 2.变号3.相加,不变K—重点(1)解一元一次方程——系数化为1;(2)解一元一次方程——合并同类项;(3)解一元一次方程——移项;(4)列方程解决实际问题.K—难点列方程解决实际问题.K —易错移项时要变号.一、解一元一次方程——合并同类项与移项1.解一元一次方程——合并同类项解方程中的合并同类项与整式加减中的合并同类项一样,要牢记合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变. 2.解一元一次方程——移项移项必须是由等号的一边移到另一边,而不是在等号的同一边交换位置.方程中的项包括它前面的符号,移项时,一般都习惯把含未知数的项移到等号左边,把常数项移到等号右边. 3.解一元一次方程——系数化为1 将形如ax =b (a ≠0)的方程化为x =a b 的形式,也就是求出方程的解x =ab的过程,叫做系数化为1. 系数化为1的依据是等式的性质2,方程左右两边同时乘未知数系数的倒数. 【例1】方程2x –3=5解是 A .x =4 B .x =5C .x =3D .x =6【答案】A【解析】方程移项合并得:2x =8,解得x =4,故选A . 【名师点睛】1.合并同类项的实质是系数的合并,字母及指数都不变;2.系数合并时要连同前面的“±”号,如–3x +2x =5应变成(–3+2)x =5,即–x =5; 3.系数合并的实质是有理数的加法运算;4.移项时,所移的项一定要变号,而且必须是从方程的一边移到方程的另一边.二、列一元一次方程解决实际问题1.列一元一次方程解决实际问题的一般步骤:审题→找相等关系→设未知数→列方程→解方程→检验→写出答案 2.常见的两种基本相等关系 (1)总量=各部分量的和;(2)表示同一个量的两个不同的式子相等.【例2】《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有女子善织,日自倍,五日织五尺.问日织几何?译文:一位善于织布的妇女,每天织的布都是前一天的2倍,她5天共织了5尺布,问在这5天里她每天各织布多少尺?设她笫一天织布为x 尺,以下列出的方程正确的是 A .x +2x =5B .x +2x +4x +6x +8x =5C .x +2x +4x +8x +16x =5D .x +2x +4x +16x +32x =5【答案】C【解析】设她笫一天织布为x 尺,可得x +2x +4x +8x +16x =5,故选C . 【名师点睛】1.列一元一次方程解决实际问题的关键是审题,寻找相等关系;2.求出方程的解后要检验(检验的过程在草稿纸上进行),既要检验所求出的解是不是方程的解,又要检验所求出的解是否符合实际意义.1.方程315x -=的解是 A .x =3B .x =4C .x =2D .x =62.方程x –3=–6的解是 A .x =2B .x =–2C .x =3D .x =–33.方程231x -=的解是 A .0x =1B 2x =.C 1x =.D 2x =.4.如果2005200.520.05x -=-,那么x 等于 A .1814.55 B .1824.55 C .1774.45D .1784.455.下列通过移项变形,错误的是 A .由x +2=2x –7,得x –2x =–7–2B .由x +3=2–4x ,得x +4x =2–3C .由2x –3+x =2x –4,得2x –x –2x =–4+3D .由1–2x =3,得2x =1–36.若关于x 的方程ax –4=a 的解是x =3,则a 的值是 A .–2B .2C .–1D .17.已知关于x 的方程2x –3m –12=0的解是x =3,则m 的值为 A .–2B .2C .–6D .68.若a +3=0,则a 的值是 A .–3B .13-C .13 D .39.若代数式5x –7与4x +9的值相同,则x 的值为 A .2B .16C .2916D 9.10.若代数式x –7与–2x +2的值互为相反数,则x 的值为A .3B .–3C .5D .–511.方程2x –2=4的解是A .x =2B .x =3C .x =4D .x =512.方程2x –1=3的解是A .x =1B .x =2C .x =4D .x =813.方程x –1=2018的解为A .x = 2017B .x = 2019C .x =–2017D .x =–201914.方程2–5x =9的解是A .x =–57B .x =115C .x =57D .x =–7515.方程2x +1=3的解是A .x =−1B .x =1C .x =2D .x =−216.如果□×(–3)=1,则“□”内应填的实数是A .13B .3C .–3D .13-17.下列变形属于移项的是A .由540x -=,得450x -+=B .由21x =-,得12x =- C .由430x +=,得403x =-D .由554x x -=,得154x = 18.方程3x =15–2x 的解是A .x =3B .x =4C .x =5D .x =619.方程22x x -=-的解是A .1x =B .1x =-C .x =2D .0x =20.若代数式x –3的值为2,则x 等于A .1B .–1C .5D .–521.方程226x -+=的解为__________. 22.方程250x -=的解为__________.23.如果x =2是关于x 的方程x –a =3的解,则a =__________. 24.方程35x =-的解是___________.25.若(a –1)x |a |+3=–6是关于x 的一元一次方程,则a =___________;x =___________. 26.若关于x 的方程3x +4=0与方程3x +4k =18是同解方程,则k =___________. 27.将x =–32y –1代入4x –9y =8,可得到一元一次方程_______. 28.解方程:(1)–2x =6;(2)x –11=7;(3)x +13=5x +37;(4)3x –x =–13+1.29.有人问小明的生日是几号,小明说:“在日历表上,我的生日连同上、下、左、右5个日期之和是21.”小明撒谎了吗?为什么?30.已知A =2x 2+3xy –2x –1,B =–x 2+xy –1.若3A +6B 的值与x 的值无关,求y 的值.31.代数式2a -与12a -的值相等,则a 等于A .0B .1C .2D .332.若方程213x +=和203a x--=的解相同,则a 的值为 A .7B .5C .3D .033.关于x 的方程253x a +=的解与方程220x +=的解相同,则a 的值是A .1B .4C .15D .1-34.方程122x -=的解是 A .14x =-B .4x =-C .14x =D .4x =35.马强在计算“41+x ”时,误将“+”看成“–”,结果得12,则41+x 的值应为A .29B .53C .67D .7036.方程|x –3|=6的解是A .9B .±9C .3D .9或–337.对任意四个有理数a ,b ,c ,d 定义新运算:a b ad bc c d =-,已知24181x x -=,则x = A .–1B .2C .3D .438.a ※b 是新规定的这样一种运算法则:a ※b =a +2b ,例如3※(–2)=3+2×(–2)=–1.若(–2)※x =2+x ,则x 的值是 A .1B .5C .4D .239.某中学七年级学生参加一次公益活动,其中10%的同学去做保护环境的宣传,55%的同学去植树,剩下的70名同学去清扫公园内的垃圾,七年级共有多少名同学参加这次公益活动? 40.若新规定这样一种运算法则:a *b =a 2+2ab ,例如3*(–2)=32+2×3×(–2)=–3.(1)试求(–1)*2的值; (2)若3*x =2,求x 的值;(3)(–2)*(1+x )=–x +6,求x 的值.41.(2018·恩施)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店 A . 不盈不亏 B . 盈利20元C . 亏损10元D . 亏损30元42.(2018·武汉)将正整数1至2018按一定规律排列如下表:平移表中带阴影的方框,方框中三个数的和可能是 A . 2019B . 2018C . 2016D . 20133.【答案】D【解析】移项得:2x =3+1, 合并得:2x =4, 系数化为1得:x =2. 故选D . 4.【答案】B【解析】移项可得:20.05200.52005x -=-+-,合并同类项可得:1824.55x -=-, 系数化为1可得:1824.55x =. 故选B . 5.【答案】C6.【答案】B【解析】把x =3代入方程得:3a –4=a ,解得:a =2,故选B . 7.【答案】A【解析】把x =3代入2x –3m –12=0得6–3m –12=0,所以m =–2.故选A . 8.【答案】A【解析】a +3=0,移项得,a =–3.故选A . 9.【答案】B【解析】根据题意得:5x −7=4x +9,移项得:5x –4x =9+7, 合并同类项得:x =16,故选B . 10.【答案】D【解析】根据题意得:x –7−2x +2=0, 移项合并得:–x =5, 解得:x =−5, 故选D . 11.【答案】B【解析】方程移项得:2x =4+2, 合并得:2x =6, 解得:x =3, 故选B . 12.【答案】B【解析】移项得:2x=3+1,合并同类项得:2x=4,把x的系数化为1得:x=2.故选B.16.【答案】D【解析】设“□”内应填的实数是x,则–3x=1,解得,x=13 ,故选D.17.【答案】C【解析】选项A只是将方程左边的式子进行变形,并没有进行移项;选项B属于将方程的未知数系数化为1;选项C进行了移项;选项D为方程的左边进行合并同类项.故选C.18.【答案】A【解析】方程移项合并得:5x=15,解得:x =3. 故选A . 19.【答案】C【解析】移项得:x +x =2+2,合并同类项得:2x =4,解得:x =2.故选C .解得:1a =-, 故答案为:1-. 24.【答案】x =8【解析】移项可得:53x -=--, 合并同类项可得:8x -=-, 系数化为1可得:8x =. 故答案为: x =8.25.【答案】(1)–1;(2)92. 【解析】∵方程(a –1)x |a |+3=–6是关于x 的一元一次方程, 所以10 a -≠,1a =,解得1a =-, 所以原方程为:236x -+=-,解得:92x =. 故答案为:(1)–1;(2)92.26.【答案】11 227.【答案】5y+4=0【解析】将312x y=--代入498x y-=,得341982y y⎛⎫---=⎪⎝⎭,整理得:540y+=.故答案为:540y+=. 28.【解析】(1)–2x=6,x=–3;(2)x–11=7,x=7+11,x=18;(3)x+13=5x+37,x–5x=37–13,–4x=24,x=–6;(4)3x–x=–13+1,2x=23,x=13.29.【解析】小明撒谎了.理由如下.30.【解析】∵A =2x 2+3xy –2x –1,B =–x 2+xy –1,所以3A +6B =15xy –6x –9=(15y –6)x –9,要使3A +6B 的值与x 的值无关,则15y –6=0, 解得:y =25. 31.【答案】B【解析】根据题意得:a −2=1−2a ,移项合并得:3a =3,解得:a =1.故选B .32.【答案】A【解析】解第一个方程得:x =1,解第二个方程得:x =a −6,所以a −6=1,解得:a =7.故选A .33.【答案】A【解析】解方程220x +=,得1x =-,把1x =-代入253x a +=得253a -+=,解得 1.a =故选A .34.【答案】A 【解析】122x -=,14x =-.故选A . 35.【答案】D【解析】由题意可得:4112x -=,解得:29x =, 所以41412970x +=+=.故选D .36.【答案】D 【解析】∵36x -=,所以36x -=或36x -=-,解得:9x =或3x =-.故选D .37.【答案】C【解析】∵a b ad bc c d=-,所以2x +4x =18,即:x =3,故选C .40.【解析】(1)根据题中的新定义得:原式=1–4=–3;(2)已知等式利用题中的新定义化简得:9+6x =2, 解得:x =–76; (3)已知等式利用题中的新定义化简得:4–4–4x =–x +6, 移项合并得:3x =–6,解得:x =–2.41.【答案】C【解析】设两件衣服的进价分别为x 、y 元,根据题意得:120–x =20%x ,y –120=20%y ,解得:x =100,y =150,所以120+120–100–150=–10(元).故选:C .42.【答案】D。

3.2 解一元一次方程(一)合并同类项和移项(第3课时)导学案

3.2 解一元一次方程(一)合并同类项和移项(第3课时)导学案

活动 2:有列数,按一定规律排列,1,-3,9,-27,81,-243,…,其中某三个 相邻数的和是-1701,这三个数各是多少? 1、通过从符号和绝对值两方面观察,这列数有什么规律?如果设其中一个数为 a,那么它后面与前面相邻的数是_____________ 小 组 讨 论 , 共 同 探 讨 , 得 出 结 论 。
比为 3:5,一个足球表面一共有 32 个皮块,黑色皮块和白色皮块各有多少个?
8、已知 a:b:c=2:3:4,a+b+c=27,求 a-2b-2c 的值。
1、本节课我学会了:
学习反思
2、我的困惑是:
老庙中心学校导学案设计
科目:七年级数学 课 题 主备人: 舒万宝 执教人: 3.2 解一元一次方程(一)合并同类项和移项(第 3 课时) (1)会用一元一次方程解决实际问题; (2)会通过合并,移项解一元一次方程; (3)进一步巩固用一元一次方程解决实际问题的步骤; (4)会将实际问题转化为数学问题,通过列方程解决问题 会用一元一次方程解决实际问题。 通过找规律,将实际问题转化为数学问题,通过列方程解决问题。
2、本题的等量关系是什么?如何设未知数,列方程? 解:设
如果不这样设未知数,你还有其它的解法吗?
课堂检测 1、三个连续的奇数的和是 63,则最大的奇数是_____ 2、某人有三种邮票共 18•枚,•它们的数量比为 1︰2︰3,•则这三种邮票数分别
为___ ____.
3、有一数列,按一定规律排成 1,-2,3,2,-4,6,3,-6,9,接下来的三个数
为_____ ___
4、一个三角形的三边之比为 2:4:5,最长的边比最短的边长 6cm,则 该三角形的周长是 。
5、若方程 3x-4=0 与方程 6x+5k=16 的解相同,则 k= 6、用 72 厘米的铁丝做一个长方形,要使长是宽的 2 倍多 6 厘米,则这个长方形

3-2-1 一元一次方程的解法(一)合并同类项(教学设计)-(人教版)

3-2-1 一元一次方程的解法(一)合并同类项(教学设计)-(人教版)

3.2.1 一元一次方程的解法(一)合并同类项教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第三章一元一次方程3.2.1 一元一次方程的解法(一)合并同类项,内容包括:运用合并同类项解形如ax+bx=c类型的一元一次方程.2.内容解析方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位,在小学阶段已经对方程进行了初步的研究,但尚未形成方程的概念,更未研究各类方程的解法,所以解方程既是本章的重点也是今后学习其它方程、不等式及函数的重要基础和基本技能.本节课的教学内容是《解一元一次方程》的第1课时用“合并同类项”法解方程,是以后系统学习“移项”、“去括号”和“去分母”法解一元一次方程中的重要基础,因此本节课具有承上启下的作用.基于以上分析,确定本节课的教学重点为:学会运用合并同类项解形如ax+bx=c类型的一元一次方程.二、目标和目标解析1.目标(1)学会运用合并同类项解形如ax+bx=c类型的一元一次方程,进一步体会方程中的“化归”思想.(2)能够根据题意找出实际问题中的相等关系,列出方程求解.2.目标解析会用合并同类项法解一些简单的一元一次方程;经历根据具体实际问题中的数量关系列方程的过程,体会方程是刻画现实世界数量关系的有效数学模型,培养学生应用方程解决问题的能力;通过将实际问题抽象成数学问题的过程,培养学生的应用意识和转化的数学思想;通过具体情境的探索、交流等数学活动,培养学生的团队合作意识和积极参与、勤于思考的习惯.三、教学问题诊断分析七年级学生的理解能力和思维特征要求我的数学课堂要生动、有趣高效,因此我将整节课以观察、思考、讨论贯穿于整个教学环节之中采用启发式教学法和师生互动式教学模式,注意师生之间的情感交流,并教给学生“多观察、勤动脑、善钻研”的研讨式学习方法.教学中积极为学生提供更多的活动机会和空间,使学生在动脑、动手、动口的过程中获得充足的体验和发展,培养学生解决问题的能力.基于以上学情分析,确定本节课的教学难点为:会列一元一次方程解决实际问题.四、教学过程设计(一)复习回顾1.含有相同的_____,并且相同字母的_____也相同的项,叫做同类项;2.合并同类项时,把各同类项的_____相加减,字母和字母的指数_____.用合并同类项进行化简:(1)3x -5x=________; (2)-3x+7x=________;(3)y+5y -2y=________; (4)=-+y y y 23231_______. (二)情境引入约公元820年,中亚细亚数学家阿尔—花拉子米写了一本代数书,重点论述怎样解方程. 这本书的拉丁译本取名为《对消与还原》.对消与还原推动了古代数学的进步,为人们解方程问题提供了简便的方法.其实不管是对消与还原,还是合并同类项与移项,其目的都是为了化简方程.(三)自学导航问题1:某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍,前年这个学校购买了多少台计算机?设前年购买了x 台.可以表示出:去年购买计算机_____台,今年购买计算机_____台.你能找出问题中的相等关系吗?前年购买量+去年购买量+今年购买量=140台x+2x+4x=140思考:怎样解这个方程呢?下面的框图表示了解这个方程的流程:思考:上面解方程中“合并同类项”起了什么作用?解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.(四)考点解析例1.解下列方程:(1)6x -2x=28; (2)15x+25x=-1; (3)x -12x -14x=-5+8-6; (4)2x+1.5x -6.5x=9×2-4×3.(1)解:合并同类项,得4x=28.系数化为1,得x=7.(2)解:合并同类项,得35x=-1. 系数化为1,得x=-53.(3)解:合并同类项,得14x=-3. 系数化为1,得x=-12.(4)解:合并同类项,得-3x=6.系数化为1,得x=-2.【迁移应用】1.下列合并同类项不正确的是( )A.由5x -2x=9,得3x=9B.由12x+32x=7,得2x=7C.由-3x+0.5x=10,得-2.5x=10D.由3x -4x=-20-25,得x=-452.关于x 的方程4x -3m=2的解是x=m ,则m 的值是_______.3.解下列方程:(1)-2x+x 2=9; (2)23x -65x=-43; (3)x+0.75x=7.5-2.25.(1)解:合并同类项,得-32x=9. 系数化为1,得x=-6.(2)解:合并同类项,得-815x=-43. 系数化为1,得x=52. (3)解:合并同类项,得1.75x=5.25.系数化为1,得x=3.例 2.按规律排列的一列数:2,-4,8,-16,32,-64,…,其中某四个相邻的数的和是-720,求这四个数中最大的数与最小的数的差.解:根据题意,可设这四个相邻的数分别为x ,-2x ,4x ,-8x ,则x -2x+4x -8x=-720,即-5x=-720,解得x=144.所以-2x=-288,4x=576,-8x=-1152.所以最大的数为576,最小的数为-1152.所以576-(-1152)=1728.答:这四个数中最大的数与最小的数的差为1728.【迁移应用】1.一个两位数,个位上的数是十位上的数的3倍,它们的和是12,那么这个两位数是_________.2.【古代数学问题】中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到关口,则此人第一天和第六天共走了( )A.102里B.126里C.192里D.198里3.有一列数,按一定规律排列成13,-1,3,-9,27,-81,…,若其中某三个相邻数的和是-567,求这三个数中的第一个数.解:设这三个数中的第一个数为x ,则另外两个数分别为-3x ,9x.依题意,得x -3x+9x=-567,解得x=-81.答:这三个数中的第一个数是-81.例3.(1)2x -1与3x+1的和为10,求x 的值;(2)规定|a b c d |=ad -bc ,当|x 2−x 12|时,求x 的值. 解:(1)根据题意,得2x -1+3x+1=10.合并同类项,得5x=10.系数化为1,得x=2.(2)根据题意,得x 2×2-(-x)×1=32,即x+x=32. 合并同类项,得2x=32. 系数化为1,得x=34. 【迁移应用】1.若4x 比9x 的值小10,则x 的值为( )A.1B.2C.-2D.32.规定一种新运算:a * b=ab+a+b.若3*x -3=24,求x 的值.解:根据题意,得3x+3+x -3=24.合并同类项,得4x=24.系数化为1,得x=6.例4.某学校计划购买一批篮球和排球,已知篮球和排球的单价之比为4:3,单价之和为84元,则篮球和排球的单价分别为多少元?解:设篮球和排球的单价分别为4x 元和3x 元.根据题意,得4x+3x=84,解得x=12.所以4x=48,3x=36.答:篮球的单价为48元,排球的单价为36元.【迁移应用】某种中成药需要用到甘草、党参、苏叶三种材料,其中甘草、党参、苏叶三种材料的质量之比为1:2:4.若生产210kg这种中成药,则需要用到甘草、党参、苏叶的质量分别是多少千克?解:设需要用到甘草、党参、苏叶的质量分别是xkg,2xkg,4xkg.根据题意,得x+2x+4x=210.解得x=30.所以2x=60,4x=120.答:需要用到甘草、党参、苏叶的质量分别是30kg,60kg,120kg.(五)小结梳理解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax=b的形式,其中a,b是常数,“合并”的依据是逆用分配律.五、教学反思。

3.2 解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2  解一元一次方程(一)—合并同类项与移项 教案-人教版七年级数学上册

3.2 解一元一次方程(一)——合并同类项与移项第1课时 用合并同类项的方法解一元一次方程学习目标:1.学会运用合并同类项解形如ax +bx = c 类型的一元一次方程,进一步体会方程中的“化归”思想.2. 能够根据题意找出实际问题中的相等关系,列出方程求解.重点:用合并同类项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系.教学过程:要点探究探究点1:利用合并同类项解简单的一元一次方程合作探究:试一试:把一元一次方程x +2x +4x = 140转化为x = m 的形式.依据:______________ 依据:_________________归纳:解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b 的形式,其中a,b 是常数,“合并”的依据是逆用分配律.典例精析例1 解下列方程:(1) 1115;24x x x --= 221(2)423.32x x x -++=-⨯+.方法总结:合并同类项解方程的一般步骤如下:(1)合并同类项;(2)系数化为1.针对训练:解下列方程:(1) 5x -2x = 9; (2) 72321=+x x .\探究点2:根据“总量=各部分量的和”列方程解决问题例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?方法总结:方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为,然后用含x的代数式表示各数量,根据等量关系,列方程求解.例3 有一列数,按一定规律排列成1,-3,9,-27,81,-243 ,···. 其中某三个相邻数的和是-1701,这三个数各是多少?检测:1.下列方程合并同类项正确的是( )A. 由3x-x=-1+3,得2x=4B. 由2x+x=-7-4,得3x=-3C. 由15-2=-2x+x,得3=xD. 由6x-2-4x+2=0,得2x=02.如果2x与x-3的值互为相反数,那么x等于()A.-1 B.1 C.-3 D.33.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人.设该班有女生有x人,可列方程为_____________.4.解下列方程:(1) -3x + 0.5x =10;(2) 6m-1.5m-2.5m =3;(3) 3y-4y =-25-20.5.某洗衣厂2016年计划生产洗衣机25500台,其中Ⅰ型、Ⅱ型、Ⅲ型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?二、课堂小结1. 解形如“ax + bx + ···+ mx = p”的一元一次方程的步骤.2. 用方程解决实际问题的步骤.3.2 解一元一次方程(一)——合并同类项与移项第2课时用移项的方法解一元一次方程学习目标:1. 理解移项的意义,掌握移项的方法.2. 学会运用移项解形如“ax+b=cx+d”的一元一次方程.3. 能够抓住实际问题中的数量关系列一元一次方程解决实际问题.重点:理解移项法则,会用移项的方法解一元一次方程.难点:能够通过自主分析,找出实际问题中的等量关系,并能正确运用移项的方法进行解答.教学过程:一.要点探究探究点1:用移项解一元一次方程合作探究:请运用等式的性质解下列方程:(1) 4x-15 = 9①;(2) 2x = 5x-21③.两边同时_______,得两边同时_______,得②________________; ④________________;合并同类项,合并同类项,得________________; ________________;系数化为1,得系数化为1,得________________; ________________;比一比:从方程①到方程②,从方程③到方程④,有哪些项发生了变化,它们是如何变化的?说一说:利用移项解一元一次方程的步骤:__________ ____________ ______________.例1解下列方程:(1)5x-7=2x-10;(2)-0.3x+3=9+1.2x .要点归纳:移项得目的是为了把所有含有未知数的项移到方程的左边,把所有常数项移到方程的右边,使得一元一次方程更接近“x = a”的形式.针对训练由方程3x-5=2x-4变形得3x-2x=-4+5,那么这是根据()变形的.A.合并同类项法则B.乘法分配律C.移项D.等式性质22.若代数式y-7与2y-1的值相等,则y的值是.3.利用移项的方法解下列方程:(1) 3x=2x+2; (2) 4x=-x+25.探究点2:列方程解决问题例2我区期末考试一次数学阅卷中,阅B卷第28题(简称B28)的教师人数是阅A卷第18题(简称A18)教师人数的3倍,在阅卷过程中,由于情况变化,需要从阅B28题中调12人到A18阅卷,调动后阅B28剩下的人数比原先阅A18人数的一半还多3人,求阅B28题和阅A18题的原有教师人数各为多少?方法总结:列方程解决含有多个未知量的实际问题中,一般先根据题意找出这些未知量之间存在的数量关系,然后设合适的未知数列方程求解.针对训练:下面是两种移动电话计费方式:问:一个月内,通话时间是多少分钟时,两种移动电话计费方式的费用一样?解形如“ax +b = cx + d ”的方程的一般步骤:(1)移项;(2)合并同类项;(3)化未知数的系数为1.1. 通过移项将下列方程变形,正确的是 ( )A. 由5x -7=2,得5x =2-7B. 由6x -3=x +4,得3-6x =4+xC. 由8-x =x -5,得-x -x =-5-8D. 由x +9=3x -1,得3x -x =-1+92. 已知 2m -3=3n +1,则 2m -3n = .3. 如果415+m 与41+m 互为相反数,则m 的值为 . 4. 当x =_____时,式子2x -1的值比式子5x +6的值小1.5. 解下列一元一次方程:(1) 7-2x =3-4x ; (2) 1.8t =30+0.3t ;(3)x x +=+3121; (4) .383113435-=+x x6. 小明和小刚每天早晨坚持跑步,小明每秒跑4米,小刚每秒跑6米. 若小明站在百米起点处,小刚站在他前面10米处,两人同时同向起跑,几秒后小明追上小刚?课堂小结 (1) 一般地,把方程中的某些项改变符号后,从方程的一边移到另一边,这种变形叫做移项.(2) 移项的依据是等式的性质1.3.3 解一元一次方程(二)——去括号与去分母第1课时利用去括号解一元一次方程学习目标:1.了解“去括号”是解方程的重要步骤.2.准确而熟练地运用去括号法则解带有括号的一元一次方程.重点:能正确运用去括号法则解一元一次方程.难点:能够较为灵活、熟练地运用去括号法则解一元一次方程.教学过程:一,要点探究探究点1:利用去括号解一元一次方程合作探究:观察下面的方程,结合去括号法则,你能求得它的解吗?6x+ 6 ( x-2000 ) = 150000解:去括号,得_______________.移项,得____________.合并同类项,得_______________.系数化为1,得_____________.典例精析例1解下列方程:(1)x-2(x-2) = 3x+5(x-1); (2)312 71423x x x ⎛⎫⎛⎫--⎪ ⎪⎝⎭⎝⎭+8=3-6要点归纳:解含有括号的一元一次方程的一般步骤:去括号→移项→合并同类项→系数化为1.针对训练1.解方程3-5(x+2)=x去括号正确的是()A.3-x+2=x B.3-5x-10=x C.3-5x+10=x D.3-x-2=x2.若2(x+3)的值与4(1-x)的值相等,则x的值为.3.解下列方程:(1) 6x=-2 (3x-5) +10;(2)-2 (x+5) = 3 (x-5)-6 .探究点2:去括号解方程的应用例2一架飞机在两城之间航行,风速为24 km/h,顺风飞行要2小时50分,逆风飞行要3小时,求两城距离.方法总结:涉及水流或风速的行程问题,需要找准路程、时间、速度间的等量关系,且要注意顺流(风)和逆流(风)时的速度不同.例3 为鼓励居民节约用电,某地对居民用户用电收费标准作如下规定:每户每月用电如果不超过100度,那么每度按0.50元收费;如果超过100度不超过200度,那么超过部分每度按0.65元收费;如果超过20度,那么超过部分每度按0.75元收费.若某户居民在9月份缴纳电费310元,那么他这个月用电多少度?方法总结:对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列方程求解即可. 针对训练1.某市出租车的收费标准是:起步价7元(行驶距离不超过3km ,都需付7元车费),超过3km每增加1km ,加收1.2元,小陈乘出租车到达目的地后共支付车费19元,那么小陈坐车可行驶的路最远是( )A .12km B.13km C .14km D .15km2.一艘轮船在A 、B 两港口之间行驶,顺水航行需要5h ,逆水航行需要7h ,水流的速度是5km/h ,则轮船在静水中航行的速度为 ,A 、B 两港口之间的路程是 .3.水浒中学要把420元奖学金分给22名获一、二等奖的学生,一等奖每人50元,二等奖每人10元.求获得一、二等奖的人数分别是多少?1. 对于方程 2( 2x -1 )-( x -3 ) =1 去括号正确的是 ( )A. 4x -1-x -3=1B. 4x -1-x +3=1C. 4x -2-x -3=1D. 4x -2-x +3=1 2. 若关于x 的方程 3x + ( 2a +1 ) = x -( 3a +2 ) 的解为x = 0,则a 的值等于 __3.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在孙子的年龄是___岁.4. 解下列方程: (1) 3x -5(x -3) = 9-(x +4); (2).12165326⎪⎭⎫ ⎝⎛+-=-⎪⎭⎫ ⎝⎛-x x x5. 某羽毛球协会组织一些会员到现场观看羽毛球比赛.已知该协会购买了每张300元和每张400元的两种门票共8张,总费用为2700元.请问该协会购买了这两种门票各多少张?6. 当x 为何值时,代数式2(x 2-1)-x 2的值比代数式x 2+3x -2的值大6.二、课堂小结1. 解一元一次方程的步骤:去括号→移项→合并同类项→系数化为1.2. 若括号外的因数是负数,去括号时,原括号内各项的符号要改变.3.3 解一元一次方程(二)——去括号与去分母第2课时 利用去分母解一元一次方程学习目标:1.掌握含有分数系数的一元一次方程的解法.2. 熟练利用解一元一次方程的步骤解各种类型的方程.重点:利用去分母解一元一次方程.难点:熟练利用解一元一次方程的步骤解各种类型的方程.教学过程:一、要点探究探究点1:解含分母的一元一次方程合作探究:1.解方程:()()13128231-=-x x . 方法一: 方法二解:去括号,得 解:方程两边同时乘3, ________________________ ________________________移项,得 去括号,得________________________ ________________________合并同类项,得 移项,得________________________ ________________________合并同类项,得____________2.对比方法一与方法二,想一想如何解含分母的方程更简便?3.用你认为更简便的方法解方程:.5210232213x x x --=-+要点归纳: 解含分母的一元一次方程的一般步骤:去分母→去括号→移项→合并同类项→系数化为1. 观察与思考:下列方程的解法对不对?如果不对,你能找出错在哪里吗? 解方程:.122312=+--x x 解:去分母,得4x -1-3x + 6 = 1,移项,合并同类项,得x =4.如果上述解法错误,你能写出正确解法吗?典例精析例1 解下列方程:(1)121163x x -+-=; (2) 490.30.25.50.32x x x ++--=解法:_______(填“对”或“错”) 错误原因:_________________ _________________________________________________________________________________要点归纳:1. 去分母时,应在方程的左右两边乘以分母的 ;2. 去分母的依据是 ,去分母时不能漏乘 ;3. 去分母与去括号这两步分开写,不要跳步,防止忘记变号.针对训练:A .3(x+1)-2x-3=6B .3(x+1)-2x-3=1C .3(x+1)-(2x-3)=12D .3(x+1)-(2x-3)=6(1);34= (2) 1.32x +=-探究点2:去分母解方程的应用例2 火车用26秒的时间通过一个长256米的隧道(即从车头进入入口到车尾离开出口),这列火车又以16秒的时间通过了长96米的隧道,求火车的长度.方法总结:火车过桥问题中,火车行驶的路程等于桥的长度加上火车的长度.针对训练清人徐子云《算法大成》中有一首诗:巍巍古寺在山林,不知寺中几多僧.三百六十四只碗,众僧刚好都用尽.三人共食一碗饭,四人共吃一碗羹.请问先生名算者,算来寺内几多增?诗的意思:3个僧人吃一碗饭,四个僧人吃一碗羹,刚好用了364只碗,请问寺内有多少僧人?1. 方程4172753+-=+-x x 去分母正确的是 ( ) A. 3-2(5x +7) = -(x +17) B. 12-2(5x +7) = -x +17C. 12-2(5x +7) = -(x +17)D. 12-10x +14 = -(x +17)2. 若代数式21-x 与56的值互为倒数,则x = . 3. 解下列方程: (1)154353+=--x x ; (2).1255241345--=-++y y y4. 某单位计划“五一”期间组织职工到东江湖旅游,如果单独租用40座的客车若干辆刚好坐满;如果租用50座的客车则可以少租一辆,并且有40个剩余座位.该单位参加旅游的职工有多少人?5. 有一人问老师,他所教的班级有多少学生,老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在学外语,还剩六位学生正在操场踢足球.”你知道这个班有多少学生吗?趣味拓展“坟中安葬着丢番图,多么令人惊讶,它忠实地记录了所经历的道路.上帝给予的童年占六分之一.又过十二分之一,两颊长胡.再过七分之一,点燃结婚的蜡烛.五年之后天赐贵子,可怜迟到的宁馨儿,享年仅及其父之半,便进入冰冷的墓.悲伤只有用数论的研究去弥补,又过四年,他也走完了人生的旅途.”你知道丢番图去世时的年龄吗?请你列出方程来算一算.二、课堂小结:3.4 实际问题与一元一次方程第1课时产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.教学过程:二、要点探究:探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配套,商家应制作椅子的数量是桌子数量的倍. 方桌与椅子的数量之比是.2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.典例精析例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮,黑皮各多少块?针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若每天每天生产的螺栓螺母刚好配套,设安排x人生产螺栓,可列方程为.2.一套仪器由一个A部件和三个B部件构成. 用1立方米钢材可做40个A部件或240个B部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?共配成多少套?人数每小时生产铁片的数量生产的套数生产圆形铁片x生产长方形铁片探究点2:工程问题填一填:一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是,乙的工作效率是.(2)甲做x天完成的工作量是,乙做x天完成的工作量是,甲乙合做x天完成的工作量是.议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:___________________________________________________________________________________________ _______________________________________________________________.典例精析例2加工某种工件,甲单独作要20天完成,乙只要10就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】工作效率工作时间工作量甲乙想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1.三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量= 工作效率×工作时间;合作的工作效率=工作效率之和.2.相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作1.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 . 2. 一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由 甲独做x 天完成,那么所列方程为 .3. 某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方 米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可 生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4. 一件工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题实际问题的答案 一元一次方程的解(x =a )设未知数,列方程检验3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折 扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路. 教学过程:三、要点探究:探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格. 标价 商店销售商品时所赚的钱. 售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价. 填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元. 想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价; ●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ;●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率). 议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小. (1)盈利:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(2)亏损:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、“小 于”或“=”);(3)不盈不亏:售价 进价(填“>”、“小于”或“=”),此时,利润 0(填“>”、 “小于”或“=”).典例精析例1一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价>总成本时,盈利;总售价<总成本时,亏损;总售价=总成本时,不盈不亏.针对训练1.某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%.这次琴行是盈利还是亏损,或是不盈不亏?2.某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%.这次交易中的盈亏情况?例2某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨 价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价 50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价?二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)3.4 实际问题与一元一次方程第3课时球赛积分表问题学习目标:1. 通过对实际问题的探究,认识到生活中数据信息传递形式的多样性.2. 会阅读、理解表格,并从表格中提取关键信息.3. 掌握解决“球赛积分表问题”的一般思路,并会根据方程的解的情况对实际问题作出判断.重点:能够阅读和理解表格中的信息.难点:能够通过自主分析,从表格中提取关键信息进行解题,并掌握解决“球赛积分表问题”的一般思路.教学过程:四、要点探究:探究点:比赛积分问题互动探究:某次篮球联赛积分榜如下:问题1你能从表格中了解到哪些信息?问题2你能从表格中看出负一场积多少分吗?问题3你能进一步算出胜一场积多少分吗?提示:设胜一场积x分,根据表中其他任何一行可以列方程求解.问题4怎样用式子表示总积分与胜、负场数之间的关系?问题5某队胜场总积分能等于它负场总积分吗?例某次篮球联赛共有十支队伍参赛,部分积分表如下:根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?【提示:先观察C队的得分,可知胜场得分+负场得分=_____,然后再设未知数列方程求解】想一想:某队的胜场总积分能等于它的负场总积分吗?针对训练:某赛季篮球甲A 联赛部分球队积分榜如下:(1) 列式表示积分与胜、负场数之间的数量关系;(2) 某队的胜场总积分能等于它的负场总积分吗?为什么?1. 某球队参加比赛,开局9场保持不败,积21分,比赛规则:胜一场得3分,平一场得1分,则该队共胜( )A. 4场B. 5场C. 6场D. 7场2.中国男篮CBA职业联赛的积分办法是:胜一场积2分,负一场积1分,某支球队参加了12场比赛,总积分恰是所胜场数的4倍,则该球队共胜____场.3. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?4.把互动探究中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.二、课堂小结1. 解决有关表格的问题时,首先要根据表格中给出的相关信息,找出数量间的关系,然后再运用数学知识解决问题.2. 用方程解决实际问题时,要注意检验方程的解是否正确,且符合问题的实际意义.3.4 实际问题与一元一次方程第4课时 电话计费问题学习目标:1. 体会分类思想和方程思想在解决问题中的作用,能够根据已知条件选择 分类关键点对“电话计费问题”进行整体分析,从而得出整体选择方案. 2. 进一步深化对数学建模方法的体验,增强应用方程模型解决问题的意识和 能力.重点:能够理解题目信息,建立方程模型解决电话计费问题. 难点:关键点的选择,整体方案的确定.五、要点探究:探究点1:电话计费问题:下表中有两种移动电话计费方式:想一想 你觉得哪种计费方式更省钱?填填下面的表格,你有什么发现?问题1 设一个月内移动电话主叫为t min (t 是正整数),列表说明:当t 在不同时间范围内取值时,按方式一和方式二如何计费.想一想:计费多少是与__________有关;计费时,首先主要关注的是________________; 考虑t 值时,不同时间范围的划分点为_____________、___________________ 列表如下: 主叫时间t/min 方式一计费/元 方式二计费/元问题2 观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.结论:当t________________时,选择方式一省钱;当t________________时,两种方式费用相同; 当t________________时,选择方式二省钱. 想一想:(1)回顾问题的解决过程,谈谈你的收获.月使用 费/元 主叫限定 时间/分 主叫超时 费/(元/分) 被叫 方式一 58 150 0.25 免费方式二 88 350 0.19 免费主叫时间(分) 100 150 250 300 350 450 方式一计费(元)方式二计费(元)。

3.2.1解一元一次方程-合并同类项教案

3.2.1解一元一次方程-合并同类项教案
在教学过程中,教师应针对以上重点和难点内容进行详细讲解、示例和练习,确保学生理解透彻。同时,鼓励学生积极参与,提问和解答,提高课堂教学效果。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.2.1解一元一次方程-合并同类项”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决几个相同物品数量相加的问题?”(如:我有2个苹果,又买了3个苹果,一共有多少个苹果)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索合并同类项的奥秘。
4.在探究、合作、交流过程中,发展学生的自主学习、团队合作和表达能力;
5.培养学生严谨、细致的数学态度,激发数学学习兴趣,树立自信心。
三、教学难点与重点
1.教学重点
(1)一元一次方程的概念:理解一元一次方程的定义及一般形式,明确方程中的未知数、常数和系数。
(举例:x + 3 = 7,其中x为未知数,3和7为常数,1为系数)
在讲解重点和难点时,我尽量用简洁明了的语言进行解释,并通过举例来帮助学生理解。但从课堂反馈来看,可能还需要进一步简化语言,让学生更容易消化吸收。同时,对于难点的讲解,我可以尝试用不同的方法进行阐述,以便学生们能够从多个角度理解问题。
最后,我觉得在课堂总结环节,可以让学生们自己来总结今天的学习内容,这样既能检验他们对知识点的掌握程度,也能提高他们的表达能力和自信心。此外,针对学生们在课堂上提出的疑问,我将在课后进行总结,并在下一次课上进行解答,确保他们能够真正掌握这些知识点。
3.2.1解一元一次方程-合并同类项教案
一、教学内容
本节课选自教材第三章第二节第一部分“3.2.1解一元一次方程-合并同类项”。教学内容主要包括以下两个方面:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2.1解一元一次方程(一)——合并同类项
姓名: 学号:
自学目标
1、体会方程是刻画现实世界的有效数学模型;初步体会一元一次方程的应用价值.
2、能找出实际问题中的已知数与未知数,并能分析它们之间的数量关系列出方程.
3、了解用合并同类项的依据;会运用合并同类项解ax bx c +=类型的一元一次方程.
一、知识储备
1、根据等式的性质填空。

①若
52x =,则22x ⨯=__________ ②若36x =,则33x ÷= ③若6365x =,则65x ÷____6365=÷ ④若7145x =-,则75
x ______7145=-⨯ 2、还记得如何合并同类项吗?
合并同类项:⑴35x x -= ⑵37a a -+=________ ⑶23
a a --=_________ 3、解方程的基本思路是:根据等式的性质,把方程变形为形如x a =(a 为常数)的形式.
二、新课探究
认真阅读课本8889P P -的内容,将88P 问题1的空白填上.
1、由问题1列出方程24140x x x ++=的等量关系,你可以发现什么基本的相等关系?
2、在课本上画出你认为重点的语句,并用红笔圈出关键字(词).
3、写出你认为难理解的问题.
知识点1:合并同类项
在解一元一次方程中,合并同类项的作用是什么?
知识点2: 系数化为1
为什么要将未知数的系数化为1?如何系数化为1?
系数化为1的依据是什么?我们又该注意哪些问题呢?
知识点:3:解一元一次方程的步骤
从课本86下方的框图,你能总结出解一元一次方程的步骤吗?是:
尝试练习
模仿课本87页例1的解题过程,解方程:
(1)3287x x x +-= (2)2510615215..y y y +-=-
自我总结
我是怎样进行预习的?从这节课我学到了什么?有那些收获与感受?对于这节课的内容,我还想提出哪些问题?
思考与提升
1、如果35
a b
=-,20
+=,求x的值.
a x
b x
=-,7
2、三个连续的奇数和是27,求这三个奇数.。

相关文档
最新文档