数学苏教版八年级下频数分布表和频数分布直方图知识点

合集下载

7.4频数分布表和频数分布直方图

7.4频数分布表和频数分布直方图

(2)视力在4.9及4.9以
上的同学占调查学生的比
频 60

()
例为_3_/8__ ;
名 50
(3)如果视力在第1,2,3 40
组范围内均属视力不良,那 30
么该校约共有_1_25_0_名学 20
生视力不良,应给予治疗、 矫正。
10
第3组
第2组 第1组
第4组 第5组 视力
3.95 4.25 4.55 4.85 5.15 5.45
()
才艺展示
1.一次统计七年级若干名学生每分跳绳次数的频数分布直方图如图. 请根据这个直方图回答下面的问题:
(1)参加测试的总人数是多少? 15人
(2)自左至右最后一组的频数、频率分别是多少?
频数是3
频率是0.2
(3)数据分组时,组距是多少?
组距是25次


七年级若干名学生每分跳绳次数的频数分布 直方图
合计
20 ___2_5__
30 10 5 100
3.每年的6月6日是全国的爱眼日,让我们行动起来, 爱护我们的眼睛!某校为了做好全校2000名学生的眼 睛保健工作,对学生的视力情况进行一次抽样调查, 如图,是利用所得数据绘制的频数分布直方图。请你 根据此图提供的信息,回答下列问题:
(1)本次调查共抽测了__16_0 _名学生;
82.5; 82.5~87.5; 87.5~92.5)
解: 20名学生每分脉搏跳动次数的频数分布表
组别(次) 67.5~72.5 72.5~77.5 77.5~82.5 82.5~87.5 87.5~92.5
频数 2 4 9 3 2
20名学生每分脉搏跳动次数的频数分布直方图

数 10

苏教版八年级数学下册知识点(详细精华版)

苏教版八年级数学下册知识点(详细精华版)

苏教版八年级数学下册知识点(详细精华版)一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。

1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。

(2)折线图:反映数据的变化趋势。

(3)条形图:反映每个项目的具体数据。

(4)扇形图:反映各部分在总体中所占的百分比。

(5)频数分布直方图:直观形象地反映频数分布情况。

6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。

三、统计调查1、全面调查(普查):考察全体对象的调查,就是全面调查。

例如我国进行的第六次人口普查。

2、抽样调查:采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查。

统计中常用样本特性来估计总体特性。

需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。

⑴总体:所要考察对象的全体叫做总体。

⑵个体:总体中每一个考察对象叫做个体。

⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。

⑷样本容量:样本中个体的数目(不含单位)。

3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。

抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。

4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据,因而得到的调查结果比较精确;但可能要投入数倍甚至更多的人力、物力和时间、⑵抽样调查:是通过调查样本的方式来收集数据,因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。

数学知识点总结之频数分布直方图

数学知识点总结之频数分布直方图

1.频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

2.频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数某各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来。

3.频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为某轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。

水平的数轴叫做某轴或横轴,铅直的数轴叫做Y轴或纵轴,某轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

频数分布图与频数分布直方图的区别

频数分布图与频数分布直方图的区别

一、基本概念1.频数:落在不同小组中的数据个数为该组的频数.各组的频数之和等于这组数据的总数.注:在统计频数多少的时候,我们一般通过数“正”字的方法累计.2.频率:频数与数据总数的比,即频率=各组频率之和为1.频率大小反映了各组频数在数据总数中所占的份量3.组数:把全体样本分成的组的个数称为组数.4.组距:把所有数据分成若干个组,每个小组的两个端点的距离。

5.极差:用样本数据中的最大值减去最小值。

组距=极差除以组数二、列频数分布表的注意事项运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数.画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出来,其中组距、组数起关键作用,分组过少,数据就非常集中;分组过多,数据就非常分散,这就掩盖了分布的特征,当数据在100以内时,一般分5~12组.编辑本段三、直方图的特点通过长方形的高代表对应组的频数与组距的比(因为比是一个常数,为了画图和看图方便,通常直接用高表示频数),这样的统计图称为频数分布直方图.它能:①清楚显示各组频数分布情况;②易于显示各组之间频数的差别.编辑本段四、制作频数分布直方图的步骤1.找出所有数据中的最大值和最小值,并算出它们的差.2.决定组距和组数.3.确定分点4.列出频数分布表.5.画频数分布直方图.编辑本段五、频数分布折线图的制作我们可以在直方图的基础上来画,先取直方图各矩形上边的中点,然后在横轴上取两个频数为0的点,这两点分别与直方图左右两端的两个长方形的组中值(矩形宽的中点)相距一个组距,将这些点用线段依次联结起来,就得到了频数分布折线图.编辑本段六、条形图和直方图的区别1.条形图是用条形的高度表示频数的大小,而直方图实际上是用长方形的面积表示频数,当长方形的宽相等的时候,可以用矩形的的高表示频数;2.条形图中,横轴上的数据是孤立的,是一个具体的数据,而直方图中,横轴上的数据是连续的,是一个范围;3.条形图中,各长方形之间有空隙,而直方图中,各长方形是靠在一起的,中间无空隙;编辑本段七、与统计图有关的数学思想方法1.数形结合:从统计图中,能看出各组数据的特点,可进一步应用这些数据特点解决实际问题.通过整理数据,根据要求绘制统计图,可进一步分析数据、做出决策.2.类比:绘制频数分布直方图和绘制条形图类似,如果长方形的宽一样,那么长方形的高度之比就是各组内数据个数之比.编辑本段八、如何画频数分布直方图①集中和记录数据,求出其最大值和最小值。

初二数学知识点归纳:直方图

初二数学知识点归纳:直方图

初二数学知识点归纳:直方图初二数学知识点归纳:直方图知识点总结一、频数分布直方图:1频数与频率:每个对象出现的次数为频数,而每个对象出现的次数与总次数的比值为频率。

2频数分布表: 运用频数分布直方图进行数据分析的时候,一般先列出它的分布表,其中有几个常用的公式:各组频数之和等于抽样数据总数;各组频率之和等于1;数据总数×各组的频率=相应组的频数。

画频数分布直方图的目的,是为了将频数分布表中的结果直观、形象地表示出。

3频数分布直方图:(1)当收集的数据连续取值时,我们通常先将数据适当分组,然后再绘制频数分布直方图。

(2)绘制的频数分布直方图的一般步骤:①计算最大值与最小值的差(极差),确定统计量的范围;②决定组数和组距,数据越多,分的组数也应当越多;③确定分点;④列频数分布表;⑤画频数分布直方图。

二、常见的统计图:常见的统计图有条形统计图、折线统计图、扇形统计图三种,在解决实际问题时,具体选择用哪种统计图,要依据统计图的特点和问题的要求而定。

1条形统计图:(1)条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起。

条形统计图又分为条形统计图和复式条形统计图。

(2)特点:能够显示每组中的具体数据;易于比较数据间的差别;如果要表示的数据各自独立,一般要选用条形统计图。

(3)绘制方法:①为了使图形大小适当,先要确定横轴和纵轴的长度,画出横轴和纵轴;②确定单位长度,根据要表示的数据的大小和数据的种类,分别确定两个轴的单位长度,在横纵、纵轴上从零开始等距离分段;③用长短(或高低)不同的直条表示具体的数量,直条的宽度要适当,每个直条的宽度要相等,直条之间的距离也要相等;④要注明各直条所表示的统计对象、单位和数量,写上统计图的名称、制图日期,复式条形图还要有图例。

2折线统计图:(1)折线统计图用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起,以折线的上升或下降表示统计数量增减变化。

苏教版八年级数学下册知识点(详细精华版).docx

苏教版八年级数学下册知识点(详细精华版).docx

精品文档苏教版八年级下册数学知识点归纳第 7 章数据的收集、整理与描述知识点一、数据处理一般包括收集数据、整理数据、描述数据和分析数据等过程。

1、通过调查收集数据的一般步骤:①明确调查问题②确定调查对象③选择调查方法④展开调查⑤记录结果⑥得出结论2、收集数据常用的方法:①民意调查:如投票选举②实地调查:如现场进行观察、收集、统计数据③媒体调查:报纸、电视、电话、网络等调查都是媒体调查。

二、数据的表示方法:(1)统计表:直观地反映数据的分布规律。

(2)折线图:反映数据的变化趋势。

(3)条形图:反映每个项目的具体数据。

(4)扇形图:反映各部分在总体中所占的百分比。

( 5)频数分布直方图:直观形象地反映频数分布情况。

6)频数分布折线图:在频数分布直方图的基础上,取每一个长方形上边的中点,和左右频数为零与直方图相距半个组距的两个点。

三、统计调查1、全面调查 (普查 ):考察全体对象的调查,就是全面调查。

例如我国进行的第六次人口普查。

2、抽样调查:采用调查部分对象的方式来收集数据 , 根据部分来估计整体的情况 , 叫做抽样调查。

统计中常用样本特性来估计总体特性。

需要注意的是,在抽样调查中,如果抽取样本的方法得当,一半样本能客观的反映总体的情况,抽样调查的结果会比较接近总体的情况,否则抽样调查的结果往往会偏离总体的情况,所以,在抽样调查要求抽取的样本要具有代表性。

⑴总体:所要考察对象的全体叫做总体。

⑵个体:总体中每一个考察对象叫做个体。

⑶样本:从总体中所抽取的一部分个体叫做总体的一个样本。

⑷样本容量:样本中个体的数目(不含单位)。

.3、简单随机抽样:为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有相等的机会被抽到。

抽取样本的过程中,总体中每一个个体都有相等的机会被抽到,像这样的抽样方法叫做简单随机抽样。

4、【总结】全面调查与抽样调查的比较:⑴全面调查:是通过调查总体的方式来收集数据 , 因而得到的调查结果比较精确 ; 但可能要投入数十倍甚至更多的人力、物力和时间 .⑵抽样调查:是通过调查样本的方式来收集数据 , 因而调查结果与总体的结果可能的一些误差,但投入少、操作方便,而且有时只能用抽样的方式去调查,比如要研究一批炮弹的杀伤半径,不可能把所有的炮弹都发射出去,可见合理的抽样调查不失为一种很好的选择。

频数直方图 知识讲解

频数直方图 知识讲解

频数直方图——知识讲解责编:康红梅【学习目标】1. 理解组距、频数、频率、频数统计表的概念;2. 会制作频数统计表,理解频数统计表的意义和作用;3. 体会样本和总体的关系,会用样本的频数分布估计总体的频数分布;4. 掌握画频数直方图的一般步骤,会画频数直方图,理解频数分布直方图的意义和作用. 【要点梳理】要点一、组距、频数、频率与频数统计表1.组距:将数据按从小到大适当地分组,并绘制成统计表,其中每一组的后一个边界值与前一个边界值的差叫做组距.2. 频数:数据分组后落在各小组内的数据个数称为频数.3. 频率:每一组数据频数与数据总数的比叫做这一组数据的频率.4.频数统计表:把各个组别中相应的频数分布用表格的形式表示出来,这种反映数据分布情况的统计表叫做频数统计表,也称频数表.列频数统计表的一般步骤如下:1.选取组距,确定组数.组数通常取大于最大值-最小值组距的最小整数. 当数据在100个以内时,通常可按照数据的多少分成5~12组.2.确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些.为了使数据不落在边界上,边界值可以比实际数据多取一位小数.取定起始边界值后,就可以根据组距写出各组的边界值.3.列表,填写组别和统计各组频数.要点诠释:(1)各组频数总和等于样本容量,各组数据的频率之和等于1;(2)频数统计表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.要点二、频数直方图1.频数直方图由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图,叫做频数直方图.简称直方图.它直观地呈现了频数的分布特征和变化规律.2.频数直方图的画法(1)列出频数表;(2)画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.3. 频数直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数直方图是条形统计图的一种;(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成()A.10组 B.9组 C.8组 D.7组【答案】A.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】(2016•黄浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14 11 12 13 13 12 10那么第⑤组的频率为()A.14 B.15 C.0.14 D.0.15【答案】D.解:根据表格中的数据,得第⑤组的频数为100﹣(14+11+12+13+13+12+10)=15, 其频率为15:100=0.15. 类型二、频数统计表3.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数统计表:(1)表中m=______,n=______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人? 【思路点拨】(1)由频率统计表可看出艺术类的频数22,频率是0.11,由频率=频数÷数据总数计算,可得到总数;根据频数的总和为200,可求出m 的值; (2)频数统计表中可以直接看出答案;(3)用样本估计整体:用整体×样本的百分比即可. 【答案与解析】 解:(1)学生总数:22÷0.11=200,m=200-22-66-28=84, n=66÷200=0.33,(2)从频数统计表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人. (3)1200×0.33=396(人). 【总结升华】此题主要考查了读频数统计表的能力,利用图表得出正确的信息是解决问题的关键.类型三、频数直方图4.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 72 71 68 69 78 67 80 68 72 70 65试列出频数统计表并绘出频数直方图.【思路点拨】按照画频数直方图的步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.类别 频数(人数) 频率 文学 m 0.42 艺术 22 0.11 科普 66 n 其它 28 合计 183-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数统计表.(4)画频数直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数统计表及所画的频数直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【高清课堂:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.5. (2016•安徽模拟)我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<170 5 0.1170≤x<180 10 a180≤x<190 b 0.14190≤x<200 16 c200≤x<210 12 0.24表(1)根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【思路点拨】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【答案与解析】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):(1)请你把表中的数据填写完整;(2)补全频数直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.。

12.3频数分布表和频数分布直方图(2)

12.3频数分布表和频数分布直方图(2)

班级姓名学号学习目标1、经历数据的收集、整理、描述与分析的过程,并在统计活动中进一步发展学生的统计意识和数据处理能力。

2、能说出频数、频率的意义,了解频数分布的意义和作用,会列出频数分布表,制作频数分布直方图和频数折线图。

3、能根据统计结果做出合理的判断和预测,并能解决简单的实际问题,体会统计对决策的作用。

学习难点:能根据统计结果做出合理的判断和预测,并能解决简单的实际问题,体会统计对决策的作用。

教学过程一、教学引入:你知道七年级学生的身高在什么范围内吗?你知道整体分布情况如何吗?你可以如何解决这个问题呢?二、动手做一做:小明抽样测量了南外七年级50名同学的身高,结果如下(单位:cm):150 148 159 156 157 163 156 164 156 159169 163 170 162 163 164 155 162 153 155160 165 160 161 166 159 161 157 155 167162 165 159 147 163 172 156 165 157 164152 156 153 164 165 162 167 151 161 1621、在这组数据中163厘米的频数是多少?频率呢?2、绘制频数分布表、频数分布直方图与频数分布折线图解:(1) 计算最大值与最小值的差;注:最大值与最小值的差叫___________。

(2) 决定组距和组数;注:每组两个端点之间的距离称为组距。

(3) 决定分点;(4) 列出频数分布表;注:像上述这样的表就是频数分布表。

(5) 绘制频数分布直方图注:横轴表示成绩(单位:分),纵轴表示学生人数。

注:有时为了更好地刻画数据的总体规律,将每个小长方形上面一条边的中点顺次用折线连接起来,就得到频数折线图。

二、想一想:条形统计图、扇形统计图、折线统计图和频数分布直方图,从不同的角度清楚、有效地描述数据。

请你说说它们各有什么特点?并与同学交流。

二、课堂练习:1、根据某班40名同学的体重频数分布直方图,回答下列问题:(1)体重在哪个范围内的人数最多?(2)体重超过59.5kg的同学占全班同学的百分之几?2、为了研究400m赛跑后学生心率的变化情况,体育老师统计了全班45名同学在赛跑后1min内的脉搏次数,结果如下:132,136,138,141,143,144,144,146,146,147,148,149,149,151,151,152,153,153,154,154,154,156,156,157,157,157,158,158,158,158,159,161,161,162,162,163,163,164,164,164,164,166,168,159,159(1)按组距为5将上述数据整理成频数分布表;(2)依据(1)绘制频数分布直方图以及频数折线图。

苏科数学八年级下册第七章4频数分布表和频数分布直方图PPT课件

苏科数学八年级下册第七章4频数分布表和频数分布直方图PPT课件
28.5~30.5
30.5~32.5
合计
划记
频数
已知一个样本:27,23,25,27,29,31,27,30,32,31,28,26,27,29,28,24,26,27,28,30。列出频数散布表,并绘出频数散布直方图和频数折线图。
2
3
8
4
3
20
例题:
和学生一起做
1、一个样本含有20个数据:35,31,33,35,37,39,35,38,40,39,36,34,35,37,36,32,34,35,36,34.在列频数散布表时,如果组距为2,那么应分成___组,32.5~34.5这组的频数为_____.
7.4 频数散布表和 频数散布直方图
150
148
159
156
157
163
156
164
156
159
169
163
170
162
163
164
155
162
153
155
160
165
160
161
166
159
161
172
155
167
例1.
抽样测量某中学七年级30名同学的身高,结果如下(单位:cm):
1.60
1.62
1.68
1.72
1.78
人数/人
2
4
6
5
7
8
8
4
3
1
(1)这个班总人数是______人;身高______、_____人 数最多,分别是______人、_____人. (2)身高最高、最低的分别是______米、________米, 他们分别是_______人、_______人.最高的与最低 的相差_______米.(3)这个班的平均身高是多少?

苏教版8下数学

苏教版8下数学

苏教版八年级下册数学重要知识点总结大纲第七章数据的收集、整理与描述1.数据收集:•全面调查:对全体对象进行考察的调查方式,能得到全面、准确信息,但耗费人力、物力、时间多,如人口普查。

•抽样调查:抽取部分对象进行调查以估计总体,抽样时要注意样本的代表性和广泛性,优点是调查范围小、节省资源,如调查灯泡质量。

2.相关概念:•总体:要考察的全体对象。

•个体:组成总体的每一个考察对象。

•样本:被抽取的所有个体组成的集合。

•样本容量:样本中个体的数目,无单位。

3.数据整理与描述:•频数分布表:通过计算极差、决定组距与组数、决定分点等列出,反映数据在各区间分布情况。

•频率分布直方图:以面积表示频率,直观反映频数分布,各小长方形面积之和等于样本容量。

•统计图:条形图能清楚反映每个项目具体数据;扇形图可表示各部分与总数关系;折线图能反映数量增减变化趋势。

第八章分式,A、B是整式且中含有字母。

B≠1.分式概念:形如x=AB0时分式有意义,A=0且B≠0时分式值为0.2.分式基本性质:分式分子与分母同乘或除以不等于的整式,分式值不变.3.分式运算:•约分:把分式分子与分母的公因式约去,化为最简分式。

•通分:把异分母分式化为同分母分式,最简公分母是各分母所有因式最高次幂的积。

•加减运算:同分母分式相加减,分母不变分子相加减;异分母分式相加减,先通分再按同分母分式加减法法则计算。

•乘除运算:分式乘分式,分子积作分子,分母积作分母;分式除以分式,除式分子分母颠倒位置后与被除式相乘;分式乘方是分子分母分别乘方。

4.分式方程:分母含未知数的方程。

解分式方程需转化为整式方程并验根,增根是使最简公分母为的根.第九章反比例函数(k为常数,k≠0),x是1.反比例函数概念:形如y=kx自变量,y是x的函数,k是比例系数,自变量x取值范围是不等于的实数。

2.反比例函数图象与性质:•图象:是双曲线,k>0时,双曲线两支分别在第一、三象限;k<0时,在第二、四象限。

苏教版八年级数学下册知识点(详细精华版)

苏教版八年级数学下册知识点(详细精华版)

苏教版八年级数学下册知识点(详细精华版)数据处理包括收集、整理、描述和分析数据等过程。

收集数据的一般步骤为明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果和得出结论。

常用的收集数据方法有民意调查、实地调查和媒体调查。

数据的表示方法有统计表、折线图、条形图、扇形图、频数分布直方图和频数分布折线图。

统计调查包括全面调查和抽样调查,其中抽样调查常用简单随机抽样方法。

在选择调查方法时,需要考虑投入的人力、物力和时间,以及调查结果的精确度和误差。

合理的抽样调查可以是一种很好的选择。

当调查对象数量较少且容易进行时,我们通常采用全面调查的方式。

但如果调查结果对调查对象有破坏性或可能产生危害,我们则会采用抽样调查的方式。

当调查对象数量较多且难以进行时,我们也常常采用抽样调查的方式。

但在特殊情况下,如国家人口普查,我们仍需要采用全面调查的方式。

统计图有三种类型:条形统计图、扇形统计图和折线统计图。

统计表是表现数字资料整理结果的最常用的一种表格,由纵横交叉线条所绘制的表格来表现统计资料的一种形式。

扇形统计图用整个圆表示总数,圆内的各个扇形的大小表示各部分数量占总数的百分数。

通过扇形统计图,可以清晰地表示各部分数量与总数之间的关系。

制作扇形图的步骤为:先算出各部分在总体中所占的百分数,再算出各部分圆心角的度数,最后在圆内量出各个扇形的圆心角的度数,写上名称和百分数,并用不同的标记区分各扇形。

条形统计图用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序排列起来。

从条形图可以很容易看出数据的大小,便于比较。

制作条形图的步骤为:在图纸上画出两条互相垂直的射线,确定直条的宽度和间隔,根据数据大小确定单位长度表示多少,并画出长短不同的直条并注明数量。

折线统计图用一个单位表示一定的数量,根据数量的多少描出各点,然后把各点用线段依次连接起来。

以折线的上升或下降来表示统计数量增减变化。

折线图不仅可以表示出数量的多少,还能清楚地表示出数量的增减变化情况。

频数分布表和频数分布直方图

频数分布表和频数分布直方图

(1)、最高分为---9--5-------,最低分为---5--3------。 差是---4-2-----
(2)、分数习惯以----1--0-------分段。
(3)、分组:49.5—59.5 59.5----69.5 69.5---79.5
79.5----89.5
89.5------99.5
CHENLI
具体操作:
(1)计算最大值与最小值的差,确定统计范围;
(2)定组距与组数;
CHENLI
3
(2)决定组距与组数;
1.组距是指每个小组的两个端点之间的距离.实践中 通常要求各组的组距相等;
2.数据越多,分组应越多.当数据在100个以内时,通 常按照数据的多少分成5~12组.
在实际分组中,往往要有一个尝试的过程,
最后选择一个比较合适的组距与组数.
CHENLI
4
(3)确定分点; 确定分点的方法有多 种。通常为了使得每 个数据都落在相应的 组内,可取比数据多 一位小数来分组;
(4)列频数分布表:
把数据划记到相应的
组中,统计每组中相
应数据出现的频数.
CHENLI
5
(5)画频数分布直方图.注意:各个“条形”之间就 应该是连续的,不应该有间隔,当各组的组距相等 时,所画的各个条形的宽度也应该是相同的;
没有空隙
孤立的,是一 个具体的数据
有空隙
联系 频数分布直方图是特殊的条形统计图
CHENLI
8
有时,为了更好的刻画数据的总体规律,我们 还可以在得到的频数分布直方图“条形”上部的 正中取点、连线,得到频数折线图;
13
89 5 3 2
7 2 1
CHENLI
9

八年级数学下册 5.2 频数直方图 知识梳理 频数分布表

八年级数学下册 5.2 频数直方图 知识梳理 频数分布表

知识梳理:频数分布表与直方图1、数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在数据组中各数据的分布情况。

要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况。

如:1、八年级某班20名男生一次投掷标枪测试成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28。

(1)将这20名男生的测试成绩按从小到大排列,统计出每种成绩的数值出现的频数,并制成统计表;(2)根据统计表回答:①成绩小于25米的同学有几人?占总人数的百分之几?②成绩大于28米的同学有几人?占总人数的百分之几?③这些同学的成绩大部分集中在哪个范围内,占总人数的百分比是多少?小结:利用频数、频率分布表,可以清楚地反映出一组数据中的每个数据出现的频数和频率,从而反映这些数据的整体分布情况。

2、频数分布直方图为了直观地表示一组数据的分布情况,可以以频数分布表为基础,绘制分布直方图。

(1)频数分布直方图简称直方图,它是条形统计图的一种。

(2)直方图的结构:直方图由横轴、纵轴、条形图的三部分组成。

(3)作直方图的步骤:①作两条互相垂直的轴:横轴和纵轴;②在横轴上划分一引起相互衔接的线段,每条线段表示一组,在线段的左端点标明这组的下限,在最后一组的线段的右端点标明其上限;③在纵轴上划分刻度,并用自然数标记;④以横轴上的每条线段为底各作一个矩形立于数轴上,使各矩形的高等于相应的频数。

如:为了了解某地区八年级学生的身高情况,现随机抽取了60名八年级男生,测得他们的身高(单位:cm)分别为156 162 163 172 160 141 152 173 180 174 157 174 145 16 153 165 156 167 161 172 178 156 166 155 140 157 167 156 168 150 164 163 155 162 160 168 147 161 157 162 165 160 166 164 154 161 158 164 151 169 169 162 158 163 159 164 162 148 170 161(1)将数据适当分组,并绘制相应的频数分布直方图;(2)如果身高在cm 155≤cm x 170≤的学生身高为正常,试求落在正常身高范围内学生的百分比。

直方图有关知识点总结

直方图有关知识点总结

直方图有关知识点总结1. 直方图的基本概念直方图是一种二维统计图表,横轴表示数据的分组区间或类别,纵轴表示数据在每个分组或类别中的频数或频率。

直方图是通过一系列连续的矩形条或方块来描绘数据分布的图形化表达形式,每个矩形的面积与对应数据的频数或频率成正比。

直方图的基本概念可以通过以下几个方面来总结:1.1 频数与频率直方图的纵坐标通常表示频数或频率。

频数是指某一特定数值的出现次数,而频率是指某一特定数值出现的次数与总次数的比值。

频率通常较为直观,能更好地反映数据分布情况。

1.2 分组区间数据在直方图中按照一定的区间范围进行分组展示,这些区间称为分组区间。

分组区间的选择对直方图的展示效果具有重要影响,通常需要根据数据的分布情况和样本量进行合理的选择。

1.3 绘制方法绘制直方图通常包括确定分组区间、计算频数或频率、绘制矩形条、添加坐标轴与标签等过程。

常用的绘制工具包括统计软件如R、Python和Matlab等,也可以通过Excel等常见软件手工制作直方图。

2. 直方图的绘制方法直方图的绘制方法主要包括数据处理、分组区间选择、频数或频率计算、矩形条绘制、坐标轴添加等步骤,下面我们将详细介绍直方图的绘制方法:2.1 数据处理首先需要对原始数据进行整理和处理,对数据进行清洗、排序、分组等操作,以便后续的频数或频率计算和绘制操作。

2.2 分组区间选择在分组区间选择时,通常需要考虑数据的分布情况和样本量,以确保直方图能够较为准确地反映数据的分布特征。

常用的分组区间选择方法包括等宽分组和等频分组等。

2.3 频数或频率计算根据选定的分组区间,计算每个分组区间的频数或频率。

频数的计算即是每个分组区间中数据的个数,频率的计算是指每个分组区间中数据的个数与总数据个数的比值。

2.4 矩形条绘制根据计算得到的频数或频率,绘制每个分组区间对应的矩形条。

矩形条的高度表示频数或频率,宽度表示分组区间的跨度。

2.5 坐标轴添加在绘制矩形条后,需要添加横轴和纵轴的标签、分割线和标题等,以便直观地展示直方图的信息。

7.4 频数分布表和频数分布直方图 同步课件

7.4 频数分布表和频数分布直方图 同步课件

2
频数
2
12
5
10
6
8
12
8
9
1
2
12
8
6
4
5
2
9
6
2
132 137 142 147 152
1
157 162 167 172
脉搏(次/分)
练一练
(2)根据频数分布表、频数分布直方图,你能获得哪些信息?
解:(2)频数分布表、频数分布直方图清楚地显示了各组数据的频数分布情况,反映
出各组数据频数之间的差别.
解: (1) 体重在49.5kg~54.5kg范围内的人数最多;
(2) 体重超过 59.5 kg的学生占全班学生的17.5%.
练一练
2.为了调查某市噪声污染情况,该市环保局抽样调查了40个噪声测量点的噪声声
级,结果如下(每组含起点值,不含终点值):
(1)在噪声最高的测量点,其噪声声级在哪个范围?
(2)噪声声级低于65 dB的测量点有多少个?
苏科版 八年级(下册)
7.4 频数分布表和频数分布直方图
学习目标
1. 了解频数分布的意义,会列出频数分布表、绘制频数分布
直方图;
2. 能根据统计结果做出合理的判断和预测,在解决实际问题的
过程中,体会统计对决策的作用.
新知探究
某校为了解八年级学生身高的范围和整体分布情况,抽样调查了
八年级50名学生的身高,结果如下(单位:cm):
50<n≤100时,分为8~12组.
(2)分点的两种确定方法:
①数据不落在分点上:若数据均为整数,则取某一分组区间的最小值减去0.5作
为该分组区间的左分点数据;若数据是保留小数点后一位的数,则取某一分组区间

解读频数分布表和频数分布直方图

解读频数分布表和频数分布直方图

解读频数分布表和频数分布直方图频数分布表和频数分布直方图是两种常见的统计表现形式,在实际问题中应用非常广泛.为帮助同学们更好地任何认识这两种统计方式,现从以下几个方面加以分析,供参考.一、正确理解频数的概念频数是记录数据时某个对象出现的次数,它能反映每个对象出现的频繁程度.二、作频数分布表和频数分布直方图的一般步骤在整理和描述数据时,往往把数据按照范围进行分组.先用频数分布表整理数据,然后用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.画频数分布直方图的一般步骤如下:1.计算出数据中最大值与最小值的差;2.确定组距与组数,100个以内数据一般分为5~12组;3.决定分点,常使分点比所统计数据多一位小数,并且把第一组的起点稍微减少一点;4.列频数分布表,用唱票法对数据进行频数累计;5.建立平面直角坐标系,用横轴表示数据范围,纵轴表示频数,画出频数分布直方图,这样画出的长方形的高就代表频数,各小组的频数之和等于数据总数.如果取直方图中每一个长方形上边的中点,然后在横轴上直方图的左右两边取两个频数为0的点,它们分别与直方图左右相距半个组距,将这些点用线段依次连接起来,就得到频数分布折线图.频数分布折线图可以更好地刻画数据的总体规律.三、画频数分布直方图的注意事项1.分组时,不能出现数据中同一数据在两个组的情况,为了避免出现这种情况,通常在分组时,每组两端的两个数据要比题中数据单位多一位,比如题中所给数据都是整数,分组时加或减0.5即可.2.组距和组数的确定没有固定的标准,这要凭借经验和研究的具体问题来决定.通常数据越多,分的组也越多,当数据在100个以内时,根据数据的多少通常分成5~12组.例 2008年5月12日,四川汶川发生里氏8.0级特大地震,举国震惊.一方有难,八方支援,某学校开展了向灾区“希望小学”捐赠图书的活动.全校1200名学生每人都捐赠了一定数量的图书.已知各年级人数比例的扇形统计图如图1所示.学校为了了解各年级捐赠情况,从各年级中随机抽查了部分学生,进行了捐赠情况的统计调查,绘制成图2所示的频数分布直方图.根据以上信息解答下列问题:(1)从图2中我们可以看出人均捐赠图书最多的是 .(2)九年级约捐赠图书多少册?(3)全校大约共捐赠图书多少册?图 2九年级八年级 七年级年级人数捐赠数/册654.5图 1 九年级35%八年级 30%七年级35%解析:(1)从统计图中可以看出,人均捐赠图书最多的是八年级.(2)九年级的学生有1200×35%=420(人),估计九年级共捐赠图书420×5=2100(册).(3)七年级的学生有1200×35%= 420(人),估计七年级共捐赠图书420×4.5=1890(册).八年级的学生有1200×30%=360(人),估计八年级共捐赠图书360×6=2160(册).全校大约共捐赠图书1890+2160+2100=6150(册).。

专题7-7 频数分布表和频数分布直方图(知识讲解)-八

专题7-7 频数分布表和频数分布直方图(知识讲解)-八

专题7.7 频数分布表和频数分布直方图(知识讲解)【知识回顾】频数:一般我们称落在不同小组中的数据个数为该组的频数。

频率:一般我们称落在不同小组中的数据个数为该组的频数。

【学习目标】1. 会正确列出一组数据的制作频数分布表,并据此绘制频数分布直方图;2. 理解频数分布直方图的意义和作用.【要点梳理】要点一、组距与频数分布表的概念1.组距:每个小组的两个端点之间的距离(组内数据的取值范围).2.频数分布表:把各个类别及其对应的频数用表格的形式表示出来,所得表格就是频数分布表.1. 频数分布直方图的画法制作频数分布直方图的一般步骤是:(1)找出所给数据中的最大值和最小值,确定统计量的范围;(2)确定组数和组距(每组两个端点之间的距离叫组距)进行分组. 数据个数在 100 以内,一般分 5 到 12 组. 为了使每个数据都落在相应的组内,可以把第一组的起点略微减小一点;(3)统计每组中数据出现的次数(这个次数被称为频数);(4)根据分组和频数,绘制频数分布直方图用小长方形的高直接表示频数的分布.2.直方图和条形图的联系与区别:(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;(2)区别:由于分组数据具有连续性,直方图中各矩形之间通常是连续排列,中间没有空隙,而条形图中各矩形是分开排列,中间有一定的间隔;直方图是用面积表示各组频数的多少,而条形图是用矩形的高表示频数.要点二、频数分布折线图频数分布折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:①取直方图中每一个长方形上边的中点;②再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);③再将这些点用线段依次连接起来,得到了频数分布折线图.【典型例题】类型一、组距、频数与频数分布表的概念1.(2020·百色市·)市某视力健康管理中心对全市初中生的视力情况进行了一次抽样调查,如图是利用调查所得数据绘制的频数直方图,则这组数据的组数与组距分别是()A.4和0.20B.4和0.30C.5和0.20D.5和0.30【答案】D【分析】根据把所有数据分成若干组,分成的组的个数称为组数,每个小组的两个端点之间的距离称为组距,看图即可.解:观察图形可得:有五组数据,因此组数为5;组距=4.25 3.95=0.30故答案选D【总结升华】本题主要考查了频数分布直方图组数与组距的概念,熟悉理解频数直方图的概念是解题的关键.举一反三:【变式1】(2020·山东烟台市·期末)如图,这组数据的组数与组距分别为()A.5,9 B.6,9 C.5,10D.6,10【答案】D解:频率分布直方图中共有6个直条,故组数是6,每组的最大值和最小值的差都是10,因此组距是10,故选:D.【总结升华】考查频率分布直方图的制作方法,明确组距、组数的意义是绘制频率分布直方图的两个基本的步骤.【变式2】(2020·北京人大附中八年级期末)2016年4月30日至5月2日,河北省共接待游客1708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是()A.小王随机抽取了100名员工B.在频数分布表中,组距是2000,组数是5组C.个人旅游年消费金额在6000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4000元以下(包括4000元)的共有37人【答案】C解:A、小王随机抽取了12+25+31+22+10=100人,故正确;B、观察统计表发现频数分布表中,组距是2000,组数是5组,故正确;C、个人旅游消费金额在6000元以上的人数占随机抽取人数的2210100%32% 100+⨯=,故错误;D、在随机抽取的员工中,个人旅游年消费金额在4000元以下的共有25+12=37人,故正确;故选:C.【总结升华】本题考查了频数分布表的知识,解题的关键是能够仔细读表并从中进一步整理出解题的有关信息,难度不大.类型二、频数分布表或直方图2.随着车辆的增加,交通违规的现象越来越严重.交警对某雷达测速区监测到的一组汽车的时速数据进行整理,得到其频数及频率如表注:30~40为时速大于30千米而小于40千米,其他类同.(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】(1)第二行0.18,第三行78,第四行0.28;(2)见解析;(3)76【分析】(1)根据频数÷总数=频率进行计算即可;(2)结合(1)中的数据补全图形即可;(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.(1)解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;故第二行0.18,第三行78,第四行0.28(2)如图所示(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.【总结升华】本题考查了读频数分布直方图的能力和看频数分布表的能力;利用频数分布表获取信息时,必须认真仔细,才能作出正确的判断和解决问题.举一反三:【变式1】某校数学活动小组对经过某路段的小型汽车每车乘坐人数(含驾驶员)进行了随机调查,根据每车乘坐人数分为五类,每车乘坐1人、2人、3人、4人、5人分别记为、、、、.A B C D E由调查所得数据绘制了如下的不完整的统计图表,请根据图中信息,解答下列问题:小型汽车每车乘坐人数统计表(1)求本次调查的小型汽车数量.(2)求mn 、的值. (3)补全条形统计图.解:(1)320.2160÷=(辆),所以本次调查的小型汽车数量为160辆;(2)481600.3m =÷=,1(0.30.350.20.05)0.1n =-+++=;(3)B 类小汽车的数量为1600.3556,D ⨯=类小汽车的数量为1600.116⨯=.补全条形统计图如下:.【总结升华】本题考查了条形统计图和频率分布表,从条形统计图和频率分布表中获取所需信息是解答本题的关键.类型三、频数分布折线图3.抽样检查40个工件的长度,收集到如下一组数据(单位:cm):23.26 23.27 23.52 23.51 23.43 23.42 23.54 23.55 23.6623.67 23.31 23.30 23.27 23.28 23.41 23.40 23.55 23.5623.44 23.43 23.38 23.39 23.63 23.64 23.54 23.56 23.4623.44 23.48 23.46 23.50 23.53 23.55 23.46 23.44 23.4523.47 23.49 23.50 23.46试列出这组数据的频数分布表.画出频数分布直方图和频数折线圈.【分析】利用频数分布直方图画频数折线图时,折线图的两个端点要与横轴相交,其方法是在直方图的左右两边各延伸一个假想组,并将频数折线两端连接到轴两端假想组的组中点,就形成了频数折线图.【答案与解析】解:列频数分布表如下:根据上表,画出频数分布直方图;连接各小长方形上面一条边的中点及横轴上距直方图左右相距半个组距的两个频数为0的点得到频数折线图(如图所示).【总结升华】本例分组采用了“每组端点比数据多一位小数”,即第一组的起点比数据的最小值再小一点的方法.体会这种分组方法的优势,对我们今后的学习很有帮助.类型四、综合应用4.为庆祝中华人民共和国成立70周年,郑州市某校组织八年级学生进行“方阵表演”.为了整齐划一,需了解学生的身高,现随机抽取该校八年级学生进行抽样调查,根据所得数据绘制出如下统计图表根据图表提供的信息,回答下列问题:(1)这次抽样调查,一共抽取学生_________人;(2)扇形统计图中,扇形E 的圆心角度数是_________;(3)请补全频数分布直方图;(4)已知该校八年级共有学生400人,请估计身高在160170x ≤<的学生约有多少人?【答案】(1)40;(2)54︒;(3)见解析;(4)估计身高在160170x ≤<的学生约有80人【分析】(1)用A 组人数×其所占的百分数即可得到结论;(2)利用360︒乘以对应的比例即可求解;(3)根据题意补全频数分布直方图即可;(4)利用总人数400乘以对应的比例.解:(1)这次抽样调查,一共抽取学生410%40÷=(人);(2)扇形统计图中,扇形E 的圆心角度数是63605440︒︒⨯=, 故答案为:40;54︒;(3)身高在165170x ≤<的人数为:4020%8⨯=人,补全频数分布直方图如图所示;(4)()40025%20%180⨯+=(人),答:估计身高在160170x ≤<的学生约有180人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】小明是一名健步走运动的爱好者,他用手机软件记录了他近期健步走的步数(单位:万步),绘制出如下的统计图①和统计图②,请根据相关信息,解答下列问题:(Ⅰ)本次记录的总天数为_____________,图①中m的值为______________;(Ⅱ)求小名近期健步走步数的平均数、众数和中位数;(Ⅲ)根据样本数据,若小明坚持健步走一年(记为365天),试估计步数为1.1万步的天数.解:(Ⅰ)2+5+7+8+3=25,100-32-28-20-8=12;(Ⅱ)∵=1.02 1.15 1.27 1.38 1.431.2225783⨯+⨯+⨯+⨯+⨯=++++;∴这组数据的平均数为1.22万步;∵在这组数据中,1.3万步出现了8次,出现的次数最多;∴这组数据的众数为1.3万步;∵将这组数据按从小到大的顺序排列,其中处于中间的数是1.2万步; ∴这组数据的中位数为1.2万步;(Ⅲ)∵在统计的健步走的步数样本数据中,步数为1.1万约占20%; ∴估计365天中,步数为1.1万约占20%;365×20%=73;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学苏教版八年级下频数分布表和频数分
布直方图知识点
知识点
具体操作:
(1)计算最大值与最小值的差,确定统计范围;
(2)决定组数与组距;
1.数据越多,分组应越多.当数据在100个以内时,通常按照数据的多少分成5~12组.
2.在实际分组中,往往要有一个尝试的过程,最后选择一个比较合适的组数.
3.组距是指每个小组的两个端点之间的距离.实践中通常要求各组的组距相等;
4.为了保持组距相等,往往把最小值减小一点作为最左端的分点,把最大值加大一点作为最右端的分点;
(3)确定分点; 确定分点的方法有多种,通常为了使得每个数据都落在相应的组内,可取比数据多一位小数来分组;
(4)列频数分布表;把数据划记到相应的组中; 列表可采用唱票的方法进行频数累计.
(5)画频数分布直方图.注意:各个“条形”之间就
应该是连续的,不应该有间隔,当各组的组距相等时,所画的各个条形的宽度也应该是相同的;
课后练习
1.某校九年级一班对全班50名学生进行了“一周(按7天计算)做家务劳动所用时间(单位:小时)”的统计,其频率分布如下表:
一周做家务劳动所用时间(单位:小时)1.522.534
频率0.160.260.320.140.12
那么该班学生一周做家务劳动所用时间的平均数为
___________小时,中位数为___________小时.
答案:2.46 2.5
解析:平均数为
0.16×1.5+0.26×2+0.32×2.5+0.14×3+0.12×4=2.46,中位数应在第25、26个上,故都在2.5小时这个时间内.
2.八年级某班20名男同学一次投掷标枪测验成绩如下(单位:m):25,21,23,25,27,29,25,28,30,29,26,24,25,27,26,22,24,25,26,28.
根据以上数据,填写下面的频数分布表:
分组
20.5-22.522.5-24.524.5-26.526.5-28.528.5-30.5合计
划记下下
频数34
分析:为防止出错,应先划记再写频数.
解:
分组
20.5-22.522.5-24.524.5-26.526.5-28.528.5-30.5合计
划记正正正正
频数2384320
频数分布表和频数分布直方图知识点的全部内容就是这些,不知道大家是否已经都掌握了呢?预祝大家以更好的学习,取得优异的成绩。

相关文档
最新文档