第4课时:二次函数的图象与性质(4)教案
二次函数教案
作为一无名无私奉献的教育工作者,总不可避免地需要编写教案,教案是教学活动的依据,有着重要的地位。
那么大家知道正规的教案是怎么写的吗?下面是小编收集整理的二次函数教案,欢迎阅读参考!在教学工作者实际的教学活动中,常常要写一份优秀的教案,借助教案可以让教学工作更科学化。
优秀的教案都具备一些什么特点呢?下面是小编整理的二次函数数学教案,欢迎阅读,希望大家能够喜欢。
二次函数数学教案1通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知例题学习:P166例1、例2(略)在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结在教学工作者开展教学活动前,时常要开展教案准备工作,教案有助于学生理解并掌握系统的知识。
那么你有了解过教案吗?以下是小编收集整理的二次函数数学教案,欢迎阅读与收藏。
二次函数数学教案1在整个中学数学知识体系中,二次函数占据极其关键且重要的地位,二次函数不仅是中高考数学的重要考点,也是线性数学知识的基础。
那老师应该怎么教呢?今天,小编给大家带来初三数学二次函数教案教学方法。
初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)
初三下册数学教学计划:第6章第2节二次函数的图象和性质(4课时)一元复始,万象更新。
查字典数学网初中频道小编预备了九年级下册数学教学打算:第6章第2节二次函数的图象和性质(4课时)的相关内容,期望能够对大伙儿有关心。
教学目标【知识与技能】使学生明白得并把握函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系;会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标.【过程与方法】让学生经历函数y=a(x-h)2+k性质的探究过程,明白得并把握函数y=a(x -h)2+k的性质,培养学生观看、分析、推测、归纳并解决问题的能力.【情感、态度与价值观】渗透数形结合的数学思想,培养学生良好的学习适应.重点难点【重点】确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,明白得函数y=a(x-h) 2+k的性质.【难点】正确明白得函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质.教学过程一、问题引入1.函数y=x2+1的图象与函数y=x2的图象有什么关系?(函数y=x2+1的图象能够看成是将函数y=x2的图象向上平移一个单位得到的.)2.函数y=-(x+1)2的图象与函数y=-x2的图象有什么关系?(函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移一个单位得到的.)3.函数y=-(x+1)2-1的图象与函数y=-x2的图象有什么关系?函数y=-(x+ 1)2-1有哪些性质?(函数y=-(x+1)2-1的图象能够看作是将函数y=-x2的图象向左平移一个单位,再向下平移一个单位得到的,开口向下,对称轴为直线x=-1,顶点坐标是(-1,-1).)二、新课教授问题1:你能画出函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象吗?师生活动:教师引导学生作图,巡视,指导.学生在直角坐标系中画出图形.教师对学生的作图情形作出评判,指正其错误,出示正确图形.解:(1)列表:xy=-x2y=-(x+1)2y=-(x+1)2-1-3--2-3-2-2---1-0-100--1--2-32-2--3--8-9(2)描点:用表格中各组对应值作为点的坐标,在平面直角坐标系中描点;(3)连线:用光滑曲线顺次连接各点,得到函数y=-x2,y=-(x+1)2,y=-(x+1)2-1的图象.问题2:观看图象,回答下列问题.函数开口方向对称轴顶点坐标y=-x2向下x=0(0,0)y=-(x+1)2向下x=-1(-1,0)y=-(x+1)2-1向下x=-1(-1,-1)问题3:从上表中,你能分别找到函数y=-(x+1)2-1,y=-(x+1)2与函数y=-x 2的图象之间的关系吗?师生活动:教师引导学生认真观看上述图象.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.函数y=-(x+1)2-1的图象能够看成是将函数y=-(x+1)2的图象向下平移1个单位得到的.函数y=-(x+1)2的图象能够看成是将函数y=-x2的图象向左平移1个单位得到的.故抛物线y=-(x+1)2-1是由抛物线y=-x2沿x轴向左平移1个单位长度得到抛物线y=-(x+1)2,再将抛物线y=-(x+1)2向下平移1个单位得到的.除了上述平移方法外,你还有其他的平移方法吗?师生活动:教师引导学生积极摸索,并适当提示.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.抛物线y=-(x+1)2-1是由抛物线y=-x2向下平移1个单位长度得到抛物线y=-x2-1,再将抛物线y=-x2-1向左平移1个单位得到的.问题4:你能发觉函数y=-(x+1)2-1有哪些性质吗?师生活动:教师组织学生讨论,互相交流.学生分组讨论,互相交流,让各组代表发言,达成共识.教师对学生回答错误的地点进行纠正,补充.当x-1时,函数值y随x的增大而增大;当x-1时,函数值y随x的增大而减小;当x=-1时,函数取得最大值,最大值y=-1.三、典型例题【例】要修建一个圆形喷水池,在水池中心竖直安装一根水管,在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1 m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?师生活动:教师组织学生讨论、交流,如何将文字语言转化为数学语言.学生积极摸索、解答.指名板演,教师讲评.解:如图(2)建立的直角坐标系中,点(1,3)是图中这段抛物线的顶点,因此可设这段抛物线对应的函数关系式是y=a(x-1)2+3(0≤x≤3).由这段抛物线通过点(3,0)可得0=a(3-1)2+3,解得a=-,因此y=-(x-1)2+3(0≤x≤3),当x=0时,y=2.25,也确实是说,水管的长应为2.25 m.四、巩固练习1.画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较.【答案】函数y=2(x-1)2的图象能够看成是将函数y=2x2的图象向右平移一个单位得到的,再将y=2(x-1)2的图象向下平移两个单位长度即得函数y =2(x-1)2-2的图象.2.说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出那个函数图象的开口方向、对称轴和顶点坐标.【答案】函数y=-(x-1)2+2的图象能够看成是将函数y=-x2的图象向右平移一个单位,再向上平移两个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2).五、课堂小结本节知识点如下:一样地,抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同,把抛物线y= ax2向上(或下)向左(或右)平移,能够得到抛物线y=a(x-h)2+k.平移的方向和距离要依照h、k的值来确定.抛物线y=a(x-h)2+k有如下特点:(1)当a0时,开口向上;当a0时,开口向下;(2)对称轴是x=h;(3)顶点坐标是(h,k).教学反思本节内容要紧研究二次函数y=a(x-h)2+k的图象及其性质.在前两节课的基础上我们清晰地认识到y=a(x-h)2+k与y=ax2有紧密的联系,我们只需对y=ax2的图象做适当的平移就能够得到y=a(x-h)2+k的图象.由y=ax2得到y =a(x-h)2+k有两种平移方法:方法一:y=ax2y=a(x-h)2y=a(x-h)2+k方法二:y=ax2y=ax2+k单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
关于二次函数的图像与性质的数学教案(9篇)
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
二次函数的图象和性质课教案
二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)
九年级数学北师大版初三下册--第二单元2.2 《二次函数的图象和性质(第四课时)》课件
负半轴上,所以不与x轴相交;函数y=
3 2
x2-1与y=
3 (x-1)2的二次项系数相同,所以抛物线的形状相同,
2
因为对称轴和顶点的位置不同,所以抛物线的位置不同;
抛物线y=
1 2
x
1 2
2
的顶点坐标为
1 2
,0
;抛物线y=
1 2
x+
1 2
2
的对称轴是直线x=-
1 2
.
总结
知2-讲
本题运用了性质判断法和数形结合思想,运用二 次函数的性质,画出图象进行判断.
y 1 (x 1)2 …
2
-2 -0.5
0 -0.5
-2 -4.5 -8 …
y 1 (x 1)2 … -8 -4.5 -2 -0.5 0 -0.5 -2 …
2
y
画出二次函数 y = - 1 ( x + 1)2
与
y= -
1(x-
2 1)2 的图像,
2
1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
知识点 1 二次函数y=a(x-h)2的图象
知1-导
议一议
二次函数y= 1 (x-1)2的图象与二次函数y= 1 x2
2
2
的图象有什么关系?
类似地,你能发现二次函数y= 1 (x+1)2的图象与
二次函数y=
1
2 (x-1)2的图象有什么关系吗?
2
知1-导
x … -3 -2 -1 0 1 2 3 …
的开口方向、对称
轴、顶点坐标、增减性和最值?
(2)抛物线
y= -
1(x2
1)2
北师大版九年级数学下册课件 2.2 第4课时 二次函数y=ax^2+bx+c的图象与性质
∴ 当x>-2时,y随x的增大而减小.
四、课堂小结
配方法
b 2 4ac b 2
y a( x )
2a
4a
y=ax2+bx+c(a ≠0)
(一般式)
(顶点式)
公式法
b 4ac b2
顶点: ( ,
)
2a
4a
b
对称轴: x
2a
五、当堂达标检测
议一议:二次函数y=ax2+bx+c的图象和性质是怎样的?
2
b
4
ac
b
)
二次函数y=ax2+bx+c的图象:顶点坐标(- ,
2a
4a
(a>0)
O
y
x b
2a
(a<0)
最大值
x
最小值
O
y x b
2a
x
二、自主合作,探究新知
知识要点
函数
开口方向
对称轴
二次函数y=ax2+bx+c的图象和性质
= + + (>0)
轴是直线=1,顶点坐标为(1,4).
(2) y=2x2-12x+8;
(2) y = 2x2-12x+8
= 2(x2-6x)+8
= 2(x2-6x+9-9)+8
= 2(x2-6x+9)-18+8
= 2(x-3)2-10
∴二次函数y=2x2-12x+8的对称轴
是直线=3,顶点坐标为(3,-10).
二、自主合作,探究新知
最全初三二次函数概念的图像与性质完整版.doc
龙文教育学科导学教师:学生:年级:日期: 星期: 时段:学情分析二次函数部分内容中考难度不大,所以本套教案注重于基础知识的准确掌握。
课题二次函数的图像与性质学习目标与考点分析学习目标:1、理解二次函数的概念;会识别最基本的二次函数并利用二次函数的概念求解析式中的未知数;2、熟练的画出各种抛物线的图像,根据解析式的变化判断图像的平移方法;3、熟练的选用合适的解析式利用待定系数法求解析式。
学习重点图像的平移;待定系数法求解析式学习方法讲练结合、师生讨论、启发引导学习内容与过程教学内容:知识回顾1.一般地,形如y=ax2 +bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数。
其中,x 是自变量,a,b,c分别是函数解析式的二次项系数,一次项系数和常数项.2.二次函数的解析式及其对称轴(1)二次函数解析式的一般式(通式):,它的顶点坐标为(,),对称轴为;(2)二次函数解析式的顶点式(通式):,顶点坐标为(,)对称轴是;(3)二次函数解析式的交点式:。
此时抛物线的对称轴为。
其中,(x1,0)(x2,0)是抛物线与X轴的交点坐标。
显然,与X轴没有交点的抛物线不能用此解析式表示的3.二次函数y=a(x-h) 2+k的图像和性质4.二次函数的平移问题5. 二次函数y=ax2 +bx+c中a,b,c的符号与图像性质的关系:6.抛物线y=ax2+bx+c与X轴的交点个数与一元二次方程的根的判别式△的符号之间的的关系二次函数的常规解法:一、若已知二次函数图象上的三个点的坐标或是x、y的对应数值时,可选用y=ax2+bx+c(a≠0)求解。
我们称y=ax2+bx+c(a≠0)为一般式(三点式)。
例:二次函数图象经过A(1,3)、B(-1,5)、C(2,-1)三点,求此二次函数的解析式。
说明:因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式。
所以将已知三点的坐标分别代入y=ax2+bx+c (a≠0)构成三元一次方程组,解方程组得a、b、c的值,即可求二次函数解析式。
人教版九年级数学上册教学案: 二次函数的图像和性质(学生版)
22.1 二次函数的图像和性质教学目标:1.熟练掌握二次函数的有关概念.2.熟练掌握二次函数y=ax2的性质和图象.3.掌握并灵活应用二次函数y=ax2+k,y=a(x-h)2,y=a(x-h)2+k的性质及图象.4.掌握并灵活应用二次函数y=ax2+bx+c的性质及其图象.5.能根据条件运用适当的方法确定二次函数解析式.教学重难点:图形和性质的应用,及两种形式的转化,解析式求解知识点一:二次函数的概念例题.下列函数中,二次函数是()A.y=﹣4x+5B.y=x(2x﹣3)C.y=(x+4)2﹣x2D.y=变式1.圆的面积公式S=πR2中,S与R之间的关系是()A.S是R的正比例函数B.S是R的一次函数C.S是R的二次函数D.以上答案都不对变式2.下列函数中,y关于x的二次函数的是()A.y=x3+2x2+3B.y=﹣C.y=x2+x D.y=mx2+x+1知识点二:二次函数y=ax2的性质和图象(1)二次函数y=ax2(a≠0)的图象的画法:①列表:先取原点(0,0),然后以原点为中心对称地选取x值,求出函数值,列表.②描点:在平面直角坐标系中描出表中的各点.③连线:用平滑的曲线按顺序连接各点.④在画抛物线时,取的点越密集,描出的图象就越精确,但取点多计算量就大,故一般在顶点的两侧各取三四个点即可.连线成图象时,要按自变量从小到大(或从大到小)的顺序用平滑的曲线连接起来.画抛物线y=ax2(a≠0)的图象时,还可以根据它的对称性,先用描点法描出抛物线的一侧,再利用对称性画另一侧.例题.下列图象中,是二次函数y=x2的图象的是()A.B.C.D.变式1.如图所示四个二次函数的图象中,分别对应的是①y=a1x2;①y=a2x2;①y=a3x2,则a1,a2,a3的大小关系是()A.a1>a2>a3B.a1>a3>a2C.a3>a2>a1D.a2>a1>a3变式2.下列图象中,当ab>0时,函数y=ax2与y=ax+b的图象是()A.B.C.D.知识点三:二次函数y=ax2+k的性质和图象例题.函数y=+1与y=的图象的不同之处是()A.对称轴B.开口方向C.顶点D.形状变式1.在直角坐标系中,函数y=3x与y=﹣x2+1的图象大致是()A.B.C.D.变式2.在同一坐标系中,一次函数y=ax+b与二次函数y=bx2+a的图象可能是()A.B.C.D.知识点四:二次函数y=a(x-h)2的性质及图象例题.与函数y=2(x﹣2)2形状相同的抛物线解析式是()变式1.在平面直角坐标系中,函数y=﹣x+1与y=﹣(x﹣1)2的图象大致是()A.B.C.D.变式2.同一坐标系中,抛物线y=(x﹣a)2与直线y=a+ax的图象可能是()A.B.C.D.变式3.函数y=a(x﹣1)2,y=ax+a的图象在同一坐标系的图象可能是()A.B.C.D.知识点五:二次函数y=a(x-h)2+k的性质及图象例题.抛物线y=﹣2(x﹣3)2+5的顶点坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)变式2.二次函数y=(x+1)2﹣2的图象大致是()A.B.C.D.知识点六:二次函数y =ax 2+bx +c 的性质及其图象个单位,再向上或向下平移||个单位得到的 例题.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x ﹣4)2﹣25C .y=(x+4)2+7D .y=(x+4)2﹣25变式1.将二次函数y=x 2+x ﹣1化为y=a (x+h )2+k 的形式是( )A .y=B .y=(x ﹣2)2﹣2C .y=(x+2)2﹣2D .y=(x ﹣2)2+2变式2.已知二次函数的图象(0≤x≤4)如图,关于该函数在所给自变量的取值范围内,下列说法正确的是()A .有最大值 2,有最小值﹣2.5B .有最大值 2,有最小值 1.5C .有最大值1.5,有最小值﹣2.5D .有最大值 2,无最小值变式3.二次函数y=ax 2+bx+c 的图象如图所示,则下列结论中错误的是( )4ac −b 24ab 2aA.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小变式4.当a≤x≤a+1时,函数y=x2﹣2x+1的最小值为1,则a的值为()A.﹣1B.2C.0或2D.﹣1或2变式5.二次函数y=2x2﹣8x+m满足以下条件:当﹣2<x<﹣1时,它的图象位于x轴的下方;当6<x<7时,它的图象位于x轴的上方,则m的值为()A.8B.﹣10C.﹣42D.﹣24知识点七:二次函数的系数与抛物线的特征之间的关系例题.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()A.b2<4ac B.ac>0C.2a﹣b=0D.a﹣b+c=0变式1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;①2a+b>0;①b2﹣4ac>0;①a﹣b+c>0,其中正确的个数是()A.1B.2C.3D.4变式2.已知二次函数y=ax2+bx+c的图象如图所示,OA=OC,则由抛物线的特征写出如下含有a、b、c三个字母的等式或不等式:①=﹣1;①ac+b+1=0;①abc>0;①a﹣b+c>0.其中正确的个数是()A.4个B.3个C.2个D.1个变式3.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;①2a﹣b<0;①b2>(a+c)2;①点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个变式4.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,①b2>4,①0<a+b+c<2,①0<b<1,①当x>﹣1时,y>0.其中正确结论的个数是()A.2个B.3个C.4个D.5个变式5.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①b2﹣4ac>0;①4a﹣2b+c<0;①3b+2c<0;①m(am+b)<a﹣b(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个知识点八:用待定系数法确定二次函数的解析式例题.已知抛物线y=ax2+bx+c经过点A(1,0),B(﹣1,0),C(0,﹣2).求此抛物线的函数解析式和顶点坐标.变式1.已知二次函数的顶点坐标为(1,4),且其图象经过点(﹣2,﹣5),求此二次函数的解析式.变式2.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的表达式;(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求①ABC的面积.变式3.二次函数y=2x2+bx+c的图象经过点(2,1),(0,1).(1)求该二次函数的表达式及函数图象的顶点坐标和对称轴;(2)若点P(3+a2,y1),Q(4+a2,y2)在抛物线上,试判断y1与y2的大小.(写出判断的理由)变式4.已知一个二次函数的图象经过A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四点,求这个函数解析式以及点C的坐标.变式5.已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.拓展点一:二次函数的概念求字母系数的值例题.若函数y=(m+1)x是二次函数,求m的值.变式1.已知函数y=(m2+m)x.(1)当函数是二次函数时,求m的值;(2)当函数是一次函数时,求m的值.变式2.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?拓展点二:二次函数的图像问题例题.画函数y=的图象.变式1.使用五点法画出二次函数y=x2﹣2x﹣3的图象.变式2.下表给出一个二次函数的一些取值情况:x…01234…y…30﹣103…(1)请在直角坐标系中画出这个二次函数的图象;(2)根据图象说明:当x取何值时,y的值大于0?变式3.某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x…﹣3﹣﹣2﹣10123…y…3m﹣10﹣103…其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)观察函数图象,写出两条函数的性质.(4)进一步探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;①方程x2﹣2|x|=2有个实数根;①关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.拓展点三:二次函数的性质的应用例题.二次函数y=ax2+bx+c的图象如图所示,则下列结论中错误的是()A.函数有最小值B.c<0C.当﹣1<x<2时,y>0D.当x<时,y随x的增大而减小变式1.在平面直角坐标系中,已知抛物线与直线的图象如图所示,则下列说法:①当0<x<2时,y1>y2;①y1随x的增大而增大的取值范围是x<2;①使得y2大于4的x值不存在;①若y1=2,则x=2﹣或x=1.其中正确的有()A.1个B.2个C.3个D.4个变式2.已知函数图象如图所示,根据图象可得:(1)抛物线顶点坐标;(2)对称轴为;(3)当x=时,y有最大值是;(4)当时,y随着x得增大而增大.(5)当时,y>0.变式3.(1)已知二次函数y1=﹣(x+1)2+4的图象如图所示,请在同一坐标系中画出二次函数y1=﹣(x﹣2)2+1的图象.(2)平行于x轴的直线y=k在抛物线y2=﹣(x﹣2)2+1上截得线段AB=4,求抛物线y2=﹣(x﹣2)2+1的顶点到线段AB的距离.(3)当﹣1<x<2时,利用函数图象比较y1与y2的大小.拓展点四:二次函数图像的平移问题例题.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度变式1.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3变式2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3变式3.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.拓展点五:确定二次函数的解析式例题.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是()A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度变式1.将抛物线y=﹣5x2+1向左平移1个单位长度,再向下平移2个单位长度,所得到的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣5(x﹣1)2﹣1C.y=﹣5(x+1)2+3D.y=﹣5(x﹣1)2+3变式2.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5B.y=(x﹣4)2+5C.y=(x﹣8)2+3D.y=(x﹣4)2+3变式3.将抛物线y=(x+m)2向右平移2个单位后,对称轴是y轴,那么m的值是.易错点一:用配方法求抛物线的顶点坐标时易与用配方法解一元二次方程混淆例题.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7B.y=(x﹣4)2﹣25C.y=(x+4)2+7D.y=(x+4)2﹣25变式1.将二次函数y=x2+x﹣1化为y=a(x+h)2+k的形式是()A.y=B.y=(x﹣2)2﹣2C.y=(x+2)2﹣2D.y=(x﹣2)2+2变式2.解方程:(1)x2﹣2x﹣4=0(2)用配方法解方程:2x2+1=3x。
九年级下册《二次函数的图像与性质》数学教案
九年级下册《二次函数的图像与性质》数学教案标题:九年级下册《二次函数的图像与性质》数学教案
一、教学目标
1. 知识目标:理解并掌握二次函数的概念、图像及其性质。
2. 技能目标:能够通过描点法绘制二次函数图像,通过观察图像判断函数的性质。
3. 情感态度价值观目标:培养学生分析问题、解决问题的能力,提高他们对数学的兴趣。
二、教学重难点
1. 教学重点:理解和掌握二次函数的图像和性质。
2. 教学难点:通过图像理解和应用二次函数的性质。
三、教学方法
采用启发式教学法、讲授法和实践操作法相结合的方式进行教学。
四、教学过程
1. 导入新课:通过复习一次函数的知识,引导学生思考如何将一次函数推广到二次函数,激发学生的学习兴趣。
2. 新课讲解:
(1) 二次函数的概念和表达式;
(2) 二次函数的图像:a>0, a=0, a<0三种情况下的图像特征;
(3) 二次函数的性质:顶点坐标、对称轴、开口方向等。
3. 实践操作:让学生分组合作,通过描点法绘制不同类型的二次函数图像,并讨论其性质。
4. 总结反馈:教师总结本节课的主要内容,对学生的表现进行反馈。
五、作业布置
设计一些习题,包括画图题和计算题,以帮助学生巩固所学知识。
六、教学反思
在教学结束后,反思本节课的教学效果,找出存在的问题,以便改进。
二次函数的图像和性质 优秀教学设计(教案)
26.2 二次函数y=a(x-h)2的图象和性质
一、教学目标:
知识与技能
使学生能利用描点法画出二次函数y=a(x—h)2的图象,通过
“探究----感悟----总结——练习”,采用探究、讨论等方法进行归
纳总结得出函数性质。
过程与方法
通过类比二次函数y=ax2、y=ax2+k的图像,让学生经历探究函
数y=a(x-h)2的性质的过程,体现类比的数学思想方法。
情感态度与价值观
在证明过程中培养学生良好的学习、思维习惯,以及不畏困难的
钻研精神
二、教学重难点:
重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次
函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次
函数y=ax2的图象的关系是教学的重点。
难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x
-h)2的图象与二次函数y=ax2的图象的相互关系也是教学的难点。
三、教学过程:
(一)、复习导入
1、二次函数y=ax
2、y=ax2+k图象是什么?(1)分别说出它们的
对称轴、开口方向和顶点坐标以及增减性。
(2)说出它们所具有的公
共性质。
的图象有什么联系和区别?
2.你能说出函数y=a(x-h)2图象的性质吗?
3.谈谈本节课的收获和体会。
七:板书:
函数y=a(x-h)2的图象和性质
1、复习引入
2、探究新知(得出函数的图像和性质)
3、例题讲解(1)、(2)
4、课堂练习
5、小结(1)(2)(3)
八、作业
1、教科书17页第5、7、8题
2、三导81页。
二次函数的图像与性质(教案)
二次函数的图像与性质(教案)教学目标:一. 知识与技能:1. 通过对二次函数性质习题的讲评,使学生熟练掌握二次函数的图像与性质2. 懂得从图像中获取有关的性质信息。
3. 使学生会通过图像求二次函数的解析式。
二. 过程与方法:通过数形结合理解二次函数的性质。
三. 情感态度与价值观:培养数形结合思想,体验函数具体解决现实问题的功能。
教学重点:如何在图像中获取有用的信息。
教学难点:性质的综合应用 教学过程:一. 引入:华罗庚说过:“数缺形时少直观,形少数时难入微”要真正的研究数学就应该数形结合,研究函数就是用数形结合的思想二次函数是函数问题中的主要内容,中考试题中年年考查,可以出简单题、中档题甚至于综合性难题,但实际上有相当一部分的题型都跟二次函数的图像与性质有关,本节课通过对我们做过的习题进行讲评,使同学们熟练掌握二次函数的图像与性质二.讲评: 一. 抛物线y=ax²+bx+c(a≠0)的性质: 1.图像位置一题.5. 在同一坐标系中,函数y=-x-1和y=x²+2x+1 的图像可能是()总结抛物线()20y ax bx c a =++≠的性质:b 同号 b=0 b 异号 0 040ac 40ac = 抛物线与40ac抛物线与A. C.24,24b ac b a a ⎛⎫-- ⎪⎝⎭ 决定顶点位置 0a 时,顶点纵坐标244ac b a-是二次函数的最小值。
0a 时,顶点纵坐标244ac b a-是二次函数的最大值。
242b b aca -±- 决定抛物线与x 轴交点的横坐标 当0y =时,即20ax bx c ++=,则抛物线与x轴的交点坐标为2244,0,,022b b ac b b ac a a ⎛⎫⎛⎫-+----⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【练习】已知反比例函数xy =的图像如下右图所示,则二次函数222k x kx y +-=的图像大致为( )【总结】灵活运用二次函数中24a b c b ac -、、、的性质在图像中解题,也就是根据抛物线确定二次函数解析式中字母系数的取值范围,很好地体现了数形结合的数学思想,这就需要大家对于二次函数的性质与图像要比较熟悉,并能在图像中从这些性质来思考解决问题的思路。
人教版九年级数学上册《二次函数的图象和性质(第4课时)》示范教学课件
-3
-2
-1
0
1
2
···
x
···
-2
-1
0
1
2
3
4
···
-2
2
-2
-4
4
-4
O
x
y
-6
x=-1
x=1
-2
2
-2
-4
4
-4
O
x
y
-6
函数
开口方向
对称轴
顶点
向下
(-1,0)
(1,0)
x=-1
x=1
x=-1
x=1
与抛物线 有什么关系?
-2
2
-2
-4
4
-4
O
x
y
-6
思考
解:先列表,然后描点,再分别画出它们的图象.
例 在同一直角坐标系中,画出二次函数 , 的图象,并分别指出它们的开口方向、对称轴和顶点坐标.
x
···
-4
-3
-2
-1
0
1
2
···
x
···
-2
-1
0
1
2
3
4
···
4
2
二次函数的图象和性质(第4课时)
二次函数
a 的取值
开口
顶点坐标
对称轴
增减性
最值
y=ax2+k (a≠0)
当 x=0 时,y最小值=0
当 x>0 时,y 随 x 的增大而增大;当 x<0 时,y 随 x 的增大而减小
当 x>0 时,y 随 x 的增大而减小;当 x<0 时,y 随 x 的增大而增大
二次函数 y=a(x-h)2(a≠0)的图象和性质
人教初中数学 《二次函数的图象和性质(第4课时)》教案 (公开课获奖)
22.1 二次函数的图象和性质教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22yx xy- (2)21-a (3)z 1 2.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用. 教学方法 探究归纳法. 教具准备师:多媒体课件、投影仪; 生:硬纸、剪刀. 教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形? [生]有的三角形是轴对称图形,有的三角形不是. [师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形. Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴.[师]你们说的是同一条直线吗?大家来动手折叠、观察.[生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕.(演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.D CA BD CABDC A BⅢ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和∠C 的度数.答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .D C ABEDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD . 又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习 五、课时小结 六、课后作业 备课资料 参考练习1.如果△ABC 是轴对称图形,则它的对称轴一定是( ) A .某一条边上的高 B .某一条边上的中线 C .平分一角和这个角对边的直线 D .某一个角的平分线 2.等腰三角形的一个外角是100°,它的顶角的度数是( ) A .80° B .20° C .80°和20° D .80°或50° 答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm ,并且它的周长为16 cm .求这个等腰三角形的边长.解:设三角形的底边长为x cm ,则其腰长为(x+2)cm ,根据题意,得 2(x+2)+x=16.解得x=4.E DC A B P所以,等腰三角形的三边长为4 cm 、6 cm 和6 cm .15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算. 重点难点1.重点:熟练地进行分式的混合运算. 2.难点:熟练地进行分式的混合运算. 3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面. 教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题. 二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同. 三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算:(1))1)(1(yx x y x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。
二次函数的图象和性质课教案
二次函数的图象和性质优质课教案第一章:引言1.1 二次函数的定义引导学生回顾一次函数的定义,引入二次函数的概念。
通过示例说明二次函数的一般形式:f(x) = ax^2 + bx + c,其中a、b、c为常数,a ≠0。
1.2 二次函数的图象解释二次函数图象的形状和特点,如开口方向、顶点等。
利用图形展示二次函数的图象,让学生观察并理解二次函数的图象与函数表达式之间的关系。
第二章:二次函数的顶点2.1 顶点的定义解释二次函数图象的顶点概念,即图象的最高点或最低点。
通过示例说明如何找到二次函数的顶点。
2.2 顶点的性质探讨顶点在二次函数图象中的重要性,如顶点是图象的对称中心。
利用图形和数学推导说明顶点的性质,如顶点的横坐标是-b/2a。
第三章:二次函数的开口3.1 开口方向的定义解释二次函数开口的概念,即函数图象向上或向下的弯曲形状。
通过示例说明如何确定二次函数的开口方向。
3.2 开口与a的关系探讨开口方向与二次函数系数a的关系,如a > 0时开口向上,a < 0时开口向下。
利用图形和数学推导说明开口与a的关系。
第四章:二次函数的增减性4.1 增减性的定义解释二次函数增减性的概念,即函数值随自变量增大或减小的变化趋势。
通过示例说明如何判断二次函数的增减性。
4.2 增减性与a的关系探讨增减性与二次函数系数a的关系,如a > 0时函数先增后减,a < 0时函数先减后增。
利用图形和数学推导说明增减性与a的关系。
第五章:二次函数的零点5.1 零点的定义解释二次函数零点的概念,即函数图象与x轴的交点。
通过示例说明如何找到二次函数的零点。
5.2 零点与判别式的关系探讨零点与二次函数判别式b^2 4ac的关系,如判别式大于0时有两个不相等的零点。
利用图形和数学推导说明零点与判别式的关系。
第六章:二次函数的方程6.1 方程的定义解释二次函数方程的概念,即通过设置f(x) = 0来表示二次函数的零点。
二次函数图像和性质教学设计(优秀3篇)
二次函数图像和性质教学设计(优秀3篇)《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。
2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。
【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。
【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。
【教学重点】二次函数的概念。
【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。
一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。
2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。
二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。
注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。
《二次函数》教案篇二教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。
重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
二次函数的图像及其性质教案
教学过程一、复习预习1. 常量、变量和函数在某一过程中可以取不同数值的量,叫做变量.在整个过程中保持统一数值的量或数,叫做常量或常数.一般地,设在变化过程中有两个互相关联的变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,那么就称y是x的函数,x叫做自变量.2. 函数的表示方法(1) 解析法(2) 列表法(3) 图像法3. 函数的图像若把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在直角坐标平面上描出一个点(x,f(x)),这些点构成一个图形F,这个图形F就是函数y=f(x)的图像.知道函数的解析式,要画函数的图像,一般分为列表,描点,连线三个步骤.4、正比例函数:一般地,函数y=kx(k是不等于零的常数)叫做正比例函数,其中常数k 叫做变量y与x之间的比例常数,确定了比例常数k,就可以确定一个正比例函数.正比例函数y=kx有下列性质:(1) 当k>0时,它的图像经过第一、三象限,y随着x的值增大而增大;当k<0时,他的图像经过第二、四象限,y随着x的增大而减小.(2)随着比例常数的绝对值的增加,函数图像渐渐离开x轴而接近于y轴,因此,比例系数k 和直线y=kx与x轴正方向所成的角有关据此,k叫做直线y=kx的斜率.二、知识讲解考点1 二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++(a b c,,是常数,0a≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的结构特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.考点2二次函数的基本形式及图像性质1. 二次函数基本形式:2y ax =(b 、c 为0 时)的性质: a 的绝对值越大,抛物线的开口越小。
二次函数的图象和性质—教学设计及点评
教学设计人教版·数学九年级上册第二十二章第一节《二次函数y=ax2+bx+c的图象和性质》宁夏石嘴山市八中陈慧二○一九年十月一、教学内容分析1、教材的地位与作用从教学内容分析:本节课是新人教版数学,九年级上册第二十二章二次函数第一节二次函数的图象和性质第四课时的内容,本节课在讨论了二次函数y=a(x-h)2+k 的图象和性质的基础上对二次函数y=ax2+bx+c(a≠0)的图象和性质进行研究。
主要的研究方法是通过配方将y=ax2+bx+c向y=a(x-h)2+k转化,体会知识之间的内在联系。
本节课的学习也为后续研究二次函数与一元二次方程关系,以及用二次函数解决实际问题提供知识基础。
同时,二次函数是初高中衔接的重要知识,对高中学习函数有很大的帮助。
因此,二次函数图象和性质的学习在本章当中起着承上启下的作用。
从教材的编写和意图分析:《数学课程标准2011版》第30页明确提出:“会用描点法画出二次函数的图象,通过图象了解二次函数的性质”“会用配方法将数字系数的二次函数的表达式化为y=a(x-h)2+k的形式,并能由此得到二次函数图象的顶点坐标,说出图象的开口方向,画出图象的对称轴,并能解决简单实际问题;”二、教学目标结合学生认知基础以及教学内容特点,依据《数学课程标准2011版》确立本节课的教学目标为:(1)将二次函数y=ax2+bx+c(a≠0)转化为y=a(x-h)2+k的形式并借助它来研究函数的图象和性质。
(2)经历探索二次函数y=ax2+bx+c(a≠0)的图象与性质,并理解相关性质。
(3)在探索二次函数y=ax2+bx+c的图象和性质的过程中,感悟二次函数y=ax2+bx+c 与y=a(x-h)2+k的内在联系,体验利用抛物线的对称轴画抛物线的方法,感受数学的对称美.结合以上目标,我确定本节课的教学重点:经历探索二次函数y=ax2+bx+c(a≠0)的图象与性质,并理解相关性质。
在教学中,利用“洋葱数学”“几何画板”“云校家软件”“教学助手”“智能手机”等多媒体工具辅助,让学生通过思考,动手操作探究新知,突破教学重点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2
3
4
…
…
-4.5
-2
-0.5
0
-0.5
-2
-4.5
-8
-124.5
-2
-0.5
0
-0.5
-2
-4.5
…
⑵、描点(先取顶点坐标,再利用对称性描点)
⑶、连线(图象略)
观察图象,提问:
1、求出这两个函数的图象的开口方向、对称轴和顶点坐标;
①抛物线 开口向下,对称轴为 ,顶点坐标为(-1,0);
二次函数y=a(x-h)2的图象与性质
教学目的:1、使学生能利用描点法正确作出函数y=a(x-h)2的图象。2、让学生经历二次函数y=a(x-h)2性质探究的过程,理解二次函数y=a(x-h)2的性质及它与函数y=ax2的关系.
重点、难点:重点是会用描点法画出二次函数y=a(x-h)2的图象,理解它的性质,理解函数y=a(x-h)2与函数y=ax2的相互关系;难点是正确理解二次函数y=a(x-h)2的性质,理解抛物线的左右平移法则.
课外作业:p17第5题(2)
补充:抛物线 向上平移4个单位后的关系式是,再向右平移7个单位后的关系式是
课后记:
解析式
列表
x
…
…
…
…
x
…
…
…
…
图
象
开口方向
对称轴
顶点
坐标
平移规律
函数 的图象是由函数 的图象向平移个单位得到的.
函数 的图象是由函数 的图象向平移个单位得到的.
最值
当x=时,函数y有最
值等于
当x=时,函数y有最
值等于
增减性
当x时,函数y随x的增大而;当x时,,函数y随x的增大而.
当x时,函数y随x的增大而;当x时,函数y随x的增大而.
课型、教法:新授课、讲授法.
教学过程
8
12
12
3
7
复习:
1、填表
函数
开口
对称轴
顶点(最值)
①当 时,开口向上;当 时,开口向下.
②│ │越大,抛物线的开口就越小
y轴
(或x=0)
原点
(0,0)
y轴
(或x=0)
(0,k)
(h,0)
2、对于抛物线y=-2x2+3的图象:
⑴、图象的开口向_____,顶点坐标是_____;
⑷、这两个函数的图象与抛物线 有什么联系?
①抛物线 是抛物线 向左平移1个单位得到的;
②抛物线 是抛物线 向右平移1个单位得到的.
练习:p12
归纳:
1、填写完整上表;
2、抛物线的左右平移:左“+”右“-”.
例2、抛物线 向左平移5个单位后的关系式是,再向下平移2个单位后的关系式是.
3
小结:1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=a(x-h)2具有哪些性质?
②抛物线 开口向下,对称轴为 ,顶点坐标为(1,0).
2、当x为何值时,函数y的最值是多少?
①二次函数 :当 时, ;
②二次函数 :当 时, .
3、找出这两个函数中y随x的变化情况;
①二次函数 :当 时,函数y随x的增大而增大;当 时,函数y随x的增大而减小.
②二次函数 :当 时,函数y随x的增大而增大;当 时,函数y随x的增大而减小.
⑵、图象的对称轴是______;当x<0时,y随x的增大而______;当x>0时,y随x的增大而______;
⑶、当x=0时,函数y有最______值,其最______值等于______
新授:
例1、在同一直角坐标系中,画出二次函数 和 的图象.
解:⑴、列表(注意表格中y的值的规律)
…
-4
-3
-2
-1