9.3.1 一元一次不等式组的解法(公开课)--

合集下载

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)

人教版数学七年级下册9.3《一元一次不等式组》课件(共27张PPT)
新课引入 展示目标 精讲精练 归纳小结 强化训练
问题
设一个苹果的质量为x克,每个桔子和梨 的质量分别为50克和100克.
.
.
如图,苹果的质量x的范围是什么?
X >100+50
X <100+100
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
7、变式训练
-11≤3x-2<7 解:-11+2≤3x<7+2
-9≤3x<9 -3≤x<3
-11≤-3x-2<7 解:-11+2≤-3x<7+2
-9≤-3x<9 3≥x>-3 -3<x≤3
四、归纳小结
1、几个不等式的解集的 公共部分,叫做 由它们所组成的不等式组的解集。
2、用数轴来表示一元一次不等式组的解 集,可分为四种情况. (1) 同__大_取__大____(2) 同__小__取_小______ (3)大_小__小_大__中_间__找(4)大_大__小__小_取__无_解_
2a 7 3a 3
1 0
(是)
3 x 4 2x
(5) 5x 3 4x 1 (是)
7 2x 6 3x
x>100+50 你能求出不等式组 x<100+100 的解集吗?
在数轴上表示这两个不等式的解集
0
150 200
不等式组的解集为: 150<x<200
一般地,不等式组中的各个不等式的解集的 公共部分,叫做这个不等式组的解集.
求不等式组的解集的过程叫做解不等式组.

9.3(1) 一元一次不等式组

9.3(1) 一元一次不等式组
不等式组
x 1 x 2
数轴表示
解集(即公共部分)
-1
0
1
2
3
1 x 2
x 1 x 2
-1
0
1
2
3
x 2
x 1 x 2
-1
0
1
2
3
x 1
无解
x 2 x 1
-1
0
1
2
3
你会了吗?试试看 例1:解下列不等式组
x2 x2
(一)概念
1. 由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组
2. 几个一元一次不等式的解集的公共部分,叫做由它们 所组成的一元一次不等式组的解集. 3. 求不等式组的解集的过程,叫做解不等式组.
(二)解简单一元一次不等式组的方法:
(1) 求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 即求出了不等式组的解集 (找不到公共部分则不等式组无解)

请举一些既满足不等式①又满足不等式② 的x的取值.
你能确定所有x的取值吗?
3 x5
探索与观察
3 x5
① ②
中x的取值范围与组成它的不等式① 、 ②的解集有什么联系?
x 3 运用数轴,探索不等式组 x 5
动手操作: 在同一数轴上分别表示出不等式① 、②的解集。
-2
-1
0
1
2
3
2 x 1 x 1 ⑴ x 8 4x 1
解: 解不等式①,得, 解不等式②,得, ① ②
x2 x3
2 x 3 x 11 ⑵ 2x 5 1 2 x 3
解: 解不等式①,得,x 解不等式②,得,

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

9.3一元一次不等式组(第3课时)课件人教版数学七年级下册

解:(1)设小明答对了 x 道题,则答错或不答的题有(20-x)道, 列方程得 5x-3(20-x)=68,解得 x=16,∴小明答对了 16 道题.
(2)设小亮答对了 m 道题,则答错或不答的题有(20-m)道,列不 等式组得55mm--33((2200--mm))≥≤7900,,解得 1614≤m≤1834.
归纳新知

解用 决一

实元 际一

问次
题不

的等
步的 关系,找出题目中的不等关系. 设出合适的未知数.
根据题中的不等关系列出不等式组. 解不等式组,求出其解集.
检验所求出的不等式组的解集是否符合题意. 写出答案.
课堂练习 1.如果点P(2x+6,x-4)在平面直角坐标系的第四象限内,
列一元一次不等式组解决实际问题的步骤: (1)审:分析已知量、未知量及它们之间的关系,找出题 目中的不等关系; (2)设:设出合适的未知数; (3)列:根据题目中的不等关系,列出一元一次不等式组; (4)解:解不等式组(可以借助数轴也可以用“口诀”); (5)验:检验所求出的不等式组的解集是否符合题意及实际意义; (6)答:写出答案.
∵m 为正整数,∴小亮答对了 17 或 18 道题.
7.求不等式(2x-1)(x+3)>0的解集.
解:根据“同号两式相乘,积为正”,可得 ①2xx+-31>>00,,或②2xx+-31<<0.0, 解①得 x>12;解②得 x<-3. ∴不等式的解集为 x>21或 x<-3.
请你仿照上述方法解决下列问题: (1)求不等式(2x-3)(x+1)<0 的解集; (2)求不等式31xx+-21≥0 的解集.
巩固新知
3 一元一某次不等出式组租汽车公司计划购买 A 型和 B 型两种节能汽车,若购买 A 型

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
3 − 7 ≤ 8, ②
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1

2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1

2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】

第6套人教初中数学七下 9.3 一元一次不等式组(第2课时)课件 【经典初中数学课件】
m 的 取 值 范 围 为 ____m_≥_2________
m+1≤ 2m - 1
(2)若 不 等 式 组x x 3 m ( (1较较小大的 ))解 集 为 x>3,
m 2 则 m 的 取 值 范 围 为 _______________
3m1
课堂小结:
1. 由几个一元一次不等式所组成的不等式组
( 2x-6) <3-x ① 例 : 求 不 等 式 组 2x315x511的 ②正 整 数 解 。
解:解不等式①得:x<5 解不等式②得:x≥1.4
∴原不等式组的解集为1.4≤x<5
∵满足1.4≤x<5的正整数为:2、3、4
∴原不等式组的正整数解:2、3、4
随堂练习
(1)若 不 等 式 组x x m 2m (1 (1较较小大)无 ) 解 , 则
2、在同一平面内,两条直线的位置关系 只有‗‗‗相‗‗交‗‗‗和‗‗平‗‗行‗‗‗‗两种情况.
3、两条直线相交(不重合),交点的个 数是 1 个;两条直线平行,交点 的个数 0 个.
三、研读课文
知平
识行
点 一
线 的


练一练
1.下列说法中,正确的是( C ).
A.若两直线不相交则平行
B.若两直线不平行则相交
里积存的污水,估计积存的污水超过 1200t而不足1500t,那么将污水抽完所用 时间的范围是什么?
设用x min将污水抽完,则x同时满 足不等式
30x>1200
30x<1500
像这样由几个同一未知数的一元一次不等 式所组成的不等式组叫做一元一次不等式组.
记作. x>2 x<3
30x>1200 30x<1500

《一元一次不等式组的解法》PPT

《一元一次不等式组的解法》PPT

推论法实例
通过思考问题、总结经验和按照 经验解题,我们将找到一元一次 不等式组的解集。
检验题
选择题
通过选择题的方式检验你对一 元一次不等式组解法的理解。
计算题
通过计算题的方式巩固你的解 法技巧。
解答题
通过解答题的方式进一步运用 你的解题能力。
数学思维:从解题到应用
提高解题能力
学习一元一次不等式组的解法,提高你的解题能力, 培养数学思维。
1. 求出各个不等式的解析式。 2. 对解析式进行分类讨论。 3. 求出不等式考问题:仔细思考问题的条件和要求。 2. 总结经验:总结类似问题的解法经验。 3. 按照经验解题:根据经验解决问题。
一元一次不等式组的解法选择
适合图像法的情况
当不等式组的不等式比较简单 且数量较少时,图像法是一个 快速且直观的解法选择。
1
图像法
通过绘制不等式的图像来确定交点,从而获得解集。
2
代数法
通过求解不等式的解析式,对解进行分类讨论,从而获得解集。
3
推论法
通过思考问题,总结经验,并按照经验解题,从而获得解集。
图像法的具体步骤
1. 画图:绘制不等式的图像。 2. 判断交点:确定图像的交点。 3. 说明解集:给出交点的解集。
代数法的具体步骤
提高应用能力
了解一元一次不等式组的应用场景,提高你的应用 能力,解决实际问题。
总结
一元一次不等式组解法回顾
通过本PPT,你已经了解了一元一次不等式组的三种解法:图像法、代数法和推论法。
解题技巧总结
掌握了各种解法的具体步骤和选择条件,你能更好地解决一元一次不等式组问题。
知识拓展
继续学习数学知识,拓展你的数学思维和解题能力。

9.3一元一次不等式组的解法(第一课时)

9.3一元一次不等式组的解法(第一课时)
9.3 一元一次不 等式组的解法
铜陵市义安区朱村中学 慈龙英
一、情境引入: 问题:用每分钟可抽30t的抽水机来抽污 水管道里积存的污水,估计积存的污水超 过1200t而不足1500t,那么将污水抽完所 用时间的范围是什么?
你能列出上面的不等式并将其解集在数 轴上表示出来吗?
情境问题: 用每分钟可抽30t的抽水机来抽污水管
2x 1

x

3

的解集在数
0(
)
五、强化训练
3解下列不等式组:
(1) x 1< 3 x ①

x

1>
3

(2) x 1>3 ①

x

1<3

4
x

解:(1)由①得X>-0.5 解:(2)由①得 X>4
由②得X>2
由②得X<0.4
o
o
0 0.5
2
不等式组的解集为x>2
不 组



x x

2 1

0 0
x 2 0

x

1

0
x 2 0

x

1

0
x 2 0

x

1

0
解集 无解 -1<X<2 X<-1 X>2
归纳:不等式组的解法是分开解, 借数轴,集中判。
变式训练,更上层楼:
解不等式组,并把解集表示在数轴上。
合作探究三:
具体分析如下:
用数轴来表示一元一次不等式组的解集,

9.3.1一元一次不等式组

9.3.1一元一次不等式组

例1. 求下列不等式组的解集:在同一数轴上表示出两个不等 式的解集,并写出不等式组的解集
x 3, (1) x 7. x 2, ( 2) x 3 . x 2, (3) x 5 . x 0, ( 4) x 4 .
解:原不等式组的解集为
3 x 7 8
小结
你有哪些收获?说出来,大家共同分享
你还有什么疑惑?提出来,我们一起讨

作业

第141页:2(1.4.5和2.3.6)、A:7题
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
9.3 一元一次不等式组(1)
学习目标
1、理解有关不等式组的概念。 2、会解由两个一元一次不等式组成的不等 式组。

解不等式的基本步骤
1、去分母 (不等式的性质二) 2、去括号 (乘法分配律) 3、移项 (不等式的性质一) 4、合并同类项 (整式加减性质) 5、化系数为1 (不等式性质二,三)
① ②
(1)分别解不等式组中的各个不等式 , (2)再求出这几个不等式解集的公共部分.
不等式组的解集情况:
选择题: x≥2, (1)不等式组 x 的解集是( D ) ≤2 A. x ≥2, B. x≤2, C. 无解,
x 0.5, (2)不等式组 的整数解是( x≤1
0

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

人教初中数学七下 9.3.2 一元一次不等式组课件 【经典初中数学课件】

分析:从跷跷板的两种状况可以得到的不等关系:
妈妈的体重+小宝的体重 <
爸爸的体重;
妈妈的体重+小宝的体重+6千克 > 爸爸的体重。
学习目标:1、会用一元一次不等式组解决实际问题
自学指导:阅读课本P139-134,例2 思考: 1、“不能完成任务”是什么意思 2、“提前完成任务”又是什么意思?
学习目标:1、会用一元一次不等式组解决实际问题
运用规律求下列不等式组的解集:
((((68(2571(3))4)))xx32xxxxxxxxxxx>>>><<<<><<><>>--37-20-5243-760.,4,-3,.4..1,4., .
学习目标:1、会用一元一次不等式组解决实际问题
1、若不等式组 x a 无解,求a的取值范围
2x -1 3
o
0
o
o
X
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (3) x<5
2 、若把以上(1)、(3)两个不等式合起来,这 个一元一次不等式组中x取值范围是多少呢?
o
o
X
X的取值范围是:2<X<5
二、学习目标
1
1、了解一元一次不等式组及其解 集的含义。
2 2、会利用数轴求一元一次不等 式组的解集。
我来说一说!
第九章 9.3 一元一次不等式组(1)
第7课时
一、新课引入
1、在数轴上表示下列不等式的解集: (1)x>2 (2) x<-2 (3) x<5 (4) x<-5
2、若把以上(1)、(2)两个不等式 合起来,这个一元一次不等式组中x取 值范围是多少呢?

导学案 9.3.1一元一次不等式组(2)

导学案 9.3.1一元一次不等式组(2)

姓名________________ 组别_________________ 评价__________________学习目标: 1.巩固解一元一次不等式组的过程。

2.总结解一元一次不等式组的步骤及情形。

3.理解与掌握一元一次不等式组的解集及其应用。

一、复习巩固解下列不等式并在数轴上表示它们的解集:1、⎩⎨⎧-<+->14212x x x x2、⎪⎪⎩⎪⎪⎨⎧-≤-->+814311532x x x x二、自主先学请同学们通过自学课本129页的例2,完成下列习题1、 34125x +-<≤的整数解为 2、若m<n ,则不等式组12x m x n >-⎧⎨<+⎩的解集是 3、已知不等式组2113x x m-⎧>⎪⎨⎪>⎩的解集为2x >,则( ).2.2.2.2Am B m C m D m ><=≤4、关于不等式组x m x m ≥⎧⎨≤⎩的解集是( ) A.任意的有理数 B.无解 C.x=m D.x= -m三、自学总结(1)⎩⎨⎧>>a x x 1的解集是1>x ,则a 的取值范围是______________. (2)⎩⎨⎧<<ax x 1的解集是1<x ,则a 的取值范围是______________.(3)⎩⎨⎧>>a x x 1的解集是1<<x a ,则a 的取值范围是______________. (4)⎩⎨⎧<>a x x 1无解,则a 的取值范围是______________.四、总结分享1、 对于今天的知识你总结出了一些什么结论?2、你还需要老师为你解决哪些问题?3、请你编写一道利用一元一次不等式组的解集的相关性质解决的问题,当然也可以是你在其它参考书上见到过的题目,并请你将这个题目的解答过程写出来。

五、牛刀小试内容见PPT 。

六、自学检测1、求同时满足不等式2116234132x x x x +--≥--<和的整数2、求出不等式组⎩⎨⎧≤-≥-873273x x 的解集中的正整数3、若不等式组⎩⎨⎧-<+<423a x a x 的解集是23+<a x ,求a 的取值范围六、总结提升1、已知不等式组⎩⎨⎧<->a x x 3, (1)若此不等式组无解,求a 的取值范围,并利用数轴说明。

9.3.1一元一次不等式组(第一课时)

9.3.1一元一次不等式组(第一课时)

铁冲中学七年级数学导学案制定人: 审核:课题 9.3.1一元一次不等式组(第一课时)学习目标 1、掌握一元一次不等式组的不同形式,理解不等式组的解集的涵义。

2、会利用数轴准确的确定一元一次不等式组的解集。

体会数形结合的思想 学习重点 1.理解不等式组的有关概念;2.会解一元一次不等式组,并在数轴上确定其解集 学习难点在数轴上找公共部分,确定不等式组的解集课堂流程 学法指导 教师点拨情境导入 目标点睛小熊重90千克,米老鼠重40千克,小熊的体重比米老鼠与小猪体重的和还重,却比三只小猪的重量小,小猪的体重可能是多小?合作探究 激情展示一区(一)一元一次不等式组的定义:巩固练习:下列各式哪些是一元一次不等式组,哪些不是,为什么?二区不等式组的解集你们会解这两个不等式吗?并把解集在同一坐标轴上表示出来 (1)X+40<90 (2)3X >90 三区1.不等式组的解集在数轴上表示如图,其解集是什么?四区2.求下列不等式组的解集(在同一数轴上表示出两个不等式的解集,并写出不等式组的解集): 五区例1解下列不等式组(求下列不等式组的非负整数解)2x-1>x-2 x+8>4x-1 六区1、解下列不等式组:不等式组数轴表示 解集 ⎩⎨⎧>>>).(,b a b x a x ⎩⎨⎧><<).(,b a b x a x⎩⎨⎧>><).(,b a b x a x⎩⎨⎧><>).(,b a b x a x我的收获⎩⎨⎧>>.7,3)1(x x ⎩⎨⎧->>.3,2)2(x x ⎩⎨⎧->->.5,2)3(x x ⎩⎨⎧->>.4,0)4(x x ⎩⎨⎧<<.7,3)5(x x ⎩⎨⎧-<-<.5,2)6(x x ⎩⎨⎧<-<.4,1)7(x x ⎩⎨⎧-<<.4,0)8(x x ⎩⎨⎧<>.7,3)9(x x ⎩⎨⎧->-<.5,2)10(x x ⎩⎨⎧<->.4,1)11(x x ⎩⎨⎧-><.4,0)12(x x ⎩⎨⎧><.7,3)13(x x ⎩⎨⎧-<->.5,2)14(x x ⎩⎨⎧>-<.4,1)15(x x ⎩⎨⎧-<>.4,0)16(x x 第一组 第二组 第三组 第四组⎩⎨⎧-<++>-148112x x x x (1) ⎩⎨⎧X>3X<6 4(x +5) >100 4(y -5)<68 (4)3x-5 >5x+1⎪⎩⎪⎨⎧-≥+≤->-.5.2,21,45)5(x x x x -1 2–2 –1 0 1 2–2 –1 0 1 2 –2 –1 0 1 2xx x x -<-++≥+213521132⎩⎨⎧+--+1121481x x x x ><)(⎩⎨⎧+-+1314352><)(x x ⎩⎨⎧++131257433><)(x x ⎪⎩⎪⎨⎧-<-++≥+)2(21352)1(1132)4(x x x x。

人教版数学七年级下册9.3 一元一次不等式组-课件

人教版数学七年级下册9.3 一元一次不等式组-课件

④ x< -1 x≥ 2
A x ≥ -1
A x< -1
A x ≥ -1
A x< -1
B x≥ 2
B x< 2
B x< 2
B
x≥ 2
C -1≤ x≤ 2
C -1< x< 2
C -1≤ x< 2
C -1< x≥ 2
D 无解
D 无解
D 无解
D 无解
2 x-
1
x,

2.
解不等式组:
1
x
< 3.

2
解: 解不等式①,得 x > 1 .
因此,原不等式组的解集为 20<x <22.
2x+y=5m+6 ① 7.已知方程组 x-2y=-17 ② 的解x,y的值都是正数,且x<y,求m的取值范围.
解:①×2+②得:5x=10m-5,得:x=2m-1.
①-②×2得:5y=5m+40,得:y=m+8.
又∵x,y的值都是正数,且x<y.
∴ 2m-1>0 m+8>0 2m-1<m+8
a x>b
b
同大取大
a x<a b
同小取小
a a<x<b b
大小小大中间找
a 无解 b
大大小小无处找
练一练
填表:
不等式组
x

-5,
x
>
-
3
x
>
-5,
x

-3
x-
5
<
0,
x
+
3
<
0
不等式组的解集 x﹥-3 -5﹤x≤-3 x<-3

导学案 9.3.1一元一次不等式组(1)

导学案 9.3.1一元一次不等式组(1)

9.3.1一元一次不等式组(1)姓名________________ 组别_________________ 评价__________________学习目标:1、理解一元一次不等式组,一元一次不等式组的解集,解不等式组等概念;2、会解一元一次不等式组,并会用数轴确定解集.3、感受学习一元一次不等式组的必要性,逐步熟悉数形结合的思想方法,感受类比与化归的思想。

一、复习巩固1、___________________________________________________称为一元一次不等式。

2、_______________________________________________叫做一元一次不等式的解集。

3、______________________________________________叫做解一元一次不等式。

4、解一元一次不等式的一般步骤有(1)______________(2)_________________(3)_________________(4)_________________(5)_________________5、解不等式并在数轴上表示出它们的解集:(1)2-3x>5 (2) 2y+6<3二、自主先学请同学们带着下列问题去自学课本127-128页的内容。

1、什么是一元一次不等式组?2、什么叫做一元一次不等式组的解集?三、自学总结概念:1、一元一次不等式组:含有___________个未知数,且未知数的次数是_________的两个不等式,组成一元一次不等式组.2、一元一次不等式组的解集:一元一次不等式组中的两个不等式的________部分,叫做这个一元一次不等式组的解集.3.利用数轴直接求出不等式的解集(对应总结口诀):(1)x4x2⎧<⎨<-⎩的解集是_______; (2)x4x2⎧>⎨>⎩的解集是_______;(3)x3x1⎧<⎨>-⎩的解集是______;(4)x2x1⎧<-⎨>-⎩的解集是_______.四、总结分享1、总结一下你自学过程中的收获,你觉得有哪些内容是本节课需要掌握的。

【核心素养目标】数学人教版七年级下册9.3 一元一次不等式组 教案含反思(表格式).doc

【核心素养目标】数学人教版七年级下册9.3  一元一次不等式组 教案含反思(表格式).doc

9.3一元一次不等式组二、探究新知二、探究新知知识点一:一元一次不等式组的概念及解集问题:用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?师生活动:学生独立思考,教师引导学生分析解题思路.设用x min 将污水抽完.根据已知条件,我们知道x满足:30x>120 ① 和30x<1500 ①这两个不等式同时成立.为此,我们用大括号把上述两个不等式联立起来,得教师总结:像这样的组合叫做一元一次不等式组.总结一元一次不等式组的概念例如:x同时满足不等式30x>1200和30x<1500,类似于方程组,把这两个不等式合起来,组成一个一元一次不等式组,记作一元一次不等式组的特征① 含同一个未知数,且未知数的次数为1;① 包含2个或2个以上的一元一次不等式;① 左边用一个大括号括起来.追问:怎样确定上面的不等式组中x的取值范围?师生活动:学生独立思考,教师引导学生类比方程组的求解方法,感悟不等式组的求解.设计意图:锻炼学生的抽象能力,渗透模型思想;通过问题引导,培养自主学习习惯,提高学习信心;锻炼运算能力.设计意图:梳理一元一次不等式组的特征,便于学生理解.设计意图:通过回顾一元一次方程组的求解方法,引导学生思考一元一次不提问:一元一次方程组是如何求解的? 预设:求出方程组的公共解. 教师叙述: 类比方程组的求解,不等式组中的各不等式解集的公共部分,就是不等式组中 x 可以取值的范围. 例如 ,由不等式①,解得 x >40;由不等式②, 解得 x <50.我们在同一数轴上把 x >40 与 x <50 表示出来,如图所示,容易发现它们的公共部分是40<x <50. 不等式组的解集 一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集. 解不等式组就是求它的解集. 做一做: 求下列不等式组的解集:你能发现什么规律? 师生活动:学生独立思考作图求解,选四名学生板书作图,教师根据板书引导学生总结规律.板书设计: 等式的解法——重点在于求公共部分;培养学生的类比推理能力,发展应用意识.设计意图:通过运用数轴理解一元一次不等式组的公共解,感受“形”在解题上的直观和便捷;进一步渗透数形结合思想.设计意图:通过练习,让学生自主探索一元一次不等式组集的求解规律,发展学生的自主学习能力;培养作图能力,锻炼一元一次不等式组的解法,提高解题技巧.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②归纳总结例1 解不等式组:师生活动:学生独立思考完成计算,学一名学生板书,教师巡视.解:解不等式①,得x ≤3.解不等式②,得x <-3. 把不等式①②的解集在数轴上表示出来,如图.由图可知,不等式①②的解集的公共部分就是 x <-3,所以这个不等式组的解集是 x <-3.知识点二:一元一次不等式组的应用问题:x 取哪些整数值时,不等式 5x + 2>3(x - 1) 与 - 1≤7 - 都成立?师生活动:学生独立思考,师生共同分析解题思路——求出这两个不等式组成的不等式组的解集,解集中的整数就是 x 可取的整数值,学生独立完成计算.例2 用若干辆载重量为 8 t 的汽车运一批货物,若每辆汽车只装 4 t ,则剩下 20 t 货物;若每辆汽车装满 8 t ,则最后一辆汽车不满也不空. 请你算一算:有多少辆汽车运这批货物?师生活动:学生独立思考并计算,选一名学生板书,教师巡视;学生完成后教师讲解,总结解题方法.设计意图:通过例题培养作图能力,巩固一元一次不等式组的解法,规范解题步骤,提高解题技巧.设计意图:锻炼学生的实践能力和应用意识,发展运算能力.设计意图:考查学生对抽象能力,会运用一元一次不等式组解决简单的实际问题,感受数学与现实世界的紧密联系.2⎧⎪⎪⎨⎪⎪⎩8 .->+,> x x x ①②131722x x --≤131722x x --≤三、当堂练习总结列一元一次不等式组解实际问题的一般步骤:三、当堂练习1. 选择下列不等式组的正确解集:2. 解不等式组:3. x取哪些整数值时,不等式2 -x ≥0 与都成立?设计意图:考查对简单一元一次不等式组的解法的掌握.设计意图:考查学生能否利用数轴表示一元一次不等式组的解集,从而解一元一次不等式组.设计意图:考查解复杂一元一次不等式组的能力.板书设计9.3 一元一次不等式组① 含同一个未知数,且未知数的次数为1;① 包含2 个或2 个以上的一元一次不等式;① 左边用一个大括号括起来.1211233x x---<2⎧⎪⎪⎨⎪⎪⎩8.->+,>x xx①②教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.。

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)
3、不等式组的解法:
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2

一元一次不等式组(公开课课件)

一元一次不等式组(公开课课件)

形式
一元一次不等式组通常表 示为“{①,②,③...}”, 其中①,②,③...是一元 一次不等式。
特点
一元一次不等式组中至少 包含两个不等式,且每个 不等式只含有一个未知数 。
一元一次不等式组的解集
定义
满足一元一次不等式组中 所有不等式的未知数的取 值范围称为该不等式组的 解集。
性质
解集具有封闭性,即满足 所有不等式的解都在解集 中。
求法
通过解每个不等式,找出 满足所有不等式的解,再 确定解集。
一元一次不等式组的分类
分类标准
简单型
根据一元一次不等式组中不等式的个数和 形式,可以将一元一次不等式组分为简单 型、线性型、多项式型等。
由两个一元一次不等式组成的不等式组, 如“{2x > 3, x < 5}”。
线性型
多项式型
由两个或多个线性一元一次不等式组成的 不等式组,如“{3x + 2 > 0, 4x - 1 < 5}” 。
VS
解集关系
一元一次不等式组的解集与相应的一元一 次方程组的解集存在一定的包含关系,可 以根据方程组的解来推断不等式组的解。
一元一次不等式组在实际问题中的应用
资源分配问题
例如,在有限资源下如何分配任 务以达到最优效果。
最优化问题
例如,在一定条件下如何选择方案 以达到最优目标。
经济问题
例如,在预算限制下如何选择商品 或服务以实现最大效益。
生产问题
总结词
企业生产过程中的资源配置问题
详细描述
生产问题涉及到企业生产过程中的资源配置,如原材料、设备和人力资源的分配。一元 一次不等式组可以用来解决生产中的成本和效率问题,例如优化生产流程以降低成本和

9.3.1一元一次不等式组(教案)

9.3.1一元一次不等式组(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次不等式组的基本概念。一元一次不等式组是由几个含有同一个未知数的一元一次不等式组合而成的。它在解决实际问题中起着重要作用,帮助我们确定未知数的取值范围。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过解一元一次不等式组来确定某个学生在数学和英语两门课程中的最低及格分数要求。
其次,在新课讲授环节,我发现学生们对一元一次不等式组的理解还存在一些困难。在讲解重点难点时,我应该更加注意用简洁明了的语言和具体的例子来阐述,让学生更容易理解。此外,我还可以尝试用图表、动画等辅助教学手段,使抽象的知识更加直观。
在实践活动环节,学生们分组讨论和实验操作的积极性很高,但我发现部分学生在讨论过程中还是过于依赖同学,缺乏独立思考。在今后的教学中,我应该鼓励学生们独立思考,培养他们解决问题的能力。
三、教学难点与重点
1.教学重点
(1)理解一元一次不等式组的定义及解的概念;
(2)掌握一元一次不等式组的解法步骤,包括同大取大、同小取小、大小小大中间找、大大小小无解了;
(3)能够将一元一次不等式组应用于解决实际问题;
(4)了解一元一次不等式组的解与方程组的解之间的关系。
举例:对于一元一次不等式组如:x>-2和x<5,学生需要理解其解集为-2<x<5。
3.重点难点解析:在讲授过程中,我会特别强调一元一次不等式组的解法和其在实际问题中的应用这两个重点。对于难点部分,如“同大取大、同小取小”的原则,我会通过具体的例题和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与一元一次不等式组相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过比较不等式组中的不等式来求解。

9.3 一元一次不等式组 课件(人教版七年级下)

9.3 一元一次不等式组 课件(人教版七年级下)

受了8折.应先算出原价,然后除以单价, 方案一: 购进甲种商品48件, 乙种商品52件; 得出数量. (1)设该商场能购进甲种商品x件,
方案二: 购进甲种商品49件, 乙种商品51件; 方案三: 购进甲种商品50件, 乙种商品50件.
根据题意,得15x+35(100-x)=2700, (3)根据题意,得 解得x=40. 乙种商品:100-40=60(件). (2)设该商场购进甲种商品a件,则购进 乙种商品(100-a)件. 根据题意,得
第一天只购买甲种商品不享受优惠条件,故 200÷20=10(件); 第二天只购买乙种商品有以下两种情况: 情况一:购买乙种商品打九折,324÷90% ÷45=8(件); 情况二:购买乙种商品打八折,324÷80% ÷45=9(件). 故一共可购买甲、乙两种商品10+8=18 (件)或10+9=19(件).
10x+8y<7000, x=60, (1) 解得 2x+5y>4120, y=800,
所以每台电脑机箱和液晶显示器进价分别是60 元、800元. (2)设购机箱z台,则显示器(50-z)台,
60z+800(50 - z)<22240, ∴24≤z≤26. 10z+160(50 z)>4100,
组.
3x - 2>0, 1 D. x + 1 < x
答案:A
例2.解集在数轴上表示为如图所 示的不等式组的是( ).
例3.解下列一元一次不等式组:
3( x - 2)+8>2 x, x -1 (1) x+1 x . 3 2 2( x+2)>3x+3, (2) x x+1 > . 3 4
x - a 0, 1.已知关于x的不等式组 只有 5 2x > 1
四个整数解, 则a的取值范围是_______.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0
4 5
5
0
2
3
8
所以不等式组的解集:
x3
这两个不等式的解集 没有公共部分,所以 不等式组无解。
你能说说解一元一次不等式组的一般步骤吗? 1 . 求出这个不等式组中各个不等式的解集. 2.将每个不等式的解表示在同一条数轴上。
3. 利用数轴找寻这些不等式的解集的 公共部分,写出解集
x 2 0 ① 试求不等式组 x 3 0 ② x 6 0 ③
b a
x 3, (3) x 7.
b
x 2, (4) x 5.
大大取大
x 3, (5) x 7.
x> a
小小取小
x 3, (7) x 7.
b
a
x< b
x 2, (6) x 5.
x 1, (8) x 4.
A. -2, 0, -1 ,
B. -2 ,
C. -2, -1,
我 能 行
4
你会求出下列不等式的解集吗?
(1)(x-3)(x-5)>0 2x-3 (2) <0 X+2
(一)概念
1. 由几个一元一次不等式所组成的不等式组叫做一 元一次不等式组
2. 几个一元一次不等式的解集的公共部分,叫做由它们 所组成的一元一次不等式组的解集. 3. 求不等式组的解集的过程,叫做解不等式组.
2 x 1 x 1 是 (1) x 8 4x 1
X>3 (2) X<6

4(x+5) >100 (3) 不是(4) 3x-5 >5x+1 不是 4(y-5)<68
(5)
-2-x<2X-7<2+3x 是
(6)
2 x5 ≥
3x 4
不是
史口镇中学 古宝针
1.了解一元一次不等式组及其相关概念, 会解一元一次不等式组,并会用数轴确定 解集; 2.经历知识的拓展过程,感受学习一元一 次不等式组的必要性; 3.逐步熟悉数形结合的思想方法,感受类 比与化归的思想。
现有两根木条a和b,a长10cm,b长3cm, 如果再找一根木条c,用这三根木条钉成一个 三角形木框,那么对木条c的长度有什么要求?
(二)解简单一元一次不等式组的方法:
(1) 求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 即求出了不等式组的解集 (找不到公共部分则不等式组无解)
x 7. 4.
快乐之旅
7个金蛋你可以任选一个,如果出现“恭喜 你”的字样,你将直接过关;否则将有考验你 的数学问题,当然你可以自己作答,也可以求 助你的同学.
3
5 4 6
7
1
2
5
恭喜你,过关了!
2
恭喜你,过关了!
1
x≥2, (1)不等式组 ≤2 的解集是( D x
解:由题中的条件可得,
c 10 3
c 10 3
由几个同一未知数的一元一次不等式所组成的一组不 等式,叫做一元一次不等式组.
解不等式组得,
7 c 13
若c的长为整数,c可能的取值为 8cm,9cm,10cm,11cm,12cm。
下列各式哪些是一元一次不 等式组,哪些不是为什么?
7.5X≤8
x 5 4, (7 ) x 1 2 x, x 2.5.

x 1 2 x x 1 的解集是:___________ x 4 x 9 ① 猜猜看,不等式组 的解集是什么? 2 x x 1 ②
不等式
-2 -1 0 1 2 3 4 5 6
x3 不等式 x 4 x 9 的解集是:___________
从上图可以找出两个不等式解集的公共部分,得 x 1 不等式组的解 集是:___________
一般地,几个一元一次不等式的解集的公共 部分叫做由它们所组成的一元一次不等式组 的解集
你能找到下面几个不等式组的解集吗?
不等式组 x 1 x 2
解:解不等式①,得 x>-2 解不等式②,得 x > 3
的解集.
动手画一画, 一起找一找。
解不等式③,得 x ≤ 6 把不等式①、②、③的解集表示在同一数轴上,如下图
○ ○ ●
-2
-1
0
1
2
3
4
5
6
所以,不等式组的解集是3 < x ≤ 6。
求下列不等式组的解集: 你能发现有什么规律?
x 2, x 3, (2) (1) x 5 . x 7 .
2.5 x ≤4
B. D.
1 x
2.5 x 4
我 能 行
6
x ≥-2, (6)不等式组 的解集在数轴上表示为( B x 5
) -5 -2
A.
-5
-2
B.
-5
-2
C.
-5
-2
D.
x ≥-2, (4)不等式组 的负整数解是( C x 3
) D.不能确定.
x 1 x 2 x 1 x 2
数轴表示
-1 0 1 2 3
解集(即公共部分)
1 x 2
x 2
3
-1
0
1
2
3
-1
0
1
2
x 1
无解
x 2 x 1
-1
0
1
2
3
例1:解下列不等式组 2 x 3 x 11 ① 2 x 1 x 1 ① ⑴ ⑵ 2x 5 x 8 4 x 1 ② 1 2 x ② 3 x 2 解: 解不等式①,得, 解: 解不等式①,得, x8 x 3 解不等式②,得, x 4 解不等式②,得, 把不等式①和 ②的 解集在数轴上表示出来: 把不等式①和 ②的 解集在数轴上表示出来:
)
A.
x ≥2,
B. x ≤2, C. 无解, D. x =2.
3
x 0.5, (3)不等式组 的整数解是( C x ≤1 A. 0, 1 , B. 0 , C. 1,
) D.
≤1.
我 能 行
7
(7)如图, A. C. 则其解集是( C ) ≤4,
-1
2.5
4
1 x 2.5,
a
大小小大中间找 b< x<a
b
a
大大小小没解找 无解
1求下列不等式组的解集:4.大大小小没解找。
x 3 , x 0 , x 2 , x , 1 , x 0 3 , x 3 , ( 3 ) ( 2 ) ( 4 ) 6 ( 1 7 ) (8 5 ) x 7 . x 5 . x 4 4 x .. 73 ..
相关文档
最新文档