高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题
2020年高考物理备考微专题精准突破专题4.8 带电粒子在直线边界磁场中的运动问题(解析版)
2020年高考物理备考微专题精准突破 专题4.8 带电粒子在直线边界磁场中的运动问题【专题诠释】1.直线边界,粒子进出磁场具有对称性(如图所示)图a 中粒子在磁场中运动的时间t =T 2=πmBq图b 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图c 中粒子在磁场中运动的时间t =θπT =2θmBq2.平行边界存在临界条件(如图所示)图a 中粒子在磁场中运动的时间t 1=θm Bq ,t 2=T 2=πmBq图b 中粒子在磁场中运动的时间t =θmBq图c 中粒子在磁场中运动的时间t =(1-θπ)T =(1-θπ)2πm Bq =2m (π-θ)Bq图d 中粒子在磁场中运动的时间t =θπT =2θmBq【高考领航】【2019·全国卷Ⅱ】如图,边长为l 的正方形abcd 内存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面(abcd 所在平面)向外。
ab 边中点有一电子发射源O ,可向磁场内沿垂直于ab 边的方向发射电子。
已知电子的比荷为k 。
则从a 、d 两点射出的电子的速度大小分别为( )A.14kBl ,54kBlB.14kBl ,54kBlC.12kBl ,54kBlD.12kBl ,54kBl 【答案】 B【解析】 若电子从a 点射出,运动轨迹如图线①,有qv a B =m v 2aR a ,R a =l 4,解得v a =qBR a m =qBl 4m =kBl 4;若电子从d 点射出,运动轨迹如图线②,有qv d B =m v 2dR d ,R 2d =22⎪⎭⎫ ⎝⎛-l R d +l 2,解得R d =54l ,v d =qBR d m =5qBl 4m =5kBl4。
B 正确。
【2019·全国卷Ⅲ】如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场。
(完整版)高考物理带电粒子在磁场中的运动解析归纳
难点之九:带电粒子在磁场中的运动一、难点突破策略(一)明确带电粒子在磁场中的受力特点1. 产生洛伦兹力的条件:①电荷对磁场有相对运动.磁场对与其相对静止的电荷不会产生洛伦兹力作用.②电荷的运动速度方向与磁场方向不平行. 2. 洛伦兹力大小:当电荷运动方向与磁场方向平行时,洛伦兹力f=0;当电荷运动方向与磁场方向垂直时,洛伦兹力最大,f=qυB ;当电荷运动方向与磁场方向有夹角θ时,洛伦兹力f= qυB ·sin θ3. 洛伦兹力的方向:洛伦兹力方向用左手定则判断 4. 洛伦兹力不做功.(二)明确带电粒子在匀强磁场中的运动规律带电粒子在只受洛伦兹力作用的条件下:1. 若带电粒子沿磁场方向射入磁场,即粒子速度方向与磁场方向平行,θ=0°或180°时,带电粒子粒子在磁场中以速度υ做匀速直线运动.2. 若带电粒子的速度方向与匀强磁场方向垂直,即θ=90°时,带电粒子在匀强磁场中以入射速度υ做匀速圆周运动.①向心力由洛伦兹力提供:R v mqvB 2=②轨道半径公式:qBmvR =③周期:qB m 2v R 2T π=π=,可见T 只与q m有关,与v 、R 无关。
(三)充分运用数学知识(尤其是几何中的圆知识,切线、弦、相交、相切、磁场的圆、轨迹的圆)构建粒子运动的物理学模型,归纳带电粒子在磁场中的题目类型,总结得出求解此类问题的一般方法与规律。
1. “带电粒子在匀强磁场中的圆周运动”的基本型问题(1)定圆心、定半径、定转过的圆心角是解决这类问题的前提。
确定半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t 和转过的圆心角α之间的关系(T 2t T 360t πα=α=或)作为辅助。
圆心的确定,通常有以下两种方法。
① 已知入射方向和出射方向时,可通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图9-1中P 为入射点,M 为出射点)。
秘籍9 带电粒子在电场、磁场中的动力学问题-2024年高考物理压轴题专项通关秘籍(全国通用)(原卷版
秘籍9 带电粒子在电场、磁场中的动力学问题1.本专题主要讲解带电粒子(带电体)在电场、磁场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、动力学分析、能量。
题型一 优化场区分布创新考察电、磁偏转(计算题)题型二 利用交变电场考带电粒子在运动的多过程问题(计算题)题型三 借助电子仪器考带电粒子运动的应用问题(计算题)1、带电粒子在电场中的偏转Ⅰ、带电粒子在电场中的偏转(1)条件分析:带电粒子垂直于电场线方向进入匀强电场.(2)运动性质:匀变速曲线运动.(3)处理方法:分解成相互垂直的两个方向上的直线运动,类似于平抛运动.(4)运动规律:①沿初速度方向做匀速直线运动,运动时间⎩⎨⎧ a.能飞出电容器:t =l v 0.b.不能飞出电容器:y =12at 2=qU 2md t 2,t = 2mdyqU②沿电场力方向,做匀加速直线运动⎩⎪⎨⎪⎧ 加速度:a =F m =qE m =qU md 离开电场时的偏移量:y =12at 2=qUl 22mdv20离开电场时的偏转角:tan θ=v yv 0=qUl mdv 20Ⅱ、带电粒子在匀强电场中偏转时的两个结论(1)不同的带电粒子从静止开始经过同一电场加速后再从同一偏转电场射出时,偏移量和偏转角总是相同的.证明:由qU 0=12mv 20 y =12at 2=12·qU 1md ·(l v 0)2 tan θ=qU 1l mdv 20 得:y =U 1l 24U 0d ,tan θ=U 1l 2U 0d(2)粒子经电场偏转后,合速度的反向延长线与初速度延长线的交点O 为粒子水平位移的中点,即O到偏转电场边缘的距离为l 2. Ⅲ、带电粒子在匀强电场中偏转的功能关系当讨论带电粒子的末速度v 时也可以从能量的角度进行求解:qU y =12mv 2-12mv 20,其中U y =U dy ,指初、末位置间的电势差.2、带电粒子在电场中运动问题的两种求解思路(1)运动学与动力学观点①运动学观点是指用匀变速运动的公式来解决实际问题,一般有两种情况: a .带电粒子初速度方向与电场线共线,则粒子做匀变速直线运动;b .带电粒子的初速度方向垂直电场线,则粒子做匀变速曲线运动(类平抛运动). ②当带电粒子在电场中做匀变速曲线运动时,一般要采取类似平抛运动的解决方法.(2)功能观点:首先对带电粒子受力分析,再分析运动形式,然后根据具体情况选用公式计算. ①若选用动能定理,则要分清有多少个力做功,是恒力做功还是变力做功,同时要明确初、末状态及运动过程中的动能的增量.②若选用能量守恒定律,则要分清带电粒子在运动中共有多少种能量参与转化,哪些能量是增加的,哪些能量是减少的.3、带电粒子做圆周运动的分析思路Ⅰ、匀速圆周运动的规律若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做匀速圆周运动.Ⅱ、圆心的确定(1)已知入射点、出射点、入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图3甲所示,P为入射点,M为出射点).图3(2)已知入射方向、入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心(如图乙所示,P为入射点,M为出射点).Ⅲ、半径的确定可利用物理学公式或几何知识(勾股定理、三角函数等)求出半径大小.Ⅳ、运动时间的确定粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为θ时,其运动时间表示为t=θ2πT(或t=θRv).1.(2024•重庆开学)一束电子从静止开始经加速电压U1=U0加速后,水平射入水平放置的两平行金属板中间,如图所示。
高考物理带电粒子在磁场中的运动基础练习题及解析
高考物理带电粒子在磁场中的运动基础练习题及解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,03P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:22219BLqv m=(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBLv m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+-解得:58L R =或2LR = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k = A 球在磁场中运动周期为2mT qBπ= 当13k =时,如图4,A 球在磁场中运动的最长时间34t T = 即32mt qBπ=3.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
高中物理带电粒子在无边界匀强磁场中运动(一)解题方法和技巧及练习题含解析
一、带电粒子在无边界匀强磁场中运动1专项训练1.如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成 60°角从M 点(-R,0) 以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:(1)磁感应强度B 的大小; (2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.【答案】(1)0mv qR(2) 31(,)22R R - (3)0(5)R v π+ 【解析】(1)设粒子在磁场中运动半径为r ,根据题设条件画出粒子的运动轨迹:由几何关系可以得到:r R =由洛伦兹力等于向心力:200v qv B m r=,得到:0mv B qR =.(2)由图几何关系可以得到:3sin 602x R R==,1cos602y R R =-=- N 点坐标为:31,2R R ⎫-⎪⎪⎝⎭. (3)粒子在磁场中运动的周期2mT qBπ=,由几何知识得到粒子在磁场在中运动的圆心角共为180,粒子在磁场中运动时间:12Tt =,粒子在磁场外的运动,由匀速直线运动可以得到:从出磁场到再次进磁场的时间为:202s t v =,其中132s R R ==,粒子从M 点进入磁场到最终离开磁场区域运动的总时间12t t t =+ 解得:()05R t v π+=.2.如图甲所示,在直角坐标系中的0≤x≤L 区域内有沿y 轴正方向的匀强电场,右侧有以点(2L ,0)为圆心、半径为L 的圆形区域,与x 轴的交点分别为M 、N ,在xOy 平面内,从电离室产生的质量为m 、带电荷量为e 的电子以几乎为零的初速度从P 点飘入电势差为U 的加速电场中,加速后经过右侧极板上的小孔Q 点沿x 轴正方向进入匀强电场,已知O 、Q 两点之间的距离为2L,飞出电场后从M 点进入圆形区域,不考虑电子所受的重力。
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析
高考物理带电粒子在磁场中的运动压轴难题综合题及答案解析一、带电粒子在磁场中的运动压轴题1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R OQ QC =+21v qvB m R =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析
高考物理带电粒子在磁场中的运动解题技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.空间中存在方向垂直于纸面向里的匀强磁场,磁感应强度为B ,一带电量为+q 、质量为m 的粒子,在P 点以某一初速开始运动,初速方向在图中纸面内如图中P 点箭头所示.该粒子运动到图中Q 点时速度方向与P 点时速度方向垂直,如图中Q 点箭头所示.已知P 、Q 间的距离为L .若保持粒子在P 点时的速度不变,而将匀强磁场换成匀强电场,电场方向与纸面平行且与粒子在P 点时速度方向垂直,在此电场作用下粒子也由P 点运动到Q 点.不计重力.求:(1)电场强度的大小.(2)两种情况中粒子由P 运动到Q 点所经历的时间之比.【答案】22B qLE m=;2B E t t π= 【解析】 【分析】 【详解】(1)粒子在磁场中做匀速圆周运动,以v 0表示粒子在P 点的初速度,R 表示圆周的半径,则有20v qv B m R= 由于粒子在Q 点的速度垂直它在p 点时的速度,可知粒子由P 点到Q 点的轨迹为14圆周,故有2R =以E 表示电场强度的大小,a 表示粒子在电场中加速度的大小,t E 表示粒子在电场中由p 点运动到Q 点经过的时间,则有qE ma = 水平方向上:212E R at =竖直方向上:0E R v t =由以上各式,得 22B qL E m=且E mt qB = (2)因粒子在磁场中由P 点运动到Q 点的轨迹为14圆周,即142B t T m qB π==所以2B E t t π=3.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d 的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO ’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t 0;:当在两板间加最大值为U 0、周期为2t 0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L ,电子的质量为m 、电荷量为e ,其重力不计.(1)求电子离开偏转电场时的位置到OO ’的最远位置和最近位置之间的距离 (2)要使所有电子都能垂直打在荧光屏上, ①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y 【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm = 又:1mv R Be=解得:00U t B dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=4.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =5.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-6.如图所示,虚线OL与y轴的夹角θ=450,在OL上侧有平行于OL向下的匀强电场,在OL下侧有垂直纸面向外的匀强磁场,一质量为m、电荷量为q(q>0)的粒子以速率v0从y轴上的M(OM=d)点垂直于y轴射入匀强电场,该粒子恰好能够垂直于OL进入匀强磁场,不计粒子重力。
高考物理带电粒子在磁场中的运动专题训练答案及解析
高考物理带电粒子在磁场中的运动专题训练答案及解析一、带电粒子在磁场中的运动专项训练1.如图纸面内的矩形 ABCD 区域存在相互垂直的匀强电场和匀强磁场,对边 AB ∥CD 、AD ∥BC ,电场方向平行纸面,磁场方向垂直纸面,磁感应强度大小为 B .一带电粒子从AB 上的 P 点平行于纸面射入该区域,入射方向与 AB 的夹角为 θ(θ<90°),粒子恰好做匀速直线运动并从 CD 射出.若撤去电场,粒子以同样的速度从P 点射入该区域,恰垂直 CD 射出.已知边长 AD=BC=d ,带电粒子的质量为 m ,带电量为 q ,不计粒子的重力.求:(1)带电粒子入射速度的大小;(2)带电粒子在矩形区域内作直线运动的时间; (3)匀强电场的电场强度大小.【答案】(1)cos qBd m θ(2)cos sin m qB θθ (3)2cos qB dm θ【解析】 【分析】画出粒子的轨迹图,由几何关系求解运动的半径,根据牛顿第二定律列方程求解带电粒子入射速度的大小;带电粒子在矩形区域内作直线运动的位移可求解时间;根据电场力与洛伦兹力平衡求解场强. 【详解】(1) 设撤去电场时,粒子在磁场中做匀速圆周运动的半径为R ,画出运动轨迹如图所示,轨迹圆心为O .由几何关系可知:cos d Rθ=洛伦兹力做向心力:200v qv B m R= 解得0cos qBdv m θ=(2)设带电粒子在矩形区域内作直线运动的位移为x ,有sin d xθ= 粒子作匀速运动:x=v 0t 联立解得cos sin m t qB θθ=(3)带电粒子在矩形区域内作直线运动时,电场力与洛伦兹力平衡:Eq=qv 0B解得2qB dE mcos θ=【点睛】此题关键是能根据粒子的运动情况画出粒子运动的轨迹图,结合几何关系求解半径等物理量;知道粒子作直线运动的条件是洛伦兹力等于电场力.2.如图所示,在竖直面内半径为R 的圆形区域内存在垂直于面向里的匀强磁场,其磁感应强度大小为B ,在圆形磁场区域内水平直径上有一点P ,P 到圆心O 的距离为2R,在P 点处有一个发射正离子的装置,能连续不断地向竖直平面内的各方向均匀地发射出速率不同的正离子. 已知离子的质量均为m ,电荷量均为q ,不计离子重力及离子间相互作用力,求:(1)若所有离子均不能射出圆形磁场区域,求离子的速率取值范围; (2)若离子速率大小02BqRv m=,则离子可以经过的磁场的区域的最高点与最低点的高度差是多少。
高中物理带电粒子在磁场中的运动试题(有答案和解析)及解析
O、O′在质子束的入射方向上,其连线与质子入射方向垂直且距离为 H= 7 R;整个装置处 2
于真空中,忽略粒子间的相互作用及相对论效应。
(1)试求质子束经过加速电场加速后(未进入磁场)的速度 ν 和磁场磁感应强度 B;
圆半径方向射出磁场;从
x
轴射出点的横坐标: xC
xA
R tan 53
xC 0.1425m .
由几何关系,过 A 点的粒子经 x 轴后进入磁场由 B 点沿 x 轴正向运动.
综上所述,粒子经过磁场后第二次打在 x 轴上的范围为: x 0.1425m
5.如图,平面直角坐标系中,在,y>0 及 y<- 3 L 区域存在场强大小相同,方向相反均平 2
(1)求第 I 象限内磁场的磁感应强度 B1;
(2)计算说明速率为 5v、9v 的粒子能否到达接收器;
(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁
场的磁感应强度 B2 的大小和方向.
【答案】(1)
B1
mv qL
(2)故速率为 v
的粒子被吸收,速率为 9v
的粒子不能被吸收
速度偏转角的正切值均为: tan vy 37 v0
cos 37 v0 v
v 1106 m/s
即:所有的粒子射出极板时速度的大小和方向均相同.
qvB m v2 R
R r 0.03m
由分析得,如图所示,所有粒子在磁场中运动后发生磁聚焦由磁场中的一点 B 离开磁场.
由几何关系,恰好经 N 板右边缘的粒子经 x 轴后沿磁场圆半径方向射入磁场,一定沿磁场
带电粒子在有界匀强磁场中的运动-高考物理复习
√A.3
B.2
C.32
D.23
电子1、2在磁场中都做匀速圆周运动,根据题意 画出两电子的运动轨迹,如图所示,电子1垂直边 界射入磁场,从b点离开,则运动了半个圆周,ab 即为直径,c点为圆心; 电子2以相同速率垂直磁场方向射入磁场,经t2时间从a、b连线的中 点c离开磁场, 根据半径 r=mBqv可知,电子 1 和 2 的半径相等, 根据几何关系可知,△aOc为等边三角形,
粒子运动轨迹与 y 轴交点的纵坐标为 y=-2rcos 30° =-233d,故 D 错误.
考向4 带电粒子在多边形边界或角形区域磁场中运动
例4 (多选)(2023·河北石家庄市模拟)如图所示,△AOC为直角三角形,∠O
=90°,∠A=60°,AO=L,D为AC的中点.△AOC中存在垂直于纸面向里的匀
√C.若带电粒子与挡板碰撞,则受到挡板作用力的冲量 大小为5q2BL
√D.带电粒子在磁场中运动时间可能为3πqmB
若粒子带正电,粒子与挡板MN碰撞后恰好从 Q点射出,粒子运动轨迹如图甲所示, 设轨迹半径为 r2,由几何知识得 L2+(r2-0.5L)2 =r22,解得 r2=54L,根据牛顿第二定律得 qv2B=mvr222,解得 v2=54qmBL, 根据动量定理得 I=2mv2=5q2BL,故 A 错误,C 正确; 若粒子带负电,则粒子的运动轨迹如图乙所示, 粒子做圆周运动的半径为 r1=12L,由牛顿第二定律得 qv1B=mvr112,解得 v1=q2BmL,此时半径最小,速度也最小,故 B 错误;
2.平行边界(往往存在临界条件,如图所示)
3.圆形边界(进出磁场具有对称性) (1)沿径向射入必沿径向射出,如图甲所示. (2)不沿径向射入时,如图乙所示. 射入时粒子速度方向与半径的夹角为θ,射出磁场时速度方向与半径的 夹角也为θ.
高考物理专题带电粒子在磁场中的运动
高考物理专题带电粒子在磁场中的运动Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】带电粒子在磁场中的运动【例1】磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极两板间最大电压为多少 解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
) ⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将达到平衡态。
【例2】 半导体靠自由电子(带负电)和空穴(相当于带正电)导电,分为p 型和n 型两种。
p 型中空穴为多数载流子;n 型中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表判定上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
高考物理带电粒子在磁场中的运动知识点汇总
高考物理带电粒子在磁场中的运动知识点汇总一、带电粒子在磁场中的运动压轴题1.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D进入MN上方的一个三角形匀强磁场,从A点射出磁场,则三角形磁场区域最小面积为多少?MN上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A点出发后,第一次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒子进入静电分析器做圆周运动,则有:2mvEqR=解得:EqR vm =(2)粒子从D到A匀速圆周运动,轨迹如图所示:由图示三角形区域面积最小值为:22R S = 在磁场中洛伦兹力提供向心力,则有:2mv Bqv R= 得:mv R Bq=设MN 下方的磁感应强度为B 1,上方的磁感应强度为B 2,如图所示:若只碰撞一次,则有:112R mv R B q== 22mvR R B q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒子在电场中运动时间:1242R mRt v Eqππ== 在MN 下方的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=⨯⨯== 在MN 上方的磁场中运动时间:232142R mRt v Eq ππ=⨯=总时间:1232mRt t t t Eqπ=++=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,在直角坐标系x0y 平面的一、四个象限内各有一个边长为L 的正方向区域,二三像限区域内各有一个高L ,宽2L 的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L ,L<y<2L 的区域内,有沿y 轴正方向的匀强电场.现有一质量为四电荷量为q 的带负电粒子从坐标(L ,3L/2)处以初速度0v 沿x 轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E ;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小B ;(3)求第(2)问中粒子从进入磁场到坐标(-L ,0)点所用的时间.【答案】(1)2mv E qL =(2)04nmv B qL =n=1、2、3......(3)02L t v π=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有: 0L v t =,2122L at =,qE ma = 联立解得: 2mv E qL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyv v θ==l 速度大小002sin v v v θ== 设x 为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L ,0 )点,应满足L=2nx ,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x 时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R ,圆弧对应的圆心角为2π.则有2R ,此时满足L=2nx 联立可得:22R n=由牛顿第二定律,洛伦兹力提供向心力,则有:2v qvB m R=得:04nmv B qL=,n=1、2、3.... 轨迹如图乙设圆弧的半径为R ,圆弧对应的圆心角为2π.则有222x R ,此时满足()221L n x =+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==4.如图甲所示,在直角坐标系0≤x ≤L 区域内有沿y 轴正方向的匀强电场,右侧有一个以点(3L ,0)为圆心、半径为L 的圆形区域,圆形区域与x 轴的交点分别为M 、N .现有一质量为m 、带电量为e 的电子,从y 轴上的A 点以速度v 0沿x 轴正方向射入电场,飞出电场后从M 点进入圆形区域,此时速度方向与x 轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E 的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x 轴.求所加磁场磁感应强度B 的大小和电子刚穿出圆形区域时的位置坐标; (3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N 点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B 0的大小、磁场变化周期T 各应满足的关系表达式.【答案】(1) (2) (3) (n=1,2,3…)(n=1,2,3…) 【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y =v 0tanθ=v 0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.5.在如图所示的xoy坐标系中,一对间距为d的平行薄金属板竖直固定于绝缘底座上,底座置于光滑水平桌面的中间,极板右边与y轴重合,桌面与x轴重合,o点与桌面右边相距为74d,一根长度也为d的光滑绝缘细杆水平穿过右极板上的小孔后固定在左极板上,杆离桌面高为1.5d,装置的总质量为3m.两板外存在垂直纸面向外、磁感应强度为B的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有一个质量为m、电量为+q的小环(可视为质点)套在杆的左端,给极板充电,使板内有沿x正方向的稳恒电场时,释放小环,让其由静止向右滑动,离开小孔后便做匀速圆周运动,重力加速度取g.求:(1)环离开小孔时的坐标值;(2)板外的场强E2的大小和方向;(3)讨论板内场强E1的取值范围,确定环打在桌面上的范围.【答案】(1)环离开小孔时的坐标值是-14 d;(2)板外的场强E2的大小为mgq,方向沿y轴正方向;(3)场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d~.【解析】【详解】(1)设在环离开小孔之前,环和底座各自移动的位移为x1、x2.由于板内小环与极板间的作用力是它们的内力,系统动量守恒,取向右为正方向,根据动量守恒定律,有:mx1-3mx2=0 ①而x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开小孔时的坐标值为:x m=34d-d=-14d(2)环离开小孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,方向沿y轴正方向(3)环打在桌面上的范围可画得如图所示,临界点为P、Q,则若环绕小圆运动,则R=0.75d ④根据洛仑兹力提供向心力,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开小孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联立③④⑤⑥解得:2 138qB d Em=若环绕大圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联立③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌面上的范围为1744d d-~.6.如图,第一象限内存在沿y轴负方向的匀强电场,电场强度大小为E,第二、三、四象限存在方向垂直xOy平面向外的匀强磁场,其中第二象限的磁感应强度大小为B,第三、四象限磁感应强度大小相等,一带正电的粒子,从P(-d,0)点沿与x轴正方向成α=60°角平行xOy平面入射,经第二象限后恰好由y轴上的Q点(图中未画出)垂直y轴进入第一象限,之后经第四、三象限重新回到P点,回到P点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 23603d d dr sin sin α===︒ 根据200mv qv B r =得0233qBdv m=粒子在第一象限中做类平抛运动,则有21602qE r cos t m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得03222y v y tan x v α===由几何知识可得 y=r-rcosα= 1323r d = 则得23x d =所以粒子在第三、四象限圆周运动的半径为1253239d d R d sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度004323v qBdv v cos mα===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动7.如图所示,真空中有一个半径r=0.5m 的圆柱形匀强磁场区域,磁场的磁感应强度大小B=2×10-3T ,方向垂直于纸面向外,x 轴与圆形磁场相切于坐标系原点O ,在x=0.5m 和x=1.5m 之间的区域内有一个方向沿y 轴正方向的匀强电场区域,电场强E=1.5×103N/C ,在x=1.5m 处竖有一个与x 轴垂直的足够长的荧光屏,一粒子源在O 点沿纸平面向各个方向发射速率相同、比荷9110qm=⨯C/kg 的带正电的粒子,若沿y 轴正方向射入磁场的粒子恰能从磁场最右侧的A 点沿x 轴正方向垂直进入电场,不计粒子的重力及粒子间的相互作用和其他阻力.求:(1)粒子源发射的粒子进入磁场时的速度大小;(2)沿y 轴正方向射入磁场的粒子从射出到打到荧光屏上的时间(计算结果保留两位有效数字);(3)从O 点处射出的粒子打在荧光屏上的纵坐标区域范围.【答案】(1)61.010/v m s =⨯;(2)61.810t s -=⨯;(3)0.75 1.75m y m ≤≤ 【解析】 【分析】(1)粒子在磁场中做匀速圆周运动,由几何关系确定半径,根据2v qvB m R=求解速度;(2)粒子在磁场中运动T/4,根据周期求解在磁场中的运动时间;在电场中做类平抛运动,根据平抛运动的规律求解在电场值的时间;(3)根据牛顿第二定律结合运动公式求解在电场中的侧移量,从而求解从O 点处射出的粒子打在荧光屏上的纵坐标区域范围. 【详解】(1)由题意可知,粒子在磁场中的轨道半径为R=r=0.5m ,由2v qvB mR= 进入电场时qBR v m = 带入数据解得v=1.0×106m/s(2)粒子在磁场中运动的时间61121044R t s v ππ-=⨯=⨯ 粒子从A 点进入电场做类平抛运动,水平方向的速度为v ,所以在电场中运动的时间62 1.010xt s v-==⨯ 总时间6612110 1.8104t t t s s π--⎛⎫=+=+⨯=⨯⎪⎝⎭(3)沿x 轴正方向射入电场的粒子,在电场中的加速度大小121.510/qEa m s m==⨯ 在电场中侧移:2121261111.5100.7522110y at m m ⎛⎫==⨯⨯⨯= ⎪⨯⎝⎭打在屏上的纵坐标为0.75;经磁场偏转后从坐标为(0,1)的点平行于x 轴方向射入电场的粒子打在屏上的纵坐标为1.75;其他粒子也是沿x 轴正方向平行的方向进入电场,进入电场后的轨迹都平行,故带电粒子打在荧光屏上 的纵坐标区域为0.75≤y ≤1.75.8.如图,一半径为R 的圆表示一柱形区域的横截面(纸面).在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m 、电荷量为q 的粒子沿图中直线在圆上的a 点射入柱形区域,在圆上的b 点离开该区域,离开时速度方向与直线垂直.圆心O 到直线的距离为.现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a 点射入柱形区域,也在b 点离开该区域.若磁感应强度大小为B ,不计重力,求电场强度的大小.【答案】2145qRB E m=【解析】 【分析】 【详解】解答本题注意带电粒子先在匀强磁场运动,后在匀强电场运动.带电粒子在磁场中做圆周运动.粒子在磁场中做圆周运动.设圆周的半径为r ,由牛顿第二定律和洛仑兹力公式得2v qvB m r=①式中v 为粒子在a 点的速度.过b 点和O 点作直线的垂线,分别与直线交于c 和d 点.由几何关系知,线段ac bc 、和过a 、b 两点的轨迹圆弧的两条半径(未画出)围成一正方形.因此ac bc r ==② 设,cd x =有几何关系得45ac R x =+③ 2235bc R R x =+- 联立②③④式得75r R =再考虑粒子在电场中的运动.设电场强度的大小为E ,粒子在电场中做类平抛运动.设其加速度大小为a ,由牛顿第二定律和带电粒子在电场中的受力公式得qE="m a" ⑥ 粒子在电场方向和直线方向所走的距离均为r ,有运动学公式得212r at =⑦ r=vt ⑧ 式中t 是粒子在电场中运动的时间.联立①⑤⑥⑦⑧式得2145qRB E m=⑨【点睛】带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的几何关系来帮助解题.值得注意是圆形磁场的半径与运动轨道的圆弧半径要区别开来.9.磁谱仪是测量α能谱的重要仪器.磁谱仪的工作原理如图所示,放射源s 发出质量为m 、电量为q 的粒子沿垂直磁场方向进入磁感应强度为B 的匀强磁场,被限束光栏Q 限制在2ϕ的小角度内,α粒子经磁场偏转后打到与束光栏平行的感光片P 上.(重力影响不计)(1)若能量在E ~E +ΔE (ΔE >0,且ΔE <<E )范围内的α粒子均垂直于限束光栏的方向进入磁场.试求这些α粒子打在胶片上的范围Δx 1.(2)实际上,限束光栏有一定的宽度,α粒子将在2ϕ角内进入磁场.试求能量均为E的α粒子打到感光胶片上的范围Δx 2 【答案】见解析 【解析】 【详解】(1)设α粒子以速度v 进入磁场,打在胶片上的位置距s 的距离为x 圆周运动2q B mRυυ=α粒子的动能212E m υ=2x R =由以上三式可得22mEx qB= 所以()12222m E E mEx qBqB+∆∆=-化简可得122mEx E qBE∆≈∆; (2)动能为E 的α粒子沿φ±角入射,轨道半径相同,设为R ,粒子做圆周运动2q B mRυυ=α粒子的动能212E m υ=由几何关系得()22224222cos 1cos sin 2mE mE φx R R φφqB qB ∆=-=-=10.如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B .一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【答案】当α=30°时,粒子在磁场中运动的时间为π126T mt qB== 当α=90°时,粒子在磁场中运动的时间为π42T m t qB== 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示.有(判断出圆心在y 轴上得1分)2v qvB m R=(1分)周期为2πmT qB=(1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D .由几何知识得sin αAD R =,cot 60OD AD =︒,,OP AD BP =+α=β (2分) 联立得到sin αα13+=(2分) 解得α=30°,或α=90° (各2分) 设M 点到O 点的距离为h ,有sin αAD R =h R OC =-,3cos αOC CD OD R AD =-=联立得到h=R 3cos(α+30°) (1分) 解得h=3R (α=30°) (2分) h=3R (α=90°) (2分) 当α=30°时,粒子在磁场中运动的时间为π126T m t qB ==(2分) 当α=90°时,粒子在磁场中运动的时间为π42T m t qB==(2分) 【考点定位】考查带电粒子在匀强磁场中的运动及其相关知识.。
2019年高考物理二轮复习必刷题——带电粒子在磁场中的运动(附答案)
2019年高考物理二轮复习必刷题——带电粒子在磁场中的运动(附答案)一、计算题1.电子质量为m,电荷量为q,以速度v0与x轴成θ角射入磁感应强度为B的匀强磁场中,最后落在x轴上的P点,如图所示,求:(1)电子运动的轨道半径R;(2)OP的长度;(3)电子由O点射入到落在P点所需的时间t.2.如图所示,在xOy坐标平面的第一象限内有一沿y轴负方向的匀强电场,在第四象限内有一垂直于平面向外的匀强磁场,一质量为m,带电量为+q的粒子(重力不计)经过电场中坐标为(3L,L)的P点时的速度大小为V0.方向沿x轴负方向,然后以与x轴负方向成45°角进入磁场,最后从坐标原点O射出磁场求:(1)匀强电场的场强E的大小;(2)匀强磁场的磁感应强度B的大小;(3)粒子从P点运动到原点O所用的时间。
3.如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°.已知偏转电场中金属板长L=10√3cm,圆形匀强磁场的半径为R=10√3cm,重力忽略不计.求:(1)带电微粒经加速电场后的速度大小;(2)两金属板间偏转电场的电场强度E的大小;(3)匀强磁场的磁感应强度B的大小.4.如图,空间存在方向垂直于纸面(xOy平面)向里的磁场。
在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1)。
一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O 沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)(1)粒子运动的时间;(2)粒子与O点间的距离。
5.如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=30°,并接着进入一个方向垂直纸面向里、宽度为D=34.6cm的匀强磁场区域.已知偏转电场中金属板长L=10cm,两板间距d=17.3cm,重力不计.求:(1)带电微粒进入偏转电场时的速率v1;(√3≈1.73)(2)偏转电场中两金属板间的电压U2;(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B至少多大?6.如图所示,两平行金属板AB中间有互相垂直的匀强电场和匀强磁场.A板带正电荷,B板带等量负电荷,电场强度为E;磁场方向垂直纸面向里,磁感应强度为B1.平行金属板右侧有一挡板M,中间有小孔O′,OO′是平行于两金属板的中心线.挡板右侧有垂直纸面向外的匀强磁场,磁场应强度为B2.CD为磁场B2边界上的一绝缘板,它与M板的夹角θ=45°,O′C=a,现有一大量质量均为m,电荷量为q的带正电的粒子(不计重力),自O点沿OO′方向水平向右进入电磁场区域,其中有些粒子沿直线OO′方向运动,通过小孔O′进入匀强磁场B2,如果该粒子恰好以竖直向下的速度打在CD板上的E点,求:(1)进入匀强磁场B2的带电粒子的速度大小v;(2)CE的长度.7. 如图所示为质谱仪的原理图,A 为粒子加速器,电压为U 1;B 为速度选择器,磁场与电场正交,磁感应强度为B 1,板间距离为d ;C 为偏转分离器,磁感应强度为B 2.今有一质量为m 、电量为q 的正离子经加速后,恰好通过速度选择器,进入分离器后做半径为R 的匀速圆周运动,求: (1)粒子的速度v(2)速度选择器的电压U 2(3)粒子在B 2磁场中做匀速圆周运动的半径R .8. 一个重力不计的带电粒子,以大小为v 的速度从坐标(0,L )的a 点,平行于x 轴射入磁感应强度大小为B 、方向垂直纸面向外的圆形匀强磁场区域,并从x 轴上b 点射出磁场,射出速度方向与x 轴正方向夹角为60°,如图.求:(1)带电粒子在磁场中运动的轨道半径;(2)带电粒子的比荷mq 及粒子从a 点运动到b 点的时间;(3)其他条件不变,要使该粒子恰从O 点射出磁场,求粒子入射速度大小.9. 如图所示,一电子的电荷量为e ,以速度v 垂直射入磁感应强度为B 、宽度为d 的有界匀强磁场中,穿过磁场时的速度方向与原来电子入射方向的夹角是θ=30°,求: (1)电子运动的轨道半径r ; (2)电子的质量m ;(3)电子穿过磁场的时间t 。
高考物理磁场 微专题 带电粒子在交变电场磁场中的运动试题
避躲市安闲阳光实验学校57 带电粒子在交变电场、磁场中的运动[方法点拨] (1)先分析在一个周期内粒子的运动情况,明确运动性质,判断周期性变化的电场或磁场对粒子运动的影响;(2)画出粒子运动轨迹,分析轨迹在几何关系方面的周期性.1.如图1甲所示,两平行金属板A 、B 长L =8 cm ,两极板间距d =6 cm ,A 、B 两极板间的电势差U AB =100 3 V .一比荷为q m=1×106C/kg 的带正电粒子(不计重力)从O 点沿电场中心线垂直电场线以初速度v 0=2×104m/s 飞入电场,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域,已知两界面MN 、PS 间的距离为s =8 cm.带电粒子从PS 分界线上的C 点进入PS 右侧的区域,当粒子到达C 点开始计时,PS 右侧区域有磁感应强度按图乙变化的匀强磁场(垂直纸面向里为正方向).求:图1(1)PS 分界线上的C 点与中心线OO ′的距离y ;(2)粒子进入磁场区域后第二次经过中心线OO ′时与PS 分界线的距离x . 2.如图2甲所示,在平行边界MN 、PQ 之间存在宽度为L 的匀强电场,电场周期性变化的规律如图乙所示,取竖直向下为电场正方向;在平行边界MN 、EF之间存在宽度为s 、方向垂直纸面向里的匀强磁场区域Ⅱ,在PQ 右侧有宽度足够大、方向垂直纸面向里的匀强磁场区域Ⅰ.在区域Ⅰ中距PQ 为L 的A 点,有一质量为m 、电荷量为q 、重力不计的带正电粒子以初速度v 0沿竖直向上方向开始运动,以此作为计时起点,再经过一段时间粒子又恰好回到A 点,如此循环,粒子循环运动一周,电场恰好变化一个周期,已知粒子离开区域Ⅰ进入电场时,速度恰好与电场方向垂直,sin 53°=0.8,cos 53°=0.6. 图2(1)求区域Ⅰ的磁场的磁感应强度大小B 1.(2)若E 0=4mv 23qL ,要实现上述循环,确定区域Ⅱ的磁场宽度s 的最小值以及磁场的磁感应强度大小 B 2.(3)若E 0=4mv 203qL,要实现上述循环,求电场的变化周期T .3.如图3甲所示,在平面直角坐标系xOy 区域内存在垂直坐标平面的匀强磁场,磁场随时间的变化规律如图乙所示,磁场方向垂直坐标平面向里为正方向,磁场变化周期T 0=2πm qB 0.t =0时刻,一质量为m 、电荷量为q 的带正电粒子以某一初速度由坐标原点O 沿x 轴正方向射入磁场,在t =T 0时到达坐标为(a,0)的P 点(未画出). 图3(1)求粒子运动的初速度v 0;(2)若磁场的变化规律如图丙所示,求粒子从t =0时刻起第一次到达y 轴的位置与原点O 的距离;(3)在第(2)问的条件下,粒子是否可以返回原点?如果可以,求粒子从原点出发到返回原点的时间;如果不可以,请说明理由.4.如图4甲所示,在光滑绝缘水平桌面内建立xOy 坐标系,在第Ⅱ象限内有平行于桌面的匀强电场,场强方向与x 轴负方向的夹角θ=45°.在第Ⅲ象限垂直于桌面放置两块相互平行的平板C 1、C 2,两板间距为d 1=0.6 m ,板间有竖直向上的匀强磁场,两板右端在y 轴上,板C 1与x 轴重合,在其左端紧贴桌面有一小孔M ,小孔M 离坐标原点O 的距离为L =0.72 m .在第Ⅳ象限垂直于x 轴放置一块平行于y 轴且沿y 轴负向足够长的竖直平板C 3,平板C 3在x 轴上垂足为Q ,垂足Q 与原点O 相距d 2=0.18 m .现将一带负电的小球从桌面上的P 点以初速度v 0=4 2 m/s 垂直于电场方向射出,刚好垂直于x 轴穿过C 1板上的M 孔,进入磁场区域.已知小球可视为质点,小球的比荷qm =20 C/kg ,P 点与小孔M 在垂直于电场方向上的距离为s =210m ,不考虑空气阻力. 图4(1)求匀强电场的场强大小;(2)要使带电小球无碰撞地穿出磁场并打到平板C 3上,求磁感应强度的取值范围;(3)若t =0时刻小球从M 点进入磁场,磁场的磁感应强度如图乙随时间周期性变化(取竖直向上为磁场正方向),求小球从M 点打在平板C 3上所用的时间.(计算结果保留两位小数)答案精析1.(1)4 3 cm (2)12 cm解析 (1)粒子在电场中的加速度a =U AB q dm粒子在电场中运动的时间t 1=L v 0粒子离开电场时竖直方向分速度v y =at 1 粒子在MN 与PS 间运动时间t 2=sv 0粒子在电场中偏转位移y 1=12at 21=U AB qL 22dmv 20=43 3 cm 出电场后:y 2=v y t 2 联立解得:y 2=833cm所以C 点与中心线OO ′的距离y =y 1+y 2=4 3 cm(2)粒子运动轨迹如图所示,粒子进入磁场时,设速度与水平方向夹角为θ,tan θ=v y v 0=33所以θ=30°粒子进入磁场时的速度v =v 0cos θ=433×104m/s 设粒子在磁场中运动轨道半径为R则qvB =mv 2R所以R =4 cm粒子在磁场中运动的周期T =2πR v =23π×10-6s在t =23π3×10-6s 内粒子的偏转角α=2πT t =120°竖直向上偏移h 1=R cos 30°=2 3 cm在23π3×10-6~433π×10-6 s 内通过OO ′,这段时间内竖直向上偏移h 2=h 1=2 3 cm因为h 1+h 2=y =4 3 cm则粒子在t =43π3×10-6s 时刚好第二次到达OO ′此时,粒子距PS 距离x =2(R +R sin 30°)=12 cm. 2.(1)mv 0qL (2)L 9 3mv 0qL (3)307π+540270v 0L 解析 (1)粒子在区域Ⅰ做圆周运动的半径R =L由洛伦兹力提供向心力知qv 0B 1=mv 20R联立解得B 1=mv 0qL(2)粒子在电场中做类平抛运动,离开电场时沿电场方向的速度v y =at =qE 0m ·L v 0=43v 0, 离开电场时速度的偏转角为θ,tan θ=v y v 0=43,θ=53°所以粒子离开电场时的速度v =v 0cos 53°=53v 0粒子在电场中偏转的距离y =12at 2=12·qE 0m ⎝ ⎛⎭⎪⎫L v 02=23L画出粒子运动轨迹的示意图如图所示,粒子在区域Ⅱ做圆周运动的圆心O 2与在区域Ⅰ做圆周运动的圆心O 1的连线必须与边界垂直才能完成上述运动,由几何关系知粒子在区域Ⅱ做圆周运动的半径r =L -23Lcos 53°=59L所以s ≥r (1-sin 53°)=L9即s 的最小值为L9根据r =mv qB 2 解得B 2=3mv 0qL(3)电场变化的周期等于粒子运动的周期 粒子在区域Ⅰ中运动的时间t 1=πL v 0粒子在电场中运动的时间t 2=2Lv 0粒子在区域Ⅱ中运动的时间t 3=37°180°·2πr v =37πL270v 0所以周期T =t 1+t 2+t 3=307π+540270v 0L .3.(1)qaB 04m(2)a (3)见解析 解析 (1)设粒子在磁场中运动的周期为T ,轨迹半径为r 则T =2πm qB 0=T 0t =0时粒子从O 点射入磁场中,在0~T 04时间内,粒子做逆时针方向的匀速圆周运动,接着在T 04~34T 0时间内做顺时针方向的匀速圆周运动,最后在34T 0~T 0时间内做逆时针方向的匀速圆周运动到达x 轴上的P 点,粒子运动轨迹如图甲所示.甲 则4r =a根据洛伦兹力提供向心力,有qv 0B 0=m v 20r联立解得v 0=qaB 04m(2)比较粒子在磁场中做圆周运动的周期T 和磁场变化周期可知,粒子在0~T 03时间内运动13圆周,其圆心为O 1,运动轨迹对应的圆心角为120°;在T 03~T 02时间内运动16圆周,圆心为O 2,对应圆心角为60°;在T 02~5T 06时间内运动13圆周,其圆心为O 3,对应圆心角为120°.作出粒子在磁场中运动的轨迹如图乙所示.乙由几何关系可知OO 1=r =a4O 1O 3=2r =a2O 3Q =r =a4则粒子第一次到达y 轴的位置与原点O 的距离y 1=OO 1+O 1O 3+O 3Q =a(3)粒子可以回到原点由于粒子在磁场中做周期性运动,根据对称性和周期性,作出粒子的运动轨迹如图丙所示.丙其中以O 1、O 3、O 5、O 7、O 9、O 11为圆心的运动轨迹所对应的圆心角为120°,每段轨迹对应时间为t 1=T 03以O 2、O 4、O 6、O 8、O 10、O 12为圆心的运动轨迹所对应的圆心角为60°,每段轨迹对应时间为t 2=T 06由图丙中几何关系知,粒子从原点出发到回到原点的时间为t =6n (t 1+t 2)=3nT 0=6n πmqB 0(n =1,2,3,……)4.(1)8 2 V/m (2)23T≤B ≤1 T (3)0.15 s解析 (1)小球在第Ⅱ象限内做类平抛运动有:s =v 0tat =v 0tan θ由牛顿第二定律有:qE =ma 代入数据解得:E =8 2 V/m(2)设小球通过M 点时的速度为v ,由类平抛运动规律:v =v 0cos θ=8 m/s小球垂直磁场方向进入两板间做匀速圆周运动, 轨迹如图甲所示,由牛顿第二定律有:qvB =m v 2R解得:B =mv qR小球刚好能打到Q 点时,磁感应强度最大,设为B 1, 此时小球的轨迹半径为R 1 由几何关系有:R 1L +d 2-R 1=L -R 1R 1解得R 1=0.4 m ,B 1=1 T小球刚好不与C 2板相碰时磁感应强度最小,设为B 2,此时小球的轨迹半径为R 2 由几何关系有:R 2=d 1 解得:B 2=23T综合得磁感应强度的取值范围:23T≤B ≤1 T(3)小球进入磁场做匀速圆周运动,设半径为R 3,周期为T ,有:R 3=mvqB 3=0.18 m T =2πm qB 3=9π200s 再综合分析易知小球在磁场中运动的轨迹如图乙所示,一个磁场周期内小球在x 轴方向的位移为3R 3=0.54 m ,L -3R 3=0.18 m即:小球刚好垂直y 轴方向离开磁场则小球在磁场中运动的时间t 1=13T +13T +14T =33π800 s≈0.13 s离开磁场到打在平板C 3上所用的时间t 2=d 2v≈0.02 s 小球从M 点到打在平板C 3上所用总时间t =t 1+t 2=0.15 s.。
2023届高考物理二轮复习专题分层突破练8磁场带电粒子在磁场中的运动含解析
高考物理二轮复习:专题分层突破练8 磁场带电粒子在磁场中的运动A组1.(2021浙江绍兴高三二模)如图所示,在架子上吊着一根绝缘导线,右侧导线下部某处装有一个铅坠,使导线保持竖直状态,下端连接着一个铝箔刷子,刷子下方放置一张铝箔,调整刷子的高度使之下端刚好与铝箔接触。
将左侧导线接到电源的正极上,电源的负极连接铝箔,用可移动的夹子水平地夹住一根强磁铁,右端N极正对右侧导线,接通电源,发现右侧导线在摆动。
下列判断正确的是()A.右侧导线开始时垂直纸面向里摆动B.右侧导线在摆动过程中一直受到安培力作用C.右侧导线在整个摆动过程中安培力对其做正功D.同时改变电流方向及磁铁的磁极方向,右侧导线开始摆动方向与原来相同2.(2021山东临沂高三一模)如图所示,在垂直纸面的方向上有三根长直导线,其横截面位于正方形的三个顶点b、c、d上,导线中通有大小相同的电流,方向如图所示,一带负电的粒子从正方形的中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是()A.沿O到a方向B.沿O到c方向C.沿O到d方向D.沿O到b方向3.(2021河北高三月考)已知通电直导线磁场中某点的磁感应强度大小为B=k(式中k为常数,I为电流大小,r为该点距导线的距离)。
现有垂直纸面放置的三根通电直导线a、b、c,其中三点间的距离之比为ab∶bc∶ca=5∶3∶4。
已知a、b导线在c点产生的磁感应强度方向平行于a、b的连线。
设a、b的电流之比为n,则()A.a、b的电流同向,n=B.a、b的电流反向,n=C.a、b的电流同向,n=1D.a、b的电流反向,n=14.(2021贵州高三月考)比荷相同的带电粒子M和N,经小孔S以相同的方向垂直射入匀强磁场中,M 和N仅在洛伦兹力作用下运动的部分轨迹分别如图中虚线a、b所示。
下列说法正确的是()A.M带负电,N带正电B.N的速度大于M的速度C.M、N在磁场中运动的周期相等D.洛伦兹力对M、N均做正功5.如图所示,有界匀强磁场边界线SP与MN平行,速率不同的同种带电粒子从S点沿SP方向同时射入磁场,粒子的比荷相同,其中从a点射出的粒子的速度v1与MN垂直;从b点射出的粒子的速度v2与MN成60°角,设两粒子从S到a、b所需时间分别为t1和t2,不计重力和粒子间的相互作用,则t1∶t2为() A.1∶3 B.4∶3C.1∶1D.3∶26.(多选)(2021山东枣庄高三二模)如图所示的长方体金属导体,前表面为abcd,已知L ab=10 cm、L bc=5 cm。
高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)及解析
⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⾼考物理带电粒⼦在磁场中的运动解题技巧(超强)及练习题(含答案)及解析⼀、带电粒⼦在磁场中的运动专项训练1.如图所⽰为电⼦发射器原理图,M 处是电⼦出射⼝,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的⾦属圆柱A 可沿半径向外均匀发射速率为v 的电⼦;与A 同轴放置的⾦属⽹C 的半径为2a.不考虑A 、C 的静电感应电荷对电⼦的作⽤和电⼦之间的相互作⽤,忽略电⼦所受重⼒和相对论效应,已知电⼦质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电⼦通过⾦属⽹C 发射出来的速度⼤⼩v C ;(2)若在A 、C 间不加磁场和电场时,检测到电⼦从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电⼦的数量N.(忽略C 、D 间的距离以及电⼦碰撞到C 、D 上的反射效应和⾦属⽹对电⼦的吸收)(3)若A 、C 间不加电压,要使由A 发射的电⼦不从⾦属⽹C 射出,可在⾦属⽹内环形区域加垂直于圆平⾯向⾥的匀强磁场,求所加磁场磁感应强度B 的最⼩值.【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】【分析】(1)根据动能定理求解求电⼦通过⾦属⽹C 发射出来的速度⼤⼩;(2)根据=neI t求解圆柱体A 在时间t 内发射电⼦的数量N ;(3)使由A 发射的电⼦不从⾦属⽹C 射出,则电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切,由⼏何关系求解半径,从⽽求解B. 【详解】(1)对电⼦经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+(2)设时间t 从A 中发射的电⼦数为N ,由M ⼝射出的电⼦数为n ,则 =ne I t224d dNn N a aππ==?解得4alt Nedπ=(3)电⼦在 CA 间磁场中做圆周运动时,其轨迹圆与⾦属⽹相切时,对应的磁感应强度为B.设此轨迹圆的半径为r,则222(2)a r r a-=+2vBev mr=解得:43mv Bae =2.如图所⽰,MN为绝缘板,CD为板上两个⼩孔,AO为CD的中垂线,在MN的下⽅有匀强磁场,⽅向垂直纸⾯向外(图中未画出),质量为m电荷量为q的粒⼦(不计重⼒)以某⼀速度从A点平⾏于MN的⽅向进⼊静电分析器,静电分析器内有均匀辐向分布的电场(电场⽅向指向O点),已知图中虚线圆弧的半径为R,其所在处场强⼤⼩为E,若离⼦恰好沿图中虚线做圆周运动后从⼩孔C垂直于MN进⼊下⽅磁场.()1求粒⼦运动的速度⼤⼩;()2粒⼦在磁场中运动,与MN板碰撞,碰后以原速率反弹,且碰撞时⽆电荷的转移,之后恰好从⼩孔D进⼊MN上⽅的⼀个三⾓形匀强磁场,从A点射出磁场,则三⾓形磁场区域最⼩⾯积为多少?MN上下两区域磁场的磁感应强度⼤⼩之⽐为多少?()3粒⼦从A点出发后,第⼀次回到A点所经过的总时间为多少?【答案】(1EqRm(2)212R;11n+;(3)2πmREq【解析】【分析】【详解】(1)由题可知,粒⼦进⼊静电分析器做圆周运动,则有:2mv EqR=解得:EqRvm=(2)粒⼦从D到A匀速圆周运动,轨迹如图所⽰:由图⽰三⾓形区域⾯积最⼩值为:22RS=在磁场中洛伦兹⼒提供向⼼⼒,则有:2mvBqvR=得:mvRBq=设MN下⽅的磁感应强度为B1,上⽅的磁感应强度为B2,如图所⽰:若只碰撞⼀次,则有:112R mvRB q==22mvR RB q==故2112B B = 若碰撞n 次,则有:111R mv R n B q==+ 22mvR R B q==故2111B B n =+ (3)粒⼦在电场中运动时间:1242R mRt v Eqππ== 在MN 下⽅的磁场中运动时间:211122n m mRt R R v EqR Eqπππ+=== 在MN 上⽅的磁场中运动时间:232142R mRt v Eqππ=?=总时间:1232mRt t t t Eqπ=++=3.空间中存在⽅向垂直于纸⾯向⾥的匀强磁场,磁感应强度为B ,⼀带电量为+q 、质量为m 的粒⼦,在P 点以某⼀初速开始运动,初速⽅向在图中纸⾯内如图中P 点箭头所⽰.该粒⼦运动到图中Q 点时速度⽅向与P 点时速度⽅向垂直,如图中Q 点箭头所⽰.已知P 、Q 间的距离为L .若保持粒⼦在P 点时的速度不变,⽽将匀强磁场换成匀强电场,电场⽅向与纸⾯平⾏且与粒⼦在P 点时速度⽅向垂直,在此电场作⽤下粒⼦也由P 点运动到Q 点.不计重⼒.求:(1)电场强度的⼤⼩.(2)两种情况中粒⼦由P 运动到Q 点所经历的时间之⽐.【答案】22B qLE m=;2B E t t π=【解析】【分析】【详解】(1)粒⼦在磁场中做匀速圆周运动,以v 0表⽰粒⼦在P 点的初速度,R 表⽰圆周的半径,则有200v qv B m R= 由于粒⼦在Q点的速度垂直它在p 点时的速度,可知粒⼦由P 点到Q 点的轨迹为14圆周,故有2R =以E 表⽰电场强度的⼤⼩,a 表⽰粒⼦在电场中加速度的⼤⼩,t E 表⽰粒⼦在电场中由p 点运动到Q 点经过的时间,则有qE ma = ⽔平⽅向上:212E R at =竖直⽅向上:0E R v t =由以上各式,得 22B qL E m= 且E mt qB = (2)因粒⼦在磁场中由P 点运动到Q 点的轨迹为14圆周,即142Bt T m qB π== 所以2B E t t π4.如图所⽰,两块平⾏⾦属极板MN ⽔平放置,板长L =" 1" m .间距d =3m ,两⾦属板间电压U MN = 1×104V ;在平⾏⾦属板右侧依次存在ABC 和FGH 两个全等的正三⾓形区域,正三⾓形ABC 内存在垂直纸⾯向⾥的匀强磁场B 1,三⾓形的上顶点A 与上⾦属板M 平齐,BC 边与⾦属板平⾏,AB 边的中点P 恰好在下⾦属板N 的右端点;正三⾓形FGH 内存在垂直纸⾯向外的匀强磁场B 2,已知A 、F 、G 处于同⼀直线上.B 、C 、H 也处于同⼀直线上.AF 两点距离为23m .现从平⾏⾦属极板MN 左端沿中⼼轴线⽅向⼊射⼀个重⼒不计的带电粒⼦,粒⼦质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .(1)求带电粒⼦从电场中射出时的速度v 的⼤⼩和⽅向(2)若带电粒⼦进⼊中间三⾓形区域后垂直打在AC 边上,求该区域的磁感应强度B 1(3)若要使带电粒⼦由FH 边界进⼊FGH 区域并能再次回到FH 界⾯,求B 2应满⾜的条件.【答案】(1)52310/m s ?;垂直于AB ⽅向出射.(2)33T (3)23T + 【解析】试题分析:(1)设带电粒⼦在电场中做类平抛运动的时间为t ,加速度为a ,则:U qma d =解得:102310/qU a m s md ==? 50110Lt s v -==? 竖直⽅向的速度为:v y =at =3×105m/s 射出时速度为:22502310/y v v v m s =+=速度v 与⽔平⽅向夹⾓为θ,03tan y v v θ==,故θ=30°,即垂直于AB ⽅向出射.(2)带电粒⼦出电场时竖直⽅向的偏转的位移21322d y at m ===,即粒⼦由P 1点垂直AB 射⼊磁场,由⼏何关系知在磁场ABC 区域内做圆周运动的半径为12cos303d R m ==11v B qv m R =知:113310mv B T qR == (3)分析知当轨迹与边界GH 相切时,对应磁感应强度B 2最⼤,运动轨迹如图所⽰:由⼏何关系得:221sin 60R R += 故半径2(233)R m =⼜222v B qv m R =故2235B T +=所以B 2应满⾜的条件为⼤于235T +.考点:带电粒⼦在匀强磁场中的运动.5.如图所⽰,在平⾯直⾓坐标系xOy 平⾯内,直⾓三⾓形abc 的直⾓边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三⾓形内有垂直纸⾯向⾥的匀强磁场.在笫⼀象限内,有⽅向沿y 轴正向的匀强电场,场强⼤⼩E 与匀强磁场磁感应强度B 的⼤⼩间满⾜E=v 0B .在x=3d 的N 点处,垂直于x 轴放置⼀平⾯荧光屏.电⼦束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射⼊磁场,其中从y 轴上y=-2d 处射⼊的电⼦,经磁场偏转后,恰好经过O 点.电⼦质量为m,电量为e,电⼦间的相互作⽤及重⼒不计.求 (1)匀强磁杨的磁感应强度B(2)电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ;(2)02y d ≤≤;(3)94d ;【解析】(1)设电⼦在磁场中做圆周运动的半径为r ;由⼏何关系可得r =d电⼦在磁场中做匀速圆周运动洛伦兹⼒提供向⼼⼒,由⽜顿第⼆定律得:20v ev B m r=解得:0mv B ed=(2)当电⼦在磁场中运动的圆轨迹与ac 边相切时,电⼦从+ y 轴射⼊电场的位置距O 点最远,如图甲所⽰.设此时的圆⼼位置为O ',有:sin 30rO a '=3OO d O a ='-' 解得OO d '=即从O 点进⼊磁场的电⼦射出磁场时的位置距O 点最远所以22m y r d ==电⼦束从y 轴正半轴上射⼊电场时的纵坐标y 的范围为02y d ≤≤设电⼦从02y d ≤≤范围内某⼀位置射⼊电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度⽅向与x 轴间夹⾓为θ,在电场中运动的时间为t ,电⼦打到荧光屏上产⽣的发光点距N 点的距离为L ,如图⼄所⽰:根据运动学公式有:0x v t =212eE y t m=y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =即98y d =时,L 有最⼤值解得:94L d =当322d y y -=【点睛】本题属于带电粒⼦在组合场中的运动,粒⼦在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据⼏何关系确定某些物理量之间的关系;粒⼦在电场中的偏转经常⽤化曲为直的⽅法,求极值的问题⼀定要先找出临界的轨迹,注重数学⽅法在物理中的应⽤.6.在如图所⽰的xoy 坐标系中,⼀对间距为d 的平⾏薄⾦属板竖直固定于绝缘底座上,底座置于光滑⽔平桌⾯的中间,极板右边与y 轴重合,桌⾯与x 轴重合,o 点与桌⾯右边相距为74d,⼀根长度也为d 的光滑绝缘细杆⽔平穿过右极板上的⼩孔后固定在左极板上,杆离桌⾯⾼为1.5d ,装置的总质量为3m .两板外存在垂直纸⾯向外、磁感应强度为B 的匀强磁场和匀强电场(图中未画出),假设极板内、外的电磁场互不影响且不考虑边缘效应.有⼀个质量为m 、电量为+q 的⼩环(可视为质点)套在杆的左端,给极板充电,使板内有沿x 正⽅向的稳恒电场时,释放⼩环,让其由静⽌向右滑动,离开⼩孔后便做匀速圆周运动,重⼒加速度取g .求:(1)环离开⼩孔时的坐标值;(2)板外的场强E 2的⼤⼩和⽅向;(3)讨论板内场强E 1的取值范围,确定环打在桌⾯上的范围.【答案】(1)环离开⼩孔时的坐标值是-14d ;(2)板外的场强E 2的⼤⼩为mgq,⽅向沿y 轴正⽅向;(3)场强E 1的取值范围为223 68qB d qB dm m~,环打在桌⾯上的范围为1744d d -~.【解析】【详解】(1)设在环离开⼩孔之前,环和底座各⾃移动的位移为x 1、x 2.由于板内⼩环与极板间的作⽤⼒是它们的内⼒,系统动量守恒,取向右为正⽅向,根据动量守恒定律,有:mx1-3mx2=0 ①⽽x1+x2=d ②①②解得:x1=34d③x2=1 4 d环离开⼩孔时的坐标值为:x m=34d-d=-14d(2)环离开⼩孔后便做匀速圆周运动,须qE2=mg解得:2mgEq=,⽅向沿y轴正⽅向(3)环打在桌⾯上的范围可画得如图所⽰,临界点为P、Q,则若环绕⼩圆运动,则R=0.75d ④根据洛仑兹⼒提供向⼼⼒,有:2v qvB mR=⑤环在极板内做匀加速运动,设离开⼩孔时的速度为v,根据动能定理,有:qE1x1=12mv2⑥联⽴③④⑤⑥解得:2 138qB d Em=若环绕⼤圆运动,则R2=(R-1.5d)2+(2d)2 解得:R=0.48d ⑦联⽴③⑤⑥⑦解得:2 16qB d Em≈故场强E1的取值范围为22368qB d qB dm m~,环打在桌⾯上的范围为1744d d-~.7.如图所⽰,在不考虑万有引⼒的空间⾥,有两条相互垂直的分界线MN、PQ,其交点为O.MN⼀侧有电场强度为E的匀强电场(垂直于MN),另⼀侧有匀强磁场(垂直纸⾯向⾥).宇航员(视为质点)固定在PQ线上距O点为h的A点处,⾝边有多个质量均为m、电量不等的带负电⼩球.他先后以相同速度v0、沿平⾏于MN⽅向抛出各⼩球.其中第1个⼩球恰能通过MN上的C点第⼀次进⼊磁场,通过O点第⼀次离开磁场,OC=2h.求:(1)第1个⼩球的带电量⼤⼩;(2)磁场的磁感强度的⼤⼩B;(3)磁场的磁感强度是否有某值,使后⾯抛出的每个⼩球从不同位置进⼊磁场后都能回到宇航员的⼿中?如有,则磁感强度应调为多⼤.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=Eh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B 由2 1v qvB mR=由⼏何关系得:22sinR hθ=解得:2EBv=;(3)后⾯抛出的⼩球电量为q,磁感应强度B'①⼩球作平抛运动过程2hmx v t vqE==2yqEv hm=②⼩球穿过磁场⼀次能够⾃⾏回到A,满⾜要求:sin R xθ=,变形得:sinmvxqBθ''=.8.如图所⽰,质量m=15g、长度L=2m的⽊板D静置于⽔平地⾯上,⽊板D与地⾯间的动摩擦因数µ=0.1,地⾯右端的固定挡板C与⽊板D等⾼。
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
P是圆外一点,OP=3r。
一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。
己知粒子运动轨迹经过圆心O,不计重力。
求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题一、带电粒子在磁场中的运动专项训练1.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值.【答案】(1)22e eU v v m=+4alt N ed π=(3) 43mv B ae = 【解析】【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=ne I t 求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B.【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eU v v m=+(2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则=ne I t 224d dN n N a aππ==⨯解得4alt Nedπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B.设此轨迹圆的半径为r,则222(2)a r r a-=+2vBev mr=解得:43mvBae=2.如图所示,在xOy坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
第Ⅳ象限内(含坐标轴)有垂直坐标平面向里的匀强磁场,第Ⅲ象限内有沿x轴正向、电场强度大小为E的匀强磁场。
一质量为m、电荷量为q的带正电粒子,从x轴上的P点以大小为v0的速度垂直射入电场,不计粒子重力和空气阻力,P、O两点间的距离为22mvqE。
(1)求粒子进入磁场时的速度大小v以及进入磁场时到原点的距离x;(2)若粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,求磁场磁感应强度的大小需要满足的条件。
【答案】(12v;2mvqE(2)(21)EBv≥【解析】【详解】(1)由动能定理有:22211222mvqE mv mvqE⋅=-解得:v2v0设此时粒子的速度方向与y轴负方向夹角为θ,则有cosθ=02 2vv=解得:θ=45°根据tan21xyθ=⋅=,所以粒子进入磁场时位置到坐标原点的距离为PO两点距离的两倍,故2mvxqE=(2)要使粒子由第Ⅳ象限的磁场直接回到第Ⅲ象限的电场中,其临界条件是粒子的轨迹与x轴相切,如图所示,由几何关系有:s=R+R sinθ又:2vqvB mR=解得:(21)EBv+=故(21)EBv≥3.如图所示,在平面直角坐标系xOy的第二、第三象限内有一垂直纸面向里、磁感应强度为B的匀强磁场区域△ABC,A点坐标为(0,3a),C点坐标为(0,﹣3a),B点坐标为(3a-,-3a).在直角坐标系xOy的第一象限内,加上方向沿y轴正方向、场强大小为E=Bv0的匀强电场,在x=3a处垂直于x轴放置一平面荧光屏,其与x轴的交点为Q.粒子束以相同的速度v0由O、C间的各位置垂直y轴射入,已知从y轴上y=﹣2a的点射入磁场的粒子在磁场中的轨迹恰好经过O点.忽略粒子间的相互作用,不计粒子的重力.(1)求粒子的比荷;(2)求粒子束射入电场的纵坐标范围;(3)从什么位置射入磁场的粒子打到荧光屏上距Q点最远?求出最远距离.【答案】(1)0v Ba (2)0≤y≤2a (3)78y a =,94a 【解析】【详解】 (1)由题意可知, 粒子在磁场中的轨迹半径为r =a由牛顿第二定律得Bqv 0=m 20v r故粒子的比荷0v q m Ba= (2)能进入电场中且离O 点上方最远的粒子在磁场中的运动轨迹恰好与AB 边相切,设粒子运动轨迹的圆心为O ′点,如图所示.由几何关系知O ′A =r ·AB BC=2a 则OO ′=OA -O ′A =a即粒子离开磁场进入电场时,离O 点上方最远距离为OD =y m =2a所以粒子束从y 轴射入电场的范围为0≤y ≤2a(3)假设粒子没有射出电场就打到荧光屏上,有3a =v 0·t 0 2019222qE y t a a m ==>,所以,粒子应射出电场后打到荧光屏上粒子在电场中做类平抛运动,设粒子在电场中的运动时间为t ,竖直方向位移为y ,水平方向位移为x ,则水平方向有x =v 0·t竖直方向有212qE y t m = 代入数据得 x=2ay设粒子最终打在荧光屏上的点距Q 点为H ,粒子射出电场时与x 轴的夹角为θ,则002tan y x qE x v m v y v v aθ⋅=== 有H =(3a -x )·tan θ=(32)2a y y -当322a y y -=时,即y =98a 时,H 有最大值 由于98a <2a ,所以H 的最大值H max =94a ,粒子射入磁场的位置为 y =98a -2a =-78a4.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30o ,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小.(2)区域Ⅱ内匀强磁场的磁感应强度B 的大小.(3)微粒从P 运动到Q 的时间有多长.【答案】(1)1E q=,2mg E q =2【解析】【详解】 (1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒=求得:1E q= 微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mg E q= (2)粒子进入磁场区域时满足:2111cos452qE d mv ︒= 2v qvB m R= 根据几何关系,分析可知:222sin30d R d ==︒整理得:2B = (3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360R t vπ︒=⨯︒经整理得:12112t t t =+==5.科学家设想在宇宙中可能存在完全由反粒子构成的反物质.例如:正电子就是电子的反粒子,它跟电子相比较,质量相等、电量相等但电性相反.如图是反物质探测卫星的探测器截面示意图.MN 上方区域的平行长金属板AB 间电压大小可调,平行长金属板AB 间距为d ,匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.MN 下方区域I 、II 为两相邻的方向相反的匀强磁场区,宽度均为3d ,磁感应强度均为B ,ef 是两磁场区的分界线,PQ 是粒子收集板,可以记录粒子打在收集板的位置.通过调节平行金属板AB 间电压,经过较长时间探测器能接收到沿平行金属板射入的各种带电粒子.已知电子、正电子的比荷是b ,不考虑相对论效应、粒子间的相互作用及电磁场的边缘效应.(1)要使速度为v 的正电子匀速通过平行长金属极板AB ,求此时金属板AB 间所加电压U ;(2)通过调节电压U 可以改变正电子通过匀强磁场区域I 和II 的运动时间,求沿平行长金属板方向进入MN 下方磁场区的正电子在匀强磁场区域I 和II 运动的最长时间t m ;(3)假如有一定速度范围的大量电子、正电子沿平行长金属板方向匀速进入MN 下方磁场区,它们既能被收集板接收又不重叠,求金属板AB 间所加电压U 的范围.【答案】(1)Bvd (2)Bb π(3)3B 2d 2b <U <221458B d b 【解析】【详解】 (1)正电子匀速直线通过平行金属极板AB ,需满足Bev=Ee因为正电子的比荷是b ,有 E=U d联立解得:u Bvd =(2)当正电子越过分界线ef 时恰好与分界线ef 相切,正电子在匀强磁场区域I 、II 运动的时间最长。
4T t = m t =2t2111v ev B m R = T =122R m v Be=ππ联立解得:t Bb π= (3)临界态1:正电子恰好越过分界线ef ,需满足轨迹半径R 1=3d1ev B =m 211v R 11U ev B e d=⑪ 联立解得:2213U d B b =临界态2:沿A 极板射入的正电子和沿B 极板射入的电子恰好射到收集板同一点 设正电子在磁场中运动的轨迹半径为R 1有(R 2﹣14d )2+9d 2=22R 2Bev =m 222v R Be 2v =2U e d联立解得: 2221458B d b U = 解得:U 的范围是:3B 2d 2b <U <221458B d b6.如图所示,一匀强磁场磁感应强度为B ;方向向里,其边界是半径为R 的圆,AB 为圆的一直径.在A 点有一粒子源向圆平面内的各个方向发射质量m 、电量-q 的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.7.核聚变是能源的圣杯,但需要在极高温度下才能实现,最大难题是没有任何容器能够承受如此高温。