高中数学高考二轮复习极坐标与参数方程文教案含答案(全国通用)
2020年高考数学(文)二轮专项复习专题13 坐标系与参数方程含答案
专题13 坐标系与参数方程【知识要点】1.极坐标系的概念,极坐标系中点的表示.在平面内取一个定点O ,O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系.O 称为极点,Ox 称为极轴.设M 是平面内任意一点,极点O 与点M 的距离|OM |叫做点M 的极径,记作ρ ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记作θ ,有序数对(ρ ,θ )叫做点M 的极坐标.一般情况下,约定ρ ≥0.2.极坐标系与直角坐标系的互化.直角坐标化极坐标:x =ρ cos θ ,y =ρ sin θ ; 极坐标化直角坐标:, 3.参数方程的概念设在平面上取定一个直角坐标系xOy ,把坐标x ,y 表示为第三个变量t 的函数……①,如果对于t 的每一个值(a ≤t ≤b ),①式所确定的点M (x ,y )都在一条曲线上;而这条曲线上任意一点M (x ,y ),都可由t 的某个值通过①式得到,则称①式为该曲线的参数方程,其中t 称为参数.4.参数方程与普通方程的互化把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法.常见的消参方法有:代入消元法;加减消参法;平方和(差)消参法;乘法消参法等.把曲线C 的普通方程F (x ,y )=0化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.要注意方程中的参数的变化范围. 5.直线、圆、椭圆的参数方程.(1)经过一定点P 0(x 0,y 0),倾斜角为α 的直线l 的参数方程为(t 为参数);(2)直线参数方程的一般形式为(t 为参数);222y x +=ρ).0(tan =/=x xyθ⎩⎨⎧==)()(t g y t f x b t a ≤≤⎩⎨⎧+=+=ααsin ,cos 00t y y t x x ⎩⎨⎧+=+=bt y y at x x 00,(3)圆的参数方程为(θ 为参数);(4)椭圆的参数方程为(θ 为参数).【复习要求】1.理解坐标系的作用.2.能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.3.了解参数方程.4.能选择适当的参数写出直线、圆和圆锥曲线的参数方程,并会简单的应用. 【例题分析】例1 (1)判断点是否在曲线上. (2)点P 的直角坐标为,则点P 的极坐标为______.(限定0<θ ≤2π)(3)点P 的极坐标为,则点P 的直角坐标为______.解:(1)因为,所以点是在曲线上. (2)根据ρ 2=x 2+y 2,, 得ρ =2,,又点P 在第四象限,,所以,所以点P 的极坐标为 (3)根据x =ρ cos θ ,y =ρ sin θ ,得, 所以点P 的直角坐标为 例2 (1)圆ρ =2(cos θ +sin θ )的半径为______.⎩⎨⎧+=+=θθsin ,cos 00r y y r x x )0(12222>>=+b a b y a x ⎩⎨⎧==θθsin ,cos b y a x )35π,23(-2cos θρ=)3,1(-)4π,3(-2365πcos2cos-==θ)35π,23(-2cos θρ=)0(tan =/=x xy θ3tan -=θ2π23π≤<θ35π=θ).3π5,2(223,223-==y x ).223,223(-(2)直线与圆ρ =2sin θ 交与A ,B 两点,则|AB |=______. 解:(1)由ρ =2(cos θ +sin θ ),得ρ 2=2ρ (cos θ +sin θ ), 所以,x 2+y 2=2x +2y ,即(x -1)2+(y -1)2=2, 所以圆ρ =2(cos θ +sin θ )的半径为. (2)将直线与圆ρ =2sin θ 化为直角坐标方程,得 由得,即, 由ρ =2sin θ ,变形为ρ 2=2ρ sin θ ,得x 2+y 2=2y ,即x 2+(y -1)2=1, 因为圆的半径为1,圆心到直线的距离为, 所以评述:(1)应熟练运用直角坐标与极坐标互化的方法解决有关极坐标的问题;(2)由直角坐标化极坐标时要注意点位于哪一个象限才能确定θ 的大小,如例1(2),否则,极坐标不唯一; (3)例2也可以用极坐标有关知识直接解决.这需要知道一些直线与圆的极坐标方程的知识.如: ①过极点,倾斜角为α 的直线:θ =α (ρ ∈R )或写成θ =α 及θ =α +π. ②过A (a ,α)垂直于极轴的直线:ρ cos θ =a cos α . ③以极点O 为圆心,a 为半径的圆(a >0):ρ =a .④若O (0,0),A (2a ,0),以OA 为直径的圆:ρ =2a cos θ . ⑤若O (0,0),A (2a ,),以OA 为直径的圆:ρ =2a sin θ . 对于例2(2),可以利用结论①⑤,作出直线与圆,通过解三角形的方法求|AB |,当然也可以用极坐标方程直接解ρ ,根据ρ 的几何意义求|AB |.例3 圆O 1和圆O 2的极坐标方程分别为ρ =4cos θ ,ρ =-4sin θ . (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过圆O 1和圆O 2交点的直线的直角坐标方程.)(3πR ∈=ρθ2)(3πR ∈=ρθ3π=θxy=3πtan x y 3=21311=+=d .3)21(12||2=-=AB 2π解:(1)由ρ =4cos θ 得ρ 2=4ρ cos θ ,根据x =ρ cos θ ,y =ρ sin θ ,所以x 2+y 2=4x . 即x 2+y 2-4x =0为圆O 1的直角坐标方程,同理x 2+y 2+4y =0为圆O 2的直角坐标方程.(2)由解得 即圆O 1和圆O 2交于点(0,0)和(2,-2).过交点的直线的直角坐标方程为y =-x .例4(1)曲线的参数方程是(t 为参数,t ≠0),它的普通方程是________. (2)在平面直角坐标系xOy 中,直线l 的参数方程为 (参数t ∈R ),圆C 的参数方程为(参数θ ∈[0,2π]),则圆C 的圆心坐标为______,圆心到直线l 的距离为______. 解:(1)由得,带入y =1-t 2,得 注意到,所以已知参数的普通方程为 (2)直线l 的普通方程为x +y -6=0,圆C 的普通方程为x 2+(y -2)2=4, 所以圆心坐标为(0,2),圆心到直线l 的距离评述:(1)应熟练运用将参数方程化为普通方程的方法解决有关参数方程的问题;(2)在将参数方程化为普通方程的过程中应注意消参带来的范围变化问题.如例4(1),若参数方程为(t 为参数,t >0),则其普通方程为 例5 求椭圆的内接矩形的最大面积.解:设内接矩形在第一象限内的顶点为P (a cos θ ,b sin θ ),P 点在两轴上的投影分别为A 、B ,则有S 内接矩形=4S 矩形OAPB =4·a cos θ ·b sin θ =2ab sin2θ . 因为,所以2θ ∈(0,π),S 内接矩形的最大值为2ab . ⎪⎩⎪⎨⎧=++=-+,04,042222y y x x y x ⎩⎨⎧==;0,011y x ⎩⎨⎧-==.2,222y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=21,11t y t x ⎩⎨⎧-=+=t y t x 3,3⎩⎨⎧+==2sin 2,cos 2θθy x t x 11-=x t -=11,)1()2()11(122--=--=x x x x y 111=/-=t x ⋅--=2)1()2(x x x y .222|620|=-+=d ⎪⎪⎩⎪⎪⎨⎧-=-=21,11t y t x ).1()1()2(2<--=x x x x y 12222=+by a x )2π,0(∈θ评述:圆锥曲线参数方程主要应用于利用参数方程设圆锥曲线上的点,从而讨论最值等有关问题.椭圆的参数方程为 (θ 为参数).抛物线y 2=2px (p >0)的参数方程为.例6 圆M 的参数方程为x 2+y 2-4Rx cos α -4Ry sin α +3R 2=0(R >0). (1)求该圆的圆心坐标以及圆M 的半径;(2)当R 固定,α 变化时,求圆心M 的轨迹,并证明此时不论α 取什么值,所有的圆M 都外切于一个定圆. 解:(1)依题意得圆M 的方程为(x -2R cos α )2+(y -2R sin α )2=R 2, 故圆心的坐标为M (2R cos α ,2R sin α ),半径为R .(2)当α 变化时,圆心M 的轨迹方程为 (α 为参数),两式平方相加得x 2+y 2=4R 2,所以圆心M 的轨迹是圆心在原点,半径为2R 的圆.由于所以所有的圆M 都和定圆x 2+y 2=R 2外切,和定圆x 2+y 2=9R 2内切.例7 过P (5,-3),倾斜角为α ,且的直线交圆x 2+y 2=25于P 1、P 2两点.(1)求|PP 1|·|PP 2|的值;(2)求弦P 1P 2的中点M 的坐标.解:(1)由已知得所以已知直线的参数方程为…………………①(t 为参数)代入圆的方程化简,得…………………② ②的两个解t 1、t 2就是P 1、P 2对应的参数,由参数的几何意义及韦达定理知)0,0(12222>>=+b a b y a x ⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==pty ptx 222⎩⎨⎧==,sin 2,cos 2ααR y R x ,32)sin 2()cos 2(22R R R R R -==+αα,2)sin 2()cos 2(22R R R R R +==+αα53cos -=α53cos -=α,54sin =α⎪⎪⎩⎪⎪⎨⎧+-=-=,543,535t y t x .095542=+-t t|PP 1|·|PP 2|=|t 1|·|t 2|=9.(2)设M (x ,y )为P 1P 2的中点,则点M 对应的参数,代入参数方程, 得 所以 评述:根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点t 1+t 2=0;③设弦M 1M 2的中点为M ,则点M 对应的参数值,(由此可求得|M 2M |及中点坐标). 习题13一、选择题 1.极坐标的直角坐标为 (A)(1,)(B)(-,-1)(C)(-1,-)(D)(-1,)2.椭圆(θ 为参数)的焦距等于( )(A) (B)2 (C) (D)3.已知某条曲线的参数方程为(0≤t ≤5),则该曲线是( )(A)线段 (B)圆弧 (C)双曲线的一支 (D)射线4.若是极坐标系中的一点,则四点中与P 重合的点有( )(A)1个(B)2个(C)3个(D)4个527221=+=t t t ,2533,2544==y x M PP PP ,9||||21=⋅).2533,2544(⇒221t t t M +=)34π(2,3333⎩⎨⎧==θθsin 5,cos 2y x 212129292⎪⎩⎪⎨⎧-=+=1,2322t y t x )3π,2(--P 、、、)3π5,2()3π8,2()3π2,2(-M R Q )3π5π2,2(-k N )(Z ∈k5.在极坐标系中,若等边△ABC 的两个顶点是,那么顶点C 的坐标可能是( ) (A) (B) (C)(D)(3,π)二、选择题6.过极点,倾斜角是的直线的极坐标方程为____________. 7.点M 的直角坐标(3,-3)化为极坐标是____________. 8.直线(t 为参数)过定点____________.9.曲线(t 为参数)与y 轴的交点坐标是____________.10.参数方程(θ 为参数)表示的曲线的普通方程是____________.三、解答题11.求过点,并且和极轴垂直的直线的极坐标方程.12.在椭圆上求一点,使点M 到直线的距离最小,并求出最小距离.13.设圆C 是以C (4,0)为圆心,半径等于4的圆.(1)求圆C 的极坐标方程;(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程.)4π5,2()4π,2(B A 、)4π3,4()43π,32()π,32(6π⎩⎨⎧+-=+=t y at x 41,3⎩⎨⎧=+-=t y t x ,12⎩⎨⎧+==θθθcos sin ,2sin y x )4π,3(14922=+y x 021032=-+y x14.已知点M (2,1)和双曲线,求以M 为中点的双曲线右支的弦AB 所在直线l 的方程.专题13 坐标系与参数方程参考答案习题13一、选择题1.C 2.B 3.A 4.C 5.B 二、填空题 6.; 7.; 8.(3,-1); 9.(0,1),(0,-1); 三、解答题 11. 12.解:由题设知椭圆参数方程为(θ 为参数).设M 的坐标(3cos θ ,2sin θ )由点到直线距离 即d 的最小值为,此时.所以M 的坐标为13.解:(1)设P (ρ ,θ )为圆C 上任意一点,圆C 交极轴于另一点A .由已知|OA |=8,在Rt △ABC 中,|OP |=|OA |cos θ ,即ρ =8cos θ ,这就是圆C 的方程.1222=-y x )(6πR ∈=ρθ)47π,23(⋅=223cos θρ⎩⎨⎧==θθsin 2,cos 3y x ,13|210)4πsin(26|13|210sin 6cos 6|-+=-+=θθθd 261344π=θ).2,223((2)连结CM ,因为M 是ON 的中点,所以CM ⊥ON ,故M 在以OC 为直径的圆上. 由r =|OC |=4,得动点M 的轨迹方程是ρ =4cos θ .14.解:设AB 的方程为(t 为参数),代入双曲线方程,得(2cos 2α -sin 2α )t 2+(8cos α -2sin α )t +5=0,由于M 为AB 的中点,则t 1+t 2=0,则tan α =4,从而AB 的方程为:4x -y -7=0.⎩⎨⎧+=+=ααsin 1,cos 2t y t x。
高中数学教案学案坐标系与参数方程含习题答案与解析.doc
高中数学教案学案坐标系与参数方程学习目标:1.了解坐标系的有关概念,理解简单图形的极坐标方程.2.会进行极坐标方程与直角坐标方程的互化.3.理解直线、圆及椭圆的参数方程,会进行参数方程与普通方程的互化,并能进行简单应用.1.极坐标系的概念在平面上取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做________;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个____________.设M 是平面上任一点,极点O 与点M 的距离OM 叫做点M 的________,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的________,记为θ.有序数对(ρ,θ)叫做点M 的__________,记作(ρ,θ).2.极坐标和直角坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M 是平面内任意一点,它的直角坐标是(x ,y),极坐标为(ρ,θ),则它们之间的关系为x =__________,y =__________.另一种关系为:ρ2=__________,tan θ=______________.3.简单曲线的极坐标方程(1)一般地,如果一条曲线上任意一点都有一个极坐标适合方程φ(ρ,θ)=0,并且坐标适合方程φ(ρ,θ)=0的点都在曲线上,那么方程φ(ρ,θ)=0叫做曲线的____________.(2)常见曲线的极坐标方程 ①圆的极坐标方程____________表示圆心在(r,0)半径为|r|的圆;____________表示圆心在(r ,π2)半径为|r|的圆;________表示圆心在极点,半径为|r|的圆. ②直线的极坐标方程____________表示过极点且与极轴成α角的直线; ____________表示过(a,0)且垂直于极轴的直线;____________表示过(b ,π2)且平行于极轴的直线;ρsin (θ-α)=ρ0sin (θ0-α)表示过(ρ0,θ0)且与极轴成α角的直线方程. 4.常见曲线的参数方程 (1)直线的参数方程若直线过(x 0,y 0),α为直线的倾斜角,则直线的参数方程为⎩⎪⎨⎪⎧x =x 0+l cos α,y =y 0+l sin α.这是直线的参数方程,其中参数l 有明显的几何意义.(2)圆的参数方程若圆心在点M(a ,b),半径为R ,则圆的参数方程为⎩⎪⎨⎪⎧x =a +r cos α,y =b +r sin α,0≤α<2π.(3)椭圆的参数方程中心在坐标原点的椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数).(4)抛物线的参数方程抛物线y 2=2px(p>0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt. 1.(2010·北京)极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( )A .两个圆B .两条直线C .一个圆和一条射线D .一条直线和一条射线2.(2010·湖南)极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+3t (t 为参数)所表示的图形分别是( )A .圆、直线B .直线、圆C .圆、圆D .直线、直线3.(2010·重庆)直线y =33x +2与圆心为D 的圆⎩⎨⎧x =3+3cos θ,y =1+3sin θ(θ∈[0,2π))交于A 、B 两点,则直线AD 与BD 的倾斜角之和为( )A .76πB .54πC .43πD .53π 4.(2011·广州一模)在极坐标系中,直线ρsin (θ+π4)=2被圆ρ=4截得的弦长为________.5.(2010·陕西)已知圆C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin θ=1,则直线l 与圆C 的交点的直角坐标为________________.考点一 求曲线的极坐标方程例1 在极坐标系中,以(a 2,π2)为圆心,a2为半径的圆的方程为________.举一反三1 如图,求经过点A(a,0)(a>0),且与极轴垂直的直线l 的极坐标方程.考点二 极坐标方程与直角坐标方程的互化 例2 (2009·辽宁)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立坐标系.曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M 、N 分别为C 与x 轴,y 轴的交点. (1)写出C 的直角坐标方程,并求M 、N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.举一反三2 (2010·东北三校第一次联考)在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin (θ-π4)=22,(1)求圆O 和直线l 的直角坐标方程;(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标.考点三 参数方程与普通方程的互化例3 将下列参数方程化为普通方程:(1)⎩⎨⎧x =3k 1+k 2y =6k21+k2;(2)⎩⎪⎨⎪⎧x =1-sin 2θy =sin θ+cos θ;(3)⎩⎪⎨⎪⎧x =1-t 21+t 2y =t 1+t 2.举一反三3 化下列参数方程为普通方程,并作出曲线的草图.(1)⎩⎪⎨⎪⎧x =12sin 2θy =sin θ+cos θ(θ为参数);(2)⎩⎨⎧x =1ty =1tt 2-1(t 为参数).考点四 参数方程与极坐标的综合应用例4 求圆ρ=3cos θ被直线⎩⎪⎨⎪⎧x =2+2t y =1+4t (t 是参数)截得的弦长.举一反三4 (2011·课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α.(α为参数)M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB|.一、选择题(每小题5分,共25分)1.在极坐标系中,与点(3,-π3)关于极轴所在直线对称的点的极坐标是( )A .(3,23π)B .(3,π3)C .(3,43π)D .(3,56π)2.曲线的极坐标方程为ρ=2cos 2θ2-1的直角坐标方程为( )A .x 2+(y -12)2=14B .(x -12)2+y 2=14C .x 2+y 2=14D .x 2+y 2=13.(2010·湛江模拟)在极坐标方程中,曲线C 的方程是ρ=4sin θ,过点(4,π6)作曲线C的切线,则切线长为( )A .4B .7C .2 2D .2 34.(2010·佛山模拟)已知动圆方程x 2+y 2-x sin 2θ+22·y sin (θ+π4)=0(θ为参数),那么圆心的轨迹是( )A .椭圆B .椭圆的一部分C .抛物线D .抛物线的一部分5.(2010·安徽)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+3cos θ,y =-1+3sin θ(θ为参数),直线l 的方程为x-3y +2=0,则曲线C 上到直线l 距离为71010的点的个数为( )A .1B .2C .3D .4二、填空题(每小题4分,共12分)6.(2010·天津)已知圆C 的圆心是直线⎩⎪⎨⎪⎧x =t ,y =1+t (t 为参数)与x 轴的交点,且圆C 与直线x +y +3=0相切,则圆C 的方程为________.7.(2011·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.8.(2010·广东深圳高级中学一模)在直角坐标系中圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2+2sin α(α为参数),若以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,则圆C 的极坐标方程为________.三、解答题(共38分)9.(12分)(2011·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.10.(12分)(2010·福建)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3-22t ,y =5+22t (t为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|P A |+|PB |.11.(14分)(2010·课标全国)已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.。
2014年高三数学二轮复习 极坐标及其参数方程
2014年高三数学二轮复习第21讲 坐标系与参数方程1.[2011·新课标全国卷改编] 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数) ①,M 是曲线C 1上的动点,P 点满足OP →=2OM →,则P 点轨迹的参数方程是________.⇒ 直角坐标系中的伸缩变换关键词:伸缩变换、坐标变换,如①.2.[2012·江西卷] 曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程②为________.⇒ 直角坐标、极坐标互化关键词:直角坐标、极坐标、互化公式,如②.3.[2012·上海卷] 如图9-21-1所示,在极坐标系中,过点M (2,0)的直线l 与极轴的夹角α=π6,若将l 的极坐标方程写成ρ=f (θ)的形式③,则f (θ)=________.图9-21-1 ⇒ 曲线的极坐标方程关键词:极坐标系、直线的极坐标方程、曲线的极坐标方程,如③.4.[2013·湖南卷] 在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a(t 为参数) ④过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________. ⇒ 直线的参数方程关键词:直线方程、参数,如④.5.[2013·陕西卷] 如图9-21-2所示,以过原点的直线的倾斜角θ为参数,则圆x 2+y 2-x =0的参数方程⑤为________.⇒ 曲线的参数方程关键词:曲线、参数方程,如⑤.6.[2012·北京卷] 直线⎩⎨⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎨⎧x =3cos α,y =3sin α(α为参数)的交点 ⑥个数为________.⇒ 参数方程化为普通方程关键词:参数方程、普通方程、相互转化,如⑥.► 考向一 极坐标系与简单曲线的极坐标方程考向:求点的极坐标、曲线的极坐标方程,把直角坐标化为极坐标、极坐标化为直角坐标.考例:2011年T23、2012年T23、2013年卷ⅠT23,近五年新课标全国卷共考查了3次.例1 已知圆C 1的参数方程为⎩⎨⎧x =cos φ,y =sin φ(φ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 2的极坐标方程为ρ=2cos ⎝⎛⎭⎪⎫θ+π3. (1)将圆C 1的参数方程化为普通方程,将圆C 2的极坐标方程化为直角坐标方程;(2)圆C 1,C 2是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.小结:在解决以极坐标的形式给出的直线、曲线的综合问题时,把它们化为直角坐标方程后使用直角坐标方法解决是一种重要解题思路.► 考向二 简单曲线的参数方程考向:求曲线的参数方程,化参数方程为普通方程,参数方程的应用.考例:2009年T23、2010年T23、2013年卷ⅡT23,近五年新课标全国卷共考查了3次.例2 已知直线C 1:⎩⎨⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎨⎧x =cos θ,y =sin θ(θ为参数). (1)当α=π3时,求直线C 1与曲线C 2的交点坐标;(2)过坐标原点O 作直线C 1的垂线,垂足为点A ,P 为OA 中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.小结:求以参数形式给出的两条曲线的交点坐标时,一般把它们化为普通方程.求曲线的参数方程就是使用一个参数表达动点的坐标.注意运用三角函数的知识化曲线参数方程为普通方程.► 考向三 极坐标与参数方程的综合考向:极坐标方程与参数方程交汇考查是坐标系与参数方程试题的基本考查方式. 考例:2011年T23、2012年T23、2013年卷ⅠT23,近五年新课标全国卷共考查了3次.例3在极坐标系中,圆C 的极坐标方程为ρ=2 3cos θ-2sin θ,点A 的极坐标为(3,2π),把极点作为平面直角坐标系的原点,极轴作为x 轴的正半轴,并在两种坐标系中取相同的长度单位.(1)求圆C 在直角坐标系中的标准方程;(2)设P 为圆C 上任意一点,圆心C 为线段AB 的中点,求|P A |+|PB |的最大值. 小结:曲线的极坐标方程、参数方程在解决一些与距离有关的问题时显得非常的方便.在求曲线上的点到点的距离、点到直线的距离的最值问题中使用参数方程更为有效.变式题 在直角坐标系xOy 中,直线l 经过点P (-1,0),其倾斜角为α,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的极坐标方程为ρ2-6ρcos θ+5=0.(1)若直线l 与曲线C 有公共点,求α的取值范围;(2)设M (x ,y )为曲线C 上任意一点,求x +y 的取值范围.[变换与运算]1.数学中绝大多数内容实质就是变换,把问题从一个方面变换为另一个方面,达到便于解决问题的目的,这也是化归与转化思想的体现.2.坐标之间的变换涉及的内容很广泛,其中直角坐标与极坐标互化、参数方程与普通方程互化就是两个重要内容.在解决解析几何问题时,有时直角坐标方程显得方便,有时极坐标方程、参数方程显得方便.在进行运算时能够根据不同的问题选用合理的方程是运算能力的表现.示例 设圆C 的极坐标方程为ρ=2,以极点为直角坐标系的原点,极轴为x 轴正半轴,两坐标系长度单位一致,建立平面直角坐标系.过圆C 上的一点M (m ,s )作垂直于x 轴的直线l :x =m ,设l 与x 轴交于点N ,向量OQ→=OM →+ON →. (1)求动点Q 的轨迹方程;(2)设点R (1,0),求|RQ→|的最小值.小结:本题(2)是求椭圆上的点到一个定点的距离的最值问题,使用普通方程的方法也能解决,但使用椭圆的参数方程问题就归结为三角函数的最值问题,解决起来相对方便.踪练 在直角坐标系xOy 中,直线l 的方程为x -y +4=0,曲线C 的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数). (1)已知在极坐标(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴正半轴为极轴)中,点P 的极坐标为⎝⎛⎭⎪⎫4,π2,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值.[备选理由] 下面两题均是参数方程与极坐标方程的综合,这是高考考查该考点的主要形式,可在本讲结束时选用.例1在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =-2-3t ,y =2-4t ,它与曲线C :(y -2)2-x 2=1交于A ,B 两点.(1)求|AB |的长;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系,设点P 的极坐标为⎝⎛⎭⎪⎫2 2,3π4,求点P 到线段AB 中点M 的距离.例2 直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的方程为ρ=4cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+32t ,y =12t(t 为参数),直线l 与曲线C 的公共点为T .(1)求点T 的极坐标;(2)过点T 作直线l ′,l ′被曲线C 截得的线段长为2,求直线l ′的极坐标方程.。
2020高考数学理科二轮复习导学案+极坐标与参数方程+Word版含解析
坐标系与参数方程考向一:极坐标方程极坐标一般地,不作特殊说明时,我们认为ρ≥0,θ可取任意实数. 极坐标与直角坐标的互化设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),则它们之间的关系为:⎩⎪⎨⎪⎧x =□01ρcos θ,y =□02ρsin θ;⎩⎪⎨⎪⎧ρ2=□03x 2+y 2,tan θ=□04y x (x ≠0).1、[2016•全国Ⅱ,23]在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ). 设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2 =144cos 2α-44.由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 解法二:将l 的参数方程代入C 的方程得于是t 1+t 2=-12cos α,t 1t 2=11. |AB |=|t 1-t 2|=144cos 2α-44 由|AB |=10得cos 2α=38,tan α=±153.所以l 的斜率为153或-153. 条件探究:若直线l 的极坐标方程为θ=π4(ρ∈R ),l 与C 交于M ,N 两点,求△CMN 的面积.设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+ ρ+11=0.于是ρ1+ρ2=- ,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2= 圆C 的半径为5,△CMN 的面积为 .2、【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=π6θ=;若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=;若3ππ4θ≤≤,则2cos θ-=5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.3、[2017•全国Ⅱ,22]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程;(2)设点A 的极坐标为⎝⎛⎭⎫2,π3,点B 在曲线C 2上,求△OAB 面积的最大值. 解 (1)设P 的极坐标为(ρ,θ)(ρ>0),M 的极坐标为(ρ1,θ)(ρ1>0). 由题设知|OP |=ρ,|OM |=ρ1=4cos θ. 由|OM |·|OP |=16得C 2的极坐标方程为ρ=4cos θ(ρ>0). 因此C 2的直角坐标方程为(x -2)2+y 2=4(x ≠0). (2)设点B 的极坐标为(ρB ,α)(ρB >0).由题设知|OA |=2,ρB =4cos α,于是△OAB 的面积 S =12|OA |·ρB ·sin ∠AOB =4cos α·⎪⎪⎪⎪sin ⎝⎛⎭⎫α-π3 =2⎪⎪⎪⎪sin ⎝⎛⎭⎫2α-π3-32≤2+ 3.当α=-π12时,S 取得最大值2+ 3.所以△OAB 面积的最大值为2+ 3.4、【2019年高考全国Ⅱ卷理数】在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l 过点(4,0)A 且与OM 垂直,垂足为P . (1)当0=3θπ时,求0ρ及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【答案】(1)0ρ=l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭; (2)4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ== 由已知得||||cos23OP OA π==. 设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中,cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭, 经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上. 所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭. (2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=. 因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.考向二:参数方程1、[2017•全国Ⅰ,22]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ (θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a .解 (1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),(-2125,2425).(2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17.当a ≥-4时,d 的最大值为a +917. 由题设得a +917=17,所以a =8;当a <-4时,d 的最大值为-a +117. 由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.2、【2019年高考全国Ⅰ卷理数】在直角坐标系xOy 中,曲线C 的参数方程为(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【答案】(1)221(1)4y xx +=≠-;l 的直角坐标方程为2110x+=;(2. 【解析】(1)解法一:,221111t t--<≤+,,,,2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,2cos sin 110ρθθ++=所以C 的直角坐标方程为221(1)4y x x +=≠-.解法二:因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+, 所以C 的直角坐标方程为221(1)4y x x +=≠-. l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.3、[2018•全国Ⅲ,22]在平面直角坐标系xOy 中,⊙O 的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.解:(1)解析一:⊙O 的直角坐标方程为x 2+y 2=1.当α=π2时,l 与⊙O 交于两点.当α≠π2时,记tan α=k ,则l 的方程为y =kx - 2.l 与⊙O 交于两点当且仅当21+k 2<1,解得k <-1或k >1,即α∈(π4,π2)或α∈(π2,3π4).综上α的取值范围是(π4,3π4).解析二:设l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin αt 为参数,代入⊙O 的直角坐标方程得t 2-22t sin α+1=0.直线l 与⊙O 交于A ,B 两点,所以 ,, α的取值范围是(π4,3π4).(2)l 的参数方程为⎩⎨⎧x =t cos α,y =-2+t sin αt 为参数,π4<α<3π4.设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =t A +t B2,且t A ,t B 满足t 2-22t sin α+1=0.于是t A +t B =22sin α,t P =2sin α.又点P 的坐标(x ,y )满足⎩⎨⎧x =t P cos α,y =-2+t P sin α,所以点P 的轨迹的参数方程是⎩⎨⎧x =22sin2α,y =-22-22cos2αα为参数,π4<α<3π4.条件探究:点 (0,-2),过点M 的直线l 与⊙O 交于A ,B 两点,若,求直线l 的方程。
2019届高考数学二轮复习学案:第二部分 专项二 专题七 1 第1讲坐标系与参数方程Word版含答案
专题七 选考部分 第1讲 坐标系与参数方程极坐标方程及其应用(综合型)圆的极坐标方程若圆心为M (ρ0,θ0),半径为r ,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0.几个特殊位置的圆的极坐标方程: (1)当圆心位于极点,半径为r :ρ=r ;(2)当圆心位于M (a ,0),半径为a :ρ=2a cos θ; (3)当圆心位于M ⎝⎛⎭⎫a ,π2,半径为a :ρ=2a sin θ. 直线的极坐标方程若直线过点M (ρ0,θ0),且极轴与此直线所成的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程: (1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M (a ,0)且垂直于极轴:ρcos θ=a ; (3)直线过点M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b . [典型例题](2018·南昌模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θy =2sin θ+2(θ为参数),以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求C 的极坐标方程;(2)若直线l 1,l 2的极坐标方程分别为θ=π6(ρ∈R ),θ=2π3(ρ∈R ),设直线l 1,l 2与曲线C的交点为O ,M ,N ,求△OMN 的面积.【解】 (1)由参数方程⎩⎪⎨⎪⎧x =2cos θy =2sin θ+2(θ为参数),得普通方程为x 2+(y -2)2=4,所以C的极坐标方程为ρ2cos 2θ+ρ2sin 2θ-4ρsin θ=0,即ρ=4sin θ.(2)不妨设直线l 1:θ=π6(ρ∈R )与曲线C 的交点为O ,M ,则ρM =|OM |=4sin π6=2.又直线l 2:θ=2π3(ρ∈R )与曲线C 的交点为O ,N ,则ρN =|ON |=4sin 2π3=2 3.又∠MON=π2,所以S △OMN =12|OM ||ON |=12×2×23=2 3.(1)极坐标方程与普通方程互化的技巧①巧用极坐标方程两边同乘以ρ或同时平方技巧,将极坐标方程构造成含有ρcos θ,ρsin θ,ρ2的形成,然后利用公式代入化简得到普通方程.②巧借两角和差公式,转化ρsin(θ±α)或ρcos(θ±α)的结构形式,进而利用互化公式得到普通方程.③将直角坐标方程中的x 换成ρcos θ,将y 换成ρsin θ,即可得到其极坐标方程. (2)求解与极坐标有关问题的主要方法①直接利用极坐标系求解,可与数形结合思想配合使用.②转化为直角坐标系,用直角坐标求解.若结果要求的是极坐标,还应将直角坐标化为极坐标.[对点训练]1.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=1,M ,N 分别为曲线C 与x 轴,y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐极; (2)设M ,N 的中点为P ,求直线OP 的极坐标方程. 解:(1)因为ρcos ⎝⎛⎭⎫θ-π3=1, 所以ρcos θ·cos π3+ρsin θ·sin π3=1.又⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,所以12x +32y =1,即曲线C 的直角坐标方程为x +3y -2=0,令y =0,则x =2;令x =0,则y =233.所以M (2,0),N ⎝⎛⎭⎫0,233.所以M 的极坐标为(2,0),N 的极坐标为⎝⎛⎭⎫233,π2.(2)因为M ,N 连线的中点P 的直角坐标为⎝⎛⎭⎫1,33,所以P 的极角为θ=π6,所以直线OP 的极坐标方程为θ=π6(ρ∈R ).2.(2018·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解:(1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为(x +1)2+y 2=4. (2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点.当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2,所以|k +2|k 2+1=2,故k =0或k =43.经检验,当k =0时,l 1与 C 2没有公共点;当k =43时,l 2与C 2没有公共点.综上,所求C 1的方程为y =-43|x |+2.参数方程及其应用(综合型)直线和圆锥曲线的参数方程和普通方程(2018·武汉调研)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =4cos θy =2sin θ(θ为参数),直线l 的参数方程为⎩⎨⎧x =t +3,y =2t -23(t 为参数),直线l 与曲线C 交于A ,B 两点.(1)求|AB |的值;(2)若F 为曲线C 的左焦点,求F A →·FB →的值.【解】 (1)由⎩⎪⎨⎪⎧x =4cos θy =2sin θ(θ为参数),消去参数θ得x 216+y 24=1.由⎩⎪⎨⎪⎧x =t +3,y =2t -23消去参数t 得y =2x -4 3. 将y =2x -43代入x 2+4y 2=16中,得17x 2-643x +176=0. 设A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧x 1+x 2=64317,x 1x 2=17617.所以|AB |=1+22|x 1-x 2|=1+417×(643)2-4×17×176=4017,所以|AB |的值为4017. (2)由(1)得,F (-23,0),则 F A →·FB →=(x 1+23,y 1)·(x 2+23,y 2) =(x 1+23)(x 2+23)+(2x 1-43)(2x 2-43) =x 1x 2+23(x 1+x 2)+12+4[x 1x 2-23(x 1+x 2)+12] =5x 1x 2-63(x 1+x 2)+60 =5×17617-63×64317+60=44,所以F A →·FB →的值为44.(1)有关参数方程问题的2个关键点①参数方程化为普通方程的关键是消参数,要根据参数的特点进行转化. ②利用参数方程解决问题,关键是选准参数,理解参数的几何意义. (2)利用直线的参数方程中参数的几何意义求解问题经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数。
高考复习极坐标与参数方程-导学案(教师版)
极坐标与参数方程环节1 明晰高考要求高考对极坐标与参数方程考查主要突出其工具性的作用,突出极坐标以及参数方程的几何用法,考查学生能根据实际问题的几何背景选择恰当的方法解决问题的能力,命题考查形式以极坐标与直角坐标的互化,参数方程的消参以及极坐标的几何意义与参数方程的参数的几何意义的综合应用。
主要考查四类题型:① 极坐标系中,极坐标的几何意义的应用真题示例题1 (2017年全国Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1) M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2) 设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求OAB ∆面积的最大值. 【解析】(1)设()00,M ρθ,(),P ρθ,则0OM ρ=,OP ρ=,依题意016ρρ=,00cos 4ρθ=,0θθ=, 解得4cos ρθ=,化为直角坐标系方程为()2224x y -+=()0x ≠.常规方法:曲线1C :4x =,设(),P x y ,()4,M t ,则4tx y =16=, 将224x y x +=(0x ≠),即点P 的轨迹2C 的直角坐标方程为()2224x y -+=()0x ≠.(2)连接2AC ,易知2AOC ∆为正三角形,OA 为定值. 所以当边AO 上的高最大时,AOB S △面积最大,如图,过圆心2C 作AO 垂线,交AO 于H 点,交圆C 于B 点,此时AOB S △最大max 12S AO HB =⋅()12AO HC BC =+2= 别解:设(),B ρθ(0ρ>),由题意知2OA =,4cos ρθ=,所以OAB ∆的面积1sin 2S OA AOB ρ=⋅∠4cos sin 3πθθ⎛⎫=⋅- ⎪⎝⎭2sin 223πθ⎛⎫=-≤+ ⎪⎝⎭当12πθ=-时,S取得最大值2, 所以OAB ∆面积的最大值为2+.题2 (2015年课标Ⅱ文理)选修44-:坐标系与参数方程在直角坐标系xOy 中,曲线1C :cos sin x t y t αα=⎧⎨=⎩,(t 是参数,0t ≠),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C:ρθ=. (Ⅰ) 求2C 与3C 的交点的直角坐标;(Ⅱ) 若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220x y y x y ⎧+-=⎪⎨+-=⎪⎩,解得00x y =⎧⎨=⎩或32x y ⎧=⎪⎪⎨⎪=⎪⎩, 所以2C 与3C 的交点的直角坐标为()0,0和322⎛⎫⎪ ⎪⎝⎭. (Ⅱ)曲线1C 的极坐标方程为θα=(ρ∈R ,0ρ≠),其中0απ≤<. 因为A 的极坐标为()2sin ,αα,B的极坐标为(),αα,所以2sin 4sin 3AB πααα⎛⎫=-=-⎪⎝⎭,当56πα=时,AB 取得最大值,且最大值为4. ② 直角坐标系中,曲线参数方程的直接应用真题示例题1 (2017年全国Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为3cos ,sin ,x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为4,1,x a t y t =+⎧⎨=-⎩ (t 为参数).(1) 若1a =-,求C 与l 的交点坐标;(2) 若C 上的点到l求a .【解析】(1)1a =-时,直线l 的方程为430x y +-=,曲线C 的标准方程是2219x y +=, 联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,则C 与l 交点坐标是()3,0和2124,2525⎛⎫- ⎪⎝⎭. (2)直线l 一般式方程是440x y a +--=,设曲线C 上点()3cos ,sin P θθ, 则P 到l距离d ==,其中3tan 4ϕ=. 当40a +≥即4a ≥-时,max d ==即917a +=,解得8a =. 当40a +<即4a <-时,maxd ==解得16a =-. 综上,16a =-或8a =.题2 (2017年江苏)在平面直角坐标系xOy 中,已知直线l 的参考方程为82x t ty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=,因为P 在曲线C上,设()22,P s ,故点P 到直线l 的距离224s d -+==,当s=,min 5d =, 因此当P 的坐标为()4,4时,曲线C 上的点P 到直线l 的距离取得最小值5. ③ 直角坐标系中,直线参数方程的参数t 几何意义的应用真题示例题1 【2018全国二卷22】在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数). (1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.(1)曲线C 的直角坐标方程为116422=+y x . 当时,的直角坐标方程为, 当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得ααα221cos 31)sin cos 2(4++-=+t t ,故, 于是直线的斜率xOy C 2cos 4sin x θy θ=⎧⎨=⎩,θl 1cos 2sin x t αy t α=+⎧⎨=+⎩,t C l C l (1,2)l cos 0α≠l tan 2tan y x αα=⋅+-cos 0α=l 1x =l C t 22(13cos )4(2cos sin )80t t ααα+++-=C l (1,2)C 1t 2t 120t t +=2cos sin 0αα+=l tan 2k α==-题2【2018全国三卷22】在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程. (1)的直角坐标方程为.当时,与交于两点. 当时,记,则的方程为与交于两点当且仅当,解得或,即或. 综上,的取值范围是. (2)的参数方程为为参数,.设,,对应的参数分别为,,,则,且,满足. 于是,.又点的坐标满足所以点的轨迹的参数方程是为参数,. ④ 通过互化或消参呈现几何背景,利用相关的几何法解决真题示例题5 【2018全国一卷22】在直角坐标系xOy 中,曲线1C 的方程为||2y k x =+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos 30ρρθ+-=. (1)求2C 的直角坐标方程;xOy O ⊙cos sin x y θθ=⎧⎨=⎩,θ(0,αl O ⊙A B ,αAB P O 221x y +=2απ=l O 2απ≠tan k α=l y kx =lO ||1<1k <-1k >(,)42αππ∈(,)24απ3π∈α(,)44π3πl cos ,(sin x t t y t αα=⎧⎪⎨=⎪⎩44απ3π<<)A B P A t B t P t 2A BP t t t +=A tB t 2sin 10t α-+=A B t t α+=P t α=P (,)x y cos ,sin .P Px t y t αα=⎧⎪⎨=⎪⎩P 2,2cos 222x y αα⎧=⎪⎪⎨⎪=--⎪⎩(α44απ3π<<)(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点. 当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点. 综上,所求1C 的方程为4||23y x =-+. 题6 (2017年深圳二模)已知直线l 的参数方程是)(242222是参数t t y t x ⎪⎪⎩⎪⎪⎨⎧+==,圆C的极坐标方程为)4cos(2πθρ+=.(1)求圆心C 的直角坐标;(2)由直线l 上的点向圆C 引切线,求切线长的最小值. 解析:(I )θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴, …………(2分) 02222=+-+∴y x y x C 的直角坐标方程为圆, …………(3分)即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为.…………(5分) (II )方法1:直线l 上的点向圆C 引切线长是6224)4(4081)242222()2222(2222≥++=++=-+++-t t t t t , …………(8分) ∴直线l 上的点向圆C引的切线长的最小值是62 …………(10分)方法2:024=+-∴y x l 的普通方程为直线, …………(8分)圆心C到l 直线距离是52|242222|=++,∴直线l 上的点向圆C 引的切线长的最小值是621522=-环节2 问题自主解决 1回归教材题组1 人教A 版选修4-4 P12 课本习题编选:题1 在极坐标系中,132511(4,),(4,),(4,),(4,)6666ππππ-表示的点有什么关系?你是如何刻画这些点的位置的?题2已知点的极坐标分别为2(3,),(2,),(4,),()4322ππππ,求它们的直角坐标题3已知点的直角坐标分别为7),(,0),(2,2--,求它们的极坐标 问题自主探索:① 极坐标与直角坐标之间的区别与联系是什么? ② 极坐标的几何意义是什么?题组2人教A 版选修4-4 P15 课本习题编选:题1 说明下列极坐标方程表示什么曲线? (1)5ρ= (2)5()6R πθρ=∈ (3)2sin ρθ=(4)sin()124πρθ-= (5)2sin cos ρθθ= (6)2cos 24ρθ= 题2 将下列直角坐标方程化成极坐标方程(1)4x = (2)2320x y +-= (3)22(1)(4x y -+= (4)22148x y += 题3 在极坐标系中,求适合下列条件的曲线的极坐标方程(1)过极点,倾斜角是3π的直线 (2)圆心在(1,)4π,半径为1的圆(3)过点(2,)3π,且和极轴垂直的直线 (4)过点)4π,且与2320x y +-=垂直的直线题4 设点P 的极坐标为11(,)ρθ,直线l 过点P 且与极轴所成的角为α,求直线l 的极坐标方程题 5 已知椭圆的中心为O ,长轴、短轴的长分别2,2(0)a b a b >>,,A B 分别为椭圆上的两点,并且OA OB ⊥,求证:2211OAOB+为定值问题自主探索:① 实现曲线极坐标方程与直角坐标方程互化的桥梁是什么?② 求解曲线极坐标方程,你是怎么处理的?它跟直角坐标求点轨迹方程的思路一样吗? ③ 极坐标的几何意义是如何应用的?题组3 人教A 版选修4-4 P25-34 课本例题编选 题1把下列参数方程化为普通方程,并说明它们各表示什么曲线(1)11x y ⎧=⎪⎨=-⎪⎩t 为参数) (2) sin cos 1sin 2x y θθθ=+⎧⎨=+⎩(θ为参数)题2把下列普通方程化为参数方程,并说明它们各表示什么曲线(1)22(1)(2)4x y -+-= (2)221169x y +=题3 在椭圆22194x y +=上求一点M ,使点M 到2100x y +-=的距离最小,并求出最小距离。
2023年高考数学真题分训练 极坐标系与参数方程(含答案含解析)
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
2019届二轮复习矩阵与变换、坐标系与参数方程、不等式选讲学案(全国通用)
矩阵与变换、坐标系与参数方程、不等式选讲高考定位 高考对本内容的考查主要有:(1)常见的平面变换与矩阵的乘法运算、二阶矩阵的逆矩阵及其求法、矩阵的特征值与特征向量的求法,属B 级要求;(2)直线、曲线的极坐标方程、参数方程、参数方程与普通方程的互化、极坐标与直角坐标的互化,属B 级要求;(3)含绝对值不等式的解法、不等式证明的基本方法、利用不等式性质求最值以及几个重要不等式的应用,属B 级要求.真 题 感 悟1.(2018·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤2 31 2. (1)求A 的逆矩阵A -1;(2)若点P 在矩阵A 对应的变换作用下得到点P ′(3,1),求点P 的坐标. 解 (1)因为A =⎣⎢⎡⎦⎥⎤2312,det(A )=2×2-1×3=1≠0, 所以A 可逆,从而A -1=⎣⎢⎡⎦⎥⎤2 -3-1 2. (2)设P (x ,y ),则⎣⎢⎡⎦⎥⎤2312⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤31,所以⎣⎢⎡⎦⎥⎤x y =A -1⎣⎢⎡⎦⎥⎤31=⎣⎢⎡⎦⎥⎤ 3-1,因此, 点P 的坐标为(3,-1). 2.(2017·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤011 0,B =⎣⎢⎡⎦⎥⎤1 00 2. (1)求AB ;(2)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2,求C 2的方程.解 (1)AB =⎣⎢⎡⎦⎥⎤0110⎣⎢⎡⎦⎥⎤1 002=⎣⎢⎡⎦⎥⎤0 210.(2)设P (x 1,y 1)是曲线C 1上任意一点,变换后对应的点为⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤021 0⎣⎢⎡⎦⎥⎤x 1y 1, 所以⎩⎨⎧x =2y 1,y =x 1,即⎩⎪⎨⎪⎧x 1=y ,y 1=12x .因为P (x 1,y 1)在曲线C 1上,所以x 218+y 212=1,从而x 2+y 2=8,即为曲线C 2的方程.3.(2018·江苏卷)在极坐标系中,直线l 的方程为ρsin ⎝ ⎛⎭⎪⎫π6-θ=2,曲线C 的方程为ρ=4cos θ,求直线l 被曲线C 截得的弦长. 解 因为曲线C 的极坐标方程为ρ=4cos θ,所以曲线C 是圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫π6-θ=2,则直线l 过A (4,0),倾斜角为π6, 所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB =π6. 连接OB .因为OA 为直径,从而∠OBA =π2,所以AB =4cos π6=2 3. 因此,直线l 被曲线C 截得的弦长为2 3.4.(2017·江苏卷)在平面坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-8+t ,y =t2(t 为参数),曲线C 的参数方程为⎩⎨⎧x =2s 2,y =22s(s 为参数).设P 为曲线C 上的动点,求点P到直线l 的距离的最小值.解 由⎩⎪⎨⎪⎧x =-8+t ,y =t2消去t .得l 的普通方程为x -2y +8=0, 因为点P 在曲线C 上,设点P (2s 2,22s ).则点P 到直线l 的距离d =|2s 2-42s +8|5=2(s -2)2+45,∴当s=2时,d有最小值45=455.5.(2018·江苏卷)若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值. 解由柯西不等式,得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2.因为x+2y+2z=6,所以x2+y2+z2≥4,当且仅当x1=y2=z2时,不等式取等号,此时x=23,y=43,z=43,所以x2+y2+z2的最小值为4.6.(2017·江苏卷)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8. 证明由柯西不等式可得(a2+b2)(c2+d2)≥(ac+bd)2,即(ac+bd)2≤4×16=64,故ac+bd≤8.考点整合1.矩阵的乘法与逆矩阵、矩阵变换2.二阶矩阵的特征值和特征向量(3)如果λ是二阶矩阵M的特征值,则λ是M的特征多项式的一个根,它满足f(λ)=0,此时将λ代入⎩⎨⎧ax +by =λx ,cx +dy =λy 可得到一组非零解⎣⎢⎡⎦⎥⎤x 0y 0),它即为M 的属于λ的一个特征向量.3.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ), 则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=yx (x ≠0). 4.(1)直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. (2)圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).5.含有绝对值的不等式的解法 (1)|f (x )|>a (a f (x )>a 或f (x )<-a ; (2)|f (x )|<a (a-a <f (x )<a ;(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义、零点分段或图象法求解. 6.柯西不等式(1)设a ,b ,c ,d 为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)若a i ,b i (i ∈N *)为实数,则,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.热点一 矩阵与变换【例1】 (1)(2016·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤1 20 -2)),矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 解 B =(B -1)-1=⎣⎢⎡⎦⎥⎤22 12202 12=⎣⎢⎢⎡⎦⎥⎥⎤1 140 12.∴AB =⎣⎢⎡⎦⎥⎤1 20 -2⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1. (2)(2017·盐城模拟)已知矩阵A =⎣⎢⎡⎦⎥⎤1 00 2所对应的变换T 把曲线C 变成曲线C 1:x 24+y 22=1,求曲线C 的方程.解 设曲线C 上任一点为(x ,y ),经过变换T 变成(x 0,y 0),则⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x 0y 0,即x 0=x ,y 0=2y .由x 204+y 22=1,得曲线C 的方程为x 24+y 2=1.探究提高 (1)解决这类问题一般是设变换T :⎣⎢⎡⎦⎥⎤x y →⎣⎢⎡⎦⎥⎤x ′y ′,求出原曲线在T 的变换下得到的曲线,再根据条件求相应的系数值.(2)由二阶矩阵与向量的乘法及向量相等建立方程组,常用于求二阶矩阵,要注意变换的前后顺序. (3)求矩阵M =⎣⎢⎡⎦⎥⎤ab cd 就是要求待定的字母,利用条件建立方程组,确立待定的字母的值,从而求出矩阵,待定系数法是求这类问题的通用方法.【训练1】 (1)(2018·扬州期末)已知x ,y ∈R ,若点M (1,1)在矩阵A =⎣⎢⎡⎦⎥⎤2x 3 y 对应的变换作用下得到点N (3,5),求矩阵A 的逆矩阵A -1.(2)(2017·苏、锡、常、镇调研)已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4).①求矩阵M ;②求矩阵M 的另一个特征值. 解 (1)因为A ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎣⎢⎡⎦⎥⎤2x 3 y ⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤35,即⎩⎨⎧2+x =3,3+y =5,解得⎩⎨⎧x =1,y =2,所以A =⎣⎢⎡⎦⎥⎤2132.设A -1=⎣⎢⎡⎦⎥⎤a b c d ,则AA -1=⎣⎢⎡⎦⎥⎤2 13 2⎣⎢⎡⎦⎥⎤ab cd =⎣⎢⎡⎦⎥⎤1 001, 即⎩⎨⎧2a +c =1,3a +2c =0,2b +d =0,3b +2d =1,解得⎩⎨⎧a =2,b =-1,c =-3,d =2,所以A-1=⎣⎢⎡⎦⎥⎤2 -1-3 2. (2)①设M =⎣⎢⎡⎦⎥⎤ab cd ,M ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤a +b c +d ,M ⎣⎢⎡⎦⎥⎤-12=⎣⎢⎡⎦⎥⎤-24=⎣⎢⎡⎦⎥⎤-a +2b -c +2d ,则⎩⎨⎧a +b =8,c +d =8,-a +2b =-2,-c +2d =4,解得⎩⎨⎧a =6,b =2,c =4,d =4,即M =⎣⎢⎡⎦⎥⎤6 24 4. ②令特征多项式f (λ)=⎪⎪⎪⎪⎪⎪λ-6 -2-4 λ-4=(λ-6)(λ-4)-8=0, 解得λ1=8,λ2=2,故矩阵M 的另一个特征值为2. 热点二 曲线的极坐标方程[考法1] 极坐标方程与直角坐标方程的互化【例2-1】 在极坐标系中,已知圆C 的圆心坐标为C ⎝ ⎛⎭⎪⎫2,π3,半径R =5,求圆C 的极坐标方程.解 将圆心C ⎝ ⎛⎭⎪⎫2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5.再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2-4ρcos ⎝ ⎛⎭⎪⎫θ-π3-1=0.此即为所求的圆C 的极坐标方程.探究提高 (1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在曲线的方程进行互化时,一定要注意变量的范围.要注意转化的等价性. [考法2] 曲线的极坐标方程的应用【例2-2】 (2018·全国Ⅰ卷)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.解 (1)由x =ρcos θ,y =ρsin θ得C 2的直角坐标方程为x 2+y 2+2x -3=0,即(x +1)2+y 2=4.(2)由(1)知C 2是圆心为A (-1,0),半径为2的圆.由题设知,C 1是过点B (0,2)且关于y 轴对称的两条射线.记y 轴右边的射线为l 1,y 轴左边的射线为l 2.由于B 在圆C 2的外面,故C 1与C 2有且仅有三个公共点等价于l 1与C 2只有一个公共点且l 2与C 2有两个公共点,或l 2与C 2只有一个公共点且l 1与C 2有两个公共点.当l 1与C 2只有一个公共点时,A 到l 1所在直线的距离为2,所以|-k +2|k 2+1=2,故k =-43或k =0.经检验,当k =0时,l 1与C 2没有公共点;当k =-43时,l 1与C 2只有一个公共点,l 2与C 2有两个公共点. 当l 2与C 2只有一个公共点时,A 到l 2所在直线的距离为2, 所以|k +2|k 2+1=2,故k =0或k =43. 经检验,当k =0时,l 1与C 2没有公共点;当k =43时,l 2与C 2没有公共点. 综上,所求C 1的方程为y =-43|x |+2.探究提高 解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【训练2】 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =a cos t ,y =1+a sin t(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .解 (1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2(a >0),C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为 ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎨⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ.若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0, 由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0, 从而1-a 2=0,解得a =-1(舍去),a =1.a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1. 热点三 参数方程[考法1] 参数方程与普通方程的互化【例3-1】 (2018·南通、扬州、淮安等七市调研)在平面直角坐标系xOy ,已知直线l 的参数方程为⎩⎨⎧x =3+3t ,y =1-4t (t 为参数),圆C 的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数,r >0),若直线l 被圆C 截得的弦长为4,求r 的值.解 直线l 的普通方程为4x +3y -15=0,圆C 的普通方程为x 2+y 2=r 2. 因为圆心C (0,0)到直线l 的距离d =|-15|5=3, 又直线l 被圆C 截得的弦长为4,所以r =32+22=13.探究提高 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.[考法2] 直线的参数方程【例3-2】 在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ. (1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求P A +PB . 解 法一 (1)由ρ=25sin θ,得x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)将l 的参数方程代入圆C 的直角坐标方程,得⎝ ⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0.由于Δ=(-32)2-4×4=2>0,故可设t 1,t 2是上述方程的两实根,所以⎩⎨⎧t 1+t 2=32,t 1·t 2=4.又直线l 过点P (3,5),故由上式及t 的几何意义得P A +PB =|t 1|+|t 2|=t 1+t 2=3 2. 法二 (1)同法一.(2)因为圆C 的圆心为(0,5),半径r =5,直线l 的普通方程为:y =-x +3+ 5. 由⎩⎨⎧x 2+(y -5)2=5,y =-x +3+5得x 2-3x +2=0.解得:⎩⎨⎧x =1,y =2+5 或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5),又点P 的坐标为(3,5). 故P A +PB =8+2=3 2.探究提高 过定点P 0(x 0,y 0),倾斜角为α的直线参数方程的标准形式为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数),t 的几何意义是P 0P →的数量,即|t |表示P 0到P 的距离,t 有正负之分.使用该式时直线上任意两点P 1,P 2对应的参数分别为t 1,t 2,则P 1P 2=|t 1-t 2|,P 1P 2的中点对应的参数为12(t 1+t 2).【训练3】 (2014·江苏卷)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t(t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB的长.解将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2.所以AB =|t 1-t 2|=8 2.热点四 绝对值不等式【例4】 (1)(2018·全国Ⅱ卷)设函数f (x )=5-|x +a |-|x -2|. ①当a =1时,求不等式f (x )≥0的解集; ②若f (x )≤1,求a 的取值范围.(2)(2018·镇江期末)已知函数f (x )=|x -a |+|x +a |,若对任意x ∈R ,不等式f (x )>a 2-3恒成立,求实数a 的取值范围.解(1)①当a =1时,f (x )=⎩⎨⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}. ②f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2或x =-a 时等号成立(最小值能取到). 故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2. 所以a 的取值范围是(-∞,-6]∪[2,+∞).(2)因为对任意x ∈R ,不等式f (x )>a 2-3恒成立,所以f (x )min >a 2-3. 又|x -a |+|x +a |≥|x -a -(x +a )|=|2a |,所以|2a |>a 2-3,① 法一 (将|a |作为整体)即|a |2-2|a |-3<0,解得-1<|a |<3. 所以-3<a <3.∴a ∈(-3,3).法二 (先去绝对值符号)①式等价于2a >a 2-3,② 或2a <-a 2+3,③ 由②得-1<a <3, 由③得-3<a <1,所以,-3<a <3.∴a ∈(-3,3).探究提高 (1)用零点分段法解绝对值不等式的步骤:①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.(3)解答含有绝对值不等式的恒成立、存在性问题时,通常将其转化为分段函数,再求分段函数的最值,从而求出所求参数的值. 【训练4】 已知函数f (x )=|x +1|-|x -2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解(1)f (x )=|x +1|-|x -2|=⎩⎨⎧-3,x ≤-1,2x -1,-1<x <2,3,x ≥2.由f (x )≥1可得①当x ≤-1时显然不满足题意; ②当-1<x <2时,2x -1≥1, 解得x ≥1,则1≤x <2;③当x ≥2时,f (x )=3≥1恒成立,∴x ≥2. 综上知f (x )≥1的解集为{x |x ≥1}.(2)不等式f (x )≥x 2-x +m 等价于f (x )-x 2+x ≥m , 令g (x )=f (x )-x 2+x ,则g (x )≥m 解集非空只需要[g (x )]max ≥m .由(1)知g (x )=⎩⎨⎧-x 2+x -3,x ≤-1,-x 2+3x -1,-1<x <2,-x 2+x +3,x ≥2.①当x ≤-1时,[g (x )]max =g (-1)=-3-1-1=-5; ②当-1<x <2时,[g (x )]max =g ⎝ ⎛⎭⎪⎫32=-⎝ ⎛⎭⎪⎫322+3·32-1=54; ③当x ≥2时,[g (x )]max =g (2)=-22+2+3=1.综上,[g (x )]max =54,故m ≤54.所以实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,54.热点五 不等式的证明、柯西不等式【例5】 (1)(2014·江苏卷)已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy .(2)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. ①求实数a ,b 的值; ②求at +12+bt 的最大值.(1)证明 因为x >0,y >0,所以1+x +y 2≥33xy 2>0,1+x 2+y ≥33x 2y >0, 故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .(2)解 ①由|x +a |<b ,得-b -a <x <b -a ,则⎩⎨⎧-b -a =2,b -a =4,解得⎩⎨⎧a =-3,b =1.②-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4,当且仅当4-t 3=t1, 即t =1时等号成立,故(-3t +12+t )max =4,即最大值为4.探究提高 (1)证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等.(2)根据柯西不等式的结构特征,利用柯西不等式对有关不等式进行证明、证明时,需要对不等式变形,使之与柯西不等式有相似的结构,从而应用柯西不等式. 【训练5】 已知实数a >0,b >0,且a 3+b 3=2. 证明:(1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.证明 (1)∵a >0,b >0且a 3+b 3=2.由柯西不等式,得(a +b )(a 5+b 5)≥(a ·a 5+b ·b 5)2=(a 3+b 3)2=4. 当且仅当ab 5=ba 5,即a =b =1时等号成立.因此(a +b )(a 5+b 5)≥4. (2)∵a 3+b 3=2,∴(a +b )(a 2-ab +b 2)=2,即(a +b )[(a +b )2-3ab ]=2. 所以(a +b )3-2=3ab (a +b ),又ab ≤⎝ ⎛⎭⎪⎫a +b 22=(a +b )24,∴(a +b )3-2≤34(a +b )3,则14(a +b )3≤2.从而a +b ≤2当且仅当a =b =1时等号成立.1.矩阵与变换主要掌握二阶矩阵与平面变换、二阶矩阵的逆矩阵及其求法以及特征值与特征向量的应用.2.(1)化参数方程为普通方程的基本思路是消去参数(代入消去法、加减消去法、恒等式消去法等);化普通方程为参数方程基本思路是引入一种关系,引入参数; (2)参数方程和极坐标方程的简单应用:求几何图形的面积、曲线的轨迹方程或研究某些函数的最值问题.3.(1)对于绝对值不等式的求解或含参问题的求解一般采用零点分段法,也可利用图象求解;(2)在运用柯西不等式进行求解或证明时,注意对条件进行“形变”,符合柯西不等式的结构,再加以运用.1.(2013·江苏卷)已知矩阵A =⎣⎢⎡⎦⎥⎤-1 0 0 2,B =⎣⎢⎡⎦⎥⎤120 6,求矩阵A -1B . 解 设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤ab c d ,则⎣⎢⎡⎦⎥⎤-1 0 02⎣⎢⎡⎦⎥⎤a b cd =⎣⎢⎡⎦⎥⎤1 001, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1001,故a =-1,b =0,c =0,d =12,从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-10 012,所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-10 012⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -2 0 3. 2.(2015·江苏卷)已知x ,y ∈R ,向量α=⎣⎢⎡⎦⎥⎤ 1-1是矩阵A =⎣⎢⎡⎦⎥⎤x1y 0的属于特征值-2的一个特征向量,求矩阵A 以及它的另一个特征值.解 由已知,得Aα=-2α,即⎣⎢⎡⎦⎥⎤x 1y 0⎣⎢⎡⎦⎥⎤ 1-1=⎣⎢⎡⎦⎥⎤x -1 y =⎣⎢⎡⎦⎥⎤-2 2, 则⎩⎨⎧x -1=-2,y =2,即⎩⎨⎧x =-1,y =2,所以矩阵A =⎣⎢⎡⎦⎥⎤-1 1 2 0. 从而矩阵A 的特征多项式f (λ)=(λ+2)(λ-1), 所以矩阵A 的另一个特征值为1.3.(2015·江苏卷)已知圆C 的极坐标方程为ρ2+22ρsin ⎝ ⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0, 即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.4.(2018·全国Ⅱ卷)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =4sin θ (θ为参数),直线l 的参数方程为⎩⎨⎧x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率. 解 (1)曲线C 的直角坐标方程为x 24+y 216=1.当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α, 当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内, 所以①有两个解,设为t 1,t 2,则t 1+t 2=0. 又由①得t 1+t 2=-4(2cos α+sin α)1+3cos 2α,故2cos α+sin α=0,于是直线l 的斜率k =tan α=-2.5.(2016·江苏卷)设a >0,||x -1<a 3,|y -2|<a3,求证:|2x +y -4|<a . 证明 由a >0,|x -1|<a 3可得|2x -2|<2a 3,又|y -2|<a 3, ∴|2x +y -4|=|(2x -2)+(y -2)|≤|2x -2|+|y -2|<2a 3+a3=a . 则|2x +y -4|<a 成立.6.(2018·全国Ⅲ卷)设函数f (x )=|2x +1|+|x -1|. (1)画出y =f (x )的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.解(1)f(x)=y=f(x)的图象如图所示.(2)由(1)知,y=f(x)的图象与y轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a≥3且b≥2时,f(x)≤ax+b在[0,+∞)上成立,因此a+b的最小值为5.。
高中数学二轮复习教师用书:专题六+第1讲 大题考法——坐标系与参数方程+Word版含答案
专题六系列4选讲第1讲大题考法——坐标系与参数方程考向极坐标方程与参数方程的综合应用【典例】 (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =kt(t 为参数),直线l 2的参数方程为⎩⎪⎨⎪⎧x =-2+m ,y =m k(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M 为l 3与C的交点,求M 的极径. [审题指导]①看到直线l 1,l 2的方程,想到消参、化为普通方程是常用方法 ②看到l 1,l 2的交点问题时,想到联立方程再求解③看到l 3与C 的交点问题,想到先求C 的极坐标方程再联立求解 [规范解答] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2); 1分 消去参数m 得l 2的普通方程l 2:y =1k (x +2).2分设P (x ,y ),由题设得⎩⎪⎨⎪⎧y =k (x -2),y =1k (x +2),消去k 得x 2-y 2=4(y ≠0)❶,3分所以C 的普通方程为x 2-y 2=4(y ≠0).4分 (2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π).5分 联立⎩⎨⎧ρ2(cos 2θ-sin 2θ)=4,ρ(cos θ+sin θ)-2=0❷6分得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-13,7分 从而cos 2θ=910,sin 2θ=110.8分 代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5, 9分 所以交点M 的极径为 5.10分错误!未指定书签。
❶处消去k 后,注意等价性,易忽视y ≠0而失误.❷处联立极坐标方程后,注意运算技巧,先求cos 2θ,sin 2θ,再求ρ.若直接消去θ不太容易做到.[技法总结] 求解极坐标方程与参数方程综合问题需过“三关”一是互化关,即会把曲线的极坐标方程、直角坐标方程、参数方程进行互化; 二是几何意义关,即理解参数方程中的参数的几何意义,在解题中能加快解题速度; 三是运算关,思路流畅,还需运算认真,才能不失分. [变式提升]1.(2018·淮北二模)已知直线l 的参数方程: ⎩⎪⎨⎪⎧x =1+t cos θ,y =t sin θ(t 为参数),曲线C 的参数方程:⎩⎨⎧x =3cos α,y =sin α(α为参数),且直线l 交曲线C 于A ,B 两点.(1)将曲线C 的参数方程化为普通方程,并求θ=π4时,|AB |的长度;(2)已知点P (1,0),求当直线倾斜角θ变化时,|P A |·|PB |的范围.解 (1)曲线C 的参数方程:⎩⎨⎧x =3cos α,y =sin α(α为参数),曲线C 的普通方程为x 23+y 2=1.当θ=π4时,直线AB 的方程为y =x -1,代入x 23+y 2=1,可得2x 2-3x =0,∴x 1=0,x 2=32.∴|AB |=1+1×|32-0|=322.(2)直线参数方程代入x 23+y 2=1,得(cos 2 θ+3sin 2 θ)t 2+2cos θ·t -2=0. 设A ,B 对应的参数为t 1,t 2, ∴|P A |·|PB |=-t 1·t 2=2cos 2 θ+3sin 2 θ=21+2sin 2 θ∈⎣⎡⎦⎤23,2. 2.已知曲线C :4x 29+y 216=1,直线l :⎩⎪⎨⎪⎧x =3+t ,y =5-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程.(2)设曲线C 上任意一点P 到直线l 的距离为d ,求d 的最大值与最小值.解 (1)曲线C 的参数方程⎩⎪⎨⎪⎧x =32cos θ,y =4sin θ(θ为参数),直线l 的普通方程2x +y -11=0.(2)曲线C 上任意一点P ⎝⎛⎭⎫32cos θ,4sin θ到直线l 的距离 d =55|3cos θ+4sin θ-11|, 即d =55|5sin(θ+α)-11|,其中α为锐角,且tan α=43, 当sin(θ+α)=-1时,最大值为1655;当sin(θ+α)=1时,最小值为655.经典语录1、最疼的疼是原谅,最黑的黑是背叛。
2023届高考二轮总复习试题适用于老高考旧教材数学(理) 坐标系与参数方程(选修4—4)(含解析)
考点突破练22 坐标系与参数方程(选修4—4)1.(2020·全国Ⅱ·理22)已知曲线C 1,C 2的参数方程分别为C 1:{x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:{x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.2.(2022·陕西榆林三模)在直角坐标系xOy 中,曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ+ρsin θ-12=0. (1)求C 的普通方程与直线l 的直角坐标方程.(2)若P 为C 上任意一点,A 为l 上任意一点,求|PA|的最小值.3.(2022·安徽怀南一模)在直角坐标系xOy 中,曲线C 的参数方程为{x =t 2,y =2t (t 为参数),以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为2cos α-sin α=4ρ. (1)求曲线C 的普通方程;(2)若直线l 与曲线C 交于A ,B 两点,求以AB 为直径的圆的极坐标方程.4.(2022·陕西榆林二模)在数学中,有许多方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线.如图,在直角坐标系中,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,图中的曲线就是笛卡尔心型曲线,其极坐标方程为ρ=1-sin θ(0≤θ<2π,ρ≥0),M 为该曲线上一动点. (1)当|OM|=12时,求M 的直角坐标;(2)若射线OM 逆时针旋转π2后与该曲线交于点N ,求△OMN 面积的最大值.5.(2022·安徽合肥二模)在直角坐标系xOy 中,直线l 的参数方程为{x =1+√2t ,y =1-√2t(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=acos2θ(a>0,ρ∈R ). (1)求直线l 的极坐标方程和曲线C 的直角坐标方程;(2)若直线θ=π4(ρ∈R )与直线l 交于点M ,直线θ=π6(ρ∈R )与曲线C 交于点A ,B ,且AM ⊥BM ,求实数a 的值.6.(2022·安徽马鞍山一模)在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2sinα,y =2cosα+1(α为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的直角坐标方程为x+√3y-2√3=0. (1)写出曲线C 的普通方程和直线l 的极坐标方程;(2)若直线θ=π6(ρ∈R )与曲线C 交于A ,B 两点,与直线l 交于点M ,求|MA|·|MB|的值.7.(2022·河南郑州二模)在直角坐标系xOy 中,曲线C 1的参数方程为{x =1+cosα,y =sinα(α为参数).已知M是曲线C 1上的动点,将OM 绕点O 逆时针旋转90°得到ON ,设点N 的轨迹为曲线C 2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 1,C 2的极坐标方程;(2)设点Q (1,0),若射线l :θ=π3与曲线C 1,C 2分别相交于异于极点O 的A ,B 两点,求△ABQ 的面积.8.(2022·山西太原一模)在平面直角坐标系中,直线l 的参数方程为{x =-2+35t ,y =2+45t (t 为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ+4ρsin θ-3=0,点P 的极坐标为2√2,3π4.(1)求点P 的直角坐标和曲线C 的直角坐标方程;(2)若直线l 和曲线C 交于A ,B 两点,求点P 到线段AB 的中点M 的距离.考点突破练22 坐标系与参数方程(选修4—4)1.解 (1)C 1的普通方程为x+y=4(0≤x ≤4). 由C 2的参数方程得x 2=t 2+1t2+2,y 2=t 2+1t2-2, 所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4. (2)由{x +y =4,x 2-y 2=4得 {x =52,y =32,所以P 的直角坐标为(52,32). 设所求圆的圆心的直角坐标为(x 0,0),由题意得x 02=(x 0-52)2+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.2.解 (1)因为曲线C 的参数方程为{x =4cosθ,y =3sinθ(θ为参数),所以C 的普通方程为x 216+y 29=1.又因为直线l 的极坐标方程为ρcos θ+ρsin θ-12=0,所以直线l 的直角坐标方程为x+y-12=0. (2)设P (4cos θ,3sin θ),|PA|的最小值即点P 到直线l 的距离的最小值,由√2=√2≥7√22,其中tan φ=43.当且仅当θ+φ=π2+2k π,k ∈Z 时取等号,故|PA|的最小值为7√22. 3.解 (1)由{x =t 2,y =2t (t 为参数),得{x =t 2,y 2=t (t 为参数),消去参数t ,得y 2=4x ,即曲线C 的普通方程为y 2=4x.(2)由2cos α-sin α=4ρ,得2x-y=4, 联立{y 2=4x ,2x -y =4得A (1,-2),B (4,4),所以AB 的中点坐标为52,1,|AB|=√45=3√5,故以AB 为直径的圆的极坐标方程为(x -52)2+(y-1)2=454,即x 2+y 2-5x-2y-4=0,将{x =ρcosθ,y =ρsinθ代入,得ρ2-5ρcos θ-2ρsin θ-4=0.4.解 (1)令ρ=12,可得sin θ=12,所以θ=π6或θ=5π6,M 的直角坐标为±√34,14.(2)△OMN 的面积S=12ρ1ρ2=12(1-sin θ)1-sin θ+π2=12(1-sin θ)(1-cos θ)=12[1-(sin θ+cos θ)+sinθcos θ],令t=sin θ+cos θ=√2sin θ+π4∈[-√2,√2], S=121-t+t 2-12=14(t-1)2,当t=-√2时,S 取得最大值3+2√24. 5.解 (1)由{x =1+√2t ,y =1-√2t(t 为参数)得x+y=2,∴直线l 的极坐标方程为ρcos θ+ρsin θ=2.由ρ2=acos2θ,得ρ2cos 2θ=a ,∴ρ2(cos 2θ-sin 2θ)=a ,ρ2cos 2θ-ρ2sin 2θ=a , ∴x 2-y 2=a ,∴曲线C 的直角坐标方程为x 2-y 2=a.(2)直线l 的极坐标方程为ρcos θ+ρsin θ=2,将θ=π4代入直线l 的极坐标方程得ρ=√2,∴点M 的极坐标为√2,π4.将θ=π6代入曲线C 的极坐标方程ρ2=acos2θ,得ρ1=√2a ,ρ2=-√2a ,∴|AB|=|ρ1-ρ2|=2√2a . ∵AM ⊥BM ,且O 为线段AB 的中点, ∴|OM|=12|AB|=√2a ,即√2a =√2,得a=1.6.解 (1)由{x =2sinα,y -1=2cosα(α为参数),得曲线C 的普通方程为x 2+(y -1)2=4.由x+√3y-2√3=0,得直线l 的极坐标方程为ρcos θ+√3ρsin θ-2√3=0,即ρsin θ+π6=√3.(2)(方法1)曲线C :x 2+(y-1)2=4的极坐标方程为ρ2-2ρsin θ-3=0,将θ=π6代入曲线C 的极坐标方程,得ρ2-ρ-3=0,∴ρ1+ρ2=1,ρ1·ρ2=-3. 将θ=π6代入直线l 的极坐标方程,得ρ=2.|MA|·|MB|=|ρ-ρ1|·|ρ-ρ2|=|(2-ρ1)·(2-ρ2)|=|4-2(ρ1+ρ2)+ρ1·ρ2|=1.(方法2)直线θ=π6的普通方程为y=√33x ,与直线l :x+√3y-2√3=0的交点为M (√3,1),直线θ=π6的参数方程为{x =√3+√32t ,y =1+12t(t 为参数),代入曲线C :x 2+(y-1)2=4,得t 2+3t-1=0,则|MA|·|MB|=|t 1·t 2|=1.7.解 (1)C 1的普通方程为(x-1)2+y 2=1,则x 2+y 2-2x=0,由ρ2=x 2+y 2,x=ρcos θ,得ρ2=2ρcos θ,故C 1的极坐标方程为ρ=2cos θ.设N (ρ,θ),则M ρ,θ-π2,将M ρ,θ-π2代入ρ=2cos θ,得ρ=2cos θ-π2=2sin θ,即C 2的极坐标方程为ρ=2sin θ.(2)将θ=π3分别代入曲线C 1,C 2的极坐标方程,得|OA|=ρA =2cos π3=1,|OB|=ρB =2sin π3=√3, 所以|AB|=||OB|-|OA||=√3-1. 又Q 到射线l 的距离d=|OQ|sin π3=√32,故△ABQ 的面积为S=12×(√3-1)×√32=3-√34. 8.解 (1)点P 的极坐标为2√2,3π4,由{x =ρcosθ,y =ρsinθ可得点P 的直角坐标为(-2,2),曲线C :ρ2cos2θ+4ρsin θ-3=0,即ρ2cos 2θ-ρ2sin 2θ+4ρsin θ-3=0, 于是得曲线C 的直角坐标方程为x 2-y 2+4y-3=0. (2)显然点P (-2,2)在直线l 上,将直线l 的参数方程{x =-2+35t ,y =2+45t代入方程x 2-y 2+4y-3=0,得-2+35t 2-2+45t 2+42+45t -3=0,整理得725t 2+125t-5=0,。
高考数学二轮复习-专题30 极坐标与参数方程的应用(解析版)
又因为 O是圆 C 上的点,所以 POQ PCQ π 。
26
【三】最值、几何意义的综合问题
1.距离最值(点到点、曲线点到线、) 距离的最值: ---用“参数法” (1)曲线上的点到直线距离的最值问题 (2)点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 2.面积的最值问题 面积最值问题一般转化成弦长问题+点到线的最值问题 3.几何意义及其综合应用:
P(2,
)
在曲线
cos(
)
2
上.
3
3
所以,l的极坐标方程为
cos(
)
2
.
3
(2)设 P(, ) ,在 Rt△OAP 中, | OP || OA | cos 4 cos , 即 4 cos .
因为P在线段OM上,且
AP
OM
,故
的取值范围是 [
,
]
.
42
所以P点轨迹的极坐标方程为
4 cos ,
(1)分别写出 M1 , M 2 , M 3 的极坐标方程;
(2)曲线 M 由 M1 , M 2 , M 3 构成,若点 P 在 M 上,且 | OP | 3 ,求 P 的极坐标.
【解析】(1)由题设可得,弧 AB, BC,CD 所在圆的极坐标方程分别为
2 cos , 2sin , 2 cos .
[ ,
] .[来源:学*科*网]
42
【练习 2】在极坐标系中,已知圆 C 经过点 P (2 2, ) ,圆心为直线ρsin(θ-π)=- 3与极轴的交点,求
文科数学专题坐标系与参数方程(学案)高考二轮复习资料含答案
专题18坐标系与参数方程(教学案)1. 考查参数方程与普通方程、极坐标方程与直角坐标方程的互化.2. 考查利用曲线的参数方程、极坐标方程计算某些量或讨论某些量之间的关系.、直角坐标与极坐标的互化 如图,把直角坐标系的原点作为极点,X 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设【特别提醒】在曲线方程进行互化时,一定要注意变量的范围,要注意转化的等价性. 二、直线、圆的极坐标方程 (1)直线的极坐标方程若直线过点 M p 0, 0 0),且极轴到此直线的角为 a ,则它的方程为:p sin( 0 - a ) = p o sin( 0几个特殊位置直线的极坐标方程 ① 直线过极点:0 = a ;② 直线过点 Ma,0)且垂直于极轴:p cos 0 = a ; ③ 直线过点 Mb ,号且平行于极轴:p sin 0 = b .\一 2丿 (2)几个特殊位置圆的极坐标方程是平面内的任意一点, 它的直角坐标、极坐标分别为(x , y )和(p ,X = p cos0),则〈.|y = p sintan①圆心位于极点,半径为r: p = r;②圆心位于Mr, 0),半径为r: p = 2r cos 0 ;③圆心位于Mr, -2,半径为r: p = 2r sin 0 .【特别提醒】当圆心不在直角坐标系的坐标轴上时,要建立圆的极坐标方程,通常把极点放置在圆心处,极轴与x轴同向,然后运用极坐标与直角坐标的变换公式.三、参数方程(1)直线的参数方程x = x o+ t cos a ,过定点MX o, y o),倾斜角为a的直线I的参数方程为<(t为参数).|y = y o+1 sin a(2)圆、椭圆的参数方程x=x o+ r cos 0 ,①圆心在点Mx o, y o),半径为r的圆的参数方程为* (0为参数,0W 0 W2 n ).y= y o+ r sin 0x 2y2x = a cos 0 ,②椭圆—+ 2= 1的参数方程为a b|y =b sin 0(0为参数).【特别提醒】在参数方程和普通方程的互化中,必须使x, y的取值范围保持一致.考点一坐标系与极坐标例1 .【2017课标3,文22】在直角坐标系xOy中,直线l1的参数方程为£一(t为参数),直线l2.y = kt,x - _2 m,(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l 3:p (cos 0 +sin 0 ) - . 2 =0, M为13与C的交点,求M的极径•【答案】(1)x2「y2 =4(y = o);(2)5【解析】的参数方程为(m为参数).设11与l 2的交点为P,当k变化时, P的轨迹为曲线C⑴消去薑数『得占的普通方程肚尸凤—2*消去蜃数期得归的普通方程/2:>=1(^+2). k所以c 的普通方程为x 2-y 2=4(y^0).(2) C 的极坐标方程为p 1 (coJ 日-sin 带)=4(0 c 0 c2兀&工兀). p 1 (cos 2^ — siu'a) = 4.联立{ ''得 co 認一或D& = 2(coe + siu&).P (COS 0 + S J D 0)-Q = 0)91 SI? tsn & =——,从[Tf] co"* = —. sin 鼻0 —— ”3 1010代入P 1(8“0-鈕勺)"得尸=»所以交点M 的极径为75 -【变式探究】【2016年高考北京文数】 在极坐标系中,直线「cos^ - •、. 3「si-1 = 0与圆]=2cosv 交于A , B 两点,贝y |AB|= _________ .【答案】2【解析】直线x-屈 -1=0过圆(x —1)2+y 2=1的圆心,因此|AB =2. 【变式探究】在极坐标系中,圆 p = 2cos 0的垂直于极轴的两条切线方程分别为 ( )A. 0= 0( p€ R)和 p cos 0 = 2n 十B. 0 = —( p€ R)和 p cos 0 = 2nhC. 0 = ~( p € F)和 p cos 0 = 1D. 0 = 0( p € R)和 p cos 0 = 1【解析】由p = 2cos 0得x 2 + y 2 — 2x = 0./ 2 2•••(x — 1) + y = 1,圆的两条垂直于 x 轴的切线方程为 x = 0和x = 2. 故极坐标方程为 0=寺(P € R)和p cos 0 = 2,故选B. 【答案】By = k{x-2)厂扣+2),消去上得x 2-y 2 =4(y^0)考点二参数方程x = 3co^A例2. 16.【2017课标1,文22】在直角坐标系xOy 中,曲线C 的参数方程为一 "'(0为参数)y = si n €l ,直线I 的参数方程为X" 4t (t 为参数). y J -t.(1)若a 二-1,求C 与I 的交点坐标;(2)若C 上的点到I 的距离的最大值为 J7,求a .21 24【答案】(1) (3,0) , (, ) ; (2) a=8 或 a - -16 . 25 252【解析】 (1 )曲线C 的普通方程为X . y 2 =1 .9当a=-1时,直线l 的普通方程为x ・4y-3=0.x 4y -3 = 0由{ x\ 21y =19(2)直线l 的普通方程为x ,4y-a-4=0 ,故C 上的点3cosv,si n v 到l 的距离为3cos J 4sin - a -4a + 9 a + 9 d 的最大值为 ----- .由题设得 ^17,所以a = 8 ;V17 V17当a v -4时,d 的最大值为一a —1 .由题设得一—J 仃,所以a = —16 .V 17V17综上,a = 8 或 a = -16.【变式探究】【2016高考新课标1卷】(本小题满分10分)选修4— 4:坐标系与参数方程x = a cost在直角坐标系xOy 中,曲线C 的参数方程为/错误!未找到引用源。
最新全国卷历年高考极坐标与参数方程真题归类分析(含答案)
全国卷历年高考极坐标与参数方程真题归类分析(含答案)------------------------------------------作者xxxx------------------------------------------日期xxxx全国卷历年高考极坐标与参数方程真题归类分析(含答案)一、极坐标1。
(2015年1卷)在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。
(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M,N ,求2C MN ∆的面积。
【解析】:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=。
……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12。
1。
(2015年2卷)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且t≠0),其中0≤α〈π,在以O为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=2co s θ。
(1)求C2与C 3交点的直角坐标.(2)若C 1与C 2相交于点A ,C 1与C3相交于点B ,求|AB|的最大值.【解析】(1)曲线C 2的直角坐标方程为x 2+y 2-2y=0,曲线C 3的直角坐标方程为x2+y2-2x =0。
联立x y y x y x 2222⎧+-2=0⎪⎨+-23=0⎪⎩,解得x y =0⎧⎨=0⎩,或x y ⎧3=⎪⎪2⎨3⎪=⎪⎩2。
2018届高考数学二轮复习极坐标、参数方程、直角坐标方程的互化课件(全国通用)
【解析】 (1)曲线C 的普通方程为(x-2)2+y2=4,即x2+y2-4x=0,将
代入方程
x2+y2-4x=0,化简得ρ =4cosθ .所以,曲线C的极坐标方程为ρ =4cosθ .
(2)∵直线l 的直角坐标方程为x+y-4=0,由 坐标为(2,2),(4,0),所以直线l被曲线C截得的弦长为 得直线l与曲线C的交点
.
【答案】
(θ 为参数) 【解析】 曲线C的直角坐标方程是 (θ 为参数).
(x-1)2+y2=1,其参数方程为
10.已知曲线C1的参数方程为 ( ρ =2cosθ +6sinθ .
θ 为参数),曲线C2的极坐标方程为
将曲线C1的参数方程化为普通方程,将曲线C2的极坐标方程化为直角坐标方程.
【解析】 由 (
θ 为参数),得(x+2)2+y2=10.∴曲线C1的普通方程为
(x+2)2+y2=10.∵ρ =2cosθ +6sinθ ,∴ρ 2=2ρ cosθ +6ρ sinθ .∴x2+y2=2x+6y,即(x1)2+(y-3)2=10.∴曲线C2的直角坐标方程为(x-1)2+(y-3)2=10.
7.参数方程(Βιβλιοθήκη 为参数)所表示的曲线的普通方程为
.
【答案】
y=-2x2+1(-1≤x≤1) 【解析】 由于cos2θ =1-2sin2θ ,故y=1-2x2,即
y=-2x2+1(-1≤x≤1).
9.(广东高考)已知曲线C的极坐标方程为ρ =2cosθ .以极点为原点,极轴为x轴的正半 轴建立直角坐标系,则曲线C的参数方程为
选修专题极坐标与参数方程(含答案)
2021高考二轮专题复习:极坐标与参数方程1.极坐标的根本概念极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ),决定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大区别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的〔极角相差2的正数倍〕.2.极坐标与直角坐标的互化.假设极点在原点且极轴为x轴的正半轴,那么平面内任意一点M的极坐标M(ρ,θ)化为平面直角坐标M(x,y)的公式如下:x=ρcosθ,x2+y2,tanθ=y,或者ρ=y=ρsinθx其中要结合点所在的象限确定角θ的值,一般取[0,2).3.常见曲线的参数方程.(1)过定点P(x0,y0),倾斜角为α的直线:x=x0+tcosα,y=y0(t为参数),+tsinα其中参数t是以定点P(x0,y0)为起点,点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离.根据t的几何意义,有以下结论:①设A,B是直线上任意两点,它们对应的参数分别为tA和tB,那么|AB|=|tB-tA|=〔t B+t A〕2-4t A·t B;②线段AB的中点所对应的参数值等于tA+tB.2(2)中心在P(x0,y0),半径等于r的圆:x=x0+rcosθ,(θ为参数)y=y0+rsinθ(3)中心在原点,焦点在x轴(或y轴)上的椭圆:x=acosθ,x=bcosθ,(θ为参数)或.y=bsinθy=asinθ4.参数方程化为普通方程.由参数方程化为普通方程就是要消去参数,消参数时常常采用代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x,y的限制.1高考热点突破〔掌握极坐标方程与直角坐标方程;参数方程与普通方程;极坐标方程与参数方程之间的互化是前提〕例:在平面直角坐标系xOy 中,直线 l 的参数方程为 x tcos〔t 为参数, y tsin〕,以原点O 为极点,以x 轴正半轴为极轴建立极坐标系,曲线 C 的极坐标方程为p 〔p0〕,写出直线l 的极坐标方程和曲线C 的直角坐标方程.cos1突破点1:求交点坐标x 4 5cost,(2021全国1卷)曲线C 1的参数方程为(t 为参数),以坐标原点为极点,55sint轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ. (1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π). 解:(1)将x45cost,消去参数t ,化为普通方程(x -4)2+(y -5)2=25,y 55sint 即C 1:x 2+y 2-8x -10y +16=0.将xcos,代入 x 2+y 2-8 x-10+16=0得ysinyρ2-8ρcos θ-10ρsin θ+16=0. 所以C 1的极坐标方程为 ρ2-8ρcos θ-10ρsin θ+16=0. C 2的普通方程为x 2+y 2-2y =0.由x 2 y 2 8x 10y160,x 2y 2 2y解得x 1, 或 x 0,所以C 1与C 2交点的极坐标分别为2,π,2,π.y 1 y2.42相关练习:x 1 cos1.在直角坐标系 xoy 中,圆C 的参数方程( 为参数〕,以O 为极点,x 轴的y sin 非负半轴为极轴建立极坐标系。
高中数学——极坐标与参数方程(教案)
极坐标与参数方程类型一:含参---距离---韦达定理与三角函数型例1:在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线1cos sin C ρθθ=-:,曲线2122:2x y t C ⎧=-⎪⎪⎨⎪=⎪⎩(t为参数). (1)求曲线1C 的直角坐标方程;(2)若曲线1C 与曲线2C 相交于P 、Q 两点,求PQ 的值. 【答案】解:(1)曲线1cos sin C ρθθ=-:,222cos sin x y x y ρρθρθ=-⇒+=-∴,∴曲线1C 的直角坐标方程为:220x y x y +-+=(2)曲线2122:2x y C ⎧=-⎪⎪⎨⎪=⎪⎩(t为参数),∴联立22102x y x y x y ⎧⎪+-+=⎪⎪⎨=-=⎪⎪⎪⎩,得21024t t +-=, 设1t ,2t为方程21024t t +-=的两根,则1212214t t t t +=-=-⎧⎪⎪⎨⎪⎪⎩,12PQ t t ∴=-==练习题:在直角坐标系xOy 中,直线l的参数方程为2cos sin x t y t ϕϕ=+⎧⎪⎨=⎪⎩(t 为参数,0,3πϕ⎡⎤∈⎢⎥⎣⎦),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的圆心C 的极坐标为2,3C π⎛⎫⎪⎝⎭,半径为2,直线l 与圆C 相交于M ,N 两点.(I )求圆C 的极坐标方程;(Ⅱ)求当ϕ的取值范围.【答案】解:(1)由圆C 的圆心C 的极坐标2,3π⎛⎫⎪⎝⎭,即(,半径为2,可得圆的标准方程为: ()(2214x y -+-=,展开可得:2220x y x +--=,化为极坐标方程:22cos sin 0ρρθθ--=,即4cos 3πρθ⎛⎫=- ⎪⎝⎭(2)把直线l 的参数方程代入圆C 的方程可得:22cos 30t t ϕ+-=,122cos t t ϕ∴+=-,123t t =-,MN ∴==0,3πϕ⎡⎤∈⎢⎥⎣⎦,1cos ,12ϕ⎡⎤∴∈⎢⎥⎣⎦,21cos ,14ϕ⎡⎤∈⎢⎥⎣⎦MN ⎤∴∈⎦类型二:含参----最值----点到直线距离型【答案】(1)曲线C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩,消去θ,可得曲线C 的普通方程为2213x y +=;直线l 的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭()cos sin 2ρθρθ+= 所以直线l 的直角坐标方程为40x y +-=.综上所述,结论是:曲线C 的普通方程为2213x y +=;直线l 的直角坐标方程为40x y +-=.(2)设点),sin Pθθ,则点P 到直线l 的距离为:3d πθ⎛⎫==+≤ ⎪⎝⎭,∴点P 到直线l 距离的最大值为综上所述,结论是:点P 到直线l 距离的最大值为类型三:含参----最值----三角函数型例3:在极坐标系中,曲线():2cos 0C a a ρθ=>,3:cos 32l πρθ⎛⎫-= ⎪⎝⎭,C 与l 有且仅有一个公共点.(Ⅰ)求a ;(Ⅱ)O 为极点,A ,B 为C 上的两点,且AOB ∠=OA +【答案】解:(Ⅰ)曲线():2cos 0C a a ρθ=>,变形22cos a ρρθ=,化为222x y ax +=,即()222x a y a -+=.∴曲线C 是以(),0a 为圆心,以a 为半径的圆;由3:cos 32l πρθ⎛⎫-= ⎪⎝⎭,展开为13cos sin 22ρθθ+=,l ∴的直角坐标方程为30x -=.由直线l 与圆C 相切可得32a a -=,解得1a =.(Ⅱ)不妨设A 的极角为θ,B 的极角为3πθ+,则2cos 2cos 3cos 36OA OB ππθθθθθ⎛⎫⎛⎫+=++==+ ⎪ ⎪⎝⎭⎝⎭,当6πθ=-时,OA OB +取得最大值类型四:不含参----点到直线距离型例4:以原点O 为极点,x 轴的正半轴为极轴建立坐标系,直线l 的方程为2sin 3πρθ⎛⎫-= ⎪⎝⎭C 的极坐标方程为4cos 2sin ρθθ=+(1)求直线l 和C 的普通方程;(2)若直线l 与圆C 交于A 、B 两点,求弦AB 的长。
完整版高考数学第二轮复习专题:极坐标与参数方程含答案
高考数学第二轮复习专题:极坐标与参数方程学校 :___________ 姓名: ___________班级: ___________考号: ___________一、选择题(题型说明)二、填空题(题型说明)三、解答题(题型说明)x32 t,1.在直角坐标系xOy 中,直线l的参数方程为2( t 为参数).在极坐标系2y5t2(与直角坐标系xOy 取同样的长度单位,且以原点 O 为极点,以x轴正半轴为极轴)中,圆 C 的方程为 2 5sin .( 1)求圆 C 的直角坐标方程;( 2)设圆 C 与直线l交于点A, B,若点 P 的坐标为 (3, 5) ,求 PA PB2.(本小题满分10 分)在极坐标系中,点M 坐标是(3,) ,曲线 C 的方程为 2 2 sin() ;以极点为坐24标原点,极轴为x 轴的正半轴成立平面直角坐标系,斜率是1的直线l经过点 M .(1)写出直线l的参数方程和曲线C的直角坐标方程;(2)求证直线l和曲线C订交于两点A、B,并求| MA | | MB |的值.3.(此题满分 10 分)曲线C1x 2 cos为参数),M是曲的参数方程为2(此中y2sin线 C1上的动点,且M 是线段OP 的中点, P 点的轨迹为曲线C2,直线 l 的方程为sin(x) 2 ,直线l与曲线 C2交于A,B两点。
4( 1)求曲线C2的一般方程;( 2)求线段 AB的长。
4.选修 4-4 :坐标系与参数方程(Ⅰ)求直线x1t( t 为参数)的倾斜角的大小.y1t(Ⅱ)在极坐标系中,已知点A(2, ), B(2, 4) ,C是曲线2sin 上随意一点,求3ABC 的面积的最小值.5.在直角坐标系xOy中,曲线C1的参数方程为x 1 cos(为参数),以坐标原点 O 为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标为sincos ,曲线 C3的极坐标方程为.6(1)把曲线C1的参数方程化为极坐标方程;(2)曲线C3与曲线C1交于点O、A,曲线C3与曲线C2交于点O、B,求AB . 6.(本小题满分 10 分)选修 4- 4:极坐标系与参数方程在直角坐标系xoy中,曲线C1的参数方程为x 3 cos ,(为参数),以原点 O 为y sin极点, x 轴正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为sin() 4 2 .4(1)求曲线C1的一般方程与曲线C2的直角坐标方程;(2)设P为曲线C1上的动点,求点P到C2上点的距离的最小值.x 1 t7 ..已知直线l的参数方程为2( t 为参数),曲线 C 的极坐标方程是y2 3 t2sin以极点为原点,极轴为x 轴正方向成立直角坐标系,点M (0,2) ,直线l1 sin 2与曲线 C 交于 A,B 两点.(1)写出直线l的一般方程与曲线 C 的直角坐标方程;(2)线段 MA, MB 长度分别记 | MA| ,| MB| ,求 | MA| ·|MB| 的值.8.已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴的正半轴重合,直线l 的极坐标方程为sin 3 2,曲线C的参数方程是42数).(1)求直线l的直角坐标方程及曲线 C的一般方程;(2)求曲线 C 上的点到直线l的最大距离.x cos(是参y 3 sin9.(选修 4-4 :坐标系与参数方程)平面直角坐标系中, 已知曲线C1: x2y2 1 ,将曲线 C1上全部点横坐标,纵坐标分别伸长为本来的2倍和 3 倍后,获得曲线 C2.( 1)试写出曲线C2参数方程;试卷第 2 页,总 4 页10 .已知直线 l经过点 P( 1,1) ,倾斜角α=,圆 C 的极坐标方程为262 cos() .4(1)写出直线 l 的参数方程,并把圆 C的方程化为直角坐标方程;(2)设 l 与圆 C 订交于两点 A、 B,求点 P 到 A、B 两点的距离之积.11.(本小题满分10 分)选修4-4 :坐标系与参数方程xOy 中,直线 C1:22在直角坐标系x = 2,圆C2:x 1y 21 ,以坐标原点为极点, x 轴的正半轴为极轴成立极坐标系.(Ⅰ)求 C , C2的极坐标方程;1(Ⅱ)若直线C3的极坐标方程为R ,设 C2与 C3的交点为 M ,N,求4C 2 MN 的面积.x 13t12.已知圆C的极坐标方程为2cos,直线 l 的参数方程为22x1 1 t22( t 为参数),点A的极坐标为 2 ,,设直线 l 与圆 C 交于点P、Q.24(1)写出圆C的直角坐标方程;(2)求AP AQ的值 .13.选修 4— 4:极坐标与参数方程x2cosx 轴的正半已知曲线 C1的参数方程是(为参数),以坐标原点为极点,y sin轴为极轴成立极坐标系,曲线C2的极坐标方程是2sin .( 1)写出C1的极坐标方程和C2的直角坐标方程;( 2)已知点M1、 M 2的极坐标分别为1,和2,0 ,直线 M1M 2与曲线 C2订交于2P, Q 两点,射线OP 与曲线 C1订交于点 A ,射线 OQ 与曲线C1订交于点 B ,求112 2 的值.OA OB14.在极坐标系中,点 M 坐标是(3, ),曲线 C 的方程为2 2 sin() ;以极点24( 2)求证直线l 和曲线 C 订交于两点A、 B ,并求| MA | | MB |的值.x 3t 215.已知曲线C的极坐标方程是 2 sin ,直线l的参数方程是5( t 为4y t5参数) .( I )将曲线C的极坐标方程转变为直角坐标方程;(Ⅱ)设直线l 与 x 轴的交点是M , N为曲线 C 上一动点,求MN 的最大值.参照答案1.( 1) x 2 ( y5) 2 5. ( 2) PAPBt 1t 2 t 1 t 23 2.【分析】剖析:( 1)由2 5 sin 得 x 2y 2 2 5y 0, 即 x 2( y5) 2 5.(4 分 )( 2 ) 将 l的 参 数 方 程 代 入C 的 直 角 坐方 程 , 得 (32 t )2 ( 2t) 2 5 , 即22 t 23 2t4 0.(7 分 )因为(3 2) 2 44 2 0 ,故可 t 1 ,t 2是上述方程的两 根,因此t 1 t 2 3 2,t 1 .t 2 4.又直 l 点 P(3,5) ,故由上式及 t 的几何意 得: PAPBt 1 t 2 t 1 t 2 3 2. (10 分 )考点:本 主要考 参数方程, 曲 的极坐 方程,直 与 的地点关系。
高中数学二轮复习参数方程教案含答案(全国通用)
第二节 参数方程[考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在取定的坐标系中,如果曲线上任意一点的坐标(x ,y )都是某个变数t 的函数⎩⎨⎧x =f (t ),y =g (t )并且对于t 取的每一个允许值,由这个方程组所确定的点P (x ,y )都在这条曲线上,那么这个方程组就叫作这条曲线的参数方程,联系x ,y 之间关系的变数t 叫作参变数,简称参数.2.直线、圆、椭圆的参数方程(1)过点M (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t为参数).(2)圆心在点M 0(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数).(3)椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程为⎩⎨⎧x =a cos φ,y =b sin φ(φ为参数).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)参数方程⎩⎨⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)方程⎩⎨⎧x =2cos θ,y =1+2sin θ表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎨⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )[答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上B [由⎩⎨⎧ x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2,所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆, 所以对称中心为(-1,2),在直线y =-2x 上.]3.(教材改编)在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t(t 为参数)的普通方程为________.x -y -1=0 [由x =2+22t ,且y =1+22t , 消去t ,得x -y =1,即x -y -1=0.]4.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t (t 为参数),则C 1与C 2交点的直角坐标为________. (2,-4) [由ρ(cos θ+sin θ)=-2,得x +y =-2.①由⎩⎨⎧x =t 2,y =22t ,消去t 得y 2=8x .② 联立①②得⎩⎨⎧x =2,y =-4,即交点坐标为(2,-4).]5.(2016·江苏高考)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C 的参数方程为⎩⎨⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.[解] 椭圆C 的普通方程为x 2+y 24=1. 2分将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t 代入x 2+y 24=1,得⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫32t 24=1,即7t 2+16t =0,8分解得t 1=0,t 2=-167,所以AB =|t 1-t 2|=167. 10分已知直线l 的参数方程为⎩⎨⎧x =a -2t ,y =-4t(t 为参数),圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围. [解] (1)直线l 的普通方程为2x -y -2a =0,2分 圆C 的普通方程为x 2+y 2=16. 4分 (2)因为直线l 与圆C 有公共点, 故圆C 的圆心到直线l 的距离d =|-2a |5≤4,8分 解得-25≤a ≤2 5. 10分[规律方法] 1.将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.2.把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,要保持同解变形.[变式训练1] 在平面直角坐标系xOy 中,若直线l :⎩⎨⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎨⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,求常数a 的值.[解] 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,4分 所以椭圆C 的右顶点坐标为(3,0), 若直线l 过椭圆的右顶点(3,0), 则3-0-a =0,所以a =3. 10分已知曲线C :x 24+y 29=1,直线l :⎩⎨⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|P A |的最大值与最小值.【导学号:66482486】[解] (1)曲线C 的参数方程为⎩⎨⎧x =2cos θ,y =3sin θ(θ为参数).直线l 的普通方程为2x +y -6=0. 4分(2)曲线C 上任意一点P (2cos θ,3sin θ)到l 的距离为d =55|4cos θ+3sin θ-6|, 则|P A |=d sin 30°=255|5sin(θ+α)-6|,其中α为锐角,且tan α=43. 8分 当sin(θ+α)=-1时,|P A |取得最大值,最大值为2255. 当sin(θ+α)=1时,|P A |取得最小值,最小值为255. 10分[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎨⎧x =x 0+at ,y =y 0+bt (t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.[变式训练2] (2017·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值. [解] (1)由⎩⎨⎧x =4cos θ,y =4sin θ,消去θ,得圆C 的普通方程为x 2+y 2=16. 2分 又直线l 过点P (1,2)且倾斜角α=π6,所以l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =2+t sin π6,即⎩⎪⎨⎪⎧x =1+32t ,y =2+12t(t 为参数). 4分。
(完整word版)高中数学讲义-极坐标与参数方程
极坐标与参数方程、教学目标本次课是一堂新课,通过本次课的学习,让学生理解极坐标和参数方程的概念等基础知 识,掌握极坐标与直角坐标的相互转化, 掌握一般常见曲线和直线的极坐标方程和参数方程。
深刻理解参数方程所代表的数学思想一一换元思想。
二、考纲解读极坐标和参数方程是新课标考纲里的选考内容之一, 只有理科生选学。
在每年的高考试卷中,极坐标和参数方程都是放在一道填空题中,与平面几何作为二选一的考题出现的。
由于极坐标是新添的内容, 考纲要求比较简单, 所以在考试中一般以基础题出现, 不会有很难的题目。
三、知识点回顾(一)曲线的参数方程的定义:x f(t) y f(t)组就叫做这条曲线的参数方程,联系 X 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x o , y o ),倾角为a 的直线:其中参数t 是以定点P (x o , y o )为起点,对应于t 点M (x , y )为终点的有向线段 PM 的数量,又称为点 P 与点M 间的有向距离.根据t 的几何意义,有以下结论.1 .设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB = t;(tBtA ) 4t A tB在取定的坐标系中,如果曲线上任意一点的坐标 x 、y 都是某个变数 t 的函数,即并且对于t 每一个允许值,由方程组所确定的点 M ( x , y )都在这条曲线上,那么方程x X o t cos y y o tsin(t 为参数)2 .线段AB 的中点所对应的参数值等于t A t B 22. 中心在(x o, y o),半径等于r的圆:直线的参数方程和参数的几何意义(三)极坐标系度单位和角度的正方向(通常取逆时针方向)。
对于平面内的任意一点 M 用p 表示线段 OM的长度,0表示从 Ox 到OM 的角,p 叫做点 M 的极径,0叫做点 M 的极角,有序数对(p ,0)就叫做点M 的极坐标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲极坐标与参数方程
从历年高考题全国卷可知,极坐标与参数方程在选考题中相对容易,选此题同学较多,且重点考查参数方程与普通方程互化,极坐标与普通坐标的互化,另重点考几类曲线的参数方程与极坐标方程,应争取拿满分!
极坐标的基本概念
1.曲线的极坐标方程.
(1)极坐标系:一般地,在平面上取一个定点O,自点O引一条射线Ox,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系.其中,点O称为极点,射线Ox称为极轴.
(2)极坐标(ρ,θ)的含义:设M是平面上任一点,ρ表示OM的长度,θ表示以射线Ox为始边,射线OM为终边所成的角.那么,有序数对(ρ,θ)称为点M的极坐标.显然,每一个有序实数对(ρ,θ),决定一个点的位置.其中ρ称为点M的极径,θ称为点M的极角.
极坐标系和直角坐标系的最大区别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,对于给定的有序数对(ρ,θ),可以确定平面上的一点,但是平面内的一点的极坐标却不是唯一的.
(3)曲线的极坐标方程:一般地,在极坐标系中,如果平面曲线C上的任意一点的极坐标满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.
几类曲线的极坐标方程及与直角坐标的互化 2.直线的极坐标方程.
(1)过极点且与极轴成φ0角的直线方程是θ=φ0和θ=π-φ0,如下图所示.
(2)与极轴垂直且与极轴交于点(a ,0)的直线的极坐标方程是ρcos θ=a ,如下图所示.
(3)与极轴平行且在x 轴的上方,与x 轴的距离为a 的直线的极坐标方程为ρsin θ=a ,如下图所示.
3.圆的极坐标方程.
(1)以极点为圆心,半径为r 的圆的方程为ρ=r ,如图1所示.
(2)圆心在极轴上且过极点,半径为r 的圆的方程为ρ=2r cos _θ,如图2所示. (3)圆心在过极点且与极轴成π
2
的射线上,过极点且半径为r 的圆的方程为ρ=2r sin _θ,如图3所示.
4.极坐标与直角坐标的互化.
若极点在原点且极轴为x 轴的正半轴,则平面内任意一点M 的极坐标M(ρ,θ)化为平面直角坐标M(x ,y)的公式如下:
⎩
⎪⎨
⎪⎧x =ρcos θ,y =ρsin θ
或者ρtan θ=y x
,
其中要结合点所在的象限确定角θ的值. 参数方程的定义及几类曲线的参数方程 1.曲线的参数方程的定义.
在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数,即
⎩
⎪⎨⎪⎧x =f (t ),y =g (t ),并且对于t 的每一个允许值,由方程组所确定的点M(x ,y)都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x ,y 之间关系的变数t 叫做参变数,简称参数.
2.常见曲线的参数方程.
(1)过定点P(x 0,y 0),倾斜角为α的直线:
⎩
⎪⎨⎪⎧x =x 0+t cos α,
y =y 0+t sin α(t 为参数), 其中参数t 是以定点P(x 0,y 0)为起点,点M(x ,y)为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.
根据t 的几何意义,有以下结论:
①设A ,B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则|AB|=|t B -t A |=(t B +t A )2
-4t A ·t B ;
②线段AB 的中点所对应的参数值等于t A +t B 2.
(2)中心在P(x 0,y 0),半径等于r 的圆:
⎩
⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数). (3)中心在原点,焦点在x 轴(或y 轴)上的椭圆:
⎩
⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪⎧x =b cos θ,y =a sin θ. 中心在点P(x 0,y 0),焦点在平行于x 轴的直线上的椭圆的参数方程为⎩
⎪⎨
⎪⎧x =x 0+a cos α,y =y 0+b sin α(α为参数).
(4)中心在原点,焦点在x 轴(或y 轴)上的双曲线:
⎩
⎪⎨⎪⎧x =a sec θ,y =b tan θ(θ为参数)⎝ ⎛⎭⎪⎫或⎩⎪⎨⎪
⎧x =b tan θ,y =a sec θ. (5)顶点在原点,焦点在x 轴的正半轴上的抛物线:
⎩
⎪⎨⎪⎧x =2p ,y =2p (t 为参数,p>0)
注:sec θ=
1
cos θ
. 3.参数方程化为普通方程.
由参数方程化为普通方程就是要消去参数,消参数时常常采用代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x ,y 的限制.
1.已知点A 的极坐标为⎝
⎛⎭
⎪⎫4,
5π3,则点A 2.把点P 的直角坐标(6,-2)化为极坐标,结果为6. 3.曲线的极坐标方程ρ=4sin θ化为直角坐标方程为x 2
+(y -2)2
=4.
4.以极坐标系中的点⎝ ⎛⎭⎪⎫1,π6为圆心、1为半径的圆的极坐标方程是ρ=2cos ⎝
⎛⎭⎪⎫θ-π6.
5.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩
⎪⎨
⎪⎧x =3cos θ,
y =2sin θ(θ为参数)的右顶点,则常数a 的值为________.
解析:由直线l :⎩⎪⎨⎪⎧x =t ,y =t -a ,得y =x -a.由椭圆C :⎩
⎪⎨⎪⎧x =3cos θ,y =2sin θ,得x 29=y
2
4=1.所以椭
圆C 的右顶点为(3,0).因为直线l 过椭圆的右顶点,所以0=3-a ,即a =3.
答案:3。