第二课时 课题:函数的基本性质

合集下载

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

第二讲函数的基本性质1

第二讲函数的基本性质1

y xo函数的基本性质 一、函数的单调性:①定义及判定方法: 函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、(0,]a 上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.二、函数的奇偶性:①定义及判定方法 函数的性 质定义图象 判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称) 如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.题型一:判断证明函数的单调性例1.讨论函数()(0)a f x x a x=+>的单调性. (1) 定义法;())(,,,,0,0,a a a a ⎤⎡⎡⎤-∞-+∞-⎦⎣⎣⎦增函数;减函数双钩函数(借助数形结合)例2.(2008上海文,19)已知函数||1()22xx f x =-.(1)若()2f x =,求x 的值;(2)若2(2)()0t f t mf t +≥对于[12]t ∈,恒成立,求实数m 的取值范围.题型二:、抽象函数的单调性例3.已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )= f (x )+)(1x f ,讨论F (x )的单调性,并证明你的结论。

高中数学1.3函数的基本性质 PPT课件 图文

高中数学1.3函数的基本性质 PPT课件 图文

f (x)
1、单调函数的图象特征; 2、函数单调性的定义; 3、证明函数单调性的步骤;
作业 1:证明函数 f(x)=x+4x在(0,1)上是减函数. 2、 证明函数f(x)=x 3 在(-∞,+∞)上是增函数.
思考:讨论函数 f(x )x22ax 3
在(-2,2)内的单调性.
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前单位有一个姑娘,工作特别拼命, 只要说 起她的 名字, 大家都 会赞不 绝口: 这姑娘 工作拼 命的程 度,连 男人们 都比不 上。 后来有一次,在公司的期刊上我看到了 对这姑 娘的采 访,来 公司四 年多, 这期间 做过车 间的流 水工, 也在三 班倒的 岗位上 一做就 是两年 ,谁也 不知道 一个女 孩子究 竟是怎 么扛过 来的。 后来部门有了提拔晋升的名额,这位姑 娘被列 入了第 一人选 ,并且 全票通 过。 她在采访里说: 毕业第一年,许多同学都穿上了好看的 衣服, 走在了 宽敞明 亮的写 字楼里 ,对比 光鲜亮 丽的她 们,我 却穿着 劳保服 ,每日 穿梭在 各种不 同的机 械设备 里。 记得有人笑话我,说我一个姑娘,干一 份这么 不体面 又危险 的活, 丢脸死 了。 我当时有点生气,可后来当我沉浸在这 份工作 里,当 我一点 点沉淀 打磨自 己,当 我发现 自己对 工作的 热情, 其实来 源于对 工作的 投入, 而不是 周遭的 环境时 ,我就 对别人 那点看 我的眼 光毫不 在意了 。 我越来越明确自己想要什么,热爱着什 么,我 越来越 爱现在 从事的 这个行 业,热 爱这份 工作, 更热爱 一直坚 持努力 的自己 。 年轻时,我特别佩服那些不计较金钱、 权位、 报酬专 心工作 ,认真 学习的 人,因 为不计 较钱多 钱少肯 认真工 作的人 ,往往 觉得只 要是能 从事这 份工作 ,本身 就是对 他的最 大报酬 。 事实上,当一个人为了工作本身而不是 工作后 的工资 来做事 情的时 候,他 往往能 够把工 作做到 最好, 也一定 会收到 更多的 报酬。 4 读者给我留言,她说:二毛,我好羡慕 你写了 那么多 文字, 看了那 么多书 ,你是 怎样坚 持做到 的呢? 为什么 ,我总 是坚持 不下去 呢? 我说,那是因为你对读书写作这件事情 不够感 兴趣, 不够热 爱。 你会不会买一本书,其实你从来不看, 但是你 觉得好 像拥有 了其中 的知识 ?你会 不会制 定了一 个计划 ,其实 你从来 坚持不 下来, 只是享 受制订 计划那 几天的 快乐? 我们总是习惯了这样的开始,然后又寥 寥草草 的结束 。对事 如此, 对待生 活也是 如此, 当一个 人对自 己的生 命开始 用“潦 草”来 搪塞时 ,生命 也会开 始对他 潦草。 如果跳舞,要像没有人看着那样尽兴; 如果热 恋,像 从未受 伤一样 去爱; 如果唱 歌,像 无人听 着那样 投入; 如果活 着,就 把人间 当天堂 那般生 活。 这个世界上有很多事,都是当你开始认 真对待 以后, 才会发 现其中 包含的 乐趣, 你要带 着关爱 而不是 期待地 投入生 活,当 你对待 事物越 认真, 对待工 作越投 入,你 会发现 能力与 乐趣接 踵而来 。 学妹给我打电话,说她又换工作了, 这次是 销售。 电话里 ,她絮 絮叨叨 说着一 年多来 工作上 的不如 意,她 说工作 一点都 不开心 ,找不 到半点 成就感 。 末了,她问我:学姐,为什么想找一份 自己热 爱的工 作这么 难呢? 我问她上一份工作干了多久,她说不到 三个月 ,做的 还是行 政助理 的工作 ,工作 内容枯 燥乏味 不说, 还特别 容易得 罪人, 实在不 是自己 的理想 型。 我又问了她前几份工作辞职的原因,结 果都是 大同小 异,不 是因为 工作乏 味,就 是同事 不好相 处,再 者就是 薪水太 低,发 展前景 堪忧。 粗略估计,这姑娘毕业不到一年,工作 却已经 换了四 五份, 还跨了 三个行 业。 但即使如此频繁的跳槽,她也仍然没有 找不到 自己满 意的工 作。 2 我问她,心目中理想型的工作是什么样 子的。 她说, 姐,你 知道苏 明玉吗 ?就是 《都挺 好》电 视剧里 的女老 大,我 就喜欢 她样子 的工作 ,有挑 战有成 就感, 有钱有 权,生 活自由 ,如果 给我那 样的工 作,我 会投入 我全部 的热情 。 听她说完,我尴尬的笑了笑。 其实每一个人都向往这样的成功,但这 姑娘却 本末倒 置了, 并不是 有了钱 有了权 有了成 就以后 才全力 以赴的 工作, 而是全 力以赴 工作, 投入了 自己的 全部以 后,才 有了地 位名望 钱财。 你要先投入,才会有收获,当你真正投 入做一 件事后 ,会明 白两件 事:首 先你会 明白, 把一件 事认认 真真做 好,所 获得的 收益远 大于同 时做很 多事; 你会明白,有人风风火火做各种事仍未 有回报 ,是因 为他们 从未投 入过。 从“做 了”到 “做” ,正如 “知道 ”到“ 懂得” 的距离 。 3 之前单位有一个姑娘,工作特别拼命, 只要说 起她的 名字, 大家都 会赞不 绝口: 这姑娘 工作拼 命的程 度,连 男人们 都比不 上。 后来有一次,在公司的期刊上我看到了 对这姑 娘的采 访,来 公司四 年多, 这期间 做过车 间的流 水工, 也在三 班倒的 岗位上 一做就 是两年 ,谁也 不知道 一个女 孩子究 竟是怎 么扛过 来的。 后来部门有了提拔晋升的名额,这位姑 娘被列 入了第 一人选 ,并且 全票通 过。 她在采访里说: 毕业第一年,许多同学都穿上了好看的 衣服, 走在了 宽敞明 亮的写 字楼里 ,对比 光鲜亮 丽的她 们,我 却穿着 劳保服 ,每日 穿梭在 各种不 同的机 械设备 里。 记得有人笑话我,说我一个姑娘,干一 份这么 不体面 又危险 的活, 丢脸死 了。 我当时有点生气,可后来当我沉浸在这 份工作 里,当 我一点 点沉淀 打磨自 己,当 我发现 自己对 工作的 热情, 其实来 源于对 工作的 投入, 而不是 周遭的 环境时 ,我就 对别人 那点看 我的眼 光毫不 在意了 。 我越来越明确自己想要什么,热爱着什 么,我 越来越 爱现在 从事的 这个行 业,热 爱这份 工作, 更热爱 一直坚 持努力 的自己 。 年轻时,我特别佩服那些不计较金钱、 权位、 报酬专 心工作 ,认真 学习的 人,因 为不计 较钱多 钱少肯 认真工 作的人 ,往往 觉得只 要是能 从事这 份工作 ,本身 就是对 他的最 大报酬 。 事实上,当一个人为了工作本身而不是 工作后 的工资 来做事 情的时 候,他 往往能 够把工 作做到 最好, 也一定 会收到 更多的 报酬。 4 读者给我留言,她说:二毛,我好羡慕 你写了 那么多 文字, 看了那 么多书 ,你是 怎样坚 持做到 的呢? 为什么 ,我总 是坚持 不下去 呢? 我说,那是因为你对读书写作这件事情 不够感 兴趣, 不够热 爱。 你会不会买一本书,其实你从来不看, 但是你 觉得好 像拥有 了其中 的知识 ?你会 不会制 定了一 个计划 ,其实 你从来 坚持不 下来, 只是享 受制订 计划那 几天的 快乐? 我们总是习惯了这样的开始,然后又寥 寥草草 的结束 。对事 如此, 对待生 活也是 如此, 当一个 人对自 己的生 命开始 用“潦 草”来 搪塞时 ,生命 也会开 始对他 潦草。 如果跳舞,要像没有人看着那样尽兴; 如果热 恋,像 从未受 伤一样 去爱; 如果唱 歌,像 无人听 着那样 投入; 如果活 着,就 把人间 当天堂 那般生 活。 这个世界上有很多事,都是当你开始认 真对待 以后, 才会发 现其中 包含的 乐趣, 你要带 着关爱 而不是 期待地 投入生 活,当 你对待 事物越 认真, 对待 在一次踏青活动中,我认识了彩虹 ,一个 皮肤很 白的小 美女。 她对自己的外形不太满意,一米六的身 高,体 重接近1 30斤。 听说我 是跑步 爱好者 ,她马 上加了 我的微 信,希 望能跟 我一起 晨跑, 锻炼出 一个好 身材。 我满口 答应, 承诺每 天电话 催她起 床,到 约定地 点同跑 。 第一天见面,彩虹让我眼前一亮:崭新 的运动 服、高 束的马 尾辫、 箍在大 臂上的 手机袋 ,浑身 上下都 透着一 股踌躇 满志的 精气神 。 我开始跟她讲路线和跑步要领,她却摆 摆手示 意我“ 等一下 ”,让 我先给 她拍照 。跑步 的时候 ,她顺 手拿着 相机自 拍,时 而嘟嘴 ,时而 眯眼, 有时也 让我停 下来帮 她拍几 张跳跃 动作。 我以为她才开始跑步,有新鲜感,拍一 次就会 静心锻 炼。殊 不知, 她竟然 每天晨 跑都要 拍照, 选不同 的角度 ,拍各 种各样 的跑步 姿势。 后来我才发现,她拍照是为了发朋友圈 。她的 朋友圈 里,每 天都有 不同的 跑步图 片,配 上激励 的文字 :“跑 步者, 加油” “跑向 更远的 地方, 看更美 的风景 ”等等 。 我觉得,有拍照片磨蹭的时间,还不如 甩开膀 子多跑 几里路 。一边 跑,一 边拍照 修图, 走走停 停的, 我真不 知道这 样的锻 炼效果 能好到 哪里去 。果然 ,鸣锣 开道般 的跑步 运动只 坚持了 半个月 ,她就 以腿痛 为由, 再也不 肯跑了 。 她说自己真没出息。我心里暗笑:你不 是没出 息,你 只是有 点假努 力。努 力,不 需要那 么多仪 式感。 真正的 努力, 都是直 接朝着 目标前 行,并 不需要 做给任 何人看 。 2 前不久,堂嫂拿到了会计证。 堂嫂读书不多,按毕业证算来才初中学 历。她 一直很 想跟外 地打工 的堂哥 结束两 地分居 的日子 ,但苦 于自己 文化不 高,又 没特长 ,在外 地不好 找工作 ,便想 着考个 会计证 。 她拿到证书来报喜的时候,我很惊讶。 因为她 报考会 计证的 培训班 就在我 家附近 ,我居 然一点 消息都 不知道 !我问 她为什 么不告 诉我们 ,至少 来市里 培训可 以住宿 在我家 ,学习 资料之 类的我 们也可 以支持 啊! 堂嫂说,学习是她自己的事,没必要声 张。再 说,刚 开始的 时候也 不知道 能不能 考过, 别人太 高的期 待反而 会造成 压力。 为期三 个月的 培训, 堂嫂学 了两期 才考过 。 但睿智如堂嫂,认准了目标便一直默默 努力, 没有让 外界因 素干扰 自己。 真正的 努力, 往往都 悄无声 息。 3 太多的人,把努力当成了一种“人设” 。 想做一件事情,还没动工,就敲锣打鼓 ;想达 成一个 目标, 八字还 没一撇 ,就高 谈阔论 。好像 他们的 努力, 不是为 了追求 结果, 而是为 了把努 力的形 式公布 于众, 像完成 某种仪 式。 如果喊着要努力的人,都可以扎扎实实 下功夫 ,可能 这世上 的遗憾 也会少 很多。 很多时候,我们与牛人的差距,就是差 那么一 点脚踏 实地的 真努力 。 真正的努力,是“富贵本无根,尽从勤 里得” 的踏实 ;是“ 读书破 万卷, 下笔如 有神” 的勤奋 ;是“ 欲穷千 里目, 更上一 层楼” 的精进 。 有一种痛叫做,我本可以,却没能 坚持。 雄心勃勃定下的目标,只要一星半点的 理由就 可以化 为泡影 。 实际上,恒心也是一种修为,是可以通 过对自 己的认 识和了 解去挖 掘培养 的。 1 你 的 恒 心 ,与 你的意 愿有关 很多时候,不能坚持并不是因为我们不 能

新课程人教版《3.2函数的基本性质》导学案(2课时)

新课程人教版《3.2函数的基本性质》导学案(2课时)

3.2.1 函数的单调性与最大(小)值1.理解增函数、减函数、单调区间、单调性概念;2.掌握增(减)函数的证明与判断;3.能利用单调性求函数的最大(小)值;4.学会运用函数图象理解和研究函数的性质。

1.教学重点:函数单调性的概念,函数的最值;2.教学难点:证明函数的单调性,求函数的最值。

1、增函数与减函数的定义:一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是增函数。

一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有 ,那么就说函数f (x )在区间D 上是减函数 2.函数的单调性与单调区间如果函数y =f (x )在区间D 上是 ,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的 。

3.函数的最大(小)值一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最大值。

一般地,设函数y =f(x)的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有f(x) M ,存在x 0∈I ,使得 =M 。

称M 是函数y =f(x)的最小值。

一、探索新知 探究一 单调性1、思考:如何利用函数解析式2)(x x f 描述“随着x 的增大,相应的f(x)随着增大?”2、你能类似地描述2)(x x f =在区间)0,(-∞上是减函数吗?3、思考:函数||)(x x f =,2)(x x f -=各有怎样的单调性 ?吗?该区间上一定是增函数在那么函数且满足在定义域的某区间上、思考:函数)(),()(,,存在)(4212121x f y x f x f x x x x x f y =<<=5、思考:函数的单调性是对定义域内某个区间而言的,你能举出在整个定义域内是单调递增的函数例子吗?你能举出在定义域内的某些区间单调递增但在另一些区间上单调递减的函数例子吗?牛刀小试:1、如图是定义在闭区间[-5,5]上的函数y=f(x)的图象,根据图象说出y=f(x)的单调区间,以及在每一个单调区间上,f(x)是增函数还是减函数。

函数的基本性质 复习课件.ppt

函数的基本性质 复习课件.ppt

优秀课件
29
规律方法总结
(3)①若f(x)是偶函数,则f(x)= f(|x|),反之亦真.
②若f(x)为奇函数,且0在定义域 内,则f(0)=0.
③若f(x)=0且f(x)的定义域关于 原点对称,则f(x)既是奇函数又是偶 函数.
优秀课件
30
(2)作差:即f(x2)-f(x1)(或f(x1)- f(x2)),并通过通分、配方、因式分解 等方法,向有利于判断差的符号的方 向变形.
优秀课件
18
课堂互动讲练
(3)定号:根据给定的区间和x2- x1的符号,确定差f(x2)-f(x1)(或f(x1) -f(x2))的符号.当符号不确定时,可 以进行分类讨论.
优秀课件
27
规律方法总结
2.理解函数的奇偶性应注意的问题 (1)定义域在数轴上关于原点对称是 函数f(x)为奇函数或偶函数的必要但不充 分条件.f(-x)=-f(x)或f(-x)=f(x)是定 义域上的恒等式.
优秀课件
28
规律方法总结
(2)奇偶函数的定义是判断函数奇偶性 的主要依据.为了便于判断函数的奇偶性 有时需要先将函数进行化简,或应用定义 的等价形式:f(-x)=±f(x)⇔f(-x)∓f(x)= 0⇔f(f-(xx) )=±1(f(x)≠0).
13
三基能力强化
3.(教材习题改编)函数f(x)=x2- 2x,x∈[a2+1,4]的最大值为________.
答案:8
优秀课件
14
课堂互动讲练
考点一 函数单调性的判断与证明
函数的单调性用以揭示随着自 变量的增大,函数值的增大与减小 的规律.在定义区间上任取x1、x2, 且x1<x2的条件下,判断或证明 f(x1)<f(x2)或f(x1)>f(x2),这一过程 就是实施不等式的变换过程.

函数课题研究报告范文

函数课题研究报告范文

函数课题研究报告范文函数课题研究报告一、引言函数是数学中的重要概念,也是物理、化学、经济等学科中经常被使用的工具。

通过研究函数,我们可以更好地理解和描述自然界中的各种现象和规律。

本次研究报告旨在探讨函数的基本性质及其在实际问题中的应用。

二、函数的定义和性质函数是一种变量之间的关系。

在数学上,一个函数可以定义为一个集合,其中每个输入值有一个对应的输出值。

函数的定义包括定义域、值域和对应关系等要素。

在研究函数的过程中,我们发现了一些重要的性质。

1. 函数的单调性:函数可以是递增或递减的。

如果对于定义域中的任意两个数a和b,当a小于b时函数值f(a)小于f(b),则称函数为递增函数;如果f(a)大于f(b),则称函数为递减函数。

2. 函数的奇偶性:如果对于定义域中的任意数x,有f(-x)=-f(x),则称函数为奇函数;如果f(-x)=f(x),则称函数为偶函数。

3. 函数的周期性:如果存在正数T使得对于定义域中的任意数x,有f(x+T)=f(x),则称函数为周期函数,T称为函数的周期。

三、函数的应用函数在实际问题中具有广泛的应用。

以下是一些常见的应用领域:1. 物理学中的函数:物理学中很多物理量的变化都可以用函数来描述,例如位移、速度、加速度等。

通过函数,我们可以得到物理系统的运动规律,从而解决与运动有关的问题。

2. 经济学中的函数:经济学中的供求关系、收入分配等问题,都可以通过函数来进行描述和分析。

通过函数的模型,我们可以预测市场中商品的价格变化,分析收入分配不平等等经济问题。

3. 生物学中的函数:生物学中的生理过程、遗传规律等可以用函数来描述。

例如,酶的活性随温度的变化可以通过函数关系来表示,从而研究酶的催化作用。

四、结论通过对函数的定义和性质的研究,我们可以更好地理解函数的概念和应用。

函数作为一种重要的数学工具,在各个学科中都有广泛的应用,帮助我们解决实际问题,进一步深化对自然界和社会现象的理解。

2019-2020年高中数学《函数的基本性质》教案2 新人教A版必修1

2019-2020年高中数学《函数的基本性质》教案2 新人教A版必修1

2019-2020年高中数学《函数的基本性质》教案2 新人教A 版必修1教学目的:(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性. 教学过程: 一、引入课题1. 观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:○1 随x 的增大,y 的值有什么变化? ○2 能否看出函数的最大、最小值? ○3 函数图象是否具有某种对称性? 2. 画出下列函数的图象,观察其变化规律:1.f(x) = x○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .2.f(x) = -2x+1○1 从左至右图象上升还是下降 ______? ○2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .3.f(x) = x 2○1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .○2 在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ .二、新课教学(一)函数单调性定义1.增函数一般地,设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f(x 1)<f(x 2),那么就说f(x)在区间D 上是增函数(increasing function ).思考:仿照增函数的定义说出减函数的定义.(学生活动) 注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f(x 1)<f(x 2) .2.函数的单调性定义如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:○1课本P38练习第3题;○2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.○1这个函数的定义域是什么?○2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45习题1.3(A组)第1- 5题.2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),○1求f(0)、f(1)的值;○2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.2019-2020年高中数学《函数的基本性质》教案3 新人教A版必修1一、教学目标1、知识与技能:(1)建立增(减)函数的概念通过观察一些函数图象的特征,形成增(减)函数的直观认识. 再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义 . 掌握用定义证明函数单调性的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


数学导学案 高三(Ⅰ)部数学组


正确理解运用基本知识、基本概念与基本运算,不断提升解题速度与得分能力,向45分钟要效益!!!
1

第二课时 课题:函数的性质及其应用
一、考点与能级:

内 容
要 求
A B C

2.函数概念与基本初等函数Ⅰ
函数的有关概念 √
函数的基本性质 √
指数与对数 √
指数函数的图象和性质 √
对数函数的图象和性质 √
幂函数 √
函数与方程 √
函数模型及其应用 √
二、教学目标:
研究函数的性质(单调性、奇偶性、最值等)和图象(画图、识图、用图),运用函数

的图象和性质综合解题.
三、基础训练
1. 设,0.(),0.xexgxlnxx则1(())2gg__________

2. 若011log22aaa,则a的取值范围是
3. 定义在R上的函数()fx满足()()()2fxyfxfyxy(xyR,),(1)2f,则
(3)f
=

4. 已知2(3)4log3233xfx,则8(2)(4)(8)(2)ffff的值
等于 .

数学导学案 高三(Ⅰ)部数学组


正确理解运用基本知识、基本概念与基本运算,不断提升解题速度与得分能力,向45分钟要效益!!!
2

5.已知函数)(xf是定义在),(上的偶函数. 当)0,(x时,4)(xxxf,则
当),0(x时,)(xf .

6.定义在R上的偶函数()fx满足:(2)()fxfx,且在1,0上是增函数,下面关于
()fx 的判断:①()fx是周期函数;②(5)f=0;③()fx在1,2上是减函数;④()fx


2,1
上是减函数.其中正确的判断是 (把你认为正确的判断都填上)

四、例题精析
例1 (1)已知函数f(x)满足f(logax)=)1(12xxaa (其中a>0,a≠1,x>0),求f(x)的表达式
(2)已知二次函数f(x)=ax2+bx+c满足 | f(1) | = | f(-1) |= | f(0) |= 1 ,求f(x)的表达式

例2 已知函数f(x)=xaxx22,x∈[1,+∞),(1)当a=21时,求函数f(x)的最小值
(2)若对任意x∈[1,+∞), f(x)>0恒成立,试求实数a的取值范围

数学导学案 高三(Ⅰ)部数学组


正确理解运用基本知识、基本概念与基本运算,不断提升解题速度与得分能力,向45分钟要效益!!!
3

例3 设函数y=f(x)定义域为R,当0x时,()1fx,且对于任意的,xyR都有
()()()fxyfxfy
成立,数列na满足1(0)af且11()(2)nnfafa.
(1)求f(0)的值,并证明函数y=f(x)在R上是减函数;
(2)求数列na的通项公式;

(3)是否存在正数k,使121111(1)(1)(1)21nknaaa对一切nN都成立,若存在,求出
k
的最大值,并证明,否则说明理由.

数学导学案 高三(Ⅰ)部数学组


正确理解运用基本知识、基本概念与基本运算,不断提升解题速度与得分能力,向45分钟要效益!!!
4

五、课后训练
1. 函数22()1xyxRx的值域是______________.

3. 已知()fx在R上是奇函数,且(4)(),(0,2)fxfxx当时,2()2,fxx
(7)f则

3.已知函数()fx满足:()()()fabfafb,(1)2f,则
2222
(1)(2)(2)(4)(3)(6)(4)(8)(1)(3)(5)(7)ffffffffffff



4. 设0,1aa,函数2lg(23)()xxfxa有最大值,则不等式2log570axx的解集
为 。

5.对a,bR,记max{a,b}=babbaa<,,函数f(x)=max{|x+1|,|x-2|}(xR)的最小值
是 .
6.已知二次函数)(xf的二次项系数为a,且不等式()2fxx的解集为(1,3).
(1)若方程()7fxa有两个相等的实数根,求)(xf的解析式;

(2)若函数gxx)(xf在区间,3a内单调递减,求a的取值范围;
(3)当1a时,证明方程321fxx仅有一个实数根.

相关文档
最新文档