五年级下册数学课件-第三单元第三节 长方体和正方体的体积| 人教新课标3
人教版五年级数学下册第三单元长方体和正方体长方体
应用:可以用来计算物体的重量、空间大小等 单击添加正文,文字是思想的提炼
正方体的展开与折叠
正方体的展开图
正方体的展开图 有几种形式
正方体展开图的 特征
正方体展开图的 制作方法
正方体展开图的 应用
正方体的折叠方法
展开正方体:将正方体的六个面展开成一个平面图形 折叠正方体:将展开后的平面图形重新折叠成一个完整的正方体 折叠技巧:掌握一些技巧可以帮助你更轻松地折叠正方体 注意事项:在折叠过程中需要注意一些细节,确保正方体的完整性
计算公式:V=l*w*h
单击此处输入你的项正文,文字是您思想的提炼, 请尽量言简赅的意阐述你的观点。
长方体的展开与折叠
长方体的展开图
长方体的展开图是沿着其高展 开得到的平面图形
展开图由长方体的六个面组成, 通常包括前后面、左右面和上 下面
展开图展示了长方体的表面积, 即所有六个面的面积之和
通过观察展开图,可以更直观 地理解长方体的结构和特性
正方体的实际应用
生活中的正方体物品
魔方:一种由正方体组成的智力玩具,通过旋转各个面来还原魔方的 颜色和图案。
骰子:一种由正方体组成的游戏道具,通常用于赌博和游戏。
立方体积木:一种由正方体组成的儿童玩具,可以搭建出各种形状和 建筑物。
立方体包装盒:一种常见的包装盒形状,用于保护和运输各种物品。
正方体在建筑中的应用
正方体的表面积和体积
定义:正方体有6个面,每个面都是正方形 单击添加正文,文字是思想的提炼
计算方法:每个面的面积是边长的平方,所 以正方体的表面积是6个面的面积之和 单击添加正文,文字是思想的提炼
人教版五年级数学下册第三章长方体和正方体第三节长方体和正方体的体积ppt课件
公有的质因数
2 18 30 3 9 15 35
独有的质因数
所以,18和30的最大公因数=2×3=6; 18和30的最小公倍数= 2×3×3×5=90。 为了便于区分,可以简单归纳为: 最大公因数乘半边,最小公倍数乘半圈。
6 18
30
3
5
求两个数的最大公因数与最小公 倍数时,用合数作除数有助于提 高计算速度。
计量体积就要用体积单位,常用的体积单位有
立方厘米 立方分米 立方米
1立方厘米
棱长1厘米的正方体,体积是1立方厘米
1立方厘米
棱长1分米的正方体,体积是1立方分米
1米
1分米
1分米
1立方分米
棱长1米的正方体,体积是1立方米
1米
1立方厘米
上图含( 4个 )1立方厘米, 体积就是(4立方厘米 )
一个物体里含有多少个体积 单位,它的体积就是多少。
长/分米 宽/分米
长
5
方
4
体
10
1 3 2 棱长/米
正
6
方 体
30
0.4
高/分米 2 5 4
体积/分米 3
10 60 80
体积/米3
216 27000 0.064
3、判断正误并说明理由。 ( 1)0.2 3=0.2×0.2×0.2;( √ )
( 2)5X 3=10X;( × )
( 3 )一个正方体棱长4分米,它的体
(分数的意义)
一个物体、一些物体等都可以看作一个整体, 把这个整体平均分成若干份,这样的一份或 几份都可以用分数来表示。
单位“1”与分数单位的区别
单位“1”表示:一个物体、一些物体等都可 以看作一个整体,一个整体可以用自然数1来 表示,通常把它叫做“1”。 分数单位表示:把单位“1”平均分成若干份, 表示其中一份的数叫分数单位。
小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)
人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。
五年级下册数学习题课件-3长方体和正方体人教版(共47张PPT)
每个面的面积:_2_×__2_=__4_(_d_m_2_)_____。 正方体的表面积:__4_×__6_=__2_4_(_d_m_2)______。
五年级下册数学习题课件-3 长方体和正方体 人教版(共47张PPT)
4. 一个不锈钢花瓶的形状是正方体,棱长和是36 cm,制作这个花瓶至少需要 不锈钢板多少平方厘米? 36÷12=3(cm) 3×3×6=54(cm2)
20×30×2+8×30×2+20×8=1840(cm2)
3. 一个长方体包裹,它的长、宽、高分别是5 dm,4 dm,2 dm。如果实际用纸 是表面积的1.4倍,那么包装这个包裹至少要用多少平方分米的包装纸? (5×4+5×2+4×2)×2×1.4=106.4(dm2)
4. 小区门前的水池的形状是长方体,它的宽是6 m,长是宽的1.5倍,深1.2 m。 如果把水池的四周和底面贴上瓷砖,那么贴瓷砖的面积是多少平方米? 长:6×1.5=9(m) 9×6+9×1.2×2+6×1.2×2=90(m2)
3 长方体和正方体
第1课时 长 方 体
1. 仔细想,认真填。 (1) 同学们正在用一些小棒和橡皮泥拼搭长方体的框架。
① 上图是小明已经拼搭好的部分,他还需要( 5 )个橡皮泥小球、( 1 ) 根9 cm小棒、( 2 )根5 cm小棒、( 3 )根3 cm小棒,就可以拼搭成一个长 ( 9 )cm、宽( 5 )cm、高( 3 )cm的长方体框架。 ② 长方体框架上面是( 长方 )形,长是( 9 )cm,宽是( 5 )cm。 ③ 长方体框架( 左 )面和( 右 )面的长是5 cm,宽是3 cm。 ④ 把长方体框架的所有棱都粘上胶带,至少需要( 68 )cm长的胶带。 (2) 在长、宽、高不全相等的长方体中,最多可以有( 2 )个面是正方形。 在这样的长方体中,有( 4 )个长方形的面相同。
新人教版五年级下册《体积和体积单位》课件
但瓶里的水不够高。
乌鸦一颗一颗的往瓶子里装石子。
水面为什么上升了? 瓶里的水渐渐升高。
石头占有一定的 空间!
哪个物体的体积大?哪个物体的体积小?
电视机
影碟机
手机
物体都占有一定的空间,并 且所占的空间有大有小。
物体所占空间的大小叫做物 体的体积。
哪个体积大?
为了便于比较或准确知道物体的体 积,要用统一的体积单位来测量。
日常生活中的作用,初步形成综合运用数学知识解决问题的能力。 • 10、体会解决问题策略的多样性及运用优化的数学思想方法解决问题的有效
性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析 推理的能力。 • 11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。 • 12、养成认真作业,书写整洁的好习惯。
盘活教材 有效教学
人教版五年级数学下册教材
说教材流程
数学教学的总体目标 本教材的教学内容
本册教学目标 本教材的编写特点
教学建议 具体教学措施
单元介绍
基础教育阶段数学课程的总体目标
1、获得适应未来社会生活和进一步发展所必需的重要数学 知识以及基本的数学思想方法和必要的应用技能。
2、初步学会运用数学的思维方式去观察、分析现实社会,去 解决日常生活中和其他学科学习中的问题,增强应用数学的意 识。
V=sh
相对的棱 长度相等
12条棱
相对的面 面积相等
正方体 的特征
长方体 的特征
长三
方长
培养学生解决
体方 体
问题的能力
和和
正正
方方 体体
真
分
数
小 于
假分
人教版五年级下册数学第三单元长方体和正方体整理与复习课件
长方体 正方体
长方体或正 方体12条棱
长的总和
棱长总和=(长+宽+高) ×4
棱长总和=棱长×12
常用单位
厘米 分米
米
深化知识
形体
定义
表面积 计算公式
常用单位
长方体 正方体
长方体或正方 体6个面的总
面积
S=(长×宽+长×高+ 宽×高) ×2
S=棱长×棱长×6
平方厘米 平方分米
平方米
深化知识
形体
定义
的长 方体
深化知识 对应训练1
1.填空。 (1)长方体有( 6 )个面,相对的面( 完全相同 )。可能这几个面
都是长方形,也有可能有( 2 )个面是( 正方形 )。 (2)长方体有( 8 )个顶点。 (3)长方体有( 12 )条棱,相对的棱长度( 相等 )。
深化知识
(4)长方体的棱可以分成( 3 )组,每组有( 4 )条。 (5)相交于一个顶点的三条棱的长度分别叫做长方体的( 长 )、
这个包装箱的表面积是: 0.35×2+0.28×2+0.2×2
=0.7+0.56+0.4 =1.66(m2) 答:至少要用1.66m2的硬纸板。
0.4m
深化知识
3. 一个玻璃鱼缸的形状是正方体,棱长 3dm。制作这个鱼缸时至少需要玻璃 多少平方分米? (上面没有盖。)
3×3×5=45(dm2) 答:制作这个鱼缸时至少需要玻璃45dm2。
知识梳理
长 方 体 正 方 体
长方体、正方体的特征 长方体、正方体的表面积 长方体、正方体的体积
面
棱
顶点 意义 计算
意义 单位、进率 计算
深化知识
1 长方体正方体的认识
五年级下册数学习题课件-3长方体与正方体 人教新课标 3
0.63÷0.7= 0.9 9÷0.01= 900 4.2÷0.3= 14 50.5÷5= 10.1
12.6÷6= 2.1 4.08+0.2=4.28 3.6÷3= 1.2
0.7÷0.5= 1.4 2.3-1.7= 0.6 1.2×0.5=0.6
六、用三个长 5dm,宽 4dm,高 2dm 的小长方体拼成一个大长方体(如图, 有如下三种拼法),大长方体的表面积最大是多少?最小是多少? 5×4×2+5×2×2+4×2×2=76(dm2) 76×3=228(dm2) 5×4×4=80(dm2) 5×2×4=40(dm2) 4×2×4=32(dm2) 最大:228-32=196(dm2) 最小:228-80=148(dm2)
四、求下列图形的表面积。
(5×4+5×2.5+4×2.5)×2=85(cm2)
4×4×6=96(cm2)
五、一个长方体玻璃鱼缸(上面没有盖),长 5dm,宽 3dm,高 3.5dm。制作 这个鱼缸至少需要多少平方分米的玻璃?
5×3+(3×3.5+5×3.5)×2=71(dm2) 答:制作这个鱼缸至少需要 71 平方分米的玻璃。
二、把下面的长方体、正方体和相应的展开图连一连。
三、判断。(对的打“√”,错的打“×”) 1.两个长方体的表面积相等,它们的形状一定相同。( × ) 2.正方体的棱长扩大到原来的 2 倍,它的棱长之和与表面积也都扩大到原 来的 2 倍。( × ) 3.把两个棱长为 1cm 的正方体拼成长方体后,正方体的表面积(1)
一、填一填。 1.长方体或正方体 6 个面的总面积,叫做它的表面积。 2.如图: 上、下面的面积之和是 72 cm2; 前、后面的面积之和是 54 cm2; 左、右面的面积之和是 24 cm2; 表面积是 150 cm2。 3.一个棱长是 5dm 的正方体,每个面的面积是 2500 cm2,表面积是150 dm2。 4.一个长方体木盒,长是 8cm、宽是 5cm、高是 4cm,这个木盒的占地面积最 大是 40 cm2,它的表面积是 184 cm2。
(2023春)人教版五年级数学下册《体积单位间的进率》PPT课件
课堂练习 在括号里填上合适的数。
900cm³=( 0.9 )dm³
3dm³=( 3000)cm³
50dm³=( 0.05 )m³
4.08m³=( 4080)dm³
8cm³=( 0.000008)m³ 8.6m³=( 860000)0cm³
低级单位变高级单位除以进率; 高级单位变低级单位乘进率。
答:最多能装6盒。
课堂小结
通过这节课的学习,你有什么收获?
答:这个牛奶包装箱的体积是0.06m³。
探究新知 也可以先计算再换算成不同的单位。 60000cm³ 60dm³ = 0.06m³
试着计算一下吧!
课堂练习 有一段长方体木料如下图,它的体积是多少立方 米?
5cm=0.05m 0.05×0.05×3=0.0075(立方米) 答:它的体积是0.0075立方米。
仿照上面的方法,你能推算出1m3 等于多少立方分米吗?
体积为1m³的正方体可以看成棱长是10dm的 正方体,10×10×10=1000(dm³)。
1m3=_1_0_0_0__dm3
下面是我们学过的计量单位,请把下表补充完整。
计量 类型 长度
面积
体积
单位名称 米、分米、厘米 平方米、平方分米、平方厘米 立方米、立方分米、立方厘米
(教材P35 做一做T2)
要砌一面长15m、厚24cm、高3m的砖墙,如 果每立方米用砖525块,至少要用砖多少块?
24cm=0.24m 15×0.24×3 =10.8(m3) 10.8×525=5670(块) 答:至少要用砖5670块。
巩固运用
(教材P36 T1)
1. 1.02m3= 1020 dm3 960dm3= 0.96 m3
人教版五年级数学下册第三单元《长方体和正方体的体积》PPT课件
36立方厘米
24立方厘米
27立方厘米
要知道一个物体的体积,就要看这个物体含有多少个体积单位
物体含有多少个体积单位,体积就是多少。
二 新课探究
?
长方体所占空间的大小叫做长方体的体积。 长方体的体积可以怎样算呢? 数体积单位个数的方法求长方体的体积。
下面的长方体都是用棱长1cm的小正方 体摆成的,你知道这个长方体的体积吗?
答:这个铁球的体积是70立方分米。
用12个棱长为1厘米的小正方体摆出不同的长方体
长(厘米) 宽(厘米) 高(厘米) 正方体的个数 体积(厘米3)
第一个长 方体
第二个长 方体
第三个长 方体
第四个长 方体
长 12 cm
高 1 cm
宽 1 cm
高 1 cm 长 6 cm
宽 2 cm
高 1 cm 长 4 cm
?
正方体的体积怎么样计算呢? 正方体的是特殊的长方体是 长宽高都相等的长方体。
棱长
棱长
棱长
正长方体的体积 =棱长长 × 棱宽长 ×棱高长
棱长a a棱长
棱a长
正方体的体积V == 棱a长长a×a棱宽长 ×棱高长 V = a3
V = a3 3a
a×a×a
{
a+a+ 3 ×a
a
比较a×3和a3 a×3表示3和a相乘 a3表示3个a相乘
一个长方体,长7cm,宽4cm,高3cm,它的体 积是多少?
V=abh
=7×4×3 =84(cm3)
计算下面长方体的体积
3 分米
0.8 分米 2 分米
6米 2. 2 米 0. 4 米
V = abh = 2×0.8×3 = 4.8(立方分米)
人教版五年级数学第三单元3-8长方体和正方体体积公式推导PPT课件一等奖新名师优质课获奖比赛公开课
小结
计量长度要用长度单位, 如米、分米、厘米… 计量面积要用面积单位,
如平方米、平方分米、 平方厘米… 计量体积要用体积单位, 如立方米、 立方分米、立方厘米…
用1立方厘米旳正方体摆出下 面旳长方体,各需要多少个?想一 想.
4cm
4cm
4cm
4立方厘米 12立方厘米 24立方厘米
用1立方厘米旳正方体摆成下面旳长方 体和正方体。它们旳体积各是多少?
3×2×5 6×3×2 3×3×3
=6×5
=18×2 =9×3
=30(cm3) =36(cm3) =27(cm3)
长5厘米、宽4厘米、高3厘米旳 长方体,一共要用多少个1立方 厘米旳正方体摆成?它旳体积是 多少呢?
60立方厘米
长:4 厘米 宽:31 厘米 高:21 厘米 体积:12424 立方厘米
2厘米
1厘米 4厘米
13厘厘米米
长方体旳体积=长×宽×高
h
a
b
V = abh
一种长方体,长7cm,宽4cm,高3cm,它旳体 积是多少?
V=abh
=7×4×3 =84(cm3)
棱长
棱长
棱长
正长方体旳体积 =棱长长 × 棱宽长 ×棱高长
棱长a a棱长
棱a长
正方体旳体积V == 棱a长长a×a棱宽长 ×棱高长 V = a3
比较a×3和a3 a×3表达3和a相乘 a3表达3个a相乘
2、计算。 33 =27 53 =125 13 =1
103 =1000
0.13 =0.001
一块正方体石料,棱长 是6dm,这块石料旳体 积是多少立方分米?
V = a3 =6×6×6 =216(dm3)
答:这块石料旳体积是216 dm3。
五年级下册 第三单元
五年级下册第三单元由于不清楚五年级下册人教版数学第三单元具体的标题内容,我先以“长方体和正方体”这个常见的第三单元内容为例为你整理学习资料:一、长方体和正方体的认识。
1. 长方体的特征。
- 面:长方体有6个面,每个面都是长方形(特殊情况有两个相对的面是正方形)。
相对的面完全相同。
- 棱:长方体有12条棱,相对的棱长度相等。
可以分为三组,每组有4条棱。
- 顶点:长方体有8个顶点。
2. 正方体的特征。
- 正方体也有6个面,每个面都是正方形,并且6个面完全相同。
- 正方体有12条棱,12条棱的长度都相等。
- 正方体有8个顶点。
3. 长方体和正方体的关系。
- 正方体是特殊的长方体,当长方体的长、宽、高相等时,这个长方体就是正方体。
二、长方体和正方体的表面积。
1. 表面积的概念。
- 长方体或正方体6个面的总面积,叫做它的表面积。
2. 长方体表面积的计算。
- 长方体的表面积=(长×宽 + 长×高+宽×高)×2,用字母表示为S = 2(ab+ac + bc),其中a表示长,b表示宽,c表示高。
3. 正方体表面积的计算。
- 正方体的表面积 = 棱长×棱长×6,用字母表示为S = 6a^2,其中a表示正方体的棱长。
三、长方体和正方体的体积。
1. 体积的概念。
- 物体所占空间的大小叫做物体的体积。
2. 体积单位。
- 常用的体积单位有立方厘米、立方分米和立方米。
- 棱长为1厘米的正方体,体积是1立方厘米;棱长为1分米的正方体,体积是1立方分米;棱长为1米的正方体,体积是1立方米。
3. 长方体体积的计算。
- 长方体的体积=长×宽×高,用字母表示为V = abc。
也可以根据底面积来计算,长方体体积 = 底面积×高,即V=Sh,其中S = ab(底面积)。
4. 正方体体积的计算。
- 正方体的体积=棱长×棱长×棱长,用字母表示为V = a^3。
五年级下册数学课件-3.3 长方体和正方体的表面积|人教新课标(2014秋) (共23张PPT)
2. 长方体和正方体的表面积
第3节 长方体和正方体的表面积
一、创设活动情境,复习导入
同学们,我们已经学习 了长方体和正方体,下面请 每个小组用老师为大家准备 的这些长方形纸板做一个封 闭的长方体纸盒。比一比哪 个小组合作得最好,最先做 完。
哪个小组的同学能说 一说你们制作的长方体纸 盒的基本特征?指出它的 长、宽、高,并分别指出 和长、宽、高相等的棱。
(√ )
()
(√ )
2.亮亮家要给一个长0.75 m、 宽0.5 m、高1.6 m的简易衣柜换布 罩(如右图,没有底面)。至少 需要用布多少平方米?
0.75×1.6×2+ 0.5×1.6×2+ 0.75×0.5 =4.375(m2)
三、布置作业
教材第25页练习六第1~3题。
谢谢大家! 再见!
。2. 一份耕耘,份收获,努力越大,收获越多,奋斗!奋斗!奋斗!3. 让我们将事前的忧虑,换为事前的思考和计划吧!4. 世界上那些最容易的事情中,拖延时间最不费力5. 不管现在有多么艰辛,我们也要做个生活的舞者。6. 奋斗是万物之父。— —陶行知7. 上帝制造人类的时候就把我们制造成不完美的人,我们一辈子努力的过程就是使自己变得更加完美的过程,我们的一切美德都来自于克服自身缺点的奋斗。8. 不要被任何人打乱自己的脚步,因为没有谁会像你一样清楚 和在乎自己的梦想。9. 时间不在于你拥有多少,只在于你怎样使用10. 水只有碰到石头才能碰出浪花。11. 嘲讽是一种力量,消极的力量。赞扬也是一种力量,但却是积极的力量。12. 在我们成长的路上也会遇到一些挫折,一些困 难,那韩智华就是我们的榜样,永不认输,因为我知道挫折过后是一片晴朗的天空,瞧,成功就在挫折背后向我们招手,成功就是在努力的路上,“成功就在努力的路上”!让我们记住这句话,向美好的明天走去。13. 销售世界上 第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。14. 不要匆忙的走过一天又一天,以至于忘记自己从哪里来,要到哪里去。生命不是一场速度赛跑,她不是以数量 而是以质量来计算,知道你停止努力的那一刻,什么也没有真正结束。15. 也许终点只有绝望和失败,但这绝不是停止前行的理由。16. 有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。 17. 我颠覆了整个世界。只为了摆正你的倒影18. 好的想法是十分钱一打,真正无价的是能够实现这些想法的人。19. 伤痕是士兵一生的荣耀。20. 只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 21. 多对自己说“我能行,我一定可以”,只有这样才不会被“不可能”束缚,才能不断超越自我。22. 人生本来就充满未知,一切被安排好反而无味——坚信朝着目标,一步一步地奋斗,就会迈向美好的未来。23. 回避现实的人, 未来将更不理想。24. 空想会想出很多绝妙的主意,但却办不成任何事情。25. 无论什么思想,都不是靠它本身去征服人心,而是靠它的力量;不论靠思想的内容,而是靠那些在历史上某些时期放射出来的生命的光辉。——罗曼·罗 兰《约翰·克利斯朵夫》26. 上帝助自助者。27. 你的爸妈正在为你奋斗,这就是你要努力的理由。28. 有很多人都说:平平淡淡就福,没有努力去拼博,又如何将你的人生保持平淡?又何来幸福?29. 当事情已经发生,不要抱怨,不 要沮丧,笑一笑吧,一切都会过去的。30. 外在压力增加时,就应增强内在的动力。31. 我们每个人都应微笑面对人生,没有了怨言,也就不会有哀愁。一个人有了希望,就会对生活充满信心,只要你用美好的心灵看世界,总是以 乐观的精神面对人生。32. 勇敢的人。——托尔斯泰《袭击》33. 昨天下了雨,今天刮了风,明天太阳就出来了。34. 是的,成功不在于结果,更重要的是过程,只要你努力过,拼搏过,也许结果不一定是最好的那也走过了精彩的过 程,至少,你不会为此而后悔。35. 每一天的努力,以后只有美好的未来。每一天的坚持,换来的是明天的辉煌。36. 青年最要紧的精神,是要与命运奋斗。——恽代英37. 高峰只对攀登它而不是仰望它的人来说才有真正意义。38. 志不可立无可成之事。如无舵之舟,无衔之马,飘荡奔逸,何所底乎?--王守仁39. 拿望远镜看别人,拿放大镜看自己。40. 顽强的毅力可以征服世界上任何一座高峰。——狄更斯41. 士人第一要有志,第二要有识,第三要有恒。— —曾国42. 在我们能掌控和拼搏的时间里,去提升我们生命的质量。43. 我们不是等待未来,我们是创造未来,加油,努力奋斗。44. 人生如画,一笔一足迹,一步一脚印,有的绚丽辉煌,有的却平淡无奇。45. 脚跟立定以后,你必 须拿你的力量和技能,自己奋斗。——萧伯纳46. 一个能从别人的观念来看事情,能了解别人心灵活动的人,永远不必为自己的前途担心。
五年级数学下册课件- 3.1 长方体和正方体的认识 -人教新课标(2014秋)(共19张PPT)[优秀课件]
( ×) (6)长方体是一种特殊的正方体。 ( × )
(7) 相对的4条棱都相等的物体一定是长方体。
( ×)
三:说出下面每个长方体的长宽高:
8厘米
5 厘 米
3厘米
2 分 米
6分米
4 厘 米 3厘米
5厘米
6分米
四 : 下图中的长方体和正方体都是由棱长1厘 米的小正方体摆成的,它们的长,宽,高各是 多少?
是该有的生活!无论未来的每一天,是什么样子,都是我自己的选择,按照自己的选择来生活,是送给自己最好的礼物。
面 棱
顶 点
长方体有12条棱,每相对的4条棱相等 (按照相等的棱长可分为3组)
讨论(3) 1.长方体有几个顶点? 2.相交于同一顶点的三条棱,分别叫做长方 体的长,宽,高。 3.以同一顶点上的长,宽,高为一组,可分为 哪几组?
长方体有8个顶点。
高
宽 长 以同一顶点上的长,宽,高为一组,可 分为4组。
宽
长 宽
长 高 高
长
高 高
宽
宽
长
长方体有8个顶点。
以同一顶点上的长,宽,高为一组,可分为4 组。
长,宽,高都相等的长方体叫正方体,也叫立方体。
讨论: 1.正方体的面有几个?有什么特点? 2.正方体的棱有几条?有什么特点? 3.正方体的顶点有几个?
长方体和正方体的特征
名称
长方体
正方体
个数 面
形状
2. 正方体有( 6 )个面,( 12)条棱, ( 8 )个 顶点。每个面都是面积相等的 ( 正方形 ),每条棱长都( 相等 )。
一. 填空:
3. 长方体中相交与一个顶点的三条棱分别叫做 长方体的( 长 ),( 宽 ), ( 高 )。
五年级下册数学_3长方体和正方体3长方体和正方体的体积容积和容积单位人教版(21张)精品课件
画图理解
40dm
30dm
0.6dm
0.65dm 20dm
dm
40dm
解法与算法
(30×30×0.6+20×20×0.65)÷(40×40)
乙水池上升部分的体积 丙水池上升部分的体积 甲水池的底面积
乙、丙水池加 入碎石后总共上升 部分的体积。
h=V÷S
解法与算法
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题。
65)÷(40×40)
L和mL是什么的单位?
大约是1L。 (2)估计一下,一纸杯水大约有多少毫升,几杯水
这个油箱可以装汽油多少升?
计量容积,一般就用体积单位。
大约是1L。 大约是1L。
可以用量筒
长方体或正方体容器容积的计算方法,跟体积的计算方法相同,但要从容器里面量长、宽、高。
或量杯度量液体 第6课时 容积和容积单位
1875cm³=1875mL 答:这个铁盒的容积是1875mL。
L和mL是什么的单位? 一种小汽车上的长方体油箱,从里面量长5dm,宽4dm,高2dm。 (1)将一瓶矿泉水倒在纸杯中,看看可以倒满几杯。
这18个m³长=(方体)的L容积计是多少量? 容积,一般就用体积单位。计量液体的
箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
2第463课m³时=体24容30积0积0和L容积,单位如水、油等,常用容积单位升和毫升,也
18m³=( )L
可以写成L和mL。 计量容积,一般就用体积单位。
65)÷(40×40) 这个油箱可以装汽油多少升?
1L=1000mL 1L=1dm³ 1mL=1cm³ 答:这个铁盒的容积是1875mL。
人教版小学数学五年级下册练习课件 第3单元 长方体和正方体 3-2 体积单位间的进率
9.一个长方体,长5 m,宽3 m,高22 dm,将它放在
地面上,占地面积最大是多少平方米?体积是多少
立方米? 5×3=15(m2)
22 dm=2.2 m
5×3×2.2=33(m3)
答:占地面积最大是15平方米。
体积是33立方米。
11700÷25÷20=23.4(cm) 长:25 cm>24 cm,宽:20 cm>16 cm, 高:23.4 cm>18 cm,所以可以装下。
5.一根长方体木料长2 m,把它沿横截面截 成三段后,表面积比原来增加了8.64 dm2。
2 m=20 dm 8.64÷4×20=43.2(dm3) 答:这根木料的体积是43.2立方分米。
1.填一填。 (1)棱长为1 dm的正方体,也可以看成是棱长为10 cm的正方体,它的体积是( 1000 )cm3,所以1 dm3=( 1000 )cm3。 (2)相邻两个体积单位间的进率是( 1000 )。
2.在○里填上“>”“<”或“=”。
○ 0.5 m3 = 500 dm3 ○ 25 dm3 > 40 cm3 ○ 15 dm3 > 1500 cm3 ○ 0.32 m3 < 3200 dm3
人教版-五年级-下
第3单元
3 长方体和正方体的体积 第2课时 体积单位间的进率
1.因为1分米=( 10 )厘米,边长是1分米的正方形 面积是(1平方分米 ),可以看成边长是( 10 )厘米 的正方形,这个正方形的面积是( 100 )平方厘米, 所以1平方分米=( 100 )平方厘米。
2. 3分米=( 30 )厘米 600平方分米=( 6 )平方米 1 .3平方米=( 1 )平方米( 30 )平方分米
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
请用字母公式表示下列数量:
h a ab 平方厘米; 底面积是____________
上、下两个面的面积是____________ 2ab 平方厘米;
b
前、后两个面的面积是____________ 2ah 平方厘米;
2bh 平方厘米。 左、右两个面的面积是____________
练习一 练习二 练习三
填表: 面 相同 长 方 体 正 方 体 6 个 6个面 完全相同 不 同 相同 棱 不同 顶点
相对的面 完全相同 12 条
互相平行 的棱,长 度相等 8个 12条棱 长度都相等
探究一
探究二
探究三
探究三 长方体和正方体之间的关系。
正方体是特殊的长方体。
探究一
探究二
探究三
练习一
练习二
练习三
练习一
1、下图中有几个长方体,几个正方体?
练习一
练习二
练习三
练习二
填空 (1) 一个长方体的长是8厘米,宽是4厘米,高是3厘米, 6 0 厘米。 这个长方体的棱长之和是__长为
4 _________ 分米。
练习一
练习二
练习三
练习三
(3)若长方体的长为a厘米,宽为b厘米,高为h厘米,
练习四
一条小虫从下图长方体的顶点A出发,沿着棱爬 向另一个顶点B(每次只能经过三条棱),爬行的路
线一共有________ 6 条。
A
B 练习一 练习二 练习三
本课小结
我认识了长方体和正方体面
和棱的特征。
作业
完成练习册14页
1、进一步认识长方体与正方体。 2、通过探究、观察、比较等方法,进一步探 究长方体和正方体面、棱、顶点的特征。
3、通过用讨论、交流等学习方式,增强合作
意识,提高学习能力。
复习旧知
说一说你对长方体和正方体的认识。
探究一
探究二
探究三
探究一
面 棱
顶点
长
高 宽
长方体是由六个长方形的面围成的立体图形。
交于一个顶点的三条棱的长度,分别叫做长方 体的长、宽、高。
探究一
探究二
探究三
探究一
长、宽、高相等的长方体叫 做正方体,也叫做立方体。
正方体是由六个完全相同的正方形的面 围成的立体图形。
探究一
探究二
探究三
探究二
借助学具观察,你发现长方体和正方体 的面与棱、顶点有哪些特点?
探究一
探究二
探究三
探究三