《一次函数》经典例题剖析(附练习及答案)

合集下载

一次函数经典题型习题精华含答案

一次函数经典题型习题精华含答案

一次函数经典题型习题精华含答案一、线性方程的基本概念在数学中,一次函数又称为线性函数,是最基本的一类函数。

一次函数的标准形式可以表示为:y = kx + b,其中k和b分别表示斜率和截距。

二、一次函数的图像与性质1. 斜率的意义斜率k表示了函数图像在坐标平面上的倾斜程度。

斜率越大,函数图像越陡峭;斜率为负值时,函数图像下降;斜率为正值时,函数图像上升。

2. 截距的意义截距b表示了函数图像与y轴的交点。

当x = 0时,y = b,因此截距实际上就是函数图像与y轴的交点的y坐标值。

3. 函数图像的性质一次函数的图像是一条直线,其性质包括:经过点(0,b)、斜率为k。

三、一次函数的常见题型及解答1. 求斜率题目:已知一次函数y = 2x - 3,求其斜率。

解答:根据一次函数的标准形式,可知该函数的斜率为2。

2. 求截距题目:已知一次函数y = 3x + 4,求其截距。

解答:根据一次函数的标准形式,可知该函数的截距为4。

3. 求函数图像上某点的坐标题目:已知一次函数y = 2x + 1,求其图像上x = 3处的点的坐标。

解答:将x = 3代入函数中,可得到y = 2 * 3 + 1 = 7,因此该点的坐标为(3, 7)。

4. 求函数图像与坐标轴的交点题目:已知一次函数y = -2x + 5,请求函数图像与x轴和y轴的交点坐标。

解答:与x轴的交点:当y = 0时,-2x + 5 = 0,解得x = 2.5。

因此,与x 轴的交点坐标为(2.5, 0)。

与y轴的交点:当x = 0时,y = 5。

因此,与y轴的交点坐标为(0, 5)。

5. 求函数图像的斜率和截距题目:已知函数图像经过点(2, 7)和(4, 9),求该一次函数的斜率和截距。

解答:首先利用两点坐标求斜率:k = (9 - 7) / (4 - 2) = 2 / 2 = 1。

接下来,选择其中一点代入斜率k和函数形式求截距:7 = k * 2 + b,带入斜率和已知点的坐标,可求得b = 5。

(易错题精选)初中数学一次函数经典测试题含答案解析

(易错题精选)初中数学一次函数经典测试题含答案解析

(易错题精选)初中数学一次函数经典测试题含答案解析一、选择题1.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( )A .-1B .3C .1D .- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m 的符号,再把点(0,2)代入求出m 的值即可.【详解】∵一次函数y=mx+|m-1|中y 随x 的增大而增大,∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2),∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去).故选B .【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.2.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y =−4x 和y =kx +b 的图象相交于点A (m ,−8),∴−8=−4m ,解得:m =2,故A 点坐标为(2,−8),∵kx +b >−4x 时,(k +4)x +b >0,则关于x 的不等式(k +4)x +b >0的解集为:x >2.故选:A .【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.3.如图,已知一次函数22y x =-+的图象与坐标轴分别交于A 、B 两点,⊙O 的半径为1,P 是线段AB 上的一个点,过点P 作⊙O 的切线PM ,切点为M ,则PM 的最小值为( )A .2B 2C 5D 3【答案】D 【解析】【分析】【详解】 解:连结OM 、OP ,作OH ⊥AB 于H ,如图,先利用坐标轴上点的坐标特征:当x=0时,y=﹣22,则A (0,2),当y=0时,﹣2=0,解得2,则B (2,0),所以△OAB 为等腰直角三角形,则2OA=4,OH=12AB=2, 根据切线的性质由PM 为切线,得到OM ⊥PM ,利用勾股定理得到22OP OM -21OP -当OP 的长最小时,PM 的长最小,而OP=OH=2时,OP 的长最小,所以PM 的最小值为2213-=故选D .【点睛】本题考查切线的性质;一次函数图象上点的坐标特征.4.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【答案】C【解析】【分析】根据一次函数的图象与系数的关系进行解答即可.【详解】∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.【点睛】本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k <0,b>0时图象在一、二、四象限.5.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.6.如图,把 Rt ABC ∆放在直角坐标系内,其中 90CAB ∠=o ,5BC =,点 A 、B 的坐标分别为(1,0)、(4,0),将ABC ∆沿x 轴向右平移,当点 C 落在直线26y x =-上是,线段BC 扫过的面积为( )A .4B .8C .16D .8【答案】C【解析】【分析】 根据题目提供的点的坐标求得点C 的坐标,当向右平移时,点C 的纵坐标不变,代入直线求得点C 的横坐标,进而求得其平移的距离,计算平行四边形的面积即可.【详解】∵点A 、B 的坐标分别为(1,0)、(4,0),∴AB =3,BC =5,∵∠CAB =90°,∴AC =4,∴点C 的坐标为(1,4),当点C 落在直线y =2x -6上时,∴令y=4,得到4=2x-6,解得x=5,∴平移的距离为5-1=4,∴线段BC扫过的面积为4×4=16,故选C.【点睛】本题考查了一次函数与几何知识的应用,解题关键是题中运用圆与直线的关系以及直角三角形等知识求出线段的长.7.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示,下列叙述正确的是()A.甲乙两地相距1200千米B.快车的速度是80千米∕小时C.慢车的速度是60千米∕小时D.快车到达甲地时,慢车距离乙地100千米【答案】C【解析】【分析】(1)由图象容易得出甲乙两地相距600千米;(2)由题意得出慢车速度为60010=60(千米/小时);设快车速度为x千米/小时,由图象得出方程60×4+4x=600,解方程即可;(3)求出快车到达的时间和慢车行驶的路程,即可得出答案.【详解】解:(1)由图象得:甲乙两地相距600千米,故选项A错;(2)由题意得:慢车总用时10小时,∴慢车速度为:60010=60(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时,慢车速度为60千米/小时;选项B错误,选项C正确;(3)快车到达甲地所用时间:60020903小时,慢车所走路程:60×203=400千米,此时慢车距离乙地距离:600-400=200千米,故选项D错误.故选C【点睛】本题考核知识点:函数图象. 解题关键点:从图象获取信息,由行程问题基本关系列出算式.8.如图,在平面直角坐标系中,OABC 的顶点A 在x 轴上,定点B 的坐标为(6,4),若直线经过定点(1,0),且将平行四边形OABC 分割成面积相等的两部分,则直线的表达式( )A .+1y x =B .4455y x =-C .1y x =-D .33y x =-【答案】C【解析】【分析】 根据过平行四边形的中心的直线把平行四边形分成面积相等的两部分,先求出平行四边形中心的坐标,再利用待定系数法求一次函数解析式解答即可.【详解】∵点B 的坐标为(6,4),∴平行四边形的中心坐标为(3,2),设直线l 的函数解析式为y kx b =+,则320k b k b +=⎧⎨+=⎩,解得11k b =⎧⎨=-⎩,所以直线l 的解析式为1y x =-. 故选:C .【点睛】本题考查了待定系数法求一次函数解析式,平行四边形的性质,熟练掌握过平行四边形的中心的直线把平行四边形分成面积相等的两部分是解题的关键.9.一次函数y=ax+b 与反比例函数a b y x-=,其中ab <0,a 、b 为常数,它们在同一坐标系中的图象可以是( )A.B.C.D.【答案】C【解析】【分析】根据一次函数的位置确定a、b的大小,看是否符合ab<0,计算a-b确定符号,确定双曲线的位置.【详解】A. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项不正确;B. 由一次函数图象过二、四象限,得a<0,交y轴正半轴,则b>0,满足ab<0,∴a−b<0,∴反比例函数y=a bx-的图象过二、四象限,所以此选项不正确;C. 由一次函数图象过一、三象限,得a>0,交y轴负半轴,则b<0,满足ab<0,∴a−b>0,∴反比例函数y=a bx-的图象过一、三象限,所以此选项正确;D. 由一次函数图象过二、四象限,得a<0,交y 轴负半轴,则b<0,满足ab>0,与已知相矛盾所以此选项不正确;故选C.【点睛】此题考查反比例函数的图象,一次函数的图象,解题关键在于确定a 、b 的大小10.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.若A (x 1,y 1)、B (x 2,y 2)是一次函数y=ax+x-2图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是( )A .a <0B .a >0C .a <-1D .a >-1【答案】C【解析】【分析】【详解】∵A (x 1,y 1)、B (x 2,y 2)是一次函数2(1)2y ax x a x =+-=+-图象上的不同的两点,()()12120m x x y y =--<,∴该函数图象是y 随x 的增大而减小,∴a+1<0,解得a<-1,故选C.【点睛】此题考查了一次函数图象上点的坐标特征,要根据函数的增减性进行推理,是一道基础题.13.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm【答案】B【解析】【分析】【详解】 由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH .∴CH AC BC AB =,即AC BC 3412CH CH AB 55⋅⨯=⇒==. ∴如图,点E (3,125),F (7,0). 设直线EF 的解析式为y kx b =+,则 123k b {507k b=+=+,解得:3k 5{21b 5=-=. ∴直线EF 的解析式为321y x 55=-+. ∴当x 5=时,()3216PD y 5 1.2cm 555==-⨯+==. 故选B .14.在平面直角坐标系中,已知直线与轴、轴分别交于、两点,点是轴上一动点,要使点关于直线的对称点刚好落在轴上,则此时点的坐标是( ) A . B . C . D .【答案】B【解析】【分析】过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD=CO=n ,DA=OA=4,则DB=5-4=1,BC=3-n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.【详解】过C 作CD ⊥AB 于D ,如图,对于直线,当x=0,得y=3; 当y=0,x=4,∴A (4,0),B (0,3),即OA=4,OB=3, ∴AB=5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上, ∴AC 平分∠OAB , ∴CD=CO=n ,则BC=3-n , ∴DA=OA=4, ∴DB=5-4=1,在Rt △BCD 中,DC 2+BD 2=BC 2, ∴n 2+12=(3-n )2,解得n=, ∴点C 的坐标为(0,). 故选B. 【点睛】本题考查了一次函数图象与几何变换:直线y=kx+b ,(k≠0,且k ,b 为常数),关于x 轴对称,横坐标不变,纵坐标是原来的相反数;关于y 轴对称,纵坐标不变,横坐标是原来的相反数;关于原点轴对称,横、纵坐标都变为原来的相反数.也考查了折叠的性质和勾股定理.15.在平面直角坐标系中,直线:1m y x =+与y 轴交于点A ,如图所示,依次正方形1M ,正方形2M ,……,正方形n M ,且正方形的一条边在直线m 上,一个顶点x 轴上,则正方形n M 的面积是( )A .222n -B .212n -C .22nD .212n +【答案】B 【解析】 【分析】由一次函数1y x =+,得出点A 的坐标为(0,1),求出正方形M 1的边长,即可求出正方形M 1的面积,同理求出正方形M 2的面积,即可推出正方形n M 的面积. 【详解】一次函数1y x =+,令x=0,则y=1, ∴点A 的坐标为(0,1), ∴OA=1,∴正方形M 1的边长为22112+=,∴正方形M 1的面积=222⨯=, ∴正方形M 1的对角线为()()22222⨯=,∴正方形M 2的边长为222222+=, ∴正方形M 2的面积=3222282⨯==, 同理可得正方形M 3的面积=5322=, 则正方形n M 的面积是212n -,故选B. 【点睛】本题考查一次函数图象上点的坐标特征、规律型,解答本题的关键是明确题意,发现题目中面积之间的关系,运用数形结合思想解答.16.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.17.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C 【解析】 【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得. 【详解】解:根据函数图象易知k 0<, ∴32k 0-+<, 故选:C . 【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D 【解析】 【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标. 【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:3k = 即直线OA 的解析式为:3y x = 将点A '的横坐标为34y =- 即点A '的坐标为(43,4)-∵点A 向右平移636个单位得到点A ' ∴B '的坐标为(063,46)(63,2)+-=-. 故选:D . 【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.一次函数y 1=kx+1﹣2k (k≠0)的图象记作G 1,一次函数y 2=2x+3(﹣1<x <2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N(﹣1,2),Q(2,7)为G2的两个临界点,易知一次函数y1=kx+1﹣2k(k≠0)的图象过定点M(2,1),直线MN与直线MQ为G1与G2有公共点的两条临界直线,从而当G1与G2有公共点时,y1随x增大而减小;故①正确;当G1与G2没有公共点时,分三种情况:一是直线MN,但此时k=0,不符合要求;二是直线MQ,但此时k不存在,与一次函数定义不符,故MQ不符合题意;三是当k>0时,此时y1随x增大而增大,符合题意,故②正确;当k=2时,G1与G2平行正确,过点M作MP⊥NQ,则MN=3,由y2=2x+3,且MN∥x 轴,可知,tan∠PNM=2,∴PM=2PN,由勾股定理得:PN2+PM2=MN2∴(2PN)2+(PN)2=9,∴PN =, ∴PM =.故③正确. 综上,故选:D . 【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( ) 型号A B 单个盒子容量(升) 2 3 单价(元)56A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C 【解析】 【分析】设购买A 型瓶x 个,B(253x -)个,由题意列出算式解出个选项即可判断. 【详解】设购买A 型瓶x 个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油, ∴购买B 型瓶的个数是1522533x x -=-, ∵瓶子的个数为自然数, ∴x=0时, 253x -=5; x=3时, 253x -=3; x=6时, 253x -=1; ∴购买B 型瓶的个数是(253x -)为正整数时的值,故A 成立; 由上可知,购买A 型瓶的个数为0个或3个或6个,所以购买A 型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.。

中考《一次函数》经典例题及解析

中考《一次函数》经典例题及解析

一次函数一、正比例函数的概念一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做正比例系数.二、一次函数1.一次函数的定义一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时,y叫做x的正比例函数.2.一次函数的一般形式一次函数的一般形式为y=kx+b,其中k,b为常数,k≠0.一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.3.注意(1)正比例函数是一次函数,但一次函数不一定是正比例函数.(2)一般情况下,一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.三、一次函数的图象及性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0,0)的一条直线.k的符号函数图象图象的位置性质k>0 图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限y随x的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象(2)一次函数的性质函数字母取值图象经过的象限函数性质y=kx+b (k≠0) k>0,b>0 一、二、三y随x的增大而增大k>0,b<0一、三、四y=kx+b (k≠0) k<0,b>0 一、二、四y随x的增大而减小k<0,b<0 二、三、四3.k,b的符号与直线y=kx+b(k≠0)的关系在直线y=kx+b(k≠0)中,令y=0,则x=-bk,即直线y=kx+b与x轴交于(–bk,0).①当–bk>0时,即k,b异号时,直线与x轴交于正半轴.②当–bk=0,即b=0时,直线经过原点.③当–bk<0,即k,b同号时,直线与x轴交于负半轴.4.两直线y=k1x+b1(k1≠0)与y=k2x+b2(k2≠0)的位置关系:①当k1=k2,b1≠b2,两直线平行;②当k1=k2,b1=b2,两直线重合;③当k1≠k2,b1=b2,两直线交于y轴上一点;④当k1·k2=–1时,两直线垂直.四、待定系数法1.定义:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法.2.待定系数法求正比例函数解析式的一般步骤(1)设含有待定系数的函数解析式为y=kx(k≠0).(2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程.(3)解方程,求出待定系数k.(4)将求得的待定系数k的值代入解析式.3.待定系数法求一次函数解析式的一般步骤(1)设出含有待定系数k、b的函数解析式y=kx+b.(2)把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.(3)解二元一次方程组,求出k,b.(4)将求得的k,b的值代入解析式.五、一次函数与正比例函数的区别与联系—正比例函数一次函数区别一般形式y=kx+b(k是常数,且k≠0)y=kx+b(k,b是常数,且k≠0)图象经过原点的一条直线一条直线k,b符号的作用k的符号决定其增减性,同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k,b的符号共同决定直线经过的象限求解析式的条件只需要一对x,y的对应值或一个点的坐标需要两对x,y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样,都是过两点画直线,但画一次函数的图象需取两个不同的点,而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时,y的值随x值的增大而增大;b.当k<0时,y的值随x值的增大而减小.六、一次函数与方程(组)、不等式1.一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k,b为常数,且k≠0)的形式.从函数的角度来看,解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑,解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.2.一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a,b为常数,且a≠0)的形式.从函数的角度看,解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.3.一次函数与二元一次方程组一般地,二元一次方程mx+ny=p(m,n,p是常数,且m≠0,n≠0)都能写成y=ax+b(a,b为常数,且a≠0)的形式.因此,一个二元一次方程对应一个一次函数,又因为一个一次函数对应一条直线,所以一个二元一次方程也对应一条直线.进一步可知,一个二元一次方程对应两个一次函数,因而也对应两条直线.从数的角度看,解二元一次方程组相当于考虑自变量为何值时,两个函数的值相等,以及这两个函数值是何值;从形的角度看,解二元一次方程组相当于确定两条直线的交点坐标,一般地,如果一个二元一次方程组有唯一解,那么这个解就是方程组对应的两条直线的交点坐标.七、一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标,或两条直线的交点坐标,进而将点的坐标转化成三角形的边长,或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行,可以采用“割”或“补”的方法.八、一次函数的实际应用1.主要题型: (1)求相应的一次函数表2.用一次函数解决实际问题的一般步骤为(1)设定实际问题中的自变量与因变量的取值范围;(4)利用函数性质解决问题3.方案最值问题:对于求方案问题,通常涉及两个相关量事物的取值范围,再根据另一个事物所要满4.方法技巧求最值的本质为求最优方案,解法有两种(2)直接利用所求值与其变量之间满足的若为分段函数,则应分类讨论,先计算出每显然,第(2)种方法更简单快捷.经典例1.若一次函数22y x =+的图象经过点【答案】8【分析】将点(3,)m 代入一次函数的解析式【解析】解:由题意知,将点(3,)m 代入一即:232=⨯+m ,解得:8m =.故答案【点睛】本题考查了一次函数的图像和性质2.有一个装有水的容器,如图所示.容器中,水面高度以每秒0.2cm 的速度匀速增加关系是( )A .正比例函数关系B .一次函数关系【答案】B【分析】设水面高度为,hcm 注水时间为【详解】解:设水面高度为,hcm 注水时间所以容器内的水面高度与对应的注水时间满【点睛】本题考查的是列函数关系式,判断函数表达式;(2)结合一次函数图象求相关量、求步骤为:变量;(2)通过列方程(组)与待定系数法求一次函数关决问题;(5)检验所求解是否符合实际意义;(6)关量,解题方法为根据题中所要满足的关系式,通过所要满足的条件,即可确定出有多少种方案. 两种:(1)可将所有求得的方案的值计算出来,再进满足的一次函数关系式求解,由一次函数的增减性可算出每个分段函数的取值,再进行比较. 经典例题 一次函数和正比例函数的定义过点(3,)m ,则m =_________. 解析式中即可求出m 的值.代入一次函数22y x =+的解析式中, 故答案为:8.和性质,点在图像上,则将点的坐标代入解析式中即容器内的水面高度是10cm ,现向容器内注水,并同速增加,则容器注满水之前,容器内的水面高度与对关系C .二次函数关系D .反比例函数关系间为t 分钟,根据题意写出h 与t 的函数关系式,从而水时间为t 分钟,则由题意得:0.210,h t =+ 时间满足的函数关系是一次函数关系,故选B . 判断两个变量之间的函数关系,掌握以上知识是解求实际问题的最值等. 函数关系式;(3)确定自变量)答. 通过列不等式,求解出某一个再进行比较;减性可直接确定最优方案及最值;定义式中即可.并同时开始计时,在注水过程度与对应的注水时间满足的函数关系从而可得答案.识是解题的关键.1.已知函数1(2)2(2)x x y x x-+<⎧⎪=⎨-≥⎪⎩,当函数值A .﹣2 B .﹣23【答案】A【分析】根据分段函数的解析式分别计算【解析】解:若x <2,当y =3时,﹣x 若x ≥2,当y =3时,﹣2x=3,解得:x=﹣【点睛】本题考查了反比例函数的性质、键.2.下列函数关系式:(1)y =﹣x ;(2A .1 B .2【答案】B【分析】根据一次函数的定义条件进行逐一【详解】解:(1)y =﹣x 是正比例函数 (2)y =x ﹣1符合一次函数的定义,故正(4)y =x 2属于二次函数,故错误.综上所【点睛】本题主要考查了一次函数的定义b 为常数,k≠0,自变量次数为1.经典1.若m <﹣2,则一次函数()y m x =++A . B .【答案】D【分析】由m <﹣2得出m+1<0,1﹣【解析】解:∵m <﹣2,∴m +1<0,1函数值为3时,自变量x 的值为( )C .﹣2或﹣23D .﹣2或﹣32计算,即可得出结论. +1=3,解得:x =﹣2; ﹣23,不合题意舍去;∴x =﹣2,故选:A .、一次函数的图象上点的坐标特征;根据分段函数)y =x ﹣1;(3)y =1x;(4)y =x 2,其中一次函数C .3D .4行逐一分析即可.函数,是特殊的一次函数,故正确; 故正确;(3)y =1x属于反比例函数,故错误; 综上所述,一次函数的个数是2个.故选:B .定义.本题主要考查了一次函数的定义,一次函数经典例题 一次函数的图象及性质 11m -的图象可能是( )C .D .m >0,进而利用一次函数的性质解答即可. ﹣m >0,段函数进行分段求解是解题的关次函数的个数是( ) 函数y=kx+b 的定义条件是:k 、所以一次函数()11y m x m =++-的图象【点睛】本题考查的是一次函数的图像与性影响是解题的关键 .2.对于一次函数2y x =+,下列说法不正A .图象经过点()1,3 C .图象不经过第四象限 【答案】D【分析】根据一次函数的图像与性质即可求【解析】A.图象经过点()1,3,正确;C.图象经过第一、二、三象限,故错误;【点睛】此题主要考查一次函数的图像与性1.在平面直角坐标系中,已知函数y A . B .【答案】A【分析】求得解析式即可判断.【解析】解:∵函数y =ax +a (a ≠0)的图∴直线交y 轴的正半轴,且过点(1,2,【点睛】此题考查一次函数表达式及图像的2.已知一次函数3y kx =+的图象经过点A .()1,2- B .()1,2-【答案】B【分析】先根据一次函数的增减性判断出【解析】∵一次函数3y kx =+的函数值A .当x=-1,y=2时,-k+3=2,解得选项符合题意;C .当x=2,y=3时,2k+3的图象经过一,二,四象限,故选:D . 像与性质,不等式的基本性质,掌握一次函数y kx +法不正确的是( ) B .图象与x 轴交于点()2,0- D .当2x >时,4y <即可求解.B.图象与x 轴交于点()2,0-,正确 ; D.当2x >时,y >4,故错误;故选D . 像与性质,解题的关键是熟知一次函数的性质特点=ax +a (a ≠0)的图象过点P (1,2),则该函数的 C . D .的图象过点P (1,2),∴2=a +a ,解得a =1,∴),故选:A . 图像的相关知识.经过点A ,且y 随x 的增大而减小,则点A 的坐标可以C .()2,3D .()3,4断出k 的符号,再将各项坐标代入解析式进行逐一判数值y 随x 的增大而减小,∴k ﹤0,k=1﹥0,此选项不符合题意;B .当x=1,y=-2时,2k+3=3,解得k=0,此选项不符合题意;D .当x=3b =中的,k b 对函数图像的特点.函数的图象可能是( )∴y =x +1, 标可以是( ) 逐一判断即可. ,k+3=-2,解得k=-5﹤0,此,y=4时,3k+3=4,解得k=13﹥0,此选项不符合题意,故选:B . 【点睛】本题考查了一次函数的性质、待定系数法,熟练掌握一次函数图象上点的坐标特征是解答的关键.经典例题 用待定系数法确定一次函数的解析式1. 小红在练习仰卧起坐,本月1日至4日的成绩与日期具有如下关系:日期x (日) 1 2 3 4成绩y (个) 4043 4649小红的仰卧起坐成绩y 与日期x 之间近似为一次函数关系,则该函数表达式为__________. 【答案】y =3x +37.【分析】利用待定系数法即可求出该函数表达式. 【解析】解:设该函数表达式为y =kx +b ,根据题意得:40243k b k b +⎧⎨+⎩==,解得337k b ⎧⎨⎩==,∴该函数表达式为y =3x +37.故答案为:y =3x +37.【点睛】本题考查了一次函数的应用,会利用待定系数法求出一次函数的解析式是解题的关键.2.将函数y =2x 的图象向上平移3个单位,则平移后的函数解析式是( ) A .y =2x +3 B .y =2x ﹣3C .y =2(x +3)D .y =2(x ﹣3)【答案】A【分析】直接利用一次函数“上加下减”的平移规律即可得出答案.【解析】解:∵将函数y =2x 的图象向上平移3个单位,∴所得图象的函数表达式为:y =2x +3.故选:A . 【点睛】本题考查一次函数图象与几何变换,正确记忆“左加右减,上加下减”的平移规律是解题关键.1.我国传统的计重工具﹣﹣秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据. x (厘米) 1 2 4 7 1112 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?【答案】(1)x =7,y =2.75这组数据错误斤.【分析】(1)利用描点法画出图形即可判断【解析】解:(1)观察图象可知:x =7(2)设y =kx +b ,把x =1,y =0.75,x 解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴1142y x =+, 当x 答:秤杆上秤砣到秤纽的水平距离为【点睛】此题考查画一次函数的图象的方法解此题的关键.2.把直线y =2x ﹣1向左平移1个单位长度【答案】y =2x +3【分析】直接利用一次函数的平移规律进而【解析】解:把直线y =2x ﹣1向左平移再向上平移2个单位长度,得到y =2x 【点睛】本题考查了一次函数的平移,熟练经典1.在平面直角坐标系xOy 中,对于横、纵坐据错误;(2)秤杆上秤砣到秤纽的水平距离为16厘米可判断.(2)设函数关系式为y =kx +b ,利用待定系,y =2.75这组数据错误.=2,y =1代入可得0.7521k b k b +=⎧⎨+=⎩,=16时,y =4.5,16厘米时,秤钩所挂物重是4.5斤.的方法,待定系数法求一次函数的解析式,一次函数位长度,再向上平移2个单位长度,则平移后所得直律进而得出答案.平移1个单位长度,得到y =2(x +1)﹣1=2x +1, +3.故答案为:y =2x +3. 熟练掌握是解题的关键.经典例题一次函数与一元一次方程 纵坐标相等的点称为“好点”.下列函数的图象中厘米时,秤钩所挂物重是4.5待定系数法解决问题即可. 次函数的实际应用,正确计算是所得直线的解析式为_____. 象中不存在...“好点”的是( )A .y x =-B .2y x =+C .2y x=D .22y x x =-【答案】B【分析】根据“好点”的定义判断出“好点”即是直线y=x 上的点,再各函数中令y=x ,对应方程无解即不存在“好点”. 【解析】解:根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x , A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合; B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:x =x =是原方程的解,即“好点”)和(,),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合; 故选B.【点睛】本题考查了函数图像上的点的坐标,涉及到解分式方程,一元二次方程,以及一元一次方程,解题的关键是理解“好点”的定义.2.在平面直角坐标系中,O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B ,则△AOB 的面积为( ) A .2 B .3C .4D .6【答案】B【分析】根据方程或方程组得到A (﹣3,0),B (﹣1,2),根据三角形的面积公式即可得到结论. 【解析】解:在y =x +3中,令y =0,得x =﹣3,解32y x y x =+⎧⎨=-⎩得,12x y =-⎧⎨=⎩,∴A (﹣3,0),B (﹣1,2),∴△AOB 的面积=12⨯3×2=3,故选:B . 【点睛】本题考查了两直线与坐标轴围成图形的面积,求出交点坐标是解题的关键.1.已知在平面直角坐标系xOy 中,直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .则下列直线中,与x 轴的交点不在线段AB 上的直线是( )A .y =x +2B .y x +2C .y =4x +2D .y +2 【答案】C【分析】分别求出点A 、B 坐标,再根据各选项解析式求出与x 轴交点坐标,判断即可. 【解析】解:∵直线y =2x +2和直线y =23x +2分别交x 轴于点A 和点B .∴A (﹣1,0),B (﹣3,0) A. y =x +2与x 轴的交点为(﹣2,0);故直线y =x +2与x 轴的交点在线段AB 上;B. y x +2与x ,0);故直线y x +2与x 轴的交点在线段AB 上;C.y=4x+2与x轴的交点为(﹣12,D.yx+2与x【点睛】本题考查了求直线与坐标轴的交点2.如图,直线542y x=+与x轴、y轴分则点1A的坐标是_____.【答案】(4,125)【分析】首先根据直线AB来求出点A案.【解析】解:在542y x=+中,令∴A(8-5,0),B(0,4),由旋转可得∴∠ABO=∠A1BO1,∠BO1A1=∠AOB=90∴∠OBO1=90°,∴O1B∥x轴,∴点A横坐标为O1B=OB=4,故点A1的坐标是【点睛】本题主要考查了旋转的性质以及一关键.经典例1.如图,直线y=kx+b(k、b是常数k≠00);故直线y=4x+2与x轴的交点不在线段AB上,0);故直线y+2与x轴的交点在线段的交点,注意求直线与x轴交点坐标,即把y=0代入轴分别交于A、B两点,把AOBV绕点B逆时针旋转和点B的坐标,A1的横坐标等于OB,而纵坐标等x=0得,y=4,令y=0,得5042x=+,解得x=-5可得△AOB ≌△A1O1B,∠ABA1=90°,OB=90°,OA=O1A1=85,OB=O1B=4,1的纵坐标为OB-OA的长,即为48-5=125;标是(4,125),故答案为:(4,125).以及一次函数与坐标轴的交点问题,利用基本性质结经典例题一次函数与一元一次不等式)与直线y=2交于点A(4,2),则关于x的不等式上;在线段AB上;故选:C代入函数解析式.针旋转90°后得到11AO BV,坐标等于OB-OA,即可得出答8,性质结合图形进行推理是解题的等式kx+b<2的解集为_____.【答案】x <4【分析】结合函数图象,写出直线y =+【解析】解:∵直线y =kx +b 与直线y ∴关于x 的不等式kx +b <2的解集为:【点睛】本题考查的是利用函数图像解不等2.一次函数y kx b =+的图象如图所示,A .k 0<B .1b =-C .【答案】B【分析】根据一次函数的图象与性质判断即【解析】由图象知,k ﹥0,且y 随x 的增大图象与y 轴负半轴的交点坐标为(0,-1当x ﹥2时,图象位于x 轴的上方,则有【点睛】本题考查一次函数的图象与性质1.如图,直线(0)y kx b k =+<经过点A .1x ≤B .1x ≥ 【答案】A 【分析】将(1,1)P 代入(y kx b k =+【解析】解:由题意将(1,1)P 代入y =+整理kx b x +≥得,()10k x b -+≥,∴【点睛】本题考查了一次函数的图像和性质kx b 在直线y =2下方所对应的自变量的范围即可=2交于点A (4,2),∴x <4时,y <2,x <4.故答案为:x <4.解不等式,理解函数图像上的点的纵坐标的大小对图,则下列结论正确的是( )y 随x 的增大而减小 D .当2x >时,kx b +<判断即可.的增大而增大,故A 、C 选项错误; 1),所以b=﹣1,B 选项正确;则有y ﹥0即+kx b ﹥0,D 选项错误,故选:B . 性质,利用数形结合法熟练掌握一次函数的图象与性过点(1,1)P ,当kx b x +≥时,则x 的取值范围为(C .1x < D .1x >0)<,可得1k b -=-,再将kx b x +≥变形整理,得(0)kx b k <,可得1k b +=,即1k b -=-,∴0bx b -+≥,由图像可知0b >,∴10x -≤和性质,解题关键在于灵活应用待定系数法和不等式围即可.小对图像的影响是解题的关键.0x象与性质是解答本题的关键. ( )得0bx b -+≥,求解即可.,∴1x ≤,故选:A .不等式的性质.1.某公司新产品上市30天全部售完,图销售利润与上市时间之间的关系,则最大日【答案】1800【解析】【分析】从图1和图2中可知,当t=30润=销售量×每件产品销售利润即可求解【详解】由图1知,当天数t=30时,市场从图2知,当天数t=30时,每件产品销售所以当天数t=30时,市场的日销售利润最【点睛】本题考查一次函数的实际应用,利用数形结合法理解题目已知信息是解答的2.小华端午节从家里出发,沿笔直道路匀路线匀速回家装载货物,然后按原路原速返从商店出发开始所用时间为t (分钟),图中线段AB 表示小华和商店的距离1y (列问题:(1)填空:妈妈骑车的速度是__________经典例题 一次函数的应用图1表示产品的市场日销售量与上市时间之间的关最大日销售利润是__________元.时,日销售量达到最大,每件产品的销售利润也达求解.市场日销售量达到最大60件;品销售利润达到最大30元,利润最大,最大利润为60×30=1800元,故答案为:,也考查了学生的观察能力、理解能力和解决实际解答的关键.道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮原速返回商店,小华到达商店比妈妈返回商店早5图1表示两人之间的距离s (米)与时间t (分钟(米)与时间t (分钟)的函数关系的图象的一部分______米/分钟,妈妈在家装载货物所用时间是_____间的关系,图2表示单件产品的润也达到最大,所以由日销售利:1800决实际问题的能力,仔细审题,时骑三轮车从商店出发,沿相同分钟.在此过程中,设妈妈分钟)的函数关系的图象;图2一部分,请根据所给信息解答下__________分钟,点M的坐标是___________;(2)直接写出妈妈和商店的距离2y (米(3)求t 为何值时,两人相距360米.【答案】(1)120,5,()20,1200;(2钟)时,两人相距360米.【分析】(1)先求出小华步行的速度,然后达商店比妈妈返回商店早5分钟,即可求出求出M 的坐标;(2)分①当0≤t <15时,②当15≤t <(3)由题意知,小华速度为60米/分钟种情况讨论即可.【解析】解:(1)由题意可得:小华步行的妈妈骑车的速度为:1800601010-⨯∵小华到达商店比妈妈返回商店早5分钟∴装货时间为:35-15×2=5(分钟),即妈妈由题意和图像可得妈妈在M 点时开始返回此时纵坐标为:20×60=1200(米),∴点(2)①当0≤t <15时y 2=120t ,②当将(20,1800),(35,0),代入得1800⎧⎨⎩∴此段的解析式为y 2=-120x+4200,综上其函数图象如图,米)与时间t (分钟)的函数关系式,并在图2中画.)2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩,见解析;(然后即可求出妈妈骑车的速度;先求出妈妈回家用可求出装货时间;根据题意和图像可得妈妈在M 点时20时,③当20≤t≤35时三段求出解析式即可,根据解分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后步行的速度为:180030=60(米/分钟), =120(米/分钟);妈妈回家用的时间为:1800120=15分钟,∴可知妈妈在35分钟时返回商店, 即妈妈在家装载货物的时间为5分钟;始返回商店,∴M 点的横坐标为:15+5=20(分钟),点M 的坐标为()20,1200;故答案为:120,5,15≤t <20时y 2=1800,③当20≤t≤35时,设此段函数解20035k b k b =+=+,解得1204200k b =-⎧⎨=⎩, 综上:2120(015)1800(1520)1204200(2035)t t y t t t ≤<⎧⎪=≤<⎨⎪-+≤≤⎩;;中画出其函数图象; ;3)当t 为8,12或32(分回家用的时间,然后根据小华到点时开始返回商店,然后即可根据解析式画图即可;相遇后,③在小华到达以后三(分钟), ),()20,1200;函数解析式为y 2=kx+b ,(3)由题意知,小华速度为60米/分钟①相遇前,依题意有6012036018t t ++②相遇后,依题意有6012036018t t +-③依题意,当20t =分钟时,妈妈从家里出此时小华距商店为180********-⨯=即30t =分钟时,小华到达商店,而此时妈妈距离商店为1800101206-⨯∴()120536018002t -+=⨯,解得∴当t 为8,12或32(分钟)时,两人相距【点睛】本题考查了一次函数的实际应用1.新龟兔赛跑的故事:龟兔从同一地点同遥领先,就躺在路边呼呼大睡起来.当它一S 1、S 2分别表示乌龟和兔子赛跑的路程,A . B .【答案】C【分析】分别分析乌龟和兔子随时间变化它【解析】对于乌龟,其运动过程可分为两段可排除B ,D 选项 对于兔子,其运动过程开始跑得快,所以路程增加快;中间睡觉时【点睛】本题考查了函数图象的性质进行简别作为点的横、纵坐标,那么坐标平面内由2.某种机器工作前先将空油箱加满,然后中,油箱里的油量y (单位:L )与时间(1)机器每分钟加油量为_____L ,机器(2)求机器工作时y 关于x的函数解析式分钟,妈妈速度为120米/分钟, 01800=,解得8t =(分钟); 01800=,解得12t =(分钟); 家里出发开始追赶小华,(米),只需10分钟,20600=(米)360>(米), 32t =(分钟),人相距360米.应用,由图像获取正确的信息是解题关键.地点同时出发后,兔子很快把乌龟远远甩在后头.骄傲当它一觉醒来,发现乌龟已经超过它,于是奋力直追,t 为赛跑时间,则下列图象中与故事情节相吻合的 C . D .变化它们的路程变化情况,即直线的斜率的变化.为两段:从起点到终点乌龟没有停歇,其路程不断增动过程可分为三段:据此可排除A 选项睡觉时路程不变;醒来时追赶乌龟路程增加快.故选进行简单的合情推理,对于一个函数,如果把自变量面内由这些点组成的图形就是这个函数的图象.然后停止加油立即开始工作,当停止工作时,油箱中与时间x (单位:min )之间的关系如图所示.机器工作的过程中每分钟耗油量为_____L .解析式,并写出自变量x的取值范围.骄傲自满的兔子觉得自己遥力直追,最后同时到达终点.用吻合的是( ).问题便可解答.不断增加;最后同时到达终点,故选:C自变量与函数的每一对对应值分油箱中油量为5L.在整个过程(3)直接写出油箱中油量为油箱容积的一半时x 的值.【答案】(1)3,0.5;(2)1352y x =-+,1060x ≤≤;(3)5或40. 【分析】(1)根据10min 加油量为30L 即可得;根据60min 时剩余油量为5L 即可得;(2)根据函数图象,直接利用待定系数法即可得;(3)先求出机器加油过程中的y 关于x 的函数解析式,再求出15y =时,两个函数对应的x 的值即可.【解析】(1)由函数图象得:机器每分钟加油量为303()10L = 机器工作的过程中每分钟耗油量为3050.5()6010L -=- 故答案为:3,0.5;(2)由函数图象得:当10min x =时,机器油箱加满,并开始工作;当60min x =时,机器停止工作则自变量x 的取值范围为1060x ≤≤,且机器工作时的函数图象经过点(10,30),(60,5)设机器工作时y 关于x 的函数解析式y kx b =+ 将点(10,30),(60,5)代入得:1030605k b k b +=⎧⎨+=⎩ 解得1235k b ⎧=-⎪⎨⎪=⎩ 则机器工作时y 关于x 的函数解析式1352y x =-+;(3)设机器加油过程中的y 关于x 的函数解析式y ax =将点(10,30)代入得:1030a = 解得3a = 则机器加油过程中的y 关于x 的函数解析式3y x =油箱中油量为油箱容积的一半时,有以下两种情况: ①在机器加油过程中:当30152y ==时,315x =,解得5x = ②在机器工作过程中:当30152y ==时,135152x -+=,解得40x = 综上,油箱中油量为油箱容积的一半时x 的值为5或40. 【点睛】本题考查了函数图象、利用待定系数法求一次函数和正比例函数的解析式等知识点,从函数图象中正确获取信息是解题关键.经典例题 一次函数与几何图形综合1.如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C ,点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A ,以22O A 为边作正方形2222O A B C ,L ,则点2020B 的坐标______.。

一次函数经典例题与习题

一次函数经典例题与习题

一次函数经典例题与习题
一次函数是指函数的最高次数为一次,即为形如y=mx+b的函数,其中m和b为常数。

以下是一些经典的一次函数例题和习题:
例题1:已知一次函数的图像经过点(2,4)和(-1,1),求函数的解析式。

解:设该函数的解析式为y=mx+b。

由题意,可得到以下两个方程:4=2m+b(1)
1=-m+b(2)
解这个方程组,可以使用常见的线性方程组的解法。

首先用(2)式减去(1)式,得到:
-3=-3m
解得m=1
将m=1代入(2)式,得到:
1=-1+b
解得b=2
因此,该函数的解析式为y=x+2
例题2:若一次函数的解析式为y=3x-2,求该函数的图像与x轴交点的横坐标。

解:将y=0代入解析式,得到:
0=3x-2
解得x=2/3
因此,该函数的图像与x轴交点的横坐标为2/3
习题1:已知一次函数图像上两点的坐标分别为(-3,4)和(1,2),求
该函数的解析式。

习题2:已知一次函数的图像与x轴的交点坐标分别为(-1,0)和
(3,0),求该函数的解析式。

习题3:设一直线上两不同点的横坐标之差为3,纵坐标之差为5,
求该直线的斜率和截距。

习题4:已知一次函数的图像与x轴的交点坐标为(1,0),截距为2,
求该函数的斜率。

以上是一些经典的一次函数例题和习题。

通过解这些问题,可以加深
对一次函数的理解,并熟练掌握解析式与图像之间的关系。

通过反复练习,可以提高解一次函数问题的能力。

初中数学《一次函数的图像》典型例题及答案解析

初中数学《一次函数的图像》典型例题及答案解析
C.苹果下落的速度越来越快D.可以推测,苹果落到地面的时间不超过5秒
【答案】B
【解析】
由图表可知,苹果在下落过程中,越来越快,每秒之间速度增加依次为5、15、25、35、45等等,所以观察备选答案B错误.故选B.
15.下表是弹簧挂重后的总长度L(cm)与所挂物体重量x(kg)之间的几个对应值,则可以推测L与x之间的关系式是()
【解析】
【分析】
设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【详解】
分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y= AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
初中数学《一次函数的图像》典型例题及答案解析
1.在某次试验中,测得两个变量m和v之间的4组对应数据如下表:
m
1
2
3
4
v
0.01
2.9
8.03
15.1
则m与v之间的关系最接近于下列各关系式中的( )
A.v=2m-1B.v=m2-1C.v=3m-3D.v=m+1
【答案】B
【解析】
【分析】
一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.
D.随着时间的变化,步行离家的距离变化慢,搭轻轨的距离变化快,符合题意,故D正确;
故选:D.
【点睛】
本题考查的是函数图像,熟练掌握图像是解题的关键.
9.函数y= 的图象为( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分x 0和x 两种情况去掉绝对值符号,再根据解析式进行分析即可。

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析

一次函数经典测试题及答案解析一、选择题1.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地 【答案】C 【解析】 【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地. 【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩即1l 对应的函数解析式为13060y x =-+; 设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩即2l 对应的函数解析式为22010y x =-, 所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意;D .根据图形即可得出乙出发3h 时到达A 地,故D 错误. 故选:C . 【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.2.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C 【解析】 【分析】根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案. 【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0), 当x >2时,y<0. 故答案为:x >2. 故选:C. 【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.3.平面直角坐标系中,点(0,0)O 、(2,0)A 、(,2)B b b -+,当45ABO ∠<︒时,b 的取值范围为( ) A .0b < B .2b <C .02b <<D .0b <或2b >【答案】D 【解析】 【分析】根据点B 的坐标特征得到点B 在直线y=-x+2上,由于直线y=-x+2与y 轴的交点Q 的坐标为(0,2),连结AQ ,以AQ 为直径作⊙P ,如图,易得∠AQO=45°,⊙P 与直线y=-x+2只有一个交点,根据圆外角的性质得到点B 在直线y=-x+2上(除Q 点外),有∠ABO 小于45°,所以b <0或b >2. 【详解】解∵B点坐标为(b,-b+2),∴点B在直线y=-x+2上,直线y=-x+2与y轴的交点Q的坐标为(0,2),连结AQ,以AQ为直径作⊙P,如图,∵A(2,0),∴∠AQO=45°,∴点B在直线y=-x+2上(除Q点外),有∠ABO小于45°,∴b的取值范围为b<0或b>2.故选D.【点睛】本题考查了一函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(bk,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.4.已知点M(1,a)和点N(3,b)是一次函数y=﹣2x+1图象上的两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k<0,y随x的增大而减小解答.【详解】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<3,∴a>b.故选A.【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( ) A .图象经过第一、二、四象限 B .y 随x 的增大而减小 C .图象与y 轴交于点()0,b D .当bx k>-时,0y > 【答案】D 【解析】 【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当bx k>-时,0y <; 【详解】∵()0,0y kx b k b =+<>, ∴图象经过第一、二、四象限, A 正确; ∵k 0<,∴y 随x 的增大而减小, B 正确;令0x =时,y b =, ∴图象与y 轴的交点为()0,b , ∴C 正确; 令0y =时,b x k=-, 当bx k>-时,0y <; D 不正确; 故选:D . 【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.6.一列动车从甲地开往乙地, 一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B 的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④. 【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时,根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误; ④由图象知x=t 时,动车到达乙地, ∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误; 故选B. 【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x > B .2x <C .2x ≥D .2x ≤【答案】B 【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集. 【详解】解:把(2,0)代入3y mx =+得:023m =+,解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小,∵一次函数3y mx =+与x 轴的交点为(2,0), ∴不等式 30mx +>的解集是:2x <, 故选:B . 【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( ) A .第一、二、三象限 B .第一、三、四象限 C .第一、二、四象限 D .第二、三、四象限【答案】C 【解析】 【分析】由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案. 【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3), ∴-3=-6+b , 解得:b=3,∴一次函数的解析式为y=-6x+3, ∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴, ∴这个一次函数的图象一定经过一、二、四象限, 故选:C . 【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.9.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A .33元B .36元C .40元D .42元【答案】C 【解析】分析:待定系数法求出当x≥12时y 关于x 的函数解析式,再求出x=22时y 的值即可. 详解:当行驶里程x ⩾12时,设y=kx+b , 将(8,12)、(11,18)代入,得:8121118k b k b +=⎧⎨+=⎩ , 解得:24k b =⎧⎨=-⎩, ∴y=2x −4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元. 故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.10.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B 【解析】 【分析】作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点. 【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长; ∵A 的坐标为(-4,5),D 是OB 的中点, ∴D (-2,0),由对称可知A'(4,5), 设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=5350,3E ⎛⎫∴ ⎪⎝⎭故选:B 【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.11.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A 【解析】 【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解. 【详解】解:一次函数y=kx+b 过一、二、四象限, 则函数值y 随x 的增大而减小,因而k <0; 图象与y 轴的正半轴相交则b >0, 因而一次函数y=-bx+k 的一次项系数-b <0, y 随x 的增大而减小,经过二四象限, 常数项k <0,则函数与y 轴负半轴相交, 因而一定经过二三四象限, 因而函数不经过第一象限. 故选:A . 【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.12.一次函数y=(m ﹣2)x n ﹣1+3是关于x 的一次函数,则m ,n 的值为( ) A .m≠2,n=2 B .m=2,n=2C .m≠2,n=1D .m=2,n=1【答案】A 【解析】 【分析】直接利用一次函数的定义分析得出答案. 【详解】解:∵一次函数y=(m-2)x n-1+3是关于x 的一次函数,∴n-1=1,m-2≠0, 解得:n=2,m≠2. 故选A . 【点睛】此题主要考查了一次函数的定义,正确把握系数和次数是解题关键.13.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x=图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D 【解析】 【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可. 【详解】 当12x =时,2y = ,当2x =时,12y = ,∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB 的解析式为y kx b =+ , 将11(,2),(2,)22A B 代入解析式中得 122122k b k b ⎧+=⎪⎪⎨⎪+=⎪⎩解得152k b =-⎧⎪⎨=⎪⎩ , ∴直线AB 解析式为52y x =-+. 当0y =时,52x =,即5(,0)2P ', 115522222AOP A S OP y '∴=⋅=⨯⨯=. 故选:D .【点睛】 本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP -何时取最大值是解题的关键.14.函数()312y m x =+-中,y 随x 的增大而增大,则直线()12y m x =---经过( ) A .第一、三、四象限B .第二、三、四象限C .第一、二、四象限D .第一、二、三象限 【答案】B【解析】【分析】根据一次函数的增减性,可得310m +>;从而可得10m --<,据此判断直线()12y m x =---经过的象限.【详解】 解:函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.15.函数12y x =-与23y ax =+的图像相交于点(),2A m ,则( )A .1a =B .2a =C .1a =-D .2a =-【答案】A【解析】【分析】将点(),2A m 代入12y x =-,求出m ,得到A 点坐标,再把A 点坐标代入23y ax =+,即可求出a 的值.【详解】 解:函数12y x =-过点(),2A m , 22m ∴-=,解得:1m =-,()1,2A ∴-,函数23y ax =+的图象过点A ,32a ∴-+=,解得:1a =.故选:A .【点睛】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了一次函数图象上点的坐标特征.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.18.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!19.一次函数y1=kx+1﹣2k(k≠0)的图象记作G1,一次函数y2=2x+3(﹣1<x<2)的图象记作G2,对于这两个图象,有以下几种说法:①当G1与G2有公共点时,y1随x增大而减小;②当G1与G2没有公共点时,y1随x增大而增大;③当k=2时,G1与G2平行,且平行线之间的距离为.下列选项中,描述准确的是()A.①②正确,③错误B.①③正确,②错误C.②③正确,①错误D.①②③都正确【答案】D【解析】【分析】画图,找出G2的临界点,以及G1的临界直线,分析出G1过定点,根据k的正负与函数增减变化的关系,结合函数图象逐个选项分析即可解答.【详解】解:一次函数y2=2x+3(﹣1<x<2)的函数值随x的增大而增大,如图所示,N (﹣1,2),Q (2,7)为G 2的两个临界点,易知一次函数y 1=kx+1﹣2k (k≠0)的图象过定点M (2,1),直线MN 与直线MQ 为G 1与G 2有公共点的两条临界直线,从而当G 1与G 2有公共点时,y 1随x 增大而减小;故①正确;当G 1与G 2没有公共点时,分三种情况:一是直线MN ,但此时k =0,不符合要求;二是直线MQ ,但此时k 不存在,与一次函数定义不符,故MQ 不符合题意; 三是当k >0时,此时y 1随x 增大而增大,符合题意,故②正确;当k =2时,G 1与G 2平行正确,过点M 作MP ⊥NQ ,则MN =3,由y 2=2x+3,且MN ∥x 轴,可知,tan ∠PNM =2,∴PM =2PN ,由勾股定理得:PN 2+PM 2=MN 2∴(2PN )2+(PN )2=9,∴PN =, ∴PM =.故③正确.综上,故选:D .【点睛】本题是一次函数中两条直线相交或平行的综合问题,需要数形结合,结合一次函数的性质逐条分析解答,难度较大.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

《一次函数》专项练习和中考真题(含答案解析及点睛)

《一次函数》专项练习和中考真题(含答案解析及点睛)

《1.等腰三角形底角与顶角之间的函数关系A .正比例函数 B .一次函数【答案】B【分析】根据一次函数的定义,可得答案【解析】设等腰三角形的底角为y ,顶角为所以,y=﹣12x+90°,即等腰三角形底角与【点睛】本题考查了实际问题与一次函数2.已知y 关于x 成正比例,且当x 时A .3 B .3-【答案】B【分析】先利用待定系数法求出y =【详解】设y kx =,Q 当2x =时,3y x ∴=-,∴当1x =时,3y =-【点睛】本题考查了待定系数法求正比例函点的坐标代入求出k 即可.3. 已知函数y =kx +b 的部分函数值如表所示A .x =2 B .x =3 C 【答案】A【解析】∵当x =0时,y =1,当x =1,y 当y =–3时,–2x +1=–3,解得:x =2,4.如图,直线y=kx+3经过点(2,0,A .x >2B .x <2 《一次函数》专项练习数关系是( ) C .反比例函数D .二次函数答案.顶角为x ,由题意,得x+2y=180, 底角与顶角之间的函数关系是一次函数关系,故选函数,根据题意正确列出函数关系式是解题的关键2=时,6y =-,则当1x =时,y 的值为 C .12D .12-3x -,然后计算1x =对应的函数值. 6y =-,26k ∴=-,解得3k =-,13⨯=-.故选B .比例函数的解析式:设正比例函数解析式为y kx k =表所示,则关于x 的方程kx +b +3=0的解是x … –2 –1 01… y…531 –1….x =–2 D .x =–3 =–1,∴,解得:,∴y =–,故关于x 的方程kx +b +3=0的解是x =2,故选A ),则关于x 的不等式kx+3>0的解集是( )C .x≥2 D .x≤211b k b =+=-⎧⎨⎩21k b =-=⎧⎨⎩故选B . 关键. ()0≠,然后把一个已知2x +1,.【答案】B【分析】直接利用函数图象判断不等式【解析】由一次函数图象可知:关于x的不【点睛】本题考查了一次函数的图象与性质等式之间的内在联系.5.如图,在平面直角坐标系中,直线l与直线l1在第一象限交于点C.若∠BOCAB【答案】B【分析】过C作CD⊥OA于D,利用直线3.依据CD∥BO,可得OD13=AOk的值.【解析】如图,过C作CD⊥OA于D.即A(,0),B(0,1),∴Rt△∵∠BOC=∠BCO,∴CB=BO=1,∵CD∥BO,∴OD13=AO=,得:23=,即k =B式kx+3>0的解集在x轴上方,进而得出结果.的不等式kx+3>0的解集是x<2;故选B.与性质和一元一次不等式及其解法,解题的关键是掌1:y=x+1与x轴,y轴分别交于点A和点BOC=∠BCO,则k的值为( )C D.直线l1:y=+1,即可得到A(,0),B(0=CD23=BO23=,进而得到C23,),.直线l1:y=+1中,令x=0,则y=1,令AOB中,AB==3.AC=2.CD23=BO23=,即C23,),把C23,.键是掌握一次函数与一元一次不B,直线l2:y=kx(k≠0),1),AB==,代入直线l2:y=kx,可得令y=0,则x=,)代入直线l2:y=kx,可【点睛】本题考查了两直线相交或平行问题组成的二元一次方程组的解.6.已知点A (-5,a ),B (4,b )在直线y =-3x 【答案】>【分析】先根据一次函数的解析式判断出函【解析】∵直线y=-3x+2中,k=-3<0,∵-5<4,∴a >b ,故答案为>.【点睛】本题考查了一次函数的性质,根据如果k>0,直线就从左往右上升,y 随7.如图,四边形ABCD 的顶点坐标分别ABCD 分成面积相等的两部分时,直线A .116105y x =+ B .23y =【答案】D【分析】由已知点可求四边形ABCD 分成y=-x+3,设过B 的直线l 为y=kx+b ,并求1125173121k k k k --⎛⎫⎛⎫=⨯-⨯+ ⎪⎪+⎝⎭⎝⎭,即可【解析】解:由()()4,0,2,1,A B ---∴四边形ABCD 分成面积(12AC =⨯设过B 的直线l 为y kx b =+,将点B 代入∴直线CD 与该直线的交点为45,k k -⎛+⎝∴1125173121k k k k --⎛⎫⎛=⨯-⨯+ ⎪ +⎝⎭⎝,∴直线解析式为5342y x =+;故选:【点睛】本题考查一次函数的解析式求法式的方法是解题的关键.行问题,两条直线的交点坐标,就是由这两条直线相+2上,则a ________b .(填“>”“<”或“=”号 断出函数的增减性,再比较出-5与4的大小即可解答,∴此函数是减函数, 根据题意判断出一次函数的增减性是解答此题的关x 的增大而增大,如果k<0,直线就从左往右下降分别()()()()4,0,2,1,3,0,0,3A B C D ---,当过点直线l 所表示的函数表达式为( ) 13x + C .1y x =+ D .54y x =+分成面积()113741422B AC y =⨯⨯+=⨯⨯=;并求出两条直线的交点,直线l 与x 轴的交点坐标即可求k 。

《一次函数》典型例题解析与点评剖析

《一次函数》典型例题解析与点评剖析

《一次函数》典型例题解析与点评一次函数是初中数学中应用广泛、内容丰富的课题之一,通过学习一次函数,可有助于构造方程、深入理解函数的变化,使以后的学习、研究更加方便.本专题的基本要求是会根据已知条件,利用待定系数法确定一次函数的解析式;能用一次函数解决实际问题;会画一次函数的图像,并掌握其性质,所以我们从一些基础问题、最值问题、一次函数的应用、动点问题和定点问题这几个方面来阐述.例题1已知直线l 1:y =-3x +4与直线l 2:y =13x +4相交于点A ,其中直线l 1与x 轴交于点C ,现沿着x 轴将直线l 1在x 轴以下的部分向上翻折到x 轴的上半部,翻折后与直线l 2交于点B .(1)求射线l CB (不含端点)对应的函数解析式及定义域;(2)求点B 的坐标;(3)求△ABC 的面积.【解答】(1)由y =-3x +4知,C (43,0).【技巧】题中所求交点坐标是利用两个函数的解析式联立方程组求解,这种情况在“正反比例”中已做强调.而求面积的题目一般是通过构造特殊的图形,或者利用割补法来求解. 另外,以下知识点在一些教材需等高中才能讲授,作为本书阅读者可提前了解. 已知两直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2.(1)若l 1∥l 2,则k 1=k 2,或l 1、l 2两直线同时平行y 轴;反之亦然.(2)若l 1⊥l 2,则k 1×k 2=-1,或l 1、l 2中一条直线斜率为0,一条直线斜率不存在(两直线分别为平行于x 轴,y 轴);反之亦然.在本题中,l1、l2为互相垂直.例题2已知abc <0,a+b+c<0,且一次函数y=b cxa a的图像经过第一、二、三象限.求证:(1)a>0,b>0,c<0;(2)当x>0时,y>1.【解答】【技巧】本题考查的是一次函数的图像,根据图像所经过的象限判断出斜率和截距的情况,即b ÷a>0,(-c)÷a>0;再结合不等式的性质,推出a、b、c的大小,从而得证.反过来根据x的取值范围,再利用函数图像也能求出y的取值范围.例题3如图所示,在直角坐标系内,一次函数y=kx+b(kb>0,b<0)的图像分别与x轴、y轴和直线x=4相交于A、B、C三点,直线x=4与x轴交于点D,四边形OBCD的面积是10,若点A的横坐标是-0.5,求这个一次函数的解析式.【解答】【技巧】本题利用待定系数法和面积法构造二元一次方程组求解.要求一次函数的解析式,必须已知两个点,而本题只给出一个点的坐标,因此要从面积着手找出k与b之间的另一个关系.通过本题,可知解题还须熟记以下基本公式.(1)l :y =kx +b 与x 轴的交点为(-b k,0),与y 轴的交点为(0,b); (2)l 与x 轴、y 轴所围成的三角形面积为22b k. 例题4如图所示,在直角坐标平面内,函数y =m x(x>0,m 是常数)的图像经过点A(1,4),B(a ,b),其 中,过点A 作x 轴垂线,垂足为C ,过点B 作y 轴垂线,垂足为D ,连接AD 、DC 、CB .(1)若△ABD 的面积为4,求点B 的坐标;(2)求证:DC 平行于AB ;(3)当AD =BC 时,求直线AB 的函数解析式.【解答】(1)将点A 代入y =m x得:m =4,所以y =4x . 由△ABD 的面积为4,点B(a ,b)代入函数解析式得方程组:【技巧】注意斜率公式:k 1212y y x x -=-;两点间距离公式:d用待定系数法求出反比例函数关系式,然后通过已知条件的面积以及关于点B 的函数关系式找到两个等量关系,再构造方程组从而解出点B 的坐标,求证DC 与AB 的平行,由于在直角坐标系中本题完全可撇除通过平行的判定来证明,这里我们从直线的斜率上判断,原因在题1的技巧贴士中已经给出.第(3)问求函数关系式,选择待定系数法,通过AD =BC ,在直角坐标系中构造直角三角形,通过求边的长度找到等量关系.【点评】几何问题是一次函数中常见的题型,它经常以一次函数的翻折旋转、一次函数的性质定义、由面积求一次函数解析式等形式出现.在解题之前要熟记一次函数的定义、性质、特点等基本知识,特别是类似一次函数斜率k ≠0等问题.对于翻折旋转问题,还请了解以下内容.正因为如此,题1中l 1:y =-3x +4关于x 轴对称可直接表达为-y =-3x +4,当然也可以取l 1上一点(2,-2),则该点关于x 轴的对称点为(2,2),求出经点C (43,0)与(2,2)的解析式即l BC .这种“取点”方法间接解决了函数y =f(x)关于某点对称的函数y =g(x)的求法,即取y =f(x)上的一些点,这些点的对称点比较容易求出,并且这些点都在y =g(x)上,有了这些点,利用“待定系数法”等技巧可以表达出y =g(x).对于面积问题,通过题1、题3、题4的讲解我们知道,在一次函数中,要么用割补法,如题1,要么数形结合,直接用公式,如题4,以BD 为底,△ABD 的高为4-b .例题5已知f(x)是一次函数.(1)若f[f(x +1)]=4x +7,求函数f(x)的表达式;(2)若f(1)=1,且f[(2)]=2×4b k,求函数f(x)的表达式. 【解答】【技巧】首先设一次函数表达式为f(x)=kx +b(k ≠0),比较左右两边的系数构造方程组求解,先设出一次函数的表达式,通过两次代换得到一个新的函数,再利用两边对应项系数相等构造出方程组,从而解出k 和b 的值,如对于f(f(x)),现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x).例题6在直角坐标系xOy ,x 轴上的动点M(x ,0)到定点P(5,5),Q(2,1)的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,求点M 的横坐标.【解答】如图所示,作点Q 关于x 轴的对称点Q'(2,-1).设直线PQ'的解析式为y =kx +b ,将点P(5,5),Q'(2,-1)代入解析式得5512k b k b =+⎧⎨-=+⎩,解得k =2,b =-5,则直线 PQ'的解析式为y =2x -5.令y =0,则x =2.5即为所求.下面证明点M(2.5,0)使MP +MQ 取最小值.在x 轴上任取点M ,连接MP 、MQ 、PQ'.因为点Q 关于x 轴的对称点为Q',所以x 轴为线段QQ'的垂直平分线.由此可得MQ =MQ',因为MP +MQ'≥PQ',两点间距离线段最短,所以MP +MQ 的最小值即MP +MQ'的最小值为PQ'.则PQ'与x 轴的交点即为所求点M .【技巧】本题关键在于将问题转换为求两定点距离之和的最小值,即利用“两点之间线段最短”,由于点P 、点Q 分布在x 轴的同侧,所以利用对称的知识首先将其中一点Q 找到它的对称点Q',因为M 点在x 轴上,那么我们可以理解其为直线PQ'与x 轴的交点.还请注意,找到了M 点,还需证明M 使MP +MQ 取最小值,因此本题分两步:首先找出M ,接着证明M 即为所求.例题7设f(x)=mx +1m(1-x ),其中m>0,记f(x)在0≤x ≤1的最小值为g(m),求g(m)及其最大值,并作y =g(m)的图像.【解答】所以g(m)在0<m≤1上为递增函数,g(m)在m≥1上为递减函数.故g(x)max=g(1)=1.【技巧】本题主要运用分类讨论的思想.先将f(x)整理成一次函数的常规形式,因x的系数是字母,不知道它的正负情况,因此要进行分类讨论.例题8某汽车出租公司要购买轿车和面包车共10辆,其中轿车至少要购买3辆,轿车每辆7万元,面包车每辆4万元,公司可投入的购车款不超过55万元.(1)符合公司要求的购买方案有几种?请说明理由.(2)如每辆轿车的日租金为200元,每辆面包车的日租金为110元,假设新购买的这10辆车每日都可租出,要使这10辆车的日租金不低于1500元,应选择以上哪种购买方案?【解答】(1)设要购买x辆轿车,那么面包车要购买(10-x)辆,由题意得7x+4(10-x)≤55,解得x≤5.因为x≥3,则x=3,4,5.所以购买方案有三种:①轿车3辆,面包车7辆;②轿车4辆,面包车6辆;③轿车5辆,面包车5辆.(2)方案①的日租金为:3×200+7×110=1370(元);方案②的日租金为:4×200+6×110=1460(元);方案③的日租金为:5×200+5×110=1550(元).为保证日租金不低于1500元,应选方案③,【技巧】解决本题的关键是要抓住题目中的关键词语“不超过”,“有几种方案”.首先根据已知条件列出不等式7x+4(10-x)≤55,并且要注意的是,本题为应用题,所以x的取值应该是正整数.结合实际意义找出相对应的解,确定出三种方案,再对各种方案求出各种租金进行比较.例题9已知某服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N 两种型号的时装共80套.已知做M型号的时装需用A种布料1.1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.9米,可获利45元.设生产M型号的时装x套,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂获利润最大?最大利润是多少?【解答】(1)由题意得:y=50x+45(80-x)=5x+3600.因为两种型号的时装共用A 种布料70米,B 种布料52米,则有()()70 1.10.680,520.40.980,x x x x ⎧≥+-⎪⎨≥+-⎪⎩解得40≤x ≤44, 因x 为整数,所以x =40,41,42,43,44.所以y 与x 的函数关系式是y =5x +3600(x =40,41,42,43,44).(2)因为5>0,所以y 随x 的增大而增大,所以当x =44时,y max =3820,即生产M 型号的时装44套时,该厂利润最大,最大利润是3820元.【技巧】(1)求解自变量的取值范围的时候,我们要运用到题设中所给的条件“两种型号的时装共用A 种布料70米,B 种布料52米”,确定出两个不等关系,找出相应的范围,注意不等式是可以取得等号的.(2)通过5种方案分别计算求出利润并比较找出最大值,我们发现利润y 与x 的函数关系为y =5x +3600(x =40,41,42,43,44),y 随x 的增大而增大,因此x 取最大值的时候可以得到y max =3820.【点评】以上5题主要涉及函数的迭代问题、最值问题和实际应用问题.迭代问题,就是将里面的函数看成一个整体代入外面的函数中,从内到外,逐层推算.这就要考同学们对函数定义的理解了,将外面函数中的x 用里面函数的函数值代替再运算就可以了.再次强调对于f(f(x))的计算,现标记为f 1(f 2(x)),先计算出f 2(x),再将f 2(x)视为一个整体代入f 1(x),同理,f 1(f 2(f 3(x)))也是如此,从内到外,先算f 3,再将f 3作为整体代入计算f 2,最后将f 2作为整体代人f 1.最值问题分为两个方面,一个是两点间线段最短.另一个是分段函数,需要进行分类讨论,分析函数增减性,画出函数图像,得到在定义域中函数值取到的最大值或最小值. 题6的做法在专题6中还会出现,至于题7的最值则要在确定g(m)的基础上才能确定.对于题6,请千万牢记,本题要有两个步骤:首先找出M ,接着证明M 即为所求,第一个步骤是确定存在性,到底有没有满足条件的M 点,第二步则是证明唯一性.而实际应用问题,如题8和题9,这两题是一次函数与不等式相结合的应用问题.首先根据题目中的条件确定出不等关系,找出相应的自变量的范围,确定出几种方案,再对各种方案求出因变量进行比较,得出最佳方案.例题10 如图所示,在平面直角坐标系中,已知OA =12cm ,OB =6cm .点P 从点O 开始沿OA 边向点A 以1cm/s 的速度移动;点Q 从点B 开始沿BO 边向点O 以1cm/s 的速度移动.如果点P 、点Q 同时出发,用t (秒)表示移动的时间(0≤t ≤6),则:(1)设△POQ 的面积为y ,求y 关于t 的函数解析式;(2)当△POQ 的面积最大时,将△POQ 沿直线PQ 翻折后得到△PCQ ,试判断点C 是否落在直线AB 上,并说明理由.【解答】(1)由题意得,BQ =t =OP ,CQ=6-t,所以y=-12t2+3t(0≤t≤6).(2)已知坐标A(12,0),B(0,6),所以直线AB为y=-12x+6.由(1)得,当y取最大值时,t=3,所以CQ=3,OP=3,即△POQ是等腰直角三角形.将△POQ沿直线PQ翻折,可得到边长为3的正方形OPCQ,得点C坐标(3,3),代入y=-12x+6不成立,即点C没有落在直线AB上,【技巧】本题是一个动点问题.(1)要求y关于t的函数解析式,只要求出OQ、OP的长度(包含未知数t)即可;(2)先求出当△POQ的面积最大时t的值,从而求得OQ=3和OP=3,然后不难求出C点的坐标是(3,3),代入一次函数y=-12x+6即可.例题11已知函数f(x)=(m-2)x+2m-3.(1)求证:无论m取何实数,这些函数的图像恒过某一定点.(2)当x在[1,2]内变化时,y在[4,5]内变化,求实数m的值.【解答】(1)令y=f(x)=(m-2)x+2m-3,则有(x+2)m-2x-3-y=0.【技巧】本题是一个定点问题.(1)由“无论m取何实数时,这些函数的图像恒过某一定点”可知,这个定点与m的取值无关.所以只需变换一次函数解析式,把含有m的项合并,转换成a.m=b,其中a=0,b=0即可.(2)对f(x)=(m-2)x+2m-3,还需讨论m-2的取值范围,确定一次函数是增函数还是减函数后,方可利用题设所给出的x、y范围的端点值代入一次函数的解析式,最终求得m.【点评】动点问题与定点问题是一次函数实际运用中最多也是最实用的两类问题,动点问题就是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.其中数形结合是解决动点问题最主要的方法,在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质.例如题10,其特点是有两个动点P 、Q ,而且它们分别在两条不同的射线上运动,解答问题的关键是认为点P 、Q 是“静止”的,不要被“运动”二字所迷惑,只要将△POQ 的面积表达出来即可. 要求面积最大,可利用配方法,即()2211933222y t t t =-+=--+,确定了点P 、Q 的坐标后进一步求出点C 的坐标.对于题10,再做以下几点说明,这些规律对于解题很有帮助,所以请牢记!(1)求最值问题,可能会涉及一元二次方程中的“配方法”(专题2中已作说明)以及函数的性质问题(如题7的分段函数).(2)在最值的情况下,题中所形成的图形往往是“特殊”的(如题11中等腰直角三角形POQ ,专题3题8技巧贴士中所提及的正方形).(3)本题也属于翻折情况.将本问题引申:若三角形POQ 是任意三角形(不一定是直角三角形),那经翻折后,C 点何时在直线AB 上呢?翻折的详细情况可见专题7中的“思维点评”.至于“定点问题”,这是在运动变化中寻找不变量的另外一个类型,这类问题常常会用到特殊与一般的数学思想,定点问题是数学思想与数学知识紧密结合的一类综合性试题,是中考考查能力的热点题型之一,定点问题一般分为两类:一类是直线过定点问题.如题11的第一个问题,具体解法技巧贴士中已给出;另一类是函数图像过定点问题,这类问题目前所学知识还未涉及,将在9年级“二次函数”专题中涉及.。

(完整版)一次函数经典题型+习题(精华,含答案),推荐文档

(完整版)一次函数经典题型+习题(精华,含答案),推荐文档

题型一、点的坐标一次函数则MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A, 0), B(x B, 0) 的距离为x A-x B;若AB∥y 轴,则A(0, y A), B(0, y B) 的距离为y A-y B;点B(2,-2)到x 轴的距离是;到y 轴的距离是;1、点C(0,-5)到x 轴的距离是;到y 轴的距离是;到原点的距离是;2、点D(a,b)到x 轴的距离是;到y 轴的距离是;到4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y 叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。

最新中考数学精品解析《一次函数》(附解析和答案)

最新中考数学精品解析《一次函数》(附解析和答案)

y=- 1, y= 3 和 x=1 所围成的四边形是一个梯形,①当 k< 0 时,由梯形面积公式可得,
1
6
2
1
6
2
2 × 4( 1- k +1- k )= 12,解得 k=- 2,②当 k> 0 时, 2 × 4( k - 1+ k - 1)=
12,解得 k= 1,∴ k 的值为 1 或- 2.
【答案】 A
7.( 2010 安徽, 10,4 分)甲、乙两个准备在一段长为 1200 米的笔直公路上进行跑步,甲、
乙跑步的速度分别为 4 m / s和 6 m / s ,起跑前乙在起点, 甲在乙前面 100 米处, 若同时
起跑,则两人从起跑至其中一人先到达终点的过程中,甲、乙两之间的距离
y(m) 与时
间 t( s) 的函数图象是 …… (
y
= 2 x ─ 4+5,从而顺利得到答案. 【答案】 y = 2 x +1 【涉及知识点】函数图像的平移 【点评】 本题只涉及到一个知识点, 主要考查了学生对函数图像变换规律的理解,
比较常规,属于送分题,本题的功能在于修正试卷本身的效度和自洽性功能.
仍然
4.( 20XX 年浙江温州, 5, 4 分)直线 y= x+ 3 与 y 轴的交点坐标是(

A. S1> S2
B. S1= S2 C. S1< S2 D .无法确定
1
1
1
1
【分析】 S1 =1, S2 = 2 a(- 2 a+2)=- 4 a2+a; S1- S2= 4 (a- 2)2 >0
【答案】 A 【涉及知识点】一次函数,直角三角形面积公式 【点评】代数式比较大小,可以采用求差法,求商法、求倒法等,本题采用求差法。

《一次函数》经典例题剖析(附练习及答案)

《一次函数》经典例题剖析(附练习及答案)

《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k ,b 的符号不同,直线所经过的象限也不同;①如图11-18(l )所示,当k >0,b >0时,直线经过第一、二、三象限(直线不经过第四象限); ②如图11-18(2)所示,当k >0,b ﹥O 时,直线经过第一、三、四象限(直线不经过第二象限); ③如图11-18(3)所示,当k ﹤O ,b >0时,直线经过第一、二、四象限(直线不经过第三象限); ④如图11-18(4)所示,当k ﹤O ,b ﹤O 时,直线经过第二、三、四象限(直线不经过第一象限). (5)由于|k|决定直线与x 轴相交的锐角的大小,k 相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x +1可以看作是正比例函数y=x 向上平移一个单位得到的.知识点3 正比例函数y=kx (k ≠0)的性质 (1)正比例函数y=kx 的图象必经过原点;(2)当k >0时,图象经过第一、三象限,y 随x 的增大而增大; (3)当k <0时,图象经过第二、四象限,y 随x 的增大而减小. 知识点4 点P (x 0,y 0)与直线y=kx+b 的图象的关系(1)如果点P (x 0,y 0)在直线y=kx+b 的图象上,那么x 0,y 0的值必满足解析式y=kx+b ; (2)如果x 0,y 0是满足函数解析式的一对对应值,那么以x 0,y 0为坐标的点P (1,2)必在函数的图象上.例如:点P (1,2)满足直线y=x+1,即x=1时,y=2,则点P (1,2)在直线y=x+l 的图象上;点P ′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P ′(2,1)不在直线y=x+l 的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx (k ≠0)中只有一个待定系数k ,故只需一个条件(如一对x ,y 的值或一个点)就可求得k 的值.(2)由于一次函数y=kx+b (k ≠0)中有两个待定系数k ,b ,需要两个独立的条件确定两个关于k ,b 的方程,求得k ,b 的值,这两个条件通常是两个点或两对x ,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ; (2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式. 解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交.③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm ,它所挂物体的质量不能超过18kg ,并且每挂1kg 的物体,弹簧就伸长0.5cm ,写出挂上物体后,弹簧的长度y (cm )与所挂物体的质量x(kg )之间的函数关系式,写出自变量x 的取值范围,并判断y 是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M (℃)是时间t (时)的函数:M=t 2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为 ℃.例5 已知y-3与x 成正比例,且x=2时,y=7. (1)写出y 与x 之间的函数关系式; (2)当x=4时,求y 的值; (3)当y=4时,求x 的值.例6 若正比例函数y=(1-2m )x 的图象经过点A (x 1,y 1)和点B (x 2,y 2),当x 1﹤x 2时,y 1>y 2,则m 的取值范围是( )A .m ﹤OB .m >0C .m ﹤21D .m >M例7 已知一次函数y=kx+b 的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。

一次函数例题习题附答案解析

一次函数例题习题附答案解析

2022年1月10日初中数学周测/单元测试学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列函数中,正比例函数是( )A .2y x =B .2y xC .2y x =D .21y x =+ 【答案】A【分析】根据正比例函数y =kx 的定义条件:k 为常数且k ≠0,自变量次数为1,判断各选项,即可得出答案. 【详解】A 、符合正比例函数的含义,故本选项正确;B 、自变量次数不为1,故本选项错误;C 、是反比例函数,故本选项错误;D 、是一次函数,故本选项错误,故选A .【点睛】本题考查了正比例函数的定义,熟练掌握正比例函数的定义以及解析式的形式是解题的关键.2.函数y =x 的取值范围是( )A .12x ≥B .21x ≥-C .12x ≤-D .12x ≤ 【答案】A【分析】根据二次根式被开方数大于或等于0列出不等式即可求解.【详解】解:根据题意得,210x -≥,解得,12x ≥, 故选:A .【点睛】本题考查了二次根式有意义的条件,解题关键是明确二次根式被开方数大于或等于0. 3.将一次函数2y x =-的图象沿y 轴向下平移4个单位长度后,所得图象的函数表达式为( )A .2(4)y x =--B .24y x =-+C .2(4)y x =-+D .24y x =-- 【答案】D【分析】直接根据“上加下减”的原则进行解答.【详解】解:将直线y =-2x 沿y 轴向下平移4个单位后的直线所对应的函数解析式是:y =-2x -4. 故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.4.函数21yx 中自变量x 的取值范围是( ) A .1x ≠B .0x ≠C .1x =D .0x = 【答案】A【分析】根据分母不等于0列不等式求解即可.【详解】解:由题意得,x -1≠0,解得x ≠1,故选:A .【点睛】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.5.已知点(1-,1y )、(3,2y )在一次函数2y x =-+的图像上,则1y 、2y 、0的大小关系是( )A .120y y <<B .120y y <<C .120y y <<D .210y y <<【答案】D【分析】把−1和3代入一次函数解析式中,即可算出y 1与y 2的值,即可得出答案.【详解】解:当x =−1时,y 1=−(−1)+2=3,当x =3时,y 2=−3+2=−1,∵−1<0<3,∵y 2<0<y 1.故选:D .【点睛】本题考查了一次函数图象上点的坐标特征,由已知自变量x 的值求出函数值是解决本题的关键.6.若函数||(1)m y m x =-是正比例函数,则m 的值为( )A .±1B .1C .1-D .2【答案】C【分析】正比例函数的特征:k ≠0;自变量的次数为1;常数项b =0.根据正比例函数的定义即可列方程求解.【详解】 解:根据题意得:101m m -≠⎧⎨⎩=, 解得:m =−1.故选:C .【点睛】本题考查正比例函数的定义,绝对值方程,解题的关键是知道正比例函数y =kx 的定义条件是:k 为常数,k ≠0,自变量次数为1.7.如图,下列的四个图象中,不能表示y 是x 的函数图象的是( )A .B .C.D.【答案】D【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,可得答案.【详解】解:A、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A不合题意;B、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B不合题意;C、满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不合题意;D、不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D符合题意;故选:D.【点睛】本题考查了函数的图象,利用了函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.x的取值范围是()8.函数y3x+A.x>﹣3且x≠0B.x>﹣3 C.x≥﹣3 D.x≠﹣3【答案】B【分析】根据二次根式和分式有意义的条件:被开方数大于等于0,分母不为0列式计算即可.【详解】解:∵函数yx+3x+,解得:x>﹣3.∴3>0故选:B.【点睛】本题考查函数基本知识,解题的关键是掌握二次根式和分式有意义的条件.评卷人得分二、填空题9.若点()16,A y -,()21,B y -都在正比例函数12y x =-的图象上,则1y __________2y (填“>”或“<”).【答案】>【分析】由正比例函数12y x =-可得y 随x 的增大而减小,然后根据点()16,A y -,()21,B y -即可求解.【详解】解:∵正比例函数12y x =-,1<02k =-, ∴y 随x 的增大而减小, ∴点()16,A y -,()21,B y -都在正比例函数12y x =-的图象上,且6<1--, ∴12>y y ,故答案为:>.【点睛】此题考查了正比例函数的增减性,解题的关键是熟练掌握正比例函数的增减性. 10.在一次函数y =﹣2x 中,y 随x 的增大而 _____(填“增大”或“减小”).【答案】减小【分析】根据一次函数的增减性判断即可.一次函数增减性:对于一次函数y =kx +b (k ,b 是常数,k ≠0),①当k >0时,图象一定经过第一、第三象限,图象从左向右上升,y 随x 的增大而增大;②当k <0时,图象一定经过第二、第四象限,图象从左向右下降,y 随x 的增大而减小.【详解】解:∵一次函数y =﹣2x ,k =﹣2,∴y 随x 的增大而减小,故答案为:减小.【点睛】此题考查了一次函数的增减性,解题的关键是熟练掌握一次函数的增减性.一次函数增减性:对于一次函数y =kx +b (k ,b 是常数,k ≠0),①当k >0时,图象一定经过第一、第三象限,图象从左向右上升,y 随x 的增大而增大;②当k <0时,图象一定经过第二、第四象限,图象从左向右下降,y 随x 的增大而减小.11.若点M (-7,m ),N (-8,n )都在函数y =-(k 2+4)x +1(k 为常数)的图象上,则m 和n 的大小关系是______.【答案】m n <【分析】根据题意可得y 随x 的增大而减小,又有78->- ,即可求解.【详解】解:∵2440k +≥>,∴()240k -+< ,∴y 随x 的增大而减小,∵78->- ,∴m n < .故答案为:m n <【点睛】本题主要考查了比较一次函数的函数值,熟练掌握一次函数()0y kx b k =+≠ 的增减性是解题的关键.12.当直线2y x m =++经过第一、三、四象限时,m 的取值范围是______.【答案】2m <-【分析】根据一次函数y =x +m +2经过第一、三、四象限,确定(m +2)的取值范围即可.【详解】解:直线2y x m =++经过第一、三、四象限,1k =,则20m +<,故答案为:2m <-【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交.13.函数3(2)+=-m y m x 是正比例函数,这个函数中的y 值随自变量x 的增大而_________.【答案】减小【分析】根据函数3(2)+=-m y m x 是正比例函数可得31m +=,求出m 的值,代入即可求出2m -的值,即可判断这个函数的增减性.【详解】解:∵函数3(2)+=-m y m x 是正比例函数,∴31m +=,解得:2m =-,∴2224m -=--=-,∴这个函数表达式为4y x =-,∵4<0-,∴y 值随自变量x 的增大而减小.故答案为:减小.【点睛】此题考查了正比例函数的定义,正比例函数的增减性和系数的关系,解题的关键是熟练掌握正比例函数的定义,正比例函数的增减性和系数的关系.正比例函数:一般地,两个变量x 、y 之间的关系式可以表示成形如y =kx 的函数(k 为常数,x 的次数为1,且k ≠0),那么y =kx 就叫做正比例函数.当k >0时,函数值y 随着自变量x 的增大而增大;当k <0时,函数值y 随着自变量x 的增大而减小.14.已知函数()f x =(2)f -=_________.【分析】根据函数的定义即可得.【详解】解:因为()f x =所以(2)f -=【点睛】本题考查了求函数值,掌握理解函数的概念是解题关键.三、解答题15.某登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃.登山队员由大本营向上登高xkm 时,他们所在位置的气温是y ℃.试用函数解析式表示y 与x 的关系.【答案】65y x =-+【分析】登山队员由大本营向上登高xkm 时,他们所在地的气温为y ℃,根据登山队大本营所在地的气温为5℃,海拔每升高1km 气温下降6℃,可求出y 与x 的关系式.【详解】解:根据题意得:y =5-6x .答:函数解析式为y =5-6x .【点睛】本题考查根据实际问题列一次函数式,关键知道气温随着高度变化,某处的气温=地面的气温-降低的气温.16.已知y 与2x +成正比例,当3x =时,10y =-(1)求y 与x 之间的函数表达式;(2)当21x -<≤时,求y 的取值范围【答案】(1)24y x =--;(2)60y -≤<.【分析】(1)设(2)(0)y k x k =+≠,把x 、y 的值代入求出k 的值,即可求得函数表达式; (2)由(1)可得24y x =--,再根据21x -<≤,可得6240x ---<≤,即可得结果.【详解】解:(1)设(2)(0)y k x k =+≠,把3x =,10y =-代入得:510k =-,解得:2k =-,24y x ∴=--,y ∴与x 之间的函数表达式为:24y x =--;(2)∵21x -<≤,∴224x --<≤,∴6240x ---<≤即60y -≤<,y ∴的取值范围为:60y -≤<.【点睛】本题考查了待定系数法求一次函数表达式,理解题意根据x 的取值范围求得y 的范围,得出关于k 的方程是解决问题的关键.17.一种豆子每千克售2元,豆子的总售价y (元)与所售豆子的质量x (千克)之间的关系如下表:(1)在这个表格中反映的是哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)当豆子售出5千克时,总售价是多少?(3)按表中给出的关系,用一个式子把x 与y 之间的关系表示出来(4)当豆子售出20千克时,总售价是多少?【答案】(1)总售价y (元)与售出豆子的质量x (千克),自变量是售出豆子的质量x (千克),因变量是总售价y (元);(2)10元;(3)2y x =;(4)40元.【分析】(1)由表格信息可得结论;(2)由表格信息可得豆子售出5千克的总售价;(3)由总售价等于单价乘以数量可得结论;(4)把20x代入2y x =中可得结论.【详解】解:(1)这个表格中反映的是总售价y (元)与售出豆子的质量x (千克)之间的关系,自变量是售出豆子的质量x (千克),因变量是总售价y (元);(2)由表格信息可得:豆子售出5千克的总售价为10元;(3)因为总售价等于单价乘以数量,所以2,y x =(4)把20x 代入2y x =得:22040y =⨯=,当豆子售出20千克时,总售价为40元.【点睛】本题考查的是函数的概念,自变量与因变量的理解,以及列函数关系式,求函数值,掌握以上知识是解题的关键.18.把一次函数21y x =-的图象沿y 轴向上平移2个单位长度,所得图象对应的函数表达式为________.【答案】21y x =+【分析】根据函数图象的平移法则求解即可.【详解】∵把一次函数y =2x ﹣1的图象沿y 轴向上平移2个单位长度,∴平移后所得图象对应的函数关系式为:y =2x ﹣1+2,即y =2x +1.故答案为:y =2x +1.【点睛】本题考查一次函数图象的平移,熟记法则是解题关键.19.如图,1l 反映了某产品的销售收入与销售量之间的关系,2l 反映了该产品的销售成本与销售量之间的关系,当销售收入大于销售成本时,该产品才开始赢利.该产品的销售量达到多少吨时,生产该产品才能赢利?【答案】当销售量超过4t 时,生产该产品才能赢利【分析】生产该产品赢利,销售收入应大于销售成本,即1l 的函数图象应高于2l 的函数图象,看在交点的哪侧即可.【详解】解:横轴代表销售量,纵轴表示费用,在交点的右侧,相同的x 值,12l l >的值,那么表示开始赢利.∴当4x >时,12l l >.答:该产品的销售量超过4吨时,生产该产品才能赢利.【点睛】本题考查利用一次函数的图象解决实际问题;理解赢利的意义是解决本题的关键;解决此类问题,应从交点入手思考.20.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍.设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 与x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?【答案】(1)每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元;(2)①5015000y x =-+;②商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大【分析】(1)列二元一次方程组解决问题;(2)①根据(1)的结论列出函数关系式;②根据题意列出不等式,解不等式,根据①中的解析式求得最大利润.【详解】解:(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有1020400020103500a b a b +=⎧⎨+=⎩解得100150a b =⎧⎨=⎩答:每台A 型电脑的销售利润为100元,每台B 型电脑的销售利润为150元. (2)①根据题意得100150(100)y x x =+-,∴5015000y x =-+②根据题意得1002x x -≤,解得1333x ≥, 5015000y x =-+,500-<,y ∴随x 的增大而减小. x 为正整数,当34x =最小时,y 取最大值,此时10066x -=.答:商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,一次函数的最值,根据题意找出等量关系列出方程组是解题的关键.21.(1)先列表,再画出函数21y x =+的图象.(2)若直线21y x =+向下平移了1个单位长度,直接写出平移后的直线表达式.【答案】(1)见解析;(2)2y x =【分析】(1)先列好表,再描点并连线即可,(2)根据函数图像上下平移规律:上加下减,即可得到答案.【详解】解:(1)列表如下:描点并连线:(2)直线21y x =+向下平移了1个单位长度得到2y x =.【点睛】本题考查的是一次函数的作图及上下平移,掌握以上知识是解题的关键.22.一个弹簧不挂重物时长12cm ,挂上重物后伸长的长度与所挂重物的质量成正比,如果挂上1kg 的物体后,弹簧伸长2cm .求弹簧总长y (单位:cm )关于所挂物体质量x (单位:kg )的函数解析式.【答案】122y x =+(0x m ≤≤,m 是弹簧能承受物体的最大质量)【分析】由题意即可求出挂上xkg 的物体后,弹簧伸长的量,再加上弹簧原长即得出y 与x 的函数关系式,注意自变量的取值范围.【详解】∵弹簧挂上重物后伸长的长度与所挂重物的质量成正比,且挂上1kg 的物体后,弹簧伸长2cm ,∴挂上xkg 的物体后,弹簧伸长2xcm .∵弹簧不挂重物时长12cm ,∴弹簧总长212y x =+(0x m ≤≤,m 是弹簧能承受物体的最大质量).【点睛】本题考查一次函数的实际应用,根据题意找出数量关系列出等式是解答本题的关键. 23.如图(1),某商场在楼层之间设有上、下行自动扶梯和楼梯,甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走楼梯.甲离一楼地面的高度h (单位:m )与下行时间x (单位:s )之间具有函数关系0.66h x =-+,乙离一楼地面的高度y (单位:m )与下行时间x (单位:s )之间的函数关系如图(2)所示.(1)求y 关于x 的函数表达式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.【答案】(1)165y x =-+;(2)甲先到达一楼地面 【分析】(1)设y 关于x 的函数表达式是y kx b =+,利用待定系数法将()0,6,()15,3代入表达式求解即可;(2)分别计算出当当0h =时和0y =时所用的时间,然后比较求解即可.【详解】解:(1)设y 关于x 的函数表达式是y kx b =+将()0,6,()15,3代入得:6153b k b =⎧⎨+=⎩解得:156k b ⎧=-⎪⎨⎪=⎩ ∴y 关于x 的函数表达式是165y x =-+ (2)当0h =时;00.66x =-+,得10x =当0y =时;1065x =-+,得30x = ∵1030<∴甲先到达一楼地面.【点睛】此题考查了待定系数法求一次函数表达式,比较自变量的大小等知识,解题的关键是熟练掌握待定系数法求一次函数表达式和正确分析题意.24.如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.如图反映了这个过程中,小明离家的距离y 与时间x 之间的对应关系.根据图象回答下列问题:(1)食堂离小明家多远?小明从家到食堂用了多少时间?(2)小明吃早餐用了多少时间?(3)食堂离图书馆多远?小明从食堂到图书馆用了多少时间?(4)小明读报用了多少时间?(5)图书馆离小明家多远?小明从图书馆回家的平均速度是多少?【答案】(1)0.6km,8min;(2)17min;(3)0.2km,3min;(4)30min;(5)10min,0.08km/min【分析】小明离家的距离y是时间x的函数,由图象中有两段平行于x轴的线段可知,小明离家后有两段时间先后停留在食堂与图书馆里,由此结合图形分析即可解答.【详解】解:(1)由纵坐标看出,食堂离小明家0.6km;由横坐标看出,小明从家到食堂用了8min.-=,小明吃早餐用了17min.(2)由横坐标看出,25817-=,食堂离图书馆0.2km;(3)由纵坐标看出,0.80.60.2由横坐标看出,28253-=,小明从食堂到图书馆用了3min.-=,小明读报用了30min.(4)由横坐标看出,582830(5)由纵坐标看出,图书馆离小明家0.8km;-=,小明从图书馆回家用了10min,由横坐标看出,685810由此算出平均速度是0.08km/min.【点睛】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.。

一次函数经典题型+习题(精华-含答案)

一次函数经典题型+习题(精华-含答案)

一次函数经典题型+习题(精华-含答案)2345就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)1、当k_____________时,()2323y k x x =-++-是一次函数;2、当m_____________时,()21345m y m x x +=-+-是一次函数;3、当m_____________时,()21445m y m x x +=-+-是一次函数;题型四、函数图像及其性质 ☆一次函数y=kx+b (k≠0)中k 、b 的意义: k(称为斜率)表示直线y=kx+b (k≠0) 的倾斜程度;b (称为截距)表示直线y=kx+b (k≠0)与y 轴交点的 ,也表示直线在y 轴上的 。

☆同一平面内,不重合的两直线 y=k 1x+b 1(k 1≠0)与 y=k 2x+b 2(k 2≠0)的位置关系: 当 时,两直线平行。

当 时,两直线相交。

☆特殊直线方程: X轴:直线Y 轴 : 直线与X 轴平行的直线与Y 轴平行的直线 一、 三象限角平分线二、四象限角平分线61、对于函数y =5x+6,y 的值随x 值的减小而___________。

2、对于函数1223y x =-, y 的值随x 值的________而增大。

3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

4、直线y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是_________。

5、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。

6、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。

7、已知一次函数(1)当m 取何值时,y 随x 的增大而减小?(2)当m 取何值时,函数的图象过原点?题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。

(完整word版)《一次函数》经典例题解析

(完整word版)《一次函数》经典例题解析

类型一:正比例函数与一次函数定义1、当m为何值时,函数y=-(m—2)x+(m—4)是一次函数?思路点拨:某函数是一次函数,除应符合y=kx+b外,还要注意条件k≠0.解:∵函数y=—(m—2)x+(m—4)是一次函数,∴∴m=-2.∴当m=—2时,函数y=-(m—2)x+(m-4)是一次函数.举一反三:【变式1】如果函数是正比例函数,那么()。

A.m=2或m=0 B.m=2 C.m=0D.m=1【答案】:考虑到x的指数为1,正比例系数k≠0,即|m—1|=1;m—2≠0,求得m=0,选C【变式2】已知y—3与x成正比例,且x=2时,y=7。

(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.解析:(1)由于y-3与x成正比例,所以设y—3=kx.把x=2,y=7代入y-3=kx中,得7-3=2k,∴ k=2.∴ y与x之间的函数关系式为y-3=2x,即y=2x+3.(2)当x=4时,y=2×4+3=11.(3)当y=4时,4=2x+3,∴x=。

类型二:待定系数法求函数解析式2、求图象经过点(2,—1),且与直线y=2x+1平行的一次函数的表达式.思路点拨:图象与y=2x+1平行的函数的表达式的一次项系数为2,则可设此表达式为y=2x+b,再将点(2,-1)代入,求出b即可.解析:由题意可设所求函数表达式为y=2x+b,∵图象经过点( 2,-1),∴—l=2×2+b.∴ b=-5,∴所求一次函数的表达式为y=2x-5.总结升华:求函数的解析式常用的方法是待定系数法,具体怎样求出其中的待定系数的值,要根据具体的题设条件求出。

举一反三:【变式1】已知弹簧的长度y(cm)在一定的弹性限度内是所挂重物的质量x(kg)的一次函数,现已测得不挂重物时,弹簧的长度为6cm,挂4kg的重物时,弹簧的长度是7。

2cm,求这个一次函数的表达式.分析:题中并没给出一次函数的表达式,因此应先设一次函数的表达式y=kx+b,再由已知条件可知,当x=0时,y=6;当x=4时,y=7.2.求出k,b即可.解:设这个一次函数的表达式为y=kx+b.由题意可知,当x=0时,y=6;当x=4时,y=7.2。

(完整版)一次函数经典题型+习题(精华,含答案)(可编辑修改word版)

(完整版)一次函数经典题型+习题(精华,含答案)(可编辑修改word版)

一次函数MQ= ; E (2, -1), F (2, -8),则EF 两点之间的距离是;已题型一、点的坐标方法:x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b 的范围为;3、已知A(4,b),B(a,-2),若A,B 关于x 轴对称,则a= ,b= ;若A,B 关于y 轴对称,则a= ,b= ;若若A,B 关于原点对称,则a= ,b= ;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第象限。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;若AB∥x 轴,则A(x A , 0), B(x B , 0) 的距离为x A -x B ;若AB∥y 轴,则A(0, y A ), B(0, y B ) 的距离为y A -y B ;知点G(2,-3)、H(3,4),则G、H 两点之间的距离是;4、两点(3,-4)、(5,a)间的距离是2,则a 的值为;5、已知点A(0,2)、B(-3,-2)、C(a,b),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k≠0),那么y 叫做x 的一次函数,特别的,当b=0 时,一次函数就成为y=kx(k 是常数,k≠0),这时,y叫做x 的正比例函数,当k=0 时,一次函数就成为若y=b,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k≠0)1、当k 时,y =(k -3)x2++2x -3 是一次函数;2、当m 时,y =(m - 3)x2m+1+ 4x - 5 是一次函数;3、当m 时,y =(m - 4)x2m+1+ 4x - 5 是一次函数;题型四、函数图像及其性质☆一次函数 y=kx+b(k≠0)中 k、b 的意义:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y 轴交点的,也表示直线在y 轴上的。

(完整word版)初中求一次函数解析式专项练习30题(含解析),文档

(完整word版)初中求一次函数解析式专项练习30题(含解析),文档

范文模范精心整理求一次函数剖析式专项练习1. A〔 2,﹣ 1〕, B〔 3,﹣ 2〕, C〔a, a〕三点在同一条直线上.(1〕求 a 的值;(2〕求直线 AB与坐标轴围成的三角形的面积.2.如图,直线l 与 x 轴交于点A〔﹣ 1.5 , 0〕,与 y 轴交于点B〔 0, 3〕(1〕求直线 l 的剖析式;(2〕过点 B 作直线 BP 与 x 轴交于点 P,且使 OP=2OA,求△ ABP 的面积.3.一次函数的图象经过〔1, 2〕和〔﹣ 2,﹣ 1〕,求这个一次函数剖析式及该函数图象与x 轴交点的坐标.4.以以下图,直线l 是一次函数y=kx+b 的图象.(1〕求 k、 b 的值;(2〕当 x=2 时,求 y 的值;(3〕当 y=4 时,求 x 的值.5.一次函数 y=kx+b 的图象与 x 轴交于点 A〔﹣ 6,0〕,与 y 轴交于点 B.假设△ AOB的面积为 12,求一次函数的表达式.6.一次函数y=kx+b ,当 x=﹣ 4 时, y 的值为 9;当 x=6 时, y 的值为 3,求该一次函数的关系式.word 圆满格式7. y 与 x+2 成正比率,且x=0 时, y=2,求:(1〕 y 与 x 的函数关系式;(2〕其图象与坐标轴的交点坐标.8.若是 y+3 与 x+2 成正比率,且x=3 时, y=7.〔 1〕写出 y 与 x 之间的函数关系式;〔 2〕画出该函数图象;并观察当x 取什么值时, y< 0?9.直线 y=kx+b 是由直线y=﹣ x 平移获取的,此直线经过点A〔﹣ 2, 6〕,且与 x 轴交于点B.〔 1〕求这条直线的剖析式;〔 2〕直线 y=mx+n 经过点 B,且 y 随 x 的增大而减小.求关于x 的不等式mx+n< 0 的解集.10. y 与 x+2 成正比率,且x=1 时, y=﹣ 6.(1〕求 y 与 x 之间的函数关系式,并建立平面直角坐标系,画出函数图象;(2〕结合图象求,当﹣ 1<y≤0时 x 的取值范围.11. y﹣ 2 与 2x+1 成正比率,且当x=﹣ 2 时, y=﹣ 7,求 y 与 x 的函数剖析式.12. y 与 x﹣ 1 成正比率,且当x=﹣ 5 时, y=2,求 y 与之间的函数关系式.13.一次函数的图象经过点A〔,m〕和B〔,﹣1〕,其中常量m≠﹣ 1,求一次函数的剖析式,并指出图象特色.14.一次函数y=〔 k﹣ 1〕 x+5 的图象经过点〔1, 3〕.(1〕求出 k 的值;(2〕求当 y=1 时, x 的值.word 圆满格式15.一次函数y=k1x﹣ 4 与正比率函数y=k 2x 的图象经过点〔2,﹣ 1〕.(1〕分别求出这两个函数的表达式;(2〕求这两个函数的图象与 x 轴围成的三角形的面积.16. y﹣ 3 与 4x﹣ 2 成正比率,且x=1 时, y=﹣ 1.(1〕求 y 与 x 的函数关系式.(2〕若是 y 的取值范围为 3≤y≤5时,求 x 的取值范围.17.假设一次函数y=3x+b 的图象与两坐标轴围成的三角形面积为24,试求这个一次函数的剖析式.18.若是一次函数y=kx+b 的变量 x 的取值范围是﹣ 2≤x≤6,相应函数值是﹣ 11≤y≤9,求此函数剖析式.19.某一次函数图象的自变量的取值范围是﹣3≤x≤6,相应的函数值的变化范围是﹣5≤y≤﹣2,求这个函数的解析式.20.,直线AB经过 A〔﹣ 3, 1〕, B〔 0,﹣ 2〕,将该直线沿y 轴向下平移 3 个单位获取直线MN.(1〕求直线 AB和直线 MN的函数剖析式;(2〕求直线 MN与两坐标轴围成的三角形面积.21.一次函数的图象经过点A〔 0,﹣ 2〕,且与两条坐标轴截得的直角三角形的面积为3,求这个一次函数的剖析式.22.若是 y+2 与 x+1 成正比率,当x=1 时, y=﹣ 5.〔 1〕求出 y 与 x 的函数关系式.〔2〕自变量 x 取何值时,函数值为4?23. y﹣ 3 与 4x﹣ 2 成正比率,且当x=1 时, y=5,〔 1〕求 y 与 x 的函数关系式;word 圆满格式(2〕求当 x=﹣ 2 时的函数值:(3〕若是 y 的取值范围是 0≤y≤5,求 x 的取值范围;(4〕假设函数图象与 x 轴交于 A 点,与 y 轴交于 B 点,求 S△AOB.24. y﹣ 3 与 x 成正比率,且x=2 时, y=7.〔 1〕求 y 与 x 的函数关系式;〔 2〕当时,求y的值;〔 3〕将所得函数图象平移,使它过点〔2,﹣ 1〕.求平移后直线的剖析式.25.:一次函数y=kx+b 的图象与y 轴的交点到原点的距离为3,且过 A〔 2, 1〕点,求它的剖析式.26.一次函数y=〔 3﹣ k〕 x+2k+1.〔 1〕若是图象经过〔﹣1, 2〕,求 k;〔 2〕假设图象经过一、二、四象限,求k 的取值范围.27.正比率函数与一次函数y=﹣ x+b 的图象交于点〔2, a〕,求一次函数的剖析式.28. y+5 与 3x+4 成正比率,且当x=1 时, y=2.(1〕求出 y 与 x 的函数关系式;(2〕设点 P〔 a,﹣ 2〕在这条直线上,求 P 点的坐标.29.一次函数 y=kx+b 〔k≠0〕在 x=1 时, y=5,且它的图象与 x 轴交点的横坐标是 6,求这个一次函数的剖析式.word 圆满格式30.:关于x 的一次函数y=〔 2m﹣ 1〕 x+m﹣ 2 假设这个函数的图象与y 轴负半轴订交,且不经过第二象限,且m为正整数.〔 1〕求这个函数的剖析式.〔 2〕求直线y=﹣ x 和〔 1〕中函数的图象与x 轴围成的三角形面积.word 圆满格式一次函数的剖析式30 题参照答案:1.〔 1〕设直线 AB 剖析式为 y=kx+b ,4.〔 1〕由图象可知,直线l 过点〔 1, 0〕和〔 0,〕,依题意,得,解得那么,解得:,∴直线 AB剖析式为 y= ﹣ x+1∵点 C〔 a, a〕在直线 AB上,∴a=﹣ a+1,解得 a=;即 k=, b= ;〔 2〕直线 AB与 x 轴、 y 轴的交点分别为〔1, 0〕,〔 0,〔 2〕由〔 1〕知,直线 l的剖析式为 y=x+,1〕∴直线 AB与坐标轴围成的三角形的面积为当 x=2 时,有 y=×2+=;2.〔 1〕设直线 l 的剖析式为 y=kx+b ,〔 3〕当 y=4 时,代入 y=x+得: 4=x+,∵直线 l 与 x 轴交于点 A〔﹣ 1.5 ,0〕,与 y 轴交于点 B〔 0, 3〕,解得 x= ﹣ 5.5.∵图象经过点 A〔﹣ 6, 0〕,∴代入得:,∴0=﹣ 6k+b,解得: k=2, b=3,即 b=6k ①,∴直线 l 的剖析式为 y=2x+3;∵图象与 y 轴的交点是 B〔 0, b〕,∴? OB=12,即:,∴|b|=4 ,∴b1=4,b2=﹣4,〔 2〕代入①式,得,,解:分为两种情况:①当P 在 x 轴的负半轴上时,∵A〔﹣ 1.5 , 0〕, B〔 0, 3〕,一次函数的表达式是或∴OP=2OA=3, 0B=3,∴AP=3﹣ 1.5=1.5 ,6.依照题意,得,∴△ ABP 的面积是×AP×OB=×1.5 ×3=2.25 ;②当 P 在 x 轴的正半轴上时,解得.∵A〔﹣ 1.5 , 0〕, B〔 0, 3〕,∴OP=2OA=3, 0B=3,∴,故该一次函数的关系式是y=﹣ x+ .∴△ ABP 的面积是×AP×OB=×4.5 ×3=6.25 .7.〔 1〕依照题意,得y=k〔 x+2〕〔k≠0〕;3.设一次函数的剖析式为y=kx+b 〔k≠0〕,由 x=0 时, y=2 得 2=k〔 0+2〕,解得 k=1,因此 y 与 x 的函数关系式是y=x+2 ;由得:,〔 2〕由,得;解得:,由,得,∴一次函数的剖析式为y=x+1,当 y=0 时, x+1=0,因此图象与 x 轴的交点坐标是:〔﹣ 2, 0〕;与 y 轴的交∴x=﹣ 1,点坐标为:〔 0,2〕.∴该函数图象与 x 轴交点的坐标是〔﹣ 1, 0〕8.〔 1〕∵ y+3与 x+2成正比率,word 圆满格式范文模范精心整理∴设 y+3=k〔 x+2〕〔k≠0〕,∵当 x=3 时, y=7,∴7+3=k〔 3+2〕,解得, k=2.那么 y+3=2〔x+2〕,即 y=2x+1 ;〔 2〕从图上可以知道,当﹣1<y≤0时x的取值范围﹣〔 2〕由〔 1〕知, y=2x+1.2≤x<﹣.令 x=0,那么 y=1,.令 y=0,那么 x=﹣,11.∵ y﹣ 2 与 2x+1 成正比率,∴设 y﹣ 2=k〔 2x+1〕〔k≠0〕,因此,该直线经过点〔0, 1〕和〔﹣, 0〕,其图象如∵当 x=﹣ 2 时, y=﹣ 7,∴﹣ 7﹣ 2=k〔﹣ 4+1〕,图所示:∴k=3,∴y=6x+5.12.设 y=k 〔 x﹣ 1〕,把 x=﹣ 5, y=2 代入,得 2=〔﹣ 5﹣1〕 k,解得.因此 y 与 x 之间的函数关系式是由图见告,当 x<﹣时, y< 013.设过点 A,B 的一次函数的剖析式为y=kx+b ,9.〔 1〕一次函数 y=kx+b 的图象经过点〔﹣2, 6〕,且那么 m= k+b,﹣ 1=k+b,与 y=﹣ x 的图象平行,那么 y=kx+b 中 k=﹣ 1,两式相减,得 m+1= k+ k,即 m+1= 〔m+1〕,当 x=﹣ 2 时, y=6,将其代入 y=﹣ x+b,解得: b=4.∵m≠﹣ 1,那么 k=2,那么直线的剖析式为:y=﹣ x+4;∴b=m﹣ 1,那么函数的剖析式为y=2x+m﹣ 1〔m≠﹣ 1〕,其图象是平面〔 2〕以以下图:内平行于直线 y=2x〔但不包括直线 y=2x﹣ 2〕的所有直∵直线的剖析式与 x 轴交于点 B,线∴y=0, 0=﹣ x+4,14.〔 1〕∵一次函数y= 〔 k﹣ 1〕x+5 的图象经过点〔1,∴x=4,3〕,∴B点坐标为:〔 4,0〕,∴3=〔 k﹣ 1〕× 1+5.∵直线 y=mx+n 经过点 B,且 y 随 x 的增大而减小,∴k=﹣ 1.∴m< 0,此图象与 y=﹣ x+4 增减性相同,〔 2〕∵ y=﹣ 2x+5 中,当 y=1 时, 1=﹣ 2x+5∴关于 x 的不等式 mx+n< 0 的解集为: x> 4∴x=2.15.〔 1〕把点〔 2,﹣ 1〕代入 y=k 1x﹣ 4得: 2k 1﹣ 4=﹣ 1,解得: k1 =,10.〔 1〕设 y=k 〔 x+2〕,因此剖析式为: y=x﹣ 4;∵x=1 时, y=﹣ 6.把点〔 2,﹣ 1〕代入 y=k 2x∴﹣ 6=k〔 1+2〕得: 2k 2=﹣ 1,k=﹣ 2.解得: k2 =﹣,∴y=﹣ 2〔 x+2〕 =﹣ 2x﹣ 4.图象过〔 0,﹣ 4〕和〔﹣ 2,0〕点因此剖析式为:y=﹣x;word 圆满格式范文模范精心整理〔 2〕因为函数 y=x﹣ 4 与 x 轴的交点是〔, 0〕,且∴函数剖析式为y= ﹣ x+4.两图象都经过点〔2,﹣ 1〕,因此,函数剖析式为 y=x﹣ 6 或 y=﹣ x+4因此这两个函数的图象与x 轴围成的三角形的面积是:S=××1=.19.设一次函数剖析式为y=kx+b ,依照题意①当 k> 0 时, x=﹣ 3 时, y=﹣ 5,x=6 时, y=﹣ 2,∴解得,16.〔 1〕设 y﹣ 3=k〔 4x﹣ 2〕,〔 2 分〕当 x=1 时, y=﹣ 1,∴﹣1﹣3=k〔4×1﹣2〕,∴k=﹣ 2〔 4 分〕,∴y﹣ 3=﹣ 2〔 4x﹣ 2〕,∴函数剖析式为 y=﹣ 8x+7.〔5 分〕〔 2〕当y=3 时,﹣ 8x+7=3,解得: x=,当 y=5 时,﹣ 8x+7=5,解得: x= ,∴x的取值范围是≤x≤.17.当 x=0 时, y=b,当 y=0 时, x=﹣,∴一次函数与两坐标轴的交点为〔0, b〕〔﹣,0〕,∴三角形面积为:×|b| ×| ﹣|=24 ,2即 b =144,解得 b=±12,∴这个一次函数的剖析式为 y=3x+12 或 y=3x﹣ 12 18.依照题意,①当 k> 0 时, y 随 x 增大而增大,∴当 x=﹣ 2 时, y= ﹣11, x=6 时, y=9∴解得,∴函数剖析式为y=x﹣ 6;②当 k< 0 时,函数值随 x 增大而减小,∴当x=﹣ 2 时, y=9, x=6 时, y=﹣ 11,∴解得,∴函数的剖析式为:y= x﹣4;②当 k< 0 时, x=﹣ 3 时, y=﹣ 2,x=6 时, y=﹣ 5,∴解得,∴函数剖析式为y= ﹣x﹣ 3;因此这个函数的剖析式为y= x﹣ 4 或 y=﹣x﹣ 3.20.设直线AB的剖析式为y=kx+b ,∵A〔﹣ 3, 1〕,B〔 0,﹣ 2〕,∴,∴k=﹣ 1,∴直线 AB的剖析式为:y=﹣ x﹣ 2,∵将该直线沿 y 轴向下平移 3 个单位获取直线 MN,∴直线 MN的函数剖析式为: y= ﹣x﹣ 5;(2〕∵直线 MN与 x 轴的交点为〔﹣ 5, 0〕,与 y 轴的交点坐标为〔 0,﹣ 5〕,∴直线 MN与两坐标轴围成的三角形面积为×|﹣5| ×|| ﹣ 5=12.5 .21.设与 x 轴的交点为 B,那么与两坐标轴围成的直角三角形的面积 = AO? BO,∵A O=2,∴ BO=3,∴点 B 纵坐标的绝对值是3,∴点 B 横坐标是± 3;设一次函数的剖析式为: y=kx+b ,当点 B 纵坐标是 3 时, B〔 3, 0〕,把 A〔0,﹣ 2〕, B〔 3, 0〕代入 y=kx+b ,得: k= , b=﹣ 2,因此: y=x﹣ 2,当点 B 纵坐标 =﹣ 3 时, B〔﹣ 3, 0〕,把 A〔0,﹣ 2〕, B〔﹣ 3, 0〕代入 y=kx+b ,word 圆满格式范文模范精心整理y=kx ﹣ 3,得 k=﹣, b=﹣ 2,过 A〔2, 1〕,1=2k﹣ 3,因此: y=﹣ x﹣2.k=2.22.〔 1〕依题意,设y+2=k 〔x+1〕,故剖析式为: y=2x﹣ 3.将 x=1, y=﹣ 5 代入,得26.〔 1〕∵一次函数 y=〔 3﹣ k〕x+2k+1 的图象经过〔﹣k〔 1+1〕 =﹣ 5+2,1, 2〕,解得 k=﹣ 1.5 ,∴2=〔 3﹣ k〕×〔﹣ 1〕 +2k+1,即 2=3k﹣ 2,∴y+2=﹣ 1.5 〔 x+1〕,解得 k= ;即 y=﹣ 1.5x ﹣ 3.5 ;〔 2〕把 y=4 代入 y=﹣﹣中,得〔 2〕〕∵一次函数y=〔 3﹣ k〕 x+2k+1 的图象经过一、﹣ 1.5x ﹣ 3.5=4 ,二、四象限,解得 x=﹣ 5,即当 x=﹣ 5 时,函数值为 4∴,23.〔 1〕设 y﹣ 3=k〔 4x﹣ 2〕,∵x=1 时, y=5,解得, k> 3.∴5﹣ 3=k〔4﹣ 2〕,故 k 的取值范围是k> 3.解得 k=1,27.依照题意,得∴y与 x 的函数关系式 y=4x+1;,解得,,〔 2〕将 x=﹣ 2 代入 y=4x+1 ,得 y= ﹣ 7;因此一次函数的剖析式是 y=﹣ x+3.〔 3〕∵y的取值范围是 0≤y≤5,28.〔 1〕∵ y+5 与 3x+4 成正比率,∴0≤4x+1≤5,∴设 y+5=k〔3x+4〕,即 y=3kx+4k ﹣ 5〔 k 是常数,且 k≠0〕.∵当 x=1 时, y=2,解得﹣≤x≤1;∴2+5=〔3×1〕 k,解得, k=1,〔 4〕令 x=0,那么 y=1;令 y=0,那么 x=﹣,故 y 与 x 的函数关系式是: y=3x ﹣ 1;〔 2〕∵点 P〔 a,﹣ 2〕在这条直线上,∴ A〔 0, 1〕, B〔﹣, 0〕,∴﹣ 2=3a﹣ 1,∴S AOB=× ×1=.解得, a=﹣,△24.〔 1〕∵ y﹣ 3 与 x 成正比率,∴P点的坐标是〔﹣,﹣ 2〕∴y﹣ 3=kx 〔k≠0〕成正比率,把 x=2 时, y=7 代入,得 7﹣3=2k, k=2;29.把〔 1, 5〕、〔 6, 0〕代入 y=kx+b 中,得∴y与 x 的函数关系式为:y=2x+3,,解得,〔 2〕把 x=﹣代入得: y=2×〔﹣〕 +3=2;∴一次函数的剖析式是y=﹣ x+6.〔 3〕设平移后直线的剖析式为y=2x+3+b ,把点〔 2,﹣ 1〕代入得:﹣ 1=2×2+3+b,30.〔 1〕由题意得:,解得: b=﹣8,故平移后直线的剖析式为:y=2x﹣ 5解得:< m< 2,25.依照题意得:当 b=3 时,又∵m为正整数,y=kx+3 ,过 A〔 2, 1〕.∴m=1,函数剖析式为: y=x﹣ 1.1=2k+3〔 2〕由〔 1〕得,函数图象与 x 轴交点为〔 1, 0〕与 yk=﹣ 1.轴交点为〔 0,﹣ 1〕,∴剖析式为: y=﹣ x+3.∴所围三角形的面积为:×1×1=当 b=﹣ 3 时,word 圆满格式。

一次函数典型例题及习题解析

一次函数典型例题及习题解析

一次函数的图像及应用典型例题及习题一次函数 经典题型题型考点一: 理解一次函数和正比例函数的概念与定义例1 已知函数y=(2-m)x+2m-3.求当m 为何值时, (1)此函数为正比例函数(2)此函数为一次函数学生自测1。

下列函数关系式中,哪些是一次函数,哪些是正比例函数? ( 1)y=-x-4 (2)y=5x2+6 (3)y=2πx (4)y=-8x 2.若是正比例函数,则b 的值是 ( )A.0B.C.D.3.若y =(m -1)x是正比例函数,则m 的值为( ) A.1B.-1C.1或-1D.或-4.若函数y =(3m -2)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( )A.m >B.m <C.m =D.m =5.若5y +2与x -3成正比例,则y 是x 的( )A.正比例函数B.一次函数C.没有函数关系D.以上答案均不正确 6.要使y=(m-2)x n-1+n 是关于x 的一次函数,n,m 应满足 , .7、已知函数y =(m 2-4)x 4+n +(m -2),当m 且 时,它是一次函数;当m 且n 时它是正比例函数. 8.若关于x 的函数是一次函数,则m = ,n .设函数y =(m -3)x 3-︳m ︳+m +2(1) 当m 为何值时,它是一次函数?(2)当m 为何值时,它是正比例函数?题型考点二:根据实际情况,确定一次函数解析式,求出相应的值例1 气温随着高度的增加而下降,下降的一般规律是从地面到高空11km 处,每升高1 km,气温下降6℃.高于11km 时,气温几乎不再变化,设地面的气温为38℃,高空中xkm 的气温为y ℃. (1)当0≤x ≤11时,求y 与x 之间的关系式? (2)求当x=2、5、8、11时,y 的值。

(3)求在离地面13 km的高空处、气温是多少度?(4)当气温是一16℃时,问在离地面多高的地方?学生自测1.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).求出y与x的函数关系式2.13.某市出租车起步价是7元(路程小于或等于2千米),超过2千米每增加1千米加收1.6元,请写出出租车费y(元)与行程x(千米)之间的函数关系式.一次函数图像二经典题型题型考点一:函数图象的概念例 1.列表:2.3.连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线.图象:学生自测:1、(10分)爱动脑筋的小明同学在买一双新的运动鞋时,发现了一些有趣现象,即鞋子的号码与鞋子的长(cm)之间存在着某种联系,经过收集数据,得到下表:请你代替小明解决下列问题:(1)根据表中数据,在同一直角坐标系中描出相应的点,你发现这些点在哪一种图形上?(2)猜想y与x之间满足怎样的函数关系式,并求出y与x之间的函数关系式,验证这些点的坐标是否满足函数关系式.(3)当鞋码是40码时,鞋长是多长?题型考点二:通过图像确定函数的解析式例1.(2010山东聊城)如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的方程是()A.3x-2y+3.5=0B.3x-2y-3.5=0C.3x-2y+7=0 D.3x+2y-7=0学生自测1、函数y=kx-5,k取不同的值,它的图象是()A、一条经过点(0,-5)的直线B、一组互相平行的直线C、一组相交于点(0,-5)的直线D、一条与y轴的交点在x轴上方的直线2、一次函数y=ax+b,ab<0,则其大致图象正确的是()3.(2009年安徽)8.已知函数的图象如图,则的图象可能是【】4.(2009年重庆市江津区)已知一次函数的大致图像为()5.(2010陕西西安)一个正比例函数的图象经过点(2,-3),它的表达式为A.B.C. D.6、直线y=kx经过点(3,-2),那么这条直线还通过点()A、(-2,3)B、(-3,2)C、(2,3)D、(3,2)7、如果正比例函数y=kx(k≠0)的自变量取值增加1,函数y的值相应减少4,则k的值为()A、4B、-4C、D、8、一次函数y=kx+b(k≠0)图象与x轴交点坐标是,与y轴交点坐标是(4)如图,直线L是一次函数y=kx+b的图象,则k= ,b= .9. 如图,把直线向上平移后得到直线AB,直线AB经过点,且,则直线AB的解析式是( )A.B.C.D.9.(2009年桂林市、百色市)如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为.10把直线向下平移2个单位得到的图像解析式为___________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《一次函数》复习课知识点1 一次函数和正比例函数的概念若两个变量x ,y 间的关系式可以表示成y=kx+b (k ,b 为常数,k ≠0)的形式,则称y 是x 的一次函数(x 为自变量),特别地,当b=0时,称y 是x 的正比例函数.例如:y=2x+3,y=-x+2,y=21x 等都是一次函数,y=21x ,y=-x 都是正比例函数.【说明】 (1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.(2)一次函数y=kx+b (k ,b 为常数,b ≠0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x 的次数为1,一次项系数k 必须是不为零的常数,b 可为任意常数.(3)当b=0,k ≠0时,y= kx 仍是一次函数. (4)当b=0,k=0时,它不是一次函数. 知识点2 函数的图象把一个函数的自变量x 与所对应的y 的值分别作为点的横坐标和纵坐标在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.画函数图象一般分为三步:列表、描点、连线.知识点 3一次函数的图象由于一次函数y=kx+b (k ,b 为常数,k ≠0)的图象是一条直线,所以一次函数y=kx+b 的图象也称为直线y=kx+b .由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y 轴的交点(0,b ),直线与x 轴的交点(-kb,0).但也不必一定选取这两个特殊点.画正比例函数y=kx 的图象时,只要描出点(0,0),(1,k )即可.知识点4 一次函数y=kx+b (k ,b 为常数,k ≠0)的性质 (1)k 的正负决定直线的倾斜方向; ①k >0时,y 的值随x 值的增大而增大; ②k ﹤O 时,y 的值随x 值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x 轴相交的锐角度数越大(直线陡),|k|越小,直线与x 轴相交的锐角度数越小(直线缓);(3)b 的正、负决定直线与y 轴交点的位置; ①当b >0时,直线与y 轴交于正半轴上; ②当b <0时,直线与y 轴交于负半轴上; ③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图11-18(l)所示,当k>0,b>0时,直线经过第一、二、三象限(直线不经过第四象限);②如图11-18(2)所示,当k>0,b﹥O时,直线经过第一、三、四象限(直线不经过第二象限);③如图11-18(3)所示,当k﹤O,b>0时,直线经过第一、二、四象限(直线不经过第三象限);④如图11-18(4)所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点3 正比例函数y=kx(k≠0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当k>0时,图象经过第一、三象限,y随x的增大而增大;(3)当k<0时,图象经过第二、四象限,y随x的增大而减小.知识点4 点P(x0,y)与直线y=kx+b的图象的关系(1)如果点P(x0,y)在直线y=kx+b的图象上,那么x,y的值必满足解析式y=kx+b;(2)如果x0,y是满足函数解析式的一对对应值,那么以x,y为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点P′(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点P′(2,1)不在直线y=x+l的图象上.知识点5 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(k≠0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(k≠0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y 的值.知识点6 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b 中,k ,b 就是待定系数.知识点7 用待定系数法确定一次函数表达式的一般步骤 (1)设函数表达式为y=kx+b ;(2)将已知点的坐标代入函数表达式,解方程(组); (3)求出k 与b 的值,得到函数表达式.例如:已知一次函数的图象经过点(2,1)和(-1,-3)求此一次函数的关系式.解:设一次函数的关系式为y =kx+b (k ≠0), 由题意可知,⎩⎨⎧+-=-+=,3,21b k b k 解⎪⎪⎩⎪⎪⎨⎧-==.35,34b k ∴此函数的关系式为y=3534-x . 【说明】 本题是用待定系数法求一次函数的关系式,具体步骤如下:第一步,设(根据题中要求的函数“设”关系式y=kx+b ,其中k ,b 是未知的常量,且k ≠0);第二步,代(根据题目中的已知条件,列出方程(或方程组),解这个方程(或方程组),求出待定系数k ,b );第三步,求(把求得的k ,b 的值代回到“设”的关系式y=kx+b 中);第四步,写(写出函数关系式).思想方法小结 (1)函数方法.函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题.(2)数形结合法.数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用.知识规律小结 (1)常数k ,b 对直线y=kx+b(k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b=0时,直线经过原点;当b ﹤0时,直线与y 轴的负半轴相交.②当k ,b 异号时,即-kb>0时,直线与x 轴正半轴相交;当b=0时,即-kb=0时,直线经过原点;当k ,b 同号时,即-kb﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b=0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b=0时,图象经过第二、四象限; 当b <O ,b <O 时,图象经过第二、三、四象限.(2)直线y=kx+b (k ≠0)与直线y=kx(k ≠0)的位置关系. 直线y=kx+b(k ≠0)平行于直线y=kx(k ≠0)当b >0时,把直线y=kx 向上平移b 个单位,可得直线y=kx+b ; 当b ﹤O 时,把直线y=kx 向下平移|b|个单位,可得直线y=kx+b . (3)直线b 1=k 1x+b 1与直线y 2=k 2x+b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2⇔y 1与y 2相交;②⎩⎨⎧=≠2121b b k k ⇔y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2); ③⎩⎨⎧≠=2121,b b k k ⇔y 1与y 2平行; ④⎩⎨⎧==2121,b b k k ⇔y 1与y 2重合.典例剖析基本概念题本节有关基本概念的题目主要是一次函数、正比例函数的概念及它们之间的关系,以及构成一次函数及正比例函数的条件.例1 下列函数中,哪些是一次函数?哪些是正比例函数?(1)y=-21x ; (2)y=-x2; (3)y=-3-5x ;(4)y=-5x 2; (5)y=6x-21(6)y=x(x-4)-x 2.例2 当m 为何值时,函数y=-(m-2)x 32-m+(m-4)是一次函数?基础知识应用题本节基础知识的应用主要包括:(1)会确定函数关系式及求函数值;(2)会画一次函数(正比例函数)图象及根据图象收集相关的信息;(3)利用一次函数的图象和性质解决实际问题;(4)利用待定系数法求函数的表达式.例3 一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg 的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x 的一次函数.例4 某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为℃.例5 已知y-3与x成正比例,且x=2时,y=7.(1)写出y与x之间的函数关系式;(2)当x=4时,求y的值;(3)当y=4时,求x的值.例6 若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是()A.m﹤O B.m>0C.m﹤21D.m>M例7 已知一次函数y=kx+b的图象如图11-22所示,求函数表达式.例8 求图象经过点(2,-1),且与直线y=2x+1平行的一次函数的表达式.综合应用题本节知识的综合应用包括:(1)与方程知识的综合应用;(2)与不等式知识的综合应用;(3)与实际生活相联系,通过函数解决生活中的实际问题.例9 已知y+a与x+b(a,b为是常数)成正比例.(1)y是x的一次函数吗?请说明理由;(2)在什么条件下,y是x的正比例函数?例10 某移动通讯公司开设了两种通讯业务:“全球通”使用者先交50元月租费,然后每通话1分,再付电话费0.4元;“神州行”使用者不交月租费,每通话1分,付话费0.6元(均指市内通话)若1个月内通话x分,两种通讯方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的关系;(2)一个月内通话多少分时,两种通讯方式的费用相同?(3)某人预计一个月内使用话费200元,则选择哪种通讯方式较合算?例11 已知y+2与x成正比例,且x=-2时,y=0.(1)求y与x之间的函数关系式;(2)画出函数的图象;(3)观察图象,当x取何值时,y≥0?(4)若点(m,6)在该函数的图象上,求m的值;(5)设点P在y轴负半轴上,(2)中的图象与x轴、y轴分别交于A,B两点,且S△ABP=4,求P点的坐标.例12 已知一次函数y=(3-k)x-2k2+18.(1)k为何值时,它的图象经过原点?(2)k为何值时,它的图象经过点(0,-2)?(3)k为何值时,它的图象平行于直线y=-x?(4)k为何值时,y随x的增大而减小?例13 判断三点A(3,1),B(0,-2),C(4,2)是否在同一条直线上.学生做一做判断三点A(3,5),B(0,-1),C(1,3)是否在同一条直线上.探索与创新题主要考查学生运用知识的灵活性和创新性,体现分类讨论思想、数形结合思想在数学问题中的广泛应用.例14 老师讲完“一次函数”这节课后,让同学们讨论下列问题:(1)x从0开始逐渐增大时,y=2x+8和y=6x哪一个的函数值先达到30?这说明了什么?(2)直线y=-x与y=-x+6的位置关系如何?甲生说:“y=6x的函数值先达到30,说明y=6x比y=2x+8的值增长得快.”乙生说:“直线y=-x与y=-x+6是互相平行的.”你认为这两个同学的说法正确吗?例15 某校一名老师将在假期带领学生去北京旅游,用旅行社说:“如果老师买全票,其他人全部半价优惠.”乙旅行社说:“所有人按全票价的6折优惠.”已知全票价为240元.(1)设学生人数为x,甲旅行社的收费为y甲元,乙旅行社的收费为y乙元,分别表示两家旅行社的收费;(2)就学生人数讨论哪家旅行社更优惠.学生做一做某公司到果园基地购买某种优质水果,慰问医务工作者.果园基地对购买量在3000千克以上(含3000千克)的有两种销售方案.甲方案:每千克9元,由基地送货上门;乙方案:每千克8元,由顾客自己租车运回,已知该公司租车从基地到公司的运输费为5000元.(1)分别写出该公司两种购买方案的付款y(元)与所购买的水果量x(千克)之间的函数关系式,并写出自变量X的取值范围;(2)当购买量在什么范围时,选择哪种购买方案付款少?并说明理由.例16 一次函数y=kx+b的自变量x的取值范围是-3≤x≤6,相应函数值的取值范围是-5≤y≤-2,则这个函数的解析式为 .基础训练习题:1.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例,当x=20时y=160O;当x=3O时,y=200O.(1)求y与x之间的函数关系式;(2)动果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?2.已知一次函数y=kx+b,当x=-4时,y的值为9;当x=2时,y的值为-3.(1)求这个函数的解析式。

相关文档
最新文档