矩形性质第一课时导学案

合集下载

19.2.1 矩形的定义和性质(导学案)

19.2.1 矩形的定义和性质(导学案)

班级小组姓名课题: 19.2.1 矩形的定义和性质第1课时【学习目标】:掌握矩形的概念;探索并掌握矩形的有关性质,能证明这些性质定理【学习过程】:一、自主学习学习任务一:1、定义:有一个角是四边形叫做矩形,也说是 .2、矩形的性质:(1)边:矩形的对边且;(2)矩形的角:矩形的的四个角是; 对角、邻角;(3)矩形的对角线:对角线且;(4)对称性:矩形是轴对称图形,它有条对称轴.(5)面积:设矩形ABCD的两邻边长分别为a,b,则S矩形= .(6)矩形具有四边形的一切性质学习任务二:1、求证:矩形的四个角都是直角.(自己画图,写已知,求证,证明)2、求证:矩形的对角线相等. (自己画图,写已知,求证,证明)二、合作探究:1、直角三角形斜边上的中线等于斜边的一半;请你画出图形,说明理由.O D CAB第14题2、如图:矩形ABCD的对角线AC\BD相交于点O,ABD=60度,AB=6,求矩形对角线的长.三、总结反思谈谈你在本节课中的收获与体会。

四、检测反馈1.在矩形ABCD中AC=2AB,则∠AOB的大小是( )A.30 B.45 C.60 D.902.如图,矩形ABCD的两条对角线相交于点O,602AOB AB∠==°,,则矩形的对角线AC的长是()A.2 B.4 C.D.3、矩形内有一点P到各边的距离分别为1、3、5、7,则该矩形的最大面积为平方单位.4.如图2是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm要求:1.导入:2-3分钟2.自主学习(13-15分钟)3.交流展示(22-25分钟)4.巩固测评(5分钟)5.总结2分钟FEDBAC图2ODCAB第14题ODCAB第14题。

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

《矩形第1课时 矩形的性质》精品导学案 人教版八年级数学下册导学案(精品).docx

学习目标:1. 理解矩形的概念,知道矩形与平行四边形的区别与联系.2. 会证明矩形的性质,会用矩形的性质解决简单的问题. 学习重点:矩形的定义、性质及其应用.〉宙主研〈一、 课前检测二、 温故知新1. 平行四边形是怎样定义的?它有哪些性质?请分别用符号语言表示出来.2.如图,现有一个活动的平行四边形,使它的一个内角变化,当内角变化为90°N 这是我们学过的哪个图形?三、预习导航(预习教材第52页,标出你认为重要的关键词)1. 矩形的定义:有一个角是直角的平行四边形叫做 _______ ,也就是长方形.2. 矩形是特殊的平行四边形,你能根据平行四边形的性质,说出矩形的性质吗?四、自学自测1. 矩形是常见的图形,你能举出一些生活中的实例吗?2. _________________________________________ 矩形的定义中有两个条件:一是 ___________________________________________ ,二是 ________________ . 3. 已知矩形的一条对角线与一边的夹角为30° ,则矩形两条对角线相交所得的 锐角为 ________ ;若该矩形的对角线长为4cm,则矩形的两邻边长分别 为 ______ 、 _______ • 五、我的疑惑(反思)师生备注18. 2. 1矩形 第1课时矩形的性质1〉居究点一、要点探究探究点1:矩形的性质思考因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一 个角为直角,它是否具有一般平行四边形所不具有的一些特殊性质呢?活动准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四个角 度数和对角线的长度,并记录测量结果.ACBDZBADZADCZABCZBCD橡皮擦课本桌子(2)根据测量的结果,你有什么猜想?师生备注B:.ZC = ________ ° .A ZB=ZC=ZD=ZA = ____________ ° .②如图,四边形ABCD 是矩形,ZABC=90° ,对角线AC 与DB 相较于点0. 求证:AC=DB.证明:•.•四边形ABCD 是矩形,AAB _____ DC, ZABC=ZDCB= _________在AABC 和ADCB 中,VAB=DC, ZABC=ZDCB, BC= CB, AABC _____ ADCB. /. AC ___________ DB.猜想1矩形的四个角都是 __________ . 猜想2矩形的对角线— 证一证①如图,四边形ABCD 是矩形,ZB=90° . 求证:ZB=ZC=ZD=ZA=90° .证明:•••四边形ABCD 是矩形,A ZB _______ Z D, ZC ________ Z A, AB ________ DC. /. ZB+ZC= _________ ° .A又 V ZB = 90° ,思考请同学们拿出准备好的矩形纸片,折一折,观察并思考. 矩形是不是轴对称图形?如果是,那么对称轴有几条? 要点归纳:矩形除了具有平行四边形所有性质,还具有的性质有: 1. 矩形的四个角都是 _____ •矩形的对角线 _________ • 2. 矩形是 ________ 图形,它有 __ 条对称轴. A 几何语言描述: 在矩形ABCD 中,对角线AC 与DB 相交于点0.A ZABC=ZBCD=ZCDA=ZDAB =90° , AC=DB.B二、精讲点拨例1如图,在矩形ABCD 中,E 是BC 上一点,AE=AD, DF 丄AE ,垂足为F.求证:DF=DC.例2如图,将矩形ABCD 沿着直线BD 折叠,使点C 落在C ,处,BC'交AD 于点E, AD=8, AB=4,求ABED 的面积.方法总结:三、变式训练1.如图,在矩形ABCD 中,对角线AC, BD 交于点0,下列说法错误的是(A. AB 〃DCC. AC±BD2.如图,在矩形ABCD 中,AE 丄BD 于E, ZDAE : 度数.四、课堂小结内容 符号语言B. AC=BD D. 0A=0BZBAE=3: 1,求ZBAE 和 ZEAO 的变式2题图矩形的概念 有一个角是直角的平行 四边形叫做矩形矩形的性质 矩形的四个角都是直角. 矩形的对角线相等./ 星级达标★ 1.已知矩形的一条对角线长为10cm,两条对角线的一个交角为120° ,则矩形的短 边长为 ________ cm.★2.矩形的对角线把矩形分成的三角形中全等三角形一共有( )•C. 6对D. 8对 B.矩形的对角线相等 D.有一个角是直角的四边形是矩形★ ★4.如图,在矩形ABCD 中,连接对角线AC, BD.将AABC 沿BC 方向平移,使点B移到点C,得到ADCE. (1)求证:AACD 竺AEDC.(2)试确定△ BDE 的形状,并说明理由.★★5.已知:如图,0是矩形ABCD 对角线的交点,AE 平分ZBAD, ZA0D=120° ,求 ZAE0的度数.★★★6.如图,在矩形ABCD 中,AB=3, AD=4, P 是AD 上不与A, D 重合的一个动点, 过点P 分别作AC 和BD 的垂线,垂足分别为E, F.求PE+PF 的值.我的反思(收获,不足) 分层作业必做(教材智慧学习配套)选做 参考答案精讲点拨例1试题分析:根据矩形的性质AD 〃BC,AE=AD,可以得到ZDEC=ZADE=ZAED,由DF 丄AE 于F,A. 2对B. 4对★3.下列说法错误的是().A.矩形的对角线互相平分 C.矩形的四个角都相等【详解】证明:连接DE.VAD=AE, .*.ZAED = ZADE.在矩形ABCD 中,AD〃BC, ZC=90° .ZADE=ZDEC,ZDEC = ZAED.又TDF丄AE,.•.ZDFE=ZC=90° .VDE=DE,/. ADFE^ADCE (AAS)..・.DF=DC.例2试题分析:首先根据矩形的性质可得出AD〃BC,即Z2=Z3,然后根据折叠知Z1=Z2, C,D=CD、BC' =BC,可得到Z1=Z3,进而得出BE=DE,设BE=DE=x,则EC' =8-x,利用勾股定理求出x的值,代入面积公式即可求出ABED的面积.详解:•••四边形ABCD是矩形,.・.AD〃BC,即Z2=Z3,由折叠知,Z1=Z2, C‘ D=CD=4、BC, =BC=8,3,即DE=BE,BE=DE=x,则EC' =8n,DEC'中,DC' '+EC' 2=DE242+(8^C)2=X2解得:x=5,ADE的长为5.ABED 的面积=丄DEX AB =丄X5X4=10.2 2变式训练1•试题分析:根据矩形的定义和性质分析判断即可.详解:矩形的性质有①矩形的两组对边分别平行且相等;②矩形的四个角都是直角;③矩形的两条对角线互相平分且相等.所以选项A, B, D正确,C错误.故选C..-.Z1=Z 设在RtA2•试题分析:根据矩形性质得出心血,。

矩形的性质与判定导学案

矩形的性质与判定导学案

矩形的性质与判定第一课时导学案1、 自主学习矩形的定义:有一个角是..... 的平行四边形,叫做矩形。

2、合作探究你能证明以下性质的正确性⑴矩形的四个角都是直角 ⑵矩形的对角线相等(3)用上面的性质解释生活中的问题(1)投圈游戏,三位学生正在做投圈游戏,他们分别站在一个直角三角形的三个顶点处,目标物放在斜边的中点处,这样的队形对每个人公平吗?为什么?归纳:“直角三角形斜边上的中线等于 .(2)思考:刚才探究的直角三角形的性质逆命题正确吗?为什么?矩形的性质边角对角线对称性具有平行四边形的所有性质平行四边形不具有的特殊性质3.巩固练习1、矩形具有而一般平行四边形不具有的性质是( )A.对角相等B.对边相等C.对角线相等D.对角线互相平分 2.矩形是面积的60,一边长为5,则它的一条对角线长等于 。

3、下列叙述错误的是( )A.平行四边形的对角线互相平分。

B.平行四边形的四个内角相等。

C.矩形的对角线相等。

D.有一个角时90º的平行四边形是矩形 4、若一个直角三角形的两条直角边分别为5和12,则斜边上的中线等于 . 5.矩形ABCD 的对角线相交于O ,如果ABC ∆的周长比AOB ∆的大10cm ,则AD 的长( ) A 、5cmB 、7.5cmC 、10cmD 、12.5cm6、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形 7、如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AB=4cm ,求此矩形的面积。

8.如图,矩形ABCD 中,ABCD EB EF EB EF ,,=⊥周长为22cm ,CE=3cm ,求:DE 的长。

9. 如图,矩形ABCD 中,DE=AB ,DE CF ⊥,求证:EF=EB 。

第二课时导学案任务三:自主学习:1、矩形有哪些判定方法?结合图形说出它们的几何语言。

① ② ③2、练习:下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形;( ) (2)有四个角是直角的四边形是矩形;( ) (3)四个角都相等的四边形是矩形;( ) (4)对角线相等的四边形是矩形;( ) (5)对角线相等且互相垂直的四边形是矩形;( ) (6)对角线互相平分且相等的四边形是矩形;( ) (7)对角线相等,且有一个角是直角的四边形是矩形; ( ) (8)一组邻边垂直,一组对边平行且相等的四边形是矩形;( ) (9)两组对边分别平行,且对角线相等的四边形是矩形. ( )合作研究:3、已知:如图,□ABCD 的四个内角的平分线分别相交于点E 、F 、G 、H .求证:四边形EFGH 是矩形.HGFEDC BA4. 如图,已知在四边形ABCD 中,AC DB 交于O ,E 、F 、G 、H 分别是四边的中点,求证:四边形EFGH 是矩形.5、 矩形ABCD 中,M 是BC 的中点,MA ⊥MD ,若矩形的周长为48cm,则矩形的面积是多少?HG OFEDCBADBCM6.如图,矩形ABCD 中,对角线AC 、BD 相交于O ,BD AE ⊥,垂足为E ,已知AB=3,AD=4,求AEO ∆的面积。

人教八年级下册数学-矩形的性质导学案

人教八年级下册数学-矩形的性质导学案

18.2 特殊的平行四边形杭信一中 何逸冬 18.2.1 矩形第1课时 矩形的性质学习目标:1、记忆矩形的定义;2、能结合图形说出矩形的性质; 重难点:利用矩形的性质解决一些简单的实际问题。

学习过程一、看课本回答下列问题。

1、 叫做矩形。

矩形是 的平行四边形。

2、从矩形的定义中可以发现:两层意义1 , 2 二、探究矩形的性质1、从矩形的意义可以探究矩形具有的性质:矩形的对角 (1)矩形具有平行四边形具有的一切性质矩形的对边矩形的对角线互相(2) 矩形是轴对称图形,有( )条对称轴。

(3①如右图:矩形ABCD 的四个角都是 几何语言 : ∵ ABCD 是矩形∴∠A =∠B=∠ =∠ =90②如图,矩形ABCD 的两条对角线AC 、BD 交于O 点,你能猜出AC=BD 吗?证明你的猜想。

CBDA BD证明:由此矩形的对角线 几何语言 : ∵ ABCD 是矩形 ∴对角线 A C =(4)练习:结合图形1我能说出矩形的一些性质: (1)边:AB= ,AD=(2)角:ABC ∠= = = =︒90 (3)对角线:AC= , OA= = = =21 =21(4)在图1中有 对全等的三角形,它们分别是 ;(5)图1中有 个等腰三角形,它们分别是三、探究直角三角形的质如图:矩形ABCD 的一条对角线将它分成 部分, 两条对角线将它分成 部分,有哪几种特殊的三角形?DOC B AOO BAC由此推断:OA 、OB 、OC 、OD 有什么大小关系? = = = = 21 =21从矩形的性质可以得到:直角三角形斜边上的中线等于斜边的 。

几何语言: ∵BO 是斜边AC 上的中线 ∴ B O=四、课后作业1、下列命题是假命题的是( )A 、 矩形的四个角是直角B 、矩形的对边平行且相等C 、矩形的对角互相平分且相等D 、平行四边形的对角线互相平分且相等五、课堂小结六、课后反思【材积累】1、冬天,一层薄薄的白雪,像巨大的轻软的羊毛毯子,覆盖摘摘这广漠的荒2、如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm, (1) 求矩形对角线的长? (2) 求矩形的周长? 解:原上,闪着寒冷的银光。

八年级数学下册19.2.1 矩形的性质导学案 新人教版

八年级数学下册19.2.1 矩形的性质导学案 新人教版

八年级数学下册19.2.1 矩形的性质导学案新人教版19、2、1 矩形矩形的性质第1课时学习目标:1、掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系、2、会初步运用矩形的概念和性质来解决有关问题、一、温故知新:回顾平行四边形有哪些性质?然后填空。

1、平行四边形的__________相等。

表示方法:若四边形ABCD 是平行四边形,则___________;2、平行四边形的__________相等。

表示方法:若四边形ABCD 是平行四边形,则___________;3、平行四边形的对角线________、表示方法:在□ ABCD 中,AC与BD相交于O,则______________4、平行四边形的对称性:平行四边形是对称图形,而不是____对称图形,对角线的交点是平行四边形的_________、二、学习新知:自学P94-95页。

1、(1)观察手中的四根木棒拼成的平行四边形,看每个内角是什么角?(钝角、直角、锐角)(2)试着改变平行四边形的形状,使一个内角为90度,这时这个平行四边形就是形。

(3)通过操作得出概念、有一个角是角的四边形叫做矩形、矩形是生活中非常常见的图形,你能举出一些例子来吗?2、当平行四边形一个内角为90度时,其他三个内角分别为度,因此,矩形的每个内角都为度。

3、如图:在矩形ABCD中,作出它的两条对角线,并测量两条对角线的长度,你有什么发现?请证明你的结论。

已知:求证:证明:4、矩形是特殊的平行四边形,除了具有平行四边形的所有性质外,还具有哪些性质呢?因此矩形具有如下性质:①边: ②角: ③对角线:5、观察下图:根据矩形对角线的性质完成下列各题,你能得出什么结论?OA==OB==AC=因此:在Rt△ABC中,OB是斜边AC上的中线,OB= AC,在Rt△ABD中,OA是斜边BD上的中线,OA=BD(1)结论:直角三角形斜边上的中线等于斜边的(2)上面结论的逆命题是:是否正确?请给予证明。

矩形的性质导学案

矩形的性质导学案

_ A
D _ O _ E _
B _
C _
(四)总结 (五)作业
学生总结本节课所学知识, 并说出体会与收获。 P53 页第 矩形 》导学案 1
课题 矩形的性质 知能目标 教 学 目 标 授课教师 郭德兴 课型 预习展示 时间 2014、4 1、了解矩形的定义和矩形与平行四边形之间的联系,找出矩形的性质; 2、发现直角三角形斜边上的中线等于斜边的一半,并能熟练运用矩形的性质。 1、通过图形的变化,让学生经历观察、思考、合作、探究等数学活动; 2、通过学习让学生理解、掌握矩形的性质; 3、以多方位,多角度刺激学生参与课堂,运用知识解决问题。 1、 通过亲身体验,理解并掌握知识,开拓学生的视野,提高生活实践能力; 2、让学生在自主探究中学到方法,学会合作,学会倾听,在解决问题的过程 中体验成功。体会化归、建模、归纳等数学思想。 矩形定义及其性质的发现过程。. 矩形的性质在解决问题中的应用。 小组合作探究活动 自主学习活动内容提要 让学生从变化的平行四边形中体会矩形,发现平行 学 生 通 过 探 究 平 行 四 边 形 的 变 四边形与矩形之间的联系, 并知道 “什么是矩形?” 形,归纳出矩形的定义。 活动(一) :请同学们画出一个矩形,在小组内讨论 交流,结合图形探究出矩形的性质。 矩形的性质: (猜想并证明) 矩形的性质: (1)矩形是特殊的平行四边形,它 具备平行四边形的一切性质; (2)矩形四个角都是直角; (3)矩形对角线相等; (4)矩形既是轴对称图形又是中 心对称图形。 直角三角形的一个性质: 直角三角形斜边上的中线等于 斜边的一半。 通过拆分和添补把 不规则 图形化成规则图形,就可以寻出 解决问题的方案,进一步强化了 转化和建立模型的数学思想。
(三) 课 堂 自 学 与 检 测

课题:18.2.1矩形导学案__(第1课时)

课题:18.2.1矩形导学案__(第1课时)

18.2.1矩形的性质学习目标: 1.掌握矩形的概念和性质,2.会初步运用矩形的概念和性质来解决有关问题.学习过程:一、知识回顾1、平行四边形的定义:两组对边分别的四边形是平行四边形。

2、.平行四边形具有下列性质:边 _________________________________________角平行四边形 ______________对角线______________二、合作探究探究一矩形性质如图,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?实际操作,回答问题。

1、图1的平行四边形变到图2的形;2、在变化过程中,平行四边形的边长发生变化吗?3、在变化过程中,平行四边形的内角发生了什么变化?4、在变化过程中,平行四边形的对角线发生了什么变化?5、归纳矩形的性质边:;角:。

对角线:。

D6、证一证(1)矩形的四个角都是直角已知: 如图(图形画在下面) 求证: 证明:(2)矩形的对角线相等已知: 如图(图形画在下面) 求证: 证明:7、比一比,知关系探究二 直角三角形性质如图1所示,在矩形ABCD 中,AC,BD 相交于点O.根据矩形的性质,你会知道, (1).AO= = = = AC= BD.(2).△ABC 是 △,在△ABC 中BO 是AC 的 线。

(3).直角三角形有什么新的性质?在直角三角形中斜边的 线等于斜边的 。

三、新知应用在图2中矩形ABCD 的两条对角线相交于点O , ∠AOB=060,AB=4cm,求矩形的对角线的长.四、达标检测1、矩形的两边长分别为3和4,则矩形的对角线长为2、在Rt ABC 中,两条直角边长分别为6和8,则斜边的中线长为3、直角三角形中一条直角边为5,斜边上的中线为 6.5,则这个三角形的面积为 。

4、矩形具有而平行四边形不具有的性质是( )A.对边相等B.对角相等C.对角互补D.对角线平分 5、如图,在矩形ABCD 中,找出相等的线段与相等的角。

新人教版八年级数学下册第1课时 矩形的性质(导学案)

新人教版八年级数学下册第1课时 矩形的性质(导学案)

18.2 特殊的平行四边形18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例1中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中线长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm .4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中点,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°,∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO, ∴BE=CF.。

最新人教版八年级数学下册 第1课时 矩形的性质(导学案)

最新人教版八年级数学下册 第1课时 矩形的性质(导学案)

18.2 特殊的平行四边形18.2.1矩形第1课时矩形的性质一、新课导入1.导入课题演示平行四边形方框,使方框相邻两边成直角时,让学生尝试说出此时四边形的名称,并板书课题.2.学习目标(1)理解矩形的意义,知道矩形与平行四边形的区别与联系.(2)掌握矩形的性质及其推论,会进行有关的计算与证明.3.学习重、难点重点:矩形的性质及其推论.难点:矩形性质的运用.二、分层学习1.自学指导(1)自学内容:P52内容.(2)自学时间:8分钟.(3)自学方法:观看平行四边形方框改变成有一个角是直角时,边的关系是否发生改变.(4)自学参考提纲:①矩形是平行四边形吗?它具有平行四边形的性质吗?②如图,四边形ABCD是矩形,那么:AD∥BC且AD=BC,AB∥CD且AB=CD,∠D=∠B=90°,∵∠A+∠B=180°,∴∠A=∠C=∠D,OA=OC,OB=OD.③矩形还具有哪些一般平行四边形不一定具有的性质呢?结合上图进行论证归纳出来.对于四个角来说有四个角都是直角.对于对角线来说有对角线相等.2.自学:结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:了解学生完成参考提纲时存在的困难问题.②差异指导:引导学生通过平行四边形性质及三角形全等知识探究矩形的特殊性质.(2)生助生:学生之间相互交流和帮助.4.强化(1)矩形具有一般平行四边形的性质.(2)矩形具有的特殊性质.1.自学指导(1)自学内容:P53练习以上的内容.(2)自学时间:6分钟.(3)自学方法:认真阅读“思考”文字内容,对照图形思考BO与AC之间存在什么关系.(4)自学参考提纲:①如教材中图18.2-3,因为矩形ABCD是平行四边形,所以AO=OC,即O是AC的中点,BO是△ABC的边AC上的中线.②因为∠ABC=90°,BO是AC的中线,BO=12BD,AC=BD,所以BO=12AC;也就是说直角三角形中,斜边上的中线等于斜边的一半.③归纳:直角三角形斜边上的中线等于斜边的一半.④例1中OA=OB运用了对角线相等和对角线互相平分性质.2.自学:学生结合自学参考提纲进行自主学习.3.助学(1)师助生:①明了学情:关注学生找BO与AC关系的思考过程.②差异指导:指导学生将结论用文字表达出来.(2)生助生:学生相互交流帮助.4.强化:直角三角形的性质:(1)两锐角互余.(2)两直角边的平方和等于斜边的平方.(3)在直角三角形中,30°角所对的直角边等于斜边的一半.(4)直角三角形斜边上的中线等于斜边的一半.三、评价1.学生的自我评价(围绕三维目标):各小组学生代表介绍自己的学习方法、收获和困惑之处.2.教师对学生的评价:(1)表现性评价:点评学生在课堂学习中的态度、方法、收获及不足.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思).在学习本节课之前,学生对矩形的基本知识有一定的了解,而且有前一节探究平行四边形有关知识作为基础,学生已具有一定的独立思考和探究的能力,所以本节课主要在学生已有的认知水平上,在实际问题情景中,由学生自主探索发现矩形的性质定理,使学生经历实践、推理、交流等数学活动过程,亲身体验数学思想方法,促进学生能力的提高.(时间:12分钟满分:100分)一、基础巩固(共60分)1.(15分)矩形具有而一般平行四边形不一定具有的性质是(C)A.对边相等B.对角相等C.对角互补D.对角线互相平分2.(15分)直角三角形中,两直角边长分别为12和5,则斜边的中线长是(D)A.26B.13C.8.5D.6.53.(15分)矩形ABCD对角线AC,BD相交于点O,AB=5cm,BC=12cm,则△ABO的周长等于18cm .4.(15分)如图,在Rt△ABC中,∠A=30°,∠ACB=90°.点D是AB边的中点.试判断△BCD的形状,并说明理由.解:△BCD为等边三角形.∵∠ACB=90°,点D是AB的中点,∴CD=12AB=BD.在Rt△ABC中,∠A=30°,∴∠B=90°-∠A=60°.在△CBD中,CD=BD,∠B=60°,∴△BCD为等边三角形.二、综合应用(20分)5.矩形的两条对角线的夹角为60°,较短的边长为4.5cm,求对角线长.解:对角线长=2×4.5=9(cm).三、拓展延伸(20分)6.如图,在矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F,求证:BE=CF.证明:∵AC、BD为矩形ABCD的对角线,∴OB=OC.又∵∠BEO=∠CFO=90°,∠EOB=∠FOC.∴Rt△EBO≌Rt△FCO, ∴BE=CF.。

1.2 第1课时 矩形的性质 导学案

1.2 第1课时 矩形的性质 导学案

1.2矩形的性质与判定第1课时矩形的性质【学习目标】1.了解矩形的有关概念,理解并掌握矩形的有关性质.2.经历探索矩形的概念和性质的过程,发展学生合情推理意识;掌握几何思维方法.3.培养严谨的推理能力以及自主合作精神;体会逻辑推理的思维价值.【学习重点】掌握矩形的性质,并学会应用.【学习难点】理解矩形的特殊性质.情景导入生成问题1.菱形的定义是什么?答:一组邻边相等的平行四边形叫做菱形.2.菱形的四条边都相等,菱形的对角线互相垂直.自学互研生成能力知识模块一探索矩形的性质先阅读教材P11-12页的内容,然后完成下列的问题。

1.矩形的定义是什么?答:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).2.矩形具有一般平行四边形的所有性质吗?答:因为矩形是特殊的平行四边形,所以矩形具有一般平行四边形的所有性质.1.拿一个可以活动的平行四边形教具,轻轻拉动一个点并观察,它还是一个平行四边形吗?为什么?(演示拉动过程如图)2.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形.归纳结论:矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).3.学生观察教师的教具,研究其变化情况后,可以发现:矩形是平行四边形的特例,属于平行四边形,因此它具有平行四边形所有性质.思考:矩形还具有哪些特殊的性质?为什么?归纳结论:矩形性质1:矩形的四个角都是直角;矩形性质2:矩形的对角线相等.4.矩形是轴对称图形吗?如果是,它有几条对称轴?答:矩形是轴对称图形,有两条对称轴.5.如图,在矩形ABCD 中,AC 、BD 相交于点O ,探究AO 与BD 的数量关系.归纳结论:直角三角形斜边上的中线等于斜边的一半.知识模块二 矩形性质的应用解答下列各题:1.平行四边形、矩形、菱形都具有的性质是( B )A .对角线相等B .对角线互相平行C .对角线平分一组对角D .对角线互相垂直2.如图,在Rt △ABC 中,∠ACB =90°,AB =10,CD 是AB 边上的中线,则CD 的长是( C )A .20B .10C .5D .52典例讲解:已知:如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm ,求矩形对角线的长. 解:∵四边形ABCD 是矩形.∴AC 与BD 相等且互相平分.∴OA =OB .又∠AOB =60°,∴△OAB 是等边三角形.∴矩形的对角线长AC =BD =2OA =2×4=8cm .对应练习:已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B =∠AFD.又AD=AE,∴△ABE≌△DF A(AAS).∴AF=BE.∴EF=EC.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一探索矩形的性质知识模块二矩形性质的应用检测反馈达成目标1.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF =__3__cm.2.若矩形的一个角的平分线分一边为4cm和3cm的两部分,则矩形的周长为22或20cm.3.已知:如图,矩形ABCD中,AB长8cm,对角线比AD长4cm.求AD的长及点A到BD的距离AE 的长.解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x2+82=(x+4)2,解得x=6,则AD=6cm;利用面积公式,可得到两直角边、斜边及斜边上的高有一个基本关系式:AE·DB=AD·AB,解得AE=4.8cm.课后反思查漏补缺1.收获:________________________________________________________________________ 2.存在困惑:________________________________________________________________________。

矩形及其性质导学案

矩形及其性质导学案

八年级下册第五章 5.1矩形第1课时导学案主备人:干斌鹏一、教学目标:1.掌握矩形的概念;2. 掌握矩形的性质定理“矩形的四个角都是直角”和“矩形的对角线相等”;3.探索矩形的对称性。

二、教学重点:矩形的性质教学难点:矩形的对称性的推理三、教学过程:(一)预习领航1.用长分别为1cm,1cm,2cm,2cm的木条首尾相接摆成一个平行四边形:(1)能摆成_________个不同的平行四边形。

(2)在这些平行四边形中,是否存在面积最大的一个平行四边形?如果存在,请画出图形。

(3)这个面积最大的平行四边形的内角有什么特点?2.3.在矩形ABCD中,连结对角线AC,BD(1)测量AC,BD的长度,你发现:(2)证明你的发现。

4.由2和3两小题你能发现矩形除具有一般平行四边形的一切性质外,还具有一些特殊(一般平行四边形没有)的性质,请完成下表。

从右图可以看到,矩形的对角线,并把矩形划分成四个。

直角三角形和等腰三角形问题5. 例1:已知:如图,在矩形ABCD 中对角线AC 、BD 相交于点O ,∠OAD=30°,AB=4cm 。

(1)判断△AOB 的形状; (2)求矩形对角线的长;(二)练习与拓展1.在矩形ABCD 中,对角线AC 与BD 相交于点O,已知AB=6,BC=8,求AC= ,BD= ,矩形ABCD 的周长是 ,面积是 。

2.如图,在矩形ABCD 中, E 、F 分别在AB 、CD 的中点, 求证:四边形AEFD 是矩形。

3.已知:如图,过矩形ABCD 的顶点作CE//BD ,交AB 的延长线于E 。

求证:∠CAE=∠CEA4.如图,将矩形纸片ABCD 沿对角线BD 对折,使点A 落在点E 处,BE 交CD 于点F 。

已知∠ABD=30度.(1)求∠FDE 的度数;(2)求证:EF=FC5.已知:如图,在矩形ABCD 中,E 是BC 上一点,且AE =BD,DF ⊥AE 于点F.求证:CE =FE.D。

《矩形的性质》第1课时导学案(二)

《矩形的性质》第1课时导学案(二)

初中数学学科导学案案例(二) 班级小组姓名矩形的性质定理1:_____________________________________⑵已知:如图,矩形ABCD中,AC、BD交于点O.求证:AC=BD矩形的性质定理2:_____________________________________ 通过观察猜想验证,已经掌握了矩形的性质。

二.微视频学习1.洋葱视频分享--认识矩形(4分52秒)2.洋葱视频分享—发现矩形的性质(4分24秒)3.洋葱视频分享—证明矩形的性质(3分54秒)【达标检测】1.判断(1)平行四边形就是矩形。

( )(2)矩形是平行四边形。

( )(3)矩形是轴对称图形不是中心对称图形( )(4)有一个内角是90°的四边形是矩形( )(5)矩形具有而平行四边形不具有的性质()(A)内角和是360°(B)对角相等(C)对边平行且相等(D)对角线相等2.矩形ABCD的周长是56cm,对角线AC与BD相交于点O,△OAB与△ OBC的周长差是4cm,则矩形ABCD的对角线长是 .3.如图,在矩形ABCD中,BE⊥AC于E,若AB=3, BC=4,试求出BE的长.4.如图,矩形ABCD的两条对角线相交于点O,∠AOD=120°,(1)判断△AOB的形状。

(2) 若AB=4cm,求矩形对角线长。

(3)若AE是∠BAD的角平分线, 求∠AEO的度数.请同学们继续思考:1.△AOD是什么三角形?在矩形中还有等腰三角形吗?有多少个?有几对全等等腰的三角形呢?矩形的四个角为直角,有几个直角三角形呢?因此,我们在解决矩形的边角对角线问题时,通常把它转化为和。

这就是我们数学中经常用到的的数学思想。

2、矩形的两条对角线将矩形分成四个等腰三角形,在第一题中,△OAB是什么三角形?大家想一想,矩形中增加什么条件后,会出现等边三角形呢?【反思总结】今天,我们与老朋友-矩形重逢。

又得知了他的一些信息: 矩形是特殊的,所以,它具有。

《第1课时 矩形的性质》导学案 2022年最新word版 (3)

《第1课时 矩形的性质》导学案 2022年最新word版 (3)

22.4 矩形第1课时 矩形的性质学习目标:1、记忆矩形的定义;2、能结合图形说出矩形的性质; 重难点:利用矩形的性质解决一些简单的实际问题。

学习过程一、答复以下问题。

1、 叫做矩形。

矩形是 的平行四边形。

2、从矩形的定义中可以发现:两层意义1 , 2 二、探究矩形的性质1、从矩形的意义可以探究矩形具有的性质:矩形的对角〔1〕矩形具有平行四边形具有的一切性质 矩形的对边矩形的对角线互相〔2〕矩形是轴对称图形,有〔 〕条对称轴。

〔3〕矩形与平行四边形比较又有其特殊的性质〔探究、归纳〕:①如右图:矩形ABCD 的四个角都是几何语言 : ∵ ABCD 是矩形 ∴∠A =∠B=∠ =∠ =90②如图,矩形ABCD 的两条对角线AC 、BD 交于O 点,你能猜出AC=BD 吗?证明你的猜想。

证明:由此矩形的对角线 几何语言 : ∵ ABCD 是矩形∴对角线 A C =〔4〕练习:结合图形1我能说出矩形的一些性质: 〔1〕边:AB= ,AD= 〔2〕角:= = = = 〔3〕对角线:AC= ,OA= = = = =〔4〕在图1中有 对全等的三角形,它们分别是 ; 〔5〕图1中有 个等腰三角形,它们分别是CD D CA B D三、课后作业1、以下命题是假命题的是〔 〕A 、 矩形的四个角是直角B 、矩形的对边平行且相等C 、矩形的对角线互相平分且相等D 、平行四边形的对角线互相平分且相等五、课堂小结六、课后反思第12章乘法公式与因式分解12.1 平方差公式一、导入激学灰太狼开了租地公司,一天他把一边为a 米的正方形土地租给慢羊羊种植。

有一年狡猾的他对慢羊羊说:“我把这块地的一边减少5米,另一边增加5米,再继续租给你,你也没吃亏,你看如何?〞慢羊羊一听觉得没有吃亏,就容许了。

回到羊村就把这件事对喜羊羊他们讲了,大家一听,都说道:“村长,您吃亏了!〞慢羊羊村长很是吃惊…同学们,你能告诉慢羊羊这是为什么吗?二、导标引学 学习目标:1、理解平方差公式的本质,会推导平方差公式,了解平方差公式的几何意义,并能运用公式进行简单的计算。

18.2.1 矩形1 第1课时矩形的性质 导学案

18.2.1 矩形1 第1课时矩形的性质 导学案

18.2 特殊的平行四边形18.2.1 矩形第1课时 矩形的性质学习目标:1、记忆矩形的定义;2、能结合图形说出矩形的性质;重难点:利用矩形的性质解决一些简单的实际问题。

学习过程一、看课本回答下列问题。

1、 叫做矩形。

矩形是 的平行四边形。

2、从矩形的定义中可以发现:两层意义1 , 2二、探究矩形的性质1、从矩形的意义可以探究矩形具有的性质: 矩形的对角(1)矩形具有平行四边形具有的一切性质 矩形的对边 矩形的对角线互相(2) 矩形是轴对称图形,有( )条对称轴。

(3)矩形与平行四边形比较又有其特殊的性质(探究、归纳):①如右图:矩形ABCD 的四个角都是几何语言 :∵ ABCD 是矩形 ∴∠A =∠B =∠ =∠ =90②如图,矩形ABCD 的两条对角线AC 、BD 交于O 点,你能猜出AC =BD 吗?证明你的猜想。

证明:由此矩形的对角线 几何语言 : ∵ ABCD 是矩形∴对角线 A C =(4)练习:结合图形1我能说出矩形的一些性质:(1)边:AB = ,AD =(2)角:ABC ∠= = = =︒90(3)对角线:AC = ,OA = = = =21 =21 D D O C B A A C B D(4)在图1中有 对全等的三角形,它们分别是 ;(5)图1中有 个等腰三角形,它们分别是三、探究直角三角形的性质如图:矩形ABCD 的一条对角线将它分成 部分, 两条对角线将它分成 部分,有哪几种特殊的三角形?由此推断:OA 、OB 、OC 、OD 有什么大小关系? = = = = 21 =21从矩形的性质可以得到:直角三角形斜边上的中线等于斜边的 。

几何语言: ∵BO 是斜边AC 上的中线 ∴ B O =四、课后作业1、下列命题是假命题的是( )A 、 矩形的四个角是直角B 、矩形的对边平行且相等C 、矩形的对角线互相平分且相等D 、平行四边形的对角线互相平分且相等五、课堂小结六、课后反思CA 2、如图,矩形ABCD 的两条对角线相交于点O ,∠AOB =60°,AB =4cm , (1) 求矩形对角线的长?(2) 求矩形的周长? 解:。

九年级数学上册 1.2 矩形的性质(第1课时)导学案2 (新版)北师大版-(新版)北师大版初中九年级

九年级数学上册 1.2 矩形的性质(第1课时)导学案2 (新版)北师大版-(新版)北师大版初中九年级

矩形的性质1.掌握矩形的的定义,理解矩形与平行四边形的关系.2.理解并掌握矩形的性质定理;会用矩形的性质定理进行推导证明;3.会初步运用矩形的定义、性质来解决有关问题,进一步培养学生的分析能力.自学指导:阅读课本P11~14,完成下列问题.一个角是直角的平行四边形叫做矩形.五星红旗、毛巾.特殊的平行四边形,具有平行四边形的一切性质.四个角都是直角.5.矩形的对角线相等.一半.知识探究1.在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.(1)随着∠α的变化,两条对角线的长度分别是怎样变化的?(2)当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?操作、思考、交流、归纳后得到矩形的性质.矩形性质1 矩形的四个角都是直角.矩形性质2 矩形的对角线相等.2.如图,在矩形ABCD中,AC、BD相交于点O,OB与AC是什么关系?解:由矩形性质2得:AC=BD ,再由平行四边形性质得:AO=OC ,BO=OD ,所以AO=BO=CO=DO=12AC=12BD. 因此可得直角三角形的一个性质:直角三角形斜边上的中线等于斜边的一半.3.请同学们拿出准备好的矩形纸片,折一折,观察并思考。

(1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?解:矩形是轴对称图形,它有两条对称轴.自学反馈吗?如果是的话它有几条对称轴?2.请用所学的知识诊断下面的语句,若正确请在括号里打“√”,若“有病”请开药方:(1).矩形是特殊的平行四边形,特殊之处就是有一个角是直角.( )(2).平行四边形是矩形.( )(3).平行四边形具有的性质(如平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分)矩形也具有.( )△ABC 是Rt △,∠ABC=90°,BD 是斜边AC 上的中线.若BD=3㎝,则AC =_____㎝;活动1 小组讨论例1 如图,在矩形ABCD 中,两条对角线相交于点O ,∠AOD=120°,AB=2.5cm ,求矩形对角线的长.证明:∵四边形ABCD 是矩形,∴ AC=BD(矩形的对角线相等),OA=OC=21AC ,OB=OD=21BD.∴OA=OD.∵∠AOD=120°,∴∠ODA=∠OAD=21 (180°-120°)= 30°. 又∵∠DAB=90°(矩形的四个角都是直角),∴BD=2AB=2×2.5=5.活动2 跟踪训练1.矩形具有一般平行四边形不具有的性质是( )A .对边相互平行B .对角线相等C .对角线相互平分D .对角相等°,那么对角线与矩形短边的长度之比为( )∶2 ∶1∶∶13.如图,在矩形ABCD 中,AB <BC ,AC ,BD 相交于点O ,则图中等腰三角形的个数是( )A.8B.6C.4△ABC 中,∠ACB =90°,D 、E 为AB 、AC 的中点.则下列结论中错误的是( )A.CD =ADB.∠B =∠BCDC.∠AED =90°D.AC =2DEAB C D E5.在直角三角形中,两条直角边的长分别为12和5,则斜边上中线长为.cm ,且两条对角线的一个夹角为60°,则矩形的宽为cm .7.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则△AEF 的周长=cm .8.如图,矩形ABCD 中,E 为AD 上一点,EF ⊥CE 交AB 于F ,若DE =2,矩形的周长为16,且CE =EF ,则AE =_______. AB C D E F9.在矩形ABCD 中,点E 是BC 上一点,AE=AD ,DF ⊥AE ,垂足为F.求证:DF=DC .课堂小结1.矩形的定义及性质.2.矩形是角特殊的平行四边形,决定了矩形的四个角都是直角,对角线相等.3.直角三角形斜边上的中线等于斜边的一半.【预习导学】自学反馈1.解:既是轴对称图形,也是中心对称图形,对称轴有两条.2.(1)√ (2)× (3)√【合作探究】活动2 跟踪训练9.解:连接DE .∵AD=AE ,∴∠AED=∠ADE .∵矩形ABCD ,∴AD ∥BC ,∠C=90°.∴∠ADE=∠DEC ,∴∠DEC=∠AED .又∵DF ⊥AE ,∴∠DFE=∠C=90°.∵DE=DE,∴△DFE≌△DCE.∴DF=DC.。

第一课时 矩形的性质导学案

第一课时  矩形的性质导学案

黄冈教育新初三预习第一课时矩形的性质【学习目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.2.能运用矩形的性质进行简单的证明和计算.3.掌握直角三角形斜边上的中线等于斜边的一半的性质.【主动探究】试一试如图16.2.1,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,你会发现什么?图16.2.1概括定义:有一个角是直角的平行四边形是矩形.矩形是特殊的,所以平行四边形所有的性质,矩形都具有.折一折矩形是轴对称图形吗?概括对称性:矩形既是图形,也是图形.边:矩形的两组对边 .角:矩形的四个内角 .对角线:矩形的对角线 .例题讲解例1、已知:如图,矩形ABCD中,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长..例2、已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.86,对例3、如图,矩形ABCD被两条对角线分成四个小三角形,如果四个小三角形的周长的和是cm 13,那么矩形的周长是多少?角线长是cm【当堂训练】1.在矩形ABCD中,对角线AC,BD相交于点O,若对角线AC=10cm,•边BC=•8cm,•则△ABO的周长为________.2.矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm3.如图,在矩形ABCD中,E是边AD上的一点.试说明△BCE的面积与矩形ABCD的面积之间的关系是.4.如图,矩形ABCD的两条对角线交于点O,且∠AOD=120°,试说明 AC=2AB5.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠EAO的度数.【回学反馈】1.利用矩形的对角线相等且互相平分这一性质,说明直角三角形斜边上的中线等于斜边的一半.2.如图,在矩形ABCD中,已知AB=8cm,BC=10cm,折叠矩形的一边AD,使点D落在BC边的中点F处,折痕为AE,求CE的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2矩形的性质与判定第一课时导学案
一、学习目标:
1)知道并能用文字和符号两种形式表达矩形的定义;
2)能通过观察和推理得到矩形的性质;
3)能利用矩形的性质进行相关计算和证明;
二、温故知新:
1.菱形有哪些性质?可以归纳为哪几方面?结合下面图形写出菱形的性质的文字表达。

1),
2),
3),
4),
5),
2.导语:前面我们已经学习了菱形的性质。

它是一种特殊的平行四边形,矩形也是一种常见的特殊平行四边形,我们小学常说这是长方形,那么矩形是否就是我们印象里的长方形呢?今天就让我们一起来认识矩形吧!
三、新课探究:
1.认识矩形:
阅读课本11页前两段内容,记住矩形定义然后默写,并回答问题:
1)矩形定义: 叫做矩形;
2)举出至少两个生活中的举行的例子:, ,
2.探究矩形特殊性质:
1)既然矩形是平行四边形,那么它具有平行四边形的哪些性质?填写下表:
2)联系猜
想:
(1)测量右
图或身边
的矩形(如书本,窗子等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果;
AB=,AD=,AC=,DB=,
∠CAB=,∠DAC=
(2)根据测量的结果,猜想结论。

当矩形的大小不断变化时,发现的结论是否仍然成立?
(3)通过测量、观察,你能得到矩形的哪些特殊性质?
3)证明推导:
已知:如图,四边形ABCD是矩形,∠ABC=90°对角线AC与DB相交于点O。

求证:(1)∠ABC=∠BCD=∠CDA=∠DAB=90°(2) AC=BD
证明:
4)准备好一张矩形纸片,折一折,观察并思考。

①矩形是不是中心对称图形? 如果是,那么对称中心是什么?
②矩形是不是轴对称图形?如果是,那么对称轴有几条?
5)反思归纳:
矩形有哪些性质?可以归纳为哪几方面?结合上面图形写出矩形的性质的文字表达。

(1),
(2),
(3),
(4),
(5),
6)巩固理解:
(1)矩形具有而一般平行四边形不具有的性质是 ( )
A.对角相等
B.对边相等
C.对角线相等
D.对角线互相平分
(2)下列说法错误的是().
A.矩形的对角线互相平分
B. 矩形的对角线相等。

C.有一个角是直角的四边形是矩形
D. 有一个角是直角的平行四边形叫做矩形
7)例1:如图,在矩形ABCD中,两条对角线相交于点O,∠AOD=120°,AB=2.5cm,求矩形对角线的长。

8)变式巩固:
已知矩形ABCD的一条对角线AC长为10cm,两条对角线的一个交角∠AOD=120°,求矩形的边长?
3.探究直角三角形的性质
1)在矩形ABCD中能找到几个直角三角形?
2)阅读课本12页议一议内容,并完成定理的证明。

3)归纳:
定理:直角三角形
4)理解巩固:
已知△ABC是Rt△,∠ABC=90°,BD是斜边AC上的中线.
(1)若BD=3㎝,则AC=_____㎝;
(2)若∠C=30°,AB=5㎝,则AC=_____㎝,BD=_____㎝.
三、小结与归纳:
1)菱形、矩形、平行四边形它们之间有什么关系?能否用一个图形来表示它们之间的从属关系?
2)结合以往所学,直角三角形共具有哪些性质?可以怎样归纳?结合图形用符号表达式进行归纳:。

相关文档
最新文档