七年级数学上册 第一章 基本的几何图形 1.2《几何图形》同步练习2 青岛版
(典型题)青岛版七年级上册数学第1章 基本的几何图形含答案
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、用M、N、P、Q代表线段、正三角形、正方形和圆四种图形中的一种图形,如图是由M、N、P、Q中的两种图形组合而成的(组合用“”表示):那么,PQ表示的图形只可能是()A. B. C. D.2、将下列选项中的平面图形绕直线l旋转一周,可得到如图所示立体图形()A. B. C. D.3、下列说法正确的是()A.射线和射线是同一条射线B.连接两点的线段叫两点间的距离 C.两点之间,直线最短 D.六边形的对角线一共有9条4、如图,四边形ABCD为正方形,边长为4,点F在AB边上,E为射线AD上一点,正方形ABCD沿直线EF折叠,点A落在G处,已知点G恰好在以AB为直径的圆上,则CG的最小值等于()A.0B.2C.4﹣2D.2 ﹣25、如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心,正方形对角线长为半径画弧,交数轴于点A,则点A表示的数是( )A. B.2 C.1 D.1+6、下列图形属于平面图形的是()A.长方体B.圆锥体C.圆柱体D.圆7、已知A、B两点之间的距离是10cm,C是线段AB上的任意一点,则AC中点与BC中点间的距离是()A.3cmB.4cmC.5cmD.不能计算8、如图,线段CD在线段AB上,且CD=2,若线段AB的长度是一个正整数,则图中以A,B,C,D这四点中任意两点为端点的所有线段长度之和可能是()A.28B.29C.30D.319、如图,需要添一个面折叠后,才能围成一个正方体,下图中黑色小正方形分别补画正确的是()A. B. C. D.10、下列四个图形中,是三棱柱的平面展开图的是()A. B. C.D.11、下列四个图中,每个都是由六个相同的小正方形组成,折叠后能围成正方体的是()A. B. C.D.12、如图是一个正方体的平面展开图,在原正方体中“格1”的对面是()A.格2B.格4C.格5D.格613、把弯曲的河道改直,能够缩短航程,这样做的道理是()A.两点之间,射线最短B.两点之间,线段最短C.两点确定一条直线D.两点之间,直线最短14、用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是()A.①②④B.①②③C.②③④D.①③④15、手电筒发射出去的光线,给我们的形象似()A.线段B.射线C.直线D.折线二、填空题(共10题,共计30分)16、如图是一个正方体的表面展开图,则原正方体中“喜”面所对面上的字是________.17、现有一个长为4cm,宽为3cm的长方形,绕它的一边旋转一周,得到的几何体的体积是________ .18、如图是一个长方体的表面展开图,其中四边形ABCD是正方形,根据图中标注的数据可求得原长方体的体积是________cm3.19、如图所示,在一条笔直公路 p 的两侧,分别有甲、乙两个村庄,现要在公路 p 上建一个汽车站,使汽车站到甲、乙两村的距离之和最小,你认为汽车站应该建在________处(填A 或 B 或 C),理由是________.20、如果一个棱柱共有15条棱,那么它的底面一定是________边形.21、若数轴上,A点对应的数为-5,B点对应的数是7,则A、B两点之间的距离是________.22、甲乙二人在环形跑道上同时同地出发,同向跑步,甲的速度为7米/秒,乙的速度为6.5米/秒,若跑道一周的长为400米,设经过x秒后甲乙两人第一次相遇,则列方程为________.23、如图,从学校到书店最近的路线是①号路线,得出这个结论的依据是:________24、流星划过天空时留下一道明亮的光线,用数学知识解释为________.25、第一行的图形绕虚线转一周,能形成第二行的某个几何体,按要求填空.图1旋转形成________ 图2旋转形成________ 图3旋转形成________ ,图4旋转形成________ ,图5旋转形成________ ,图6旋转形成________三、解答题(共5题,共计25分)26、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?27、(1)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子.注意:添加四个符合要求的正方形,并用阴影表示.(2)先用三角板画∠AOB=60°,∠BOC=45°,然后计算∠AOC的度数.28、如果用一个平面去截一个几何体,如果截面是圆,那么原来的几何体可能是什么?29、如图,AB=18cm,C是线段AB的三等分点,D是线段CB上一点,CD比DB 长4cm,求AD的长.30、如图,已知线段AB,反向延长AB到点C,使AC= AB,D是AC的中点,若CD=2,求AB的长.参考答案一、单选题(共15题,共计45分)1、B2、B3、D4、D5、B6、D7、C8、B9、C10、B12、D13、B14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。
七年级数学上册 第一章 基本的几何图形 1.2《几何图形》习题1(新版)青岛版
《几何图形》习题1、棱柱、棱锥中的相关概念:①棱柱、棱锥中,任何的交线叫做棱,的交线叫做侧棱;②棱柱的叫做棱柱的顶点;③棱锥的叫做棱锥的顶点;④棱柱的侧棱长,棱柱的上、下底面是多边形,直棱柱的侧面都是,棱锥的侧面都是.2、(1)三棱柱有个侧面,上、下两个底面是两个形状一样的.(2)底面是四边形的棱柱有___个面,有___条棱,有___个顶点.3、底面是四边形的棱锥有___个面,有___条棱,有___个顶点.4、连一连:要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
对说得好的幼儿,即使是某一方面,我都抓住教育,提出表扬,并要其他幼儿模仿。
长期坚持,不断训练,幼儿说话胆量也在不断提高。
棱柱圆锥球正方体长方体圆柱5、关于棱柱下列说法正确的是( )这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
青岛版数学七年级上册第一章基本的几何图形分课时习题
1、把一条弯曲的的高速路改为直道,可以缩短路程,其道理用几何知识解释应为( )
A、两点确定一条直线;
B、两点之间,线段最短;
C、垂线段最短;
D、平面内过一点有且只有一条直线与已知直线垂直。
2、若点C为线段AB的中点,则AC== 。
3、下列说法中正确的是( )
A、到线段两个端点距离相等的点叫做线段的中点;
在直线L上任取一点A,截取AB=16 cm,再截取AC=40 cm,求AB的中点D与AC的中点E之间的距离。
6足球呈现的形状是_______,它由_______个面组成.
提高训练题
1.说出下列几何体的名称并将它们分类,且说明理由。
2.下列图形中属于棱柱的有()
(1) (2) (3) (4) (5) (6)
3.下列图形属于柱体的是()
(1)(2)(3)(4)(5)
4.下列图形中是圆柱的是()
A B C D
5.某地板厂要制作一批正六边形形状的地板砖,如图,为了适应市场多样化的需求,要求在地板砖上设计的图案能够把正六边形6等分,请你帮助他们设计符合要求的图案.(至少设计两种).
B、线段中点到线段两个端点的距离相等;
C、线段中点可以有两个;
D、线段的中点有若干个。
提高训练题
1、如图1,AB的长为m,BC的长为n,MN分别是AB,BC的中点,则MN=_____
2、如图所示,已知点C是线段AB的中点,D是AC上任意一点,M、N分别是AD、DB的中点,若AB=16,求MN的长。
思考题
2、有生活中的物体抽象出几何图形,在后面的横线上填上相应的几何体。
足球 圆珠笔 电视机
花盆 漏斗 砖块
纸箱 铁棒
思考题:
青岛版七年级上册数学第1章 基本的几何图形含答案(完美版)
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、如图,已知∠O ,点 P 为其内一定点,分别在∠O 的两边上找点 A 、B ,使△ PAB 周长最小的是()A..B.C.D.2、下列说法中正确的有()①同位角相等. ②凡直角都相等. ③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长. ⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个3、下列说法不正确的是()A.四棱柱是长方体B.八棱柱有10个面C.六棱柱有12个顶点 D.经过棱柱的每个顶点有3条棱4、过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图为()A. B. C. D.5、己知C为线段AB延长线上的一点,且BC=AB,则BC长为AC长的()A. B. C. D.6、下列说法中,正确的是()A.两条射线组成的图形叫做角B.直线l经过点A,那么点A在直线l上 C.把一个角分成两个角的射线叫角的平分线 D.若AB=BC,则点B 是线段AC的中点7、下列结论中,错误的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等 D.等角的补角相等8、下列说法正确的是( )A.线段AB是A,B两点间的距离B.两点间的距离是一个正数,也是一个图形C.在所有连接两点的线中距离最短D.在连接两点的所有线中,最短的一条的长度就是两点间的距离9、下列图形中属于棱柱的有()A.2个B.3个C.4个D.5个10、如图是一个正方体的表面展开图,则图中“加”字所在面的对面所标的字是()A.北B.运C.奥D.京11、从点O引两条射线OA、OB,在OA、OB上分别截取OM=1cm,ON=1cm,则M、N两点间的距离一定()A.小于1cmB.大于1cmC.等于1cmD.有最大值2cm12、如图,把原来弯曲的河道改直,A,B两地间的河道长度变短,这样做的道理是()A.两点确定一条直线B.两点之间线段最短C.两点之间直线最短 D.垂线段最短13、木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线,这是因为()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离14、A,B,C,D四个村庄之间的道路如图,从A去D有以下四条路线可走,其中路程最短的是()A.A→B→C→DB.A→C→DC.A→E→DD.A→B→D15、下列几何体中:正方体,长方体,圆柱,六棱柱,圆锥,球,截面的形状可以为长方形的个数为()A.3个B.4个C.5个D.6个二、填空题(共10题,共计30分)16、已知点与在同一条平行y轴的直线上,,则点Q 的坐标为________.17、下列说法中正确的有________ (把正确的序号填到横线上).①延长直线AB到C;②延长射线OA到C;③延长线段OA到C;④经过两点有且只有一条线段;⑤射线是直线的一半.18、如图是某些几何体的表面展开图,则这些几何体分别是图1:________,图2:________,图3:________.19、在底面直径为2cm,高为3cm的圆柱体侧面上,用一条无弹性的丝带从A 至C按如图所示的圈数缠绕,则丝带的最短长度为________cm.(结果保留π)20、如图,为抄近路践踏草坪是一种不文明的现象,请你用数学知识解释出这一现象的原因________.21、补全解题过程.已知:如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.解:∵AD=6,BD=4,∴AB=AD+________=________.∵点C是线段AB的中点,∴AC=CB=________=________.∴CD=AD﹣________ =________.22、若要使图中的平面展开图折叠成正方体后,相对面上的两个数之和为6,则的值为________.23、在平面直角坐标系xOy中,A(0,2),B(0,6),动点C在直线y=﹣x 上,若以A、B、C三点为顶点的三角形是等腰三角形,则点C的个数为________.24、如图,已知点A、B、C、D在同一直线上,且线段AB=BC=CD=1cm,那么图中所有线段的长度之和是________ cm.25、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是________cm2.三、解答题(共5题,共计25分)26、小名准备制作一个封闭的正方体盒子,他先用5个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,你能在图中的拼接图形上再接一个正方形画出阴影,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子吗?请在下面的图①和图②中画出两种不同的补充方法.27、把一根本条钉在墙上,在只钉了一根钉子的时候,这根木条还可以转动,为什么?如果在这根木条的某个地方再钉上一根钉子.这根木条就不会动了,这是为什么?你能把它画出来吗?28、如图,已知线段AB,①尺规作图:反向延长AB到点C,使AC=AB;②若点M是AC中点,点N是BM中点,MN=3cm,求AB的长.29、如图,已知线段AD=10cm,线段AC=BD=6cm.E、F分别是线段AB、CD的中点,求EF的长.30、如图是一个正方体盒子的展开图,要把﹣6、、﹣1、6、﹣、1这些数字分别填入六个小正方形中,使得按虚线折成的正方体相对面上的两个数互为相反数.参考答案一、单选题(共15题,共计45分)1、D2、D3、A4、B5、D6、B7、B8、D10、D11、D12、B13、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
七年级数学上册 第一章 基本的几何图形 1.2《几何图形》习题2(新版)青岛版
《几何图形》习题1.圆柱的侧面是面,上、下两个底面都是.2.有一个面是曲面的立体图形有(列举出三个).3.三棱柱的侧面有个长方形,上、下两个底面是两个都一样的三角形. 4.下列图形不是立体图形的是( )A.球B.圆柱C.圆锥D.圆5.下列说法正确的是( )A.有六条侧棱的棱柱的底面一定是三角形家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。
我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。
我和家长共同配合,一道训练,幼儿的阅读能力提高很快。
B.棱锥的侧面是三角形C.长方体和正方体不是棱柱一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
D.柱体的上、下两底面可以大小不一样一般说来,“教师”概念之形成经历了十分漫长的历史。
杨士勋(唐初学者,四门博士)《春秋谷梁传疏》曰:“师者教人以不及,故谓师为师资也”。
这儿的“师资”,其实就是先秦而后历代对教师的别称之一。
《韩非子》也有云:“今有不才之子……师长教之弗为变”其“师长”当然也指教师。
这儿的“师资”和“师长”可称为“教师”概念的雏形,但仍说不上是名副其实的“教师”,因为“教师”必须要有明确的传授知识的对象和本身明确的职责。
6.下列图案是我们日常生活中常见的几何体,请在横线上填写出几何体的名称:7.下图是机器狗的模型,你能看到哪些立体图形?第1页/共1页。
七年级数学上册第一章《基本的几何图形》综合训练(青岛版含答案)
第一章基本的几何图形◆阶段性内容回顾一、立体图形与平面图形1.几何图形包括_________图形和________图形.2.长方体、正方体、球、圆柱、圆锥等都是________,此外,棱柱和棱锥也是常见的_________.3.在日常生活中我们会遇到很多________图形,长方形、正方形、三角形、•圆等都是我们十分熟悉的_________.4.对于一些立体图形的问题,常把它们转化成_________图形来研究和处理.5.许多立体图形是由平面图形围成的,将它们适当地展开,•就可以得到它们的________展开图.二、几何图形6.几何图形都是由点、线、面、体组成的,________•是构成几何图形的基本元素,点、线、面、体经过运动变化,就能组成各种各样的________,形成多姿多彩的图形世界.7.几何体简称________,我们学过的______、________、________、•______、________、________、__________都是几何体.包围着体的是_________,•面有________和_________两种,面与面相交的地方形成________,•线和线相交的地方是___________.8.用运动的观点来理解点、线、面、体,点动成_______,_______•动成______,_________动成体.三、直线、射线、线段9.经过两点有______条直线,并且只有_________.10.线段大小的比较可以用________测量出它们的长度来比较,也可以把一条线段________另一条线段上来比较.11.线段上的一点把线段分成_________的线段,这点叫做线段的中点.12.两点的所有连线中,________最短,即为_______,_______最短.13.连接两点间的_______,叫做两点间的距离.◆阶段性巩固训练1.一个物体从不同的方向看,平面图形如图所示,画出该物体的立体图形.2.如图是一个由9个正方体组成的立体图形,分别从正面、左面、上面观察这个图形,各能得到什么平面图形?请画出来.3.如图所示的立方体,如果把它展开,可以是下列图形中的().4.一个长方体被一刀切去一部分,剩下的部分可能是().A.三棱柱 B.四棱柱 C.五棱柱 D.以上都有可能5.如图所示,是三棱柱的表面展开示意图,则AB=______,BC=_______,CD=•______,BD=_______,AE=______.6.在图(1)中的几何体是由图(2)中的()绕线旋转一周得到的.7.如图所示,甲、乙、丙、丁、戊五名同学有以下说法:甲说:“直线BC不过点A”.乙说:“点A在直线CD外”.丙说:“D在CB的反向延长线上.”丁说:“A,B,C,D两两连结,有5条线段.”戊说:“射线AD与射线CD不相交”.其中说明正确的有().A.3人 B.4人 C.5人 D.2人8.已知线段AB=16厘米,C是线段AB上的一点,且AC=10厘米,D为AC的中点,E•是BC 的中点,求线段DE的长.9.平面上有A,B,C,D四个村庄,为解决当地缺水问题,•政府准备投资修建一个蓄水池,不考虑其他因素,请你画图确定蓄水池H的位置,使它与四个村庄的距离之和最小(A,B,C,D四个村庄的地理位置如图4-50所示),你能说明理由吗?10.如图所示,B,C两点把线段AD分成4:5:7三部分,E是线段AD•的中点,•CD=14厘米,求:(1)EC的长;(2)AB:BE的值.11.小刚和小强在争论一道几何问题,问题是射击时为什么枪管上有准星.•小刚说:“这还不简单,老师上课时不是讲过了吗?过两点有且只有一条直线,所以枪管上才有准星.”小强说:“过两点有且只有一条直线我当然知道,可是若将人眼看成一点,准星看成一点,目标的某一位置看成一点,这样不是有三点了吗?既然过两点有且只有一条直线,那弄出第三点又为什么呢?”聪明的你能回答小强的疑问吗?12.如图所示,有一只正方体盒子,一只虫子在顶点A处,一只蜘蛛在顶点B处,蜘蛛沿着盒子准备偷袭虫子,那么蜘蛛想要最快地捉住虫子,应怎样走?13.根据题意,完成下列填空:L1与L2是同一平面内的两直线,它们有一个交点,如果在这个平面内,•再画第三条直线L3,那么这4条直线最多可以有_______个交点;•如果在这个平面内再画第四条直线L4,那么这4条直线最多可有_______个交点;由此我们可以猜想:在同一平面内,6条直线最多有_______个交点;n(n为大于1的整数)条直线,最多可以有_______个交点(用含n 的代数式表示).参考答案阶段性内容回顾1.立体平面 2.立体图形立体图形3.平面平面图形 4.平面 5.平面6.点几何图形7.体长方体正方体圆柱圆锥球棱柱棱锥面平的曲的 •线点8.线线面面 9.一一条10.刻度尺移到 11.相等12.线段两点之间线段 13.线段的长度阶段性巩固训练1.是一个尖朝上的圆锥,如答图36所示.(点拨:从上面看到的是圆,可想到这是一个圆锥和圆柱,再由左面和正面看到的都是三角形,可想到这是一个圆锥,并且是一个尖朝上的圆锥)2.如图所示:(1)正视图(2)左视图(3)俯视图3.D4.D (点拨:三棱柱、四棱柱、五棱柱都有可能,关键是看切的位置)5.4 5 6 4 8(点拨:要弄清楚展开之前哪两条棱是相对的)6.D (点拨:凡是绕轴旋转得到的图形,只能是球、圆柱、圆锥或它们的一部分或它们组合而成的图形)7.A8.解:因为D是AC的中点,而E是BC的中点,因此有DC=12AC,CE=12BC,而DE=DC+CE,AC+BC=AB,即DE=DC+CE=12AC+12BC=12(AC+BC)=12AB=12×16=8(厘米).9.解:如答图所示,连结AC,BD,它们的交点是H,点H就是修建水池的位置,这一点到A,B,C,D四点的距离之和最小.10.解:设线段AB,BC,CD分别为4x厘米,5x厘米,7x厘米.∵CD=7x=14,∴x=2.(2)∵AB=4x=8(厘米),BC=5x=10(厘米),∴AD=A B+BC+CD=8+10+14=32(厘米).故EC=12AD-CD=12×32-14=2(厘米).(2)∵BC=10厘米,EC=2厘米,∴BE=BC-EC=10-2=8厘米,又∵AB=8厘米,∴AB:BE=8:8=1.答:EC长是2厘米,AB:BE的值是1.11.解:若将人眼看成一点,准星看成一点,目标看成一点,那么要想射中目标,人眼与目标确定的这条直线,应与子弹所走的直线重合,即与准星和目标所确定的这条直线重合,即达到看到哪打到哪儿.换句话说要想射中目标就必须使准星在人眼与目标所确定的直线上.12.如图所示,沿线段AB爬行,根据两点之间,线段最短.13.3 6 15(1)2n n(点拨:这类题往往从小到大,从少到多依次找规律)。
七年级数学上册 第1章 基本的几何图形单元综合试题(含解析)(新版)青岛版-(新版)青岛版初中七年级
基本的几何图形一、选择题(共27小题)1.(2013•某某)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.2.(2013•某某州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.3.(2014•某某)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.4.(2013•某某)把如图中的三棱柱展开,所得到的展开图是()A.B.C. D.5.(2014•某某)下列图形中,是正方体表面展开图的是()A.B.C. D.6.(2014•某某)一个几何体的展开图如图,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥7.(2015•某某)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.8.(2015•某某)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或9.(2015•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.10.(2015•某某)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.11.(2014•某某)在下列立体图形中,侧面展开图是矩形的是()A.B.C. D.12.(2013•某某)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.13.(2015•某某)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.14.(2014•某某)下列图形中,不是正方体的表面展开图的是()A.B.C.D.15.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4π D.2π或4π16.(2014•某某)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.17.(2013•某某)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A.30cm2B.30πcm2C.15cm2D.15πcm218.(2015•某某)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.19.(2015•某某)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱20.(2015•某某)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B. C.D.21.(2015•某某)将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC 22.(2015•某某)下列各图不是正方体表面展开图的是()A.B. C.D.23.(2013•某某)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B. C.D.24.(2014•某某)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱25.(2013•湘西州)下列图形中,是圆锥侧面展开图的是()A.B.C.D.26.(2013•某某)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A.B.C.D.27.(2014•某某)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.二、填空题(共3小题)28.(2013•枣庄)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.29.(2015•荆州)如图,将一X边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为cm2.30.(2014•来宾)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是cm2(结果保留π).某某新版七年级(上)近3年中考题单元试卷:第1章基本的几何图形参考答案与试题解析一、选择题(共27小题)1.(2013•某某)如图所示,将平面图形绕轴旋转一周,得到的几何体是()A.B.C.D.【考点】点、线、面、体.【分析】根据半圆旋转得到的图形是球,可得答案.【解答】解:由半圆旋转,得球,故选:C.【点评】本题考查了点、线、面、体,利用了图形的旋转.2.(2013•某某州)如图所示,下列四个选项中,不是正方体表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:选项A,B,D折叠后都可以围成正方体;而C折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体.故选C.【点评】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及无盖正方体展开图的各种情形.3.(2014•某某)下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【考点】几何体的展开图.【分析】圆锥的侧面展开图是扇形.【解答】解:根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选:B.【点评】解题时勿忘记圆锥的特征及圆锥展开图的情形.4.(2013•某某)把如图中的三棱柱展开,所得到的展开图是()A.B.C. D.【考点】几何体的展开图.【分析】根据三棱柱的概念和定义以及展开图解题.【解答】解:根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱.把图中的三棱柱展开,所得到的展开图是B.故选:B.【点评】此题主要考查了几何体的展开图,根据三棱柱三个侧面和上下两个底面组成,两个底面分别在侧面的两侧进而得出是解题关键.5.(2014•某某)下列图形中,是正方体表面展开图的是()A.B.C. D.【考点】几何体的展开图.【专题】常规题型.【分析】利用正方体及其表面展开图的特点解题.【解答】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选:C.【点评】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6.(2014•某某)一个几何体的展开图如图,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥【考点】展开图折叠成几何体.【分析】根据四棱柱的展开图解答.【解答】解:由图可知,这个几何体是四棱柱.故选:C.【点评】本题考查了展开图折叠成几何体,熟记四棱柱的展开图的形状是解题的关键.7.(2015•某某)如图的正方体盒子的外表面上画有3条粗黑线,将这个正方体盒子的表面展开(外表面朝上),展开图可能是()A.B.C.D.【考点】几何体的展开图.【分析】根据正方体的表面展开图进行分析解答即可.【解答】解:根据正方体的表面展开图,两条黑线在一列,故A错误,且两条相邻成直角,故B错误,正视图的斜线方向相反,故C错误,只有D选项符合条件,故选D【点评】本题主要考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.8.(2015•某某)一个圆柱的侧面展开图是两邻边长分别为6和8的矩形,则该圆柱的底面圆半径是()A.B.C.或D.或【考点】几何体的展开图.【专题】计算题.【分析】分8为底面周长与6为底面周长两种情况,求出底面半径即可.【解答】解:若6为圆柱的高,8为底面周长,此时底面半径为=;若8为圆柱的高,6为底面周长,此时底面半径为=,故选C.【点评】此题考查了几何体的展开图,利用了分类讨论的思想,分类讨论时注意不重不漏,考虑问题要全面.9.(2015•眉山)下列四个图形中是正方体的平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:A、不是正方体的平面展开图;B、是正方体的平面展开图;C、不是正方体的平面展开图;D、不是正方体的平面展开图.故选:B.【点评】此题主要考查了正方体展开图,熟练掌握正方体的表面展开图是解题的关键.10.(2015•某某)下列图形中可以作为一个三棱柱的展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】三棱柱展开后,侧面是三个长方形,上下底各是一个三角形.【解答】解:三棱柱展开后,侧面是三个长方形,上下底各是一个三角形由此可得:只有A是三棱柱的展开图.故选:A【点评】此题主要考查了三棱柱表面展开图,注意上、下两底面应在侧面展开图长方形的两侧.11.(2014•某某)在下列立体图形中,侧面展开图是矩形的是()A.B.C. D.【考点】几何体的展开图.【分析】根据几何体的展开图:棱台的侧面展开图是四个梯形,圆柱的侧面展开图是矩形,棱锥的侧面展开图是三个三角形,圆锥的侧面展开图是扇形,可得答案.【解答】解:A、侧面展开图是梯形,故A错误;B、侧面展开图是矩形,故B正确;C、侧面展开图是三角形,故C错误;D、侧面展开图是扇形,故D错误;故选:B.【点评】本题考查了几何体的展开图,记住常用几何体的侧面展开图是解题关键.12.(2013•某某)下列四个图形中,是三棱柱的平面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据三棱柱的展开图的特点进行解答即可.【解答】A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误.故选B.【点评】此题主要考查了几何体展开图,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.13.(2015•某某)如图是一个长方体包装盒,则它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及长方体的展开图解题.【解答】解:由四棱柱四个侧面和上下两个底面的特征可知,A、可以拼成一个长方体;B、C、D、不符合长方体的展开图的特征,故不是长方体的展开图.故选A.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及长方体展开图的各种情形.14.(2014•某某)下列图形中,不是正方体的表面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:D围成几何体时,有两个面重合,故不能围成正方体;A、B、C均能围成正方体.故选D.【点评】熟练掌握正方体的表面展开图是解题的关键.15.(2013•黄冈)已知一个圆柱的侧面展开图为如图所示的矩形,则其底面圆的面积为()A.πB.4πC.π或4π D.2π或4π【考点】几何体的展开图.【分析】分底面周长为4π和2π两种情况讨论,先求得底面半径,再根据圆的面积公式即可求解.【解答】解:①底面周长为4π时,半径为4π÷π÷2=2,底面圆的面积为π×22=4π;②底面周长为2π时,半径为2π÷π÷2=1,底面圆的面积为π×12=π.故选C.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.16.(2014•某某)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0 B.1 C.D.【考点】展开图折叠成几何体.【分析】根据展开图折叠成几何体,可得正方体,A,B是同一棱的两个顶点,可得答案.【解答】解;AB是正方体的边长,AB=1,故选:B.【点评】本题考查了展开图折叠成几何体,正确将展开图折叠成几何体是解题关键,难度不大.17.(2013•某某)已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是()A.30cm2B.30πcm2C.15cm2D.15πcm2【考点】几何体的表面积;圆柱的计算.【分析】圆柱侧面积=底面周长×高.【解答】解:根据圆柱的侧面积公式,可得该圆柱的侧面积为:2π×3×5=30πcm2.故选B.【点评】本题主要考查了圆柱侧面积的计算方法,属于基础题.18.(2015•某某)如图,有一个正方体纸巾盒,它的平面展开图是()A.B.C.D.【考点】几何体的展开图.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:观察图形可知,一个正方体纸巾盒,它的平面展开图是.故选:B.【点评】考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.19.(2015•某某)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱【考点】几何体的展开图.【分析】根据四棱锥的侧面展开图得出答案.【解答】解:如图所示:这个几何体是四棱锥.故选:A.【点评】此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.20.(2015•某某)如图是一个圆锥,下列平面图形既不是它的三视图,也不是它的侧面展开图的是()A.B. C.D.【考点】几何体的展开图;简单几何体的三视图.【分析】根据圆锥的特征:圆锥的侧面展开后是一个扇形和三视图,据此选择即可.【解答】解:根据圆锥的特征可知:圆锥的侧面展开后是一个扇形,三视图分别为三角形和圆形,不可能是正方形,故选D【点评】此题考查了圆锥的侧面展开图,是对圆锥基础知识的掌握情况的了解,应注意平时基础知识的积累.21.(2015•某某)将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.判断下列哪一个选项中的四个边可为此四个边?()A.AC、AD、BC、DE B.AB、BE、DE、CD C.AC、BC、AE、DE D.AC、AD、AE、BC【考点】几何体的展开图.【分析】由平面图形的折叠及正四角锥的展开图解题.【解答】解:将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.【点评】本题考查的是正四角锥的展开图,考法较新颖,需要对正四角锥有充分的理解.22.(2015•某某)下列各图不是正方体表面展开图的是()A.B. C.D.【考点】几何体的展开图.【分析】根据正方体展开图的常见形式选择.【解答】解:A、是正方体的展开图,B、是正方体的展开图,C、折叠有两个正方形重合,不是正方体的展开图,D、是正方体的展开图,故选C.【点评】本题考查了几何体的展开图,熟记正方体展开图的11种形式是解题的关键.23.(2013•某某)如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色.下列图形中,是该几何体的表面展开图的是()A.B. C.D.【考点】几何体的展开图.【专题】压轴题.【分析】由平面图形的折叠及几何体的展开图解题,注意带图案的一个面不是底面.【解答】解:选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选:B.【点评】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.24.(2014•某某)如果一个多面体的一个面是多边形,其余各面是有一个公共顶点的三角形,那么这个多面体叫做棱锥.如图是一个四棱柱和一个六棱锥,它们各有12条棱.下列棱柱中和九棱锥的棱数相等的是()A.五棱柱B.六棱柱C.七棱柱D.八棱柱【考点】认识立体图形.【专题】几何图形问题.【分析】根据棱锥的特点可得九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,然后分析四个选项中的棱柱棱的条数可得答案.【解答】解:九棱锥侧面有9条棱,底面是九边形,也有9条棱,共9+9=18条棱,A、五棱柱共15条棱,故A误;B、六棱柱共18条棱,故B正确;C、七棱柱共21条棱,故C错误;D、八棱柱共24条棱,故D错误;故选:B.【点评】此题主要考查了认识立体图形,关键是掌握棱柱和棱锥的形状.25.(2013•湘西州)下列图形中,是圆锥侧面展开图的是()A.B.C.D.【考点】几何体的展开图.【分析】根据圆锥的侧面展开图的特点作答.【解答】解:圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选:B.【点评】考查了几何体的展开图,圆锥的侧面展开图是扇形.26.(2013•某某)附图的长方体与下列选项中的立体图形均是由边长为1公分的小正方体紧密堆砌而成.若下列有一立体图形的表面积与附图的表面积相同,则此图形为何?()A.B.C.D.【考点】几何体的表面积.【分析】根据立体图形的面积求法,分别得出几何体的表面积即可.【解答】解:∵立体图形均是由边长为1公分的小正方体紧密堆砌而成,∴附图的表面积为:6×2+3×2+2×2=22,只有选项B的表面积为:5×2+3+4+5=22.故选:B.【点评】此题主要考查了几何体的表面积求法,根据已知图形求出表面积是解题关键.27.(2014•某某)过正方体中有公共顶点的三条棱的中点切出一个平面,形成如图几何体,其正确展开图正确的为()A.B.C.D.【考点】几何体的展开图;截一个几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:选项A、C、D折叠后都不符合题意,只有选项B折叠后两个剪去三角形与另一个剪去的三角形交于一个顶点,•与正方体三个剪去三角形交于一个顶点符合.故选:B.【点评】考查了截一个几何体和几何体的展开图.解决此类问题,要充分考虑带有各种符号的面的特点及位置.二、填空题(共3小题)28.(2013•枣庄)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为24 .【考点】几何体的表面积.【分析】根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.【解答】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.【点评】此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.29.(2015•荆州)如图,将一X边长为6cm的正方形纸片按虚线裁剪后,恰好围成底面是正六边形的棱柱,则这个六棱柱的侧面积为36﹣12cm2.【考点】展开图折叠成几何体.【分析】这个棱柱的侧面展开正好是一个长方形,长为6,宽为6减去两个六边形的高,再用长方形的面积公式计算即可求得答案.【解答】解:∵将一X边长为6的正方形纸片按虚线裁剪后,恰好围成一个底面是正六边形的棱柱,∴这个正六边形的底面边长为1,高为,∴侧面积为长为6,宽为6﹣2的长方形,∴面积为:6×(6﹣2)=36﹣12.故答案为:36﹣12.【点评】此题主要考查了正方形的性质、矩形的性质以及剪纸问题的应用.此题难度不大,注意动手操作拼出图形,并能正确进行计算是解答本题的关键.30.(2014•来宾)一个圆柱的底面直径为6cm,高为10cm,则这个圆柱的侧面积是60πcm2(结果保留π).【考点】几何体的表面积.【分析】直接利用圆柱体侧面积公式求出即可.【解答】解:∵一个圆柱的底面直径为6cm,高为10cm,∴这个圆柱的侧面积是:πd×10=60π(cm2).故答案为:60π.【点评】此题主要考查了圆柱体侧面积求法,正确根据圆柱体侧面积公式是解题关键.。
青岛版七年级上册数学第1章 基本的几何图形含答案
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、下列说法正确的是()A.两点确定一条直线B.不相交的两条直线叫做平行线C.过一点有且只有一条直线与已知直线平行D.两点间的距离是指连接两点间的线段2、平面上A、B两点间的距离是指()A.经过A,B两点的直线B.射线ABC.A,B两点间的线段 D.A,B两点间线段长度3、用平面去截一个几何体,如果截面的形状是长方形,则原来的几何体不可能是()A.正方体B.棱柱体C.圆柱D.圆锥4、将一个正方体沿某些棱展开后,能够得到的平面图形是()A. B. C. D.5、把如图所示的平面图形绕直线L旋转一周,得到的立体图形是()A.圆柱B.圆锥C.球D.棱锥6、C为AB的一个三等分点,D为AB的中点,若AB的长为6.6 cm,则CD的长为( )A.0.8 cmB.1.1 cmC.3.3 cmD.4.4 cm7、图1是一个正六面体,把它按图2中所示方法切割,可以得到一个正六边形的截面,则下列展开图中正确画出所有的切割线的是()A. B. C. D.8、如图,下列各式中错误的是()A.AB=AD+DBB.CB=AB﹣ACC.CD=CB﹣DBD.AC=CB﹣DB9、下列说法中正确的有()①同位角相等. ②凡直角都相等. ③一个角的余角一定比它的补角小.④在直线、射线和线段中,直线最长. ⑤两点之间的线段的长度就是这两点间的距离.⑥如果一个角的两边分别平行于另一个角的两边,则这两个角一定相等.A.0个B.1个C.2个D.3个10、下列说法中,正确的个数有().(1)射线AB和射线BA是同一条射线(2)延长射线MN到C(3)延长线段MN到A使NA=2MN (4)连结两点的线段叫做两点间的距离A.1B.2C.3D.411、下列说法正确的是 ( )A.两点的所有连线中,直线最短B.连接两点之间的线段,叫做这两点之间的距离C.锐角的补角一定是钝角D.一个角的补角一定大于这个角12、如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是()A.文B.明C.诚D.信13、如图为正方体的一种平面展开图,各面都标有数字,则数字为-2的面与其对面上的数字之和是()A.2B.0C.4D.-214、下列说法正确的个数为()(1)柱体的上、下两个面一样大;(2)圆柱的侧面展开图是长方形;(3)正方体有6个顶点;(4)圆锥有2个面,且都是曲面;(5)球仅由1个面围成,这个面是平面;(6)三棱柱有5个面,且都是平面.A.1B.2C.3D.415、如图,是一个正方体的表面展开图,则原正方体中“伟”字所在的面相对的面上标的字是()A.大B.梦C.国D.的二、填空题(共10题,共计30分)16、如图,用一个平面从正方体的三个顶点处截去正方体的一角变成一个新的多面体,这个多面体共有________ 条棱.17、如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是________.18、若平面内有3个点,过其中任意两点画直线,最多可画3条直线;若平面内有4个点,过其中任意两点画直线,最多可画6条直线;若平面内有5个点,过其中任意两点画直线,最多可画10条直线;…;若平面内有n个点,过其中任意两点画直线,最多可画________ 条直线.19、已知线段AB=8cm,在直线AB上有一点C,且BC=4cm,M是线段AC的中点,则线段AM的长为________.20、随着我国的发展与强大,中国文化与世界各国文化的交流和融合进一步加强,各国学校之间的交流活动逐年增加,在与国际友好学校交流活动中,小敏打算制作一个正方体礼盒送给外国朋友,每个面上分别书写一种中华传统美德,一共有“仁义礼智信孝”六个字,如图是她设计的礼盒平面展开图,那么“礼”字对面的字是________.21、小明为自己是重庆一中的学子感到很自豪,他特制了一个写有“我爱重庆一中”的正方体盒子,其展开图如图所示,则原正方体中与“重”字所在的面相对的面上的字是________ .22、已知点P在直线上,且到原点的距离为4,则点P的坐标________23、用一张边长为4πcm的正方形纸片刚好围成一个圆柱的侧面,则该圆柱的底面圆的半径长为________cm.24、如图是一个正方体,用一个平面去截这个正方体,截面形状不可能是选项中的________(填序号)25、平面直角坐标系中,点A(0,﹣1)与点B(3,3)之间的距离是________.三、解答题(共5题,共计25分)26、如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求x+y+z的值.27、分别画出下列平面图形:长方形,正方形,三角形,圆.28、.如图,某玩具是由两个正方体用胶水黏合而成的,它们的棱长分别为1dm和2dm,为了美观,现要在其表面喷涂油漆,已知喷涂1dm2需用油漆59g,求喷涂这个玩具共需多少g油漆?29、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?30、如图,已知B、C是线段AD上任意两点,M、N分别是线段AB、CD的中点.若MN=a,BC=b,求AD的长.参考答案一、单选题(共15题,共计45分)1、A2、D4、C5、B6、B7、C8、D9、D10、A11、C12、A13、C14、B15、C二、填空题(共10题,共计30分)16、17、18、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
青岛版七年级上册数学第1章 基本的几何图形含答案
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、下面的平面图形可以折成一个正方体的盒子,折好后,与1相对的数是()A.3B.4C.5D.62、一辆客车往返于A,B两地之间,中途有三个停靠站,那么在A、B两地之间最多需要印制不同的车票有()A.10种B.15种C.18种D.20种3、如图所示,下列四个选项中,不是正方体表面展开图的是A. B. C. D.4、下列说法中正确的是()A.四棱锥有4个面B.连接两点间的线段叫做两点间的距离C.如果线段,则M是线段AB的中点D.射线和射线不是同一条射线5、下列说法中正确的个数为()①过两点有且只有一条直线;②连接两点的线段叫两点间的距离;③两点之间所有连线中,线段最短;④射线比直线小一半.A.1个B.2个C.3个D.4个6、如图,数轴的单位长度为1,如果点表示的数为-2,那么点表示的数是().A.-1B.0C.3D.47、如图所示,点P,Q,C都在直线AB上,且P是AC的中点,Q是BC的中点,若AC=m,BC=n,则线段PQ的长为()A. B. C. D.8、已知点且,则n的值为()A.2B.2或-4C.2或-6D.-69、如图中,三角形的个数为()A.26个B.30个C.28个D.16个10、以下说法中,①在同一直线上的4点A、B、C、D只能表示5条不同的线段②经过两点有一条直线并且只有一条直线③同一锐角的补角一定大于它的余角,说法正确的是()A.②③B.③C.①②D.①11、如图是一个正方体展开图,把展开图折叠成正方体后,“抗”字一面相对面上的字是()A.新B.冠C.病D.毒12、下列说法中:①过两点有且只有一条直线;②两点之间线段最短;③过一点有且仅有一条直线垂直于已知直线;④线段的中点到线段的两个端点的距离相等.其中正确的有()A.1个B.2个C.3个D.4个13、如图,是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A. B. C. D.14、如图,长度为12 cm的线段AB的中点为M,若点C将线段MB分成MC∶CB =1∶2,则线段AC的长度为( )A.2 cmB.8 cmC.6 cmD.4 cm15、平面上有不同的三个点,经过其中任意两点画直线,一共可以画()A.1条B.2条C.3条D.1条或3条二、填空题(共10题,共计30分)16、用一个平面去截下列几何体:①正方体;②圆锥;③圆柱;④正三棱柱,得到的截面形状可能为三角形的有________(写出所有正确结果的序号)17、如图,长方体的底面边长分别为和,高为.若一只蚂蚁从点开始经过个侧面爬行一圈到达点,则蚂蚁爬行的最短路径长为________ .18、①一段烟囱(无烟囱帽);②一段圆钢;③铅锤;④烟囱帽.①②都呈________的形状;③④都呈________ 的形状.19、一个平面上有三个点A、B、C,过其中的任意两个点作直线,一共可以作________ 条直线。
七年级数学上册 第一章 基本的几何图形 1.2 几何图形(第2课时)作业 (新版)青岛版
1.2 几何图形第2课时1.表面展开图中既有圆又有扇形的几何体是________.2.侧面展开图是长方形的几何体是________,圆锥的表面展开图是由一个圆和一个________组成的.3.能展开成如图所示的几何体可能是________.4.侧面展开图是矩形的简单几何体是________.5.圆柱的侧面展开图是________,圆锥的侧面展开图________.6.下面的展开图都可以折成一个正方体,图(1)的六个面都标了数字,请问折成正方体后1号面、2号面、3号面的对面分别是几号面?图(2)的展开图的部分顶点处标有1~10,请问折成正方体后1,3,6,7表示的点分别与哪个数表示的点重合?7.沿线折叠图中的各纸片,能围成正方体的是______.(1)(2)(3)(4)8.某包装盒的展开图,尺寸如图所示(单位:cm).(1)这个几何体的名称是________;(2)求这个包装盒的表面积.9.下图是正方体展开图的一部分,请你在这个图形的基础上,添加两个小正方形,让它成为完整的正方体展开图.10.若在上述折叠的正方体表面上画如图所示的线段,请你在展开图上标出对应的其它两条线段.参考答案:1.圆锥2.圆柱(答案不唯一)扇形3.三棱柱4.圆柱,棱柱5.长方形扇形6.解:(1)这是一个正方体的平面展开图,共有六个面,其中面“1”与面“4”相对,面“2”与面“5”相对,“3”与面“6”相对.(2)1与2重合,3与4重合,6与10重合,7与8重合.7.(1)有一个面重叠,不是正方体的展开图,不符合题意;(2)是正方体的展开图,符合题意;(3)有一个面重叠,不是正方体的展开图,不符合题意;(4)是正方体的展开图,符合题意.故答案为:(2)(4).8.解:(1)根据图形得到这个几何体为:圆柱;(2)由图形可知:圆柱的底面半径r=5cm,高h=20cm,∴S表=S侧+2S底=2πrh+2πr2=200π+50π=250π.9.解:(答案不唯一)10.解:如图所示:。
七年级数学上册第一章基本的几何图形1.2《几何图形》同步练习2(新版)青岛版
1.2 几何图形一、填空题:1.围成球的面有个;2.圆柱有个面组成,这些面相交共得条线,圆锥的侧面展开图是;3.圆锥是由个面围成,其中个平面,个曲面,圆锥的侧面与底面相交成条线,是线;4.圆柱的表面展开图是________________________ (用语言描述);5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;6.图形所表示的各个部分都在同一个平面内,称为图形;二、选择题:7.圆锥的侧面展开图是()(A)长方形(B)正方形(C)圆(D)扇形8.将半圆绕它的直径旋转一周形成的几何体是()(A)圆柱(B)圆锥(C)球(D)正方体9.如图所示的图形绕虚线旋转一周,所形成的几何体是()10.以下立体图形中是棱柱的有()(A)①⑤(B)①②③ (C)①②④⑤ (D)①②⑤11.下列说法中,正确的是()(A)正方体不是棱柱(B)圆锥是由3个面围成(C)正方体的各条棱都相等(D)棱柱的各条棱都相等12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()(A)(B)(C)(D)13.按组成面的平或曲划分,与圆锥为同一类几何体的是()(A)正方体(B)长方体(C)球(D)棱柱14.如图,沿着虚线旋转一周得到的图形为()(A)(B)(C)(D)15.一个正方体锯掉一个角后,顶点的个数是()(A)7个(B)8个(C)9个(D)7个或8个或9个或10个三、解答题16.请写出下列几何体的名称()()()()()()()()17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.参考答案一、1.一个;2.三,二,扇形;3.二,一,一,一,曲;4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;二、7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、16.略;17.略;。
七年级数学上册第一章基本的几何图形1-2几何图形习题1无答案新版青岛版
七年级数学上册第一章基本的几何图形1-2几何图形习题1无
答案新版青岛版
1、棱柱、棱锥中的相关概念:
①棱柱、棱锥中,任何的交线叫做棱,的交线叫做侧棱;
②棱柱的叫做棱柱的顶点;
③棱锥的叫做棱锥的顶点;
④棱柱的侧棱长,棱柱的上、下底面是多边形,直棱柱的侧面都是,
棱锥的侧面都是.
2、(1)三棱柱有个侧面,上、下两个底面是两个形状一样的.
(2)底面是四边形的棱柱有___个面,有___条棱,有___个顶点.
3、底面是四边形的棱锥有___个面,有___条棱,有___个顶点.
4、连一连:
棱柱圆锥球正方体长方体圆柱
5、关于棱柱下列说法正确的是()
A、棱柱侧面的形状可能是一个三角形
B、棱柱的每条棱长都相等
C、棱柱的上、下底面的形状相同
D、棱柱的棱数等于侧面数的2倍
6、一只蚂蚁从如图所示的正方体的一顶点A沿着棱爬向B,只能经过三
条棱,共有多少种走法()
A、8种
B、7种
C、6种
D、5种。
完整版青岛版七年级上册数学第1章 基本的几何图形含答案
青岛版七年级上册数学第1章基本的几何图形含答案一、单选题(共15题,共计45分)1、线段AB上有点C,点C使AC:CB=2:3,点M和点N分别是线段AC和线段CB的中点,若MN=4,则AB的长是()A.6B.8C.10D.122、下列说法正确的是()A.射线PA和射线AP是同一条射线B.射线OA的长度是12cmC.直线AB、CD相交于点MD.两点确定一条直线3、下面说法错误的是()A.两点确定一条直线B.射线AB也可以写作射线BAC.等角的余角相等D.同角的补角相等4、京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A.6B.12C.15D.305、下列四个图中,是三棱锥的表面展开图的是()A. B. C. D.6、在墙壁上固定一根横放的木条,则至少需要()枚钉子A.lB.2C.3D.随便多少枚7、下列说法中正确的是().A.如果,那么一定是7B. 不一定是负数C.射线和射线是同一条射线 D.一个角的余角大于8、下列命题中,假命题的个数有()1)无限小数是无理数;(2)式子是二次根式;3)三点确定一条直线;(4)多边形的边数越多,内角和越大.A.1个B.2个C.3个D.4个9、经过折叠可以得到四棱柱的是()A. B. C. D.10、把一条弯曲的公路改为直路,可以缩短路程,其理由是()A.两点之间,线段最短B.两点确定一条直线C.线段有两个端点 D.线段可以比较大小11、下列说法中正确的是()A.直线比射线长B.AB=BC,则点B是线段AC的中点C.平角是一条直线D.两条直线相交,只有一个交点12、已知:点A和点B都在同一数轴上,点A表示-2,点B和点A相距5个单位长度,则点B表示的数是()A.3B.-7C.-7或3D.7或-313、下面几何体的表面不能展开成平面的是 ( )A.正方体B.圆柱C.圆锥D.球14、长方形绕旋转一周,得到的几何体是()A.圆柱B.圆锥C.棱柱D.长方体15、如图,是一个正方形盒子的展开图,若要在展开后的其中的三个正方形A、B、C内分别填入适当的数,使得展开图折成正方体后相对的面上的两个数互为相反数,则填入正方形A,B,C内的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,0二、填空题(共10题,共计30分)16、有一道题,已知线段AB=a,在直线AB上取一点C,使BC=b(a>b),点M,N分别是线段AB,BC的中点,求线段MN的长.对这道题,小善同学的答案是7,小昌同学的答案是3.老师说他们的结果都没错,如图,则依次可得到a 的值是________.17、如图,C、D是线段上两点,若AB=10cm,BC=4cm,且D是线段AC的中点,则BD的长为________.18、用两个钉子就可以把木条钉在墙上,其依据是________;将弯曲的河道改直,可以缩短航程,其依据是________.19、如图,点A、B为定点,直线l∥AB,P是直线l上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)________.20、在平面坐标系中,,,是轴上一点,要使的值最小,则的坐标为________.21、圆锥由________面组成的,圆锥的侧面展开图是________ ;22、如图是一个正方体的表面展开图,相对面上两个数互为相反数,则x+y=________.23、将一个长4cm宽2cm的矩形绕它的一边所在的直线旋转一周,所得几何体的体积为________ cm3.24、在直线l上顺次取A、B、C三点,使得AB=3cm,BC=5cm,若点D是线段AC 的中点,则线段DB的长度等于________ cm.25、以下说法:①两点确定一条直线;②一条直线有且只有一条垂线;③不相等的两个角一定不是对顶角;④若|a|=﹣a,则a<0;⑤若a,b互为相反数,则a,b的商必定等于﹣1.其中正确的是________.(请填序号)三、解答题(共5题,共计25分)26、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.27、有一根底面周长为30cm,高2米的圆柱形枯木,一条长藤自根部缠绕向上,缠了五周刚好到达顶部,这条长藤最短有多长?28、正方体是由六个平面图形围成的立体图形.设想沿着正方体的一些棱将它剪开,就可以把正方体剪成一个平面图形.但同一个正方体,按不同的方式展开所得的平面展开图悬不一样的,下面的图形是由6个大小一样的正方彤,拼接而成的,请问这些图形中哪些可以折成正方体?29、将图中的几何体进行分类,并说明理由.30、如图,已知线段AB和CD的公共部分为BD,且BD=AB=CD,线段AB、CD的中点E、F之间距离是20,求AB、CD的长.参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、D5、B6、B7、B8、C9、B10、A12、C13、D14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2 几何图形
一、填空题:
1.围成球的面有个;
2.圆柱有个面组成,这些面相交共得条线,圆锥的侧面展开图是;
3.圆锥是由个面围成,其中个平面,个曲面,圆锥的侧面与底面相交成条线,是线;
4.圆柱的表面展开图是________________________ (用语言描述);
5.图形所表示的各个部分不在同一个平面内,这样的图形称为图形;
6.图形所表示的各个部分都在同一个平面内,称为图形;
二、选择题:
7.圆锥的侧面展开图是()
(A)长方形(B)正方形(C)圆(D)扇形
8.将半圆绕它的直径旋转一周形成的几何体是()
(A)圆柱(B)圆锥(C)球(D)正方体
9.如图所示的图形绕虚线旋转一周,所形成的几何体是()
10.以下立体图形中是棱柱的有()
(A)①⑤(B)①②③ (C)①②④⑤ (D)①②⑤
11.下列说法中,正确的是()
(A)正方体不是棱柱(B)圆锥是由3个面围成
(C)正方体的各条棱都相等(D)棱柱的各条棱都相等
12.将一个直角三角形绕它的最长边旋转一周,得到的几何体是()
(A)(B)(C)(D)
13.按组成面的平或曲划分,与圆锥为同一类几何体的是()
(A)正方体(B)长方体(C)球(D)棱柱
14.如图,沿着虚线旋转一周得到的图形为()
(A)(B)(C)(D)
15.一个正方体锯掉一个角后,顶点的个数是()
(A)7个(B)8个(C)9个(D)7个或8个或9个或10个
三、解答题
16.请写出下列几何体的名称
()()()()
()()()()
17.如图,第二行的图形绕点划线旋转一周,便形成第一行的某个图形(几何体),将对应的两个图形用线联结起来.
参考答案
一、
1.一个;2.三,二,扇形;3.二,一,一,一,曲;
4.由一个长方形和两个相等的圆形组成;5.平面;6.立体;
二、
7.D;8.C;9.B;10.A;11.C;12.D;13.C;14.C;15.D;三、
16.略;
17.略;
如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。