2020版数学习题:第九篇 统计与统计案例(必修3、选修1-2) 第2节 用样本估计总体

合集下载

(精选试题附答案)高中数学第九章统计经典大题例题

(精选试题附答案)高中数学第九章统计经典大题例题

(名师选题)(精选试题附答案)高中数学第九章统计经典大题例题单选题1、某中学高一年级有400人,高二年级有320人,高三年级有280人,若每人被抽到的可能性都为0.2,用随机数表法在该中学抽取容量为n的样本,则n等于()A.80B.160C.200D.280答案:C分析:每个个体被抽的可能性等于样本容量除以总体数,由此列出关于n的方程并求解出结果.=0.2,解得n=200,由题意可知:n400+320+280故选:C.2、某校为了解学生的课外锻炼身体的情况,随机抽取了部分学生,对他们一周的课外锻炼时间进行了统计,统计数据如下表所示:则该校学生一周进行课外锻炼的时间的第40百分位数是()A.8.5B.8C.7D.9答案:A分析:根据百分位数的求法计算即可.抽取的学生人数为6+10+9+8+7=40.由40%×40=16,故第40百分位数为所有数据从小到大排序的第16项与第17项数据的平均数,=8.5.即8+92故选: A.3、下列调查方式较为合适的是()A.为了了解灯管的使用寿命,采用普查的方式B.为了了解我市中学生的视力状况,采用抽样调查的方式C.调查一万张面值为100元的人民币中有无假币,采用抽样调查的方式D.调查当今中学生喜欢什么体育活动,采用普查的方式答案:B分析:根据实际情况选择合适的调查方式即可判断.对A,为了了解灯管的使用寿命,应采用抽样调查的方式,故A错误;对B,为了了解我市中学生的视力状况,采用抽样调查的方式,故B正确;对C,调查一万张面值为100元的人民币中有无假币,采用抽样普查的方式,故C错误;对D,调查当今中学生喜欢什么体育活动,采用抽样普查的方式,故D错误.故选:B.4、2021年3月,树人中学组织三个年级的学生进行“庆祝中国共产党成立100周年”党史知识竞赛.经统计,得到前200名学生分布的饼状图(如图)和前200名中高一学生排名分布的频率条形图(如图),则下列命题错.误.的是()A.成绩前200名的200人中,高一人数比高二人数多30人B.成绩第1-100名的100人中,高一人数不超过一半C.成绩第1-50名的50人中,高三最多有32人D.成绩第51-100名的50人中,高二人数比高一的多答案:D分析:根据饼状图和条形图提供的数据判断.由饼状图,成绩前200名的200人中,高一人数比高二人数多200×(45%−30%)=30,A正确;=45<50,B 由条形图知高一学生在前200名中,前100和后100人数相等,因此高一人数为200×45%×12正确;成绩第1-50名的50人中,高一人数为200×45%×0.2=18,因此高三最多有32人,C正确;第51-100名的50人中,高二人数不确定,无法比较,D错误.故选:D.5、某射击运动员6次的训练成绩分别为:88,91,89,88,86,85,则这6次成绩的第70百分位数为()A.89B.89.5C.90D.90.5答案:A分析:先将数据按从小到大的顺序排列,计算6×70%=4.2不是整数,则所求的是从小到大排列的第5位数6次考试数学成绩从小到大为:85,86,88,88,89,91,6×70%=4.2,∴这名学生6次训练成绩的第70百分位数为89 .故选:A6、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率直方图如图所示,估计棉花纤维的长度的样本数据的80百分位数是()A.29 mmB.29.5 mmC.30 mmD.30.5 mm答案:A分析:先求得棉花纤维的长度在30 mm以下的比例为85%,在25 mm以下的比例为85%-25%=60%,从而可得80百分位数一定位于[25,30)内,进而可求出答案棉花纤维的长度在30 mm以下的比例为(0.01+0.01+0.04+0.06+0.05)×5=0.85=85%,在25 mm以下的比例为85%-25%=60%,因此,80百分位数一定位于[25,30)内,=29,由25+5×0.80−0.600.85−0.60可以估计棉花纤维的长度的样本数据的80百分位数是29 mm.故选:A7、根据气象学上的标准,连续5天的日平均气温低于10℃即为入冬,将连续5天的日平均温度的记录数据(记录数据都是自然数)作为一组样本,现有4组样本①、②、③、④,依次计算得到结果如下:①平均数x̅<4;②平均数x̅<4且极差小于或等于3;③平均数x̅<4且标准差s≤4;④众数等于5且极差小于或等于4.则4组样本中一定符合入冬指标的共有()A .1组B .2组C .3组D .4组答案:B分析:举反例否定①;反证法证明②符合要求;举反例否定③;直接法证明④符合要求.①举反例:0,0,0,4,11,其平均数x̅=3<4.但不符合入冬指标;②假设有数据大于或等于10,由极差小于或等于3可知,则此组数据中的最小值为10−3=7,此时数据的平均数必然大于7,与x̅<4矛盾,故假设错误.则此组数据全部小于10. 符合入冬指标;③举反例:1,1,1,1,11,平均数x̅=3<4,且标准差s =4.但不符合入冬指标;④在众数等于5且极差小于等于4时,则最大数不超过9.符合入冬指标.故选:B .8、关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的浦丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请全校m 名同学每人随机写下一个都小于1的正实数对(x,y );再统计两数能与1构成钝角三角形三边的数对(x,y )的个数a ;最后再根据统计数a 估计π的值,那么可以估计π的值约为( )A .4a mB .a+2mC .a+2m mD .4a+2m m答案:D解析:由试验结果知m 对0~1之间的均匀随机数x,y ,满足{0<x <10<y <1,面积为1,再计算构成钝角三角形三边的数对(x,y),满足条件的面积,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,即可估计π的值.解:根据题意知,m 名同学取m 对都小于1的正实数对(x,y ),即{0<x <10<y <1, 对应区域为边长为1的正方形,其面积为1,若两个正实数x,y 能与1构成钝角三角形三边,则有{x 2+y 2<1x +y >10<x <10<y <1,其面积S =π4−12;则有a m =π4−12,解得π=4a+2m m故选:D .小提示:本题考查线性规划可行域问题及随机模拟法求圆周率的几何概型应用问题. 线性规划可行域是一个封闭的图形,可以直接解出可行域的面积;求解与面积有关的几何概型时,关键是弄清某事件对应的面积,必要时可根据题意构造两个变量,把变量看成点的坐标,找到试验全部结果构成的平面图形,以便求解.9、某校高一共有10个班,编号为01,02,…,10,现用抽签法从中抽取3个班进行调查,设高一(5)班被抽到的可能性为a ,高一(6)班被抽到的可能性为b ,则( )A .a =310,b =29B .a =110,b =19 C .a =310,b =310D .a =110,b =110答案:C分析:根据简单随机抽样的定义,分析即可得答案.由简单随机抽样的定义,知每个个体被抽到的可能性相等,故高一(5)班和高一(6)班被抽到的可能性均为310. 故选:C10、为调查参加考试的高二级1200名学生的成绩情况,从中抽查了100名学生的成绩,就这个问题来说,下列说法正确的是( )A .1200名学生是总体B .每个学生是个体C .样本容量是100D .抽取的100名学生是样本答案:C分析:根据总体、个体、样本容量、样本的定义,结合题意,即可判断和选择.根据题意,总体是1200名学生的成绩;个体是每个学生的成绩;样本容量是100,样本是抽取的100名学生的成绩;故正确的是C.故选:C.填空题11、某市A、B、C三个区共有高中学生20000人,其中A区高中学生7000人,现采用分层抽样的方法从这三个区所有高中学生中抽取一个容量为600人的样本进行学习兴趣调查,则A区应抽取__________________.答案:210分析:根据总体数和要抽取的样本数,得到每个个体被抽到的概率,利用这个概率乘以A区的人数,得到A区要抽取的人数.解:由题意知A区在样本中的比例为700020000∴A区应抽取的人数是700020000×600=210.所以答案是:210.12、某单位有员工900人,其中女员工有360人,为做某项调查,拟采用分层抽样的方法抽取容量为150的样本,则应抽取的男员工人数是_______________________.答案:90分析:按照分层抽样的定义,按照比例抽取即可由题意,设应抽取的男员工人数是x则900−360900=x150解得:x=90所以答案是:9013、已知一组数据:20,30,40,50,50,60,70,80,记这组数据的第60百分位数为a,众数为b,则a和b的大小关系是______________.(用“<”“>”或“=”连接)答案:a=b##b=a分析:由百分位数求法得50为第60百分位数,并确定数据的众数,即可比较它们的大小关系.因为8×60%=4.8,所以这组数据的第5个数:50为第60百分位数.观察易知这组数据的众数为50,所以a和b的大小关系是a=b.所以答案是:a=b14、某校从高一新生中随机抽取了一个容量为20的身高样本,数据从小到大排序如下(单位:cm):152 ,155,158,164,164,165,165,165,166,167,168,168,169,170,170,170 ,171,x,174,175,若样本数据的第90百分位数是173,则x的值为________.答案:172分析:根据百分位数的意义求解.百分位数的意义就在于,我们可以了解的某一个样本在整个样本集合中所处的位置,=173,x=172本题第90百分位数是173,所以x+1742故答案为:172小提示:本题考查样本数据的第多少百分位数的概念.15、气象意义上从春季进入夏季的标志为连续5天的日平均温度均不低于22℃.现有甲、乙、丙三地连续5天的日平均温度的记录数据:(记录数据都是正整数)①甲地5个数据的中位数为24,众数为22;②乙地5个数据的中位数为27,总体均值为24;③丙地5个数据中有一个数据是32,总体均值为26,总体方差为10.8.则肯定进入夏季的地区有_____.答案:①③分析:根据数据的特点进行估计甲、乙、丙三地连续5天的日平均气温的记录数据,分析数据的可能性进行解答即可得出答案.①甲地:5个数据的中位数为24,众数为22,根据数据得出:甲地连续5天的日平均温度的记录数据可能为:22、22、24、25、26,其连续5天的日平均气温均不低于22;②乙地:5个数据的中位数为27,总体均值为24,当5个数据为19、20、27、27、27,可知其连续5天的日平均温度有低于22,故不确定;③丙地:5个数据中有一个数据是32,总体均值为26,若有低于22,假设取21,此时方差就超出了10.8,可知其连续5天的日平均温度均不低于22,如22、25、25、26、32,这组数据的平均值为26,方差为10.8,但是进一步扩大方差就会超过10.8,故③对.则肯定进入夏季的地区有甲、丙两地,故答案为①③.小提示:本题考查中位数、众数、平均数、方差的数据特征,简单的合情推理,解答此题应结合题意,根据平均数的计算方法进行解答、取特殊值即可.解答题16、为了了解一种植物果实的情况,随机抽取一批该植物果实样本测量重量(单位:克),按照[27.5,32.5),[32.5,37.5),[37.5,42.5),[42.5,47.5),[47.5,52.5]分为5组,其频率分布直方图如图所示.(1)求图中a的值;(2)估计这种植物果实重量的平均数x̅(同一组中的数据用该组区间的中点值作代表);(3)已知这种植物果实重量不低于37.5克的即为优质果实,现对该种植物果实的某批10000个果实进行检测.据此估算这批果实中的优质果实的个数.答案:(1)a=0.050(2)40(3)7000分析:(1)由各组频率之和为1(面积之和为1)可求得;(2)频率分布直方图用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和估计平均数;(3)用样本频率估计总体概率进行求解.(1)由题意,有(0.020+0.040+0.075+a+0.015)×5=1,解得a=0.050;(2)这种植物果实重量的平均数约为:30×0.020×5+35×0.040×5+40×0.075×5+45×0.050×5+50×0.015×5=40,∴这种植物果实重量的平均数x̅的估计值约为40.(3)样本中,这种植物果实重量不低于37.5克,即优质果实的频率为0 .075×5+0.050×5+0.015×5=0.7,由此估计某批10000个果实中,重量不低于37.5克,即优质果实的概率为0.7,∴这批果实中的优质果实的个数约为10000×0.7=7000个.17、第24届北京冬季奥林匹克运动会于2022年2月4日至2月20日在北京和张家口联合举办.这是中国历史上第一次举办冬季奥运会,它掀起了中国人民参与冬季运动的大热潮.某市举办了中学生滑雪比赛,从中抽取40名学生的测试分数绘制成茎叶图和频率分布直方图如下,后来茎叶图受到了污损,可见部分信息如图.(1)求频率分布直方图中a的值,并根据直方图估计该市全体中学生的测试分数的平均数(同一组中的数据以这组数据所在区间中点的值作代表,结果保留一位小数);(2)现要对测试成绩在前26%的中学生颁发“滑雪达人”证书,并制定出能够获得证书的测试分数线,请你用样本来估计总体,给出这个分数线的估计值.答案:(1)a=0.02,平均数为74.5(2)82分析:(1)计算出测试分数位于[90,100]个数,可求得测试分数位于[80,90)的个数,由此可求得a的值,将每个矩形底边的中点值乘以对应矩形的面积,将所得结果全加可得样本的平均数;(2)设能够获得证书的测试分数线为x,分析可得80<x<90,根据已知条件可得出关于x的等式,求解即可. (1)解:由频率分布直方图可知,测试分数位于[90,100]的频率为10×0.01=0.1,则测试分数位于[90,100]个数为40×0.1=4,所以,测试分数位于[80,90)的个数为40−(4+10+14+4)=8,÷10=0.02.所以a=840估计平均数为55×0.1+65×0.25+75×0.35+85×0.2+95×0.1=74.5.(2)解:因为测试分数位于[90,100]的频率为0.1,测试分数位于[80,90)的频率为0.2,能够获得“滑雪达人”证书的中学生测试分数要在前26%,故设能够获得证书的测试分数线为x,则80<x<90,由(90−x)×0.02=0.26−0.1,可得x=82,所以分数线的估计值为82.18、某中学要从高一年级甲乙两个班级中选择一个班参加电视台组织的“环保知识竞赛”,该校对甲乙两班的参赛选手(每班7人)进行了一次环保知识测试,他们取得的成绩(满分100分)的茎叶图如图所示,其中甲班学生的平均分是85,乙班学生成绩的中位数是85.(1)求x,y的值;(2)根据茎叶图,求甲乙两班同学方差的大小,并从统计学角度分析,该校应选择甲班还是乙班参赛.答案:(1)x=9,y=5;(2)乙班成绩比较稳定,故应选乙班参加.分析:(1)利用茎叶图,根据甲班7名学生成绩的平均分是85,乙班7名学生成绩的中位数是85.先求出x,y,(2)求出乙班平均分,再求出甲班7名学生成绩方差和乙班名学生成绩的方差,由此能求出结果.解:(1)甲班的平均分为:17(75+78+80+80+x+85+92+96)=85;解得x=9,∵乙班7名学生成绩的中位数是85,∴y=5,(2)乙班平均分为:17(75+80+80+85+90+90+95)=85;甲班7名学生成绩方差S12=17(102+72+52+42+02+72+112)=3607,乙班名学生成绩的方差S22=17(102+52+52+02+52+52+102)=3007,∵两个班平均分相同,S22<S12,∴乙班成绩比较稳定,故应选乙班参加.小提示:本题考查茎叶图的应用,解题时要认真审题,属于基础题.19、2019年下半年以来,各地区陆续出台了“垃圾分类”的相关管理条例,实行“垃圾分类”能最大限度地减少垃圾处置量,实现垃圾资源利用,改善垃圾资源环境,某部门在某小区年龄处于[20,45]岁的人中随机地抽取x人,进行了“垃圾分类”相关知识掌握和实施情况的调查,并把达到“垃圾分类”标准的人称为“环保族”,得到如图示各年龄段人数的频率分布直方图和表中的统计数据.(1)求x、y、z的值;(2)根据频率分布直方图,估计这x人年龄的平均值(同一组数据用该区间的中点值代替,结果按四舍五入保留整数);(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,并在这9人中选取2人作为记录员,求选取的2名记录员中至少有一人年龄在[30,35]中的概率.答案:(1){x=200y=0.625z=6;(2)30.75;(3)1318.分析:(1)由频率分布直方图和频数分布表能求出x、y、z;(2)根据频率分布直方图,能估计这x人年龄的平均值;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,[25,30)中选5人,分别记为A、B、C、D、E,[30,35]中选4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,利用列举法列举出所有的基本事件,然后利用古典概型的概率公式可求得所求事件的概率.(1)由题意得:{x=450.750.06×5=200y=25200×0.04×5=0.625z=200×0.03×5×0.2=6;(2)根据频率分布直方图,估计这x人年龄的平均值为:x=22.5×0.3+27.5×0.2+32 .5×0.2+37.5×0.15+42.5×0.15=30.75;(3)从年龄段在[25,35]的“环保族”中采取分层抽样的方法抽取9人进行专访,从[25,30)中选:9×2525+20=5人,分别记为A、B、C、D、E,从[30,35]中选:9×2025+20=4人,分别记为a、b、c、d,在这9人中选取2人作为记录员,所有的基本事件有:(A,B)、(A,C)、(A,D)、(A,E)、(A,a)、(A,b)、(A,c)、(A,d)、(B,C)、(B,D)、(B,E)、(B,a)、(B,b)、(B,c)、(B,d)、(C,D)、(C,E)、(C,a)、(C,b)、(C,c)、(C,d)、(D,E)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共36种,选取的2名记录员中至少有一人年龄在[30,35]包含的基本事件有:(A,a)、(A,b)、(A,c)、(A,d)、(B,a)、(B,b)、(B,c)、(B,d)、(C,a)、(C,b)、(C,c)、(C,d)、(D,a)、(D,b)、(D,c)、(D,d)、(E,a)、(E,b)、(E,c)、(E,d)、(a,b)、(a,c)、(a,d)、(b,c)、(b,d)、(c,d),共26种,因此,选取的2名记录员中至少有一人年龄在[30,35]中的概率P=2636=1318.小提示:本题考查频率、平均数、概率的求法,考查频数分布表、频率分布直方图、分层抽样、古典概型的性质等基础知识,考查数据分析能力、运算求解能力,是基础题.。

(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)

(必考题)高中数学选修1-2第一章《统计案例》测试卷(答案解析)(3)

一、选择题1.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是34和45,现甲、乙各投篮一次,恰有一人进球的概率是( ) A .120B .320C .15D .7202.某校学生会为研究该校学生的性别与语文、数学、英语成绩这3个变量之间的关系,随机抽查了100名学生,得到某次期末考试的成绩数据如表1至表3,根据表中数据可知该校学生语文、数学、英语这三门学科中( )表1表2表3 语文 性别不及格 及格 总计 数学 性别不及格 及格 总计 英语 性别不及格 及格 总男 14 36 50 男 10 40 50 男 25 25 女 16 34 50 女 20 30 50 女 5 45 总计3070100总计3070100总计30701A .语文成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小B .数学成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小C .英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小D .英语成绩与性别有关联性的可能性最大,数学成绩与性别有关联性的可能性最小 3.某人射击一次命中目标的概率为12,且每次射击相互独立,则此人射击 7次,有4次命中且恰有3次连续命中的概率为( ) A .3761()2CB .2741()2AC .2741()2CD .1741()2C4.在一次抗洪抢险中,准备用射击的方法引爆漂流的汽油桶.现有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆,每次射击相互独立,且命中概率都是34.则打光子弹的概率是( ) A .9256B .13256C .45512D .910245.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数,若有的把握认为是否喜欢抖音和性别有关,则男生至少有( )参考公式:0.10 0.05 0.025 0.010 0.005 0.001 2.7063.8415.0246.6357.87910.828A .12人B .18人C .24人D .30人6.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”作了一次调查,其中女生人数是男生人数的12,男生追星的人数占男生人数的16,女生追星的人数占女生人数的23.若有95%的把握认为是否追星和性别有关,则男生至少有( ) 参考数据及公式如下:20()P K k ≥ 0.050 0.0100.0010k3.841 6.635 10.8282()=()()()()n ad bc K a b c d a c b d -++++A .12B .11C .10D .187.为了解某班学生喜爱打篮球是否与性别有关,对该班60名学生进行问卷调查,得到如下图所示的22⨯列联表,则至少有( )的把握认为喜爱打篮球与性别有关.喜爱打篮球 不喜爱打篮球 合计男生 25530 女生 151530合计40 20 60附参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.20()P K k ≥ 0.100.050.025 0.010 0.005 0.001 0k 2.706 3.8415.0246.6357.78910.828A .99.9%B .99.5%C .99%D .97.5%8.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .139.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125 C .61125 D .6412510.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样11.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.有7个评委各自独立对A 、B 两位选手投票表决,两位选手旗鼓相当,每位评委公平投票且不得弃权.若7位评委依次揭晓票选结果,则A 选手在每位评委投票揭晓后票数始终保持领先的概率是______.14.有9粒种子分种在3个坑内,每坑放3粒,每粒种子发芽概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为2的概率等于_______.15.已知如下四个命题:①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于0,表示回归效果越好;②在回归直线方程ˆ0.812yx =-中,当解释变量x 每增加一个单位时,预报变量ˆy平均增加0.8个单位;③两个变量相关性越强,则相关系数的绝对值就越接近于1;④对分类变量X 与Y ,对它们的随机变量2K 的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越大.其中正确命题的序号是__________. 16.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.17.从包括甲乙两人的6名学生中选出3人作为代表,记事件A :甲被选为代表,事件B :乙没有被选为代表,则()P B A │等于_________.18.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________19.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.20.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.三、解答题21.为落实中央“坚持五育并举,全面发展素质教育,强化体育锻炼”的指示精神,小明和小亮两名同学每天利用课余时间进行羽毛球比赛.规定每一局比赛中获胜方记2分,失败方记0分,没有平局,谁先获得10分就获胜,比赛结束.假设每局比赛小明获胜的概率都是23. (1)求比赛结束时恰好打了7局的概率;(2)若现在是小明6:2的比分领先,记X 表示结束比赛还需打的局数,求X 的分布列及期望.22.某航空公司规定:国内航班(不构成国际运输的国内航段)托运行李每件重量上限为50kg ,每件尺寸限制为40cm 60cm 100cm ⨯⨯,其中头等舱乘客免费行李额为40kg ,经济舱乘客免费行李额为20kg .某调研小组随机抽取了100位国内航班旅客进行调查,得到如表所示的数据:(1)请完成22⨯列联表,并判断是否在犯错概率不超过0.05的前提下,认为托运超额行李与乘客乘坐座位的等级有关?(2)调研小组为感谢参与调查的旅客,决定从托运行李超出免费行李额且不超出的旅客中(其中女性旅客4人)随机抽取4人,对其中的女性旅客赠送“100元超额行李补贴券”,记赠送的补贴券总金额为X 元,求X 的分布列与数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:23.某工厂A ,B 两条相互独立的生产线生产同款产品,在产量一样的情况下,通过日常监控得知,A ,B 生产线生产的产品为合格品的概率分别为p 和21(0.51)p p -.(1)从A ,B 生产线上各抽检一件产品,若使得产品至少有一件合格的概率不低于99.5%,求p 的最小值0p ;(2)假设不合格的产品均可进行返工修复为合格品,以(1)中确定的0p 作为p 的值. ①已知A ,B 生产线的不合格品返工后每件产品可分别挽回损失5元和3元,若从两条生产线上各随机抽检1000件产品,以挽回损失的平均数为判断依据,估计哪条生产线的挽回损失较多?②若最终的合格品(包括返工修复后的合格品)按照一、二、三等级分类后,每件可分别获利10元、8元、6元,现从A ,B 生产线的最终合格品中各随机抽取100件进行分级检测,结果统计如图所示,用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为X ,求X 的分布列并估计该厂产量2000件时利润的期望值.24.某种疾病可分为Ⅰ、Ⅱ两种类型.为了解该疾病类型与性别的关系,在某地区随机抽取了患该疾病的病人进行调查,其中女性是男性的2倍,男性患Ⅰ型病的人数占男性病人的56,女性患Ⅰ型病的人数占女性病人的13. (1)若在犯错误的概率不超过0.005的前提下认为“所患疾病类型”与“性别”有关,求男性患者至少有多少人?(2)某药品研发公司欲安排甲乙两个研发团队来研发此疾病的治疗药物.两个团队各至多安排2个接种周期进行试验.甲团队研发的药物每次接种后产生抗体的概率为p ,每人每次接种花费()0m m >元,每个周期至多接种3次,第一个周期连续2次出现抗体则终止本接种周期进入第二个接种周期,否则需依次接种至第一周期结束,再进入第二周期;第二接种周期连续2次出现抗体则终止试验,否则需依次接种至至试验结束;乙团队研发的药物每次接种后产生抗体的概率为q ,每人每次花费()0n n >元,每个周期接种3次,每个周期必须完成3次接种,若一个周期内至少出现2次抗体,则该周期结束后终止试验,否则进入第二个接种周期.假设两个研发团队每次接种后产生抗体与否均相互独立.①若甲团队的试验平均花费大于乙团队的试验平均花费,求p 、q 、m 、n 满足的关系式;②若m n =,2p q =,从两个团队试验的平均花费考虑,该公司应选择哪个团队进行药品研发?附:()()()()()22n ad bc K a b c d a c b d -=++++,()20P K k ≥ 0.100.05 0.01 0.005 0.001 0k 2.7063.8416.6357.87910.82825.某大型运动会的组委会为了搞好接待工作,招募了30名男志愿者和20名女志愿者.调查发现,这些志愿者中有部分志愿者喜爱运动,另一部分志愿者不喜欢运动,并得到了如下等高条形图和22⨯列联表:喜爱运动 不喜爱运动 总计 男生 ab30 女生 cd20 总计50(1)求出列联表中a 、b 、c 、d 的值;(2)是否有99%的把握认为喜爱运动与性别有关?附:参考公式和数据:22()()()()()n ad bc K a b c d a c b d -=++++,(其中n a b c d =+++)20()P K k ≥ 0.5000.100 0.050 0.010 0.001 0k 0.4552.7063.8416.63510.82826.某花圃为提高某品种花苗质量,开展技术创新活动,分别用甲、乙两种方法培育该品种花苗.为比较两种培育方法的效果,选取了40棵花苗,随机分成两组,每组20棵.第一组花苗用甲方法培育,第二组用乙方法培育.培育完成后,对每棵花苗进行综合评分,绘制了如图所示的茎叶图:(1)分别求两种方法培育的花苗综合评分的中位数.你认为哪一种方法培育的花苗综合评分更高?并说明理由.(2)综合评分超过80的花苗称为优质花苗,填写下面的列联表,并判断是否有99.5%的把握认为优质花苗与培育方法有关?优质花苗 非优质花苗 合计甲培育法 乙培育法 合计附:()()()()()22n ad bc K a b c d a c b d -=++++. ()20P K k ≥ 0.0100.050 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用相互独立事件的概率乘法公式求得 甲投进而乙没有投进的概率,以及乙投进而甲没有投进的概率,相加即得所求. 【详解】甲投进而乙没有投进的概率为343(1)4520⨯-=,乙投进而甲没有投进的概率为341(1)455-⨯=,故甲、乙各投篮一次,恰有一人投进球的概率是 31720520+=,故选:D 【点睛】本题主要考查了相互独立事件的概率乘法公式的应用,体现了分类讨论的数学思想,属于中档题.2.C解析:C 【分析】根据题目所给的数据填写2×2列联表即可;计算K 的观测值K 2,对照题目中的表格,得出统计结论. 【详解】因为()()2210014341636100103020403070505030705050⨯⨯-⨯⨯⨯-⨯<⨯⨯⨯⨯⨯⨯()2100254552530705050⨯⨯-⨯<⨯⨯⨯,所以英语成绩与性别有关联性的可能性最大,语文成绩与性别有关联性的可能性最小. 故选C 【点睛】本题考查了独立性检验的应用问题,也考查了计算能力的应用问题,是基础题目. 3.B解析:B 【分析】由于射击一次命中目标的概率为12,所以关键先求出射击7次有4次命中且恰有3次连续命中的所有可能数,即根据独立事件概率公式得结果. 【详解】因为射击7次有4次命中且恰有3次连续命中有24A 种情况,所以所求概率为7241A 2⎛⎫⋅ ⎪⎝⎭.选B. 【点睛】本题考查排列组合以及独立事件概率公式,考查基本分析求解能力,属中档题.4.B解析:B 【分析】打光所有子弹,分中0次、中一次、中2次. 【详解】5次中0次:5 1 4⎛⎫ ⎪⎝⎭5次中一次:4 153144 C⎛⎫⨯⨯ ⎪⎝⎭5次中两次:前4次中一次,最后一次必中314331 444C⎛⎫⨯⨯⨯ ⎪⎝⎭则打光子弹的概率是514⎛⎫⎪⎝⎭+4153144C⎛⎫⨯⨯ ⎪⎝⎭+314331444C⎛⎫⨯⨯⨯ ⎪⎝⎭=13256,选B【点睛】本题需理解打光所有子弹的含义:可能引爆,也可能未引爆.5.B解析:B【解析】【分析】设男生人数为,女生人数为,完善列联表,计算解不等式得到答案.【详解】设男生人数为,女生人数为喜欢抖音不喜欢抖音总计男生女生总计男女人数为整数故答案选B【点睛】本题考查了独立性检验,意在考查学生的计算能力和应用能力.6.A解析:A【分析】设男生人数为x ,依题意可得列联表;根据表格中的数据,代入求观测值的公式,求出观测值同临界值进行比较,列不等式即可得出结论. 【详解】设男生人数为x ,依题意可得列联表如下:则2 3.841K >,由222235236183 3.841822x x x K x x x x x ⎛⎫- ⎪⎝⎭==>⋅⋅⋅,解得10.24x >, ,26x x为整数, ∴若在犯错误的概率不超过95%的前提下认为是否喜欢追星和性别有关,则男生至少有12人,故选A. 【点睛】本题主要考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.7.C解析:C 【解析】分析:根据列联表中数据,利用公式求得27.333k ≈,对照临界值即可的结果. 详解:根据所给的列联表, 得到()226025151557.333 6.63540203030k ⨯-⨯=≈>⨯⨯⨯,∴至少有0099的把握认为喜爱打篮球与性别有关,故选C.点睛:独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.8.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.9.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.10.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=.甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】将比分分为四种情况讨论计算概率【详解】由条件可知前两名投票的都投给选手并且投给每位选手的概率是若投票给两位选手的比分为则概率为若比分为则投给选手的方法有种所以概率为若比分为则投给选手的两票不 解析:532【分析】将比分分为7:0,6:1,5:2,4:3四种情况讨论计算概率. 【详解】由条件可知前两名投票的都投给选手A ,并且投给每位选手的概率是12P =. 若投票给A 、B 两位选手的比分为7:0,则概率为712⎛⎫ ⎪⎝⎭, 若比分为6:1,则投给选手B 的方法有155C =种,所以概率为7152⎛⎫⋅ ⎪⎝⎭若比分为5:2,则投给选手B 的两票不能在第三和第四的位置,有2519C -=种,所以概率为7192⎛⎫⋅ ⎪⎝⎭, 若比分为4:3,则投给A 的票不能是最后一位,且不能占5,6位,有2415C -=种,所以概率为7152⎛⎫⋅ ⎪⎝⎭, 所以概率()7151595232P ⎛⎫=+++⋅=⎪⎝⎭. 故答案为:532【点睛】本题考查独立事件同时发生的概率,重点考查分类的思想,属于中档题型.14.【分析】先计算出粒种子都没有发芽的概率即得出每个坑需要补种的概率然后利用独立重复试验的概率得出所求事件的概率【详解】由独立事件的概率乘法公式可知粒种子没有粒发芽的概率为所以一个坑需要补种的概率为由独 解析:21512【分析】先计算出3粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率. 【详解】由独立事件的概率乘法公式可知,3粒种子没有1粒发芽的概率为31128⎛⎫= ⎪⎝⎭, 所以,一个坑需要补种的概率为18, 由独立重复试验的概率公式可得,需要补种的坑数为2的概率为223172188512C ⎛⎫⋅⋅= ⎪⎝⎭, 故答案为21512. 【点睛】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有()k k N *∈次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.15.②③【分析】①根据相关指数的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量的观测值k 的关系进行判断【详解】①在线性回归模型中相关指数表示解释变量对于预报变量解析:②③ 【分析】①根据相关指数2R 的性质进行判断;②根据回归方程的性质进行判断;③根据相关系数的性质进行判断;④根据随机变量2K 的观测值k 的关系进行判断. 【详解】①在线性回归模型中,相关指数2R 表示解释变量x 对于预报变量y 的贡献率,2R 越接近于1,表示回归效果越好,所以①错误;②在回归直线方程ˆy=0.8x−12中,当解释变量x 每增加一个单位时,预报变量ˆy 平均增加0.8个单位,正确;③两个变量相关性越强,则相关系数的绝对值就越接近于1,正确;④对分类变量X 与Y ,对它们的随机变量K2的观测值k 来说,k 越小,则“X 与Y 有关系”的把握程度越小,所以④错误; 故正确命题的序号是②③. 【点睛】该题考查的是有关统计的问题,涉及到的知识点有线性回归分析,两个变量之间相关关系强弱的判断,独立性检验,属于简单题目.16.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概 解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.17.【解析】因为所以应填答案解析:35【解析】因为()()2254336613,210C C P A P AB C C ====,所以3(|)5P B A =。

2020新课标高考数学典型习题专项训练:统计与统计案例

2020新课标高考数学典型习题专项训练:统计与统计案例

统计与统计案例[A 组 夯基保分专练]一、选择题1.某电视台在因特网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽选出的人数分别为( )A .25,25,25,25B .48,72,64,16C .20,40,30,10D .24,36,32,8解析:选D.法一:因为抽样比为10020 000=1200,所以每类人中应抽选出的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.故选D.法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2, 所以每类人中应抽选出的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8,故选D.2.(2019·湖南省五市十校联考)在某次赛车中,50名参赛选手的成绩(单位:min)全部介于13到18之间(包括13和18),将比赛成绩分为五组:第一组[13,14),第二组[14,15),…,第五组[17,18],其频率分布直方图如图所示,若成绩在[13,15)内的选手可获奖,则这50名选手中获奖的人数为( )A .39B .35C .15D .11解析:选D.由频率分布直方图知成绩在[15,18]内的频率为(0.38+0.32+0.08)×1=0.78,所以成绩在[13,15)内的频率为1-0.78=0.22,则成绩在[13,15)内的选手有50×0.22=11(人),即这50名选手中获奖的人数为11,故选D.3.(2019·武汉市调研测试)某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A —结伴步行,B —自行乘车,C —家人接送,D —其他方式.并将收集的数据整理绘制成如下两幅不完整的统计图.请根据图中信息,求本次抽查的学生中A 类人数是( )A .30B .40C .42D .48解析:选A.由条形统计图知,B —自行乘车上学的有42人,C —家人接送上学的有30人,D —其他方式上学的有18人,采用B ,C ,D 三种方式上学的共90人,设A —结伴步行上学的有x 人,由扇形统计图知,A —结伴步行上学与B —自行乘车上学的学生占60%,所以x +42x +90=60100,解得x =30,故选A. 4.(2019·广东六校第一次联考)某单位为了落实“绿水青山就是金山银山”理念,制定节能减排的目标,先调查了用电量y (单位:kW ·h)与气温x (单位:℃)之间的关系,随机选取了4天的用电量与当天气温,并制作了如下对照表:x (单位:℃) 17 14 10 -1 y (单位:kW ·h)243438a由表中数据得线性回归方程y =-2x +60,则a 的值为( ) A .48 B .62 C .64D .68解析:选C.由题意,得x =17+14+10-14=10,y =24+34+38+a 4=96+a4.样本点的中心(x ,y )在回归直线y ^=-2x +60上,代入线性回归方程可得96+a 4=-20+60,解得a =64,故选C.5.(2019·郑州市第二次质量预测)将甲、乙两个篮球队各5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A .甲队平均得分高于乙队的平均得分B .甲队得分的中位数大于乙队得分的中位数C .甲队得分的方差大于乙队得分的方差D .甲、乙两队得分的极差相等解析:选C.由题中茎叶图得,甲队的平均得分x 甲=26+28+29+31+315=29,乙队的平均得分x 乙=28+29+30+31+325=30,x 甲<x 乙,选项A 不正确;甲队得分的中位数为29,乙队得分的中位数为30,甲队得分的中位数小于乙队得分的中位数,选项B 不正确;甲队得分的方差s 2甲=15×[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=185,乙队得分的方差s 2乙=15×[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]=2,s 2甲>s 2乙,选项C 正确;甲队得分的极差为31-26=5,乙队得分的极差为32-28=4,两者不相等,选项D 不正确.故选C.6.(多选)CPI 是居民消费价格指数(consumer price index)的简称.居民消费价格指数是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.如图是根据国家统计局发布的2017年6月—2018年6月我国CPI 涨跌幅数据绘制的折线图(注:2018年6月与2017年6月相比较,叫同比;2018年6月与2018年5月相比较,叫环比),根据该折线图,则下列结论错误的是 ( )A .2018年1月至6月各月与去年同期比较,CPI 有涨有跌B .2018年2月至6月CPI 只跌不涨C .2018年3月以来,CPI 在缓慢增长D .2017年8月与同年12月相比较,8月环比更大解析:选ABC.A 选项,2018年1月至6月各月与去年同期比较,CPI 均是上涨的,故A 错误;B 选项,2018年2月CPI 是增长的,故B 错误;C 选项,2018年3月以来,CPI 是下跌的,故C 错误;D 选项,2017年8月CPI 环比增长0.4%,12月环比增长0.3%,故D 正确.故选ABC.二、填空题7.如图是某学校一名篮球运动员在10场比赛中所得分数的茎叶图,则该运动员在这10场比赛中得分的中位数为________,平均数为________.解析:把10场比赛的所得分数按顺序排列为5,8,9,12,14,16,16,19,21,24,中间两个为14与16,故中位数为14+162=15,平均数为110(5+8+9+12+14+16+16+19+21+24)=14.4.答案:15 14.48.已知一组数据x 1,x 2,…,x n 的方差为2,若数据ax 1+b ,ax 2+b ,…,ax n +b (a >0)的方差为8,则a 的值为________.解析:根据方差的性质可知,a 2×2=8,故a =2. 答案:29.给出下列四个命题:①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,如果7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同; ③若一组数据a ,0,1,2,3的平均数为1,则其标准差为2;④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为y ^=a ^+b ^x ,其中a ^=2,x =1,y =3,则b ^=1.其中真命题有________(填序号).解析:在①中,由系统抽样知抽样的分段间隔为52÷4=13,故抽取的样本的编号分别为7号、20号、33号、46号,故①是假命题;在②中,数据1,2,3,3,4,5的平均数为16(1+2+3+3+4+5)=3,中位数为3,众数为3,都相同,故②是真命题;在③中,因为样本的平均数为1,所以a +0+1+2+3=5,解得a =-1,故样本的方差为15[(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)2]=2,标准差为2,故③是假命题;在④中,回归直线方程为y ^=b ^x +2,又回归直线过点(x ,y ),把(1,3)代入回归直线方程y ^=b ^x +2,得b ^=1,故④是真命题.答案:②④ 三、解答题10.(2019·兰州市诊断考试)“一本书,一碗面,一条河,一座桥”曾是兰州的城市名片,而现在“兰州马拉松”又成为了兰州的另一张名片,随着全民运动健康意识的提高,马拉松运动不仅在兰州,而且在全国各大城市逐渐兴起,参与马拉松训练与比赛的人数逐年增加.为此,某市对人们参加马拉松运动的情况进行了统计调查.其中一项调查是调查人员从参与马拉松运动的人中随机抽取200人,对其每周参与马拉松长跑训练的天数进行统计,得到以下统计表:烈参与者”.(1)经调查,该市约有2万人参与马拉松运动,试估计其中“热烈参与者”的人数; (2)根据上表的数据,填写下列2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关?附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d )(n 为样本容量)20 000×40200=4 000.(2)2×2列联表为K 2=200×(3540×160×140×60≈7.292>6.635,故能在犯错误的概率不超过0.01的前提下认为“热烈参与马拉松”与性别有关.11.(2019·武汉市调研测试)中共十九大以来,某贫困地区扶贫办积极贯彻落实国家精准扶贫的要求,带领广大农村地区人民群众脱贫奔小康.经过不懈的奋力拼搏,新农村建设取得巨大进步,农民年收入也逐年增加.为了更好地制定2019年关于加快提升农民年收入,力争早日脱贫的工作计划,该地扶贫办统计了2018年50位农民的年收入(单位:千元)并制成如下频率分布直方图:(1)根据频率分布直方图,估计50位农民的年平均收入x (单位:千元)(同一组数据用该组数据区间的中点值表示).(2)由频率分布直方图,可以认为该贫困地区农民年收入X 服从正态分布N (μ,σ2),其中μ近似为年平均收入x ,σ2近似为样本方差s 2,经计算得s 2=6.92.利用该正态分布,解决下列问题:(i)在2019年脱贫攻坚工作中,若使该地区约有占总农民人数的84.14%的农民的年收入高于扶贫办制定的最低年收入标准,则最低年收入大约为多少千元?(ii)为了调研“精准扶贫,不落一人”的落实情况,扶贫办随机走访了1 000位农民.若每个农民的年收入相互独立,问:这1 000位农民中年收入不少于12.14千元的人数最有可能是多少?附:参考数据与公式6.92≈2.63,若X ~N (μ,σ2),则 ①P (μ-σ<X ≤μ+σ)≈0.682 7; ②P (μ-2σ<X ≤μ+2σ)≈0.954 5; ③P (μ-3σ<X ≤μ+3σ)≈0.997 3.解:(1)x =12×0.04+14×0.12+16×0.28+18×0.36+20×0.10+22×0.06+24×0.04=17.40(千元).(2)由题意,X ~N (17.40,6.92). (i)P (X >μ-σ)≈12+0.682 72≈0.841 4,μ-σ≈17.40-2.63=14.77, 即最低年收入大约为14.77千元.(ii)由P (X ≥12.14)=P (X ≥μ-2σ)≈0.5+0.954 52≈0.977 3,得每个农民的年收入不少于12.14千元的事件的概率为0.977 3,记这1 000位农民中年收入不少于12.14千元的人数为ξ,则ξ~B (103,p ),其中p =0.977 3,于是恰好有k 位农民的年收入不少于12.14千元的事件的概率是P (ξ=k )=C k 103p k (1-p )103-k ,从而由P (ξ=k )P (ξ=k -1)=(1 001-k )×pk ×(1-p )>1,得k <1 001p ,由P (ξ=k )P (ξ=k +1)=(k +1)(1-p )(1 000-k )p>1,得k >1 001p -1,而1 001p =978.277 3, 所以,977.277 3<k <978.277 3,由此可知,在所走访的1 000位农民中,年收入不少于12.14千元的人数最有可能是978. 12.(2019·洛阳市统考)某学校高三年级共有4个班,其中实验班和普通班各2个,且各班学生人数大致相当.在高三第一次数学统一测试(满分100分)成绩揭晓后,教师对这4个班的数学成绩进行了统计分析,其中涉及试题“难度”和“区分度”等指标.根据该校的实际情况,规定其具体含义如下:难度=4个班平均分100,区分度=实验班平均分-普通班平均分100.(1)现从这4个班中各随机抽取5名学生,根据这20名学生的数学成绩,绘制茎叶图如下:请根据以上样本数据,估计该次考试试题的难度和区分度;(2)为了研究试题的区分度与难度的关系,调取了该校上一届高三6次考试的成绩分析数据,得到下表:考试序号 1 2 3 4 5 6 难度x 0.65 0.71 0.73 0.76 0.77 0.82 区分度y0.120.160.160.190.200.13①用公式r =∑i =1 (x i -x )(y i -y )∑ni =1(x i -x )2∑ni =1(y i -y )2计算区分度y 与难度x 之间的相关系数r (精确到0.001);②判断y 与x 之间相关关系的强与弱,并说明是否适宜用线性回归模型拟合y 与x 之间的关系.参考数据:∑6i =1x i y i =0.713 4, ∑6i =1 (x i -x )2∑6i =1 (y i -y )2≈0.009 2.解:(1)由茎叶图知,实验班这10人的数学总成绩为860分,普通班这10人的数学总成绩为700分,故这20人的数学平均成绩为860+70020=78(分),由此估计这4个班的平均分为78分, 所以难度=78100=0.78.由86010=86估计实验班的平均分为86分,由70010=70估计普通班的平均分为70分, 所以区分度=86-70100=0.16.(2)①由于∑ni =1 (x i -x )(y i -y ) =∑ni =1 (x i y i -yx i -xy i +xy ) =∑ni =1x i y i -y ∑ni =1x i -x ∑ni =1y i +nx y =∑n i =1x i y i -nx y -nx y +nx y =∑n i =1x i y i -nx y , 且∑6i =1x i y i =0.713 4, ∑6i =1(x i -x )2∑6i =1 (y i -y )2 ≈0.009 2,6x y =6×0.74×0.16=0.710 4, 所以r =∑6i =1 (x i -x )(y i -y )∑6i =1(x i -x )2∑6i =1 (y i -y )2=∑6i =1x i y i -6x y∑6i =1(x i -x )2∑6i =1 (y i -y )2≈0.713 4-0.710 40.009 2≈0.326.②由于r ≈0.326∈[0.30,0.75),故两者之间相关性非常一般,不适宜用线性回归模型拟合y 与x 之间的关系,即使用线性回归模型来拟合,效果也不理想.[B 组 大题增分专练]1.(2019·济南市七校联合考试)“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”……江南梅雨的点点滴滴都流润着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南Q 镇2009~2018年梅雨季节的降雨量(单位:mm)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:(1)“梅实初黄暮雨深”,请用样本平均数估计Q 镇明年梅雨季节的降雨量;(2)“江南梅雨无限愁”,Q 镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成),而乙品种杨梅2009~2018年的亩产量(单位:kg)与降雨量的发生频数(年)如2×2列联表所示(部分数据缺失),请你帮助老李排解忧愁,他来年应该种植哪个品种的杨梅受降雨量影响更小?(完善列联表,并说明理由)降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 ≥600 1 总计10附:K 2=n (ad -bc )(a +b )(c +d )(a +c )(b +d ),其中n =a +b +c +d .P (K 2≥k 0)0.50 0.40 0.25 0.15 0.10 k 00.4550.7081.3232.0722.706解:(1)0.1. 所以用样本平均数估计Q 镇明年梅雨季节的降雨量为150×0.2+250×0.4+350×0.3+450×0.1=30+100+105+45=280(mm).(2)根据频率分布直方图可知,降雨量在[200,400)内的频数为10×100×(0.003+0.004)=7.进而完善列联表如下.降雨量亩产量[200,400)[100,200)∪[400,500]总计 <600 2 2 4 ≥600 5 1 6 总计7310K 2=10×(2×1-5×2)7×3×4×6=8063≈1.270<1.323. 故认为乙品种杨梅的亩产量与降雨量有关的把握不足75%.而甲品种杨梅受降雨量影响的把握超过八成,故老李来年应该种植乙品种杨梅受降雨量影响更小.2.(2019·佛山模拟)表中的数据是一次阶段性考试某班的数学、物理原始成绩: 学号 1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 数学117128 96 113 136 139 124 124 121 115 115 123 125 117 123 122 132 129 96 105 106 120 物理 8084838589819178859172 7687827982848963737745学号 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 数学108137 87 95 108 117 104 128 125 74 81 135 101 97 116 102 76 100 62 86 120 101 物理 768071577265697955567763707563596442627765学号为22号的A 同学由于严重感冒导致物理考试发挥失常,学号为31号的B 同学因故未能参加物理学科的考试,为了使分析结果更客观准确,老师将A ,B 两同学的成绩(对应于图中A ,B 两点)剔除后,用剩下的42个同学的数据作分析,计算得到下列统计指标:数学学科平均分为110.5,标准差为18.36,物理学科的平均分为74,标准差为11.18,数学成绩x 与物理成绩y 的相关系数r =0.822 2,回归直线l (如图所示)的方程为y ^=0.500 6x +18.68.(1)若不剔除A ,B 两同学的数据,用全部44人的成绩作回归分析,设数学成绩x 与物理成绩y 的相关系数为r 0,回归直线为l 0,试分析r 0与r 的大小关系,并在图中画出回归直线l 0的大致位置.(2)如果B 同学参加了这次物理考试,估计B 同学的物理分数(精确到个位).(3)就这次考试而言,学号为16号的C 同学数学与物理哪个学科成绩要好一些?(通常为了比较某个学生不同学科的成绩水平,可按公式Z i =x i -xs统一化成标准分再进行比较,其中x i 为学科原始成绩,x 为学科平均分,s 为学科标准差)解:(1)r 0<r ,说明理由可以是①离群点A ,B 会降低变量间的线性关联程度;②44个数据点与回归直线l 0的总偏差更大,回归效果更差,所以相关系数更小; ③42个数据点与回归直线l 的总偏差更小,回归效果更好,所以相关系数更大; ④42个数据点更加贴近回归直线l ; ⑤44个数据点与回归直线l 0更离散. 其他言之有理的理由均可.(直线l 0的斜率须大于0且小于l 的斜率,具体位置稍有出入没关系,无需说明理由) (2)将x =125代入y ^=0.500 6x +18.68中, 得y =62.575+18.68≈81,所以估计B 同学的物理分数大约为81分.(3)由表中数据知C 同学的数学原始成绩为122分,物理原始成绩为82分, 则数学标准分Z 16=x 16-x s 1=122-110.518.36=11.518.36≈0.63,物理标准分Z ′16=y 16-y s 2=82-7411.18=811.18≈0.72, 因为0.72>0.63,所以C 同学物理成绩比数学成绩要好一些.3.(2019·济南市模拟考试)某客户准备在家中安装一套净水系统,该系统为三级过滤,使用寿命为十年.如图所示,两个一级过滤器采用并联安装,二级过滤器与三级过滤器为串联安装.其中每一级过滤都由核心部件滤芯来实现.在使用过程中,一级滤芯和二级滤芯都需要不定期更换(每个滤芯是否需要更换相互独立),三级滤芯无需更换.若客户在安装净水系统的同时购买滤芯,则一级滤芯每个80元.二级滤芯每个160元.若客户在使用过程中单独购买滤芯,则一级滤芯每个200元,二级滤芯每个400元.现需决策安装净水系统的同时购买滤芯的数量,为此参考了根据100套该款净水系统在十年使用期内更换滤芯的相关数据制成的图表,其中图1是根据200个一级过滤器更换的滤芯个数制成的柱状图,表1是根据100个二级过滤器更换的滤芯个数制成的频数分布表.二级滤芯更换的个数5 6频数6040以200个一级过滤器更换滤芯的频率代替1个一级过滤器更换滤芯发生的概率,以100个二级过滤器更换滤芯的频率代替1个二级过滤器更换滤芯发生的概率.(1)求一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30的概率;(2)记X表示该客户的净水系统在使用期内需要更换的一级滤芯总数,求X的分布列及数学期望;(3)记m,n分别表示该客户在安装净水系统的同时购买的一级滤芯和二级滤芯的个数,若m+n=28,且n∈{5,6},以该客户的净水系统在使用期内购买各级滤芯所需总费用的期望值为决策依据,试确定m,n的值.解:(1)由题意可知,若一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30,则该套净水系统中的两个一级过滤器均需更换12个滤芯,二级过滤器需要更换6个滤芯.设“一套净水系统在使用期内需要更换的各级滤芯总个数恰好为30”为事件A,因为一个一级过滤器需要更换12个滤芯的概率为0.4,二级过滤器需要更换6个滤芯的概率为0.4,所以P(A)=0.4×0.4×0.4=0.064.(2)由柱状图可知,一个一级过滤器需要更换的滤芯个数为10,11,12,对应的概率分别为0.2,0.4,0.4,由题意,X可能的取值为20,21,22,23,24,并且P(X=20)=0.2×0.2=0.04,P(X=21)=0.2×0.4×2=0.16,P(X=22)=0.4×0.4+0.2×0.4×2=0.32,P(X=23)=0.4×0.4×2=0.32,P(X=24)=0.4×0.4=0.16.所以X的分布列为X 2021222324P 0.040.160.320.320.16E(X)=20×0.04(3)因为m+n=28,n∈{5,6},所以若m=22,n=6,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为22×80+200×0.32+400×0.16+6×160=2 848.若m=23,n=5,则该客户在十年使用期内购买各级滤芯所需总费用的期望值为23×80+200×0.16+5×160+400×0.4=2 832.故m,n的值分别为23,5.4.某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该地周光照量X(单位:小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量y(千克)与使用某种液体肥料的质量x(千克)之间的关系为如图所示的折线图.(1)依据折线图,是否可用线性回归模型拟合y与x的关系?请计算相关系数r并加以说明(精确到0.01);(若|r|>0.75,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量X限制,并有如下关系:周光照量X(单位:小时)30<X<5050≤X≤70X>70光照控制仪运行台数32 1则该台光照控制仪周亏损1 000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?附相关系数公式:r=∑i=1n(x i-x)(y i-y)∑i=1n(x i-x)2∑i=1n(y i-y)2,参考数据:0.3≈0.55,0.9≈0.95.解:(1)由已知数据可得x=2+4+5+6+85=5,y=3+4+4+4+55=4.因为∑i=15(x i-x)(y i-y)=(-3)×(-1)+0+0+0+3×1=6,∑i =15(x i -x )2=(-3)2+(-1)2+02+12+32=25,∑i =15(y i -y )2=(-1)2+02+02+02+12=2,所以相关系数r =∑i =15(x i -x )(y i -y )∑i =15(x i -x )2∑i =15(y i -y )2=625×2=910≈0.95. 因为|r |>0.75,所以可用线性回归模型拟合y 与x 的关系.(2)记商家周总利润为Y 元,由条件可知至少需安装1台,最多安装3台光照控制仪. ①安装1台光照控制仪可获得周总利润3 000元. ②安装2台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润Y =3 000-1 000=2 000(元),P (Y =2 000)=1050=0.2,当30<X ≤70时,2台光照控制仪都运行,此时周总利润Y =2×3 000=6 000(元),P (Y =6 000)=4050=0.8,故Y 的分布列为③安装3台光照控制仪的情形:当X >70时,只有1台光照控制仪运行,此时周总利润 Y =1×3 000-2×1 000=1 000(元). P (Y =1 000)=1050=0.2.当50≤X ≤70时,有2台光照控制仪运行,此时周总利润 Y =2×3 000-1×1 000=5 000(元), P (Y =5 000)=3550=0.7,当30<X <50时,3台光照控制仪都运行,周总利润Y =3×3 000=9 000(元),P (Y =9 000)=550=0.1, 故Y 的分布列为综上可知,为使商家周总利润的均值达到最大,应该安装2台光照控制仪.。

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答

人教版A版高中数学选修1-2课后习题解答高中数学选修1-2课后题答案第一章统计案例1.1 回归分析的基本思想及其初步应用回归分析是一种统计分析方法,用于探究自变量与因变量之间的关系。

它的基本思想是通过建立数学模型,利用已知数据进行拟合,从而预测或解释未知数据。

回归分析的初步应用包括简单线性回归和多元线性回归。

1.2 独立性检验的基本思想及其初步应用独立性检验是一种用于检验两个变量之间是否存在关联的方法。

其基本思想是通过观察两个变量之间的频数或频率分布,来判断它们是否相互独立。

独立性检验的初步应用包括卡方检验和Fisher精确检验。

第二章推理证明2.1 合情推理与演绎推理合情推理是指根据已知事实和常识,推断出可能的结论。

演绎推理是指根据已知的前提和逻辑规则,推导出必然的结论。

两种推理方法都有其适用的场合,需要根据具体情况进行选择。

2.2 直接证明与间接证明直接证明是指通过逻辑推理,直接证明所要证明的命题成立。

间接证明是指采用反证法或归谬法,证明所要证明的命题的否定不成立,从而推出所要证明的命题成立。

第三章数系的扩充与复数的引入3.1 数系的扩充与复数的概念数系的扩充是指在实数系的基础上引入新的数,使得一些原来不可解的方程可以得到解。

复数是指由实部和虚部组成的数,可以表示在平面直角坐标系中的点。

复数的引入扩充了数系,使得一些原本无解的方程可以得到解。

3.2 复数的代数形式的四则运算复数的代数形式是指将复数表示为实部和虚部的和的形式。

复数的四则运算包括加减乘除四种运算,可以通过对实部和虚部分别进行运算来得到结果。

第四章框图4.1 流程图流程图是一种用图形表示算法或过程的方法。

它由各种基本符号和连线构成,用于描述算法或过程的各个步骤及其执行顺序。

流程图可以帮助人们更好地理解算法或过程,从而提高效率。

4.2 结构图结构图是一种用于描述程序结构的图形表示方法。

它包括顺序结构、选择结构和循环结构三种基本结构,可以用来表示程序的控制流程。

(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)

(好题)高中数学选修1-2第一章《统计案例》检测(答案解析)(3)

一、选择题1.某单位对某村的贫困户进行“精准扶贫”,若甲、乙贫困户获得扶持资金的概率分别为37和27,两户是否获得扶持资金相互独立,则这两户中至少有一户获得扶持资金的概率为( ) A .2949B .649C .2349D .43492.在一个质地均匀的小正方体的六个面中,三个面标0,两个面标1,一个面标2,将这个小正方体连续抛掷两次,若向上的数字的乘积为偶数,则该乘积为非零偶数的概率为( ) A .14 B .89 C .116D .5323.下列命题不正确的是( )A .研究两个变量相关关系时,相关系数r 为负数,说明两个变量线性负相关B .研究两个变量相关关系时,相关指数R 2越大,说明回归方程拟合效果越好.C .命题“∀x ∈R ,cos x ≤1”的否定命题为“∃x 0∈R ,cos x 0>1”D .实数a ,b ,a >b 成立的一个充分不必要条件是a 3>b 3 4.“人机大战,柯洁哭了,机器赢了”,2017年5月27日,岁的世界围棋第一人柯洁不敌人工智能系统AlphaGo ,落泪离席.许多人认为这场比赛是人类的胜利,也有许多人持反对意见,有网友为此进行了调查.在参与调查的男性中,有人持反对意见,名女性中,有人持反对意见.再运用这些数据说明“性别”对判断“人机大战是人类的胜利”是否有关系时,应采用的统计方法是( )A .分层抽样B .回归分析C .独立性检验D .频率分布直方图5.一张储蓄卡的密码共有6位数字,每位数字都可以从09中任选一个,某人在银行自动提款机上取钱时,忘记了密码最后一位数字,如果任意按最后一位数字,不超过2次就按对的概率为( )A .25 B .310 C .15D .1106.从345678910,1112,,,,,,,,中不放回地依次取2个数,事件A = “第一次取到的数可以被3整除”,B = “第二次取到的数可以被3整除”,则()P B|?A =( ) A .59B .23C .13 D .297.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >=B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样 8.随机变量a 服从正态分布()21,N σ,且()010.3000P a <<=.已知0,1a a >≠,则函数1xy a a =+-图象不经过第二象限的概率为( ) A .0.3750B .0.3000C .0.2500D .0.20009.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好10.在5道题中有3道理科题和2道文科题,如果一次性抽取 2道题,已知有一道是理科题的条件下,则另一道也是理科题的概率为 A .13B .14C .12D .3511.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .4012.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A.130 B.190C.240 D.250二、填空题13.掷三个骰子,出现的三个点数的乘积为偶数的概率是________.14.一盒子中装有6只产品,其中4只一等品,2只二等品,从中取产品两次,每次任取1只,做不放回抽样.则在第一次取到的是一等品的条件下,第二次取到的是二等品的概率为__________.15.已知x、y之间的一组数据如下:=+所表示的直线必经过点________.则线性回归方程ˆy a bx16.甲袋中装有2个白球,2个黑球,乙袋中装有2个白球,4个黑球,从甲、乙两袋中各取一球均为白球的概率为______________17.已知某种高炮在它控制的区域内击中敌机的概率为0.2,要使敌机一旦进入这个区域后有0.9以上的概率被击中,需要至少布置___________门高炮?(用数字作答,已知=)=,lg30.4771lg20.301018.体育课上定点投篮项目测试规则:每位同学有3次投篮机会,一旦投中,则停止投篮,视为合格,否则一直投3次为止.每次投中与否相互独立,某同学一次投篮投中的概率为p,若该同学本次测试合格的概率为0.784,则p=_____.19.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.20.一名信息员维护甲乙两公司的5G网络,一天内甲公司需要维护和乙公司需要维护相互独立,它们需要维护的概率分别为0.4和0.3,则至少有一个公司不需要维护的概率为________三、解答题21.一个口袋中有4个红球和3个黑球.(1)从口袋中随机地连续取出三个球,取出后不放回,求:(i)三个球中有两个红球一个黑球的概率;(ii)第二次取出的是红球且第三次取出的也是红球的概率.(2)从口袋中随机地连续取出三个球,取出后放回,求至少有两个是红球且第三个是红球的概率22.中国探月工程自2004年立项以来,聚焦“自主创新、重点跨越、支撑发展、引领未来”的目标,创造了许多项中国首次.2020年12月17日凌晨,嫦娥五号返回器携带“月壤”着陆地球,又首次实现了我国地外天体无人采样返回.为了了解某中学高三学生对此新闻事件的关注程度,从该校高三学生中随机抽取了100名学生进行调查,调查结果如下面22⨯列联表.22⨯与性别有关”?(2)现在从这100名学生中按性别采取分层抽样的方法抽取5名学生,如果再从中随机选取2人进行有关“嫦娥五号”情况的宣讲,求选取的2名学生中恰有1名女生的概率.若将频率视为概率. 附:()()()()()2n ad bc K a b c d a c b d -=++++,其中n a b c d =+++ 23.某小区停车场的收费标准为:每车每次停车时间不超过2小时免费,超过2小时的部分每小时收费1元(不足1小时的部分按1小时计算).现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过5小时,设甲、乙两人停车时间(小时)与取车概率如表所示:(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量ξ,求ξ的分布列和数学期望()E ξ. 24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()()22n ad bc K a b c d a c b d -=++++25.在疫情这一特殊时期,教育行政部门部署了“停课不停学”的行动,全力帮助学生在线学习.复课后进行了摸底考试,某校数学教师为了调查高三学生这次摸底考试的数学成绩与在线学习数学时长之间的相关关系,对在校高三学生随机抽取45名进行调查.知道其中有25人每天在线学习数学的时长是不超过1小时的,得到了如下的等高条形图:(Ⅰ)是否有99%的把握认为“高三学生的这次摸底考试数学成绩与其在线学习时长有关”;(Ⅱ)将频率视为概率,从全校高三学生这次数学成绩超过120分的学生中随机抽取10人,求抽取的10人中每天在线学习时长超过1小时的人数的数学期望和方差.()20P K k ≥ 0.050 0.010 0.001 0k3.8416.63510.828()()()()()22n ad bc K a b c d a c b d -=++++26.2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占23,而男生有10人表示对冰球运动没有兴趣额.(1)完成22⨯列联表,并回答能否有90%的把握认为“对冰球是否有兴趣与性别有关”?(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为x ,若每次抽取的结果是相互独立的,求x 的分布列,期望和方差. 附表:22()()()()()n ad bc K a b c d a c b d -=++++【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】考虑都没有获得扶持资金的情况,再计算对立事件概率得到答案. 【详解】根据题意:32291117749p ⎛⎫⎛⎫=---=⎪⎪⎝⎭⎝⎭. 故选:A . 【点睛】本题考查了概率的计算,意在考查学生的计算能力和应用能力.2.D解析:D 【分析】首先确定是条件概率,在出现数字乘积为偶数的前提下,乘积为非零偶数的概率, 首先求两次数字乘积为偶数的概率, 然后两次为非零偶数的概率,再按照条件概率的公式求解. 【详解】两次数字乘积为偶数,可先考虑其反面——只需两次均出现1向上,概率是22169⎛⎫= ⎪⎝⎭, 所以两次数字乘积为偶数的概率P =228169⎛⎫-= ⎪⎝⎭ ; 若乘积非零且为偶数,需连续两次抛掷小正方体的情况为(1,2)或(2,1)或(2,2),P =111152366636⨯⨯+⨯=,.故所求条件概率为55368329P ==.故选:D 【点睛】本题主要考查了条件概率的计算和独立事件,考查了学生的计算能力,属于基础题.3.D解析:D 【分析】根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项. 【详解】相关系数r 为负数,说明两个变量线性负相关,A 选项正确. 相关指数2R 越大,回归方程拟合效果越好,B 选项正确.根据全称命题的否定是特称命题的知识可知C 选项正确.对于D 选项,由于33a b a b >⇔>,所以33a b >是a b >的充分必要条件,故D 选项错误.所以选D. 【点睛】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.4.C解析:C 【解析】 【分析】根据“性别”以及“反对与支持”这两种要素,符合,从而可得出统计方法。

新教材高中数学第九章统计1

新教材高中数学第九章统计1

分层随机抽样市体育协会组织了“健步走”活动,活动共有10 000余人参加,按参加者年龄分老年组、青年组和少年组。

活动后市电视台拟从参加比赛的人群中抽取10人进行采访。

【问题1】上述问题中总体有什么特征?【问题2】抽取样本时采用抽签法合适吗?【问题3】你认为怎样抽取样本更合理?1.分层随机抽样(1)分层随机抽样一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)应用:抽取样本.1.本质:对于含有差异明显几个层的总体随机抽样的一种方法,即按照一定比例进行抽样.2.混淆:不要与简单随机抽样混淆.3.简单随机抽样和分层随机抽样的区别和联系(1)区别:简单随机抽样是从总体中逐个抽取样本;分层随机抽样则首先将总体分成几层,在各层中按比例分别抽取样本.(2)联系:①抽样过程中每个个体被抽到的可能性相等;②每次抽出个体后不再将它放回,即不放回抽样. 2.分层随机抽样中的总体平均数与样本平均数1层 2层 层个体数 M N 层样本量 m n 层个体 变量值 X 1,X 2,…,X MY 1,Y 2,…,Y N层样本 的个体 变量值x 1,x 2,…,x m y 1,y 2,…,y n层总体 平均数X =X 1+X 2+…+X M M =1M∑i =1MX iY =Y 1+Y 2+…+Y N N =1N∑i =1NY i层样本 平均数x =x 1+x 2+…+x m m =1m ∑i =1mx iy =y 1+y 2+…+y n n =1n∑i =1ny i总体平 均数W =∑i =1M X i +∑i =1NY iM +N样本平 均数w =∑i =1mx i +∑i =1ny im +n3.获取数据的途径 获取数据的基本途径有: (1)通过调查获取数据; (2)通过试验获取数据; (3)通过观察获取数据; (4)通过查询获取数据.1.分层随机抽样时,样本是在各层中分别抽取吗?2.分层随机抽样中,个体数量较少的层抽取的样本量较少,这是公平的吗?3.观察法是获取样本数据的途径吗?4.在比例分配的分层随机抽样中,可以直接用样本平均数w估计总体平均数W,是吗?提示:1.是;2.是;3.是;4.是.阅读教材P181问题3,如果要抽取一个有代表性的样本,男、女生的抽取比例大致是多少?提示:326∶386=163∶193.1.某校高三年级有男生500人,女生400人,为了解该年级学生的健康状况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( )A.简单随机抽样B.抽签法C.随机数法D.分层随机抽样【解析】选D.从男生500人中抽取25人,从女生400人中抽取20人,抽取的比例相同,因此用的是分层随机抽样.2.某单位有职工160人,其中业务员104人,管理人员32人,后勤服务人员24人,现用比例分配的分层随机抽样法从中抽取一容量为20的样本,则抽取管理人员______人.【解析】20160=18,设管理人员为x人,则x32=18,得x=4.答案:4基础类型一获取数据的途径(数学抽象)1.“中国天眼”为500米口径球面射电望远镜(Five-hundred-meter Aperture Spherical radio Telescope,简称FAST),是具有我国自主知识产权、世界最大单口径、最灵敏的射电望远镜.建造“中国天眼”的目的是( )A.通过调查获取数据 B.通过试验获取数据C.通过观察获取数据 D.通过查询获得数据【解析】选C.“中国天眼”主要是通过观察获取数据.2.下列哪些数据一般是通过试验获取的( )A.2021年济宁市的降雨量B.2021年全国新生儿人口数量C.某学校高一年级同学的数学测试成绩D.某种特效中成药的配方【解析】选D.某种特效中成药的配方的数据一般通过试验获得.3.下列调查所抽取的样本具有代表性的是( )A.利用某地七月份的日平均最高气温值估计该地全年的日平均最高气温B.在农村调查市民的平均寿命C.利用一块试验水稻田的产量估计水稻的实际产量D.为了了解一批洗衣粉的质量情况,从仓库中任意抽取100袋进行检验【解析】选D.A项中某地七月份的日平均最高气温值不能代表全年的日平均最高气温;B项中在农村调查得到的平均寿命不能代表市民的平均寿命;C项中试验田的产量与水稻的实际产量相差可能较大,只有D项正确.1.获取数据的基本途径:观察、查询、调查、试验.2.根据调查问题的特点设计抽样调查的不同方案,应遵循的原则:(1)要考虑如何保证调查内容的真实性;(2)要考虑如何合理地获取样本,以确保其典型性、代表性.基础类型二分层随机抽样的概念(数学抽象)【典例】1.分层随机抽样又称类型抽样,即将相似的个体归入一类(层),然后每类抽取若干个个体构成样本,所以分层随机抽样为保证每个个体被等可能抽取,必须进行( ) A.每层等可能抽样B.每层可以不等可能抽样C.所有层按同一抽样比等可能抽样D.所有层抽取的个体数量相同【解析】选C.为了保证每个个体等可能的被抽取,分层随机抽样时必须在所有层都按同一抽样比等可能抽取.2.下列问题中,适合用分层随机抽样抽取样本的是( )A.学校从10个优秀节目中抽取3个参加县元旦晚会B.某社区有500个家庭,其中高收入的家庭125户,中等收入的家庭280户,低收入的家庭95户,为了了解生活购买力的某项指标,要从中抽取一个容量为100的样本C.某学校有男、女学生各500名,为了解学生的期末复习情况,拟抽取100名学生进行调查D .某啤酒厂质检员从生产流水线上,抽取样本检查产品质量【解析】选B.A 中总体所含个体无差异且个数较少,适合用简单随机抽样;C 中总体虽然分男、女两个层,但是要了解期末复习情况,没有必要采取分层随机抽样;D 中总体所含个体无差异,不适合用分层随机抽样;B 中总体所含个体差异明显,并且要了解购买能力,与收入关系密切,适合用分层随机抽样.分层随机抽样的特点(1)适用于总体由差异明显的几部分组成的情况; (2)更充分地反映了总体的情况;(3)等概率抽样,每个个体被抽到的概率都相等.为了解某地区的“微信健步走”活动情况,拟从该地区的人群中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女“微信健步走”活动情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ) A .抽签法抽样 B .按性别分层随机抽样 C .按年龄段分层随机抽样 D .随机数法抽样【解析】选C.该地区老、中、青三个年龄段人员的“微信健步走”活动情况有较大差异,而男女差异不大,所以按年龄段分层随机抽样具有代表性,比较合理.【加固训练】为了保证分层随机抽样时每个个体被等可能地抽取,必须要求( ) A .每层等可能抽取 B .每层抽取的个体数相等C .每层抽取的个体数可以不一样多,但必须满足抽取n i =n·N i N (i =1,2,…,k)个个体(其中i 是层的序号,k 是总层数,n 为抽取的样本容量,N i 是第i 层中的个体数,N 是总体容量)D .只要抽取的样本容量一定,每层抽取的个体数没有限制【解析】选C.分层随机抽样时,在各层中按层中所含个体在总体中所占的比例进行抽样. A 中,虽然每层等可能地抽样,但是没有指明各层中应抽取几个个体,故A 不正确; B 中,由于每层的个体数不一定相等,每层抽取同样多的个体数,显然从总体来看,各层的个体被抽取的可能性就不相等了,因此B 也不正确;C 中,对于第i 层的每个个体,它被抽到的可能性与层数i 无关,即对于每个个体来说,被抽取为样本的可能性是相同的,故C 正确;D 显然不正确.综合类型 分层随机抽样的应用(数据分析)比例分配的计算【典例】我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人 C .112人 D .120人【解析】选 B.由题意可知,这是一个分层随机抽样的问题,其中北乡可抽取的人数为300×8 1008 100+7 488+6 912 =300×8 10022 500=108.分层随机抽样中按比例分配计算时,用到的两个关系式(1)样本量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.分层随机抽样的实际应用【典例】某政府机关在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.(1)若上级机关为了了解政府机构改革的意见,要从中抽取20人了解情况,应用何种方法抽取,请具体实施操作;(2)若要从工人中抽取2人作为工人代表,应用何种方法抽取.【解析】(1)由于机构改革关系到各人的不同利益,故采用分层随机抽样的方法为妥. 抽取过程如下:①将在编人员按副处级以上干部、一般干部、工人分成三层;②因为10020 =5,105 =2,705 =14,205 =4,所以从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.③由于副处级以上干部与工人人数都较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,…,69编号,然后用随机数法抽取14人.④将这20人合在一起,构成样本.(2)要从工人中抽取2人作为工人代表,应用抽签法抽取最合适.分层随机抽样的步骤【加固训练】一个单位有职工500人,其中不到35岁的有125人,35岁至49岁的有280人,50岁及50岁以上的有95人.为了了解这个单位职工与身体状态有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?【解析】由题意知,该抽样为比例分配的分层随机抽样,抽取步骤如下:(1)分层.按年龄将500名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁及50岁以上的职工.(2)确定每层抽取个体的个数.抽样比为100500 =15 ,则在不到35岁的职工中抽取125×15 =25(人);在35岁至49岁的职工中抽取280×15 =56(人);在50岁及50岁以上的职工中抽取95×15=19(人).(3)在各层按随机数法抽取样本. (4)汇总每层抽样,组成样本.用样本平均数估计总体平均数【典例】某学校为了调查高一年级学生的体育锻炼情况,从甲、乙、丙3个班中,按分层随机抽样的方法获得了部分学生一周的锻炼时间(单位:h),数据如下.甲 6 6.5 7 7.5 8 乙 6 7 8 9 10 11 12 丙34.567.5910.51213.5(1)(2)估计这个学校高一的学生中,一周的锻炼时间超过10个小时的百分比; (3)估计这个学校高一年级学生一周的平均锻炼时间.【解析】(1)由题干中的表格可知,按分层随机抽样的方法从甲、乙、丙3个班中分别抽取5个,7个,8个学生.故三个班学生人数之比为5∶7∶8.(2)由题意知,抽取的20个学生中,一周的锻炼时间超过10小时的有5人,故一周的锻炼时间超过10个小时的百分比为520=25%.(3)从甲班抽取的5名学生的总时间为6+6.5+7+7.5+8=35. 从乙班抽取的7名学生的总时间为6+7+8+9+10+11+12=63.从丙班抽取的8名学生的总时间为3+4.5+6+7.5+9+10.5+12+13.5=66. 则35+63+665+7+8 =16420=8.2.即这个学校高一年级学生一周的平均锻炼时间为8.2小时.在分层随机抽样中,如果第一层的样本量为m ,平均值为x ;第二层的样本量为n ,平均值为y ,则样本的平均值为mx +ny m +n.1.某学校为了解三年级、六年级、九年级这三个年级之间的学生的课业负担情况,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( ) A .抽签法B .简单随机抽样 C.分层随机抽样D .随机数法【解析】选C.根据年级不同产生差异及按人数比例抽取易知应为分层随机抽样. 2.为了报考理想的大学,小明需要获取近年来我国各大学会计专业录取人数的相关数据,他获取这些数据的途径最好是( ) A.通过调查获取数据 B.通过试验获取数据 C.通过观察获取数据 D.通过查询获得数据【解析】选D.因为近年来我国各大学会计专业录取人数的相关数据有存储,所以小明获取这些数据的途径最好是通过查询获得数据.3.为调查某快餐店各分店的经营状况,某统计机构用分层随机抽样的方法,从A ,B ,C 三个城市中抽取若干家某快餐店分店组成样本进行深入研究,有关数据见下表:(单位:个)城市 某快餐店数量抽取数量A 26 2B 13 x C39y则样本量为( )A.4 B.6 C.10 D.12【解析】选B.设所求的样本量为n,由题意得n26+13+39=226,解得n=6.4.从总体容量为N的一批零件中用分层抽样抽取一个容量为30的样本,若每个零件被抽取的可能性为0.25,则N等于______.【解析】分层抽样是等可能抽样,故总体容量为30÷0.25=120.答案:1205.分层随机抽样中,总体共分为2层,第1层的样本量为20,样本平均数为3,第2层的样本量为30,样本平均数为8,则该样本的平均数为______.【解析】ω=2020+30×3+3020+30×8=6.答案:6。

2020版高考数学一轮复习第九章统计与统计案例第一节统计讲义含解析

2020版高考数学一轮复习第九章统计与统计案例第一节统计讲义含解析

第一节统计突破点一随机抽样.简单随机抽样逐个不放回地()定义:设一个总体含有个个体,从中抽取个个体作为样本,如果每(≤)相等次抽取时总体内的各个个体被抽到的机会都,就把这种抽样方法叫做简单随机抽样.()最常用的简单随机抽样的方法:和随机数法.抽签法.系统抽样在抽样时,将总体分成均衡的几个部分,然后按照事先确定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样(也称为机械抽样)..分层抽样的层,然后按照在抽样时,将总体分成互不交叉一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样..三种抽样方法的比较一、判断题(对的打“√”,错的打“×”)()简单随机抽样是一种不放回抽样.( ) ()简单随机抽样每个个体被抽到的机会不一样,与先后有关.( )()系统抽样在起始部分抽样时采用简单随机抽样.( ) ()要从个学生中用系统抽样的方法选取一个容量为的样本,需要剔除个学生,这样对被剔除者不公平.( ) ()分层抽样中,每个个体被抽到的可能性与层数及分层有关.( )答案:()√()×()√()×()×二、填空题.在“世界读书日”前夕,为了了解某地名居民某天的阅读时间,从中抽取了名居民的阅读时间进行统计分析.在这个问题中,名居民的阅读时间的全体是.答案:总体.某班共有人,现根据学生的学号,用系统抽样的方法,抽取一个容量为的样本,已知号,号,号学生在样本中,那么样本中还有一个学生的学号是.答案:.甲、乙两套设备生产的同类型产品共件,采用分层抽样的方法从中抽取一个容量为的样本进行质量检测.若样本中有件产品由甲设备生产,则乙设备生产的产品总数为件.答案:.系统抽样的最基本特征是“等距性”,一般地,每组内所抽取的号码依据第一组抽取的号码和组距确定.每组抽取的号码依次构成一个以第一组抽取的号码为首项、组距为公差的等差数列{},第组抽取的号码为=+(-)..分层抽样的关键是根据样本特征的差异进行分层,实质是等比例抽样,抽样比==..(·河北石家庄二中三模)某校为了解名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取名同学进行检查,将学生从~进行编号,现已知第组抽取的号码为,则第一组用简单随机抽样抽取的号码为( )....解析:选∵从名学生中抽取一个容量为的样本,∴系统抽样的分段间隔为)=,设第一组随机抽取的号码为,则抽取的第组的号码为+×=,∴=.故选..(·吉林通化模拟)分层抽样是将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,组成一个样本的抽样方法.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持钱,乙持钱,丙持钱,甲、乙、丙三人一起出关,关税共钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法错误的是( ).甲应付钱.乙应付钱.丙应付钱.三者中甲付的钱最多,丙付的钱最少解析:选依题意由分层抽样可知,÷(++)=,则甲应付:×=(钱);乙应付:×=(钱);丙应付:×=(钱).系统抽样和分层抽样中的计算()系统抽样总体容量为,样本容量为,则要将总体均分成组,每组个(有零头时要先去掉).若第一组抽到编号为的个体,则以后各组中抽取的个体编号依次为+,…,+(-).()分层抽样按比例抽样,计算的主要依据是:各层抽取的数量之比=总体中各层的数量之比..(·唐山模拟)用简单随机抽样的方法从含有个个体的总体中抽取一个容量为的样本,则个体被抽到的概率为( )解析:选一个总体含有个个体,每个个体被抽到的概率为,用简单随机抽样方法从该总体中抽取容量为的样本,则每个个体被抽到的概率为×=..(·江西八校联考)从编号为,…,的个产品中用系统抽样的方法抽取一个样本,已知样本中编号最小的两个编号分别为,则样本中最大的编号应该为( )....解析:选根据系统抽样的定义可知样本的编号成等差数列,令=,=,则=,所以+(-)≤,所以≤,最大编号为+×=..(·陕西部分学校摸底检测)某单位有老年人人,中年人人,青年人人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为的样本,则应分别抽取老年人、中年人、青年人的人数是( )....解析:选因为该单位共有++=(人),样本容量为,所以应当按=的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是.故选..(·全国卷Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是.解析:因为客户数量大,且不同年龄段客户对其服务的评价有较大差异,所以最合适的抽样方法是分层抽样.答案:分层抽样突破点二用样本估计总体.频率分布直方图和茎叶图()作频率分布直方图的步骤最小值的差;与①②求极差(即一组数据中最大值)分组;④决定③将数据组距组数与;频率分布表列;画⑤频率分布直方图.()频率分布折线图和总体密度曲线()茎叶图的优点茎叶图的优点是可以保留原始数据,而且可以随时记录,这对数据的记录和表示都能带来方便..众数、中位数、平均数()标准差:样本数据到平均数的一种平均距离,一般用表示,= .()方差:标准差的平方=[(-)+(-)+…+(-)],其中(=,…,)是样本数据,是样本容量,是样本平均数.()方差与标准差相比,都是衡量样本数据离散程度的统计量,但方差因为对标准差进行了平方运算,夸大了样本的偏差程度..平均数、方差公式的推广若数据,,…,的平均数为,方差为,则数据+,+,…,+的平均数为+,方差为.一、判断题(对的打“√”,错的打“×”)()在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( ) ()在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.( ) ()从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.( ) ()茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.( ) ()平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( ) ()一组数据的众数可以是一个或几个,中位数也具有相同的结论.( )答案:()√()×()√()×()√()×二、填空题.在样本频率分布直方图中,共有个小长方形.若中间一个小长方形的面积等于其他个小长方形面积之和的,且样本容量为,则中间一组的频数为.答案:.某学校组织学生参加数学测试,成绩(单位:分)的频率分布直方图如图所示,数据的分组依次为[),[),[),[],若低于分的人数是,则该班的学生人数是.答案:.如图是某班位学生诗词比赛得分的茎叶图,那么这位学生得分的众数和中位数分别为.答案:.已知一组正数,,的方差=(++-),则数据+,+,+的平均数为.答案:考法一折线图、饼图的应用[例] ()(·全国卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ).新农村建设后,种植收入减少.新农村建设后,其他收入增加了一倍以上.新农村建设后,养殖收入增加了一倍.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半()(·昆明市高三质检)“搜索指数”是网民通过搜索引擎,以每天搜索关键词的次数为基础所得到的统计指标.搜索指数越大,表示网民搜索该关键词的次数越多,对该关键词相关的信息关注度也越高.如图是年月到年月这半年来,某个关键词的搜索指数变化的统计图.根据该统计图判断,下列结论正确的是( ).这半年来,网民对该关键词相关的信息关注度呈周期性变化.这半年来,网民对该关键词相关的信息关注度不断减弱.从该关键词的搜索指数来看,年月的方差小于月的方差.从该关键词的搜索指数来看,年月的平均值大于年月的平均值[解析] ()设新农村建设前,农村的经济收入为,则新农村建设后,农村经济收入为.新农村建设前后,各项收入的对比如下表:()由统计图可知,这半年来,该关键词的搜索指数变化的周期性并不显著,排除;由统计图可知,这半年来,该关键词的搜索指数的整体减弱趋势不显著,排除;由统计图可知,年月该关键词的搜索指数波动较大,月的波动较小,所以年月的方差大于月的方差,排除;由统计图可知,年月该关键词的搜索指数大多高于,该月平均值大于年月该关键词的搜索指数大多低于,该月平均值小于,选.[答案] () ()利用饼图、折线图分析问题的关键是读懂图形,读准图形中给的数据,明确图形中的变化等.考法二频率分布直方图的应用[例] (·安徽黄山二模)全世界越来越关注环境保护问题,某监测站点于年月某日起连续天监测空气质量指数(),数据统计如下表:()由频率分布直方图,求该组数据的平均数与中位数;()在空气质量指数分别为(]和(]的监测数据中,用分层抽样的方法抽取天,从中任意选取天,求事件“两天空气质量等级都为良”的概率.[解] ()∵×=,∴=,∵++++=,∴=.=;=;=;=.由此完成频率分布直方图,如图:()由频率分布直方图得该组数据的平均数为××+××+××+××+××=,∵[]的频率为×=,(]的频率为×=,∴中位数为+×=.()由题意知在空气质量指数为(]和(]的监测天数中分别抽取天和天,在所抽取的天中,将空气质量指数为(]的天分别记为,,,;将空气质量指数为(]的天记为,从中任取天的基本事件为(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),共个,其中事件“两天空气质量等级都为良”包含的基本事件为(,),(,),(,),(,),(,),(,),共个,所以()==..由频率分布直方图进行相关计算时,需掌握的两个关系式()×组距=频率.()=频率,此关系式的变形为=样本容量,样本容量×频率=频数..利用频率分布直方图估计样本的数字特征的方法()中位数:在频率分布直方图中,中位数左边和右边的直方图的面积相等,由此可以估计中位数的值.()平均数:平均数的估计值等于每个小矩形的面积乘以矩形底边中点横坐标之和.()众数:最高的矩形的中点的横坐标.考法三茎叶图的应用[例] 某市为了考核甲、乙两部门的工作情况,随机访问了位市民.根据这位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:()分别估计该市的市民对甲、乙两部门评分的中位数;()分别估计该市的市民对甲、乙两部门的评分高于的概率;()根据茎叶图分析该市的市民对甲、乙两部门的评价.[解] ()由所给茎叶图知,位市民对甲部门的评分由小到大排序,排在第位的是,故样本中位数为,所以该市的市民对甲部门评分的中位数的估计值是.位市民对乙部门的评分由小到大排序,排在第位的是,故样本中位数为=,所以该市的市民对乙部门评分的中位数的估计值是. ()由所给茎叶图知,位市民对甲、乙部门的评分高于的比率分别为=,=,故该市的市民对甲、乙部门的评分高于的概率的估计值分别为,. ()由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大..茎叶图的绘制需注意()“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;()重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置上的数据..茎叶图的用途()茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.()给定两组数据的茎叶图,估计数字特征,茎上的数字由小到大排列,一般“重心”下移者平均数较大,数据集中者方差较小.考法四样本的数字特征及其应用[例] (·河南周口上学期期末抽测调研)甲、乙两人在相同条件下各射击次,每次中靶环数情况如图所示:()请填写下表(写出计算过程):①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中环及环以上的次数相结合看(分析谁的成绩好些);③从折线图上两人射击命中环数的走势看(分析谁更有潜力).[解] 由题图,知甲射击次中靶环数分别为.将它们由小到大排列为.乙射击次中靶环数分别为.将它们由小到大排列为.()甲=×(+×+×+×+)=(环),乙=×(+++×+×+×+)=(环),=×[(-)+(-)×+(-)×+(-)×+(-)]=×(++++)=,=×[(-)+(-)+(-)+(-)×+(-)×+(-)×+(-)]=×(++++++)=.填表如下:∴甲成绩比乙稳定.②∵平均数相同,命中环及环以上的次数甲比乙少,∴乙成绩比甲好些.③甲成绩在平均数上下波动;而乙处于上升势头,从第三次以后就没有比甲少的情况发生,乙更有潜力.利用样本的数字特征解决优化决策问题的依据()平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.()用样本估计总体就是利用样本的数字特征来描述总体的数字特征.某城市收集并整理了该市年月份至月份各月最低气温与最高气温(单位:℃)的数据,绘制了下面的折线图.已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论错误的是( ).最低气温与最高气温为正相关.月的最高气温不低于月的最高气温.月温差(最高气温减最低气温)的最大值出现在月.最低气温低于℃的月份有个解析:选在中,最低气温与最高气温为正相关,故正确;在中,月的最高气温不低于月的最高气温,故正确;在中,月温差(最高气温减最低气温)的最大值出现在月,故正确;在中,最低气温低于℃的月份有个,故错误.故选.近年呼吁高校招生改革的呼声越来越高,在赞成高校招生改革的市民中按年龄分组,得到样本频率分布直方图如图所示,其中年龄在区间[)内的有人,在区间[)内的有人,则的值为( )....解析:选由题意,得年龄在区间[)内的频率为×=,则赞成高校招生改革的市民有)= (人),因为年龄在区间[)内的有人,所以=))=..一次数学考试后,某老师从甲、乙两个班级中各抽取人,记录他们的考试成绩,得到如图所示的茎叶图,已知甲班名同学成绩的平均数为,乙班名同学成绩的中位数为,则-的值为( )..-.-.解析:选由茎叶图知(\\((+++++)=,+=,))解得=,=,所以-=-,故选.在某校科普知识竞赛前的模拟测试中,得到甲、乙两名学生的次模拟测试成绩(百分制)的茎叶图.若从甲、乙两名学生中选择一人参加该知识竞赛,你会选哪位?请运用统计学的知识说明理由.解:学生甲的平均成绩甲==,学生乙的平均成绩乙==,又=×[(-)+(-)+(-)+(-)+(-)+(-)]=,=×[(-)+(-)+(-)+(-)+(-)+(-)]=,则甲=乙,>,说明甲、乙的平均水平一样,但乙的方差小,即乙发挥更稳定,故可选择学生乙参加知识竞赛.(·全国卷Ⅰ)某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:未使用节水龙头天的日用水量频数分布表使用了节水龙头天的日用水量频数分布表()在下图中作出使用了节水龙头天的日用水量数据的频率分布直方图;()估计该家庭使用节水龙头后,日用水量小于的概率;()估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:()频率分布直方图如图所示.()根据频率分布直方图知,该家庭使用节水龙头后天日用水量小于的频率为×+×+×+×=,因此该家庭使用节水龙头后,日用水量小于的概率的估计值为.()该家庭未使用节水龙头天日用水量的平均数为=×(×+×+×+×+×+×+×)=.该家庭使用了节水龙头后天日用水量的平均数为=×(×+×+×+×+×+×)=.估计使用节水龙头后,一年可节省水(-)×=().。

2020版高考数学一轮复习第9章统计与统计案例第3讲课后作业理(含解析)

2020版高考数学一轮复习第9章统计与统计案例第3讲课后作业理(含解析)

第9章 统计与统计案例 第3讲A 组 基础关1.观察下列各图形:其中两个变量x ,y 具有相关关系的图是( ) A .①② B .①④ C .③④ D .②③ 答案 C解析 观察散点图可知,两个变量x ,y 具有相关关系的图是③④.2.设某大学的女生体重y (单位:kg)与身高x (单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的回归方程为y ^=0.85x -85.71,则下列结论中不正确的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(x -,y -)C .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg 答案 D解析 D 选项中,若该大学某女生身高为170 cm ,根据回归方程只能近似认为其体重为58.79 kg ,但不是绝对的.故D 不正确.故选D.3.甲、乙、丙、丁四位同学各自对A ,B 两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r 与残差平方和m 如下表:则哪位同学的试验结果体现A ,B 两变量有更强的线性相关性( ) A .甲 B .乙 C .丙 D .丁 答案 D解析 在验证两个变量之间的线性相关关系时,相关系数的绝对值越接近1,相关性越强,在四个选项中只有丁的相关系数最大;残差平方和越小,相关性越强,只有丁的残差平方和最小,综上可知丁的试验结果体现了A ,B 两个变量有更强的线性相关性.故选D.4.(2018·江西南城一中、高安中学联考)随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.由K 2=n ad -bc 2a +bc +d a +cb +d,得K 2=-265×35×58×42≈9.616.参照下表,正确的结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关” 答案 C解析 k ≈9.616>6.635,∴有99%以上的把握认为“生育意愿与城市级别有关”.故选C.5.(2018·河南天一大联考)已知变量x ,y 之间满足线性相关关系y ^=1.3x -1,且x ,y 之间的相关数据如下表所示:则m =( )A .0.8B .1.8C .0.6D .1.6 答案 B解析 依题意,x =1+2+3+44=2.5,将x =2.5代入y ^=1.3x -1中,解得y =2.25,故m =2.25×4-0.1-3.1-4=1.8.6.已知两个随机变量x ,y 之间的相关关系如下表所示:根据上述数据得到的回归方程为y =b x +a ,则大致可以判断( ) ⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑ni =1x i y i -n x -y -∑n i =1x 2i -n x 2,a ^=y -b ^x -A.a ^>0,b ^>0 B.a ^>0,b ^<0 C.a ^<0,b ^>0 D.a ^<0,b ^<0答案 C解析 由已知得,x -=0.2,y -=-1.7, ∴b ^=20+6-1-1+4--16+4+1+4+16-2=99136>0, ∴a ^=-1.7-99136×0.2<0,或利用散点图,易判断b ^>0,a ^<0.故选C.7.为了解疾病A 是否与性别有关,在一医院随机地对入院的50人进行了问卷调查,得到了如下的列联表:则有多大的把握认为患疾病A与性别有关( ) 下面的临界值表供参考:A.95% B.99% C.99.5% D.99.9%答案 C解析根据所给的2×2列联表,得K2=-230×20×25×25≈8.333>7.879.故有99.5%的把握认为患疾病A与性别有关.故选C.8.在西非“埃博拉病毒”的传播速度很快,这已经成为全球性的威胁,为了考察某种埃博拉病毒疫苗的效果,现随机抽取100只小鼠进行试验,得到如下列联表:参照附表,在犯错误的概率不超过________的前提下,认为“小动物是否被感染与服用疫苗有关”.答案 0.05解析 由题意得,K 2=-250×50×30×70≈4.762>3.841.所以在犯错误的概率不超过0.05的前提下,认为“小动物是否被感染与服用疫苗有关”.9.给出下列命题:①线性相关系数r 越大,两个变量的线性相关性越强;反之,线性相关性越弱; ②由变量x 和y 的数据得到其回归直线方程为l :y ^=bx +a ,则l 一定经过点P (x -,y -); ③在匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;④在回归分析模型中,残差平方和越小,说明模型的拟合效果越好;⑤在回归直线方程y ^=0.1x +10中,当解释变量x 每增加一个单位时,预报变量y ^增加0.1个单位.则所有正确的命题的序号是________. 答案 ②④⑤解析 线性相关系数为r ,当|r |越接近1时,两个变量的线性相关性越强;当|r |越接近0时,两个变量的线性相关性越弱,①错误;由变量x 和y 的数据得到其回归直线方程为l :y ^=bx +a ,则l 一定经过P (x -,y -),②正确;每10分钟从匀速传递的产品流水线上,抽取一件产品进行某项指标检测,这样的抽样是系统抽样,③错误;相关指数R 2用来刻画回归的效果,其计算公式是R 2=1-∑ni =1y i -y ^i 2∑ni =1y i -y2,在含有一个解释变量的线性模型中,R 2恰好等于相关系数r 的平方,显然,R 2取值越大,意味着残差平方和越小,也就是模型的拟合效果越好,④正确;回归直线方程y ^=0.1x +10中,当解释变量x 每增加一个单位时,预报变量y ^增加0.1个单位,⑤正确.10.在一组样本数据(x 1,y 1),(x 2,y 2),…,(x 6,y 6)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,6)都在曲线y =bx 2-13附近波动.经计算∑6i =1x i =11,∑6i =1y i =13,∑6i =1x 2i =21,则实数b 的值为________.答案 57解析 令t =x 2,则曲线的回归方程变为线性的回归方程,即y =bt -13,此时t =∑6i =1x 2i6=72,y =∑6i =1y i 6=136,代入y =bt -13,得136=b ×72-13,解得b =57. B 组 能力关1.(2017·山东高考)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系.设其回归直线方程为y ^=b ^x +a ^.已知∑i =110x i =225,∑i =110y i =1600,b ^=4.该班某学生的脚长为24,据此估计其身高为( )A .160B .163C .166D .170 答案 C解析 ∵∑i =110x i =225,∴x =110∑i =110x i =22.5.∵∑i =110y i =1600,∴y =110∑i =110y i =160.又b ^=4,∴a ^=y -b ^x =160-4×22.5=70. ∴回归直线方程为y ^=4x +70.将x =24代入上式得y ^=4×24+70=166. 故选C.2.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( )A.成绩 B.视力 C.智商 D.阅读量答案 D解析K21=-2 16×36×20×32,令5216×36×20×32=m ,则K 21=82m ,同理,K 22=m ×(4×20-12×16)2=1122m ,K 23=m ×(8×24-8×12)2=962m ,K 24=m ×(14×30-6×2)2=4082m ,∴K 24>K 22>K 23>K 21,则与性别有关联的可能性最大的变量是阅读量.故选D.3.(2018·青岛模拟)针对时下的“韩剧热”,某校团委对“学生性别和喜欢韩剧是否有关”作了一次调查,其中女生人数是男生人数的12,男生喜欢韩剧的人数占男生人数的16,女生喜欢韩剧的人数占女生人数的23.若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有________人.答案 12解析 设男生人数为x ,由题意可得列联表如下:若有95%的把握认为是否喜欢韩剧和性别有关,则k >3.841, 即k =3x 2⎝ ⎛⎭⎪⎫x 6·x 6-5x 6·x 32x ·x 2·x 2·x =3x8>3.841,解得x >10.243.因为x 6,x2为整数,所以若有95%的把握认为是否喜欢韩剧和性别有关,则男生至少有12人.4.(2018·全国卷Ⅱ)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,…,17)建立模型①:y ^=-30.4+13.5t ;根据2010年至2016年的数据(时间变量t 的值依次为1,2,…,7)建立模型②:y ^=99+17.5t .(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.解 (1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 y ^=-30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为 y ^=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y =-30.4+13.5t 上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型y ^=99+17.5t 可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.(以上给出了2种理由,考生答出其中任意一种或其他合理理由均可.)C 组 素养关1.某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).(1)求图中a 的值;(2)估计该次考试的平均分x (同一组中的数据用该组的区间中点值代表);(3)根据已知条件完成下面的2×2列联表,并判断能否有85%的把握认为“晋级成功”与性别有关.⎝ ⎛⎭⎪⎫参考公式:K 2=n ad -bc 2a +b c +d a +c b +d ,其中n =a +b +c +d解 (1)由频率分布直方图中各小长方形的面积总和为1,可知(2a +0.020+0.030+0.040)×10=1,故a =0.005.(2)由频率分布直方图知各小组的区间中点值分别为55,65,75,85,95,对应的频率分别为0.05,0.30,0.40,0.20,0.05,故可估计平均分x =55×0.05+65×0.3+75×0.4+85×0.2+95×0.05=74(分).(3)由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25,故晋级成功的人数为100×0.25=25,故填表如下:K 2=-225×75×50×50≈2.613>2.072,所以有85%的把握认为“晋级成功”与性别有关.2.(2018·汕头模拟)二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图:(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关系数加以说明;(2)求y 关于x 的回归方程并预测某辆A 型号二手车当使用年数为9年时售价约为多少?(b ^,a ^小数点后保留两位有效数字)(3)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考公式:回归方程y ^=b ^x +a ^中斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1 x i -x y i -y ∑n i =1 x i -x 2=∑n i =1x i y i -n x -y -∑n i =1x 2i -n x 2,a ^=y -b ^x .r =∑n i =1 x i -xy i -y ∑ni =1 x i -x 2∑n i =1 y i -y 2 . 参考数据:∑6i =1x i y i =187.4,∑6i =1x i z i =47.64,∑6i =1x 2i =139, ∑6i =1x i -x2≈4.18, ∑6i =1 y i -y 2=13.96, ∑6i =1 z i -z 2=1.53,ln 1.46≈0.38,ln 0.7118≈-0.34.解 (1)由题意,计算x =16×(2+3+4+5+6+7)=4.5, z =16×(3+2.48+2.08+1.86+1.48+1.10)=2,且∑6i =1x i z i =47.64, ∑6i =1 x i -x2≈4.18, ∑6i =1 z i -z 2=1.53,所以r =∑n i =1 x i -xz i -z∑n i =1x i -x 2∑n i =1 z i -z 2 =47.64-6×4.5×24.18×1.53=-6.366.3954≈-0.99;所以z 与x 的相关系数大约为-0.99,说明z 与x 的线性相关程度很高.(2)利用最小二乘估计公式计算b ^=∑n i =1x i z i -n x -z -∑n i =1x 2i -n x 2=47.64-6×4.5×2139-6×4.52=-6.3617.5 ≈-0.36,所以a ^=z -b ^x =2+0.36×4.5=3.62,所以z 与x 的线性回归方程是z ^=-0.36x +3.62,又z =ln y ,所以y 关于x 的回归方程是y ^=e -0.36x +3.62;令x =9,解得y ^=e -0.36×9+3.62≈1.46,即预测某辆A 型号二手车当使用年数为9年时售价约1.46万元.(3)当y ^≥0.7118时,e -0.36x +3.62≥0.7118=e ln 0.7118=e -0.34,所以-0.36x +3.62≥-0.34,解得x ≤11,因此预测在收购该型号二手车时车辆的使用年数不得超过11年.。

(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)

(必考题)高中数学选修1-2第一章《统计案例》检测(答案解析)(1)

一、选择题1.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9162.甲、乙两人进行乒乓球比赛,假设每局比赛甲胜的概率是0.6,乙胜的概率是0.4.那么采用5局3胜制还是7局4胜制对乙更有利?( ) A .5局3胜制B .7局4胜制C .都一样D .说不清楚3.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.袋中装有10个形状大小均相同的小球,其中有6个红球和4个白球.从中不放回地依次摸出2个球,记事件A =“第一次摸出的是红球”,事件B =“第二次摸出的是白球”,则(|)P B A =( )A .25B .415C .49D .595.某射手射击一次命中的概率为0.8,连续两次射击均命中的概率是0.6,已知该射击手某次射中,则随后一次射中的概率是( ) A .34B .45C .35D .7106.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1157.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.下列说法中正确的是( )A .设随机变量~(10,0.01)X N ,则1(10)2P X >= B .线性回归直线不一定过样本中心点(,)x yC .若两个随机变量的线性相关性越强,则相关系数r 的值越接近于1D .先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为50m +,100m +,150m +,……的学生,这样的抽样方法是分层抽样9.若对于变量x 的取值为3,4,5,6,7时,变量y 对应的值依次分别为4.0,2.5,-0.5,-1,-2;若对于变量u 的取值为1,2,3,4时,变量v 对应的值依次分别为2,3,4,6,则变量x 和y ,变量u 和v 的相关关系是( ) A .变量x 和y 是正相关,变量u 和v 是正相关 B .变量x 和y 是正相关,变量u 和v 是负相关 C .变量x 和y 是负相关,变量u 和v 是负相关 D .变量x 和y 是负相关,变量u 和v 是正相关 10.在一次独立性检验中,得出列表如下:且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720B .360C .180D .9011.下列有关结论正确的个数为( )①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点不相同”,事件B =“小赵独自去一个景点”,则()2|9P A B =; ②设,a b ∈R ,则“22log log a b >”是“21a b ->的充分不必要条件;③设随机变量ξ服从正态分布(),7N μ,若()()24P P ξξ<=>,则μ与D ξ的值分别为3,7D μξ==. A .0B .1C .2D .312.通过随机询问72名不同性别的学生在购买食物时是否看营养说明,得到如下列联表:女 男 总计 读营养说明 16 28 44 不读营养说明 20 8 28 总计363672参考公式:22()()()()()n ad bc K a b c d a c b d -=++++20()P K k ≥ 0.100.05 0.025 0.010 0.005 0.001 0k 2.7063.8415.0246.6357.87910.828则根据以上数据:A .能够以99.5%的把握认为性别与读营养说明之间无关系;B .能够以99.9%的把握认为性别与读营养说明之间无关系;C .能够以99.5%的把握认为性别与读营养说明之间有关系;D .能够以99.9%的把握认为性别与读营养说明之间有关系;二、填空题13.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为35和p,且甲、乙两人各射击一次得分之和为2的概率为920.假设甲、乙两人射击互不影响,则p 值为______. 14.对标有不同编号的6件正品和4件次品的产品进行检测,不放回地依次摸出2件.在第一次摸出正品的条件下,第二次也摸到正品的概率是_________.15.如图, A, B, C 表示3种开关,设在某段时间内它们正常工作的概率是分别是0.9 , 0.8 , 0.7 , 如果系统中至少有1个开关能正常工作,则该系统就能正常工作, 那么该系统正常工作的概率是____________16.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.17.用线性回归模型求得甲、乙、丙3组不同的数据对应的2R的值分别为0.81,0.98,0.63,其中__________(填甲、乙、丙中的一个)组数据的线性回归的效果最好.18.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A;“抽出的学生英语口语测试成绩不低于85分”记为事件B.则P(A|B)的值是_____.20.近年来,新能源汽车技术不断推陈出新,新产品不断涌现,在汽车市场上影响力不断增大.动力蓄电池技术作为新能源汽车的核心技术,它的不断成熟也是推动新能源汽车发展的主要动力.假定现在市售的某款新能源汽车上,车载动力蓄电池充放电循环次数达到2000次的概率为85%,充放电循环次数达到2500次的概率为35%.若某用户的自用新能源汽车已经经过了2000次充电,那么他的车能够充电2500次的概率为______.三、解答题21.2020年1月24日,中国疾控中心成功分离中国首株新型冠状病毒毒种.6月19日,中国首个新冠mRNA疫苗获批启动临床试验,截至2020年10月20日,中国共计接种了约6万名受试者,为了研究年龄与疫苗的不良反应的统计关系,现从受试者中采取分层抽样抽取100名,其中大龄受试者有30人,舒张压偏高或偏低的有10人,年轻受试者有70人,舒张压正常的有60人.(1)根据已知条件完成下面的22⨯列联表,并据此资料你是否能够以99%的把握认为受试者的年龄与舒张压偏高或偏低有关?大龄受试者年轻受试者合计舒张压偏高或偏低舒张压正常合计6人,从抽出的6人中任取3人,设取出的大龄受试者人数为X,求X的分布列和数学期望.运算公式:()()()()()22n ad bcKa b c d a c b d-=++++,对照表:22.某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,量其内径尺寸,得结果如下表:甲厂:乙厂:(1)试分别估计两个分厂生产的零件的优质品率;(2)由以上统计数据填下面22⨯列联表,并问是否有0099的把握认为“两个分厂生产的零件的质量有差异”.附:22()()()()()n ad bcKa b c d a c b d-=++++23.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关? ()()()()()22n ad bc K a b a d b c c d -=++++()2P K k >0.15 0.100.050.025 0.010 0.005 0.001k2.0722.7063.8415.0246.6357.879 10.82824.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为子调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访男性、女性用户各50名,将男性、女性使用微信的时间分成5组:(]0,2,(]2,4,(]4,6,(]6,8,(]8,10分别加以统计,得到如图所示的频率分布直方图.(1)根据女性频率分布直方图估计女性使用微信的平均时间;(2)若每天再微信超过4个小时的用户列为“微信控”,否则称其为“非微信控”,请你根据已知条件完成22⨯的列联表,并判断是否有90%的把握认为“微信控”与“性别有关”? 25.2019年,中国的国内生产总值(GDP )已经达到约100万亿元人民币,位居世界第二,这其中实体经济的贡献功不可没实体经济组织一般按照市场化原则运行,某生产企业一种产品的成本由原料成本及非原料成本组成,每件产品的非原料成本y (元)与生产该产品的数量x (千件)有关,经统计得到如下数据:x1 2 3 4 5 6 7 8 y1126144.53530.5282524根据以上数据,绘制了如下的散点图.现考虑用反比例函数模型by a x=+和指数函数模型dx y ce =分别对两个变量的关系进行拟合.为此变换如下:令1xμ=,则y a b μ=+,即y 与μ满足线性关系;令ln νμ=,则ln c dx ν=+,即ν与x 也满足线性关系.这样就可以使用最小二乘法求得非线性的回归方程.已求得用指数函数模型拟合的回归方程为96.54dx y e =,ν与x 的相关系数10.94r =-,其他参考数据如表(其中1ln i i i iy x μν==).(1)求指数函数模型和反比例函数模型中y 关于x 的回归方程;(2)试计算y 与μ的相关系数2r ,并用相关系数判断:选择反比例函数和指数函数两个模型中的哪一个拟合效果更好(计算精确到0.01)?(3)根据(2)小题的选择结果,该企业采取订单生产模式(即根据订单数量进行生产,产品全部售出).根据市场调研数据,该产品单价定为100元时得到签订订单的情况如表:已知每件产品的原料成本为10元,试估算企业的利润是多少?(精确到1千元) 参考公式:对于一组数据()11,μν,()22,μν,⋅⋅⋅,(),n n μν,其回归直线ναβμ=+的斜率和截距的最小二乘估计分别为:1221ni i i nii n n μνμνβμμ==-=-∑∑,ανβμ=-,相关系数ni in r μνμν-=∑26.为更好地落实农民工工资保证金制度,南方某市劳动保障部门调查了2018年下半年该市100名农民工(其中技术工、非技术工各50名)的月工资,得到这100名农民工的月工资均在[]25,55(百元)内,且月工资收入在[45,50)(百元)内的人数为15,并根据调查结果画出如图所示的频率分布直方图:(1)求n 的值;(2)已知这100名农民工中月工资高于平均数的技术工有31名,非技术工有19名. ①完成如下所示22⨯列联表技术工 非技术工 总计 月工资不高于平均数 50 月工资高于平均数50 总计5050100②则能否在犯错误的概率不超过0.001的前提下认为是不是技术工与月工资是否高于平均数有关系?参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.050.01 0.005 0.001 0k 3.8416.6357.87910.828【参考答案】***试卷处理标记,请不要删除一、选择题 1.D解析:D 【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率. 【详解】分以下两种情况讨论: (1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=; (2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=. 综上所述:第3球投进的概率为1539323216+=,故选D. 【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.2.A解析:A 【分析】分别计算出乙在5局3胜制和7局4胜制情形下对应的概率,然后进行比较即可得出答案. 【详解】当采用5局3胜制时,乙可以3:0,3:1,3:2战胜甲,故乙获胜的概率为:322222340.4+0.40.60.40.40.60.40.3174C C ⨯⨯+⨯⨯≈;当采用7局4胜制时,乙可以4:0,4:1,4:2,4:3战胜甲,故乙获胜的概率为:4333323334560.4+0.40.60.40.40.60.4+0.40.60.40.2898C C C ⨯⨯+⨯⨯⨯⨯≈,显然采用5局3胜制对乙更有利,故选A. 【点睛】本题主要考查相互独立事件同时发生的概率,意在考查学生的计算能力和分析能力,难度中等.3.C解析:C 【解析】分析:利用公式求得观测值2K ,对照数表,即可得出正确的结论. 详解:根据列联表可得()223042168=1020101218K ⨯⨯-⨯=⨯⨯⨯,27.8791010.828K <=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bc K a b a d a c b d -=++++计算2K 的值;(3) 查表比较2K 与临界值的大小关系,作统计判断.4.C解析:C 【解析】分析:利用概率的计算公式,求解事件A 和事件A B 的概率,即可利用条件概率的计算公式,求解答案.详解:由题意,事件A =“第一次摸出的是红球”时,则63()105P A ==, 事件A =“第一次摸出的是红球”且事件B =“第二次摸出白球”时,则6412()10945P AB =⨯=, 所以()4(|)()9P AB P B A P A ==,故选C . 点睛:本题主要考查了条件概率的计算,其中熟记条件概率的计算公式和事件的概率是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与计算能力.5.A解析:A 【解析】分析:某次射中,设随后一次射中的概率为p ,利用相互独立事件概率乘法公式能求出p 的值.详解:某次射中,设随后一次射中的概率为p ,∵某射击手射击一次命中的概率为0.8,连续两次均射中的概率是0.5,0.80.6p ,∴= 解得34p =.故选:A .点睛:本题考查概率的求法,涉及到相互独立事件概率乘法公式的合理运用,考查推理论证能力、运算求解能力、数据处理能力,考查化归与转化思想,是基础题.6.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案. 详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A是两两互斥事件, ()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确. 故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.A解析:A 【解析】在A 中,设随机变量X 服从正态分布N (10,0.01),则由正态分布性质得1(10)2P X >=,故A 正确; 在B 中,线性回归直线一定过样本中心点(),x y ,故B 错误;在C 中,若两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于1,故C 错误;在D 中,先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为m ,然后抽取编号为m+50,m+100,m+150…的学生,这样的抽样方法是系统抽样法,故D 错误. 故选:A9.D解析:D 【解析】变量x 增加,变量y 减少,所以变量x 和y 是负相关;变量u 增加,变量v 增加,所以变量u 和v 是正相关,因此选D.10.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.11.D解析:D 【解析】对于①,4344443273()()464432A PB P AB ⨯====,,所以()2()()9P AB P A B P B ==,故①正确;对于②,当22log log a b >,有0a b >>,而由21a b ->有a b >,因为0,0a b a b a b a b >>⇒>>≠>>> ,所以22log log a b >是21a b ->的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线3ξ=对称,且27σ= 所以3,7D μξ==,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.12.C解析:C 【解析】2272(1682028)=8.427.87944283636K ⨯⨯-⨯≈⨯⨯⨯>∴性别和读营养说明之间有99.5%的可能性. 本题选择C 选项.二、填空题13.【分析】根据甲乙两人各射击一次得分之和为2的概率为列方程解方程求得的值【详解】甲乙两人各射击一次得分之和为2可能是甲击中乙未击中或者乙击中甲未击中故解得故答案为:【点睛】本小题主要考查相互独立事件概解析:34【分析】根据甲、乙两人各射击一次得分之和为2的概率为920列方程,解方程求得p 的值. 【详解】甲、乙两人各射击一次得分之和为2,可能是甲击中乙未击中,或者乙击中甲未击中,故()339115520p p ⎛⎫⋅-+⋅-= ⎪⎝⎭,解得34p =. 故答案为:34【点睛】本小题主要考查相互独立事件概率计算,属于基础题.14.【解析】设第一次摸出正品为事件第二次摸出正品为事件则事件和事件相互独立在第一次摸出正品的条件下第二次也摸到正品的概率为:故答案为 解析:【解析】设“第一次摸出正品”为事件A ,“第二次摸出正品”为事件B , 则事件A 和事件B 相互独立,在第一次摸出正品的条件下,第二次也摸到正品的概率为:()()655109|6910P AB P B A P A ⨯===().故答案为5915.994【解析】由题意知本题是一个相互独立事件同时发生的概率种开关中至少有个开关能正常工作的对立事件是种开关都不能工作分别记开关能正常工作分别为事件故答案为解析:994 【解析】由题意知本题是一个相互独立事件同时发生的概率,,,A B C ,3种开关中至少有1 个开关能正常工作的对立事件是3种开关都不能工作,分别记,,A B C 开关能正常工作分别为事件123,,A A A ,()()1231,,10.10.20.30.994P E P A A A =-=-⨯⨯=, 故答案为0.994. 16.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.17.乙【解析】线性回归模型中越接近1效果越好故乙效果最好解析:乙 【解析】线性回归模型中2R 越接近1,效果越好,故乙效果最好.18.【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件分别做出甲至多命中2个球的概率和乙至少命中两个球的概率根据相互独立事件的概率公式得到结果【详解】甲至多命中2个且乙至少命中2个包含的解析:1118【分析】甲至多命中2个且乙至少命中2个包含的两个事件是相互独立事件,分别做出甲至多命中2个球的概率和乙至少命中两个球的概率,根据相互独立事件的概率公式得到结果. 【详解】甲至多命中2个且乙至少命中2个包含的两个事件是互相独立事件, 设“甲至多命中2个球”为事件A ,“乙至少命中2个球”为事件B ,由题意()41322124411111112222216P A C C ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, ()22342344212128333339P B C C ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ∴甲至多命中2个球且乙至少命中2个球的概率为()()1181116918P A P B ⋅=⨯=,故答案为1118. 【点睛】本题考查独立重复试验,考查离散型随机变量,是一个综合题,解题时注意进球的个数对应的是乙所得的分数,注意分数与进球个数的对应.19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的车能够充电2500次为事件B 即求条件概率:由条件概率公式即得解【详解】记某用户的自用新能源汽车已经经过了2000次充电为事件A 他的解析:717【分析】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:(|)P B A ,由条件概率公式即得解. 【详解】记“某用户的自用新能源汽车已经经过了2000次充电”为事件A ,“他的车能够充电2500次”为事件B ,即求条件概率:()35%7(|)()85%17P A B P B A P A ===故答案为:717【点睛】本题考查了条件概率的应用,考查了学生概念理解,数学应用,数学运算的能力,属于基础题.三、解答题21.(1)没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)分布列见解析,()32E X = 【分析】(1)根据题意列出列联表,再计算2 4.762 6.635K ≈<,故没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关;(2)由分层抽样得抽得样本的大龄受试者有3人,年轻受试者有3人,X 的可能取值为0,1,2,3,再结合超几何分布求概率和期望即可.【详解】解:()122⨯列联表如下:()210010601020 4.762 6.63530702080K ⨯⨯-⨯∴=≈<⨯⨯⨯所以,没有99%的把握认为受试者的年龄与舒张压偏高或偏低有关.(2)由题意得,采用分层抽样抽取的6人中,大龄受试者有3人,年轻受试者有3人, 所以大龄受试者人数为X 的可能取值为0,1,2,3,所以()33361020C P X C ===,()2133369120C C P X C ===, ()1233369220C C P X C ===,()33361320C P X C ===,所以X 的分布列为:所以()0123202020202E X =⨯+⨯+⨯+⨯=. 【点睛】本题第二问解题的关键在于根据题意得抽取的6人中,大龄受试者有3人,年轻受试者有3人,进而根据超几何分布求概率分布列与数学期望,考查运算求解能力,是中档题.22.(1) 72% 64% (2) 有99%的把握认为“两个分厂生产的零件的质量有差异” 【解析】解:(1)甲厂抽查的产品中有360件优质品,从而甲厂生产的零件的优质品率估计为360500=72%;乙厂抽查的产品中有320件优质品,从而乙厂生产的零件的优质品率估计为320500=64%. (2)χ2=()1000360180320140500500680320⨯⨯-⨯⨯⨯⨯≈7.35>6.635,所以有99%的把握认为“两个分厂生产的零件的质量有差异”. 23.(1)0.035,41.5;(2)有. 【分析】(1)由频率分布直方图求出a 的值,再计算数据的平均值;(2)由题意填写列联表,计算观测值,对照临界值得出结论. 【详解】(1)由频率分布直方图可得:10×(0.01+0.015+a +0.03+0.01)=1, 解得a =0.035,所以通过电子阅读的居民的平均年龄为:20×10×0.01+30×10×0.015+40×10×0.035+50×10×0.03+60×10×0.01=41.5;(2)由题意200人中通过电子阅读与纸质阅读的人数之比为3:1, ∴纸质阅读的人数为20014⨯=50,其中中老年有30人,∴纸质阅读的青少年有20人,电子阅读的总人数为150,青少年人数为1500.10.150.35⨯++()=90,则中老年有60人, 得2×2列联表,计算()2200903060202006.061 5.024501501109033K ⨯-⨯==≈>⨯⨯⨯,所以有97.5%的把握认为认为阅读方式与年龄有关. 【点睛】本题考查了频率分布直方图与独立性检验的应用问题,考查了阅读理解的能力,是基础题.24.(1)4.76;(2)有90%的把握认为“微信控”与“性别”有关 【解析】 试题分析:(1)由频率直方图中各概率乘以各方块中点频率相加后即得;(2)从频率直方图中可计算出“微信控”和“非微信控”的男女生人数,再计算出2K 可得. 试题(1)女性平均使用微信的时间为:0.16×1+0.24×3+0.28×5+0.2×7+0.12×9=4.76. (2)2(0.04+a +0.14+2×0.12)=1,解得a =0.08. 由题设条件得列联表:所以K 2==≈2.941>2.706.所以有90%的把握认为“微信控”与“性别”有关.25.(1)指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+;(2)20.99r ≈;用反比例函数模型拟合效果更好;(3)612(千元). 【分析】(1)由96.54dx y e =,得ln ln96.54 4.6y dx dx ν=+⇔=+,将 3.7ν=, 4.5x =代入可得指数模型回归方程.令1xμ=,则y b a μ=+,代入y ,求得b ,a ,可得反比例函数回归方程.(2)求得y 与u 的相关系数为2r ,由12r r <,可得结论. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,可求得订单的期望,从而求得该企业的利润约. 【详解】解:(1)因为96.54dx y e =,所以ln ln96.54 4.6y dx dx ν=+⇔=+, 将 3.7ν=, 4.5x =代入上式,得0.2d =-,所以0.296.54x y e -=.令1xμ=,则y b a μ=+, 因为360458y ==,所以182218183.480.34451001.5380.1158ni ii i i u y u yb u u==-⋅-⨯⨯===-⨯-∑∑,则451000.3411a y b u =-⋅=-⨯=,所以11100y u =+, 所以y 关于x 的回归方程为10011y x=+. 综上,指数模型回归方程为0.296.54x y e -=,反比例函数回归方程为10011y x=+. (2)y 与u 的相关系数为812882222118610.9961.40.616185.588i ii i i i i u y u yr u u y y ===-⋅===≈⨯⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭∑∑∑,因为12r r <,所以用反比例函数模型拟合效果更好. (3)设该企业的订单期望为S (千件),则109811011111123101122222S ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 令109811111123102222T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭①, 则111092111111*********T ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭②, ②-①,得11109211111522222T ⎛⎫⎛⎫⎛⎫⎛⎫-=+++⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,化简得10192T ⎛⎫=+ ⎪⎝⎭,所以101391292256S ⎛⎫=+⨯=+ ⎪⎝⎭,所以该企业的利润约为:3310091009101161232562569256⎡⎤⎢⎥⎛⎫⎛⎫+⨯-+⨯++≈ ⎪ ⎪⎢⎥⎝⎭⎝⎭+⎢⎥⎣⎦(千元). 【点睛】本题考查线性回归方程的求得,相关系数的比较,以及运用数学期望求利润,属于中档题. 26.(1)0.05n =;(2)①列联表见解析;②不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关 【分析】(1)根据频率分布直方图列方程组求得n 的值;(2)根据题意得到22⨯列联表,计算观测值,对照临界值表得出结论. 【详解】 (1)月工资收入在[45,50)(百元)内的人数为15月工资收入在[45,50)(百元)内的频率为:150.15100=; 由频率分布直方图得:(0.020.0420.01)50.151n +++⨯+=0.05n ∴=(2)①根据题意得到列联表:技术工 非技术工总计月工资不高于平均数193150月工资高于平均数3119 50总计 50 50 1002 5.7610.82850505050K ==<⨯⨯⨯ 不能在犯错误的概率不超过0.001的前提下,认为是不是技术工与月工资是否高于平均数有关.【点睛】本题主要考查了独立性检验和频率分布直方图的应用问题,也考查了计算能力及频率应用问题,是基础题.。

高考数学(广东专用,文科)大一轮复习配套课时训练:第九篇 统计、统计案例 第1节 随机抽样(含答案)

高考数学(广东专用,文科)大一轮复习配套课时训练:第九篇 统计、统计案例 第1节 随机抽样(含答案)

第九篇统计、统计案例(必修3、选修12)第1节随机抽样课时训练练题感提知能【选题明细表】A组一、选择题1.(2013年高考湖南卷)某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( D )(A)抽签法 (B)随机数法(C)系统抽样法(D)分层抽样法解析:由抽样的目的是为调查男女差别,因此应采用分层抽样方法,故选D.2.为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是( D )(A)5,10,15,20,25 (B)2,4,6,8,10(C)1,2,3,4,5 (D)7,17,27,37,47解析:利用系统抽样,把编号分为5段,每段10个,每段抽取1个,号码间隔为10.故选D.3.(2013蚌埠一模)某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2),则完成(1)(2)这两项调查宜采用的抽样方法依次是( B )(A)分层抽样法,系统抽样法(B)分层抽样法,简单随机抽样法(C)系统抽样法,分层抽样法(D)简单随机抽样法,分层抽样法解析:(1)由于总体中由互不交叉的层构成,所以采用分层抽样的方法.(2)总体数较少,所以采取简单随机抽样即可,故选B.4.(2013年高考新课标全国卷Ⅰ)为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( C )(A)简单随机抽样(B)按性别分层抽样(C)按学段分层抽样 (D)系统抽样解析:因该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,所以最合理的抽样方法是按学段分层抽样,故选C.5.(2013合肥市第三次质检)某初级中学领导采用系统抽样方法,从该校初一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是( B )(A)40 (B)39 (C)38 (D)37解析:按系统抽样定义知,第k组抽取号数为n k=7+16×(k-1)=16k-9(k∈N*),显然当k=3时,n3=39.故选B.6.(2013济南模拟)某全日制大学共有学生5600人,其中专科生有1300人,本科生有3000人,研究生有1300人,现采用分层抽样的方法调查学生利用因特网查找学习资料的情况,抽取的样本为280人,则应在专科生、本科生与研究生这三类学生中分别抽取( A ) (A)65人,150人,65人(B)30人,150人,100人(C)93人,94人,93人(D)80人,120人,80人解析:设应在专科生、本科生与研究生这三类学生中分别抽取x人,y 人,z人,则有===,解得x=z=65,y=150.故选A.二、填空题7.(2013佛山质检(一))课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市的个数分别为4,12,8.若用分层抽样的方法抽取6个城市,则丙组中应抽取的城市数为. 解析:由分层抽样的特点知,丙组中应抽取的城市数为×6=2.答案:28.(2012年高考浙江卷)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为.解析:男生人数为560×=160.答案:1609.(2012年高考江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取名学生.解析:因为高二年级学生人数占总数的,样本容量为50,所以50×=15.答案:1510.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250②5,9,100,107,111,121,180,195,200,265③11,38,65,92,119,146,173,200,227,254④30,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,错误的说法有.(1)②、③都不能为系统抽样(2)②、④都不能为分层抽样(3)①、④都可能为系统抽样(4)①、③都可能为分层抽样解析:由系统抽样又称等距离抽样,抽取间隔相等,所以②、④不能为系统抽样.①③可能为分层抽样,所以(4)正确,(1)、(2)、(3)错误. 答案:(1)(2)(3)三、解答题11.某单位有职工550人,现为调查职工的健康状况,先决定将职工分成三类:青年人、中年人、老年人,经统计后知青年人的人数恰是中年人的人数的两倍,而中年人的人数比老年人的人数多50人.若采用分层抽样,从中抽取22人的样本,则青年人、中年人、老年人应该分别抽取多少人?解:设该单位职工中老年人的人数为x,则中年人的人数为x+50,青年人的人数为2(x+50),∴x+x+50+2(x+50)=550,∴x=100,x+50=150,2(x+50)=300,∴该单位有青年人300人,中年人150人,老年人100人.由题意知抽样比例为=,∴青年人、中年人、老年人应分别抽取12人、6人、4人.12.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取. 解:用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴=2,=14,=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人.(3)将2人,4人,14人的编号混合在一起就取得了容量为20的样本.13.(2013年高考广东卷)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如表:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)的频率是=0.4.(2)设从重量在[80,85)的苹果中抽取x个,则从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1、ab2、ab3、b1b2、b1b3、b2b3共6种不同方法.即基本事件总数为6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1、ab2、ab3,共3个,由古典概型的概率计算公式得P(A)==.B组14.(2013年高考陕西卷)某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( B )(A)11 (B)12 (C)13 (D)14解析:使用系统抽样方法,从840人中抽取42人,即从20人抽取1人. 所以从编号1~480的人中,恰好抽取24人,从编号1~720的人中抽取36人,所以从编号481~720抽取人数为36-24=12.故选B.15.网络上流行一种“QQ农场游戏”,这种游戏通过软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02, 03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为.解析:设抽到编号为a n,即a1=3,a2=9,a n=3+6(n-1)=6n-3,令6n-3≤60,即n≤.则当n=10时,a n的最大值为57.故最大编号为57.答案:5716.某校对全校1600名男女学生的视力状况进行调查,现用分层抽样的方法抽取一个容量为200的样本,已知女生比男生少抽10人,则该校的女生人数应该为.解析:设该校的女生人数为x,则男生人数为1600-x,按照分层抽样的原理,各层的抽样比为=, 所以女生应抽取人,男生应抽取人,所以+10=,解得x=760.答案:760。

2020版一轮复习理科数学习题:统计与统计案例(必修3、选修1-2)第2节用样本估计总体含解析

2020版一轮复习理科数学习题:统计与统计案例(必修3、选修1-2)第2节用样本估计总体含解析

第2节用样本估计总体【选题明细表】基础巩固(时间:30分钟)1.(2018·贵阳一模)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70,60,60,50,60,40,40,30,30,10,则这组数据的众数、中位数、平均数的和为( D )(A)170 (B)165 (C)160 (D)150解析:数据70,60,60,50,60,40,40,30,30,10的众数是60,中位数是45,平均数是45,故众数、中位数、平均数的和为150,故选D.2.如图是某市今年10月份某天6时至20时温度变化折线图,下列说法错误的是( D )(A)这天温度极差为8 ℃(B)这天温度的中位数在9 ℃附近(C)这天温度无明显变化的是早上6时至早上8时(D)这天温度变化率绝对值最大的是上午11时至中午13时解析:由折线图可得,最高气温为14 ℃,最低气温为 6 ℃,所以这天温度极差为8 ℃,故排除A;从6时至20时温度从低到高依次排列,可得这天温度的中位数为9 ℃附近,故排除B;由折线图可得,从6时至8时,温度没有明显变化,故排除C;由折线图可得,从13时至15时,温度变化率绝对值最大,故D是错误的.故选D. 3.(2018·开封三模)学校根据某班的期中考试成绩绘制了频率分布直方图(如图所示),根据图中所给的数据可知a+b等于( C )(A)0.024 (B)0.036 (C)0.06 (D)0.6解析:根据频率分布直方图得,(0.01+a+b+0.018+0.012)×10=1,解得a+b=0.06.故选C.4.(2018·江西二模)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则( A )(A)=4,s2<2 (B)=4,s2>2(C)>4,s2<2 (D)>4,s2>2解析:某7个数的平均数为4,方差为2,加入一个新数据4后,这8个数的平均数为=×(7×4+4)=4,方差为s2=×[7×2+(4-4)2]=<2.故选A.5.(2018·南安一中模拟)某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( C )(A)6万元(B)8万元(C)10万元(D)12万元解析:设11时到12时的销售额为x万元,依题意有=,所以x=10,故选C.6.(2018·龙岩模拟)党的十八大以来,脱贫攻坚取得显著成绩,2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所得年收入情况调查统计,年收入的频率分布直方图如图所示,数据(单位:千元)的分组依次为[20,40),[40,60),[60,80),[80,100],则年收入不超过6万的家庭大约为( A )(A)900户(B)600户(C)300户(D)150户解析:由频率分布直方图得:年收入不超过6万的家庭所占频率为(0.005+0.010)×20=0.3,所以年收入不超过6万的家庭大约为0.3×3 000=900.故选A.7.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70~99分),若甲、乙两组学生的平均成绩一样,则a= ;甲、乙两组学生的成绩相对整齐的是.解析:由题意可知==89,解得a=5.因为=×(142+1+0+92+62)=,=×(132+42+0+92+82)=,所以<,故成绩相对整齐的是甲组.答案:5 甲组能力提升(时间:15分钟)8.(2018·沙市区校级一模)已知四个正数x1,x2,x3,x4的标准差s=0.2,则数据2x1-1,2x2-1,2x3-1,2x4-1的方差为( D )(A)0.2 (B)0.4 (C)0.8 (D)0.16解析:根据题意,设四个正数x 1,x2,x3,x4的平均数为,则有=(x 1+x2+x3+x4),又由其标准差s=0.2,则有其方差s2=[(x 1-)2+(x2-)2+(x3-)2+(x4-)2]=0.04,对于数据2x1-1,2x2-1,2x3-1,2x4-1,其平均数为,则有=(2x 1-1+2x2-1+2x3-1+2x4-1)=2-1,则其方差s′2=[(2x 1-1-2+1)2+(2x2-1-2+1)2+(2x3-1-2+1)2+(2x 4-1-2+1)2]=4s2=0.16,故选D.9.(2018·济宁二模)2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是.解析:由频率分布直方图得:评估得分在[60,70)的频率为0.015×10=0.15,评估得分在[70,80)的频率为0.040×10=0.4,所以估计这100名职工评估得分的中位数是70+×10=78.75.答案:78.7510.(2018·北京模拟)在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,1,那么这组数据的方差s2可能的最大值是.解析:设这组数据的最后2个分别是10+x,y,则9+10+11+(10+x)+y=50,得x+y=10,故y=10-x,故s2=[1+0+1+x2+(-x)2]=+x2,显然x最大取9时,s2最大是.答案:11.如图茎叶图是甲、乙两人在5次综合测评中的成绩(为整数),其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是.解析:由图可知,甲的平均分为90.设被污损的数为x,乙的成绩分别是83,83,87,90+x,99,其中被污损的成绩为0到9中的某一个.由甲的平均成绩超过乙的平均成绩,得<90.所以x<8.又x是0到9的十个整数中的其中一个,所以x<8的概率为=.答案:12.(2018·全国Ⅰ卷)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:(1)如图所示.(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48. (3)该家庭未使用节水龙头50天日用水量的平均数为=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65×5)=0.48. 该家庭使用了节水龙头后50天日用水量的平均数为=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0.35.估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3).13.(2018·新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;(2)轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎,试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?解:(1)甲厂这批轮胎宽度的平均值为:=(195+194+196+193+194+197+196+195+193+197)=195(cm),乙厂这批轮胎宽度的平均值为:=(195+196+193+192+195+194+195+192+195+193)=194(cm).(2)甲厂这批轮胎宽度在[194,196]内的数据为195,194,196,194,196,195,平均数为=(195+194+196+194+196+195)=195,方差为=[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+(195-195)2]=,乙厂这批轮胎宽度在[194,196]内的数据为195,196,195,194,195,195.平均数为=(195+196+195+194+195+195)=195,方差为=[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+(195-195)2]=.因为两厂标准轮胎宽度的平均数相等,但乙厂的方差更小. 所以乙厂的轮胎相对更好.。

(典型题)高中数学选修1-2第一章《统计案例》检测题(答案解析)

(典型题)高中数学选修1-2第一章《统计案例》检测题(答案解析)

一、选择题1.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5 B .4 C .1 D .02.下列命题:①在一个22⨯列联表中,由计算得2 6.679K =,则有99%的把握确认这两类指标间有关联②若二项式22nx x ⎛⎫+ ⎪⎝⎭的展开式中所有项的系数之和为243,则展开式中4x -的系数是40③随机变量X 服从正态分布()1,2N ,则()()02P X P X <=> ④若正数,x y 满足230x y +-=,则2x yxy+的最小值为3 其中正确命题的序号为( ) A .①②③ B .①③④C .②④D .③④3.为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:由最小二乘法得与的线性回归方程为,则当时,繁殖个数y 的预测值为( ) A .4.9 B .5.25 C .5.95D .6.154.变量X 与Y 相对应的一组数据为(10 , 1),(11.3 , 2),(11.8 , 3),(12.5 , 4),(13 , 5);变量U 与V 相对应的一组数据为(10 , 5),(11.3 , 4),(11.8 , 3),(12.5 , 2),(13 , 1).1r 表示变量Y X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则( )A .120r r <<B .210r r <<C .210r r <<D .21r r =5.从1,2,3,4,5中不放回地依次选取2个数,记事件A =“第一次取到的是奇数”,事件B =“第二次取到的是奇数”,则(|)P B A =( )A .12B .25C .310D .156.甲、乙两名同学参加2018年高考,根据高三年级一年来的各种大、中、小型数学模拟考试总结出来的数据显示,甲、乙两人能考140分以上的概率分别为12和45,甲、乙两人是否考140分以上相互独立,则预估这两个人在2018年高考中恰有一人数学考140 分以上的概率为( ) A .12B .23C .34D .137.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取出一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取出的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,下列结论中不正确...的是( ) A .事件B 与事件1A 不相互独立 B .1A 、2A 、3A 是两两互斥的事件 C .17(|)11P B A =D .3()5P B =8.一射手对同一目标独立地进行4次射击,且射击结果之间互不影响.已知至少命中一次的概率为8081,则此射手的命中率为( ) A .19 B .13 C .23D .8 99.下列关于回归分析的说法中错误的是( ) A .回归直线一定过样本中心(,)x yB .残差图中残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适C .两个模型中残差平方和越小的模型拟合的效果越好D .甲、乙两个模型的2R 分别约为0.98和0.80,则模型乙的拟合效果更好 10.下列结论中正确的是( )A .若两个变量的线性关系性越强,则相关系数的绝对值越接近于0B .回归直线至少经过样本数据中的一个点C .独立性检验得到的结论一定正确D .利用随机变量2x 来判断“两个独立事件,X Y 的关系”时,算出的2x 值越大,判断“,X Y 有关”的把握越大11.下列关于统计学的说法中,错误的是( ) A .回归直线一定过样本中心点(),x y B .残差带越窄,说明选用的模型拟合效果越好C .在线性回归模型中,相关指数2R 的值趋近于1,表明模型拟合效果越好D .从独立性检验:有99%的把握认为吸烟与患肺病有关系时,可解释为100人吸烟,其中就有99人可能患有肺病12.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为( ) A .0.12B .0.42C .0.46D .0.88二、填空题13.已知在某一局羽毛球比赛中选手L 每回合的取胜概率为34,双方战成了27平,按照如下规则:①每回合中,取胜的一方加1分;②领先对方2分的一方赢得该局比赛;③当双方均为29分时,先取得30分的一方赢得该局比赛,则选手L 取得本局胜利的概率是______.14.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是15,且相互独立,则至少两人译出密码的概率为___________. 15.下列说法正确的个数有_________(1)已知变量x 和y 满足关系23y x =-+,则x 与y 正相关;(2)线性回归直线必过点(),x y ;(3)对于分类变量A 与B 的随机变量2k ,2k 越大说明“A 与B 有关系”的可信度越大 (4)在刻画回归模型的拟合效果时,残差平方和越小,相关指数2R 的值越大,说明拟合的效果越好.16.某质检员检验一件产品时,把正品误判为次品的概率是0.1,把次品误判为正品的概率是0.05.如果一箱产品中含有8件正品,2件次品,现从中任取1件让该质检员检验,那么出现误判的概率为___________.17.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两篮球运动员进行定点投篮,每人各投4个球,甲投篮命中的概率为12,乙投篮命中的概率为23,求甲至多命中2个且乙至少命中2个概率____. 20.在一段线路中有4个自动控制的常用开关A 、B 、C 、D ,如图连接在一起,假定在2019年9月份开关A ,D 能够闭合的概率都是0.7,开关B ,C 能够闭合的概率都是0.8,则在9月份这段线路能正常工作的概率为________.三、解答题21.垃圾分类收集处理是一项利国利民的社会工程和环保工程.搞好垃圾分类收集处理,可为政府节省开支,为国家节约能源,减少环境污染,是建设资源节约型社会的一个重要内容.为推进垃圾分类收集处理工作,A市通过多种渠道对市民进行垃圾分类收集处理方法的宣传教育,为了解市民能否正确进行垃圾分类处理,调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到如下列联表(单位:人):有关?(2)将频率视为概率,现从A市55岁及以下的市民中用随机抽样的方法每次抽取1人,共抽取3次.记被抽取的3人中“不能正确进行垃圾分类”的人数为X,若每次抽取的结果是相互独立的,求随机变量X的分布列和均值()E X.附:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.22.2020年11月某市进行了高中各年级学生的“国家体质健康测试”.现有1500名(男生1200名,女生300名)学生的测试成绩,根据性别按分层抽样的方法抽取100名学生进行分析,得到如下统计图表:男生测试情况:生恰好是一男一女的概率;(2)若测试成绩为良好或优秀的学生为“体育达人”,其他成绩的学生(含病残等免试学生)为“非体育达人”.根据以上统计数据填写下面的列联表,并回答能否在犯错误的概率不超过0.01的前提下认为“是否为体育达人与性别有关?”附:22(),()()()()n ad bc K n a b c d a b c d a c b d ⎛⎫-==+++ ⎪++++⎝⎭23.2019年6月25日,《固体废物污染环境防治法(修订草案)》初次提请全国人大常委会审议,草案对“生活垃圾污染环境的防治”进行了专章规定.草案提出,国家推行生活垃圾分类制度.为了了解人民群众对垃圾分类的认识,某市环保部门对该市市民进行了一次垃圾分类网络知识问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的1000人(其中450人为女性)的得分(满分:100分)数据,统计结果如表所示:(1)由频数分布表可以认为,此次问卷调查的得分Z 服从正态分布,210N μ,近似为这1000人得分的平均值(同一组数据用该组区间的中点值作为代表),请利用正态分布的知识求()50.594P Z <<;(2)把市民分为对垃圾分类“比较了解”(不低于60分的)和“不太了解”(低于60分的)两类,请完成如下22⨯列联表,并判断是否有99%的把握认为市民对垃圾分类的了解程度与性别有关?(3)从得分不低于80分的被调查者中采用分层抽样的方法抽取10名.再从这10人中随机抽取3人,求抽取的3人中男性人数的分布列及数学期望. 参考数据:①21014.5≈;②若()2,XN μσ,则()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=,()330.9973P X μσμσ-<<+=;③()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.0010k2.072 2.7063.8415.0246.6357.879 10.828()()()()()22n ad bc K a b c d a c b d -=++++, .n a b c d =+++ 24.为推动更多人阅读,联合国教科文组织确定每年的4月23日为“世界读书日”.设立目的是希望居住在世界各地的人,无论你是年老还是年轻,无论你是贫穷还是富裕,都能享受阅读的乐趣,都能尊重和感谢为人类文明做出过巨大贡献的思想大师们,都能保护知识产权.为了解不同年龄段居民的主要阅读方式,某校兴趣小组在全市随机调查了200名居民,经统计这200人中通过电子阅读与纸质阅读的人数之比为3:1,将这200人按年龄分组,其中统计通过电子阅读的居民得到的频率分布直方图如图所示. (1)求a 的值及通过电子阅读的居民的平均年龄;(2)把年龄在第123,,组的居民称为青少年组,年龄在第45,组的居民称为中老年组,若选出的200人中通过纸质阅读的中老年有30人,请完成上面22⨯列联表,则是否有97.5%的把握认为阅读方式与年龄有关?()()()()()22n ad bc K a b a d b c c d -=++++25.某研究所在研究某种零件的使用寿命和维护成本的关系时,得到以下数据: (1)若x 与y 之间存在线性相关关系y a bx =+①,试估计a ,b 的值a ,b ;(2)若x 与y 之间存在非线性相关关系2y c dx =+②,可按与(1)类似的方法得到8c =,2d =,且模型②残差平方和为6.计算模型①的残差平方和,并指出哪个模型的拟合效果更好;(3)利用(2)中拟合效果较好的模型,计算当零件使用多少个月时报废,可使得零件的性价比(即零件寿命与维护成本的比值)最高.参考公式:若()(),1,2,,i i x y i n =⋅⋅⋅是线性相关变量x ,y 的n 组数据,其回归直线y a bx =+的斜率和截距的最小二乘估计分别为:()()()121ˆˆˆni i i nii x x y y b x x ay bx ==⎧--⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑. 26.在一定范围内,植物的生长受到空气、水、温度、光照和养分等因素的影响,某试验小组为了研究光照时长对某种植物增长高度的影响,在保证其他因素相同的条件下,对该植物进行不同时长的光照试验,经过试验,得到6组该植物每日的光照时间x (单位:h )和每日平均增长高度y (单位:mm )的数据.(1)该小组分别用模型①ˆˆˆybx a =+和模型②ˆˆˆmx n y e +=对以上数据进行拟合,得到回归模型,并计算出模型的残差如下表:(模型①和模型②的残差分别为1ˆe 和2ˆe ,残差ˆˆi i i ey y =-)根据上表的残差数据,应选择哪个模型来刻画该植物每日的光照时间与每日平均增长高度的关系较为合适,简要说明理由;(2)为了优化模型,将(1)中选择的模型残差绝对值最大所对应的一组数据(),x y 剔除,根据剩余的5组数据,求该模型的回归方程,并预测光照时间为11h 时,该植物的平均增长高度.(剔除数据前的参考数据:7.5x =, 5.9y =,61299.8i ii x y==∑,621355i i x ==∑,ln z y =,141z ≈.,6173.10i i i x z =≈∑,n10.7l 2.37≈, 4.03456.49e ≈.)参考公式:()()()1122211ˆn niii ii i nniii i x x y y x y nxybx x xnx ====---==--∑∑∑∑,ˆˆay bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】 设2t x =,则()11491625115t =++++=,()12173693142585y =++++=586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A 【点睛】本题考查回归分析的应用,属于中档题.2.B解析:B 【解析】 【分析】根据2 6.679 6.635K =>可知①正确;代入1x =可求得5n =,利用展开式通项,可知3r =时,为含4x -的项,代入可求得系数为80,②错误;根据正态分布曲线的对称性可知③正确;由2121223x y x yxy y x y x ⎛⎫++=+=+⋅ ⎪⎝⎭,利用基本不等式求得最小值,可知④正确. 【详解】①2 6.679 6.635K =>,则有99%的把握确认这两类指标间有关联,①正确;②令1x =,则所有项的系数和为:3243n =,解得:5n = 52222n x x x x ⎛⎫⎛⎫∴+=+ ⎪ ⎪⎝⎭⎝⎭则其展开式通项为:()55355222rrrr r rCx C x x --⎛⎫=⋅⋅ ⎪⎝⎭当534r -=-,即3r =时,可得4x -系数为:335280C ⋅=,②错误;③由正态分布()1,2N 可知其正态分布曲线对称轴为1X = ()()02P X P X ∴<=>,③正确;④212122122533x y x y x yxy y x y x y x ⎛⎫⎛⎫++=+=+⋅=++ ⎪ ⎪⎝⎭⎝⎭0x ,0y > 20x y ∴>,20yx>224x y y x ∴+≥=(当且仅当22x y y x =,即x y =时取等号) ()214533x y xy +∴≥+=,④正确. 本题正确选项:B 【点睛】本题考查命题真假性的判断,涉及到独立性检验的基本思想、二项展开式各项系数和与指定项系数的求解、正态分布曲线的应用、利用基本不等式求解和的最小值问题.3.B解析:B【分析】根据表格中的数据,求得样本中心为97(,)22,代入回归直线方程,求得ˆ0.35a =,得到回归直线的方程为ˆ0.70.35yx =+,即可作出预测,得到答案. 【详解】由题意,根据表格中的数据,可得34569 2.534 4.57,4242x y ++++++====, 即样本中心为97(,)22,代入回归直线方程ˆˆ0.7yx a =+,即79ˆ0.722a=⨯+, 解得ˆ0.35a=,即回归直线的方程为ˆ0.70.35y x =+, 当7x =时,ˆ0.770.35 5.25y=⨯+=,故选B . 【点睛】本题主要考查了回归直线方程的应用,其中解答中熟记回归直线方程的特征,求得回归直线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.4.C解析:C 【分析】求出1r ,2r ,进行比较即可得到结果 【详解】变量X 与Y 相对应的一组数据为()()()()()10111.3211.8312.54135,,,,,,,,,()1011.311.812.513511.72X ∴=++++÷=()1234553Y =++++÷=即17.20.375519.172r ==变量U 与V 相对应的一组数据为()()()()()10511.3411.8312.52131,,,,,,,,,1234535U ++++==∴这一组数据的相关系数20.3755r =-则第一组数据的相关系数大于0,第二组数据的相关系数小于0 则210r r << 故选C 【点睛】本题主要考查的是变量的相关性,属于基础题.5.A解析:A 【解析】分析:利用条件概率公式求(|)P B A .详解:由条件概率得(|)P B A =2311341.2A C C =故答案为A.点睛:(1)本题主要考查条件概率的求法,意在考查学生对该知识的掌握水平.(2) 条件概率的公式:()(|)()P AB P B A P A ==()()n AB n A . 6.A解析:A 【解析】分析:根据互斥事件概率加法公式以及独立事件概率乘积公式求概率.详解:因为这两个人在2018年高考中恰有一人数学考140 分以上的概率为甲考140 分以上乙未考到140 分以上事件概率与乙考140 分以上甲未考到140 分以上事件概率的和,而 甲考140 分以上乙未考到140 分以上事件概率为14(1)25⨯-,乙考140 分以上甲未考到140 分以上事件概率为14(1)25-⨯,因此,所求概率为14(1)25⨯-1451(1)25102+-⨯==, 选A.点睛:本题考查互斥事件概率加法公式以及独立事件概率乘积公式,考查基本求解能力.7.D解析:D 【解析】分析:由题意1A ,2A ,3A 是两两互斥事件,条件概率公式求出1(|)P B A ,()()()()123P B P A B P A B P A B =++,对照选项即可求出答案.详解:由题意1A ,2A ,3A 是两两互斥事件,()()()12351213,,10210510P A P A P A =====, ()()()111177211|1112P BA P B A P A ⨯===,()23|11P B A =,()33|11P B A =,而()()()()123P B P A B P A B P A B =++()()()()()()112233|||P A P B A P A P B A P A P B A =++1713332115111011=⨯+⨯+⨯ 511=. 所以D 不正确.故选:D.点睛:本题考查相互独立事件,解题的关键是理解题设中的各个事件,且熟练掌握相互独立事件的概率简洁公式,条件概率的求法,本题较复杂,正确理解事件的内蕴是解题的关键.8.C解析:C【解析】设此射手未射中目标的概率为p,则1-p4=8081,所以p=13,故此射手的命中率为1-p=2 3 .故选C9.D解析:D【解析】对于A,回归直线一定过样本中心,正确;对于B,可用残差图判断模型的拟合效果,残差点比较均匀地落在水平的带状区域中,说明这样的模型比较合适。

(教师用书)2020届高考数学第一轮复习 第九篇 统计与统计案例细致讲解练 理 新人教A版

(教师用书)2020届高考数学第一轮复习 第九篇 统计与统计案例细致讲解练 理 新人教A版

第九篇 统计与统计案例第1讲 随机抽样[最新考纲]1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.知 识 梳 理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本. (1)编号:先将总体的N 个个体编号;(2)分段:确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =N n; (3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );(4)获取样本:按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.辨析感悟1.对简单随机抽样的认识(1)(教材思考问题改编)在简单随机抽样中,某一个个体被抽到的可能性与第几次抽取有关,第一次抽到的可能性最大.(×)(2)从100件玩具中随机拿出一件,放回后再拿出一件,连续拿5次,是简单随机抽样.(×) 2.对系统抽样的理解(3)系统抽样适用于元素个数较多且分布均衡的总体.(√)(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.(×)3.对分层抽样的理解(5)分层抽样中,每个个体被抽到的可能性与层数及分层有关.(×)(6)(2014·郑州模拟改编)某校即将召开学生代表大会,现从高一、高二、高三共抽取60名代表,则可用分层抽样方法抽取.(√)(7)(2013·湖南卷改编)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是分层抽样.(√)[感悟·提升]两点提醒一是简单随机抽样(抽签法和随机数法)都是从总体中逐个地进行抽取,都是不放回抽样,如(2).二是三种抽样方法在抽样过程中每个个体被抽到的可能性都相等,如(1)、(4)、(5).考点一简单随机抽样【例1】下列抽取样本的方式是否属于简单随机抽样?(1)从无限多个个体中抽取100个个体作为样本.(2)盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.(3)从20件玩具中一次性抽取3件进行质量检验.(4)某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.解 (1)不是简单随机抽样.由于被抽取的样本总体的个体数是无限的,而不是有限的. (2)不是简单随机抽样.由于它是放回抽样.(3)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(4)不是简单随机抽样.因为指定个子最高的5名同学是56名中特指的,不存在随机性,不是等可能抽样.规律方法 (1)简单随机抽样需满足;①抽取的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.(2)简单随机抽样常有抽签法(适用总体中个体数较少的情况)、随机数表法(适用于个体数较多的情况).【训练1】 下列抽样试验中,适合用抽签法的有( ). A .从某厂生产的5 000件产品中抽取600件进行质量检验 B .从某厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 C .从甲、乙两厂生产的两箱(每箱18件)产品中抽取6件进行质量检验 D .从某厂生产的5 000件产品中抽取10件进行质量检验 答案 B考点二 系统抽样【例2】 采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( ). A .7 B .9 C .10 D .15解析 从960人中用系统抽样方法抽取32人,则每30人抽取一人,因为第一组抽到的号码为9,则第二组抽到的号码为39,第n 组抽到的号码为a n =9+30(n -1)=30n -21,由451≤30n -21≤750,得23615≤n ≤25710,所以n =16,17,…,25,共有25-16+1=10人,选C. 答案 C规律方法 (1)系统抽样适用的条件是总体容量较大,样本容量也较大.(2)使用系统抽样时,若总体容量不能被样本容量整除,可以先从总体中随机地剔除几个个体,从而确定分段间隔.(3)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定. 【训练2】 (1)从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( ).A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,6,16,32(2)(2014·临沂模拟)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是( ).A .10B .11C .12D .16解析 (1)间隔距离为10,故可能编号是3,13,23,33,43.(2)因为29号、42号的号码差为13,所以3+13=16,即另外一个同学的学号是16. 答案 (1)B (2)D考点三 分层抽样【例3】 (2014·兰州模拟)某学校三个兴趣小组的学生人数分布如下表(每名同学只参加一个小组)(单位:人)从参加这三个兴趣小组的学生中抽取30人,结果篮球组被抽出12人,则a 的值为________. 解析 因为3045+15+30+10+a +20=1245+15,所以解得a =30.答案 30规律方法 进行分层抽样的相关计算时,常利用以下关系式巧解: (1)样本容量n 总体的个数N =该层抽取的个体数该层的个体数; (2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.【训练3】 (1)(2012·江苏卷)某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.(2)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为________. 解析 (1)高二年级学生人数占总数的33+3+4=310.样本容量为50,则高二年级抽取:50×310=15(名)学生.(2)由题意知,青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15. 答案 (1)15 (2)151.三种抽样方法的联系三种抽样方法的共同点都是等概率抽样,即抽样过程中每个个体被抽到的概率相等,体现了这三种抽样方法的客观性和公平性.若样本容量为n ,总体的个体数为N ,则用这三种方法抽样时,每个个体被抽到的概率都是nN. 2.各种抽样方法的特点(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性,个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.创新突破8——抽样方法与概率的交汇问题【典例】(2012·天津卷)某地区有小学21所,中学14所,大学7所,现采用分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.(1)求应从小学、中学、大学中分别抽取的学校数目;(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,①列出所有可能的抽取结果;②求抽取的2所学校均为小学的概率.突破1:确定分层抽样中的每层所占的比例.突破2:用列举法列出所有可能抽取的结果.突破3:利用古典概型的计算公式计算.解(1)由分层抽样的定义知,从小学中抽取的学校数目为6×2121+14+7=3;从中学中抽取的学校数目为6×1421+14+7=2;从大学中抽取的学校数目为6×721+14+7=1.则从小学、中学、大学分别抽取的学校数目为3,2,1.(2)①在抽取到的6所学校中,3所小学分别记为A1,A2,A3,2所中学分别记为A4,A5,大学记为A6,则抽取2所学校的所有可能结果为(A1,A2),(A1,A3),(A1,A4),(A1,A5),(A1,A6),(A2,A3),(A2,A4),(A2,A5),(A2,A6),(A3,A4),(A3,A5),(A3,A6),(A4,A5),(A4,A6),(A5,A6),共15种.②从6所学校中抽取的2所学校均为小学(记为事件B)的所有可能结果为(A1,A2),(A1,A3),(A2,A3),共3种.所以P(B)=315=15.[反思感悟] 分层抽样与概率结合的题目多与实际问题紧密联系,计算量和阅读量都比较大,且一般会有图表,求解时容易造成失误,平时需注意多训练此类型的题目. 【自主体验】(2014·潮州模拟)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:学历 35岁以下35~50岁50岁以上本科 8030 20研究生x 20y样本看成一个总体,从中任取2人,求至少有1人学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值. 解 (1)用分层抽样的方法在35~50岁中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3.抽取的样本中有研究生2人,本科生3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有等可能基本事件共有10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 1,B 3),(B 2,B 3),其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1)(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人学历为研究生的概率为710. (2)由题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20, ∴4880+x =2050=1020+y, 解得x =40,y =5. 即x ,y 的值分别为40,5.基础巩固题组(建议用时:40分钟)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是( ).A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本的容量是100解析 1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案 D2.(2013·新课标全国Ⅰ卷)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( ).A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样解析因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案 C3.(2014·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=( ).A.54 B.90 C.45 D.126解析依题意有33+5+7×n=18,由此解得n=90,即样本容量为90.答案 B4.(2013·江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( ).A .08B .07C .02D .01解析 由题意知前5个个体的编号为08,02,14,07,01. 答案 D5.(2014·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( ).A .1,2,3,4,5,6B .6,16,26,36,46,56C .1,2,4,8,16,32D .3,9,13,27,36,54 解析 系统抽样是等间隔抽样. 答案 B 二、填空题6.(2014·成都模拟)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为________.解析 甲组中应抽取的城市数为624×4=1.答案 17.某校高级职称教师26人,中级职称教师104人,其他教师若干人.为了了解该校教师的工资收入情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.解析 设其他教师为x 人,则5626+104+x =16x ,解得x =52,∴x +26+104=182(人).答案 1828.(2014·青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析 因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号. 答案 37 三、解答题9.某初级中学共有学生2 000名,各年级男、女生人数如下表:(1)求x 的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? 解 (1)∵x2 000=0.19.∴x =380.(2)初三年级人数为y +z =2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12名.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取. 解 用分层抽样方法抽取. 具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. (2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.能力提升题组 (建议用时:25分钟)一、选择题1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( ). A .800 B .1 000 C .1 200 D .1 500解析 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200双皮靴. 答案 C2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为( ).A .26,16,8B .25,17,8C .25,16,9D .24,17,9解析 由题意知间隔为60050=12,故抽到的号码为12k +3(k =0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人. 答案 B 二、填空题3.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为______.若采用分层抽样,40岁以下年龄段应抽取________人.解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x 人,则40200=x100,解得x =20.答案 37 20 三、解答题4.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)名?(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率. 解 (1)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(2)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y 1,Y 2),大于40岁有3名(记为A 1,A 2,A 3).5名观众中任取2名,共有10种不同取法:Y 1Y 2,Y 1A 1,Y 1A 2,Y 1A 3,Y 2A 1,Y 2A 2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.第2讲 用样本估计总体[最新考纲]1.了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率分布折线图、茎叶图,体会他们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释. 4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解样本估计总体的思想.5.会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.知 识 梳 理知 识 梳 理1.频率分布直方图(1)通常我们对总体作出的估计一般分成两种,一种是用样本的频率分布估计总体的频率分布,另一种是用样本的数字特征估计总体的数字特征.(2)在频率分布直方图中,纵轴表示频率组距,数据落在各小组内的频率用各小长方形的面积表示,各小长方形的面积总和等于1.(3)连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率分布折线图就会越来越接近于一条光滑的曲线,统计中称之为总体密度曲线,它能够更加精细的反映出总体在各个范围内取值的百分比.(4)当样本数据较少时,用茎叶图表示数据的效果较好,它不但可以保留所有信息,而且可以随时记录,给数据的记录和表示都带来方便. 2.用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数①众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.②中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数.③平均数:样本数据的算术平均数,即x =1n(x 1+x 2+…+x n ).在频率分布直方图中,中位数左边和右边的直方图的面积相等. (2)样本方差、标准差 标准差s =1n[x 1-x2+x 2-x2+…+x n -x2].其中x n是样本数据的第n项,n是样本容量,x是平均数.标准差是反映总体波动大小的特征数,样本方差是标准差的平方.通常用样本方差估计总体方差,当样本容量接近总体容量时,样本方差很接近总体方差.辨析感悟1.对频率分布直方图的认识(1)在频率分布直方图中,小矩形的高表示频率.(×)(2)频率分布直方图中各个长方形的面积之和为1.(√)2.对样本数字特征的认识(3)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.(√)(4)一组数据的方差越大,说明这组数据的波动越大.(√)(5)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(6)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.(√)(7)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)(8)如图是某电视台综艺节目举办的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和方差分别为85,1.6.(√) (9)(2014·广州调研改编)10名工人某天生产同一零件,生产的件数分别是15,17,14,10,15,19,17,16,14,12,则这一天10名工人生产的零件的中位数是15.(√)[感悟·提升]1.作频率分布直方图的步骤(1)求极差;(2)确定组距和组数;(3)将数据分组;(4)列频率分布表;(5)画频率分布直方图.2.两个防范一是在频率分布直方图中,小矩形的高表示频率/组距,而不是频率,如(1);二是利用频率分布直方图求众数、中位数和平均数时,应注意三点:①最高的小长方形底边中点的横坐标即是众数;②中位数左边和右边的小长方形的面积和是相等的;③平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.考点一频率分布直方图的应用【例1】某中学高一女生共有450人,为了了解高一女生的身高情况,随机抽取部分高一女生测量身高,所得数据整理后列出频率分布表如下:组别频数频率145.5~149.5 8 0.16 149.5~153.5 6 0.12 153.5~157.5 14 0.28 157.5~161.5 10 0.20 161.5~165.5 80.16165.5~169.5m n 合计MN(1)(2)在给出的直角坐标系中画出频率分布直方图;(3)估计该校高一女生身高在149.5~165.5 cm 范围内有多少人?审题路线 由频率分布表可以计算出m ,n ,M ,N 的值⇒作频率分布直方图⇒利用频率分布直方图求值.解 (1)由题意M =80.16=50,落在区间165.5~169.5内数据频数m =50-(8+6+14+10+8)=4,频率为n =0.08,总频率N =1.00. (2)频率分布直方图如下图:(3)该所学校高一女生身高在149.5~165.5 cm 之间的比例为0.12+0.28+0.20+0.16=0.76,则该校高一女生在此范围内的人数为450×0.76=342(人).规律方法 解决频率分布直方图的问题,关键在于找出图中数据之间的联系.这些数据中,比较明显的有组距、频率组距,间接的有频率、小长方形的面积,合理使用这些数据,再结合两个等量关系:小长方形面积=组距×频率组距=频率,小长方形面积之和等于1,即频率之和等于1,就可以解决直方图的有关问题.【训练1】 (2013·辽宁卷)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100]人.若低于60分的人数是15人,则该班的学生人数是( ). A .45 B .50 C .55 D .60解析 第一、第二小组的频率分别是0.1,0.2,所以低于60分的频率是0.3,设班级人数为m ,则15m=0.3,m =50.答案 B考点二 茎叶图的应用【例2】 为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h),试验的观测结果如下: 服用A 药的20位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用B 药的20位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成右面茎叶图,从茎叶图看,哪种药的疗效更好? 解 (1)设A 药观测数据的平均数为x A ,B 药观测数据的平均数为x B ,则x A=120(0.6+1.2+2.7+1.5+2.8+1.8+2.2+2.3+3.2+3.5+2.5+2.6+1.2+2.7+1.5+2.9+3.0+3.1+2.3+2.4)=2.3.x B=120(3.2+1.7+1.9+0.8+0.9+2.4+1.2+2.6+1.3+1.4+1.6+0.5+1.8+0.6+2.1+1.1+2.5+1.2+2.7+0.5)=1.6.则x A>x B,因此A药的疗效更好.(2)由观测结果绘制如下茎叶图:从茎叶图可以看出,A药疗效的试验结果有710的叶集中在茎2,3上;B药疗效的试验结果有710的叶集中在茎0,1上.由上述可看出A药的疗效更好.规律方法茎叶图的绘制需注意:(1)“叶”的位置只有一个数字,而“茎”的位置的数字位数一般不需要统一;(2)重复出现的数据要重复记录,不能遗漏,特别是“叶”的位置的数据.【训练2】(2013·重庆卷)以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( ).A.2,5 B.5,5 C.5,8 D.8,8解析 由茎叶图及已知得x =5,又乙组数据的平均数为16.8,即9+15+10+y +18+245=16.8,解得y =8. 答案 C考点三 样本的数字特征【例3】 甲乙二人参加某体育项目训练,近期的五次测试成绩得分情况如图.(1)分别求出两人得分的平均数与方差;(2)根据图和上面算得的结果,对两人的训练成绩作出评价. 解 (1)由图象可得甲、乙两人五次测试的成绩分别为 甲:10分,13分,12分,14分,16分; 乙:13分,14分,12分,12分,14分.x 甲=10+13+12+14+165=13,x 乙=13+14+12+12+145=13,s 2甲=15[(10-13)2+(13-13)2+(12-13)2+(14-13)2+(16-13)2]=4,s 2乙=15[(13-13)2+(14-13)2+(12-13)2+(12-13)2+(14-13)2]=0.8.(2)由s 2甲>s 2乙可知乙的成绩较稳定.从折线图看,甲的成绩基本呈上升状态,而乙的成绩上下波动,可知甲的成绩在不断提高,而乙的成绩则无明显提高.规律方法 平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.。

(压轴题)高中数学选修1-2第一章《统计案例》检测(答案解析)(2)

(压轴题)高中数学选修1-2第一章《统计案例》检测(答案解析)(2)

一、选择题1.2020年初,新型冠状病毒(19COVID -)引起的肺炎疫情爆发以来,各地医疗机构采取了各种针对性的治疗方法,取得了不错的成效,某地开始使用中西医结合方法后,每周治愈的患者人数如下表所示:由表格可得y 关于x 的二次回归方程为2ˆ6yx a =+,则此回归模型第4周的残差(实际值与预报值之差)为( ) A .5B .4C .1D .02.为了提升全民身体素质,学校十分重视学生体育锻炼.某校篮球运动员进行投篮练习,若他前一球投进则后一球投进的概率为34,若他前一球投不进则后一球投进的概率为14.若他第1球投进的概率为34,则他第3球投进的概率为( ) A .34B .58C .116D .9163.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表经计算2K 的值,则有( )的把握认为玩手机对学习有影响. A .95%B .99%C .99.5%D .99.9%4.一个盒子里有7个红球,3个白球,从盒子里先取一个小球,然后不放回的再从盒子里取出一个小球,若已知第1个是红球的前提下,则第2个是白球的概率是( ) A .310B .13C .710D .235.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378B .0.3C .0.58D .0.9586.2018年元旦期间,某高速公路收费站的三个高速收费口每天通过的小汽车数X (单位:辆)均服从正态分布()2600,Nσ,若()5007000.6P X <<=,假设三个收费口均能正常工作,则这个收费口每天至少有一个超过700辆的概率为( ) A .1125B .12125C .61125D .641257.某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如右表,则下列说法正确的是( )参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A .有99.9%的把握认为使用智能手机对学习有影响.B .有99.9%的把握认为使用智能手机对学习无影响.C .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响.D .在犯错误的概率不超过0.005的前提下认为使用智能手机对学习无影响. 8.两个变量y 与x 的回归模型中,分别选择了4个不同模型,对于样本点()11,x y ,()22,x y ,…,(),n n x y ,可以用()()22121ˆ1ni i i n ii y yR y y ==-=--∑∑来刻画回归的效果,已知模型1中20.96R =,模型2中23{5x yy x -==-,模型3中20.55R =,模型4中20.41R =,其中拟合效果最好的模型是( ) A .模型1B .模型2C .模型3D .模型49.在5道题中有3道代数题和2道几何题.如果不放回地依次抽取2道题,则在第1次抽到代数题的条件下,第2次抽到代数题的概率为 ( )A .15B .25C .12D .3510.2020年2月,全国掀起了“停课不停学”的热潮,各地教师通过网络直播、微课推送等多种方式来指导学生线上学习.为了调查学生对网络课程的热爱程度,研究人员随机调查了相同数量的男、女学生,发现有80%的男生喜欢网络课程,有40%的女生不喜欢网络课程,且有99%的把握但没有99.9%的把握认为是否喜欢网络课程与性别有关,则被调查的男、女学生总数量可能为( )参考公式附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:A .130B .190C .240D .25011.为了解学生对街舞的喜欢是否与性别有关,在全校学生中进行抽样调查,根据数据,求得2K 的观测值0 4.804k ≈,则至少有( )的把握认为对街舞的喜欢与性别有关.参考数据:A .90%B .95%C .97.5%D .99%12.甲、乙两队进行篮球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,比赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队不超过4场即获胜的概率是( ) A .0.18B .0.21C .0.39D .0.42二、填空题13.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6道,乙能答对其中的8道,规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才算合格,则甲、乙两人至少有一人考试合格的概率为________. 14.甲、乙两名运动员进行乒乓球单打比赛,已知每一局甲胜的概率为23.比赛采用“五局三胜(即有一方先胜3局即获胜,比赛结束)制”,则甲3:2获胜的概率是____. 15.某班主任对全班50名学生的积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作 不太积极参加班级工作 合计 学习积极性高 18 7 25 学习积极性一般 6 19 25 合计242650则至少有________的把握认为学生的学习积极性与对待班级工作的态度有关.(请用百分数表示).注:独立性检验界值表()2P K k ≥0.025 0.010 0.005 0.001 k 5.0246.6357.87910.82816.如图所示,在边长为1的正方形OABC 内任取一点P ,用A 表示事件“点P 恰好取自由曲线y x =与直线1x =及x 轴所围成的曲边梯形内”, B 表示事件“点P 恰好取自阴影部分内”,则(|)P B A =_________.17.2019年7月15日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示: 价格x 9 9.5m10.5 11 销售量y11n865可知,销售量y 与价格x 之间有较强的线性相关关系,其线性回归方程是3.240y x =-+,且20m n +=,则其中的n =______.18.排球比赛实行“五局三胜制”.某次比赛中,中国女排和M 国女排相遇,统计以往数据可知,每局比赛中国女排获胜的概率为23,M 国女排获胜的概率为13,则中国女排在先输一局的情况下最终获胜的概率为________.19.投到某出版社的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则直接予以录用,若两位初审专家都未予通过,则不予录用,若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为12,复审的稿件能通过评审的概率为14,各专家独立评审,则投到该出版社的1篇稿件被录用的概率为__________.20.一个村子里一共有n 个人,其中一个人是谣言制造者,他编造了一条谣言并告诉了另一个人,这个人又把谣言告诉了第三个人,如此等等.在每一次谣言传播时,谣言的接受者都是在其余1n -个村民中随机挑选的,当谣言传播(2)k k 次之后,还没有回到最初的造谣者的概率是_______.三、解答题21.为激活国内消费布场,挽回疫情造成的损失,国家出台一系列的促进国内消费的优惠政策,某机构从某一电商的线上交易大数据中来跟踪调查消费者的购买力,界定3至8月份购买商品在5000元以上人群属“购买力强人群”,购买商品在5000元以下人群属“购买力弱人群”.现从电商平台消费人群中随机选出200人,发现这200人中属购买力强的人数占80%,并将这200人按年龄分组,记第1组[)15,25,第2组[)25,35,第3组[)35,45,第4组[)45,55,第5组[)55,65,得到的频率分布直方图,如图所示.(1)求出频率分布直方图中的a 值和这200人的平均年龄;(2)从第2,3,5组中用分层抽样的方法抽取12人,并再从这12人中随机抽取3人进行电话回访,求这三人恰好属于不同组别的概率;(3)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中“购买力弱人群”的中老年人有20人,问是否有99%的把握认为是否“购买力强人群”与年龄有关? 附:()20P K K 0.1500.100 0.050 0.025 0.010 0.005 0.001()()()()()2n ad bc K a b c d a c b d -=++++,n a b c d =+++ 22.在疫情防控中,不聚集、戴口罩、保持社交距离是对每个人的基本要求同时,通过运动健身增强体质,进而提升免疫力对个人防护也有着重要的意义,某机构为了解“性别与休闲方式为运动”是否有关,随机调查了n 个人,其中男性占调查人数的25.已知男性中有一半的人休闲方式是运动,而女性只有13的人休闲方式是运动. (1)完成下列22⨯列联表:(2)若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的人数至少有多少?参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.23.高三(1)班班主任李老师为了了解本班学生喜爱中国古典文学是否与性别有关,对全班50人进行了问卷调查,得到如下列联表:已知从全班50人中随机抽取1人,抽到喜欢中国古典文学的学生的概率为35. (1)请将上面的列联表补充完整;(2)是否有99.5%的把握认为喜欢中国古典文学与性别有关?请说明理由;(3)已知在喜欢中国古典文学的10位男生中,1A ,2A ,3A 还喜欢数学,1B ,2B 还喜欢绘画,1C ,2C 还喜欢体育.现从喜欢数学、绘画和体育的男生中各选出1名进行其他方面的调查,求1B 和1C 不全被选中的概率.参考公式及数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.24.随着运动App 和手环的普及和应用,在朋友圈、运动圈中出现了每天1万步的健身打卡现象,“日行一万步,健康一辈子”的观念广泛流传.“健康达人”小王某天统计了他朋友圈中所有好友(共400人)的走路步数,并整理成下表:间中点值作代表);(2)若用A 表示事件“走路步数低于平均步数”,试估计事件A 发生的概率;(3)若称每天走路不少于8千步的人为“健步达人”,小王朋友圈中岁数在40岁以上的中老年人有200人,其中健步达人恰有150人,请填写下面22⨯列联表.根据列联表判断有多大把握认为,健步达人与年龄有关?附:()()()()() 2n ad bcKa b c d a c b d-=++++25.为了落实这次新冠病毒疫情防范措施,确保广大居民的防控安全,某巡视组为了掌握第一手防控资料和新方法,选择了具有代表性的A、B两个社区进行满意度调研(共105户),且针对各种情况设制了达标分数线,按照不少于80分的定为满意,低于80分的为不满意,为此相关人员制作了如下图的22⨯列联表.已知从全部105户中随机抽取1户为满意的概率是57.(1)请完成上图的22⨯列联表中的?所代表的值;(2)根据列联表的数据判断能否有95%的把握认为“满意度与社区有关系”?(3)为了进一步了解社区居民对情防范措施不满意的具体情况,巡视组在A社区按下面的方法抽取一户进行详细调查了解,把A社区不满意的户主按1、2、3、4,…,开始进行编号,再先后两次抛掷一枚均匀的骰子,出现点数之和为被抽取户主的编号,试求抽到6号或10号的概率.附注:()()()()()22n ad bcKa b c d a c b d-=++++26.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()g y与尺寸(mm)x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v u nvubv v vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】设2t x =,求出t ,y 的值,由最小二乘法得出回归方程,代入4x =,即可得出答案. 【详解】 设2t x =,则()11491625115t =++++=,()12173693142585y =++++= 586118a =-⨯=-,所以2ˆ68yx =-.令4x =,得2444936485ˆe y y =-=-⨯+=. 故选:A【点睛】本题考查回归分析的应用,属于中档题.2.D解析:D【分析】分两种情况讨论:第2球投进和第2球投不进,利用独立事件的概率公式可得出所求事件的概率.【详解】分以下两种情况讨论:(1)第2球投进,其概率为3311544448⨯+⨯=,第3球投进的概率为53158432⨯=;(2)第2球投不进,其概率为53188-=,第3球投进的概率为3138432⨯=.综上所述:第3球投进的概率为1539323216+=,故选D.【点睛】本题考查概率的求法,考查独立事件概率乘法公式的应用,同时也考查对立事件概率公式的应用,解题时要注意对事件进行分类讨论,考查运算求解能力,属于中等题.3.C解析:C【解析】分析:利用公式求得观测值2K,对照数表,即可得出正确的结论.详解:根据列联表可得()223042168=1020101218K⨯⨯-⨯=⨯⨯⨯,27.8791010.828K<=<,对照数表知,有99.5%的把握认为玩手机对学习有影响,故选C.点睛:本题考查了独立性检验的应用问题,是基础题目. 独立性检验的一般步骤:(1)根据样本数据制成22⨯列联表;(2)根据公式()()()()()22n ad bcKa b a d a c b d-=++++计算2K的值;(3) 查表比较2K与临界值的大小关系,作统计判断.4.B解析:B【解析】分析:设已知第一次取出的是红球为事件A,第二次是白球为事件B,先求出P AB()的概率,然后利用条件概率公式进行计算即可.详解:设已知第一次取出的是红球为事件A,第二次是白球为事件B.则由题意知,77371010930P A P AB⨯===⨯(),(),所以已知第一次取出的是白球,则第二次也取到白球的概率为7130|.7310PB A ()== . 故选B .点睛:本题主要考查条件概率的求法,熟练掌握条件概率的概率公式是关键. 5.D解析:D 【详解】分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.6.C解析:C 【解析】分析:根据正态曲线的对称性求解即可.详解:根据正态曲线的对称性,每个收费口超过700辆的概率()()()111700150070010.60.2225P X P X ⎡⎤≥=-<<=⨯-==⎣⎦, ∴这三个收费口每天至少有一个超过700辆的概率 3161115125P ⎛⎫=--=⎪⎝⎭,故选C. 点睛:本题主要考查正态分布的性质与实际应用,属于中档题.有关正态分布的应用题考查知识点较为清晰,只要掌握以下两点,问题就能迎刃而解:(1)仔细阅读,将实际问题与正态分布“挂起钩来”;(2)熟练掌握正态分布的性质,特别是状态曲线的对称性以及各个区间概率之间的关系.7.C解析:C 【解析】经计算,()2230421681020101218K ⨯-⨯==⨯⨯⨯,27.87910.828K <<,对照数表知,在犯错误的概率不超过0.005的前提下认为使用智能手机对学习有影响,故选C .点睛:本题考查了独立性检验的应用问题,是基础题;其解题步骤为:(1)认真读题,取出相关数据,作出22⨯列联表;(2)根据22⨯列联表中的数据,计算2K 的观测值k ;(3)通过观测值k 与临界值0k 比较,得出事件有关的可能性大小.8.A解析:A 【解析】2R 值越大效果越好,所以选A. 9.C解析:C 【解析】记事件A: 第1次抽到代数题,事件B:第2次抽到代数题,P(A)=35,63()2010P AB ==,r 则在第1次抽到代数题的条件下,第2次抽到代数题的概率为3P(AB)110P(B |A)3P(A)25===.选C. 10.B解析:B 【分析】设男、女生的人数都为5x ,列出22⨯列联表,计算2K 的值,查表解不等式即可. 【详解】依题意,设男、女生的人数各为5x ,建立22⨯列联表如下所示:故222831010553721x x xx K x x x x =⋅⋅⋅⋅-=,由题可知106.63510.82821x <<, ∴139.33510227.388x <<,只有B 符合题意. 故选:B.【点睛】本题主要考查独立性检验,关键点是建立22⨯列联表代入公式计算,考查数学运算、数学建模的核心素养.11.B解析:B 【解析】因为4.804>3.841,所以有95%的把握认为对街舞的喜欢与性别有关.12.C解析:C 【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式直接求解. 【详解】解:甲、乙两队进行排球决赛,采取五场三胜制(当一队赢得三场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立, 则甲队以3:1获胜的概率是:()()()10.60.610.50.50.610.60.50.510.60.60.50.50.21P =⨯⨯-⨯+⨯-⨯⨯+-⨯⨯⨯=. 甲队以3:0获胜的概率是: 20.60.60.50.18P =⨯⨯=则甲队不超过4场即获胜的概率120.210.180.39P P P =+=+= 故选:C 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式和互斥事件概率加法公式等基础知识,考查运算求解能力,属于中档题.二、填空题13.【分析】设事件表示甲考试合格事件表示乙考试合格计算出则甲乙两人至少有一人考试合格的概率为由此能求出结果【详解】设事件表示甲考试合格事件表示乙考试合格则则甲乙两人至少有一人考试合格的概率为故答案为:【 解析:4445【分析】设事件A 表示甲考试合格,事件B 表示乙考试合格,计算出()P A 、()P B ,则甲、乙两人至少有一人考试合格的概率为()1P P AB =-,由此能求出结果. 【详解】设事件A 表示甲考试合格,事件B 表示乙考试合格,则()32166431023C C C P A C +==,()3218823101415C C C P B C +==. 则甲、乙两人至少有一人考试合格的概率为()21444111131545P P AB ⎛⎫⎛⎫=-=--⋅-=⎪ ⎪⎝⎭⎝⎭. 故答案为:4445. 【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、对立事件概率公式等基础知识,考查运算求解能力,是中等题.14.;【分析】利用相互独立事件同时发生的概率计算求解甲获胜则比赛打了5局且最后一局甲胜利【详解】由题意知前四局甲乙每人分别胜2局则甲获胜的概率是:【点睛】本题考查相互独立事件同时发生的概率属于基础题解析:1681; 【分析】利用相互独立事件同时发生的概率计算求解,甲3:2获胜,则比赛打了5局,且最后一局甲胜利. 【详解】由题意知,前四局甲、乙每人分别胜2局,则甲3:2获胜的概率是:222421216()()33381P C =⋅⋅=.【点睛】本题考查相互独立事件同时发生的概率,属于基础题.15.【分析】根据列联表计算可得由可得结果【详解】由题意得:至少有的把握认为学生的学习积极性与对待班级工作的态度有关故答案为:【点睛】本题考查独立性检验问题的求解考查基础公式的应用 解析:99.9%【分析】根据22⨯列联表计算可得2K ,由210.828K >可得结果. 【详解】由题意得:()225018197611.53810.82825252426K ⨯⨯-⨯=≈>⨯⨯⨯, ∴至少有10.1%99.9%-=的把握认为学生的学习积极性与对待班级工作的态度有关.故答案为:99.9%. 【点睛】本题考查独立性检验问题的求解,考查基础公式的应用.16.【解析】由于曲线与直线围成的面积为即曲线与直线围成的面积为即所以由条件事件的概率公式可得应填答案点睛:本题旨在考查几何概型的计算公式及运用求解时充分依据题设条件借助定积分的计算公式分别求出几何概型中解析:14【解析】由于曲线y =与直线1x =围成的面积为3210221033S ⎛⎫==-= ⎪⎝⎭,即()23P A =曲线y =与直线y x =围成的面积为()13222021211)101032326S x dx ⎛⎫==---=-= ⎪⎝⎭⎰,即()16P AB =,所以由条件事件的概率公式可得()()131(|)624P AB P B A P A ==⨯=,应填答案14。

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

(好题)高中数学选修1-2第一章《统计案例》测试卷(包含答案解析)(2)

一、选择题1.下列说法:①对于独立性检验,2χ的值越大,说明两事件相关程度越大;②以模型kx y ce =去拟合一组数据时,为了求出回归方程,设ln z y =,将其变换后得到线性方程0.34z x =+,则c ,k 的值分别是4e 和0.3;③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程y a bx =+中,2b =,1x =,3y =,则1a =;④通过回归直线y bx a =+及回归系数b ,可以精确反映变量的取值和变化趋势,其中正确的个数是( ) A .1B .2C .3D .42.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为( ) A .12B .1C .56D .11123.已知12P(B|A)=,P(A)=35,则()P AB 等于( ) A .56B .910 C .215D .1154.从装有形状大小相同的3个黑球和2个白球的盒子中依次不放回地任意抽取3次,若第二次抽得黑球,则第三次抽得白球的概率等于( ) A .15B .14C .13D .125.某商品的售价x (元)和销售量y (件)之间的一组数据如下表所示:由散点图可知,销售量y 与价格x 之间有较好的线性相关关系,且回归直线方程是3.ˆ2yx a =-+,则实数a =( ) A .30B .35C .38D .406.在一次独立性检验中,得出列表如下:合计 190 400a + 590a +且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( ) A .720 B .360C .180D .907.工人月工资(元)关于劳动生产率x(千元)的回归方程为,下列说法中正确的个数是( )①劳动生产率为1000元时,工资为730元; ②劳动生产率提高1000元,则工资提高80元; ③劳动生产率提高1000元,则工资提高730元; ④当月工资为810元时,劳动生产率约为2000元. A .1B .2C .3D .48.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数互不相同},B ={出现一个5点},则()/P B A =( ) A .13B .518C .16D .149.甲乙丙三位同学独立的解决同一个问题,已知三位同学单独正确解决这个问题的概率分别为12,13,15,则有人能够解决这个问题的概率为( ) A .130 B .415C .1115D .131510.甲、乙两位同学各自独立地解答同一个问题,他们能够正确解答该问题的概率分别是23和12,在这个问题至少被一个人正确解答的条件下,甲、乙两位同学都能正确解答该问题的概率为( )A .27B .25C .15D .1911.为了研究经常使用手机是否对数学学习成绩有影响,某校高二数学研究性学习小组进行了调查,随机抽取高二年级50名学生的一次数学单元测试成绩,并制成下面的2×2列联表:及格 不及格 合计 很少使用手机 20 5 25 经常使用手机 10 15 25 合计302050则有( )的把握认为经常使用手机对数学学习成绩有影响.参考公式:()()()()()22=n ad bc K a b c d a c b d -++++,其中n a b c d =+++()2P K k ≥ 0.150.10 0.05 0.025 0.010 0.005 0.001 k 2.0722.7063.8415.0246.6357.87910.828A .97.5%B .99%C .99.5%D .99.9%12.甲、乙两人独立地破译一份密码,破译的概率分别为11,32,则密码被破译的概率为( ) A .16B .23C .56D .1二、填空题13.有甲、乙两台机床生产某种零件,甲获得正品乙不是正品的概率为14,乙获得正品甲不是正品的概率为16,且每台获得正品的概率均大于12,则甲乙同时生产这种零件,至少一台获得正品的概率是___________.14.三个元件正常工作的概率分别为,,,将两个元件并联后再和串联接入电路,如图所示,则电路不发生故障的概率为_________.15.下列4个命题:①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;②四边形ABCD 为长方形,2AB =,1BC =,O 为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 2y x =的图象; ④已知回归直线的斜率的估计值为1.23,样本点的中心为()4,5,则回归直线方程为1.230.08y x =+.其中正确的命题有__________.(填上所有正确命题的编号)16.设甲、乙两套方案在一次试验中通过的概率均为0.3,且两套方案在试验过程中相互之间没有影响,则两套方案在一次试验中至少有一套通过的概率为___________. 17.关于变量,x y 的一组样本数据11()a b ,,22()a b ,,……,(),n n a b (2n ≥,12,,,n a a a ⋅⋅⋅不全相等)的散点图中,若所有样本点(,)i i a b (1,2,,i n =⋅⋅⋅)恰好都在直线21y x =-+上,则根据这组样本数据推断的变量,x y 的相关系数为_____________.18.把一枚硬币任意抛掷三次,事件A =“至少出现一次反面”,事件B =“恰好出现一次正面”,则(/)P B A =__________.19.甲、乙两个小组各10名学生的英语口语测试成绩的茎叶图如图所示.现从这 20名学生中随机抽取一人,将“抽出的学生为甲小组学生”记为事件A ;“抽出的学生英语口语测试成绩不低于85分”记为事件B .则P (A|B )的值是_____.20.2020年新型冠状病毒疫情期间,大学生小白同学在家里根据某款运动软件安排的训练计划进行运动,每天训练一次,连续3天为一个运动周期,若小白每天不能参加训练的概率为14,假设小白每天的训练是相互独立的,若一个训练周期内出现2次不能参加训练,则停止该训练计划,则这个训练计划在第二个完整周期后结束的概率为______.三、解答题21.一网络公司为某贫困山区培养了100名“乡土直播员”,以帮助宣传该山区文化和销售该山区的农副产品,从而带领山区人民早日脱贫致富.该公司将这100名“乡土直播员”中每天直播时间不少于5小时的评为“网红乡土直播员”,其余的评为“乡土直播达人”.根据实际评选结果得到了下面22⨯列联表:网红乡土直播员 乡土直播达人 合计 男 10 40 50 女 20 30 50 合计3070100(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,在这6人中选2人作为“乡土直播推广大使”.求这两人中恰有一男一女的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()20P K k ≥0.15 0.10 0.05 0.025 0.010 0.005 0.00122.近年来,随着互联网的发展,诸如“滴滴打车”“神州专车”等网约车服务在我国各城市迅猛发展,为人们出行提供了便利,但也给城市交通管理带来了一些困难.为掌握网约车在M省的发展情况,M省某调查机构从该省抽取了5个城市,分别收集和分析了网约车的A,B两项指标数,(1,2,3,4,5)i ix y i=,数据如下表所示:==2s==.(1)试求y与x间的相关系数r,并利用r说明y与x是否具有较强的线性相关关系(若0.75r>,则线性相关程度很高,可用线性回归模型拟合);(2)建立y关于x的回归方程,并预测当A指标数为7时,B指标数的估计值;(3)若城市的网约车A指标数x落在区间(3,3)x s x s-+之外,则认为该城市网约车数量过多,会对城市交通管理带来较大的影响,交通管理部门将介入进行治理,直至A指标数x回落到区间(3,3)x s x s-+之内.现已知2018年11月该城市网约车的A指标数为13,问:该城市的交通管理部门是否要介入进行治理?试说明理由.附:相关公式:()()ni ix x y yr--=∑,121()()()ni iiniix x y ybx x==--=-∑∑,a y bx=-.0.55≈0.95≈.23.随着网络的发展,人们可以在网络上购物、玩游戏、聊天、导航等,所以人们对上网流量的需求越来越大.某电信运营商推出一款新的“流量包”套餐.为了调查不同年龄的人是否愿意选择此款“流量包”套餐,随机抽取50个用户按年龄分组进行访谈,统计结果如下表.(1)若在第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,则各组应分别抽取多少人?(2)若从第5组的被调查者访谈人中随机选取2人进行追踪调查,求2人中至少有1人愿意选择此款“流量包”套餐的概率.(3)按以上统计数据填写下面2×2列联表,并判断以50岁为分界点,能否在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关;参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.24.目前,新冠病毒引发的肺炎疫情在全球肆虐,为了解新冠肺炎传播途径,采取有效防控措施,某医院组织专家统计了该地区500名患者新冠病毒潜伏期的相关信息,数据经过汇总整理得到如下图所示的频率分布直方图(用频率作为概率).潜伏期不高于平均数的患者,称为“短潜伏者”,潜伏期高于平均数的患者,称为“长潜伏者”.(1)求这500名患者潜伏期的平均数(同一组中的数据用该组区间的中点值作代表),并计算出这500名患者中“长潜伏者”的人数;(2)为研究潜伏期与患者年龄的关系,以潜伏期是否高于平均数为标准进行分层抽样,从上述500名患者中抽取300人,得到如下列联表,请将列联表补充完整,并根据列联表判断是否有97.5%的把握认为潜伏期长短与患者年龄有关:(3)研究发现,有5种药物对新冠病毒有一定的抑制作用,其中有2种特别有效,现在要通过逐一试验直到把这2种特别有效的药物找出来为止,每一次试验花费的费用是500元,设所需要的试验费用为X ,求X 的分布列与数学期望. 附表及公式:()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82822()()()()()n ad bc K a b c d a c b d -=++++25.支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有12,13,16的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X 为这一天他获得的奖励金数,求X 的概率分布和数学期望.26.新能源汽车已经走进我们的生活,逐渐为大家所青睐.现在有某品牌的新能源汽车在甲市进行预售,预售场面异常火爆,故该经销商采用竞价策略基本规则是:①竞价者都是网络报价,每个人并不知晓其他人的报价,也不知道参与竞价的总人数;②竞价采用“一月一期制”,当月竞价时间截止后,系统根据当期汽车配额,按照竞价人的出价从高到低分配名额.某人拟参加2020年6月份的汽车竞价,他为了预测最低成交价,根据网站的公告,统计了最近5个月参与竞价的人数(如下表) 月份2020.012020.022020.032020.042020.05(1)由收集数据的散点图发现,可用线性回归模型拟合竞价人数y (万人)与月份编号t 之间的相关关系.请用最小二乘法求y 关于t 的线性回归方程:ˆ bt y a =+,并预测2020年6月份(月份编号为6)参与竞价的人数;(2)某市场调研机构对200位拟参加2020年6月份汽车竞价人员的报价进行了一个抽样调查,得到如表所示的频数表:(i )求这200位竞价人员报价的平均值x 和样本方差s 2(同一区间的报价用该价格区间的中点值代替)(ii )假设所有参与竞价人员的报价X 可视为服从正态分布()2,,N μσ且μ与σ2可分别由(i )中所示的样本平均数x 及s 2估计.若2020年月6份计划提供的新能源车辆数为3174,根据市场调研,最低成交价高于样本平均数x ,请你预测(需说明理由)最低成交价. 参考公式及数据:①回归方程ˆˆˆy bx a =+,其中1221ˆˆˆ,ni ii nii x y nx ybay bx xnx ==-⋅==--∑∑ ②5521155, 2.6;ii i i i tx y ====≈∑∑③若随机变量X 服从正态分布()2,,N μσ则()()0.6826,220.9544,P X P X μσμσμσμσ-<<+=-<<+= ()330.9974P X μσμσ-<<+=.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】根据独立性检验、非线性回归方程以及回归直线方程相关知识进行判断. 【详解】对于命题①,根据独立性检验的性质知,两个分类变量2χ越大,说明两个分类变量相关程度越大,命题①正确;对于命题②,由kxy ce =,两边取自然对数,可得ln ln y c kx =+,令ln z y =,得ln z kx c =+,0.34z x =+,所以ln 40.3c k =⎧⎨=⎩,则40.3c e k ⎧=⎨=⎩,命题②正确;对于命题③,回归直线方程y a bx =+中,3211a y bx =-=-⨯=,命题③正确; 对于命题④,通过回归直线y bx a =+及回归系数b ,可估计和预测变量的取值和变化趋势,命题④错误.故选C. 【点睛】本题考查了回归直线方程、非线性回归方程变换以及独立性检验相关知识,考查推理能力,属于中等题.2.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.3.C解析:C 【解析】分析:根据条件概率的计算公式,即可求解答案.详解:由题意,根据条件概率的计算公式()()|()P AB P B A P A =, 则()()()122|3515P AB P B A P A =⋅=⨯=,故选C. 点睛:本题主要考查了条件概率的计算公式的应用,其中熟记条件概率的计算公式是解答的关键,着重考查了推理与运算能力.4.D解析:D 【解析】分析:这是一个条件概率,可用古典概型概率公式计算,即从5个球中取三个排列,总体事件是第二次是黑球,可在第二次是黑球的条件下抽排第一次和第三次球.详解:111223122412C C C P C A ==. 点睛:此题是一个条件概率,条件是第二次抽取的是黑球,不能误以为是求第二次抽到黑球,第三次抽到白球的概率,如果那样求得错误结论为1132353310C C A ⨯=. 5.D解析:D 【解析】由表中数据知,199.51010.511105x =⨯++++=(),1111086585y =⨯++++=(),代入回归直线方程 3.ˆ2yx a =-+中,求得实数 3.28 3.21040a y x =+=+⨯=,故选D. 6.B解析:B 【解析】∵两个分类变量A 和B 没有任何关系,∴()()()()2259010090400 2.70219040090500a a K a a +-⨯=<⨯++,代入验证可知360a =满足,故选B.7.C解析:C 【解析】对于①当劳动生产率为1000元时,工资为65080730y =+=元,故①正确;对于②劳动生产率提高1000元,则工资提高80元正确;故③错误;对于④当月工资为810元时,由81065080x =+得2x =,即劳动生产率约为2000元,故④正确;故选C.8.A解析:A 【解析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30, 事件B:出现一个5点,有10种,∴()101303|P B A ==, 本题选择A 选项.点睛:条件概率的计算方法:(1)利用定义,求P (A )和P (AB ),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件A 与事件B 的交事件中包含的基本事件数n (AB ),然后求概率值.9.C解析:C 【分析】先利用相互独立事件的概率乘法公式求出“三人都未解答这个问题”的概率,利用对立事件的概率公式得到“有人能够解决这个问题”的概率即可. 【详解】三人都未解答这个问题的概率为 (112-)(113-)(115-)415=,故有人能够解决这个问题的概率为14111515-=, 故选:C . 【点睛】本题考查了相互独立事件的概率乘法公式、互斥事件和对立事件的概率公式,考查了正难则反的原则,属于中档题.10.B解析:B 【分析】先计算“这个问题至少被一个人正确解答”和“甲、乙两位同学都能正确解答该问题”概率,再利用条件概率公式计算即可. 【详解】由已知,不妨设A =“这个问题至少被一个人正确解答”,B =“甲、乙两位同学都能正确解答该问题”,因为甲、乙两位同学各自独立正确解答该问题的概率分别是23和12, 故215()111326P A ⎛⎫⎛⎫=---= ⎪⎪⎝⎭⎝⎭,121()233P B =⨯=,易知1()()3P AB P B ==.故()1()235()56P AB P BA P A ===∣. 故选:B. 【点睛】本题考查了条件概率的应用,属于中档题.11.C解析:C 【分析】根据2×2列联表,求出k 的观测值2K ,结合题中表格数据即可得出结论. 【详解】 由题意,可得:222()50(2015105)258.3337.879()()()()302025253n ad bc K a b c d a c b d -⨯⨯-⨯===≈>++++⨯⨯⨯,所以有99.5%的把握认为经常使用手机对数学学习成绩有影响. 故选C. 【点睛】本题考查了独立性检验的应用,考查了计算能力,属于基础题.12.B解析:B 【分析】密码被破译分三种情况:甲破译出密码乙未破译,乙破译出密码甲未破译,甲乙都破译出密码,根据相互独立事件的概率和公式可求解出答案. 【详解】设 “甲独立地破译一份密码” 为事件A , “乙独立地破译一份密码” 为事件B , 则()13P A =,()12P B =,()12133P A =-=,()11122P B =-=, 设 “密码被破译” 为事件C ,则()()()()P C P AB P AB P AB =++11211123232323=⨯+⨯+⨯=, 故选:B. 【点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.二、填空题13.【分析】设甲乙两台机床生产正品的概率分别为则根据题意列方程组解得甲乙同时生产这种零件至少一台获得正品为甲获得正品乙不是正品乙获得正品甲不是正品以及甲乙均获得正品根据概率加法公式求解即可【详解】设甲乙 解析:1112【分析】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤,根据题意列方程组()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩,“甲乙同时生产这种零件,至少一台获得正品”为甲获得正品乙不是正品,乙获得正品甲不是正品,以及甲乙均获得正品,根据概率加法公式求解即可. 【详解】设甲乙两台机床生产正品的概率分别为p ,q ,则112p <≤,112q <≤. 甲获得正品乙不是正品的概率为14()114p q ∴-=① 又乙获得正品甲不是正品的概率为16()116q p ∴-=② ①②联立得()()114116p q q p ⎧-=⎪⎪⎨⎪-=⎪⎩,解得3423p q ⎧=⎪⎪⎨⎪=⎪⎩则甲乙均获得正品的概率为321432p q ⋅=⨯= 即甲乙同时生产这种零件,至少一台获得正品的概率是1111146212++= 故答案为:1112【点睛】本题考查概率的加法与乘法公式,属于中档题.14.【解析】分析:组成的并联电路可从反面计算即先计算发生故障的概率然后用对立事件概率得出不发生故障概率详解:由题意故答案为点睛:零件不发生故障的概率分别为则它们组成的电路中如果是串联电路则不发生故障的概解析:【解析】分析:23,T T 组成的并联电路可从反面计算,即先计算发生故障的概率,然后用对立事件概率得出不发生故障概率. 详解:由题意11115(1)24432P =⨯-⨯=. 故答案为1532. 点睛:零件12,,,k a a a 不发生故障的概率分别为12,,,k p p p ,则它们组成的电路中,如果是串联电路,则不发生故障的概率易于计算,即为12k p p p ,如果组成的是并联电路,则发生故障的概率易于计算,即为12(1)(1)(1)k p p p ---.15.③④【解析】①为了了解800名学生对学校某项教改试验的意见打算从中抽取一个容量为40的样本考虑用系统抽样则分段的间隔为800÷40=20故①错误;②已知如图所示:长方形面积为2以O 为圆心1为半径作圆解析:③④ 【解析】①为了了解800名学生对学校某项教改试验的意见, 打算从中抽取一个容量为40的样本,考虑用系统抽样, 则分段的间隔为800÷40=20,故①错误; ②已知如图所示:长方形面积为2,以O 为圆心,1为半径作圆, 在矩形内部的部分(半圆)面积为π2. 因此取到的点到O 的距离大于1的概率22P 124ππ-==-; 故②错误; ③把函数3sin 23y x π⎛⎫=+⎪⎝⎭的图象向右平移6π个单位,可得到3sin 23sin263y x x ππ⎡⎤⎛⎫=-+= ⎪⎢⎥⎝⎭⎣⎦的图象, 故③正确,④∵回归直线为ˆybx a =+, 的斜率的值为1.23, ∴方程为 1.23ˆyx a =+,∵直线过样本点的中心(4,5), ∴a=0.08,∴回归直线方程是为=1.23x+0.08; ∴故④正确. 故答案为:③④.16.51【解析】由于两套方案互不影响故至少有一套方案通过的概率是解析:51 【解析】由于两套方案互不影响,故至少有一套方案通过的概率是2120.3C 0.3(10.3)0.51+⋅⋅-=.17.-【解析】所有样本点都在直线上说明这两个变量间完全负相关故其相关系数为-1故填-1解析:-1 【解析】所有样本点都在直线上,说明这两个变量间完全负相关,故其相关系数为-1,故填-1.18.【解析】表示在已经发生事件的情况下事件发生的概率又事件恰有一次出现正面包含于事件至少一次出现反面所以所以解析:37【解析】(/)P B A 表示在已经发生事件A 的情况下,事件B 发生的概率,又事件B = “恰有一次出现正面”包含于事件A =“至少一次出现反面”,所以()()(/)()()P AB P B P B A P A P A ==,37(),()88P B P A ==,所以()3()7P B P A =. 19.【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种其中抽出的学生为甲小组学生的事件有5种所以概率为考点:条件概率 解析:【解析】试题分析:抽出的学生英语口语测试成绩不低于85分的有9种,其中抽出的学生为甲小组学生”的事件有5种,所以概率为59. 考点:条件概率.20.【分析】由题意求得一个周期内就停止训练的概率再结合相互独立事件的概率计算公式即可求解【详解】由题意小白每天不能参加训练的概率为若一个训练周期内出现2次不能参加训练可得一个周期内就停止训练的概率为这个 解析:811024【分析】由题意,求得一个周期内就停止训练的概率,再结合相互独立事件的概率计算公式,即可求解.【详解】由题意,小白每天不能参加训练的概率为14,若一个训练周期内出现2次不能参加训练,可得一个周期内就停止训练的概率为221135244432⎛⎫⎛⎫+⨯⨯=⎪ ⎪⎝⎭⎝⎭,这个训练计划持续两个周期的概率为2513811232441024⎛⎫⎛⎫-⨯⨯⨯=⎪ ⎪⎝⎭⎝⎭.故答案为:81 1024.【点睛】本题主要考查了相互独立事件的概率的计算,其中解答中正确理解题意,结合独立事件的概率计算公式求得一个周期内就停止训练的概率是解答的关键,着重考查分析问题和解答问题的能力.三、解答题21.(1)有95%的把握认为“网红乡土直播员”与性别有关系;(2)8 15.【分析】(1)由题中22⨯列联表中的数据代入()()()()()22n ad bcKa b c d a c b d-=++++然后与所给表值进行比较可得答案;(2)列出从这6人中随机抽取2人的所有可能情况,选中的2人中恰有一男一女的所有可能情况可得答案.【详解】(1)由题中22⨯列联表,可得()22100103020404.762 3.84150503070K⨯-⨯=≈>⨯⨯⨯.∴有95%的把握认为“网红乡土直播员”与性别有关系.(2)在“网红乡土直播员”中按分层抽样的方法抽取6人,男性人数为106230⨯=人,记为A,B;女性人数为206430⨯=人,记为a,b,c,d.则从这6人中随机抽取2人的所有可能情况有以下“A,B;A,a;A,b;A,c;A,d;B ,a ; B ,b ; B ,c ; B ,d ;a ,b ; a ,c ; a ,d ; b ,c ; b ,d ; c ,d ”共15种.其中,选中的2人中恰有一男一女的所有可能情况有以下“A ,a ; A ,b ; A ,c ; A ,d ; B ,a ; B ,b ; B ,c ; B ,d ”共8种. ∴选中的2人中恰有一男一女的概率815P =. 【点睛】古典概型的概率的计算方法,首先计算所有基本事件数,再计算事件A 包含的基本事件数,应用古典概率公式计算求解.22.(1)0.95r ≈,y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系;(2)35102y x =+,当7x =时, 4.6y =;(3)要介入进行治理. 【分析】(1)由已知数据可得,x y ,利用公式,求得相关系数r ,即可作出判断,得到结论;(2)由(1),求得b 和ˆa,求得回归直线的方程,代入7x =,即可求得回归方程; (3)由(3,3)(1,11)x s x s -+=-,而1311>,即可得到结论. 【详解】(1)由已知数据可得2456855x ++++==,3444545y ++++==.所以相关系数5()x x y y r --=0.95==≈. 因为0.75r >,所以y 与x 具有较强的线性相关关系,可用线性回归模型拟合y 与x 的关系.(2)由(1)可知()51521()632ˆ010()i i i i i x x y y b x x ==--===-∑∑,354ˆ2ˆ510a y bx =-=-⨯=, 所以y 与x 之间线性回归方程为35102ˆy x =+. 当7x =时,3576102ˆ 4.y=⨯+=. (3)()()3,31,11x s x s -+=-,而1311>,故2018年11月该城市的网约车已对城市交通带来较大的影响,交通管理部门将介入进行治理. 【点睛】本题主要考查了回归直线方程的求解及应用问题,其中解答中,认真审题,正确理解题意,利用公式准确计算是解答此类问题的关键,着重考查了推理与运算能力,属于基础题.23.(1)各组分别为5人,6人,4人;(2)35;(3)在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 【解析】试题分析:(1)三组一共有30人,抽取15人,故两个人抽一人,由此得到抽取的人数分别为5,6,4人.(2)利用列举法列举出所有可能性有15种,其中符合题意的有9种,故概率为35.(3)根据题意填写好表格后,计算29.979 6.635K ≈>,故有在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 试题解:(1)因为1012815=5,15=615=4303030,⨯⨯⨯,所以第2、3、4组愿意选择此款“流量包”套餐的人中,用分层抽样的方法抽取15人,各组分别为5人,6人,4人.(2)设第5组中不愿意选择此款“流量包”套餐A,B,C,D,愿意选择此款“流量包”套餐人为a,b,则愿意从6人中选取2人有:,,,,,,,,,,,,,,,AB AC AD Aa Ab BC BD Ba Bb CD Ca Cb Da Db ab 共15个结果,其中至少有1人愿意选择此款“流量包”,,,,,,,,,Aa Ab Ba Bb Ca Cb Da Db ab 共9个结果,所以求2人中至少有1人愿意选择此款“流量包”套餐的概率93155P ==. (3)2×2列联表∴()()()()25010310279.979 6.63510271031010273K ⨯⨯-⨯=≈>++++∴在犯错误不超过1%的前提下认为是否愿意选择此款“流量包”套餐与人的年龄有关. 24.(1)平均数为6,“长潜伏者”的人数为250人(2)列联表见解析, 有97.5%的把握认为潜伏期长短与年龄有关 (3)分布列见解析,()1750E X = 【分析】(1)由频率分布直方图可计算出潜伏期的均值,再由频率分布直方图可得“长潜伏者”的频率,从而得人数;(2)由所给数据计算出2K 后可得结论;(3)由题意知所需要的试验费用X 所有可能的取值为1000,1500,2000,分别计算出概率得概率分布列,再由期望公式得期望.。

2020年高考数学理科一轮温习第9章统计与统计案例第2讲课后作业

2020年高考数学理科一轮温习第9章统计与统计案例第2讲课后作业

A组基础关1.(2018·榆林模拟)一个频数散布表(样本容量为30)不警惕被损坏了一部份,只记得样本中数据在[20,60)上的频率为0.8,那么估量样本在[40,60)内的数据个数为( )A.14 B.15 C.16 D.17答案B解析由频数散布表可知,样本中数据在[20,40)上的频率为4+530=0.3,又因为样本数据在[20,60)上的频率为0.8,因此样本在[40,60)内的频率为0.8-0.3=0.5,数据个数为30×0.5=15.2.甲、乙、丙、丁四人参加国际奥林匹克数学竞赛选拔赛,四人的平均成绩和方差如表:从这四人当选择一人参加国际奥林匹克数学竞赛,最正确人选是( )A.甲B.乙C.丙D.丁答案 C解析丙平均成绩高,方差s2小(稳固),故最正确人选是丙.3.(2018·牡丹江模拟)某学生在一门作业的22次考试中,所得分数茎叶图如下图,那么此学生该门作业考试分数的极差与中位数之和为()A.117 B.118 C.118.5 D.119.5答案 B解析由茎叶图可知,此学生该门作业考试分数的极差为98-56=42,中位数是12×(76+76)=76,极差与中位数之和为42+76=118.4.(2019·钦州模拟)某仪器厂从头生产的一批零件中随机抽取40个检测,如图是依照抽样检测后零件的质量(单位:克)绘制的频率散布直方图,样本数据分8组,别离为[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96],那么样本的中位数在()A.第三组B.第四组C.第五组D.第六组答案 B解析由图可得,前四组的频率为(0.0375+0.0625+0.075+0.1)×2=0.55,那么其频数为40×0.55=22,且第四组的频数为40×0.1×2=8,故中位数落在第四组,因此B正确.5.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如下图.以5为组距将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率散布直方图是()答案 A解析解法一:由茎叶图知,各组频数统计如表:此表对应的频率散布直方图为选项A.应选A.解法二:选项C,D组距为10与题意不符,舍去,又由茎叶图知落在区间[0,5)与[5,10)上的频数相等,故频率、频率/组距也别离相等,比较A、B两个选项知A正确.应选A.6.如下图,样本A和B别离取自两个不同的整体,它们的样本平均数别离为x-A和x-B,样本标准不同离为s A和s B,那么()A.x -A >x -B ,s A >s BB.x -A <x -B ,s A >s BC.x -A >x -B ,s A <s BD.x -A <x -B ,s A <s B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10,B 组的6个数为15,10,12.5,10,12.5,10,因此x -A =2.5+10+5+7.5+2.5+106=37.56, x -B =15+10+12.5+10+12.5+106=706. 显然x -A <x -B .又由图形可知,B 组的数据散布比A 均匀,转变幅度不大,故B 组数据比较稳固,方差较小,从而标准差较小,因此s A >s B ,应选B .7.如图是依据某城市年龄在20岁到45岁的居民上网情形调查而绘制的频率散布直方图,现已知年龄在[30,35),[35,40),[40,45]的网民人数成递减的等差数列,那么年龄在[35,40)的网民显现的频率为( )A .0.04B .0.06C .0.2D .0.3答案 C解析 由题意得,年龄在[20,25)的网民显现的频率为0.01×5=0.05,[25,30)的网民显现的频率为0.07×5=0.35,又[30,35),[35,40),[40,45]的网民人数成递减的等差数列,那么其频率也成等差数列,又[30,45]的频率为1-0.05-0.35=0.6,那么年龄在[35,40)的网民显现的频率为0.2.8.(2019·长沙模拟)空气质量指数(Air Quality Index,简称AQI)是定量描述空气质量状况的指数,空气质量依照AQI大小分为六级:0~50为优;51~100为良;101~150为轻度污染;151~200为中度污染;201~300为重度污染;大于300为严峻污染.一环保人士从本地某年的AQI记录数据中,随机抽取10个,用茎叶图记录如图.依照该统计数据,估量此地该年AQI大于100的天数为________.(该年为365天)答案146解析该样本中AQI大于100的频数为4,频率为25,以此估量此地全年AQI大于100的频率为2 5,故此地该年AQI大于100的天数约为365×25=146.9.某班有50名学生,一次数学测试平均成绩是92,若是学员为1号到30号学生的平均成绩为90,那么学号为31号到50号学生的平均成绩为________.答案95解析设学号为31号到50号学生的平均成绩为x.由题意得50×92=30×90+20x,解得x=95.10.从某小区抽取100户居民进行月用电量调查,发觉其用电量都在50至350度之间,频率散布直方图如下图.(1)直方图中x 的值为________;(2)在这些用户中,用电量落在区间[100,250)内的户数为________.答案 (1)0.0044 (2)70解析 (1)由频率散布直方图知[200,250)小组的频率为1-(0.0024+0.0036+0.0060+0.0024+0.0012)×50=0.22,于是x =0.2250=0.0044.(2)∵数据落在[100,250)内的频率为(0.0036+0.0060+0.0044)×50=0.7,∴所求户数为100×0.7=70.B 组 能力关1.(2018·西宁一模)某校高二(1)班一次时期考试数学成绩的茎叶图和频率散布直方图可见部份如图,依照图中的信息,可确信被抽测的人数及分数在[90,100]内的人数别离为( )A .20,2B .24,4C .25,2D .25,4答案 C解析 由频率散布直方图可知,组距为10,[50,60)的频率为0.008×10=0.08,由茎叶图可知[50,60)的人数为2,设参加本次考试的总人数为N ,那么N =20.08=25,依照频率散布直方图可知[90,100]内的人数与[50,60)的人数一样,都是2.应选C .2.一组数据共有7个数,记得其中有10,2,5,2,4,2,还有一个数没记清,但明白这组数的平均数、中位数、众数依次成等差数列,那么那个数的所有可能值的和为( )A .-11B .3C .9D .17答案 C解析 设那个数是x ,那么平均数为25+x 7,众数是2.假设x ≤2,那么中位数为2,现在x =-11;假设2<x<4,那么中位数为x ,现在2x =25+x 7+2,解得x =3;假设x ≥4,那么中位数为4,那么2×4=25+x 7+2,解得x =17,∴x 的所有可能值别离为-11,3,17,和为9.应选C.3.一组样本数据的频率散布直方图如下图,试估量此样本数据的中位数为________.答案 1009解析 由频率散布直方图可得第一组的频率是0.08,第二组的频率是0.32,第三组的频率是0.36,那么中位数在第三组内,估量样本数据的中位数为10+0.10.36×4=1009.4.(2018·郑州模拟)某车间将10名技工平均分成甲、乙两组加工某种零件,在单位时刻内每一个技工加工的合格零件数的统计数据的茎叶图如下图,已知两组技工在单位时刻内加工的合格零件的平均数都为10.(1)求出m ,n 的值.(2)求出甲、乙两组技工在单位时刻内加工的合格零件的方差s 2甲和s 2乙,并由此分析两组技工的加工水平.解 (1)依照题意可知:x 甲=15×(7+8+10+12+10+m)=10,x 乙=15×(9+n +10+11+12)=10,因此m =3,n =8.(2)s 2甲=15[(7-10)2+(8-10)2+(10-10)2+(12-10)2+(13-10)2]=5.2, s 2乙=15[(8-10)2+(9-10)2+(10-10)2+(11-10)2+(12-10)2]=2,因为x 甲=x 乙,s 2甲>s 2乙,因此甲、乙两组的整体水平相当,乙组更稳固一些.C 组 素养关共享单车的显现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的利用情形,从该校8000名学生中按年级用分层抽样的方式随机抽取了100名同窗进行调查,取得这100名同窗每周利用共享单车的时刻(单位:小时)如下表:(1)已知该校大一学生有2400人,求抽取的100名学生中大一学生的人数;(2)作出这些数据的频率散布直方图;(3)估量该校大学生每周利用共享单车的平均时刻t (同一组中的数据用该组区间的中点值作代表).解 (1)设抽取的100名学生中大一学生有x 人,那么x 2400=1008000,解得x =30.因此抽取的100名学生中大一学生有30人.(2)频率散布直方图如下图.(3)由题意可得t=1×0.050×2+3×0.200×2+5×0.125×2+7×0.100×2+9×0.025×2=4.4(小时).因此该校大学生每周利用共享单车的平均时刻大约为4.4小时.。

2020版高考数学一轮复习第九篇统计与统计案例必修3选修1_2第1节随机抽样课件理 (7)

2020版高考数学一轮复习第九篇统计与统计案例必修3选修1_2第1节随机抽样课件理 (7)

第1节数系的扩充与复数的引入基础巩固(时间:30分钟)1.(2018·西安质检)已知复数z=(i为虚数单位),则z的虚部为( C )(A)-1 (B)0 (C)1 (D)i解析:因为z====i,故虚部为1.故选C.2.(2018·全国Ⅰ卷)设z=+2i,则|z|等于( C )(A)0 (B)(C)1 (D)解析:因为z=+2i=+2i=+2i=i,所以|z|=1.故选C.3.(2018·湖北重点中学联考)已知z满足zi+z=-2,则z在复平面内对应的点为( C )(A)(1,-1) (B)(1,1)(C)(-1,1) (D)(-1,-1)解析:由题意得z(1+i)=-2,z(1+i)(1-i)=-2(1-i),2z=-2(1-i),z=-1+i,对应点为(-1,1).故选C.4.(2018·广东珠海市高三摸底)设||z=-1+i,z为复数,则|z|等于( D )(A)(B)(C)2 (D)1解析:因为|1-i|z=-1+i,所以z==-+i,所以|z|==1.选D.5.(2017·全国Ⅱ卷)等于( D )(A)1+2i (B)1-2i (C)2+i (D)2-i解析:===2-i.故选D.6.(2018·东北三校二模)设i是虚数单位,则复数在复平面内所对应的点位于( D )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:===1-i,在第四象限,选D.7.(2018·浙江杭州模拟)已知复数z=,其中i是虚数单位,则|z|等于( B )(A)2 (B)1 (C)(D)解析:因为z====-i,所以|z|==1.故选B.8.(2018·江西宜春联考)复数z=,是它的共轭复数,则z·= .解析:z===1-i,则z·=(1-i)(1+i)=2.答案:2能力提升(时间:15分钟)9.(2018·百校联盟高三摸底)已知a,b∈R,若=b+i,则复数a+bi在复平面内表示的点所在的象限为( A )(A)第一象限 (B)第二象限(C)第三象限 (D)第四象限解析:===b+i,所以所以a=4,b=3.所以复数a+bi对应的点坐标为(4,3),在第一象限.故选A.10.设z是复数,则下列命题中的假命题是( C )(A)若z2≥0,则z是实数(B)若z2<0,则z是虚数(C)若z是虚数,则z2≥0(D)若z是纯虚数,则z2<0解析:举反例说明,若z=i,则z2=-1<0,故选C.11.下面是关于复数z=2-i的四个命题,p1:|z|=5;p2:z2=3-4i;p3:z的共轭复数为-2+i;p4:z的虚部为-1.其中真命题为( C )(A)p2,p3 (B)p1,p2(C)p2,p4 (D)p3,p4解析:因为z=2-i,所以|z|=≠5,则命题p1是假命题;z2=(2-i)2=3-4i,所以p2是真命题;易知z的共轭复数为2+i,所以p3是假命题;z的实部为2,虚部为-1,所以p4是真命题.故选C. 12.(2018·河南中原名校质检二)已知复数z1=x2+x-i,z2=-2+x2i(x∈R,i为虚数单位),若z1+z2<0,则x的值是( B )(A)±1 (B)-1 (C)1 (D)-2解析:z1+z2=x2+x-i-2+x2i=x2+x-2+(x2-1)i.若z1+z2<0,则z1+z2为实数,所以所以x=-1.故选B.13.若=a+bi(a,b为实数,i为虚数单位),则a+b= .解析:==[(3-b)+(3+b)i]=+i,所以所以a+b=3.答案:314.设f(n)=()n+()n(n∈N*),则集合{f(n)}中元素的个数为.解析:f(n)=()n+()n=i n+(-i)n,f(1)=0,f(2)=-2,f(3)=0,f(4)=2,f(5)=0,…所以集合中共有3个元素.答案:3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2节用样本估计总体
【选题明细表】
基础巩固(时间:30分钟)
1.(2018·贵阳一模)贵阳地铁1号线12月28日开通运营,某机车某时刻从下麦西站驶往贵阳北站的过程中,10个车站上车的人数统计如下:70,60,60,50,60,40,40,30,30,10,则这组数据的众数、中位数、平均数的和为( D )
(A)170 (B)165 (C)160 (D)150
解析:数据70,60,60,50,60,40,40,30,30,10的众数是60,中位数是45,平均数是45,
故众数、中位数、平均数的和为150,故选D.
2.如图是某市今年10月份某天6时至20时温度变化折线图,下列说法错误的是( D )
(A)这天温度极差为8 ℃
(B)这天温度的中位数在9 ℃附近
(C)这天温度无明显变化的是早上6时至早上8时
(D)这天温度变化率绝对值最大的是上午11时至中午13时
解析:由折线图可得,最高气温为14 ℃,最低气温为6 ℃,所以这天温度极差为8 ℃,故排除A;从6时至20时温度从低到高依次排列,可得这天温度的中位数为9 ℃附近,故排除B;由折线图可得,从6时至8时,温度没有明显变化,故排除C;由折线图可得,从13时至15时,温度变化率绝对值最大,故D是错误的.故选D.
3.(2018·开封三模)学校根据某班的期中考试成绩绘制了频率分布直方图(如图所示),根据图中所给的数据可知a+b等于( C )
(A)0.024 (B)0.036 (C)0.06 (D)0.6
解析:根据频率分布直方图得,
(0.01+a+b+0.018+0.012)×10=1,
解得a+b=0.06.
故选C.
4.(2018·江西二模)已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为,方差为s2,则( A )
(A)=4,s2<2 (B)=4,s2>2
(C)>4,s2<2 (D)>4,s2>2
解析:某7个数的平均数为4,方差为2,
加入一个新数据4后,这8个数的平均数为=×(7×4+4)=4,
方差为s2=×[7×2+(4-4)2]=<2.故选A.
5.(2018·南安一中模拟)某商场在国庆黄金周的促销活动中,对10月2日9时到14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时到12时的销售额为( C )
(A)6万元(B)8万元
(C)10万元(D)12万元
解析:设11时到12时的销售额为x万元,依题意有=,所以x=10,故选C.
6.(2018·龙岩模拟)党的十八大以来,脱贫攻坚取得显著成绩,2013年至2016年4年间,累计脱贫5 564万人,2017年各地根据实际进行创新,精准、高效地完成了脱贫任务.某地区对当地3 000户家庭的2017年所得年收入情况调查统计,年收入的频率分布直方图如图所示,数据
(单位:千元)的分组依次为[20,40),[40,60),[60,80),[80,100],则年收入不超过6万的家庭大约为( A )
(A)900户(B)600户(C)300户(D)150户
解析:由频率分布直方图得:
年收入不超过6万的家庭所占频率为(0.005+0.010)×20=0.3,
所以年收入不超过6万的家庭大约为0.3×3 000=900.
故选A.
7.如图所示的茎叶图是甲、乙两组各5名学生的数学竞赛成绩(70~99分),若甲、乙两组学生的平均成绩一样,则a= ;甲、乙两组学生的成绩相对整齐的是.
解析:由题意可知=
=89,解得a=5.因为
=×(142+1+0+92+62)=,=×(132+42+0+92+82)=,所以<,故成绩相对整齐的是甲组.
答案:5 甲组
能力提升(时间:15分钟)
8.(2018·沙市区校级一模)已知四个正数x1,x2,x3,x4的标准差s=0.2,则数据2x1-1,2x2-1,2x3-1,2x4-1的方差为( D )
(A)0.2 (B)0.4 (C)0.8 (D)0.16
解析:根据题意,设四个正数x 1,x2,x3,x4的平均数为,
则有=(x 1+x2+x3+x4),
又由其标准差s=0.2,则有其方差s2=[(x 1-)2+(x2-)2+(x3-)2+(x4-)2]=0.04,
对于数据2x1-1,2x2-1,2x3-1,2x4-1,
其平均数为,则有=(2x 1-1+2x2-1+2x3-1+2x4-1)=2-1,
则其方差s′2=[(2x 1-1-2+1)2+(2x2-1-2+1)2+(2x3-1-2+1)2+
(2x 4-1-2+1)2]=4s2=0.16,故选D.
9.(2018·济宁二模)2017年底,某单位对100名职工进行绩校考核,依考核分数进行评估,考核评估后,得其频率分布直方图如图所示,估计这100名职工评估得分的中位数是.
解析:由频率分布直方图得:
评估得分在[60,70)的频率为0.015×10=0.15,
评估得分在[70,80)的频率为0.040×10=0.4,
所以估计这100名职工评估得分的中位数是
70+×10=78.75.
答案:78.75
10.(2018·北京模拟)在一个容量为5的样本中,数据均为整数,已测出其平均数为10,但墨水污损了两个数据,其中一个数据的十位数字1未污损,即9,10,11,1,那么这组数据的方差s2可能的最大值
是.
解析:设这组数据的最后2个分别是10+x,y,
则9+10+11+(10+x)+y=50,
得x+y=10,故y=10-x,
故s2=[1+0+1+x2+(-x)2]=+x2,
显然x最大取9时,s2最大是.
答案:
11.如图茎叶图是甲、乙两人在5次综合测评中的成绩(为整数),其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是.
解析:由图可知,甲的平均分为90.设被污损的数为x,乙的成绩分别是
83,83,87,90+x,99,其中被污损的成绩为0到9中的某一个.由甲的平均成绩超过乙的平均成绩,得<90.所以x<8.又x 是0到9的十个整数中的其中一个,所以x<8的概率为=.
答案:
12.(2018·全国Ⅰ卷)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
使用了节水龙头50天的日用水量频数分布表
(1)在图中作出使用了节水龙头50天的日用水量数据的频率分布直方图;
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)
解:(1)如图所示.
(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35 m3的频率为
0.2×0.1+1×0.1+2.6×0.1+2×0.05=0.48,
因此该家庭使用节水龙头后,日用水量小于0.35 m3的概率的估计值为0.48.
(3)该家庭未使用节水龙头50天日用水量的平均数为
=×(0.05×1+0.15×3+0.25×2+0.35×4+0.45×9+0.55×26+0.65
×5)=0.48.
该家庭使用了节水龙头后50天日用水量的平均数为
=×(0.05×1+0.15×5+0.25×13+0.35×10+0.45×16+0.55×5)=0 .35.
估计使用节水龙头后,一年可节省水(0.48-0.35)×365=47.45(m3). 13.(2018·新乡一模)为了了解甲、乙两个工厂生产的轮胎的宽度是否达标,分别从两厂随机各选取了10个轮胎,将每个轮胎的宽度(单位:mm)记录下来并绘制出如下的折线图:
(1)分别计算甲、乙两厂提供的10个轮胎宽度的平均值;
(2)轮胎的宽度在[194,196]内,则称这个轮胎是标准轮胎,试比较甲、乙两厂分别提供的10个轮胎中所有标准轮胎宽度的方差的大小,根据两厂的标准轮胎宽度的平均水平及其波动情况,判断这两个工厂哪个厂的轮胎相对更好?
解:(1)甲厂这批轮胎宽度的平均值为:
=(195+194+196+193+194+197+196+195+193+197)=195(cm),
乙厂这批轮胎宽度的平均值为:
=(195+196+193+192+195+194+195+192+195+193)=194(cm).
(2)甲厂这批轮胎宽度在[194,196]内的数据为195,194,196,194,196,195,
平均数为=(195+194+196+194+196+195)=195,
方差为
=[(195-195)2+(194-195)2+(196-195)2+(194-195)2+(196-195)2+ (195-195)2]=,
乙厂这批轮胎宽度在[194,196]内的数据为195,196,195,194,195,195.
平均数为=(195+196+195+194+195+195)=195,
方差为
=[(195-195)2+(196-195)2+(195-195)2+(194-195)2+(195-195)2+
(195-195)2]=.因为两厂标准轮胎宽度的平均数相等,但乙厂的方差更小.
所以乙厂的轮胎相对更好.。

相关文档
最新文档