讲义(10)平面向量

合集下载

平面向量讲义

平面向量讲义

平面向量讲义考纲泛读高考展望①理解平面向量的概念,理解平面向量和向量相等的含义,理解向量的几何表示.②理解向量加、减法及向量数乘运算,并理解其几何意义,以及两个向量共线的含义.了解向量的线性运算性质及其几何意义.近几年的高考数学试题中,平面向量每年都考,题型多以填空题为主,有时也与三角函数、解析几何知识综合在一起以解答题形式进行考查,特别是向量的数量积的概念,几乎年年考查,估计今后几年仍然会保持这种命题趋势.③了解平面向量基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加、减法运算与数乘运算,理解用坐标表示的平面向量共线的条件.④掌握平面向量的数量积的含义及其物理意义,了解平面向量的数量积与向量投影的关系.掌握数量积的坐标表达式,会进行平面向量数量积的运算,能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的平行或垂直关系.预计2012年的高考,一是考查平面向量的基本概念及运算,此类题一般难度不大,用以解决有关长度、夹角、垂直等问题;二是有可能出现以向量为工具,在三角函数、解析几何、数列等知识交汇点处命题的题目.⑤会用向量方法解决某些简单的平面几何问题,会用向量方法解决某些简单的力学问题和其他一些实际问题.⑥理解复数的概念,如复数相等、共轭复数、复数与复平面内的点或向量的一一对应关系.⑦理解复数的四则运算,了解复数的几何意义. 高考对复数知识的考查要求不高,多以填空题的形式考查复数的概念与复数的四则运算.因此,在考试中,应力求在与复数知识相关的小题中拿满分.一、平面向量的概念1、向量的概念2、向量的表示3、几种特殊向量:零向量、单位向量、共线向量(平行向量)例1、判断下列命题真假或给出问题的答案(1)平行向量的方向一定相同?(2)不相等的向量一定不平行.(3)与零向量相等的向量是什么向量?(4)与任何向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的条件是什么?(7)共线向量一定在同一直线上吗?【变式练习1】下列命题中正确的有_______.①单位向量都相等;②长度相等且方向相反的两个向量不一定是共线向量;③若非零向量a ,b 满足|a|=|b|,且a 与b 同向,则a>b ;④对于任意向量a 、b ,必有|a +b|≤|a|+|b|.二、向量的运算(包括线性运算和坐标运算)1、加法运算:平行四边形法则、矢量三角形法则2、减法运算:三角形法则3、数乘运算例2、在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC =a ,BD =b ,则AF =( )A.14a +12b B.23a +13b C.12a +14b D.13a +23b 例3、(2010·广东中山六校联考)在△ABC 中,已知D 是AB 边上一点,若AD =2DB ,CD=13CA +λCB 则λ等于( ) A.23 B.13 C .-13 D .-23三、向量的数量积1、数量积的定义2、数量积的运算公式:3、数量积的作用:4、向量垂直与平行的充要条件【例4】设a 、b 、c 是任意的非零平面向量,且相互不共线,则下列命题①(a ·b)c -(c ·a)b =0;②|a|-|b|<|a -b|;③(b ·c)a -(c ·a)b 不与c 垂直;④(3a +2b)·(3a -2b)=9|a|2-4|b|2.其中是真命题的有________.【变式练习】下列命题中正确的个数是________.①若a ·b =0,则a =0或b =0;②(a ·b)·c =a ·(b ·c);③若a ·b =b ·c(b ≠0),则a =c ;④a ·b =b ·a ;⑤若a 与b 不共线,则a 与b 的夹角为锐角【变式练习】已知a 和b 的夹角为60°,|a|=10,|b|=8,求:(1)|a +b|;(2)a +b 与a 的夹角θ的余弦值.【例3】设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a ⊥(b -2c),求tan(α+β)的值;(2)求|b +c|的取值范围;(3)若tan αtan β=16,求证a ∥b. 例4(2010·湖南高考)在Rt △ABC 中,∠C =90°,AC =4,则AB ·AC 等于( )A .-16B .-8C .8D .16四、平面向量的基本定理1、基本定理2、基底 例5。

最新平面向量全部讲义

最新平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模. (2)零向量:长度为0的向量,其方向是任意的. (3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. (5)相等向量:长度相等且方向相同的向量. (6)相反向量:长度相等且方向相反的向量.例1.若向量a 与b 不相等,则a 与b 一定( )A .有不相等的模B .不共线C .不可能都是零向量D .不可能都是单位向量例2..给出下列命题:①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB u u u r =DC u u ur 等价于四边形ABCD 为平行四边形;③若a =b ,b =c ,则a =c ;④a =b 等价于|a |=|b |且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( )A .②③B .①②C .③④D .④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ; (2)结合律: (a +b )+c =a +(b +c )平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差三角形法则a -b =a +(-b )数乘求实数λ与向量a 的积的运算(1)|λa |=|λ||a |;(2)当λ>0时,λa 的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μ a )=(λμ)a ; (λ+μ)a =λa +μa ; λ(a +b )=λa +λb 例3:化简AC -BD +CD -AB 得( ) A.AB B.DA C.BC D .0例4:(1)如图,在正六边形ABCDEF 中,BA u u u r +CD u u u r +EF u u u r=( )A .0B .BE u u u rC .AD u u u rD .CF u u u r(2)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE u u u r =λ1AB u u u r +λ2AC u u u r(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a +2b )-2(b -2a )化简成最简式为______________.2.若|OA →+OB →|=|OA →-OB →|,则非零向量OA →,OB →的关系是( ) A .平行 B .重合 C .垂直 D .不确定3.若菱形ABCD 的边长为2,则|AB u u u r -CB u u ur +CD u u u r |=________4.D 是△ABC 的边AB 上的中点,则向量CD u u u r等于( )A .-BC u u u r +12BA u u u rB .-BC u u u r -12BA u u u r C .BC u u u r -12BA u u u rD .BC u u u r +12BA u u u r5.若A ,B ,C ,D 是平面内任意四点,给出下列式子:①AB u u u r +CD u u u r =BC u u u r +DA u u u r ;②AC u u u r +BD u u u r =BC u u u r +AD u u u r;③AC u u u r -BD u u u r =DC u u u r +AB u u u r.其中正确的有( )A .0个B .1个C .2个D .3个6.如图,在△ABC 中,D ,E 为边AB 的两个三等分点,CA →=3a ,CB →=2b ,求CD →,CE →. DD 12巩固练习 1。

(完整版)平面向量全部讲义

(完整版)平面向量全部讲义

第一节平面向量的概念及其线性运算1.向量的有关概念(1)向量:既有大小,又有方向的量叫向量;向量的大小叫做向量的模.(2)零向量:长度为0的向量,其方向是任意的.(3)单位向量:长度等于1个单位的向量.(4)平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线.(5)相等向量:长度相等且方向相同的向量.(6)相反向量:长度相等且方向相反的向量.例1.若向量a与b不相等,则a与b一定()A.有不相等的模B.不共线C.不可能都是零向量D.不可能都是单位向量例2..给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB=DC等价于四边形ABCD为平行四边形;③若a=b,b=c,则a=c;④a=b等价于|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c.其中正确命题的序号是()A.②③B.①②C.③④D.④⑤CA2.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则平行四边形法则(1)交换律:a+b=b+a;(2)结合律:(a+b)+c=a+(b+c)减法求a与b的相反向量-b的和的运算叫做a与b的差三角形法则a-b=a+(-b)数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;λ(μa)=(λμ)a;(λ+μ)a=λa+μa;λ(a+b)=λa+λb例3:化简AC→-BD→+CD→-AB→得() A.AB→B.DA→C.BC→D.0例4:(1)如图,在正六边形ABCDEF中,BA+CD+EF=()A.0B.BE C.AD D.CF(2)设D,E分别是△ABC的边AB,BC上的点,AD=12AB,BE=23BC.若DE=λ1AB+λ2AC(λ1,λ2为实数),则λ1+λ2的值为________.巩固练习:1.将4(3a+2b)-2(b-2a)化简成最简式为______________.2.若|OA→+OB→|=|OA→-OB→|,则非零向量OA→,OB→的关系是() A.平行B.重合C.垂直D.不确定3.若菱形ABCD的边长为2,则|AB-CB+CD|=________4.D是△ABC的边AB上的中点,则向量CD等于()A.-BC+12BA B.-BC-12BA C.BC-12BA D.BC+12BA5.若A,B,C,D是平面内任意四点,给出下列式子:①AB+CD=BC+DA;②AC+BD=BC+AD;③AC-BD=DC+AB.其中正确的有()A.0个B.1个C.2个D.3个6.如图,在△ABC中,D,E为边AB的两个三等分点,CA→=3a,CB→=2b,求CD→,CE→.DD12巩固练习1。

平面向量知识点归纳

平面向量知识点归纳

平面向量知识点归纳在代数学和几何学中,平面向量是一种常用的数学工具,用来描述平面上的长度和方向。

平面向量具有许多重要的性质和运算规律,对于解决各种几何问题和物理问题非常有帮助。

本文将对平面向量的相关知识点进行归纳和总结。

一、平面向量的定义平面向量是由两个有序实数或复数构成的有序对(a, b),通常用字母小写的粗体字母表示,如:→a。

其中,a表示向量在x轴上的投影,b表示向量在y轴上的投影。

二、平面向量的表示平面向量可以使用坐标表示法或分量表示法。

坐标表示法将向量表示为一个有向线段,起点为原点,终点为向量的坐标。

分量表示法将向量表示为两个实数或复数,分别表示向量在x轴方向和y轴方向上的分量。

三、平面向量的运算1. 加法:向量之间的加法是指将两个向量的对应分量相加,得到一个新的向量。

例如,向量→a=(a1, a2),向量→b=(b1, b2),它们的和向量→c=(a1+b1, a2+b2)。

2. 数乘:向量与一个实数或复数相乘,可以理解为将向量的每个分量都乘以这个数。

例如,向量→a=(a1, a2),实数k,则k×→a=(ka1, ka2)。

3. 减法:向量减法可以通过向量加法和数乘运算来定义。

向量→a减去向量→b等于向量→a加上向量→b的负向量。

即→a-→b=→a+(-→b)。

4. 数量积/点积:向量→a和→b的数量积/点积(也称为内积)表示为→a·→b,等于它们对应分量的乘积之和,即→a·→b=a1b1+a2b2。

5. 向量积/叉积:向量→a和→b的向量积/叉积(也称为外积)表示为→a×→b,等于一个新的向量,该向量垂直于→a和→b所确定的平面,并且其大小等于以→a和→b为两条边所构成的平行四边形的面积。

四、平面向量的性质和定理1. 零向量:零向量是长度为零的向量,表示为→0=(0, 0)。

它与任何向量的数量积都为零。

2. 平行向量:两个向量的方向相同或相异,它们就是平行的。

《平面向量》课件

《平面向量》课件

向量积性质
向量积是向量与向 量之间的一种运算, 其结果是一个向量
向量积的方向与两 个向量的方向有关, 与它们的大小无关
向量积的大小与两 个向量的大小有关, 与它们的方向无关
向量积的运算满足 交换律和结合律, 但不满足分配律
向量积运算律
交换律:a×b=b×a 结合律:(a×b)×c=a×(b×c) 分配律:a×(b+c)=a×b+a×c 向量积与标量乘法的乘法分配律:(k×a)×b=k×(a×b)
向量积几何意义
向量积是向量与向量之间的一种运算,其结果是一个向量 向量积的方向垂直于两个向量所在的平面 向量积的大小等于两个向量的长度乘以它们之间的夹角的余弦值 向量积的应用广泛,如物理中的力矩、电磁学中的磁场强度等
混合积定义
向量混合积:也称为三重积,是一种向量运算,用于计算三个向量的混合积。 混合积公式:A×(B×C) = (A·C)B - (A·B)C,其中A、B、C为向量。 混合积性质:混合积满足交换律、结合律和分配律。 混合积应用:在物理学、工程学等领域有广泛应用,如计算力矩、角速度等。
线性组合
向量线性组合:将两个或多个向量相加或相减 线性组合的性质:线性组合的结果仍然是向量 线性组合的应用:求解线性方程组、向量空间等 线性组合的表示:用向量的坐标表示线性组合的结果
线性相关
向量线性相关:两个向量线性相关,当且仅当其中一个向量是另一个向量的倍数
线性无关:两个向量线性无关,当且仅当它们不能通过线性组合得到
数量积为零表示两 个向量垂直
向量积定义
向量积:也称为外积或叉积,是一种线性代数运算
向量积的定义:两个向量A和B的向量积是一个向量C,其方向垂直于A和B所在的平面,其大小 等于A和B的长度乘以它们之间的夹角的正弦值

高中数学竞赛_平面向量【讲义】

高中数学竞赛_平面向量【讲义】

第八章 平面向量一、基础知识定义 1 既有大小又有方向的量,称为向量。

画图时用有向线段来表示,线段的长度表示向量的模。

向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。

书中用黑体表示向量,如a. |a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。

零向量和零不同,模为1的向量称为单位向量。

定义2 方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。

定理 1 向量的运算,加法满足平行四边形法规,减法满足三角形法则。

加法和减法都满足交换律和结合律。

定理2 非零向量a, b 共线的充要条件是存在实数≠λ0,使得a=.b λ f定理3 平面向量的基本定理,若平面内的向量a, b 不共线,则对同一平面内任意向是c ,存在唯一一对实数x, y ,使得c=xa+yb ,其中a, b 称为一组基底。

定义3 向量的坐标,在直角坐标系中,取与x 轴,y 轴方向相同的两个单位向量i, j 作为基底,任取一个向量c ,由定理3可知存在唯一一组实数x, y ,使得c=xi+yi ,则(x, y )叫做c 坐标。

定义4 向量的数量积,若非零向量a, b 的夹角为θ,则a, b 的数量积记作a ·b=|a|·|b|cos θ=|a|·|b|cos<a, b>,也称内积,其中|b|cos θ叫做b 在a 上的投影(注:投影可能为负值)。

定理4 平面向量的坐标运算:若a=(x 1, y 1), b=(x 2, y 2), 1.a+b=(x 1+x 2, y 1+y 2), a-b=(x 1-x 2, y 1-y 2), 2.λa=(λx 1, λy 1), a ·(b+c)=a ·b+a ·c ,3.a ·b=x 1x 2+y 1y 2, cos(a, b)=222221212121yx y x y y x x +⋅++(a, b ≠0),4. a//b ⇔x 1y 2=x 2y 1, a ⊥b ⇔x1x2+y 1y 2=0.定义5 若点P 是直线P 1P 2上异于p 1,p 2的一点,则存在唯一实数λ,使21PP P P λ=,λ叫P 分21P P 所成的比,若O 为平面内任意一点,则λλ++=121OP OP 。

平面向量讲义

平面向量讲义

平面向量第一节 平面向量的概念及线性运算一、基础知识1.向量的有关概念(1)向量的定义及表示:既有大小又有方向的量叫做向量.以A 为起点、B 为终点的向量记作AB ―→,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.(2)向量的长度(模):向量AB ―→的大小即向量AB ―→的长度(模),记为|AB ―→|. 2.几种特殊向量单位向量有无数个,它们大小相等,但方向不一定相同;与向量a 平行的单位向量有两个,即向量a |a |和-a|a |.3.向量的线性运算❷多个向量相加,利用三角形法则,应首尾顺次连接,a+b+c表示从始点指向终点的向量,只关心始点、终点.4.共线向量定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使得b =λa . 只有a ≠0才保证实数λ的存在性和唯一性.二、常用结论(1)若P 为线段AB 的中点,O 为平面内任一点,则OP ―→=12(OA ―→+OB ―→).(2)OA ―→=λOB ―→+μOC ―→(λ,μ为实数),若点A ,B ,C 三点共线,则λ+μ=1. 考点一 平面向量的有关概念[典例] 给出下列命题: ①若a =b ,b =c ,则a =c ;②若A ,B ,C ,D 是不共线的四点,则AB ―→=DC ―→是四边形ABCD 为平行四边形的充要条件; ③a =b 的充要条件是|a |=|b |且a ∥b ; ④若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是________.[解析] ①正确.∵a =b ,∴a ,b 的长度相等且方向相同,又b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c . ②正确.∵AB ―→=DC ―→,∴|AB ―→|=|DC ―→|且AB ―→∥DC ―→,又A ,B ,C ,D 是不共线的四点, ∴四边形ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形, 则AB ―→∥DC ―→且|AB ―→|=|DC ―→|,因此,AB ―→=DC ―→.③不正确.当a ∥b 且方向相反时,即使|a |=|b |,也不能得到a =b ,故|a |=|b |且a ∥b 不是a =b 的充要条件,而是必要不充分条件.④不正确.考虑b =0这种特殊情况. 综上所述,正确命题的序号是①②. [解题技法] 向量有关概念的关键点 (1)向量定义的关键是方向和长度.(2)非零共线向量的关键是方向相同或相反,长度没有限制. (3)相等向量的关键是方向相同且长度相等. (4)单位向量的关键是长度都是一个单位长度.(5)零向量的关键是长度是0,规定零向量与任意向量共线. [题组训练] 1.给出下列命题:①两个具有公共终点的向量,一定是共线向量;②λa =0(λ为实数),则λ必为零; ③λ,μ为实数,若λa =μb ,则a 与b 共线.其中错误的命题的个数为( ) A .0 B .1C .2 D .3解析:①错误,两向量共线要看其方向而不是起点或终点.②错误,当a =0时,不论λ为何值,λa =0.③错误,当λ=μ=0时,λa =μb =0,此时,a 与b 可以是任意向量.故错误的命题有3个,故选D.2.设a 0为单位向量,下列命题中:①若a 为平面内的某个向量,则a =|a |·a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0,假命题的个数是( )A .0B .1C .2D .3解析:向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二是反向,反向时a =-|a |a 0,故②③也是假命题.综上所述,假命题的个数是3.考点二 平面向量的线性运算[典例] (1)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ―→=( ) A.34AB ―→-14AC ―→ B.14AB ―→-34AC ―→C.34AB ―→+14AC ―→ D.14AB ―→+34AC ―→ (2)如图,在直角梯形ABCD 中,DC ―→=14AB ―→,BE ―→=2EC ―→, 且AE ―→=r AB ―→+s AD ―→,则2r+3s =( )A .1B .2C .3D .4[解析] (1)作出示意图如图所示.EB ―→=ED ―→+DB ―→=12AD ―→+12CB ―→=12×12(AB ―→+AC ―→)+12(AB ―→-AC ―→)=34AB ―→-14AC ―→.故选A. (2)根据图形,由题意可得AE ―→=AB ―→+BE ―→=AB ―→+23BC ―→=AB ―→+23(BA ―→+AD ―→+DC ―→)=13AB ―→+23(AD ―→+DC ―→)=13AB ―→+23⎝⎛⎭⎫AD ―→+14AB ―→=12AB ―→+23AD ―→. 因为AE ―→=r AB ―→+s AD ―→,所以r =12,s =23,则2r +3s =1+2=3.[解题技法] 向量线性运算的解题策略(1)常用的法则是平行四边形法则和三角形法则,一般共起点的向量求和用平行四边形法则,求差用三角形法则,求首尾相连的向量的和用三角形法则.(2)找出图形中的相等向量、共线向量,将所求向量与已知向量转化到同一个平行四边形或三角形中求解. (3)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.(4)与向量的线性运算有关的参数问题,一般是构造三角形,利用向量运算的三角形法则进行加法或减法运算,然后通过建立方程组即可求得相关参数的值.[题组训练]1.设D 为△ABC 所在平面内一点,BC ―→=3CD ―→,则( )A .AD ―→=-13AB ―→+43AC ―→ B .AD ―→=13AB ―→-43AC ―→C .AD ―→=43AB ―→+13AC ―→ D .AD ―→=43AB ―→-13AC ―→解析: 由题意得AD ―→=AC ―→+CD ―→=AC ―→+13BC ―→=AC ―→+13AC ―→-13AB ―→=-13AB ―→+43AC ―→.2.在正方形ABCD 中,M ,N 分别是BC ,CD 的中点,若AC ―→=λAM ―→+μAN ―→,则实数λ+μ=________. 解析:如图,∵AM ―→=AB ―→+BM ―→=AB ―→+12BC ―→=DC ―→+12BC ―→,①AN ―→=AD ―→+DN ―→=BC ―→+12DC ―→,②由①②得BC ―→=43AN ―→-23AM ―→,DC ―→=43AM ―→-23AN ―→,∴AC ―→=AB ―→+BC ―→=DC ―→+BC ―→=43AM ―→-23AN ―→+43AN ―→-23AM ―→=23AM ―→+23AN ―→,∵AC ―→=λAM ―→+μAN ―→,∴λ=23,μ=23,λ+μ=43.考点三 共线向量定理的应用[典例] 设两个非零向量a 与b 不共线,(1)若AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,求证:A ,B ,D 三点共线; (2)试确定实数k ,使k a +b 和a +k b 同向.[解] (1)证明:∵AB ―→=a +b ,BC ―→=2a +8b ,CD ―→=3a -3b ,∴BD ―→=BC ―→+CD ―→=2a +8b +3a -3b =5(a +b )=5AB ―→,∴AB ―→,BD ―→共线. 又∵它们有公共点B ,∴A ,B ,D 三点共线.(2)∵k a +b 与a +k b 同向,∴存在实数λ(λ>0),使k a +b =λ(a +k b ), 即k a +b =λa +λk b .∴(k -λ)a =(λk -1)b .∵a ,b 是不共线的非零向量,∴⎩⎪⎨⎪⎧ k -λ=0,λk -1=0,解得⎩⎪⎨⎪⎧ k =1,λ=1或⎩⎪⎨⎪⎧k =-1,λ=-1, 又∵λ>0,∴k =1.1.向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.[题组训练]1.在四边形ABCD 中,AB ―→=a +2b ,BC ―→=-4a -b ,CD ―→=-5a -3b ,则四边形ABCD 的形状是( ) A .矩形 B .平行四边形C .梯形 D .以上都不对解析:选C 由已知,得AD ―→=AB ―→+BC ―→+CD ―→=-8a -2b =2(-4a -b )=2BC ―→,故AD ―→∥BC ―→.又因为AB ―→与CD ―→不平行,所以四边形ABCD 是梯形.2.已知向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,若向量a 与向量b 共线,则( ) A .λ=0 B .e 2=0C .e 1∥e 2 D .e 1∥e 2或λ=0解析:选D 因为向量e 1≠0,λ∈R ,a =e 1+λe 2,b =2e 1,又因为向量a 和b 共线,存在实数k ,使得a =k b ,所以e 1+λe 2=2k e 1,所以λe 2=(2k -1)e 1,所以e 1∥e 2或λ=0.3.已知O 为△ABC 内一点,且AO ―→=12(OB ―→+OC ―→),AD ―→=t AC ―→,若B ,O ,D 三点共线,则t =( )A.14B.13C.12D.23解析:选B 设E 是BC 边的中点,则12(OB ―→+OC ―→)=OE ―→,由题意得AO ―→=OE ―→,所以AO ―→=12AE ―→=14(AB ―→+AC ―→)=14AB ―→+14t AD ―→,又因为B ,O ,D 三点共线,所以14+14t =1,解得t =13,故选B.4.已知O ,A ,B 三点不共线,P 为该平面内一点,且OP ―→=OA ―→+AB―→|AB ―→|,则( )A .点P 在线段AB 上B .点P 在线段AB 的延长线上C .点P 在线段AB 的反向延长线上D .点P 在射线AB 上解析:由OP ―→=OA ―→+AB ―→|AB ―→|,得OP ―→-OA ―→=AB ―→|AB ―→|,∴AP ―→=1|AB ―→|·AB ―→,∴点P 在射线AB 上,故选D.第二节 平面向量基本定理及坐标表示一、基础知识1.平面向量基本定理(1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.(2)基底:不共线的向量e 1e 2叫做表示这一平面内所有向量的一组基底. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到⎩⎪⎨⎪⎧λ1=μ1,λ2=μ2.2.平面向量的坐标运算(1)向量的加法、减法、数乘向量及向量的模:设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.若a =b ,则x 1=x 2且y 1=y 2. (2)向量坐标的求法:①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1), |AB ―→|=(x 2-x 1)2+(y 2-y 1)2. 3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔x 1y 2-x 2y 1=0.当且仅当x 2y 2≠0时,a ∥b 与x 1x 2=y 1y 2等价.即两个不平行于坐标轴的共线向量的对应坐标成比例.考点一 平面向量基本定理及其应用[典例] 如图,以向量OA ―→=a ,OB ―→=b 为邻边作平行四边形OADB ,BM ―→=13BC ―→,CN―→=13CD ―→,用a ,b 表示OM ―→,ON ―→,MN ―→. [解] ∵BA ―→=OA ―→-OB ―→=a -b ,BM ―→=16BA ―→=16a -16b ,∴OM ―→=OB ―→+BM ―→=16a +56b .∵OD ―→=a +b ,∴ON ―→=OC ―→+13CD ―→=12OD ―→+16OD ―→=23OD ―→=23a +23b ,∴MN ―→=ON ―→-OM ―→=23a +23b -16a -56b =12a -16b .综上,OM ―→=16a +56b ,ON ―→=23a +23b ,MN ―→=12a -16b .[解题技法]1.平面向量基本定理解决问题的一般思路(1)先选择一组基底,并运用该基底将条件和结论表示为向量的形式,再通过向量的运算来解决.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便.另外,要熟练运用平面几何的一些性质定理.2.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组.(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算.[题组训练]1.在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP =13AB ,BQ =13BC ,若AB ―→=a ,AC ―→=b ,则P Q―→=( )A.13a +13b B .-13a +13b C.13a -13b D .-13a -13b 解析:由题意知P Q ―→=PB ―→+B Q ―→=23AB ―→+13BC ―→=23AB ―→+13(AC ―→-AB ―→)=13AB ―→+13AC ―→=13a +13b .2.已知在△ABC 中,点O 满足OA ―→+OB ―→+OC ―→=0,点P 是OC 上异于端点的任意一点,且OP ―→=m OA ―→+n OB ―→,则m +n 的取值范围是________.解析:依题意,设OP ―→=λOC ―→ (0<λ<1),由OA ―→+OB ―→+OC ―→=0,知OC ―→=-(OA ―→+OB ―→), 所以OP ―→=-λOA ―→-λOB ―→,由平面向量基本定理可知,m +n =-2λ,所以m +n ∈(-2,0).考点二 平面向量的坐标运算[典例] 已知A (-2,4),B (3,-1),C (-3,-4).设AB ―→=a ,BC ―→=b ,CA ―→=c ,且CM ―→=3c ,CN ―→=-2b , (1)求3a +b -3c ;(2)求M ,N 的坐标及向量MN ―→的坐标.[解] 由已知得a =(5,-5),b =(-6,-3),c =(1,8).(1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42). (2)设O 为坐标原点,∵CM ―→=OM ―→-OC ―→=3c ,∴OM ―→=3c +OC ―→=(3,24)+(-3,-4)=(0,20). ∴M (0,20).又∵CN ―→=ON ―→-OC ―→=-2b ,∴ON ―→=-2b +OC ―→=(12,6)+(-3,-4)=(9,2), ∴N (9,2),∴MN ―→=(9,-18). [变透练清]1.(变结论)本例条件不变,若a =m b +n c ,则m =________,n =________.解析:∵m b +n c =(-6m +n ,-3m +8n ),a =(5,-5),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.2.已知O 为坐标原点,向量OA ―→=(2,3),OB ―→=(4,-1),且AP ―→=3PB ―→,则|OP ―→|=________.解析:设P (x ,y ),由题意可得A ,B 两点的坐标分别为(2,3),(4,-1),由AP ―→=3PB ―→,可得⎩⎪⎨⎪⎧x -2=12-3x ,y -3=-3y -3,解得⎩⎪⎨⎪⎧x =72,y =0,故|OP ―→|=72.[解题技法]1.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用“向量相等,则其坐标相同”这一原则,通过列方程(组)来进行求解. 2.向量坐标运算的注意事项(1)向量坐标与点的坐标形式相似,实质不同. (2)向量坐标形式的线性运算类似多项式的运算.(3)向量平行与垂直的坐标表达形式易混淆,需清楚结论推导过程与结果,加以区分. 考点三 平面向量共线的坐标表示[典例] 已知a =(1,0),b =(2,1). (1)当k 为何值时,k a -b 与a +2b 共线;(2)若AB ―→=2a +3b ,BC ―→=a +m b ,且A ,B ,C 三点共线,求m 的值. [解] (1)∵a =(1,0),b =(2,1),∴k a -b =k (1,0)-(2,1)=(k -2,-1),a +2b =(1,0)+2(2,1)=(5,2),∵k a -b 与a +2b 共线,∴2(k -2)-(-1)×5=0,∴k =-12.(2)AB ―→=2(1,0)+3(2,1)=(8,3),BC ―→=(1,0)+m (2,1)=(2m +1,m ). ∵A ,B ,C 三点共线,∴AB ―→∥BC ―→,∴8m -3(2m +1)=0,∴m =32.[解题技法]1.平面向量共线的充要条件的2种形式(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. (2)若a ∥b (b ≠0),则a =λb . 2.两个向量共线的充要条件的作用判断两个向量是否共线(或平行),可解决三点共线的问题;另外,利用两个向量共线的充要条件可以列出方程(组),求参数的值.[题组训练]1.已知向量a =(1,2),b =(-3,2),若(k a +b )∥(a -3b ),则实数k 的取值为( ) A .-13 B.13C .-3D .3解析:选A k a +b =k (1,2)+(-3,2)=(k -3,2k +2).a -3b =(1,2)-3(-3,2)=(10,-4), 则由(k a +b )∥(a -3b )得(k -3)×(-4)-10×(2k +2)=0,所以k =-13.2.已知在平面直角坐标系xOy 中,P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3―→与向量a =(1,-1)共线,若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则λ=( )A .-3B .3C .1D .-1解析:设OP 3―→=(x ,y ),则由OP 3―→∥a 知x +y =0,于是OP 3―→=(x ,-x ).若OP 3―→=λOP 1―→+(1-λ)OP 2―→,则有(x ,-x )=λ(3,1)+(1-λ)(-1,3)=(4λ-1,3-2λ),即⎩⎪⎨⎪⎧4λ-1=x ,3-2λ=-x ,所以4λ-1+3-2λ=0,解得λ=-1,故选D.3.在梯形ABCD 中,AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________. 解析:∵在梯形ABCD 中,DC =2AB ,AB ∥CD ,∴DC ―→=2AB ―→. 设点D 的坐标为(x ,y ),则DC ―→=(4-x,2-y ),AB ―→=(1,-1), ∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2),∴⎩⎪⎨⎪⎧ 4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4). 第三节 平面向量的数量积一、基础知识1.向量的夹角(1)定义:已知两个非零向量a 和b ,如图所示,作OA ―→=a ,OB ―→=b ,则∠AOB =θ(0°≤θ≤180°)叫做向量a 与b 的夹角,记作〈a ,b 〉.只有两个向量的起点重合时所对应的角才是两向量的夹角. (2)范围:夹角θ的范围是[0,π].当θ=0时,两向量a ,b 共线且同向;当θ=π2时,两向量a ,b 相互垂直,记作a ⊥b ;当θ=π时,两向量a ,b 共线但反向. 2.平面向量数量积的定义已知两个非零向量a 与b ,我们把数量|a ||b | cos θ叫做a 与b 的数量积(或内积),记作a ·b ,即a ·b =|a ||b |cos θ,其中θ是a 与b 的夹角.规定:零向量与任一向量的数量积为零. 3.平面向量数量积的几何意义 (1)一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫做向量b 在向量a 的方向上的投影,|a |cos θ叫做向量a 在向量b 的方向上的投影.(2)a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 投影和两向量的数量积都是数量,不是向量. 4.向量数量积的运算律(1)交换律:a ·b =b ·a .(2)数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ). (3)分配律:(a +b )·c =a ·c +b ·c .向量数量积的运算不满足乘法结合律,即(a ·b )·c 不一定等于a ·(b ·c ),这是由于(a ·b )·c 表示一个与c 共线的向量,a ·(b ·c )表示一个与a 共线的向量,而c 与a 不一定共线.5.平面向量数量积的性质设a ,b 为两个非零向量,e 是与b 同向的单位向量,θ是a 与e 的夹角,则 (1)e ·a =a ·e =|a |cos θ.(2)a ⊥b ⇔a ·b =0.(3)当a 与b 同向时,a ·b =|a||b|;当a 与b 反向时,a ·b =-|a||b|. 特别地,a ·a =|a|2或|a|=a ·a .(4)cos θ=a ·b|a ||b |.(5)|a ·b |≤|a||b|.6.平面向量数量积的坐标表示已知两个非零向量a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则(1)|a |=x 21+y 21; (3)a ⊥b ⇔x 1x 2+y 1y 2=0;(2)a ·b =x 1x 2+y 1y 2;_ (4)cos θ=x 1x 2+y 1y 2x 21+y 21 x 22+y 22.二、常用结论汇总1.平面向量数量积运算的常用公式(1)(a +b )·(a -b )=a 2-b 2;(2)(a ±b )2=a 2±2a ·b +b 2. 2.有关向量夹角的两个结论(1)两个向量a 与b 的夹角为锐角,则有a ·b >0,反之不成立(因为夹角为0时不成立); (2)两个向量a 与b 的夹角为钝角,则有a ·b <0,反之不成立(因为夹角为π时不成立).考点一 平面向量的数量积的运算[典例] (1)若向量m =(2k -1,k )与向量n =(4,1)共线,则m ·n =( ) A .0 B .4C .-92D .-172(2)在如图所示的平面图形中,已知OM =1,ON =2,∠MON =120°,BM ―→=2MA ―→,CN ―→=2NA ―→,则BC ―→·OM ―→的值为( )A .-15B .-9C .-6D .0[解析] (1)∵向量m =(2k -1,k )与向量n =(4,1)共线,∴2k -1-4k =0,解得k =-12,∴m =⎝⎛⎭⎫-2,-12,∴m ·n =-2×4+⎝⎛⎭⎫-12×1=-172. (2)法一:如图,连接MN .∵BM ―→=2MA ―→,CN ―→=2NA ―→,∴AM AB =AN AC =13.∴MN ∥BC ,且MN BC =13.∴BC ―→=3MN ―→=3(ON ―→-OM ―→).∴BC ―→·OM ―→=3(ON ―→·OM ―→-OM ―→2)=3(2×1×cos 120°-12)=-6.法二:在△ABC 中,不妨设∠A =90°,取特殊情况ON ⊥AC ,以A 为坐标原点,AB ,AC所在直线分别为x 轴,y 轴建立如图所示的平面直角坐标系,因为∠MON =120°,ON =2,OM =1,所以O ⎝⎛⎭⎫2,32,C ⎝⎛⎭⎫0,332,M ⎝⎛⎭⎫52,0,B ⎝⎛⎭⎫152,0.故BC ―→·OM ―→=⎝⎛⎭⎫-152,332·⎝⎛⎭⎫12,-32=-154-94=-6.[解题技法] 求非零向量a ,b 的数量积的策略(1)若两向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,则需要通过平移使它们的起点重合,再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出向量a ,b ,然后根据平面向量的数量积的定义进行计算求解.(3)若图形适合建立平面直角坐标系,可建立坐标系,求出a ,b 的坐标,通过坐标运算求解. [题组训练]1.已知矩形ABCD 中,AB =2,BC =1,则AC ―→·CB ―→=( ) A .1 B .-1C.6D .2 2 解析:选B 设AB ―→=a ,AD ―→=b ,则a ·b =0,∵|a |=2,|b |=1,∴AC ―→·CB ―→=(a +b )·(-b )=-a ·b -b 2=-1.2.已知向量a ,b 满足a ·(b +a )=2,且a =(1,2),则向量b 在a 方向上的投影为( ) A.55 B .-55C .-255 D .-355解析:由a =(1,2),可得|a |=5,由a ·(b +a )=2,可得a ·b +a 2=2, ∴a ·b =-3,∴向量b 在a 方向上的投影为a ·b |a |=-355.3.在△ABC 中,已知AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,M 为BC 上的一点,且AM ―→=λAB ―→+μAC ―→(λ,μ∈R),且AM ―→·BC ―→=0,则 λμ的值为________.解析:法一:∵BC ―→=AC ―→-AB ―→,AM ―→·BC ―→=0,∴(λAB ―→+μAC ―→)·(AC ―→-AB ―→)=0,∵AB ―→与AC ―→的夹角为90°,|AB ―→|=2,|AC ―→|=1,∴-λ|AB ―→|2+μ|AC ―→|2=0,即-4λ+μ=0,∴λμ=14.法二:根据题意,建立如图所示的平面直角坐标系,则A (0,0),B (0,2),C (1,0),所以AB ―→=(0,2),AC ―→=(1,0),BC ―→=(1,-2).设M (x ,y ),则AM ―→=(x ,y ),所以AM ―→·BC ―→=(x ,y )·(1,-2)=x -2y =0,所以x =2y ,又AM ―→=λAB ―→+μAC ―→,即(x ,y )=λ(0,2)+μ(1,0)=(μ,2λ),所以x =μ,y =2λ,所以λμ=12y 2y =14.考点二 平面向量数量积的性质考法(一) 平面向量的模[典例] (1)已知非零向量a ,b 满足a ·b =0,|a |=3,且a 与a +b 的夹角为π4,则|b |=( )A .6B .32C .2 2D .3(2)已知向量a ,b 为单位向量,且a ·b =-12,向量c 与a +b 共线,则|a +c |的最小值为( )A .1 B.12C.34 D.32[解析] (1)∵a ·b =0,|a |=3,∴a ·(a +b )=a 2+a ·b =|a ||a +b |cos π4,∴|a +b |=32,将|a +b |=32两边平方可得,a 2+2a ·b +b 2=18,解得|b |=3,(2)∵向量c 与a +b 共线,∴可设c =t (a +b )(t ∈R),∴a +c =(t +1)a +t b ,∴(a +c )2=(t +1)2a 2+2t (t +1)·a ·b +t 2b 2,∵向量a ,b 为单位向量,且a ·b =-12,∴(a +c )2=(t +1)2-t (t +1)+t 2=t 2+t +1≥34,∴|a +c |≥32,∴|a +c |的最小值为32,考法(二) 平面向量的夹角[典例] (1)已知平面向量a ,b 的夹角为π3,且|a |=1,|b |=12,则a +2b 与b 的夹角是( )A.π6B.5π6C.π4D.3π4(2)已知向量a =(1,3),b =(3,m )且b 在a 方向上的投影为-3,则向量a 与b 的夹角为________. [解析] (1)因为|a +2b |2=|a |2+4|b |2+4a ·b =1+1+4×1×12×cos π3=3,所以|a +2b |= 3.又(a +2b )·b =a ·b +2|b |2=1×12×cos π3+2×14=14+12=34,所以cos 〈a +2b ,b 〉=(a +2b )·b |a +2b ||b |=343×12=32,所以a +2b 与b 的夹角为π6.(2)因为b 在a 方向上的投影为-3,所以|b |cos 〈a ,b 〉=-3,又|a |=12+(3)2=2,所以a ·b =|a ||b |cos 〈a ,b 〉=-6,又a ·b =3+3m ,所以3+3m =-6,解得m =-33,则b =(3,-33),所以|b |=32+(-33)2=6,所以cos 〈a ,b 〉=a ·b|a ||b |=-62×6=-12,因为0≤〈a ,b 〉≤π,所以a 与b 的夹角为2π3.考法(三) 平面向量的垂直[典例] (1)若非零向量a ,b 满足|a |=223|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A.π4 B.π2C.3π4D .π(2)已知向量AB ―→与AC ―→的夹角为120°,且|AB ―→|=3,|AC ―→|=2.若AP ―→=λAB ―→+AC ―→,且AP ―→⊥BC ―→,则实数λ的值为________.[解析] (1)设a 与b 的夹角为θ,因为|a |=223|b |,(a -b )⊥(3a +2b ), 所以(a -b )·(3a +2b )=3|a |2-2|b |2-a ·b =83|b |2-2|b |2-223|b |2cos θ=0,解得cos θ=22,因为θ∈[0,π],所以θ=π4. (2)由AP ―→⊥BC ―→,知AP ―→·BC ―→=0,即AP ―→·BC ―→=(λAB ―→+AC ―→)·(AC ―→-AB ―→)=(λ-1)AB ―→·AC ―→-λAB ―→2+AC ―→2=(λ-1)×3×2×⎝⎛⎭⎫-12-λ×9+4=0,解得λ=712. [解题技法]1.利用坐标运算证明两个向量的垂直问题若证明两个向量垂直,先根据共线、夹角等条件计算出这两个向量的坐标;然后根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可.2.已知两个向量的垂直关系,求解相关参数的值根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.[题组训练]1.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ=( ) A .-4 B .-3C .-2 D .-1解析: ∵(m +n )⊥(m -n ),∴(m +n )·(m -n )=m 2-n 2=(λ+1)2+1-(λ+2)2-4=0,解得λ=-3.故选B. 2.已知非零向量a ,b 的夹角为60°,且|b |=1,|2a -b |=1,则|a |=( ) A.12B .1C. 2 D .2 解析: ∵非零向量a ,b 的夹角为60°,且|b |=1,∴a ·b =|a |×1×12=|a |2,∵|2a -b |=1,∴|2a -b |2=4a 2-4a ·b +b 2=4|a |2-2|a |+1=1,∴4|a |2-2|a |=0,∴|a |=12,故选A.3.已知向量a ,b 满足|a |=1,|b |=2,a +b =(1,3),记向量a ,b 的夹角为θ,则t a n θ=________. 解析:∵|a |=1,|b |=2,a +b =(1,3),∴(a +b )2=|a |2+|b |2+2a ·b =5+2a ·b =1+3,∴a ·b =-12,∴cosθ=a ·b|a |·|b |=-14,∴sin θ=1-⎝⎛⎭⎫-142=154,∴t a n θ=sin θc os θ=-15. 第四节 平面向量的综合应用 考点一 平面向量与平面几何[典例] 在平行四边形ABCD 中,|AB ―→|=12,|AD ―→|=8.若点M ,N 满足BM ―→=3MC ―→,DN ―→=2NC ―→,则AM ―→·NM ―→=( )A .20B .15C .36D .6[解析] 法一:由BM ―→=3MC ―→,DN ―→=2NC ―→知,点M 是BC 的一个四等分点,且BM =34BC ,点N 是DC 的一个三等分点,且DN =23DC ,所以AM ―→=AB ―→+BM ―→=AB ―→+34AD ―→,AN ―→=AD ―→+DN ―→=AD ―→+23AB ―→,所以NM ―→=AM ―→-AN ―→=AB ―→+34AD ―→-⎝⎛⎭⎫AD ―→+23AB ―→=13AB ―→- 14AD ―→,所以AM ―→·NM ―→=⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫13AB ―→-14AD ―→=13⎝⎛⎭⎫AB ―→+34AD ―→·⎝⎛⎭⎫AB ―→-34AD ―→= 13⎝⎛⎭⎫AB ―→2-916AD ―→2=13⎝⎛⎭⎫144-916×64=36,故选C.法二:不妨设∠DAB 为直角,以AB 所在直线为x 轴,AD 所在直线为y 轴建立如图所示的平面直角坐标系.则M (12,6),N (8,8),所以AM ―→=(12,6),NM ―→=(4,-2),所以AM ―→·NM ―→=12×4+6×(-2)=36,故选C.[题组训练]1.若O 为△ABC 所在平面内任一点,且满足(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,则△ABC 的形状为( ) A .等腰三角形 B .直角三角形C .正三角形 D .等腰直角三角形解析:选A 由(OB ―→-OC ―→)·(OB ―→+OC ―→-2OA ―→)=0,得CB ―→·(AB ―→+AC ―→)=0,∵AB ―→-AC ―→=CB ―→, ∴(AB ―→-AC ―→)·(AB ―→+AC ―→)=0,即|AB ―→|=|AC ―→|,∴△ABC 是等腰三角形.2.已知P 为△ABC 所在平面内一点,AB ―→+PB ―→+PC ―→=0,|AB ―→|=|PB ―→|=|PC ―→|=2,则△ABC 的面积等于( )A. 3 B .23C .3 3 D .4 3解析:由|PB ―→|=|PC ―→|得,△PBC 是等腰三角形,取BC 的中点D ,连接PD (图略),则PD ⊥BC ,又AB ―→+PB ―→+PC ―→=0,所以AB ―→=-(PB ―→+PC ―→)=-2PD ―→,所以PD =12AB =1,且PD ∥AB ,故AB ⊥BC ,即△ABC 是直角三角形,由|PB ―→|=2,|PD ―→|=1可得|BD ―→|=3,则|BC ―→|=23,所以△ABC 的面积为12×2×23=2 3.3.如图,在扇形OAB 中,OA =2,∠AOB =90°,M 是OA 的中点,点P 在弧AB 上,则PM ―→·PB ―→的最小值为________.解析:如图,以O 为坐标原点,OA ―→为x 轴的正半轴,OB ―→为y 轴的正半轴建立平面直角坐标系,则M (1,0),B (0,2),设P (2cos θ,2sin θ),θ∈⎣⎡⎦⎤0,π2,所以PM ―→·PB ―→=(1-2cos θ,-2sin θ)·(-2cos θ,2-2sin θ)=4-2cos θ- 4sin θ=4-2(cos θ+2sin θ)=4-25sin(θ+φ)⎝⎛⎭⎫其中sin φ=55,c os φ=255,所以PM ―→·PB ―→的最小值为4-2 5.答案:4-2 5考点二 平面向量与解析几何[典例] 已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值. [解] (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .则t a n x =-33.又x ∈[0,π],所以x =5π6. (2)f (x )=a ·b =(cos x ,sin x )·(3,-3)=3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6,从而-1≤cos ⎝⎛⎭⎫x +π6≤32. 于是,当x +π6=π6,即x =0时,f (x )取到最大值3;当x +π6=π,即x =5π6时,f (x )取到最小值-2 3.[题组训练]1.已知向量OA ―→=(k,12),OB ―→=(4,5),OC ―→=(10,k ),且A ,B ,C 三点共线,当k <0时,若k 为直线的斜率,则过点(2,-1)的直线方程为________.解析:∵AB ―→=OB ―→-OA ―→=(4-k ,-7),BC ―→=OC ―→-OB ―→=(6,k -5),且AB ―→∥BC ―→,∴(4-k )(k -5)+6×7=0,解得k =-2或k =11.由k <0,可知k =-2,则过点(2,-1)且斜率为-2的直线方程为y +1=-2(x -2),即2x +y -3=0.2.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ―→·FP ―→的最大值为________.解析:由题意,得F (-1,0),设P (x 0,y 0),则有x 204+y 203=1,解得y 20=3⎝⎛⎭⎫1-x 204,因为FP ―→=(x 0+1,y 0),OP ―→=(x 0,y 0),所以OP ―→·FP ―→=x 0(x 0+1)+y 20=x 20+x 0+3⎝⎛⎭⎫1-x 204=x 204+x 0+3,对应的抛物线的对称轴方程为x 0=-2,因为-2≤x 0≤2,故当x 0=2时,OP ―→·FP ―→取得最大值224+2+3=6.考点三 平面向量与三角函数[典例] 已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A ―→+PB ―→+PC ―→|的最大值为( )A .6B .7C .8D .9[解析] 由A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,知线段AC 为圆的直径,设圆心为O ,故P A ―→+PC ―→=2PO ―→=(-4,0),设B (a ,b ),则a 2+b 2=1且a ∈[-1,1],PB ―→=(a -2,b ),所以P A ―→+PB ―→+PC ―→=(a -6,b ).故|P A ―→+PB ―→+PC ―→|=-12a +37,所以当a =-1时,|P A ―→+PB ―→+PC ―→|取得最大值49=7.[解题技法]平面向量与三角函数的综合问题的解题思路(1)若给出的向量坐标中含有三角函数,求角的大小,解题思路是运用向量共线或垂直的坐标表示,或等式成立的条件等,得到三角函数的关系式,然后求解.(2)若给出的向量坐标中含有三角函数,求向量的模或者向量的其他表达形式,解题思路是利用向量的运算,结合三角函数在定义域内的有界性或基本不等式进行求解.[题组训练]1.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么a ·b =0是α=k π+π4(k ∈Z)的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:∵a ·b =cos α·cos(-α)+sin α·sin(-α)=cos 2α-sin 2α=cos 2α,若a ·b =0,则cos 2α=0,∴2α=2k π±π2(k ∈Z),解得α=k π±π4(k ∈Z).∴a ·b =0是α=k π+π4(k ∈Z)的必要不充分条件.故选B.2.已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n = (cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3解析:选C 由m ⊥n ,得m ·n =0,即3cos A -sin A =0,由题意得cos A ≠0,∴t a n A =3,又A ∈(0,π),∴A =π3.又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c (R 为△ABC 外接圆半径),且a cos B +b cos A =c sin C ,所以c =c sin C ,所以sin C =1,又C ∈(0,π),所以C =π2,所以B =π-π3-π2=π6.。

平面向量的运算(学生版)内容

平面向量的运算(学生版)内容

平面向量的运算(讲义)知识点一向量加法的三角形法则已知非零向量”, ⅛,在平面内取任意一点A,作#=α,鼠=b,则向量祀叫做。

与力的和,记作α+"即。

+〃=霜+觉=祀.这种求向量和的方法,称为向量加法的三角芨法则.注意点:运用向量加法的三角形法则作图时要“首尾相接,再首尾连反思感悟 向量加法的三角形法则的特征为首尾顺次相接,即AA ∖ + A\A2) + ...... + A n -∖An = AA,t .知识点二向量加法的平行四边形法则1 .以同一点。

为起点的两个已知向量〃",以0A, 03为邻边作口0AC3,则以。

为起点的向量能(0C 是口04CB 的对角线)就是向量。

与〃的和.把这种作两个向量和的方法叫做向量加法的平行四边形法则.2 .从平行四边形的性质可知三角形法则和平行四边形法则是一致的.3 .对于零向量与任意向量规定α+0=0+α=α.注意点:运用向量加法的平行四边形法则作图时.,要强调两个向量起点相同.反思感悟向量加法的平行四边形法则和三角形法则的区别和联系知识点三 共线向量的加法与向量加法的运算律1 . 一般地,我们有∣α+b ∣≤∣o ∣+步I ,当且仅当α, b方向相同时等号成立.2 .(加法交换律)α+b=)+出(加法结合律)”+(b+c)=(α+))+c.反思感悟 向量加法运算律的意义和应用原则⑴意义:向量加法的运算律为向量加法提供了变形的依据,实现了恰当利用向量加法法则运算的目的.实际上, 由于向量的加法满足交换律和结合律,故多个向量的加法运算可以按照任意的次序、任意的组合来进行. ⑵应用原则:通过向量加法的交换律,使各向量“首尾相连”,通过向量加法的结合律调整向量相加的顺序. 知识点四向量加法的实际应用反思感悟应用向量解决实际问题的基本步骤⑴表示:用向量表示有关量,将所要解答的问题转化为向量问题.⑵运算:应用向量加法的平行四边形法则和三角形法则,将有关向量进行运算,解答向量问题.⑶还原:根据向量的运算结果,结合向量共线、相等等概念回答原问题.知识点五向量的减法运算1 .相反向量:与向量。

平面向量基础讲义

平面向量基础讲义

平面向量【复习目标】1. 理解向量平行(共线)的充要条件,会用该结论证明共线问题; 2. 掌握向量加减法,实数与向量的积以及向量数量积的坐标运算;3. 掌握向量加减法,实数与向量的积以及向量数量积的运算的几何意义;4. 强化平面向量的工具意识,培养使用平面向量解决平面几何,解析几何,三角函数及某些应用问题的能力。

【重点难点】向量加减法,实数与向量的积以及向量数量积的运算的几何意义。

【典型例题】例1(1)如图,已知2,1,4,OA OB OC OA OB === 与的夹角为1200,OA OC 与的夹角为300,用,OA OB OC 表示.(2)已知,a b是两个非零向量,且,a b a b a a b ==-+ 求与的夹角.(3)已积OB =(2,0),OC =(2,2),CA = (2cos α,2sin α),则OA 与OB夹角的范围是______________ (4)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,AH 为BC 边上的高.以下结论: ①⋅=+⋅)(;②2AH AC AH ⋅= ;③sin ||AHAC c B AH ⋅= ;④ A bc c b AB AC BC cos 2)(22-+=-⋅.其中正确的是 .(写出所有你认为正确的结论的序号)例2(1)已知,,,OA a OB b OC c ===(如图),求证:A 、B 、C 三点在一直线上的充要条件是存在实数m 、n 使得n m +=并且1=+n mO(2)平面直角坐标坐标系中,O 为坐标原点,已知两点A(3,1),B (-1,3),若点C 满足OC =αOA+βOB,若中α、β∈R ,且α+β=1,则点C 的轨迹方程为______ ______(3)过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E.若,0,,≠==xy AC y AE AB x AD 则yx 11+的值为______ ______例3(1)在同一平面内,Rt △ABC 和Rt △ACD 拼接如图所示,现将△ACD 绕A 点顺时针旋转α角 (0<α<π3)后得△AC 1D 1,AD 1交DC 于点E ,AC 1交BC 于点F .∠BAC =∠ACD =π2, ∠ACB =∠ADC =π6,AC①当AF =1时,求α; ②求证:对任意的α∈(0,π3),BE AC ⋅ 为定值.(2)已知不共线的,,a b c 三向量两两所成的角相等,并且1,2,3a b c ===,试求向量a b c ++ 的长度以及与已知三向量的夹角。

平面向量知识点整理

平面向量知识点整理

平面向量知识点整理1、概念(1)向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.有向线段的三要素:起点、方向、长度. (2)单位向量:长度等于1个单位的向量. (3)平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行.提醒:①相等向量一定是共线向量,但共线向量不一定相等; ②两个向量平行与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线,但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有零向量)④三点A 、B 、C 共线 AC AB 、共线(4)相等向量:长度相等且方向相同的向量.(5)相反向量:长度相等方向相反的向量。

a 的相反向量是-a(6)向量表示:几何表示法AB ;字母a 表示;坐标表示:a =xi+yj =(x,y). (7)向量的模:设OA a =,则有向线段OA 的长度叫做向量a 的长度或模,记作:||a . ( 222222||,||a x y a a x y =+==+。

) (8)零向量:长度为0的向量。

a =O ⇔|a |=O .【例题】1.下列命题:(1)若a b =,则a b =。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =。

(5)若,a b b c ==,则a c =。

(6)若//,//a b b c ,则//a c 。

其中正确的是_______(答:(4)(5))2.已知,a b 均为单位向量,它们的夹角为60,那么|3|a b +=_____(答:13);2、向量加法运算:⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点.⑶三角形不等式:a b a b a b -≤+≤+.baCBAa b C C -=A -AB =B⑷运算性质:①交换律:a b b a +=+;②结合律:()()a b c a b c ++=++; ③00a a a +=+=.⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 3、向量减法运算:⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为()11,x y ,()22,x y ,则()1212,x x y y AB =--. 【例题】(1)①AB BC CD ++=___;②AB AD DC --=____;③()()AB CD AC BD ---=_____ (答:①AD ;②CB ;③0);(2)若正方形ABCD 的边长为1,,,AB a BC b AC c ===,则||a b c ++=_____(答:);(3)已知作用在点(1,1)A 的三个力123(3,4),(2,5),(3,1)F F F ==-=,则合力123F F F F =++的终点坐标是(答:(9,1))4、向量数乘运算:⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=;②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=.⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③()a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==.5、向量共线定理:向量()0a a ≠与b 共线,当且仅当有唯一一个实数λ,使b a λ=.设()11,a x y =,()22,b x y =,(0b ≠)22()(||||)a b a b ⇔⋅=。

平面向量综合讲义

平面向量综合讲义
平面向量
考点一、平面向量的概念与线性运算
1.向量的有关概念
(1)向量:既有大小又有方向的量;向量的大小叫做向量的长度(或称模);平面向量是自由向量;
(2)零向量:长度为 0 的向量,记为 0 ;方向是任意的,模为 0;
a
(3)单位向量:长度等量是 ;
化为数量运算.
(2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,
若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.
(3)妙用待定系数法求系数:利用坐标运算求向量的基底表示,一般先求出基底向量和
被表示向量的坐标,再用待定系数法求出系数.
考点四 平面向量数量积的概念、其几何意义及其运算律
乘法交换律 a·b=b· a 数乘结合律(λa)·b=λ (a·b) =a·(λb) 加乘分配律(a+b)·c=a·c+b·c 注:有些实数的运算性质不能类推到向量的数量积运算:
比如: abc a(bc), 但是(a·b)·c 与 a·(b·c)不一定相等;
常用公式
①(a+b)2=a2+2a·b+b2;
平行四边形法则:起点相同;
②运算律:交换律:a+b=b+a. 结合律:(a+b)+c=a+(b+c).
③一般地,首尾顺次相接的多个向量的和等于从第一个向量的起点指向最后一个向量的终点 ―→ ―→ ―→ ―→ ―→
的向量,即A1A2 +A2A3 +A3A4 +…+An-1An=A1An .特别地,一个封闭图形首尾连接而成的向量和为零向量. (2)减法:求 a 与 b 的相反向量-b 的和的运算叫做 a 与 b 的差(a-b=a+(-b))
|a|
(4)平行向量(共线向量):方向相同或相反的非零向量;规定:0 与任一向量平行(共线);

(完整版)平面向量复习讲义

(完整版)平面向量复习讲义

平面向量复习讲义一.向量有关概念:1.向量的概念:既有大小又有方向的量,注意向量和数量的区别。

向量常用有向线段来表示,注意不能说向量就是有向线段,为什么?(向量可以平移)。

2.零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的;3.单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r共线的单位向量是||AB AB ±u u u ru u u r ); 4.相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性; 5.平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。

提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r);6.相反向量:长度相等方向相反的向量叫做相反向量。

a 的相反向量是-a 。

如下列命题:(1)若a b =r r,则a b =r r 。

(2)两个向量相等的充要条件是它们的起点相同,终点相同。

(3)若AB DC =u u u r u u u r ,则ABCD 是平行四边形。

(4)若ABCD 是平行四边形,则AB DC =u u u r u u u r 。

(5)若,a b b c ==r r r r ,则a c =r r 。

(6)若//,//a b b c r r r r ,则//a c r r。

其中正确的是_______(答:(4)(5))二.向量的表示方法:1.几何表示法:用带箭头的有向线段表示,如AB ,注意起点在前,终点在后; 2.符号表示法:用一个小写的英文字母来表示,如a ,b ,c 等;3.坐标表示法:在平面内建立直角坐标系,以与x 轴、y 轴方向相同的两个单位向量i ,j 为基底,则平面内的任一向量a 可表示为(),a xi y j x y =+=r r r,称(),x y 为向量a 的坐标,a =(),x y 叫做向量a 的坐标表示。

平面向量讲义

平面向量讲义

平面向量1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----AB (几何表示法); ②用字母a 、b 等表示(字母表示法); ③平面向量的坐标表示(坐标表示法):分别取与x 轴、y 轴方向相同的两个单位向量i 、j 作为基底。

任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得axi yj =+,),(y x 叫做向量a 的(直角)坐标,记作(,)a x y =,其中x 叫做a 在x 轴上的坐标,y 叫做a 在y 轴上的坐标, 特别地,i (1,0)=,j (0,1)=,0(0,0)=。

22a x y =+;若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=,222121()()AB x x y y =-+-3.零向量、单位向量:①长度为0的向量叫零向量,记为0;②长度为1个单位长度的向量,叫单位向量.(注:||a a 就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a 、b 、c 平行,记作a ∥b ∥c .共线向量与平行向量关系:平行向量就是共线向量.性质://(0)(a b b a b λλ≠⇔=是唯一)||b a b a a b λλλ⎧⎧>⎪⎪⎨⎪<⎪⎩⎨⎪=⎪⎩0,与同向方向---0,与反向长度---1221//(0)0a b b x y x y ≠⇔-= (其中 1122(,),(,)a x y b x y ==)5.相等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量. ②垂直向量——两向量的夹角为2πθ=性质:0a b a b ⊥⇔∙=12120a b x x y y ⊥⇔+= (其中 1122(,),(,)a x y b x y ==)6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。

平面向量的概念PPT课件

平面向量的概念PPT课件

04
平面向量数量积概念及性 质
数量积定义及几何意义
数量积定义
两个向量的数量积是一个标量,等于它们模长的乘积与它们夹 角余弦的乘积。
几何意义
数量积反映了两个向量的相对位置和角度关系,正值表示同向, 负值表示反向,零表示垂直。
数量积性质及运算规律
性质
满足交换律、分配律、结合律,与标量乘法相容等。
运算规律
向量坐标与点坐标关系
向量坐标
向量坐标是由起点指向终点的有 向线段,在直角坐标系中可以用
两个坐标值表示。
点坐标
点坐标是直角坐标系中点的位置表 示,同样可以用两个坐标值表示。
关系
向量坐标与点坐标密切相关,向量 的起点和终点坐标可以决定向量的 坐标,而点的坐标可以用来表示向 量的起点或终点。
向量运算坐标表示法
坐标法求解向量问题
求解向量坐标
通过已知点的坐标和向量的关系,可以 求解向量的坐标。
求解向量模长
通过向量的坐标可以计算向量的模长, 进而求解与模长相关的问题。
求解向量夹角
通过向量的坐标可以计算向量的夹角, 进而求解与夹角相关的问题。
求解向量运算结果
通过向量的坐标表示法可以求解向量的 加法、减法和数乘运算结果。
向量运算满足基本定律
加法结合律
(a + b) + c = a + (b + c)
数乘结合律
(kl)a = k(la)
加法交换律
a+b=b+a
数乘分配律
k(a + b) = ka + kb
向量共线定理,使得b = λa
03
平面向量坐标表示法
直角坐标系中向量表示方法

(word完整版)平面向量讲义 - 学生版

(word完整版)平面向量讲义 - 学生版

学习目标 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别。

2。

会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量。

3.理解零向量、单位向量、平行向量、共线向量、相等向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一向量的概念思考1 在日常生活中有很多量,如面积、质量、速度、位移等,这些量有什么区别?思考2 两个数量可以比较大小,那么两个向量能比较大小吗?梳理向量与数量(1)向量:既有________,又有________的量统称为向量.(2)数量:只有________,没有________的量称为数量.知识点二向量的表示方法思考1 向量既有大小又有方向,那么如何形象、直观地表示出来?思考2 0的模长是多少?0有方向吗?思考3 单位向量的模长是多少?梳理(1)向量的表示①具有________和长度的线段叫作有向线段,以A为起点,以B为终点的有向线段记作________,线段AB的长度也叫作有向线段错误!的长度,记作________.②向量可以用____________来表示.有向线段的长度表示____________,即长度(也称模).箭头所指的方向表示____________.③向量也可以用黑体小写字母如a,b,c,…来表示,书写用错误! , 错误! , 错误!,…来表示.(2)________的向量叫作零向量,记作______________;______________________________的向量,叫作a方向上的单位向量,记作a0.知识点三相等向量与共线向量思考1 已知A,B为平面上不同两点,那么向量错误!和向量错误!相等吗?它们共线吗?思考2 向量平行、共线与平面几何中的直线、线段平行、共线相同吗?思考3 若a∥b,b∥c,那么一定有a∥c吗?梳理(1)相等向量:____________且____________的向量叫作相等向量.(2)平行向量:如果表示两个向量的有向线段所在的直线______________,则称这两个向量平行或共线.①记法:a与b平行或共线,记作________.②规定:零向量与____________平行.类型一向量的概念例1 下列说法正确的是( )A.向量错误!与向量错误!的长度相等 B.两个有共同起点,且长度相等的向量,它们的终点相同C.零向量没有方向 D.任意两个单位向量都相等反思与感悟解决向量概念问题一定要紧扣定义,对单位向量与零向量要特别注意方向问题.跟踪训练1 下列说法正确的有________.①若|a|=|b|,则a=b或a=-b;②向量错误!与错误!是共线向量,则A、B、C、D四点必在同一条直线上;③向量错误!与错误!是平行向量.类型二共线向量与相等向量例2 如图所示,△ABC的三边均不相等,E、F、D分别是AC、AB、BC的中点.(1)写出与错误!共线的向量;(2)写出与错误!的模大小相等的向量;(3)写出与错误!相等的向量.反思与感悟(1)非零向量共线是指向量的方向相同或相反.(2)共线的向量不一定相等,但相等的向量一定共线.跟踪训练2如图所示,O是正六边形ABCDEF的中心.(1)与错误!的模相等的向量有多少个?(2)是否存在与错误!长度相等、方向相反的向量?若存在,有几个?(3)与错误!共线的向量有哪些?类型三向量的表示及应用例3 一辆汽车从A点出发向西行驶了100 km到达B点,然后又改变方向,向西偏北50°的方向走了200 km 到达C点,最后又改变方向,向东行驶了100 km到达D点.(1)作出向量AB,→、错误!、错误!;(2)求|错误!|.反思与感悟准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练3 在如图的方格纸上,已知向量a,每个小正方形的边长为1.(1)试以B为终点画一个向量b,使b=a;(2)在图中画一个以A为起点的向量c,使|c|=错误!,并说出向量c的终点的轨迹是什么?1.下列结论正确的个数是( )①温度含零上和零下温度,所以温度是向量;②向量的模是一个正实数;③向量a与b不共线,则a与b都是非零向量;④若|a|>|b|,则a>b.A.0 B.1C.2 D.32.下列说法错误的是()A.若a=0,则|a|=0 B.零向量是没有方向的 C.零向量与任一向量平行 D.零向量的方向是任意的3.如图所示,梯形ABCD为等腰梯形,则两腰上的向量错误!与错误!的关系是( )A.错误!=错误! B.|错误!|=|错误!| C。

平面向量知识点讲解

平面向量知识点讲解

平面向量知识点讲解一、向量的基本概念。

1. 向量的定义。

- 既有大小又有方向的量叫做向量。

例如,物理学中的力、位移等都是向量。

向量可以用有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向。

2. 向量的表示。

- 几何表示:用有向线段表示向量,有向线段的起点和终点分别用大写字母表示,如→AB,其中A为起点,B为终点。

- 字母表示:可以用小写字母→a,→b,→c等表示向量。

3. 向量的模。

- 向量的大小叫做向量的模,记作|→AB|或|→a|。

例如,若→AB表示从点A(1,1)到点B(3,4)的向量,则|→AB|=√((3 - 1)^2+(4 - 1)^2)=√(4 + 9)=√(13)。

4. 零向量。

- 长度为0的向量叫做零向量,记作→0,其方向是任意的。

5. 单位向量。

- 长度等于1个单位长度的向量叫做单位向量。

与非零向量→a同方向的单位向量是(→a)/(|→a|)。

二、向量的基本运算。

1. 向量的加法。

- 三角形法则:已知非零向量→a,→b,在平面内任取一点A,作→AB=→a,→BC=→b,则向量→AC=→a+→b。

- 平行四边形法则:已知两个不共线向量→a,→b,作→AB=→a,→AD=→b,以AB,AD为邻边作平行四边形ABCD,则向量→AC=→a+→b。

- 向量加法满足交换律→a+→b=→b+→a和结合律(→a+→b)+→c=→a+(→b+→c)。

2. 向量的减法。

- 向量→a与→b的差→a-→b=→a+(-→b),其中-→b是→b的相反向量,其长度与→b相同,方向相反。

求→a-→b可以用三角形法则,即把→a与-→b首尾相接,则→a-→b是由-→b的起点指向→a的终点的向量。

3. 向量的数乘。

- 实数λ与向量→a的乘积是一个向量,记作λ→a。

当λ>0时,λ→a与→a方向相同;当λ < 0时,λ→a与→a方向相反;当λ = 0时,λ→a=→0。

且|λ→a|=|λ||→a|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
E
C
D
B
B
A
八年级下:初二数学提高班讲义10:平面向量与概率初步
姓名_______________辅导时间________________________
【知识梳理一:平面向量】
1、(1)既有 、又有 的量,叫做向量.
(2)向量的 也叫向量的模(或向量的长度)——它是一个 . (3)零向量:大小为 ,方向 的向量;记作________. 2、(1)方向 且大小 的两个向量叫做相等的向量. (2)方向 且大小 的两个向量叫做互为相反的向量. (3)方向 的两个向量叫做平行向量.
3、向量的运算:
(1)加法:三角形法则,首尾相接. (2)减法:三角形法则,同一起点.
如图,AB BC += _____________;BC =
________-________.
(3)向量加法、减法的平行四边形法则
如图, 加减法分别可以表示为 .
(4)向量的加法满足交换律、结合律;即a b b a +=+
、()()
a b c a b c ++=++ .
【知识梳理二:概率初步】
1、如果P(A)=0,那么事件A 是 ;如果P(B)=1,那么事件B 是 .
2、随机事件C 的概率取值范围是: .
3、通常,把某事件在大数次试验中发生的 ,作为这个事件概率的估计值.
4、概率的计算:(1)等可能事件A 的概率:()A P A =
事件包含的可能结果数
所有的可能结果数

(2)简单等可能事件的概率计算,可画树形图进行分析.
【例题讲解】 一、填空题:
1、如图,梯形AECD 中,CD//AE ,AD=CE ,点B 在AE 上,BC//AD .
则图中与CD
相等的向量: .
与AB
相反的向量: . 与AB
平行的向量有: .
AD =

2、化简:(1)AB AC BD CD -+-= ;(2)AB AD DC --=

a
A
B
A E
D O
C
D B
A 3、如图,梯形ABCD 中,AD//BC ,E 在BC 上,AE//CD ,则
(1)BE ED DA CE +++= ;(2)BC CD DE BA +++= .
第3题 第4题 第5题
4、如图,□ABCD 中,AO =a ,AB =b
,则BC = .
5、如图,□ABOF ,□BCDO ,□ODEF ,用a 、b ,c
表示:AF = ;OC = ;
DF = ;AE =
;CF = .
6、设a 表示“向南走2km ”,b 表示“向东走
”,则a b + = ,a b + 的方向是 .
7、从编号分别从1到100的卡片中任意抽取一张,则卡片号是6的倍数的概率是 .
8、在盒子中有大小形状相同的6个球,其中白球2个,红球3个,黄球1个,则从中任取一个,取出白球的概率是 .
9、五张完全相同的卡片上,分别画有平行四边形、矩形、等腰梯形、菱形和等边三角形,现从中任意抽取一张,卡片上的画正好既是中心对称图形又是轴对称图形的概率为 . 10、某校初二年级共有400人,则其中至少有两人同一生日的概率为 .
11、从写有1、2、3、4、5的五张卡片中任取2张,其中数字按自然数相邻排列的概率为 . 12、抛掷两颗结构均匀的骰子,得到的两个数字的和为5的概率是 . 二、选择题:
13、下列结论正确的有( )
① 向量AB 与向量BA 是两个平行向量; ② 若a 、b 都是模为1的向量,则a =b ;
③ 两个向量相等的条件是它们的方向和大小必须相同; ④ 对任意一个向量a ,都有0a >
. (A )1个; (B )2个; (C )3个; (D )4个.
14、下列关系式:① 0AB BA += ;②0AB BA += ;③0AB BA += ;④0AB BA +=
;确的个数
有( ) (A )1; (B )2; (C )3; (D )4.
15等边△ABC 中,设AB =a ,BC
=b ,CA =c ,则下列错误的是( )
(A )a b c == ; (B )0a b c ++=
;(C )a b c == ; (D )0a b c ++= .
16、数字1、2、3、4、5中任取2个数字组成没有重复数字的两位数,则这个两位数大于40的概率为( )
(A )0.2; (B )0.4; (C )0.5; (D )0.25.
a
b
c
三、解答题
17 判断下列命题是否为真命题,并写出逆命题
(1)如0a = ,那么0a = ;( ) (2)若a =b
,那么a =b ;( )
(3)若a =b
,那么a //b .( )
18如图,已知向量AB a = 、BC b = 、CD c = 、DE d = ;试用a 、b 、c 、d
表示下列向量:
(1)AB AC - ;(2)AB AE - .
19、如图,已知向量a 、b 、c
;求作:(1) b a - ,(2)()
a b c -- .
20、已知,在平面直角坐标系中,O 为原点,点A (1,1)关于原点对称的点为B ,点C (3,2)关于x 轴对
称的点为D ;(1)求作向量OB 、BD
;(2)求作:OA OC - ;(3)求作:OD OC - .
A
E C
F
D
B
21、一副扑克牌共54张,大王看成红色,小王看成黑色,任意抽取一张;求下列事件的概率:
① 摸到王; ②摸到方块; ③摸到红色牌; ④摸到10.
22、小明设计了一个游戏:如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,游戏者同时转动两个转盘,两个转盘停止转动时,若有一个转盘的指针指向蓝色,另一个转盘的指针指向红色,则配紫色成功,有游戏者获胜,求游戏者获胜的概率.
23、抛掷两颗结构均匀的骰子:(1)得到的两个数字的和有几个结果;(2)那一种结果的概率最大.
24、连续掷一枚材质均匀的硬币三次,求三次都是正面向上的概率.
25、已知,在△ABC 中,BC 、CA 、AB 的中点分别为D 、E 、F ;设BC a = ,CA b = .
(1)用向量a 、b
分别表示向量AD 、BE 、CF ;(2)求AD +BE +CF .。

相关文档
最新文档