15-4乘法公式和分解因式(补充讲义)
(完整版)乘法公式和因式分解知识点
乘法公式和因式分解(一)、知识点:1、单项式乘单项式:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
2、单项式乘多项式:单项式与多项式相乘,用单项式乘多项式的的每一项,再把所得的积相加。
m(a+b-c)=ma+mb-mc3、多项式乘多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
(a+b)(c+d)=ac+ad+bc+bd(二)、知识要点 1、乘法公式2、因式分解因式分解:(1)把一个多项式写成几个整式的积的形式叫做多项式的因式分解。
注、公因式:各项都含有的公共的因式叫做这个多项式各项的公因式。
(2)多项式的乘法与多项式因式分解的区别简单地说:乘法是积化和,因式分解是和化积。
3、因式分解的方法: (1)、提公因式法:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
(2)、运用公式法:运用乘法公式把一个多项式因式分解的方法叫运用公式法。
(3)、分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行. (4)、十字相乘法:有些二次三项式,可以把第一项和第三项的系数分别分解为两个数之积,然后借助画十字交叉线的方法,把二次三项式进行因式分解,这种方法叫十字相乘法。
简单的说十字相乘法就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数。
注意:十字相乘法不是适合所有二次三项式,只有在一次项系数和二次项系数以及常数项存在一种特殊关系时才能用,这个特殊关系我们通过例题来说明: 注意:我们在用十字相乘法之前一定要根据第一步判断是否能用十字相乘法。
我们在分解常数项和二次项系数时变化多端,目的是交叉相乘之和要等于一次项系数,如何分配常数项和二次项系数要根据情况而定。
因式分解概念讲解及练习题
第一讲:因式分解(注:在看以下内容时,用红笔标注不懂的地方以及自己感觉容易粗心出错的地方,并记下来) 知识点: 一. 分解因式1. 把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2. 因式分解与整式乘法是互逆关系. 因式分解与整式乘法的区别和联系:(1)整式乘法是把几个整式相乘,化为一个多项式; (2)因式分解是把一个多项式化为几个因式相乘. 二. 提公共因式法1. 如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式.这种分解因式的方法叫做提公因式法. 如: )(c b a ac ab +=+2. 概念内涵:(1)因式分解的最后结果应当是“积”; (2)公因式可能是单项式,也可能是多项式;(3)提公因式法的理论依据是乘法对加法的分配律,即: )(c b a m mc mb ma -+=-+ 3. 易错点点评:(1)注意项的符号与幂指数是否搞错; (2)公因式是否提“干净”;(3)多项式中某一项恰为公因式,提出后,括号中这一项为+1,不漏掉. 三. 运用公式法1. 如果把乘法公式反过来,就可以用来把某些多项式分解因式.这种分解因式的方法叫做运用公式法.2. 主要公式:(1)平方差公式: ))((22b a b a b a -+=- (2)完全平方公式: 222)(2b a b ab a +=++222)(2b a b ab a -=+-3. 易错点点评:因式分解要分解到底.如))((222244y x y x y x -+=-就没有分解到底. 4. 运用公式法: (1)平方差公式:①应是二项式或视作二项式的多项式;②二项式的每项(不含符号)都是一个单项式(或多项式)的平方; ③二项是异号. (2)完全平方公式: ①应是三项式;②其中两项同号,且各为一整式的平方;③还有一项可正负,且它是前两项幂的底数乘积的2倍. 5. 因式分解的思路与解题步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解; (5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止. 四. 分组分解法:1. 分组分解法:利用分组来分解因式的方法叫做分组分解法. 如: ))(()()(n m b a n m b n m a bn bm an am ++=+++=+++2. 概念内涵:分组分解法的关键是如何分组,要尝试通过分组后是否有公因式可提,并且可继续分解,分组后是否可利用公式法继续分解因式. 3. 注意: 分组时要注意符号的变化. 五. 十字相乘法:1.对于二次三项式c bx ax ++2,将a 和c 分别分解成两个因数的乘积,21a a a ⋅=, 21c c c ⋅=,且满足1221c a c a b +=,往往写成的形式,将二次三项式进行分解.如: ))((22112c x a c x a c bx ax ++=++ 2. 二次三项式q px x ++2的分解:))((2b x a x q px x ++=++abq ba p =+=3. 规律内涵:(1)理解:把q px x ++2分解因式时,如果常数项q 是正数,那么把它分解成两个同号因数,它们的符号与一次项系数p 的符号相同.(2)如果常数项q 是负数,那么把它分解成两个异号因数,其中绝对值较大的因数与一次项系数p 的符号相同,对于分解的两个因数,还要看它们的和是不是等于一次项系数p. 4. 易错点点评:(1)十字相乘法在对系数分解时易出错;(2)分解的结果与原式不等,这时通常采用多项式乘法还原后检验分解的是否正确.c 2a 2c 1a 1ba 11(注:不必一周之类完成,能完成多少完成多少)第一次作业一、填空(每空1分,共15分)1、把一个多项式化为的形式,叫做因式分解。
十四章整式的乘法与因式分解说课稿
城区教研中心八年级数学科集体备课表
学校姓名2016 年11月1 日
3.掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算。
4.理解因式分解的意义,并感受分解因式与整式乘法是相反方向的运算,掌握提公因式法和公式法(直接运用公式不超过两次)这两种分解因式的基本方法,了解因式分解的一般步骤;能够熟练地运用这些方法进行多项式的因式分解。
三、本章教学重、难点
教学重点:
熟练识记公式和法则
教学难点:
会运用公式和法则进行整式的乘除运算,会对一个多项式进行因式分解。
四、本章知识结构:
疑难
困惑
解决
方法。
高一衔接课程(1)乘法公式和因式分解
高一数学导教案时间主备人审查人使用人课题乘法公式和因式分解课型连接课程编号011.知识目标:掌握因式分解的方法;学习目标2. 能力目标:学会带字母的分解;3.德育目标:培育学生研究精神,着重转变与化归思想的训练。
重难点重难点:因式分解预习反应:(1)基础知识:1.平方差公式2.完整平方公式网Z3.立方和(差)公式4.常用的因式分解方法( 1)十字相乘法:利用mnx 2(mb na)x ab (mx a)(mx b) 来分解因式( 2)求根法:借助求方程的根的方法分解因式梳理研究:例 1、已知a b 5 , ab 10求① a 2 b 2② a 3b3的值例 2、分解因式x39 3x23x例 3、已知 a 2b 5 , ab 2 ,求(a2b)2的值[根源 ZXXK例 4、分解因式①x39x =②3ax 26axy 3ay 2③ c 2 a 22ab b 2④x25x 14⑤ 2x27x3⑥ x 22x 1例 5、已知对于x的多项式3x2px 2 ( x q)(3x1)求 p 、 q 的值例 6、分解因式① x42x2 1 ② x4x 2y 2 2 y4反应:方法总结练习:1、以下四个等式①b a(a b)② (a b) 4(b a)(b a) 3③( a b)3(b a)3④ ( a b) 3(b a)(a b) 2此中恒建立的是()A、①②③B、①②④C、②③④D、①③④2、无论a、b 为什么实数,a2b22a4b 5 的值必定是()A 、负数B、0C、正数D、非负数3、多项式a2ab bc c 2分解因式的结果是()A 、(a c)(a c b)B 、(a c)(a c b)C、( a c)(a c b)D、 ( a c)(a c b)4、已知x 122 ,则 x1)x的值为(B 、2xC、4D、4A 、 25、若多项式36 x2mx25 是完整平方式,则m[根源:]6、分解因式x 22xy y 247、分解因式x37x68、若x1 2 ,则 x21,x 2x x 2x419、已知( a b) 27 , (a b)2 4 ,求 a 2 b 2的值和ab的值10、分解因式m3mn2m2 n n3讲堂总结:。
【全】初中数学整式的乘法与因式分解知识点总结
整式的乘法与因式分解第一节:整式的乘法1.同底数幂的乘法一般地,对于任意底数a与任意正整数m,有(m、n都是正整数)。
即同底数幂相乘,底数不变,指数相加。
该乘法法则是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正整数);⑤公式还可以逆用:(m、n均为正整数)。
2.幂的乘方一般地,对任意底数a与任意正整数m、n,有(m、n都是正整数)。
即幂的乘方,底数不变,指数相乘。
该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:(m、n都是正整数)。
当底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3。
底数有时形式不同,但可以化成相同。
要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。
3.积的乘方法则一般地,对于任意底数a、b与任意正整数n,有(n为正整数)。
即积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4.整式的乘法1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
整式乘法与因式分解的公式
整式乘法与因式分解的公式在咱们的数学世界里,整式乘法与因式分解就像是一对亲密无间的好伙伴,它们的公式更是解决各种数学难题的神奇钥匙。
先来说说整式乘法中的平方差公式吧,(a+b)(a - b)= a² - b²。
这就好比我前段时间装修房子的时候,计算房间地面的面积。
房间的长是(x + 5)米,宽是(x - 5)米,那地面的面积就可以用平方差公式来算啦,就是 x² - 25 平方米。
是不是一下子就把复杂的问题简单化了?还有完全平方公式,(a ± b)² = a² ± 2ab + b²。
我记得有一次去市场买水果,摊主给我推荐苹果,说一箱苹果的数量可以用完全平方公式来计算。
假设每排有(x + 3)个,一共排了(x + 3)排,那这一箱苹果就有 x² + 6x + 9 个。
你看,生活中的这些小细节都能和整式乘法的公式联系起来。
说完整式乘法,咱们再聊聊因式分解。
因式分解的公式也特别有用。
比如用平方差公式进行因式分解,a² - b² = (a + b)(a - b)。
就像我组装家具的时候,一个大的木板需要切割成小块,我就得根据木板的尺寸,利用这个公式来计算怎么切才能最合理。
而运用完全平方公式进行因式分解,a² ± 2ab + b² = (a ± b)²。
这让我想起了做手工的时候,要把一块大布料裁剪成合适的形状,就得通过这个公式来规划裁剪的尺寸和方式。
整式乘法和因式分解的公式,不仅在数学的课堂里闪闪发光,在我们的日常生活中也是无处不在。
无论是计算物品的数量,还是规划空间的大小,它们都能派上大用场。
总之,整式乘法与因式分解的公式就像是数学世界里的魔法咒语,只要我们熟练掌握并灵活运用,就能轻松解决各种难题,让数学变得不再那么可怕,反而充满了乐趣和惊喜!希望大家都能和这些公式成为好朋友,在数学的海洋里畅游无阻。
乘法公式与因式分解
乘法公式与因式分解乘法公式和因式分解是数学中常见且重要的概念。
它们在代数运算和解决各种数学问题时起着关键作用。
本文将详细介绍乘法公式和因式分解的概念、应用以及解题方法。
一、乘法公式乘法公式是指一些常见的数学公式,用于求解乘法式子的结果。
常见的乘法公式包括:1. 两个整数相乘:a × b = c2. 平方的乘法公式:(a + b) × (a - b) = a^2 - b^23. 两个二次根式相乘:(a + b) × (c + d) = ac + ad + bc + bd4. 两个多项式相乘:(a + b)(c + d + e) = ac + ad + ae + bc + bd + be这些乘法公式在解决数学问题和代数运算时非常有用。
通过熟练掌握这些公式,可以简化计算过程,提高解题效率。
二、因式分解因式分解指将一个多项式分解成若干个乘法因子的过程。
因式分解的目的是简化多项式的形式,方便问题的求解。
因式分解可以根据多项式的不同形式采用不同的方法。
1. 提公因式法:对于一个多项式,如果各项之间存在公因子,可以将公因子提到括号外,并将其余部分化简为一个新的多项式。
例如,对于表达式4x + 8y,可以提取出2作为公因子,得到2(2x + 4y)。
2. 二次因式分解法:对于一个二次多项式,可以通过因式分解的方法将其分解为两个一次因式的乘积。
例如,对于多项式x^2 + 5x + 6,可以进行二次因式分解,得到(x + 2)(x + 3)。
3. 公式法:对于一些特定的多项式,可以利用一些常见的因式分解公式进行分解。
例如,对于多项式x^2 - 4,可以使用平方差公式进行因式分解,得到(x + 2)(x - 2)。
因式分解在解决代数方程、求解方程根和简化运算等方面具有广泛的应用。
熟练掌握因式分解的方法和技巧,可以帮助我们更好地解决各种数学问题。
三、应用举例下面通过几个具体的数学问题来展示乘法公式与因式分解的应用。
初中数学因式分解方法
初中数学因式分解方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a^2-b^2=(a+b)(a-b)a^2+2ab+b^2=(a+b)^2a^2-2ab+b^2=(a-b)^2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种因式分解的方法叫做运用公式法。
二、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例:分解因式x3.-2x,2-xx3,-2x2,-x=x(x2-2x-1)三、完全平方公式1、把乘法公式(a+b)^2=a^2+2ab+b^2和(a-b)^2=a^2-2ab+b^2反过来。
就可以得到:a^2+2ab+b^2=(a+b)^2和a^2-2ab+b^2=(a-b)^2,这两个公式叫完全平方公式。
这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a^2+2ab+b^2和a^2-2ab+b^2这样的式子叫完全平方式。
2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。
3、当多项式中有公因式时,应该先提出公因式,再用公式分解。
4、完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
5、因式分解,必须分解到每一个多项式因式都不能再分解为止。
四、分式的乘除法1、把一个分式的分子与分母的公因式约去,叫做分式的约分。
2、分式进行约分的目的是要把这个分式化为最简分式。
3、如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分。
4、分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)^2=(y-x)^2,(x-y)^3=-(y-x)^3。
【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)
第1章 乘法公式与因式分解【知识衔接】————初中知识回顾————1.乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.2.因式分解因式分解是代数式的一种重要的恒等变形,初中课本涉及到的常用方法主要有:提取公因式法和公式法(平方差公式和完全平方公式),因式分解与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.————高中知识链接————我们知道乘法公式可以使多项式的运算简便,进入高中后,我们会用到更多的乘法公式:(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-. 我们用多项式展开证明式子(3),其余请自行证明:学-科网证明:3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.【经典题型】初中经典题型1.如果,那么代数式的值是()A.6 B.2 C.-2 D.-6【答案】A【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于()A.-1 B.0 C.D.1【答案】B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴∴ab=1,即(n-2011)(2012-n)=1,故选B.【点睛】本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件. 3.已知:,则代数式的值是______.【答案】8【解析】分析:先将所求式子化简,然后将a 2+a =4整体代入计算即可求答案. 详解:==,∵,∴原式=4+4=8. 故答案为:8.【点睛】本题考查了整式的加减运算、整体思想.正确进行计算,并利用整体思想将式子的值直接代入是解题的关键.4.已知x 2﹣2x ﹣1=0.求代数式(x ﹣1)2+x (x ﹣4)+(x ﹣2)(x+2)的值. 【答案】0【解析】分析:根据整式的运算法则即可求出答案. 详解:原式=x 2-2x-1+x 2-4x+x 2-4 =3x 2-6x-3 ∵x 2-2x-1=0∴原式=3(x 2-2x-1)=0【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 5.把下列各式分解因式:(1)224y x - (2)338y x -(2)22312123xy y x x +- (4)2232n mn m -+(5)b b a a 44222+-- (6)2222ab axy ay ax --+6.把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解析】(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示). (2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5).7.求证:四个连续正整数3,2,1,+++n n n n (其中n 表示正整数)的积与1的和是完全平方数. 证明:(方法一)由题意,1)]2)(1)][(3([1)3)(2)(1(++++=++++n n n n n n n n2222222)13(1)3(2)3(1]2)3)[((3(++=++++=++++=n n n n n n n n n n-1-2 x x 图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5所以得证.说明:将n n 32+看成整体进行配方即可.(方法二)由题意得,161161)3)(2)(1(234++++=++++n n n n n n n n 要证明上式是完全平方数,只要证明上式等于一个式子的平方. 令上式22)1(++=an n ,从而求得3=a ,所以得证.高中经典题型1.计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.2.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a ,,的值. 解:由题设,得)3)(32(1437622c y x b y x a y x y xy x +++-=+++--bc y c b x c b y xy x +-+++--=)3()23(37622比较对应项系数,得⎪⎩⎪⎨⎧==-=+a bc c b c b 131423,所以⎪⎩⎪⎨⎧===144c b a .3.把2105ax ay by bx -+-分解因式.【解析】把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 4.把2222()()ab c d a b cd ---分解因式.【解析】按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.22222222()()ab c d a b cd abc abd a cd b cd---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由此例可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. 5.把22x y ax ay -++分解因式.【解析】把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+6.把2222428x xy y z ++-分解因式.【解析】先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.学科!网22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.【实战演练】————先作初中题 —— 夯实基础————A 组1.如果多项式29x mx -+是一个完全平方式,则m 的值是2.如果多项式k x x ++82是一个完全平方式,则k 的值是 3.()()22_________a b a b +--= ()222__________a b a b +=+-4.已知17x y +=,60xy =,则22x y += 5.把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 6.把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++————再战高中题 —— 能力提升————B 组1.填空,使之符合立方和或立方差公式或完全立方公式:(1)3(3)()27x x -=-; (2)3(23)()827x x +=+ (3)26(2)()8x x +=+; (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=2.运用立方和与立方差公式计算:(1)2(3)(39)y y y +-+ (2)224224()()x y x x y y -++ 3.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.若112x y -=,则33x xy y x xy y+---的值为( ) A .35B .35-C .53-D .535.若2210x x +-=,则221x x +=____________;331x x -=____________. 6.已知2310x x -+=,求3313x x++的值.7.展开3(2)x -8.计算(1)(2)(3)x x x ---9.计算()()()()x y z x y z x y z x y z ++-++-++- 10.把下列各式分解因式:(1) 2222()()ab c d cd a b -+-(2) 22484x mx mn n -+-(3) 464x + (4) 32113121x x x -+-(5) 3223428x xy x y y --+11.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 12.证明:当n 为大于2的整数时,5354n n n -+能被120整除. 13.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.第1章 乘法公式与因式分解答案1.乘法公式答案A 组1.6± 2.16 3.4ab ; 2ab 4.1695.(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴ 276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.6.(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.B 组1.(1)239x x ++ (2)2469x x -+ (3)4224x x -+(4)2964a a ++ (5)326128x x x +++ (6)32238365427x x y xy y -+-2.(1)327y - (2)66x y -3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4. D5.解:2210x x +-=,0≠∴x ,212x x ∴-=-,12x x∴-=-. (1)222211()2(2)26x x x x +=-+=-+=; (2)331x x -2211()(1)2(61)14x x x x=-++=-⨯+=-.6.解:2310x x -+= 0≠∴x 31=+∴xx原式=22221111()(1)3()[()3]33(33)321x x x x x x x x+-++=++-+=-+=7.326116x x x -+-8.43210355024x x x x -+-+ 9.444222222222x y z x y x z y z ---+++10.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +--+--+++ 2(1)(3)(7),(2)(2)x x x x y x y ----+. 11.28312.5354(2)(1)(1)(2)n n n n n n n n -+=--++13. 322322()()a a c b c abc b a ab b a b c ++-+=-+++。
第5章 乘法公式与因式分解
第五章乘法公式与因式分解一、笔记区1、平方差公式: (a+b)(a-b)=a2-b2两个数的和与这两个数差的积,等于这两个数的平方差,这个公式就叫做乘法公式的平方差公式.2、完全平方公式:(a+b)²=a2+2ab+b2(a-b)²=a2-2ab+b2两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.3、分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.4、常规因式分解步骤总结:(1)首先提公因式(2)选公式:两项--平方差公式a2-b2=(a+b)(a-b)三项--①完全平方公式a2±2ab+b2=(a±b)2②十字相乘法四项及以上--分组分解法一看有无公因式,二看能否套公式,十字相乘试一试,分组分解要合适.第一关乘法公式1-1 平方差公式例题1.(1)(2)(2)-+--(3)2m n m n+-(2)(23)(23)b a a b-+++a a a(1)(1)(1)练习1.1-2 完全平方公式 例题1. 计算: (1)21(3)2x a -+(2)()2123a b +-(3)2299199+练习1. 计算:(1)21(3)6t x -- (2)()221x y +-(3)22101201+例题2. 已知2()60a b -=,2()80a b +=,求22a b +及ab 的值.练习2. 已知2()7a b +=,2()4a b -=,求223a ab b ++的值.例题3. 已知2246130x y x y ++-+=,x y 、都是有理数,求y x 的值.练习3. 已知x 、y 满足x 2+y 2+54=2x+y ,求代数式xy x y +的值.第二关 因式分解2-1 提公因式法 例题1. 分解因式: (1)2x xy xz -+-(2)223241228x y xy y --+练习1. 分解因式: (1)323612ma ma ma -+-(2)32222561421x yz x y z xy z +-(3)3222315520x y x y x y +-(4)432163256x x x --+例题2. 分解因式:232()2()()x x y y x y x -----练习2. 分解因式:32()()()()x a x b a x b x --+--2-2 公式法 例题1. 分解因式: (1)2244x y xy --+ (2)2()4()4m n m n +-++(3)543351881a b a b a b ++练习1. 分解因式: (1)421681x x -+(2)4236121a a -+(3)2222(1)4(1)4x x x x +-++例题2. 分解因式: (1)22364x y -(2)22(8)(2)m n +--(3)2225()4()a b a b +--练习2. 分解因式: (1)2416a -(2)22(2)(2)a b a b +-+(3)220.25()0.81()x y x y -++-2-3 十字相乘法 例题1. 分解因式: (1)232x x ++ (2)21817x x -+ (3)2278a x ax -- (4)22616x xy y --练习1. 分解因式: (1)265x x ++ (2)22310m n mn +- (3)221336y yb b -+ (4)22914a ab b -+例题2. 分解因式:(1)26136x x ++ (2)2156x x --练习2. 分解因式:(1)231110x x -+ (2)261110x x --例题3. 分解因式:(1)2()2()80x y y x ---- (2)222(4)7(4)12x x x x ++++练习3. 分解因式:(1)(a +b )2-4(a +b )+3(2)(x +2y )2+3(x +2y )-102-4 分组分解法 例题1. 分解因式: (1)22244x xy y z -+- (2)22944x y y ---(3)3222a a b a b -+- (4)222223x xy y x y -++--练习1. 分解因式: (1)2221m n mn --++(2)2293m n m n -+-(3)2244a b a b --+(4)224426x xy y x y -+-+-。
因式分解的拓展(精讲)(解析版)--2023届初升高数学衔接专题讲义
2023年初高中衔接素养提升专题讲义第一讲因式分解的拓展(精讲)(解析版)【知识点透析】因式分解定义:把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【方法精讲】一.提公因式法提取公因式法:把一个多项式各项都有的公因式提到括号外边来.符号语言:)(c b a m mc mb ma ++=++【例1】因式分解3(2)(2)x x x ---.【解析】提取公因式,原式=)13)(2(+-x x .【变式】因式分解324(1)2(1)q p p -+-.【解析】提取公因式,原式=)424()1(]2)1(4[)1(22pq q p p q p -+-=+--.【例2】计算9879879879871232684565211368136813681368⨯+⨯+⨯+⨯.【解析】原式=987)521456268123(1368987=+++⨯.【变式1】(2022·广东汕头·一模)已知4m n +=,5mn =-,则22m n mn +=________.【答案】20-【解析】∵m +n =4,mn =-5,∴m 2n +mn 2=mn (m +n )=-5×4=-20.故答案为:-20.【变式2】(2022·湖南娄底·七年级期中)因式分解:2229612abc a b abc -+;【答案】()23324ab c ab c -+【解析】:()222296123324abc a b abc ab c ab c -+=-+;二.公式法公式法:利用乘法公式的逆变换对多项式进行因式分解.常见的公式如下:(1)a 2-b 2=_))((b a b a -+_;(平方差公式)(2)a 2±2ab +b 2=_2)(b a ±_;(完全平方公式(两个数))(3)a 3±b 3=_))((22b ab a b a +± _;(立方和差公式)(4)a 3±3a 2b +3ab 2±b 3=_3)(b a ±_;(完全立方公式)(5)a 2+b 2+c 2+2ab +2bc +2ac =_2)(c b a ++_;(完全平方公式(三个数))【例3】因式分解22(2)(31)a a +--.【解析】法一:原式=)14)(23()132)(132(+-=+-+-++a a a a a a 法二:原式=)14)(23(310816944222+-=++-=-+-++a a a a a a a a .【变式】(2022·福建省泉州实验中学八年级期中)因式分解:(1)42−16+16;(2)2−+16−.【答案】(1)4−22;(2)−+4−4【解析】(1)先提取公因式,再利用完全平方公式分解即可求解;(2)先进行公式变形为2−−16−,再提取公因式,最后用平方差公式分解即可(1)解:42−16+16=42−4+4=4−22;(2)解:2−+16−=2−−16−=−2−16=−+4−4;【例4】.(2022·上海外国语大学尚阳外国语学校七年级阶段检测)多项式的乘法公式中,除了平方差公式,完全平方公式之外,还有立方和公式与立方差公式如下:立方和公式:()()2233a b a ab b a b+++=+立方差公式:()()2233a b a ab b a b -++=-如果把公式逆运用,则成为因式分解中的立方和与立方差公式.根据以上材料,请完成下列问题:(1)因式分解:99a b +(2)因式分解:66a b -(3)已知:6631a b ab a b +==+,,的值【答案】(1)(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)(a −b)(a+b)(a 4+a 2b 2+b 4).(3)322【详解】(1)因式分解:a 9+b 9=(a 3)3+(b 3)3=(a 3+b 3)(a 6−a 3b 3+b 6)=(a+b)(a 2−ab+b 2)(a 6−a 3b 3+b 6);(2)因式分解:a 6−b6=(a 2)3−(b 2)3=(a 2−b 2)(a 4+a 2b 2+b 4)=(a −b)(a+b)(a 4+a 2b 2+b 4);(3)∵a+b=3,ab=1,∴a 2+b 2=(a+b)2−2ab=7,∴a 6+b 6=(a 2+b 2)(a 4−a 2b 2+b 4)=[(a+b)2−2ab][(a 2+b 2)2−2a 2b 2−a 2b 2]=7×(49−3×1)=322.【变式1】因式分解52(2)(2)x x y x y x -+-.【答案】原式=)1)(1)(2(22++--x x x y x x .【解析】原式=)1)(1)(2()1)(2())(2(223225++--=--=--x x x y x x x y x x x x y x 【变式2】分解下列因式(1)38x +(2)34381a b b -【解析】:(1)333282(2)(42)x x x x x +=+=+-+(1)3433223813(27)3(3)(39)a b b b a b b a b a ab b -=-=-++【变式3】分解因式:(1)30.12527b -(2)76a ab -【解析】:(1)中应先提取公因式再进一步分解;(2)中提取公因式后,括号内出现66a b -,可看着是3232()()a b -或2323()()a b -.(1)333220.125270.5(3)(0.53)[0.50.53(3)]b b b b b -=-=-+⨯+2(0.53)(0.25 1.59)b b b =-++(2)76663333()()()a ab a a b a a b a b -=-=+-22222222()()()()()()()()a ab a ab b a b a ab b a a b a b a ab b a ab b =+-+-++=+-++-+三.十字相乘法十字相乘法:对于二次三项式或可看作二次三项式的多项式分解因式.【例5】(2022·上海闵行·七年级期中)在因式分解的学习中我们知道对二次三项式2+++B 可用十字相乘法方法得出2+++B =++,用上述方法将下列各式因式分解:(1)2+5B −62=__________.(2)2−4+2+32+6=__________.(3)2−5−−6−2=__________.(4)20182−2017×2019−1=__________.【答案】(1)(x -y )(x +6y )(2)(x -3a )(x -a -2)(3)(x +a -3b )(x -a -2b )(4)(20182x 2+1)(x -1)【分析】(1)将-6y 2改写成-y ·6,然后根据例题分解即可;(2)将3a 2+6a 改写成−3−+2,然后根据例题分解即可;(3)先化简,将B +62−2改写−3+−2−,然后根据例题分解即可;(4)将2017×2019改写成(2018-1)(2018+1),变形后根据例题分解即可;(1)解:原式=2+(−+6p +−⋅6=(x -y )(x +6y );(2)解:原式=2+−3−+2+−3−+2=(x -3a )(x -a -2);(3)解:原式=2−5B +B +62−2=2−5B +3−2+=2+−3++−2−+−3+−2−=(x +a -3b )(x -a -2b );(4)解:原式=20182−2018-12018+1−1=201822−20182-1−1=201822+1−20182−1=(20182x +1)(x -1).【例6】.(2023·山东济宁·八年级期末)【知识背景】八年级上册第121页“阅读与思考”中,我们利于因式分解是与整式乘法方向相反的变形这种关系得到:()()()2x p q x pq x p x q +++=++.【方法探究】对于多项式()2x p q x pq +++我们也可这样分析:它的二次项系数1分解成1与1的积;它的常数项pq 分解成p 与q 的积,按图1所示方式排列,然后交叉相乘的和正好等于一次项系数()p q ++.所以()()()2x p q x pq x p x q +++=++例如,分解因式:256x x ++它的二次项系数1分解成1与1的积;它的常数项6分解成2与3的积,按图2所示方式排列,然后交叉相乘的和正好等于一次项系数5.所以()2562(3x x x x ++=++).类比探究:当二次项系数不是1时,我们也可仿照上述方式进行因式分解.例如,分解因式:226x x --.分析:二次项系数2分解成2与1的积;常数项-6分解成-1与6(或-6与1,-2与3,-3与2)的积,但只有当-2与时按如图3所示方式排列,然后交叉相乘的和正好等于一次项系数-1.所以()22623(2)x x x x --=+-.【方法归纳】一般地,在分解形如关于x 的二次三项式2ax bx c ++时,二次项系数a 分解成1a 与2a 的积,分别写在十字交叉线的左上角和左下角;常数项c 分解成1c 与2c 的积,分别写在十字交叉线的右上角和右下角,把1a ,2a ,1c ,2c 按如图4所示方式排列,当且仅当1221a c a c b +=(一次项系数)时,2ax bx c ++可分解因式.即21122()()ax bx c a x c a x c ++=++.我们把这种分解因式的方法叫做十字相乘法.【方法应用】利用上面的方法将下列各式分解因式:(1)256x x -+;(2)21021x x +-;(3)()()22247412x x x x -+-+【答案】(1)(x -2)(x -3)(2)(2x +3)(5x -7)(3)2(2)x -(x -1)(x -3)【解析】(1)256x x -+=(x -2)(x -3).(2)21021x x +-=(2x +3)(5x -7).(3)()()22247412x x x x -+-+=22(44)(43)x x x x -+-+=2(2)x -(x -1)(x -3).【变式1】将下列各式分解因式(1)2615x x --;(2)231310x x -+.【解析】(1)原式=)53)(32(-+x x ;(2)原式=)5)(23(---x x .【变式2】(1)42222459x y x y y --;(2)223129x xy y ++.【答案】(1)原式=)94)(1(222-+x x y ;(2)原式=)33)(3(y x y x ++.【变式3】把下列各式因式分解:(1)226x xy y+-(2)222()8()12x x x x +-++【解析】:(1)222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2)22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-【例7】(提高型):分解因式613622-++-+y x y xy x .【解析】设613622-++-+y x y xy x =)2)(3(n y x m y x +-++,∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x--+++-+)23()(622,∴613622-++-+y x y xy x =mn y m n x n m y xy x --+++-+)23()(622,对比左右两边相同项的系数可得⎪⎩⎪⎨⎧-==-=+613231mn m n n m ,解得⎩⎨⎧=-=32n m .∴原式=)32)(23(+--+y x y x .【变式】(1)2910322-++--y x y xy x ;(2)6752322+++++y x y xy x .解:原式=)12)(25(-++-y x y x 原式=)2)(32(++++y x y x 四.分组分解法根据多项式各项的特点,适当分组,分别变形,再对各组之间进行整体分解(先部分后整体的分解方法)【例8】.(2022·甘肃省兰州市教育局八年级期中)【阅读学习】课堂上,老师带领同学们学习了“提公因式法、公式法”两种因式分解的方法.分解因式的方法还有许多,如分组分解法.它的定义是:将一个多项式分组后,可提公因式或运用公式继续分解的方法叫分组分解法.使用这种方法的关键在于分组适当,而在分组时,必须有预见性.能预见到下一步能继续分解.例如:(1)()()()()()()am an bm bn am bm an bn m a b n a b a b m n +++=+++=+++=++;(2)()2222222121(1)(1)(1)x y y x y y x y x y x y ---=-++=-+=++--.【学以致用】请仿照上面的做法,将下列各式分解因式:(1)1ab a b --+;(2)22444x xy y -+-.【拓展应用】已知:7x y +=,5x y -=.求:2222x y y x --+的值.【答案】(1)(1)(1)a b --;(2)(22)(22)x y x y -++-;【拓展应用】45.【详解】(1)1ab a b --+()()()()111ab a b a b =---=--(2)()()()()22222444444422222x xy y x xy y x y x y x y -+-=--+=--=-++-【拓展应用】()()()()222222222x y y x x y x y x y x y --+=-+-=-++∵7x y +=,5x y -=,代入得:原式=()(2)5(72)45x y x y -++=⨯+=.将下列各式分解因式(1)3232()()x x y y +-+;(2)32x x +-.【答案】(1)原式=))((22y x y xy x y x ++++-(2)原式=)2)(1(2++-x x x 【解析】(1)原式=))(())(()()(222233y x y x y xy x y x y x y x -++++-=-+-))((22y x y xy x y x ++++-=;(2)原式=)2)(1()1()1)(1(11223++-=-+++-=-+-x x x x x x x x x .【例9】分解因式:(1)32933x x x +++;(2)222456x xy y x y +--+-.解:(1)32933x x x +++=32(3)(39)x x x +++=2(3)3(3)x x x +++=2(3)(3)x x ++.或32933x x x +++=32(331)8x x x ++++=3(1)8x ++=33(1)2x ++=22[(1)2][(1)(1)22]x x x +++-+⨯+=2(3)(3)x x ++.(2)222456x xy y x y +--+-=222(4)56x y x y y +--+-=22(4)(2)(3)x y x y y +----=(22)(3)x y x y -++-.或222456x xy y x y +--+-=22(2)(45)6x xy y x y +----=(2)()(45)6x y x y x y -+---=(22)(3)x y x y -++-.【变式】(1)323x x +-;(2)222(1)41m n mn n -+-+.【答案】(1)原式=)3)(1(2++-x x x (2)原式=)1)(1(+-+++-n m mn n m mn .【解析】(1)原式=)3)(1(22123++-=-+-x x x x x (2)原式=2222222221214n mn m mn n m n mn m n m -+-++=+-+-)1)(1()()1(22+-+++-=--+=n m mn n m mn n m mn .五.换元法换元法分解因式:是将多项式中的某一部分用新的变量替换,从而使较复杂的数学问题得到简化【例10】.(2022·福建漳州·八年级期中)阅读下列材料:在因式分解中,把多项式中某些部分看作一个整体,用一个新的字母代替(即换元),不仅可以简化要分解的多项式的结构,而且能使式子的特点更加明显,便于观察如何进行因式分解,这种方法就是换元法.对于()()22525312x x x x ++++-.解法一:设25x x y +=,则原式()()2231256y y y y =++-=+-()()()()()()()2226156512351y y x x x x x x x x =+-=+++-=+++-;解法二:设22x m +=,5x n =,则原式()()()()211212m n m n m n m n =+++-=+++-()()()()()()()2224356512351m n m n x x x x x x x x =+++-=+++-=+++-.请按照上面介绍的方法解决下列问题:(1)因式分解:()()2241479x x x x -+-++;(2)因式分解:()()()2221x y xy x y xy +-+-+-;(3)求证:多项式()()()()21236x x x x x +++++的值一定是非负数.【答案】(1)(1)()42x -(2)()()2211x y --(3)见解析【解析】(1)解:解法一:设2x x y -=,则原式()()179y y =+++2816y y =++()24y =+()2244x x =-+()42x =-;方法二:设214x m x n +=-=,,则原式()()=69m n m n ++++()()269m n m n =++++()23m n =++()22143x x =+-+()2244x x =-+()42x =-;(2)解:设x y m xy n +==,,则原式()()()2221m n m n =--+-2222421m mn m n n n =--++-+()22221m mn m n =--+-()()22211m m n n =-+++()21m n =--()21x y xy =+--()()2211x y =--;(3)解:()()()()21236x x x x x +++++()()2227656x x x x x =+++++,设26x m x n +==,,则原式()()2=75m n m n n +++221236m mn n =++()26m n =+()2266x x =++,∵()22660x x ++≥,∴()()()()212360x x x x x ++++≥+,∴多项式()()()()21236x x x x x +++++的值一定是非负数.【变式1】将下列各式分解因式(1)221639a b ab ++;【答案】原式=)13)(3(++ab ab (2)22(1)(2)12x x x x ++++-【解析】原式=)5)(2(12)1()1(22222++-+=-+++++x x x x x x x x .)5)(1)(2(2++-+=x x x x .【变式2】(1)x 6-7x 3-8(2)(x +1)(x +2)(x +3)(x +4)+1【解析】(1)原式=)1)(42)(1)(2()1)(8(2233+-+++-=+-x x x x x x x x ;(2)原式=1)65)(45(1)3)(2)(4)(1(22+++++=+++++x x x x x x x x 2222)55(11)55(++=+-++=x x x x .六.配方法【例题11】.(2022·上海·七年级期末)阅读理解:对于形如222x ax a ++这样的二次三项式,可以用公式法将它分解成2()x a +的形式.但对于二次三项式2223x ax a +-,就不能直接运用公式了.此时,我们可以在二次三项式2223x ax a +-中先加上一项2a ,使它与22x ax +的和成为一个完全平方式,再减去2a ,整个式子的值不变,于是有:2223x ax a +-=222223x ax a a a ++--=22()4x a a +-=22()(2)x a a +-=(3)()x a x a +-,像这样,先添一适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.请利用“配方法”进行因式分解:(1)2815x x -+;(2)4224a a b b ++.【答案】(1)(3)(5)x x --(2)2222()()a b ab a b ab +++-【解析】(1)原式=28161615x x a -+-+=2(4)1x --=(41)(41)x x -+--=(3)(5)x x --;(2)42244224222a a b b a a b b a b ++=++-=22222()a b a b +-=2222()()a b ab a b ab +++-.七.因式分解的应用【例题12】.(2022·江苏扬州·七年级期中)阅读下列材料:若一个正整数x 能表示成22a b -(a ,b 是正整数,a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解,例如22532=-,所以5是“明礼崇德数”3与2是5的平方差分解;再如:()22222222M x xy x xy y y x y y =+=++-=+-(,x y 为正整数),所以M 也是“明礼崇德数”,(x y +)与y 是M 的一个平方差分解.(1)判断9“明礼崇德数”(填“是”或“不是”);(2)已知()2x y +与2x 是P 的一个平方差分解,求代数式P ;(3)已知2223818N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的k 值,并说明理由.【答案】(1)是(2)222x y y +(3)k =-19【解析】(1)解∶∵22954=-,∴9是“明礼崇德数”;故答案为:是(2)解:()()2222P x y x =+-42242x x y y x =++-222x y y =+;(3)解:2223818N x y x y k =-+-+()()2224436919x x y y k=++-++++()()22223319x y k=+-+++2219k=+-+++∵N 是“明礼崇德数”,∴19+k =0,∴k =-19.【例题13】.已知a b =22a b ab -的值.【答案】【解析】【分析】先利用提公因式法把22a b ab -进行因式分解,再代入计算即可.【详解】解:∵()22a b ab ab a b -=-,又a =b∴a b =-=1ab +=-=,∴()221a b ab ab a b -=-=⨯=【变式1】.(1)因式分解:()()211x x x +-+.(2)先化简,再求值:22169124x x x x ++⎛⎫+÷ ⎪+-⎝⎭,其中3x =.【答案】(1)1x +;(2)23x x -+,16【解析】【分析】(1)直接提公因式即可;(2)先算括号内的部分,将除法变乘法,最后约分化简后代入求值即可.【详解】(1)原式=()()11x x x ++-=x +1;(2)原式=212(3)22(2)(2)x x x x x x ++⎛⎫+÷ +++-⎝⎭23(2)(2)2(3)x x x x x ++-=⋅++23x x -=+,当3x =时,原式=3233-+16=.【变式2】.(2022·湖北十堰·八年级期末)阅读理解题:已知二次三项式x 2﹣4x +m 有一个因式是x +3,求另一个因式及m 的值.解:设另一个因式为x +n ,依题意得x 2﹣4x +m =(x +3)(x +n ).即x 2﹣4x +m =x 2+(n +3)x +3n ,比较系数得:343n m n +=-⎧⎨=⎩,解得217m n =-⎧⎨=-⎩.∴另一个因式为x﹣7,m的值为﹣21仿照上述方法解答下列问题:(1)已知二次三项式2x2+3x﹣k有一个因式是2x﹣1,求另一个因式及k的值;(2)已知2x2﹣13x+p有一个因式x﹣4,则p=.【答案】(1)另一个因式为x+2,k的值为2(2)20(1)解:(1)设另一个因式为x+m,则2x2+3x—k=(2x—1)(x+m),即2x2+3x—k=2x2+(2m—1)x—m,比较系数得:213 mk m-=⎧⎨-=-⎩,解得22 mk=⎧⎨=⎩,∴另一个因式为x+2,k的值为2;(2)解:设另一个因式为(2x+m),由题意,得:2x2﹣13x+p=(x﹣4)(2x+m),则2x2﹣13x+p=2x2+(m﹣8)x﹣4m,∴8134mp m-=-⎧⎨=-⎩,解得520 mp=-⎧⎨=⎩,故答案为:20.。
新高一暑期讲义乘法公式和因式分解
C 专题:乘法公式与因式分解(★★★)教学目标熟练掌握单项式乘多项式、多项式乘多项式,会运用提公因式法和公式法分解因式,拓展讲解乘法公式和因式分解的内容,让学生掌握补充的三个数和的完全平方公式,立方和、立方差公式,公式法和十字相乘法分解因式。
知识梳理10 min.1、单项式乘多项式法则: 单项式与多项式相乘,用 乘多项式的 ,再把所得的积 .2、多项式乘以多项式法则________________________________________________________.3、完全平方公式:①()=+2b a ;② ()=-2b a .即:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,这个公式叫做乘法的完全平方公式.4、完全平方公式的结构特征:公式的左边是一个二项式的完全平方;右边是三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍.5、公式的推广:①()=--2b a ;②()=+-2b a ;③()()222222a b a b ab a b ab +=+-=-+;答案:(1)单项式 每一项 相加 (2)先把一个多项式式的每一项乘以另一个多项式的每一项,然后相加。
(3)①()2222a b a ab b +=++;②()2222a b a ab b -=-+.(5)①()()()222a b a b a b --=-+=+⎡⎤⎣⎦;②()()()222a b a b a b -+=--=-⎡⎤⎣⎦;典例精讲30min.乘法公式例1. x 2(x 2-x +1)-x (x 3-x 2+x -1),其中 x =12 (★★)解:原式=)(234234x x x x x x x -+--+- =x x x x x x x +-+-+-234234=x将x =12代入原式得,原式=12.本题较为基础,主要强调在单项式乘多项式时特别要注意每个积的符号!巩固练习1. 解方程(1)(3x -2)(2x -3)=(6x +5)(x -1)-1 (★★) 解:原方程可化为:15566649622--+-=+--x x x x x x 即: 1212=x 1=x本题为简单的多项式乘多项式的运用,结合了解一元一次方程,解题时需要注意:1.不要漏乘; 2.注意符号; 3.结果最简。
整式的乘法与因式分解知识点
整式的乘法与因式分解知识点整式的乘法和因式分解是初中数学中的重要知识点,也是后续学习代数、方程和不等式的基础。
本文将详细介绍整式的乘法和因式分解的定义、性质和方法。
一、整式的乘法整式是由常数和单项式相加(减)得到的代数式,其中单项式是指只包含一个变量的项。
整式的乘法是指将两个或多个整式相乘的运算。
1.单项式的乘法:单项式的乘法遵循以下运算法则:-同底数幂相乘,底数不变,指数相加。
例如,a^m*a^n=a^(m+n)。
-不同底数幂相乘,指数相乘。
例如,a^m*b^n=a^m*b^n。
- 系数相乘。
例如,k * t = kt。
2.多项式的乘法:多项式的乘法通过将每一项都与另一个多项式的每一项相乘,并将结果相加得到。
例如,(a+b+c)(x+y+z) = ax+ay+az+bx+by+bz+cx+cy+cz。
这个过程通常称为“分配律”。
二、整式的因式分解整式的因式分解是指将一个整式表示成几个单项式的乘积的运算。
因式分解的基本思路是找到整式的公因式,然后使用“提公因式法”将整式表示为公因式与其余部分的乘积。
1.提公因式法:假设整式ax+bx有一个公因式x,则可以将其改写为x(a+b)。
这个过程是因式分解中最基本的方法。
根据此原理,我们可以使用提公因式法因式分解更复杂的整式。
2.完全平方公式的因式分解:完全平方公式是指一个二次三项式(即一元二次多项式)的平方可以被因式分解成两个平方的和或差。
例如,a^2+2ab+b^2可以因式分解为(a+b)^2,而a^2-2ab+b^2可以因式分解为(a-b)^23.完全立方公式的因式分解:完全立方公式是指一个三次三项式(即一元三次多项式)的立方可以被因式分解成两个立方的和或差。
例如,a^3+3a^2b+3ab^2+b^3可以因式分解为(a+b)^3,而a^3-3a^2b+3ab^2-b^3可以因式分解为(a-b)^34.分组分解法:分组分解法是指根据整式中各项之间的关系将整式进行分组,以便使用提公因式法进行因式分解。
因式分解经典讲义(精)
第二章 分解因式【知识要点】1.分解因式(1)概念:把一个________化成几个___________的形式,这种变形叫做把这个多项式分解因式。
(2)注意:①分解因式的实质是一种恒等变形,但并非所有的整式都能因式分解。
②分解因式的结果中,每个因式必须是整式。
③分解因式要分解到不能再分解为止。
2.分解因式与整式乘法的关系整式乘法是____________________________________________________; 分解因式是____________________________________________________; 所以,分解因式和整式乘法为_______关系。
3.提公因式法分解因式(1)公因式:几个多项式__________的因式。
(2)步骤:①先确定__________,②后__________________。
(3)注意:①当多项式的某项和公因式相同时,提公因式后该项变为1。
②当多项式的第一项的系数是负数时,通常先提出“-”号。
4.运用公式法分解因式(1)平方差公式:_________________________ (2)完全平方公式:_________________________注:分解因式还有诸如十字相乘法、分组分解法等基本方法,做为补充讲解内容。
【考点分析】考点一:利用提公因式法分解因式及其应用 【例1】分解因式:(1)3241626m m m -+- (2)2()3()x y z y z +-+(3)2()()()x x y x y x x y +--+ (4)(34)(78)(1112)(78)a b a b a b a b --+--解析:(1)题先提一个“-”号,再提公因式2m ;(2)题的公因式为y z +;(3)题的公因式为()x x y +; (4)题的公因式为78a b -。
答案:(1)22(2813)m m m --+; (2)()(23)y z x +-;(3)2()xy x y -+; (4)22(78)a b -。
15-4分解因式
1、分解因式:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式.2、与整式乘法的关系:是整式乘法的相反方向的变形注意: 因式分解不是运算,只是恒等变形3、分解因式的一般方法:A. 提公共因式法B. 运用公式法C.十字相乘法4、分解因式的步骤:(1)先看各项有没有公因式,若有,则先提取公因式; (2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的; (4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.5、提公共因式法A 、公因式每一项都含有的因式叫做:公因式B 、把公因式提出来,多项式ma+mb+mc 就可以分解成两个因式m 和(a+b+c)的乘积。
像这种因式分解的方法,叫做提取公因式法。
C 、找公因式方法一看系数 二看字母 三看指数6、公式法A 、完全平方公式 aa bb ab 2222±+=±() B 、平方差公式a b ab ab 22-=+-()()C 、公式法应注意5.>应用公式来分解因式的关键是要弄清各个公式的形式和特点,也就是要从它们的项数系数,符号等方面掌握它们的特征。
6.> 明确公式中字母可以表示任何数,单项式或多项式。
7.> 同时对相似的公式要避免发生混淆,只有牢记公式,才能灵活运用公式。
8.> 运用公式法进行因式分解有一定的局限性,只有符合其公式特点的多项式才能用公式法来分解。
7、十字相乘法A:首项系数是1的二次三项式的十字相乘法,重点是运用公式()()x a b x a b x a x b 2+++=++()进行因式分解。
掌握这种方法的关键是确定适合条件的两个数,即把常数项分解成两个数的积,且其和等于一次项系数。
方法的特征是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项系数的符号相同.B:二次项系数不为1的二次三项式——c bx ax ++2条件:(1)21a a a = 1a 1c(2)21c c c = 2a 2c (3)1221c a c a b += 1221c a c a b += 分解结果:c bx ax ++2=))((2211c x a c x a ++因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,应注意以下几点。
15-4乘法公式和分解因式(补充讲义)
授课日期类型一:求代数式的值例1、化简求值:2)()(2b a b a a +-+,其中2011=a ,2010=b .【变式练习】先化简,后求值。
(a+b)2+(a-b)(2a+b)-3a 2,其中32--=a ,23-=b类型二:分组分解法分解因式 例2、把下列各式分解因式(1)x 2-4(x-1) (2)(am+bn)2+(an-bm)2 (3)a 2-2ab+b 2-c 2 (4)x 2-2xy+y 2-2x+2y+1【变式练习】1、求代数式x 2+y 2-6x+4y+20的最小值,并求此时x,y 的值。
2、求(3-1)(3+1)(32+1)(34+1) (332+1)+1的个位数字。
类型三:完全平方公式之间的关系① (a+b )2=a 2+2ab+b 2 ②(a-b )2=a 2-2ab+b 2①-②得(a+b )2-(a-b )2=4ab 例3、(1)已知a 2-4a+1=0,求221aa +的值; (2)若a+b=5,ab=6,求a 2+b 2,(a-b)2的值;(3)已知x 2-mxy+y 2是完全平方式,则m=【变式练习】1、已知a >b >0,a 2+b 2-6ab=0,求ba ba -+的值。
2、已知x 2-4x+m 是完全平方式,则m=3、已知a+b=3,ab=2,则a 2b+ab 2=4、已知a 2+b 2-2a-4b+5=0,求ab-1类型四:运用公式配方求三角形边长例4、已知a,b,c 是三角形的三条边,且满足a 2+b 2+c 2+17=4a+6b+4c ,判断此三角形的形状。
【变式练习】已知a,b,c 是三角形的三条边,且a 2+2b 2+c 2-2b(a+c)=0,请判断三角形的形状,并说明理由。
类型五:数形结合例5、已知,如图,长方形ABCD 的周长为16,四个正方形的面积和胃68,求长方形ABCD 的面积。
【变式练习】1、如图,用4个相同的小矩形与一个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x ,y 表示小矩形的两边长为(x >y ),请观察图案,指出以下关系式中,不正确的是( ) A 、x+y=7B 、x 2-y=2,C 、4xy+4=49,D 、x 2+y 2=252、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2.你根据图乙能得到的数学公式是( )3、教材中用图形的面积对二项的完全平方公式作了说明,我们也可用如图对三项的完全平方公式(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ca 作说明,那么其中用来表示b 2的是( )一、分解因式 (1)2221ab b a -- (2)x 2-y 2-3x-3y(3)(a+b)2-4(a+b)+4(4)22341ab b a a-+- (5)(a 2+1)2-4a 2二、选择题A .(a+b )(a-b )=a 2-b 2B .(a-b )2=a 2-2ab+b 2C .a (a+b )=a 2+abD .a (a-b )=a 2-abA.区域①的面积 B .区域⑤的面积 C .区域⑥的面积D .区域⑧的面积1、在多项式①16x5-x,②(x-1)2-4(x-1)+4,③(x+1)4-4x(x+1)2+4x2,④-4x2-1+4x中,分解因式的结果中含有相同因式的是()A、①②B、③④C、①④D、②③2、如果x2+x-1=0,那么代数式x3+2x2-7的值为()A.6 B.8 C.-6 D.-83、已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形4、(济宁)(-8)2006+(-8)2005能被下列数整除的是()A.3 B.5 C.7 D.95、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2-ab-bc-ca的值为()A.0 B.1 C.2 D.36、对于任何整数m,多项式(4m+5)2-9都能()A.被8整除B.被m整除C.被(m-1)整除D.被(2m-1)整除7、分解因式-22005+(-2)2006后等于()A.22005B.-2 C.-22005D.-18、如果3x3-x=1,那么9x4+12x3-3x2-7x+2001的值等于()A.1999 B.2001 C.2003 D.20059、观察下列算式:1×3+1=4=22,2×4+1=9=32,3×5+1=16=42,…请你找出规律,用含n的等式表示它.()A.n(n+2)+1=(n+1)2B.n(n+2)+1=n2C.n(n+2)+1=n2+2n D.n(n+2)+1=n2-2n10、若x3+x2+x+1=0,则x-27+x-26+…+x-1+1+x+…+x26+x27的值是()A.1 B.0 C.-1 D.2三、解答题1、已知A=a+2,B=a2-a+5,C=a2+5a-19,其中a>2.(1)求证:B-A>0,并指出A与B的大小关系;(2)指出A与C哪个大?说明理由.2、已知长方形周长为300厘米,两邻边分别为x厘米、y厘米,且x3+x2y-4xy2-4y3=0,求长方形的面积.。
因式分解式讲义精讲
教育学科教师辅导讲义练习15、分解因式(1)893+-x x (2)4224)1()1()1(-+-++x x x (3)1724+-x x (4)22412a ax x x -+++x^4+x^2+2ax+1—a^2 = x^4+2x^2+1-x^2+2ax —a^2 =(x^2+1)^2-(x-a )^2=(x^2+1+x-a)(x^2+1—x+a )(5)444)(y x y x +++ (6)444222222222c b a c b c a b a ---++ -(a^2—b^2)^2-2c^2(a^2—b^2)+c^4=(a^2-b^2—c^2)^2(7) x 4 + 4 原式 = x 4 + 4x 2 + 4 – 4x 2= (x 2+2)2 – (2x )2= (x 2+2x +2)(x 2–2x +2) (8)x 4–23x 2y 2+y 4(9)(m 2–1)(n 2–1)+4mn七、待定系数法.首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
例16、分解因式613622-++-+y x y xy x分析:原式的前3项226y xy x -+可以分为)2)(3(y x y x -+,则原多项式必定可分为)2)(3(n y x m y x +-++ 解:设613622-++-+y x y xy x =)2)(3(n y x m y x +-++∵)2)(3(n y x m y x +-++=mn y m n x n m y xy x --+++-+)23()(622例8、分解因式2x 4 +7x 3 -2x 2 —13x+6解:令f(x)=2x 4 +7x 3 —2x 2 —13x+6=0 通过综合除法可知,f(x)=0根为 ,—3,-2,1 , 则2x +7x —2x —13x+6=(2x —1)(x+3)(x+2)(x —1) 9: 主元法先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
授课日期
类型一:求代数式的值
例1、化简求值:2
)()(2b a b a a +-+,其中2011=a ,2010=b .
【变式练习】
先化简,后求值。
(a+b)2
+(a-b)(2a+b)-3a 2,其中32-
-=a ,23-=b
类型二:分组分解法分解因式 例2、把下列各式分解因式
(1)x 2-4(x-1) (2)(am+bn)2+(an-bm)2 (3)a 2-2ab+b 2-c 2 (4)x 2-2xy+y 2
-2x+2y+1
【变式练习】
1、求代数式x 2+y 2
-6x+4y+20的最小值,并求此时x,y 的值。
2、求(3-1)(3+1)(32+1)(34+1) (332
+1)+1的个位数字。
类型三:完全平方公式之间的关系
① (a+b )2=a 2+2ab+b 2 ②(a-b )2=a 2-2ab+b 2
①-②得(a+b )2-(a-b )2
=4ab 例3、(1)已知a 2
-4a+1=0,求2
2
1
a
a +
的值; (2)若a+b=5,ab=6,求a 2+b 2,(a-b)2
的值;
(3)已知x 2
-mxy+y 2是完全平方式,则m=
【变式练习】
1、已知a >b >0,a 2
+b 2
-6ab=0,求
b
a b
a -+的值。
2、已知x 2
-4x+m 是完全平方式,则m=
3、已知a+b=3,ab=2,则a 2b+ab 2
=
4、已知a 2+b 2
-2a-4b+5=0,求ab-1
类型四:运用公式配方求三角形边长
例4、已知a,b,c 是三角形的三条边,且满足a 2+b 2+c 2
+17=4a+6b+4c ,判断此三角形的形状。
【变式练习】
已知a,b,c 是三角形的三条边,且a 2
+2b 2
+c 2
-2b(a+c)=0,请判断三角形的形状,并说明理由。
类型五:数形结合
例5、已知,如图,长方形ABCD 的周长为16,四个正方形的面积和胃68,求长方形ABCD 的面积。
【变式练习】
1、如图,用4个相同的小矩形与一个小正方形镶嵌而成的正方形图案,已知该图案的面积为49,小正方形的面积为4,若用x ,y 表示小矩形的两边长为(x >y ),请观察图案,指出以下关系式中,不正确的是( ) A 、x+y=7
B 、x 2
-y=2,
C 、4xy+4=49,
D 、x 2+y 2
=25
2、利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可
以得到两数和的平方公式:(a+b )2=a 2+2ab+b 2
.你根据图乙能得到的数学公式是( )
3、教材中用图形的面积对二项的完全平方公式作了说明,我们也可用如图对三项的完全平方公式(a+b+c )2=a 2+b 2+c 2+2ab+2bc+2ca 作说明,那么其中用来表示b 2
的是( )
一、分解因式 (1)22
2
1ab b a -- (2)x 2-y 2
-3x-3y
(3)(a+b)2
-4(a+b)+4
(4)223
4
1ab b a a
-
+- (5)(a 2+1)2-4a 2
二、选择题
A .(a+b )(a-b )=a 2-b 2
B .(a-b )2=a 2-2ab+b 2
C .a (a+b )=a 2+ab
D .a (a-b )=a 2-ab
A
.区域①的面积 B .区域⑤的面积 C .区域⑥的面积
D .区域⑧的面积
1、在多项式①16x5-x,②(x-1)2-4(x-1)+4,③(x+1)4-4x(x+1)2+4x2,④-4x2-1+4x中,分解因式的结果中含有相同因式的是()
A、①②
B、③④
C、①④
D、②③
2、如果x2+x-1=0,那么代数式x3+2x2-7的值为()
A.6 B.8 C.-6 D.-8
3、已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形
4、(济宁)(-8)2006+(-8)2005能被下列数整除的是()
A.3 B.5 C.7 D.9
5、已知a=2002x+2003,b=2002x+2004,c=2002x+2005,则多项式a2+b2+c2-ab-bc-ca的值为()A.0 B.1 C.2 D.3
6、对于任何整数m,多项式(4m+5)2-9都能()
A.被8整除B.被m整除C.被(m-1)整除D.被(2m-1)整除7、分解因式-22005+(-2)2006后等于()
A.22005B.-2 C.-22005D.-1
8、如果3x3-x=1,那么9x4+12x3-3x2-7x+2001的值等于()
A.1999 B.2001 C.2003 D.2005
9、观察下列算式:
1×3+1=4=22,2×4+1=9=32,3×5+1=16=42,…
请你找出规律,用含n的等式表示它.()
A.n(n+2)+1=(n+1)2B.n(n+2)+1=n2
C.n(n+2)+1=n2+2n D.n(n+2)+1=n2-2n
10、若x3+x2+x+1=0,则x-27+x-26+…+x-1+1+x+…+x26+x27的值是()
A.1 B.0 C.-1 D.2
三、解答题
1、已知A=a+2,B=a2-a+5,C=a2+5a-19,其中a>2.
(1)求证:B-A>0,并指出A与B的大小关系;
(2)指出A与C哪个大?说明理由.
2、已知长方形周长为300厘米,两邻边分别为x厘米、y厘米,且x3+x2y-4xy2-4y3=0,求长方形的面积.。
3、我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释(a+b)2=a2+2ab+b2,
(1)图(乙)是四张全等的矩形纸片拼成的图形,请利用图中阴影部分面积的不同表示方法,写出一个关于a,b代数恒等式表示;
(2)请构图解释:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;
(3)请通过构图因式分解:a2+3ab+2b2.
4、观察下列计算:22-12=(2-1)(2+1)=2+1 32-22=(3-2)(3+2)=3+2 42-32=(4-3)(4+3)=4+3,….
(1)可以得到:152-142=(15+14 )(15-14 )= ;
(2)可以发现:(n+1)2-n2 = ;
(3)请你证明你的发现.。