大学物理化学经典课件2-3-热力学第二定律

合集下载

《物理化学》第三章 热力学第二定律PPT课件

《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。

物理化学03章_热力学第二定律

物理化学03章_热力学第二定律
Helmholtz自由能 Gibbs自由能
为什么要定义新函数?
热力学第一定律导出了热力学能这个状态函数, 为了处理热化学中的问题,又定义了焓。
热力学第二定律导出了熵这个状态函数,但用熵 作为判据时,系统必须是隔离系统,也就是说必须同 时考虑系统和环境的熵变,这很不方便。
通常反应总是在等温、等压或等温、等容条件下 进行,有必要引入新的热力学函数,利用系统自身状 态函数的变化,来判断自发变化的方向和限度。
§3.8 熵和能量退降
热力学第一定律表明:一个实际过程发生 后,能量总值保持不变。
热力学第二定律表明:在一个不可逆过程 中,系统的熵值增加。
能量总值不变,但由于系统的熵值增加, 说明系统中一部分能量丧失了作功的能力,这 就是能量“退降”。
能量 “退降”的程度,与熵的增加成正比
有三个热源 TA > TB > TC
从高“质量”的能贬值为低“质量”的能 是自发过程。
§3.9 热力学第二定律的本质和熵的统计意义
热力学第二定律的本质
热与功转换的不可逆性 热是分子混乱运动的一种表现,而功是分子 有序运动的结果。 功转变成热是从规则运动转化为不规则运动, 混乱度增加,是自发的过程; 而要将无序运动的热转化为有序运动的功就 不可能自动发生。
热力学第二定律的本质 气体混合过程的不可逆性 将N2和O2放在一盒内隔板的两边,抽去隔板, N2和O2自动混合,直至平衡。 这是混乱度增加的过程,也是熵增加的过程, 是自发的过程,其逆过程决不会自动发生。
热力学第二定律的本质
热传导过程的不可逆性
处于高温时的系统,分布在高能级上的分子 数较集中;
而处于低温时的系统,分子较多地集中在低 能级上。
这与熵的变化方向相同。

大学物理化学经典课件-3-热力学第二定律

大学物理化学经典课件-3-热力学第二定律

05 热力学第二定律在工程技 术中应用
工程技术中不可逆过程分析
不可逆过程定义
在工程技术中,不可逆过 程指的是系统与环境之间 进行的无法自发逆转的能 量转换过程。
不可逆过程分类
根据能量转换形式,不可 逆过程可分为热传导、热 辐射、摩擦生热、化学反 应等多种类型。
不可逆过程影响
不可逆过程导致能量损失 和熵增加,降低系统能量 利用效率,并对环境造成 负面影响。
06 总结与展望
热力学第二定律重要性总结
热力学第二定律是自然界普遍适用的基本规律之一,它揭示了热现象的方向性和不可逆性,为热力学 的研究和应用提供了重要的理论基础。
热力学第二定律在能源转换和利用、环境保护、生态平衡等领域具有广泛的应用价值,对于推动可持续 发展和生态文明建设具有重要意义。
热力学第二定律的研究不仅深入到了热学、力学、电磁学等物理学各个领域,还拓展到了化学、生物学、 医学等其他自然科学领域,为多学科交叉研究提供了重要的桥梁和纽带。
提供了判断热过程进行方向的标准
根据热力学第二定律,可以判断一个热过程是否能够自发进行。如果一个热过程能够自发进行,那么它必须满足热力 学第二定律的要求。
为热力学的发展奠定了基础
热力学第二定律是热力学的基本定律之一,为热力学的发展奠定了基础。它揭示了热现象的本质和规律, 为热力学的研究和应用提供了重要的理论支持。
应用举例
在化学反应中,如果反应物和生成物处于同 一温度,则自发进行的反应总是向着熵增加 的方向进行。例如,氢气和氧气在点燃条件 下可以自发反应生成水,该反应的熵变小于
零,因此是一个自发进行的反应。
熵产生原因及影响因素
要点一
熵产生原因
熵的产生与系统的不可逆性密切相关。在不可逆过程中, 系统内部的微观状态数增加,导致系统的无序程度增加, 即熵增加。

物理化学第2章 热力学第二定律

物理化学第2章 热力学第二定律
BSm$ (B)
§3.7 熵变的计算
一、单纯状态变化过程
1. 等温过程 2.变温过程
S QR T
①等容变温过程
S T2 Qr T2 nCp,mdT
T T1
T1
T
nC
p,m
ln
T2 T1
②等压变温过程
S T2 Qr T T1
T2 nCV ,mdT
T1
T
nCV
,m
ln
T2 T1
U3 0
p
W3
nRTc
ln V4 V3
A(p1,V1,Th )
B(p2,V2,Th )
Th
Qc W3
D(p4,V4,TC )
C(p3,V3,TC )
Tc
环境对系统所作功如 DC曲线下的面积所示
a db
c
V
过程4:绝热可逆压缩 D( p4,V4,TC ) A( p1,V1,Th )
Q4 0
p
用一闭合曲线代表任意可逆循环。 在曲线上任意取A,B两点,把循环分成AB和 BA两个可逆过程。 根据任意可逆循环热温商的公式:
δ Q
T R
0
将上式分成两项的加和
B Q
( AT
)R1
A Q
( BT
)R2
0
移项得:
B A
(
Q T
)R1
B A
(
Q T
)R
2
说明任意可逆过程的热温商的值决定于始终 状态,而与可逆途径无关,这个热温商具有状态 函数的性质。
所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不
可逆过程。
熵增加原理可表述为:

物理化学 第三章 热力学第二定律

物理化学 第三章  热力学第二定律
Siso S(体系) S(环境) 0
“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i

Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆

Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4

物理化学 热力学第二定律

物理化学 热力学第二定律

上式为
B
A
δ
Q T
ir
A B
δ Qr T
0
B
A
δ
Q T
ir
ABS
0
BAS
B A
δ
Q T
ir
S δTQ
> ir =r
Clausius Inequality
(1) 意义:在不可逆过程中系统的熵变大于过程 的热温商,在可逆过程中系统的熵变等于过 程的热温商。即系统中不可能发生熵变小于 热温商的过程。 是一切非敞开系统的普遍规律。
= r cycle (可逆循环)
意义:的极限 提高的根本途径
Carnot定理的理论意义:
§2-4 熵 (Entropy)
一、熵函数的发现 (Discovery of entropy)
1 T2
T1

1 Q2 1 T2
Q1
T1
< ir cycle = r cycle
Q1 Q2 0 T1 T2
1mol He(g) 200K
1m3o0l0HK2(g)
101.3kPa 101.3kPa
解:求末态 过程特点:孤立系统, U = 0
U U (He) U (H 2 )
n
3 2
RT2
200 K
n
5 2
RT2
300 K
0
T2 = 262.5K
1mol He(g) 200K
101.3kPa
1mol H2(g) 300K
对两个热源间的可逆循环:热温商
之和等于0
Q1 Q2 0 T1 T2
对任意可逆循环(许许多多个热源):
pቤተ መጻሕፍቲ ባይዱ

第二章 热力学第二定律 物理化学课件

第二章  热力学第二定律  物理化学课件

设始、终态A,B的熵分别为SA 和 SB,则:
SB SA S
B Qr AT
对微小变化
dS Qr
T
上式习惯上称为熵的定义式,即熵的变化值可 用可逆过程的热温商值来衡量。
2 不可逆过程的热温商
• 如果热机进行不可逆循环,则其效率必 然比卡诺循环效率低,即
Q1 Q2 Q1
T1
T 2
T1

1+
T K
2
dT T
J K-1
24.3J K-1
• 此过程热温商为
Q
T
2
373 K 273 K
32.22
22.18 103
T K
373
3.49
106
• 故开动此致冷机所需之功率为
1780
1 60
W
50%=59.3
W
§2.4 熵的概念
• 1 可逆过程的热温商及熵函数的引出
• 在卡诺循环中,两个热源的热温商之和 等于零,即
Q1 Q2 QB 0
T1 T2
TB
• 那么,任意可逆循环过程的多个热源的 热温商之和是否仍然等于零?
§2.4 熵的概念
S Qr Qr TT
• 对理想气体定温可逆过程来说 Qr=-Wr
nRT ln V2
S
V1 nR ln V2 nR ln p1
T
V1
p2
例题3
• (1) 在300K时,5mol的某理想气体由 10dm3定温可逆膨胀到100dm3。计算此过 程中系统的熵变;
• (2)上述气体在300K时由10dm3向真空膨 胀变为100dm3。试计算此时系统的S。 并与热温商作比较。
Q1

物理化学2_热力学第二定律

物理化学2_热力学第二定律

∆S = ∫
T2
T1
nCV.m dT T
2.等压变温 δQR = nC p ,m dT
∆S = ∫
T2
nC p.m T
T1
dT
3.理想气体状态变化(仅有体积功 WR = −∫ p外dV = − pdV )
δQR=dU-δWR = dU + pdV = nCV,m dT + nRT
于是
dV V
∆S = ∫
Zn+CuSO 4 (aq)
ZnSO 4(aq)+Cu ∆H m *= -216.8 kJ mol -1
热力学第二定律所要解决的问题是寻找一个在一定条件下的过程进行的共 同判据----普遍适用的判据。 这个判据一定是体系的状态函数。它的改变值反映在一定条件下过程的方向 性。 一热力学第二定律的表述 (Expression of Second Law of Thermodynamics) 1824 年 Carnot 认为热机必须在两个热源间工作,从高温热源吸热只有部分 作功,而其余部分传给低温热源。 * 1850 年克劳修斯(R.Clausius): 不可能把热从低温物体传到高温物体而不产生其他影响。 * 1851 年开尔文(Kelvin) : 不可能从单一热源吸取热量使之完全转化为功而不引起其他变化。 热力学第二定律的确立,证明第二类永动机是不可造出的。第二类永动机: 一种能够从单一热源吸热,并将所吸收的热全部变为功而无其他影响的机器 (Second Kind of permanent motion machine) 上述两种表达方法是完全有效的。 设有一部违反 Kelvin 热机 A 和制冷机 B 联合工作,如下图:
高温热源T2
高温热源 T2
W =Q2 Q2 B Q1

第二章:热力学第二定律(物理化学)

第二章:热力学第二定律(物理化学)
如果是一个隔离系统,环境与系统间既无热 的交换,又无功的交换,则熵增加原理可表述为: 一个隔离系统的熵永不减少。
精选可编辑ppt
31
克劳修斯不等式的意义
克劳修斯不等式引进的不等号,在热力学上可以
作为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
I < 20% 1度电/1000g煤
高煤耗、高污染(S、N氧化物、粉尘和热污染)
精选可编辑ppt
16
火力发电厂的能量利用
400℃
550℃
ThTC67330055%
Th
673
I < 40% 1度电/500g煤
ThTC82330063%
Th
823
精选可编辑ppt
17
火力发电厂的改造利用
精选可编辑ppt
十九世纪,汤姆荪(Thomsom)和贝塞罗特(Berthlot) 就曾经企图用△H的符号作为化学反应方向的判据。他们认 为自发化学反应的方向总是与放热的方向一致,而吸热反应 是不能自动进行的。虽然这能符合一部分反应,但后来人们 发现有不少吸热反应也能自动进行,如众所周知的水煤气反 应就是一例。这就宣告了此结论的失败。可见,要判断化学 反应的方向,必须另外寻找新的判据。
精选可编辑ppt
4
2.2 自发变化不可逆症结
T1高温热源 Q1
M
W
Q2
T2低温热源
精选可编辑ppt
5
2.3 热力学第二定律(The Second Law of Thermodynamics)
开尔文(Kelvin) :“不可能从单一热源取出热使之完全 变为功,而不发生其它的变化。”

物理化学 第二章 热力学第二定律

物理化学 第二章 热力学第二定律

101.325kPa,变到100℃,253.313 kPa,计
算△S。
S
p S1
S2
T
分析:此题是p、V、T三者都变的过程,若要计 算熵变,需要设计成两个可逆过程再计算。先等 压变温,再等温变压。
S
p S1
S2
T
S
S1
S2
C pm
ln T2 T1
R ln
p1 p2
5 R ln 37315 R ln 101325 114J K 1
-5℃苯(l)→5℃苯(l)
S1
278 Cpm(l) dT 268 T
C pm(l )
ln
T2 T1
126g77 ln 278 268
4 64J K 1
(2) 相变点的相变 5℃苯(l)→5℃苯(s)
S2
H T
9916 08 278
35 66J
K 1
(3) 恒压变温 5℃苯(S)→-5℃苯(S)
4.绝热可逆缩D(p4V4)→A(p1V1)
下面计算每一步的功和热 以1mol理想气体为体系
第一步: U1 0
W1
Q2
RT2
ln V2 V1
第二步:
T1
Q 0 W2 U2 CVmdT
T2
第三步: U3 0 第四步: Q 0
W3
Q1
RT1
ln
V4 V3
T2
W4 U4 CVmdT
T1
解:(1)
S体
nR ln V2 V1
8314 ln10 19 15J
K 1
S环
QR T
nR ln V2 V1
19 15J gK 1
S体 S环 0

热力学第二定律-物理化学-课件-03

热力学第二定律-物理化学-课件-03
7
说明: 1.各种说法一定是等效的。若克氏说法不成 立,则开氏说法也一定不成立(证明见书48页); 2.要理解整个说法的完整性切不可断章取义。如 不能误解为热不能转变为功,因为热机就是一种把 热转变为功的装置;也不能认为热不能完全转变为 功,因为在状态发生变化时,热是可以完全转变为 功的(如理想气体恒温膨胀即是一例) 3.热二律与热一律同样都是建立在无数客观事实基础 上的客观规律。至今还没有发现违背热二律的事实。
平衡
20
(2)真空膨胀 熵是状态函数,始终态相同,系统熵变也相同, 所以:
S sy 19.14 J K
1
S su
Q pra Tex
0
Sis Ssy Ssu 19.14 J K 1 0
自发过程
21
恒容变温
QV= dU = nCV,mdT
S
4
自发过程的定义
没有环境的影响下而能自动发生的过程 自发过程的特点 有方向的,有限度的,是不可逆过程。 要正确理解自发过程具有单向性(不可逆)的含义: 并不是其不能反向进行,环境对系统做功,可以使 系统复原,如利用水泵引水上山;利用空调机,可 以把热量从低温物体传到高温物体,但是一定在环 境中留下痕迹。 5
22
PVT均变化的ΔS的计算-理想气体
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
恒容 SV
S
( p ',V1 , T2 )
恒温 ST
T2 V2 S SV ST nCV ,m ln nR ln T1 V1
23
( p1 ,V1 , T1 ) ( p2 , V2 , T2 )
V2 p2 Qr Wr nRT ln nRT ln V1 p1 Qr V2 p2 S nR ln nR ln T V1 p1

物理化学-03热力学第二定律

物理化学-03热力学第二定律

∫ (δQ
1
2
r
/T )
ΔS ≥
∫ ( δQ / T )
1
2
δQ dS ≥ T
>不可逆过程 = 可逆过程
克劳修斯不等式
6.熵判据——熵增原理1
(1) 对于一个绝热过程: Q=0 所以 dS ≥ 0 (>不可逆, =可逆) 绝热过程中,熵不可能减少 (2) 对于一个隔离系统 因为一个隔离系统与环境无能量交换 dS(隔)=dS(系)+dS(环) ≥0 (>不可逆, =可逆) Or: ΔS(隔)=ΔS(系)+ΔS(环) 0≥ (>不可逆, =可逆) 所以: dS(隔) ≥ 0 (>不可逆, =可逆) 判据 dS(隔) < 0 是不可能的 因此, 隔离系统的熵值永远不会减少.
ΔU = 0
Q1 = −W1 = ∫ pdV = nRT1 ln (V2 / V1 )
V1 V2
!V2 > V1 ,
Q1 > 0
体系吸热并对外作功
(2)绝热可逆膨胀 (2):p2 V 2 T1 to(3):p3 V3 T2
Q=0 W2 = ΔU 2 = nCV ,m (T2 − T1 )
! T2 < T1 ∴ 系统对外作功,W2 < 0
!T > 0 ∴0 < η < 1 ∴ 热不可以全部转化为功
因此,卡诺循环的热机效率: 只取决于高、低温热源的温度。
分 析 1)因为2-3, 4-1步为绝热过程Q=0,所以与 热源无关; 2)η只与T1, T2有关,与工作介质无关,当T2一 定(常温),T1越高(热的品位高),η越高; 3)令卡诺循环的逆循环过程,外界作功(电功, 机械功),从T2(低温)吸热Q2,向T1(高温) 放热Q2, 致冷; 4)卡诺循环是可逆循环,可逆过程系统对环境 作最大功,所以卡诺热机的η最大。

物理化学-热力学第二定律PPT课件

物理化学-热力学第二定律PPT课件

(2) 当T2-T1=0, (3) 当T1=0K,
=0 =100%
表述
第四节 卡诺定理
1. 所有工作在相同的高温热源与低温热源 之间的任意热机以卡诺热机的效率最大。
2.卡诺热机的效率只与两热源的温度有关, 而与工作物质无关
证明:
卡诺定理的数学表达式 R≧ I
T2–T1 ≧ T2
Q2+Q1 Q2
Q1 + T1
低电位
逆过程称为非自发过程
(2)不可逆性 理想气体真空膨胀 Q=0 W=0 U=0 再等温可逆压缩回去 U=0 Q=W 系统恢复,环境失W,而得Q
环境恢复,Q能否全部转变W
自发过程能否成为可逆过程,可归结为: 在不引起其它任何变化条件下,热能
否全部变为功。 焦尔的热功当量测定实验
一切自发过程都是不可逆过程
二、热力学第二定律数学表达式 ——克劳修斯不等式
U=0
W=Q1+Q2
W=W1+W2+W3+W4
=
nRT2ln(V2/V1)
-∫
T1 T2
CV
dT
+
nRT1ln(V4/V3)
-∫
T2 T1
CV
dT
W= nRT2ln(V2/V1) + nRT1ln(V4/V3) (2) 绝热膨胀
T2V2 -1 = T1V3 -1 (3) 绝热压缩
T2V1 -1 = T1V4 -1
式中, K1, K2, K 3 均为常数, Cp /CV
绝热功的求算
理想气体绝热可逆过程的功
W V2 pdV V1
=
K V2 V V1
dV
=
K
(1

物理化学课件第2章热力学第二定律

物理化学课件第2章热力学第二定律

热不是系统的状态函数,所以要分别计算三 个过程的热: 理想气体定温过程,U=0,Q=W
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
24
S= 191 JK-1
实际过程的热温商: (a) Q/T= nR ln (p1 / p2) = 191 JK-1 S= Q/T 可逆 (b) Q/T=0; S>Q/T 不可逆过程
卡诺定理 熵 熵变计算 自由能 热力学关系 G计算 习题课
三、热传导过程
19
求算S的依据:
1.熵是系统的状态性质, S只取决于始终态,而
与变化途径无关;
2.无论是否是可逆过程,在数值上
dS =Qr/T; (Qr=TdS)
因此需设计可逆过程,求Qr
3.熵是容量性质,具有加和性。
S=SA +SB
Qr Qr Qr T T A T A B
B A B


B
其积分值与途径无关
A

V
S S B S A
A
def B
Qr
T

dS
def
Q r
T
单位:JK-1 , 容量性质
G计算
反证法
T2
Q2 Q2
R
W'
I
W
Q1
Q1 '
T1
卡诺定理告诉人们:提高热机效率的有效途径是加 大两个热源之间的温差。
卡诺定理

熵变计算 自由能 热力学关系
G计算
习题课
11
卡诺定理热温商:( Clausius
1850年)
W Q2 + Q1 T2 T1 R Q2 Q2 T2

物理化学热力学第二定律完整ppt课件

物理化学热力学第二定律完整ppt课件
of Thermodynamics)
克劳修斯(Clausius)的说法:“不可能把热从低 温物体传到高温物体,而不引起其它变化。”
开尔文(Kelvin)的说法:“不可能从单一热源取出 热使之完全变为功,而不发生其它的变化。” 后来 被奥斯特瓦德(Ostward)表述为:“第二类永动机是 不可能造成的”。
可逆过程) S(相变)TH(相 (相变变))
(3)理想气体(或理想溶液)的等温混合过程,并
符合分体积定律,即
xB
VB V总
m ixSR nBlnxB B
精选ppt课件2021
16
等温过程的熵变
例1:1mol理想气体在等温下通过:(1)可逆膨胀, (2)真空膨胀,体积增加到10倍,分别求其熵变。
解:(1)可逆膨胀
Q R inV ,C m T i T 1 niR lV n V 1 2 T nV ,C m T 1 T i
QRi nRTi lnVV12
结论:
始终态相同,途径不同,过程的热 QRi 亦不同。但是
QRi nRlnV2 对所有的可逆途径均相等。
Ti
V1
精选ppt课件2021
6
2.2.2 熵函数
(1) 焦耳热功当量中功自动转变成热;
(2) 气体向真空膨胀;
(3) 热量从高温物体传入低温物体;
(4) 浓度不等的溶液混合均匀;
(5) 锌片与硫酸铜的置换反应等,
它们的逆过程都不能自动进行。当借助外力,体系恢复
原状后,会给环境留下不可磨灭的影响。
精选ppt课件2021
2
2.2 热力学第二定律(The Second Law
第二类永动机:从单一热源吸热使之完全变为功而不 留下任何影响。

大学物理化学 热力学第二定律

大学物理化学 热力学第二定律
说明:
(1)隔离体系中所发生的一切不可逆过程,
都使其熵值增加: 过程方向的标志;
dS隔离,这0 是自发
(2)隔离体系中所发生的一切可逆过程, 其熵值都保持不变:dS隔离 0 ,这是体 系已达到平衡态的标志。平衡态是自发 过程的限度;
(3)隔离体系不可能发生使其熵值减少的 过程。
熵增加原理:隔离体系所发生的一切自 发过程都是朝着使其熵值增加的方向进 行,一直到隔离体系的熵值达到最大为 止,即体系处于平衡态。
三、熵的物理意义
1.自发过程的本质 自发过程的方向性归结为功热转换的不 可逆性。
热:分子混乱运动的表现;
功:一种稳定有序运动的表现;
功热转换:分子由有序状态自发地变为 无序状态,即混乱度增加。无序运动却 不会自动地变为有序运动。
从微观上讲:
热功转换不可逆性是分子运动由混乱程 度较小的状态自发地向混乱程度较大的 状态变化的必然结果。一切不可逆过程 都是向混乱度增加的方向进行。
RT2
ln V4 V3
CV ,m (T2
T1)

RT1
ln
V2 V1

RT2
ln V4 V3
TV 1 常数,有:
T1V2 1 T2V3 1,T2V4 1 T1V1 1


V2 V3

1


V1 V4

1


V2 V1

nA TA
恒容
nB TB
变温
nA T’
n=nA+nB T’
恒温
膨胀
nB T’
S S A S B
S A

nA .CV .m
ln
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T
只适用于等温等 压下的可逆相变
返回
2013-12-12
上一内容
下一内容
回主目录
设计途径:
H2O268K,l H2O268K,s
p
S 1
S2
S3
可逆相变 H2O273K , l H2O273K,s
S=S1+S2+S3
只适用于等温等压 下的可逆相变

273 K
nCp ,m,l dT T
下一内容
268 K
H 可逆相变 268 K nCp , m , s dT 273 K T可逆相变 T
返回
2013-12-12
上一内容
回主目录
该过程是否具有自发性?
Q H Q H ?? S环 T环 T环 p H2O268K,l H2O268K,s
2013-12-12
Question
1molH2O(l, p ,100 ) H2O( g, p ,100 ) ℃ ℃
求过程的熵变,并判断自发性。

p外 0
上一内容
下一内容
回主目录
返回
2013-12-12
相变过程的熵变
(2)非正常相变(不可逆相变)
例:试计算标准压力下,-5℃的过冷水变成冰的 熵变。并判断此过程是否自发。已知水和冰的 热容分别为: C水=4.184 J K-1 g-1 C冰 =2.092 J K-1 g-1 , 0 0C 时冰的融化热fusH =334.72 J g-1 解: 可以直接应用 S H 进行计算吗?
H1
H3
H 2 273 K 268 K nCp,m,l dT H可逆相变 273 K nCp,m,s dT H
可逆相变 H2O273K , l H2O273K,s

268 K
S总 S体 S环 0 • 该过程为自发过程。
上一内容 下一内容 回主目录
自发 可逆 不可能
“>” 号为自发过程 “=” 号为可逆过程
上一内容 下一内容 回主目录
返回
2013-12-12
2.4 熵变的计算
计算要点:
a.基本上都是从定义式出发; b.切记要用可逆过程的热温熵来计算;
空气
绝热壁
真空
c.若实际过程不可逆,则利用熵变与途径无关, 在始末态间设计可逆途径进行计算。
物理化学BI—第二章
不可能把热从低温 物体传到高温物体, 而不引起其它变化
上一内容
下一内容
回主目录
返回
2013-12-12
上节总结
(1)S是状态函数,广度性质;
(2)单位:J.K-1,不是能量;
(3)定义式:
S S B S A dS
B
B
QR
T
dS
不能写成:
上一内容
返回
2013-12-12
小结
等温等压可逆相变
H (相变) S (相变) T (相变)
若是不可逆相变,应设计可逆过程
上一内容
下一内容
回主目录
返回
2013-12-12
Question
• 在101325Pa下,110℃的过热水变为110℃的水 蒸气。此过程Qp = ΔH ,因而Q与过程可逆与否无 关,所以上述相变过程: ΔS = Qr/T = Qp /= ΔH /T,式中T=383K。这种想法正确吗,为什么?
T2
1
nCV ,m dT T
(2)物质的量一定的等压变温过程
S T
上一内容 下一内容
T2
1
nCp ,m dT T
返回
2013-12-12
回主目录
例题
1molAg 恒 V 下,由 0℃加热到 30℃
a)可逆加热
b)用 30℃的热源直接加热
已知 CV,m=24.5 J·K ·mol
求Δ S 体,Δ S 环
上一内容
下一内容
回主目录
返回
2013-12-12
Answer
• 在此题中系统的状态变化为:
1molH2O(l, p ,110 ) H 2O( g, p ,110 ) ℃ ℃
一般来说,此二状态之间存在如下两种可逆途径(1) 等压可逆(但过程不等温),该过程不能用公式ΔS = Qr/T ;(2)等温可逆(但过程不等压),该过程Qp ≠ΔH ,即Qr ≠ΔH 。
-1
-1
Δ S 总 =Δ S 体 +Δ S 环=0.12 J·K-1·mol-1 >0
上一内容
下一内容
回主目录
返回
2013-12-12
例题
试证 :
100 Fe块 WFe 100g,C p ,m, Fe 25.2 J m ol1 K 1 ℃

在25℃H 2O WH 2O 10kg, C p ,m, H 2O 75.48J m ol K 中冷却具有自发性。
例:求下述过程熵变。已知1molH2O(l)在标准压力下,
使与373.15K热源接触而蒸发为水蒸气,吸热40.620kJ。
解:S

B
QR
T
A
QR T

vap H m Tb
S S ( g ) S (l ) 0 如何解释? S ( g ) S (l )
上一内容 下一内容 回主目录
上一内容 下一内容 回主目录
返回
2013-12-12
熵变的计算及熵判据的应用
简单变温过程的熵变 相变过程的熵变 理想气体状态变化过程的熵变 化学反应过程的熵变
上一内容
下一内容
回主目录
返回
2013-12-12
2.4.1 简单变温过程
(1)物质的量一定的等容变温过程
S T
40.620 kJ mol1 108.9 J K 1 mol1 373.15 K
返回
2013-12-12
该过程有无自发性?
Q H 1 S环 109J K T环 T环
S体 S环 0
该过程为可逆过程。
上一内容
下一内容
回主目录
返回
熵增加原理:一个孤立体系的熵永不减少。 示意图:
S1
自 发 程 过 平 衡态
Δ S>0
S2
Δ S=0
S3
上一内容
下一内容
回主目录
返回
2013-12-12
熵判据的建立
(3) 非孤立体系的处理 有时把与体系密切相关的环境也包括在一起, 用来判断过程的自发性,即:
S孤 S体 S环 0
S环
上一内容
Qr ,环 Q吸,环 Q体 T环 T环 T环
回主目录
下一内容
返回
2013-12-12

b)Δ S 体 =2.55 J·K ·mol
-1
-1
QSys QSurr Δ S 环= =TSurr TSurr
=-
C v ,m (T2 T1 ) 303
为自发过程
= - 2.43 J·K ·mol
下一内容
回主目录
返回
2013-12-12
体系熵变S
Fe

T
Qr
T
T1

T
nCp.m. FedT T
10.10J K 1
T1
nCp,m, Fe ln T
T1
环境熵变 S H O
2

Qr
T

Qr , H 2 O TH 2O
T
1
QFe T nC p ,m , Fe dT TH O TH 2O
返回
2013-12-12
回主目录
熵判据的建立
(1)绝热体系
对于绝热体系, Q 0 ,所以Clausius 不等式为
dS 0
等号表示绝热可逆过程,不等号表示绝热不 可逆过程。
上一内容
下一内容
回主目录
返回
2013-12-12
(2)孤立体系的熵变
自发 因为孤立体系中一旦发生一个不 S 0 可逆 可逆过程,则一定是自发过程。


对于相变过程,公式ΔS=ΔH /T
只适用于那些等温等压下的可逆相变。而在本题中给 定的两个状态之间不存在这样的变化。
上一内容 下一内容 回主目录
返回
2013-12-12
-1 -1
上一内容
下一内容
回主目录
返回
2013-12-12

a)可看作用一连串温差无限小的热源加热 T Q T Q V R
ΔS体 =
T2

2
T1
T
=

2
T1
T
T2 -1 -1 dT = CV,mln =2.55 J·K ·mol = T1 T T1 T2 Q Qi V Δ S 环=( )环= - T1 T Ti


1
1

上一内容
下一内容
回主目录
返回
2013-12-12
解:只需证 S孤 SFe SH2O 0
首先计算热交换的平衡温度T:
nH 2OC p ,m,H 2O (T 298K ) nFeC p ,m,Fe (T 373K ) 0 T 298.08K
上一内容
2
11.33J K
上一内容 下一内容 回主目录
1
返回
2013-12-12
结论
(1)S高温>S低温
S (2)判断自发性:孤 S体 S环 0
(3)环境熵变的计算
上一内容
相关文档
最新文档