《四边形》复习课

合集下载

中考数学第十一单元四边形课标解读典例诠释复习1

中考数学第十一单元四边形课标解读典例诠释复习1

第十一单元四边形第一节多边形与平行四边形课标解读知识要点1.多边形的内角和与外角和(1)n边形内角和为;多边形外角和为 .(2)如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和 .2.正多边形定义:各个角,各条边的多边形叫做正多边形.对称性:正多边形都是对称图形,边数为偶数的正多边形也是对称图形.3.平行四边形(1)定义:有两组对边分别平行的四边形叫做平行四边形.(2)性质:①平行四边形的对边;②平行四边形的对角,邻角;③平行四边形的对角线;(3)平行四边形的对称性:,是它的对称中心;(4)平行四边形的面积:;同底(等底)同高(等高)的平行四边形面积.(5)平行四边形的判定方法①两组对边分别的四边形是平行四边形(定义);②两组对边分别的四边形是平行四边形;③一组对边的四边形是平行四边形;④对角线的四边形是平行四边形.典例诠释考点一多边形的内角和与外角和例1 正十边形的每个外角等于( )A.18°B.36°C.45°D.60°【答案】 B【名师点评】根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.例2 (2016·丰台一模)如图1-11-1,在同一平面内,将边长相等的正三角形、正五边形的一边重合,则∠1= °.图1-11-1【答案】 48【名师点评】此题先要求出正五边形的每个内角度数(利用多边形的内角和或外角和来求,外角和比较简单,学生应掌握),从而问题得解.例3 (2016·燕山一模)如图1-11-2,一个正n边形纸片被撕掉了一部分,已知它的中心角是40°,那么n=.图1-11-2【答案】 9考点二平行四边形性质与判定的综合应用,四边形的计算例4 (2016·平谷一模)如图1-11-3,ABCD中点E是BC边的一点,将边AD延长至点F,使∠AFC=∠DEC,连接CF,DE.(1)求证:四边形DECF是平行四边形;(2)若AB=13,DF=14,tan A=,求CF的长.图1-11-3(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠DEC.∵∠AFC=∠DEC,∴∠AFC=∠ADE,∴DE∥FC.∴四边形DECF是平行四边形.(2)【解】如图1-11-4,过点D作DH⊥BC于点H,图1-11-4∵四边形ABCD是平行四边形,∴∠BCD=∠A,AB=CD=13.∵ tan A=,AB=13,∴DH=12,CH=5.∵DF=14,∴CE=14,∴EH=9.∴ED==15,∴CF=DE=15.【名师点评】 (1)考查平行四边形的性质和判定,易知AF∥BC,结合条件∠AFC= ∠DEC,可以推导出∠AFC+∠EDF=180°(也可以用内错角和同位角),从而得到DE∥FC,问题得证,此问解答方法不唯一.(2)将分散的条件集中到一个三角形里,如△DCF中(或△DEC中),出现了∠A的正切值,考虑要构造直角三角形,故可以过D点作BC的垂线,从而问题得解.基础精练1.(2016·大兴一模)若正多边形的一个内角是120°,则这个正多边形的边数为( )【答案】 C2.(2016·东城一模)已知一个正多边形的每个外角都等于72°,则这个正多边形的边数是 .【答案】 53.(2016·延庆一模)如图1-11-5,AB∥DC,要使四边形ABCD是平行四边形,还需补充一个..条件: .图1-11-5【答案】AD∥BC或AB=DC或∠A+∠B=180°等4.(2016·海淀一模)如图1-11-6,在ABCD中,AB=3,BC=5,∠ABC的平分线交AD于点E,则DE的长为( )图1-11-6A.5 B.4 C.3 D.2【答案】 D5.(2014·河南)如图1-11-7,ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )图1-11-7【答案】 C6.(2014·昆明)如图1-11-8,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )图1-11-8∥CD,AD∥BC=OC,OB=OD=BC,AB∥CD=CD,AD=BC【答案】 C7.(2014·十堰)如图1-11-9,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD 于点E,则△CDE的周长是( )图1-11-9【答案】 B8.(2014·临沂)如图1-11-10,在ABCD中,BC=10,sin B=,AC=BC,则ABCD的面积是 .图1-11-10【答案】 189.(2014·自贡)一个多边形的内角和比它的外角和的3倍少180°,则它的边数是 . 【答案】 710.(2016·海淀二模)如图1-11-11,边长相等的正方形、正六边形的一边重合,则∠1的度数为( )图1-11-11°°°°【答案】 C11.(2016·西城二模)有一张直角三角形纸片,记作△ABC,其中∠B=90°.按如图1-11-12方式剪去它的一个角(虚线部分),在剩下的四边形ADEC中,若∠1=165°,则∠2的度数为.图1-11-12【答案】105°12.(2016·通州二模)在数学课上,老师提出如下问题:已知:如图1-11-13,线段AB,BC,求作:平行四边形ABCD.图1-11-13小明的作法如下:如图1-11-14:(1)以点C为圆心,AB长为半径画弧;(2)以点A为圆心,BC长为半径画弧;(3)两弧在BC上方交于点D,连接AD,CD,四边形ABCD为所求作平行四边形.图1-11-14老师说:“小明的作法正确.”请回答:小明的作图依据是 .【答案】两组对边分别相等的四边形是平行四边形13.(2016·房山一模)如图1-11-15,在ABCD中,E为BC中点,过点E作EG⊥AB于G,连接DG,延长DC,交GE的延长线于点H.已知BC=10,∠GDH=45°,DG=8.求CD的长.图1-11-15【解】∵四边形ABCD是平行四边形,∴AB∥CD.∵EG⊥AB于点G,∴∠BGE=∠EHC=90°.在△DHG中,∠GHD=90°,∠GDH=45°,DG=8,∴DH=GH=8.∵E为BC中点,BC=10,∴BE=EC=5.∵∠BEG=∠CEH,∴△BEG≌△CEH,∴GE=HE=GH=4.在△EHC中,∠H=90°,CE=5,EH=4,∴CH=3,∴CD=5.14.(2016·怀柔一模)如图1-11-16,在△ABC中,D为AB边上一点,F为AC的中点,过点C作CE∥AB交DF的延长线于点E,连接AE.(1)求证:四边形ADCE为平行四边形;(2)若EF=2,∠FCD=30°,∠AED=45°,求DC的长.图1-11-16(1)【证明】∵CE∥AB,∴∠DAF=∠ECF.∵F为AC的中点,∴AF=CF.在△DAF和△ECF中,∴△DAF≌△ECF,∴AD=CE.∵CE∥AB,∴四边形ADCE为平行四边形.(2)【解】如图1-11-17,作FH⊥DC于点H.图1-11-17∵四边形ADCE为平行四边形,∴AE∥DC,DF=EF=2,∴∠FDC=∠AED=45°.在Rt△DFH中,∠DHF=90°,DF=2,∠FDC=45°,∴ sin∠FDC==,得FH=2,tan∠FDC==1,得DH=2.在Rt△CFH中,∠FHC=90°,FH=2,∠FCD=30°,∴FC=4.由勾股定理,得HC=2.∴DC=DH+HC=2+2.15.(2016·昌平二模)在△OAB中,∠OAB=90°,∠AOB=30°,OB=4.以OB为边,在△OAB 外作等边△OBC,E是OC上的一点.(1)如图1-11-18,当点E是OC的中点时,求证:四边形ABCE是平行四边形;(2)如图1-11-19,点F是BC上的一点,将四边形ABCO折叠,使点C与点A重合,折痕为EF,求OE的长.图1-11-18 图1-11-19(1)【证明】如图1-11-18,∵△OBC为等边三角形,∴OC=OB,∠COB=60°.∵点E是OC的中点,∴EC=OC=OB.在△OAB中,∠OAB=90°,∵∠AOB=30°,∴AB=OB,∠COA=90°.∴CE=AB,∠COA+∠OAB=180°,∴CE∥AB,∴四边形ABCE是平行四边形.(2)【解】如图1-11-19,∵四边形ABCO折叠,点C与点A重合,折痕为EF,∴△CEF≌△AEF,∴EC=EA.∵OB=4,∴OC=BC=4.在△OAB中,∠OAB=90°,∵∠AOB=30°,∴OA=2.在Rt△OAE中,由(1)知:∠EOA=90°,设OE=x,∵ ,∴ +,解得x=,∴OE=.16.(2016·西城一模)有这样一个问题:如图1-11-20,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:图1-11-20(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图1-11-20,在筝形ABCD中,AB=AD,CB=CD求证:.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明;如果不成立,请举出一个反例,画出图形,并加以说明.【解】 (1)已知:如图1-11-21,筝形ABCD中,AB=AD,CB=CD.求证:∠B=∠D.图1-11-21【证明】连接AC.如图1-11-21,在△ABC和△ADC中,∴△ABC≌△ADC,∴∠B=∠D.(2)筝形的其他性质:①筝形的两条对角线互相垂直,②筝形的一条对角线平分一组对角,③筝形是轴对称图形,……(写出一条即可)(3)不成立.反例如图1-11-22所示.图1-11-22在平行四边形ABCD中,AB≠AD.对角线AC,BD相交于点O,由平行四边形性质可知此图形满足∠ABC=∠平分BD.但是该四边形不是筝形.(答案不唯一)17.(2014·浙江嘉兴)我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1-11-23,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数.图1-11-23(2)在探究“等对角四边形”性质时:①小红画了一个“等对角四边形”ABCD(如图1-11-24),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;图1-11-24②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.(3)已知:在“等对角四边形”ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【解】 (1)∵等对角四边形ABCD中,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°-70°-80°-80°=130°.(2)①如图1-11-25,连接BD.图1-11-25∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠ABC-∠ABD=∠ADC-∠ADB,∴∠CBD=∠CDB,∴CB=CD,②不正确.反例:如图1-11-26,∠A=∠C=90°,AB=AD.但CB≠CD.图1-11-26 图1-11-27(3)①如图1-11-27,当∠ADC=∠ABC=90°时,延长AD,BC相交于点E.∵∠ABC=90°,∠DAB=60°,AB=5,∴AE=10,∴DE=AE-AD=10-4=6.∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2,②如图1-11-28,当∠BCD=∠DAB=60°时,过点D作DE⊥AB于点E,DF⊥BC于点F,图1-11-28∵DE⊥AB,∠DAB=60°,AD=4,∴AE=2,DE=2,∴BE=AB-AE=5-2=3.∵四边形BFDE是矩形,∴DF=BE=3,BF=DE=2.∵∠BCD=60°,∴CF=,∴BC=CF+BF=+2=3,∴AC===2.18.(2016·东城一模)在课外活动中,我们要研究一种四边形——筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1-11-29①).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.①②图1-11-29下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图1-11-29②,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积. 【解】 (1)菱形(正方形).(2)它是一个轴对称图形;一组对角相等;一条对角线所在的直线垂直平分另一条对角线.(写出其中的两条就行)已知:筝形ABCD.求证:∠B=∠D.证明:连接AC,如图1-11-30.图1-11-30∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠B=∠D.(3)过点C作CE⊥AB交AB的延长线于E.∵∠ABC=120°,∴∠EBC=60°.又∵BC=2,∴BE=1,CE=.∴=2××AB·CE=2××4×=4.真题演练1.(2016·北京)内角和为540°的多边形是( )A B C D【答案】 C2.如图1-11-31,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.图1-11-31【证明】∵四边形ABCD是平行四边形,∴AB∥DC,∴AB∥DE,∴∠AED=∠BAE.∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠EAD=∠AED,∴DA=DE.3.(2015·北京)图1-11-32是由射线AB,BC,CD,DE组成的平面图形,则∠1+∠2+∠3+ ∠4+∠5= .图1-11-32【答案】360°第二节特殊的平行四边形课标解读知识要点1.矩形(1)定义:有一个角是直角的叫做矩形.(2)性质:①具有平行四边形的所有性质; ②对角线 ;③四个角都是直角.(3)矩形的对称性:既是中心对称图形又是轴对称图形,它有对称轴.(4)矩形的面积: .(5)矩形的判定方法①的平行四边形;②对角线的平行四边形;③有三个角是直角的四边形.图1-11-332.菱形(1)定义:有一组邻边相等的平行四边形叫做菱形.(2)性质:①具有平行四边形的一切性质;②都相等;③两条对角线,并且 .(3)菱形的对称性:既是中心对称图形又是轴对称图形,其对称轴为对角线所在的直线.(4)菱形的面积:方法1:= ; 方法2:= .(5)菱形的判定方法:①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等的四边形.图1-11-343.正方形(1)定义:有一组邻边相等且有一个角是直角的平行四边形叫做正方形.拓展: 正方形既是有一组邻边相等的矩形,又是有一个角是直角的菱形.(2)性质:①边——四条边都相等,邻边垂直,对边平行;②角——四个角都是直角;③对角线——相等;互相垂直平分;每一条对角线平分一组对角.(3)正方形的对称性:是轴对称图形,有___条对称轴;又是中心对称图形,对称中心就是两条对角线的交点.(4)正方形的面积:方法1:= ; 方法2:= .(5)正方形的判定方法:①根据定义;②有一组邻边相等的矩形是正方形;③有一个角是直角的菱形是正方形.图1-11-35典例诠释考点一特殊平行四边形的对称性例1 下列图形中,既是中心对称图形又是轴对称图形的是( )A.等边三角形B.平行四边形C.梯形D.矩形【答案】 D【点评】本题主要考查中心对称图形与轴对称图形的概念,找轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;找中心对称图形的关键是要寻找对称中心,旋转180度后与原图重合.例2 (2016·房山一模)有五张形状、大小、质地都相同的卡片,这些卡片上面分别画有下列图形:①正方形;②等边三角形;③平行四边形;④等腰三角形;⑤圆.将卡片背面朝上洗匀,从中随机抽取一张,抽出的纸片正面图形是轴对称图形,但不是中心对称图形的概率是( )A. B. C. D.【答案】 B【名师点评】准确理解轴对称图形和中心对称图形的概念和性质,注意②不是中心对称图形,③不是轴对称图形.考点二运用特殊平行四边形性质进行简单计算例3 如图1-11-36,菱形ABCD的对角线AC,BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH= .图1-11-36【答案】【名师点评】此题考查菱形的性质、勾股定理、“双垂直”的基本图形,学生要熟练掌握,求OH的长可利用“等面积法”求解.学生最好能记住“双垂直图形”中的四个常见等积式. 考点三特殊平行四边形性质与判定的综合应用例4 (2016·东城一模)如图1-11-37,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.图1-11-37(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【证明】由尺规作∠BAD的平分线的过程可知,AB=AF,且∠BAE=∠FAE.又∵四边形ABCD为平行四边形,∴∠FAE=∠AEB.∴∠BAE=∠AEB.∴AB=BE.∴BE=FA.∴四边形ABEF为平行四边形.∴四边形ABEF为菱形.(2)【解】∵四边形ABEF为菱形,∴AE⊥BF,OB=BF=3,AE=2AO.在Rt△AOB中,AO==4.∴AE=2AO=8.【名师点评】此题结合尺规作图,考查了菱形的判定和性质,准确记忆和应用菱形的判定和性质是关键.考点四利用特殊平行四边形性质简拼图形例5 问题:现有5个边长为1的正方形,排列形式如图1-11-38,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.图1-11-38小东同学的做法是:设新正方形的边长为x(x>0). 依题意,割补前后图形面积相等, 有=5, 解得x=.由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长.于是,画出如图1-11-39所示的分割线,拼出如图1-11-40所示的新正方形.图1-11-39 图1-11-40请你参考小东同学的做法,解决如下问题:(1) 如图1-11-41是由边长为1的5个小正方形组成,请你通过分割,把它拼成一个正方形(在图1-11-41上画出分割线,并在图1-11-41的右侧画出拼成的正方形简图);(2)如图1-11-42,是由边长分别为a和b的两个正方形组成,请你通过分割,把它拼成一个正方形(在图1-11-42上画出分割线,并在图1-11-42的右侧画出拼成的正方形简图).图1-11-41 图1-11-42【答案】如图1-11-43所示.图1-11-43【名师点评】分割图形和图形的重新组合问题由于解题策略多样,方法多样,剪裁线的不定性,使得组合图形变得多姿多彩,对于图形面积的思考是解题关键.基础精练1.(2016·顺义二模)四张质地、大小相同的卡片上,分别画上如图1-11-44所示的四个图形,在看不到图形的情况下从中任意抽出一张卡片,则抽出的卡片上的图形是轴对称图形的概率为( )图1-11-44A. B. C.【答案】 A2.(2016·平谷二模)如图1-11-45,已知:矩形ABCD中对角线AC,BD交于点O,E是AD中点,连接OE.若OE=3,AD=8,则对角线AC的长为( )图1-11-45【答案】 D3.(2016·昌平二模)为了研究特殊四边形,李老师制作了这样一个教具(如图1-11-46中左图):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图1-11-46中右图). 观察所得到的四边形,下列判断正确的是图1-11-46A.∠BCA=45°B.BD的长度变小C.AC=BD D.AC⊥BD【答案】 C4.(2016·石景山一模)如图1-11-47,方格纸中有一四边形ABCD(A,B,C,D四点均为格点),若方格纸中每个小正方形的边长为1,则该四边形的面积为 .图1-11-47【答案】 125.(2014·西城一模)如图1-11-48,菱形ABCD中,∠DAB=60°,DF⊥AB于点E,且DF=DC,连接FC,则∠ACF的度数为度.图1-11-48【答案】 156.(2014·房山一模)如图1-11-49,在边长为9的正方形ABCD中, F为AB上一点,连接CF.过点F作FE⊥CF,交AD于点E,若AF=3,则AE等于( )图1-11-49【答案】 C7.(2014·大兴一模)若菱形两条对角线的长分别为10 cm和24 cm,则这个菱形的周长为( )cm cm cm cm【答案】 D8.(2014·大兴一模)已知正方形ABCD的边长为2,E为BC边的延长线上一点,CE=2,连接AE与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为 .【答案】9.(2014·海淀二模)已知一个菱形的周长是20 cm,两条对角线的比是4∶3,则这个菱形的面积是( )【答案】 B10.(2014·珠海)边长为3 cm的菱形的周长是( )cm cm cm cm【答案】 C11.(2014·娄底)如图1-11-50,要使平行四边形ABCD是矩形,则应添加的条件是(添加一个条件即可).图1-11-50【答案】AC=BD12.(2014·陕西)如图1-11-51,在菱形ABCD中,AB=5,对角线AC=6.若过点A作AE⊥BC,垂足为E,则AE的长为( )图1-11-51B. C.【答案】 C13.(2014·淄博)如图1-11-52,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C,则矩形的一边AB的长度为( )图1-11-52B. C.【答案】 C14.(2014·兰州)下列命题中正确的是( )A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【答案】 B15.(2014·吉林)如图1-11-53,四边形ABCD、AEFG是正方形,点E、G分别在AB,AD上,连接FC,过点E作EH∥FC,交BC于点H.若AB=4,AE=1,则BH的长为( )图1-11-53【答案】 C16.(2014·青岛)如图1-11-54,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上,若AB=6,BC=9,则BF的长为( )图1-11-54【答案】 A17.(2016·房山二模)已知,如图1-11-55,四边形ABCD是平行四边形,延长边AB到点E,使BE=AB,连接DE、BD和EC,设DE交BC于点O,∠BOD=2∠A,求证:四边形BECD是矩形.图1-11-55【证明】∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∠A=∠BCD.∵BE=AB,∴BE∥CD,BE=DC.∴四边形BECD为平行四边形.∴OD=DE,OC=BC.又∵∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∴∠OCD=∠ODC,∴OC=OD.∴DE=BC.∴平行四边形BECD为矩形.18.(2016·丰台一模)如图1-11-56,在ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求ABCD的面积.图1-11-56(1)【证明】在ABCD中,∵AD∥BC,∴∠DAE=∠AEB.∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE.∴∠BAE=∠BEA.∴AB=BE.同理可得AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∴ABEF是菱形.(2)【解】如图1-11-57,过F作FG⊥BC于G.图1-11-57∵ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4.∴BE==5.∵ =AE·BF=BE·FG,∴FG=,∴ =BC·FG=.19. (2016·海淀一模)如图1-11-58,矩形ABCD的对角线AC,BD相交于点O,过点B作AC 的平行线交DC的延长线于点E.(1)求证:BD=BE;(2)若BE=10,CE=6,连接OE,求tan∠OED的值.图1-11-58(1)【证明】∵四边形ABCD为矩形,∴AC=BD,AB∥DC.∵AC∥BE,∴四边形ABEC为平行四边形.∴AC=BE,∴BD=BE.(2)【解】如图1-11-59,过点O作OF⊥CD于点F.图1-11-59∵四边形ABCD为矩形,∴∠BCD=90°.∵BE=BD=10,∴CD=CE=6.同理,可得CF=DF=CD=3,∴EF=9.在Rt△BCE中,由勾股定理可得BC=8.∵OB=OD,∴OF为△BCD的中位线.∴OF=BC=4.∴在Rt△OEF中,tan∠OED==.20.(2016·海淀二模)如图1-11-60,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:四边形BDCF为菱形;(2)若四边形BDCF的面积为24,tan∠EAC=,求CF的长.图1-11-60(1)【证明】∵∠ACB=90°,∴AC⊥BC.∵DE⊥BC,∴AC∥DE.又∵CF∥AD,∴四边形ACFD为平行四边形,∴AD=CF.∵CD为AB边上的中线,∴AD=BD,∴BD=CF.∴四边形BDCF为平行四边形.∵DE⊥BC,∴四边形BDCF为菱形.(2)【解】在Rt△ACE中,∵ tan∠EAC==,∴设CE=2x,AC=DF=3x.∵菱形BDCF的面积为24,∴DF·BC=24,∴DF·EC=24,∴ 3x·2x=24,∴ =2,=-2(舍去).∴CE=4,EF=DF=3,∴CF=5.21.(2016·门头沟一模)如图1-11-61,在矩形ABCD中,AE平分∠BAD,交BC于E,过E作EF⊥AD于F,连接BF交AE于P,连接PD.图1-11-61(1)求证:四边形ABEF是正方形;(2)如果AB=4,AD=7,求tan∠ADP的值.(1)【证明】∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE.又∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形.又∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE.∴四边形ABEF是正方形.(2)【解】如图1-11-62,过点P作PH⊥AD于H.图1-11-62∵四边形ABEF是正方形,∴BP=PF,BA⊥AD,∠PAF=45°.∴AB∥PH.∵AB=4,∴AH=PH=2.∵AD=7,∴DH=AD-AH=7-2=5.在Rt△PHD中,∠PHD=90°,∴ tan∠ADP==.22.(2016·石景山一模)如图1-11-63,在△ABC中,∠ABC=90°,过点B作AC的平行线交∠CAB的平分线于点D,过点D作AB的平行线交AC于点E,交BC于点F,连接BE,交AD于点G.(1)求证:四边形ABDE是菱形;(2)若BD=14,cos∠GBH=,求GH的长.图1-11-63(1)【证明】∵AC∥BD,AB∥ED,∴四边形ABDE是平行四边形.∵AD平分∠CAB,∴∠CAD=∠BAD.∵AC∥BD,∴∠CAD=∠ADB.∴∠BAD=∠ADB,∴AB=BD.∴四边形ABDE是菱形.(2)【解】∵∠ABC=90°,∴∠GBH+∠ABG=90°.∵AD⊥BE,∴∠GAB+∠ABG=90°,∴∠GAB=∠GBH,∵ cos∠GBH=,∴ cos∠GAB=.∴ ==.∵四边形ABDE是菱形,BD=14,∴AB=BD=14,∴AH=16,AG=,∴GH=AH-AG=.23.(2016·石景山二模)如图1-11-64,CD垂直平分AB于点D,连接CA,CB,将BC沿BA 的方向平移,得到线段DE,交AC于点O,连接EA,EC.图1-11-64(1)求证:四边形ADCE是矩形;(2)若CD=1,AD=2,求sin∠COD的值.(1)【证明】由已知得BD∥CE,BD=CE.∵CD垂直平分AB,∴AD=BD,∠CDA=90°.∴AD∥CE,AD=CE.∴四边形ADCE是平行四边形.∴平行四边形ADCE是矩形.(2)【解】如图1-11-65,过D作DF⊥AC于F,图1-11-65在Rt△ADC中,∠CDA=90°,∵CD=1,AD=2,由勾股定理可得AC=.∵O为AC中点,∴OD=.∵AC·DF=AD·DC,∴DF=.在Rt△ODF中,∠OFD=90°,∴ sin∠COD==.24.(2016·东城二模)如图1-11-66,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的等腰三角形.(要求:画出三个..大小不同,符合题意的等腰三角形,只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)图1-11-66【解】满足条件的所有图形如图1-11-67所示:①②③④⑤图1-11-6725.(2016·石景山二模)阅读下面材料:小骏遇到这样一个问题:画一个和已知矩形ABCD面积相等的正方形.小骏发现:如图1-11-68,延长AD到E,使得DE=CD,以AE为直径作半圆,过点D作AE的垂线,交半圆于点F,以DF为边作正方形DFGH,则正方形DFGH即为所求.请回答:AD,CD和DF的数量关系为 .图1-11-68参考小骏思考问题的方法,解决问题:画一个和已知ABCD面积相等的正方形,并写出画图的简要步骤.【解】 =AD·CD.解决问题:方法一:过点A作AM⊥BC于点M,延长AD到E,使得DE=AM,以AE为直径作半圆,过点D作AE的垂线,交半圆于点F,以DF为边作正方形DFGH,正方形DFGH即为所求.如图1-11-69.图1-11-69方法二:如图1-11-70,过点A作AM⊥BC于点M,过点D作DN⊥BC交BC延长线于点N,将平行四边形转化为等面积矩形后同小骏的画法.图1-11-70真题演练1.(2015·北京)如图1-11-71,在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.图1-11-71【证明】 (1)∵四边形ABCD为平行四边形,∴DC∥AB,即DF∥BE.又∵DF=BE,∴四边形DEBF为平行四边形.又∵DE⊥AB,即∠DEB=90°,∴四边形BFDE为矩形.(2)∵四边形BFDE为矩形,∴∠BFD=90°.∵∠BFC+∠BFD=180°,∴∠BFC=90°.在Rt△BFC中,∵CF=3,BF=4,∴BC===5.∴AD=BC=5.∵DF=5,∴AD=DF=5,∴∠DAF=∠DFA.∵∠DFA=∠FAB,∴∠DAF=∠FAB,即AF平分∠DAB.2.(2014·北京)如图1-11-72,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.图1-11-72(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB.∵AE平分∠BAD,∴∠FAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE.同理可得AF=AB.∴AF=BE.∵AD∥BC,∴四边形ABEF是平行四边形.又∵AB=BE,∴平行四边形ABEF是菱形.(2)【解】如图1-11-73,作PH⊥AD于H.图1-11-73∵四边形ABEF是菱形,∠ABC=60°,∴△ABE是等边三角形.∴∠PAH=60°,∴PA=AE=AB=2.在Rt△PAH中,PH=2sin 60°=,AH=2cos 60°=1,∴DH=AD-AH=6-1=5.∴ tan∠ADP==.3.(2013·北京)如图1-11-74,在ABCD中,F是AD的中点,延长BC到点E,使CE=BC,连接DE,CF.(1)求证:四边形CEDF是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE的长.图1-11-74(1)【证明】∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵F是AD的中点,∴FD=AD.∵CE=BC,∴FD=CE.∵FD∥CE,∴四边形CEDF是平行四边形.(2)【解】如图1-11-75,过点D作DG⊥CE于点G.图1-11-75∵四边形ABCD是平行四边形,∴AB∥CD,CD=AB=4,BC=AD=6.∴∠1=∠B=60°.在Rt△DGC中,∠DGC=90°,∴CG=CD·cos∠1=2,DG=CD·sin∠1=2.∵CE=BC=3,∴GE=1.在Rt△DGE中,∠DGE=90°,∴DE==.4.(2013·北京)如图1-11-76,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为 .图1-11-76【答案】 20。

复习课特殊的四边形说课课件

复习课特殊的四边形说课课件

敬请指教
六、教学过程 1 知识重温
【设计意图】提出这一问题意在让学生回顾一下 前面所学的有关平行四边形、菱形、矩形、正方形 的相关知识也让学生初步的感受到这几种特殊的 平行四边形之间存在的联系。
六、教学过程
【设计意图】动点题目一直是学生头疼的题目 也是教学的难点。其根本原因在于无法将静止 的图形与动态的图形之间建立起联系,通过课件 的展示形象的将点动、线动、图形动展示给学生 帮助学生建立动态发展的思维模式学生在观察 之后能够以动态的思想来解决动点问题容易得多。
六、教学过程
【设计意图】把学生头脑中的零散的知识系统化, 形成知识网络。
六、教学过程
依次连接四边形各边中点所得的四边形叫做中点四边形。
【设计意图】对于中点四边形规律的探索和归纳由 学生独立完成,学生在此过程中能够更加深刻的体 会特殊四边形的判定方法。突出本课重点,提高学 生的思维能力。
六、教学过程
特殊的四边形复习课(一)
盘锦市四完中马英欣
一、教材分析
1.说课内容:人教版数学八年级下册第十九章 四边形复习第一课时。 四边形和三角形一样是基本的平面 图形也是第三学段中第二领域——空 间与图形部分的重要组成部分,平行 四边形、菱形、矩形、正方形之间的 区别与联系对灵活的掌握及运用四边 形的知识起着重要的作用。
【设计意图】探究一、二、拓展一都是动点四 边形问题,而且难度是层层深入。此类问题是 中考中的热点问题,也是中考压轴题的常见类 型。此系列探究题即能使学生体会分类的思想, 又能提高学生思维的全面性。是本课的难点内 容。通过几何画板的动态演示,能使学生很快 地发现规律,归纳解题方法。
六、教学过程
课题小结Βιβλιοθήκη 二、学情分析授课对象是九年级的学生,经过初中 两年多的学习学生已经掌握了四边形的 基础知识, 但是对于四边形知识的综合 运用是学生的弱点,尤其是与四边形有关 的动点问题是学生已有知识体系中的 最薄弱的地方。

平行四边形复习课 优课教学课件

平行四边形复习课 优课教学课件

A x D 2x
E
3X
3x
B
C
B
C
如图,Rt△OAB的两条直角边在坐标轴上,已知
点A(0,2),点B(3,0),则以点O,A,B为其
中三个顶点的平行四边形的第四个顶点C的坐标
为 。 _________________
y
(-3,2)
3
2A
(3,2 )
O
B
7
-4 -3 -2 -1
12 34 x
-1
1
-2
证法2: 连接BD,交AC于点O ,连接DE,BF
∵四边形ABCD是平行四边形
BC=AD
∴BO=OD, AO=CO
∠1=∠2 CE=AF ∴ △BCE≌△DAF ∴BE=DF, ∠3=∠4 ∴BE∥DF
又∵AF=CE
∴AE=CF
∴EO=FO
∴四边形BEDF是平行四边形
∴ BE=DF, BE∥DF
课堂小结
5矩形、菱形、正方形都具有的性质是( B)
A、对角线相等
B、对角线互相平分
C、对角线互相垂直 D、四条边都相等
6.已知矩形的一条对角线与一边的夹角是40°,
则两条对角线所成的锐角的度数( D )
A、50° B、60° C、70° D、80°
7、 已知菱形ABCD的周长为20cm。∠A: ∠ABC=1:2 ,则对角线BD的长等于 _____5_____cm。
四边形知识结构(定义)图
两组对边平行
角90° 个 一
矩形
一 组 邻 边 相 等
四边 形
平行四边
一角为直角且一组邻边相等

正方形
一 组 邻 边 相 等
菱形

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)
F D
B
C
E
体验中考
1.(06常州)已知:如图,在四边形ABCD AO CO, 中,AC与BD相交与点O,AB∥CD, 求证:四边形ABCD是平行四边形.
A O B C D
体验中考
2.(06大连西岗)如图,ABCD中, AE⊥BD于E,CF⊥BD于F. 求证:AE = CF
A F E B D
典型例题
E 变式1:顺次连结矩形四边中点所得的四边形是菱形. D 变式2:顺次连结菱形四边中点所得的四边形是矩形. G H 变式3:顺次连结正方形四边中点所得的四边形 是正方形. B F 变式4:顺次连结等腰梯形四边中点所得的四边形 A 是菱形. 变式5:若AC=BD,AC⊥BD,则四边形EFGH是正方形. 变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、 BD、AC的中点,求证:EFGH是菱形. C 变式7:如图:在四边形ABCD中, M D E为边AB上的一点,△ADE和△ Q BCE都是等边三角形,P、Q、M、 N N分别是AB、BC、CD、DA边上 的中点,求证:四边形PQMN是菱形. B A E P
二、选择题: 1、若□ABCD的周长为28,△ABC的周长为17cm,则AC的长 为( ) A、11cm B、5.5cm C、4cm D、3cm 2、如图,□ABCD和□EAFC的顶点D、E、F、B在同一条直 线上,则下列关系中正确的是( ) C A、DE>BF B、DE=BF D C、DE<BF D、DE=FE=BF E F B
C
典型例题
例3 已知如图,在△ABC中,∠C=900,点M在BC上, 且BM=AC,点N在AC上,且AN=MC,AM和BN相交于 P,求∠BPM的度数.
分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中 的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN. 证明:过M作ME∥AN,且ME=AN,连结NE、BE,则四边形AMEN是平行四 边形,得NE=AM,ME∥AN,AC⊥BC ∴ME⊥BC在△BEM和△AMC中, ME=CM,∠EMB=∠MCA=900,BM=AC ∴△BEM≌△AMC A ∴BE=AM=NE,∠1=∠2, ∠3=∠4,∠1+∠3=90° 1 ∴∠2+∠4=90 ° ,且BE=NE N P ∴△BEN是等腰直角三角形 3 C B ∴∠BNE=45 ° ∵AM∥NE M ∴∠BPM=∠BNE =45 ° 2

中考数学总复习 第一部分 教材考点全解 第五章 四边形 第特殊的平行四边形课件

中考数学总复习 第一部分 教材考点全解 第五章 四边形 第特殊的平行四边形课件

点,连接DO并延长,交AB延长线于点E,连接BD,EC.
(1)求证:四边形BECD是平行四边形;
(2)若∠A=50°,则当∠BOD=
°时,四边形BECD
是矩形.
12/9/2021
第二十九页,共六十四页。
(1)证明:∵四边形ABCD是平行四边形, ∴AB∥DC, ∴∠OEB=∠ODC. 又∵O为BC的中点, ∴=. 在△BOE和△COD中,
【答案】 (1)BO,CO,OE,OD(方法不唯一) (2)∠BCD,∠BDC,OD,∠ODB(方法不唯一)
12/9/2021
第三十二页,共六十四页。
证明一个四边形是矩形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一个角是直角或者证明其对 角线相等;(2)直接证明四边形有三个角都是直角.注意不能将 两个判定方法相混淆.
12/9/2021
第二十四页,共六十四页。
命题(mìng 正方形的性质(xìngzhì)与判定(8年4考) tí)点3 7.(2017·河南 9 题)我们知道:四边形具有不稳定性.如图,
在平面直角坐标系中,边长为 2 的正方形 ABCD 的边 AB
在 x 轴上,AB 的中点是坐标原点 O.固定点 A,B,把正方
12/9/2021
第三十八页,共六十四页。
(2)∵四边形 ABCD 是菱形, ∴AB= . ∵△ADE≌△CDF, ∴AE= , ∴BE= , ∴∠BEF=∠BFE.
【答案】 (1)CD,∠C,∠CFD,∠CFD,∠C,CD (2)CB,CF,BF
12/9/2021
第三十九页,共六十四页。
证明一个四边形是菱形的常用方法有:(1)首先证明这个 四边形是平行四边形,再证明有一组邻边相等或者对角线互 相垂直;(2)直接证明四边形的四条边都相等.注意不能将两个 判定方法混淆.

《四边形》教案15篇

《四边形》教案15篇

《四边形》教案《四边形》教案15篇作为一名无私奉献的老师,常常要写一份优秀的教案,教案有助于顺利而有效地开展教学活动。

那要怎么写好教案呢?以下是小编收集整理的《四边形》教案,仅供参考,希望能够帮助到大家。

《四边形》教案1教学目标1、知识与技能:理解平行与垂直是同一平面内两条直线的两种特殊位置关系,初步认识平行线与垂线。

2、过程与方法:在观察、操作、比较、概括中,经历探究平行线和垂线特征的过程,建立平行与垂直的概念。

3、情感态度与价值观:在活动中丰富学生活动经验,培养学生的空间观念及空间想象能力。

教学重难点1、教学重点:正确理解“相交”“互相平行”“互相垂直”等概念。

2、教学难点:理解平行与垂直概念的本质特征。

教学工具多媒体设备教学过程一、情境导入,画图感知1.学生想象在无限大的平面上两条直线的位置关系。

教师:摸一摸平放在桌面上的白纸,你有什么感觉?(1)学生交流汇报。

(2)像这样很平的面,我们就称它为平面。

(板书:平面)我们可以把白纸的这个面作为平面的一部分,请大家在这个平面上任意画一条直线,说一说,你画的这条直线有什么特点?(3)闭上眼睛想一想:白纸所在的平面慢慢变大,变得无限大,在这个无限大的平面上,直线也跟着不断延长。

这时平面上又出现了另一条直线,这两条直线的位置关系是怎样的呢?会有哪几种不同的情况?2.学生画出同一平面内两条直线的各种位置关系。

把你想象的情况画在白纸上。

注意一张纸上只画一种情况,想到几种就画几种,相同类型的不画。

二、观察分类,感受特征1.展示作品。

教师:同学们想象力真丰富!相互看一看,你们的想法一样吗?老师选择了几幅有代表性的作品,我们一起来欣赏一下。

如果你画的和这几种情况不一样,可以补充到黑板上。

不管哪种情况,我们所画的两条直线都在同一张白纸上。

因为我们把白纸的面看作了一个平面,所以可以这样说,我们所画的两条直线都在同一平面。

(板书:同一平面)2.分类讨论。

教师:同学们的想象力可真丰富,画出来这么多种情况。

平行四边形复习课件

平行四边形复习课件

一组对边平行且相等的四边形是平行四边 形。
两组对角分别相等的四边形是平行四边形 。
02
平行四边形的特殊形式
矩形
01 定义
有一个角是直角的平行四边形是矩形。
02 性质
矩形的四个角都是直角,矩形的对角线相等。
03 判定
有一个角是直角的平行四边形是矩形;对角线相 等的平行四边形是矩形。
菱形
01 定义
矩形、菱形、正方形的判定方法与证明思路
正方形的判定方法与证明思路
正方形是特殊的长方形和菱形,其判 定方法有五种。
正方形的判定方法主要有五种,一是 有一组邻边相等且有一个角是直角的 平行四边形是正方形;二是有一个角 是直角的菱形是正方形;三是有一个 角是直角的矩形是正方形;四是有一 组邻边相等的矩形是正方形;五是有 一个角是直角的等腰梯形是正方形。 在证明过程中,需要结合已知条件, 通过全等三角形、平行线的性质等定 理进行证明。
2. 举例说明:例如,我们要证明四边形ABCD是平行 四边形,那么我们需要证明AB//CD且AB=CD。
总结词:如果一个四边形的一组对边平行且相 等,那么这个四边形是平行四边形。
1. 介绍利用一组对边平行且相等证明平行四边形 的方法:一组对边平行且相等的四边形是平行四 边形。
06
典型例题解析与拓展
矩形、菱形、正方形的判定方法与证明思路
01
菱形的判定方法与证明思路
02
菱形是平行四边形的一个特例,其判定方法有三种。
03
菱形的判定方法主要有三种,一是有一组邻边相等的平行 四边形是菱形;二是有一个角是直角的菱形是菱形;三是 有一组邻边相等的矩形是菱形。在证明过程中,需要结合 已知条件,通过全等三角形、平行线的性质等定理进行证 明。

平行四边形复习课教案

平行四边形复习课教案

《平行四边形》复习教案仁德一中妥连军一学习目标:1.知识目标:通过运用平行四边形、矩形、菱形、正方形的性质和判定解决问题,加深对平行四边形、矩形、菱形、正方形的性质和判定的理解.2.能力目标:(1)通过平行四边形、矩形、菱形、正方形性质和判定的归纳梳理,建立良好的思维体系.(2)通过探究平行四边形有关问题,建立模型,提高探究能力.3.情感目标:在学习过程中积累经验,体验成功,激发兴趣,发展创新精神和实践能力.二教学重点:平行四边形、矩形、菱形、正方形的性质和判定的灵活运用.三教学难点:综合运用平行四边形、矩形、菱形、正方形的性质和判定解决问题.四知识链接:平行四边形、矩形、菱形、正方形的性质和判定,三角形中位线定理.五课时安排:1课时六教学过程设计:昆明中考考情分析:1、考频及权重分析平行四边形在昆明市近五年的中考中,共考了9次。

其中市统测(2015,2016,2018)三年出现5次,省统测(2017,2019)两年出现4次。

分值在11-14分之间,所占比重为10%左右。

2、题型分析在填空题和选择题中主要考查平行四边形及特殊平行四边形的性质以及利用性质求长度、角度、三角函数值等计算;简答题中主要考查判定与计算,也常以平行四边形、特殊平行四边形为载体,考查全等、线段位置关系及圆的计算等。

在压轴题中以会出现平行四边形哦,主要考查平行四边形的存在性、探究性等问题。

【任务一】知识梳理(一)思维导图回顾平行四边的性质判定:(二)平行四边形及特殊平行四边形的性质(三)平行四边形及特殊平行四边形的判定【任务二】条件探索如图,在△ABC中,D、E、F分别是BC、AB、AC的中点,(1)猜想四边形AEDF是什么四边形,并证明你的结论.(2)当△ABC的边和角满足什么条件时,四边形AEDF是矩形?(3)当△ABC的边和角满足什么条件时,四边形AEDF是菱形?(4)当△ABC的边和角满足什么条件时,四边形AEDF是正方形?教学策略:学生看、说、展示思维,构建模型,教师展示规范答题格式。

人教版三年级上册数学第七单元 复习 四边形 课件

人教版三年级上册数学第七单元 复习 四边形 课件
两副同样的三角尺,分别拼成一个长方形和一个 正方形。




用两副同样的三角尺,分别拼成一个长方形和一个 正方形。
两两副副两可同三副能样角同拼的尺样成三一的一角定三个尺能角正一拼尺方定成可形能一能 。拼个拼成长成一方一个形个长。长方方形形。,也
周长
封闭图形一周的长度,是它的周长。
思考2:要算正方形的边长 知道些什么条件?你能算吗?
探究1.用16厘米的铁丝围成一个长是5 厘米的长方形,问宽是多少厘米?
5厘米
16-5-5=6(厘米) 6÷2=3(厘米)
5厘米
探究1.用16厘米的铁丝围成一个宽是3 厘米的长方形,问长是多少厘米?
16-3-3=10(厘米)
3厘米
3厘米
10÷2=5(厘米)
正方方形形5的+的5周+边5长+长5==边是2长多0(+少边厘。长米+)边长+边长
5正×方4形= 的20周(长厘=米边)长×4
长+长+宽+宽
长+宽+长+宽
长×2+宽×2
(长+宽)×2
你认为哪一种计算方法更简便?
思考1:算长方形的长, 要知道些什么条件?你能算吗? 算长方形的宽, 要知道些什么条件?你能算吗?
我们用到了哪些工具可以得到周长? 软尺 绳子 化曲为直 直尺、三角尺
组合图形的周长
沿着这个组合图形边缘一周的长度。
下面每组图形的周长一样吗?你是怎样想的?
一样
平移 不一样
.下图的长方形纸片被分成了两个部分,哪个部分的 周长长?
一样长
6 厘长米
4 厘宽米
长思方考形:和正要方算形长的方周形长的周长 必须6 厘要米知道4 厘些米什么6 厘条米件?4 厘米

北师大版四年级下册数学《三角形边的关系》认识三角形和四边形说课教学复习课件

北师大版四年级下册数学《三角形边的关系》认识三角形和四边形说课教学复习课件

3. 用同样长的小棒摆一摆,完成下表。
(1)3 根小棒能否摆成一个三角形?它是什么三角形? (2)4 根小棒能否摆成一个三角形?5 根、6 根呢?
小棒根数 能摆成三角形吗
是什么三角形
3
能 等边
4 56
不能 能 能 等腰 等边
4. 如果三角形的两条边的长分别是 5 厘米和 8 厘米, 那么第三条边的长可能是几厘米?写出两种答案。
(1) 5
3
6
3+6>5 3+5>6 5+6>3
(2) 4
3
6
3+4>6 3+6>4 4+6>3
三角形任意两边之和大于第三边。
课堂练习
1. 在能摆成三角形的小棒下面画“√”。(单位:厘米)


2. 从下面 5 根小棒中任意取出 3 根,摆出两种不同的 三角形。(单位:厘米)
等边三角形 钝角三角形
2.(重点题)填一填。
(1)用竖式计算小数加减法时,要先 把( 小数点 )对齐,然后按照 ( 整数 )加减法的计算方法计算。
(2)两个加数的和是26.75,一个加数
3.(易错题)判断,对的在( )里打“√”,
错的打“✕”,并改正。
(1) 4.12 + 12.3 53.5
(✕)
改正:
4.12 + 12.3
买菜
学习新知
售估货一员估收:了大3.约66要元付,多对少吗元??画一画,算一算,说一说。
1.25+2.41=3.66(元)
十百 个 分分
1
1元+2元=3元
位 位位
1.25
2
售货员收了3.66元,对吗?画一画,算一算,说一说。

初中数学四边形复习教案

初中数学四边形复习教案

初中数学四边形复习教案1. 知识与技能目标:使学生掌握四边形的定义和性质,能够识别和判断各种四边形,了解四边形在实际生活中的应用,提高学生的空间想象能力和抽象思维能力。

2. 过程与方法目标:通过观察、操作、猜想、验证等数学活动,培养学生的探究能力和合作能力,使学生在解决实际问题中能够灵活运用四边形的性质。

3. 情感、态度与价值观目标:学生在学习过程中能够积极参与,勇于尝试,体验数学学习的乐趣,增强自信心,培养克服困难的勇气和信心。

二、教学内容1. 四边形的定义和性质2. 四边形的分类和特点3. 四边形在实际生活中的应用三、教学重点与难点1. 教学重点:四边形的定义和性质,四边形的分类和特点。

2. 教学难点:四边形性质的探究和应用。

四、教学过程1. 导入新课通过展示一些生活中的四边形物体,如梯子、窗户、自行车等,引导学生关注四边形,激发学生学习四边形的兴趣。

然后提出问题:“你们知道四边形有哪些性质吗?”从而导入新课。

2. 探究四边形的性质(1)小组合作,观察探究将学生分成若干小组,每组发一些四边形的图片,让学生观察四边形的特点,探讨四边形的性质。

(2)汇报交流各小组汇报探究成果,教师引导学生总结四边形的性质,如对边相等、对角相等、对边平行等。

3. 四边形的分类和特点(1)长方形、正方形、梯形的定义和性质引导学生了解长方形、正方形、梯形是特殊的四边形,掌握它们的定义和性质。

(2)四边形的分类根据四边形的性质,引导学生对四边形进行分类,了解各种四边形的特点。

4. 四边形在实际生活中的应用通过一些实际问题,让学生运用四边形的性质解决问题,提高学生运用数学知识解决实际问题的能力。

5. 总结与反思本节课我们学习了四边形的定义、性质和分类,以及四边形在实际生活中的应用。

请大家回顾一下,我们是如何得出四边形的性质的?这个过程中,我们运用了哪些数学方法?通过这个问题,引导学生总结本节课的学习内容,提高学生的反思能力。

《四边形》复习课件

《四边形》复习课件

特殊四边形的面积与周长计算
菱形面积计算公式:对角线 乘积的一半
总结词:理解特殊四边形的 特点,掌握其面积与周长的
计算方法
01
02
03
正方形面积计算公式:边长 的平方
等腰梯形面积计算公式:上 底加下底后乘高再除以2
04
05
等边三角形面积计算公式: 边长乘高再除以2
04
四边形的应用
四边形在几何证明中的应用
04 菱形的判定定理包括四边相等
的平行四边形、对角线垂直的 平行四边形等。
总结词
掌握面积和周长的计算
05
详细描述
06 掌握菱形的面积和周长的计算
公式,并能灵活运用。
正方形题型解析
总结词
理解特有性质
详细描述
正方形的性质包括四边相等、四 个角都是直角等。
总结词
掌握判定定理
详细描述
掌握正方形的面积和周长的计算 公式,并能灵活运用。
总结词
熟练运用判定定理
详细描述
掌握平行四边形的判定定理,如两组 对边分别平行、两组对边分别相等、 一组对边平行且相等等。
总结词
掌握面积和周长的计算
详细描述
掌握平行四边形的面积和周长的计 算公式,并能灵活运用。
矩形题型解析
总结词
理解特有性质
详细描述
矩形的性质包括四个角都是直角、对角线相等 且互相平分等。
平行四边形的性质和判定
利用平行四边形的性质和判定定理, 可以证明两条直线是否平行或一个四 边形是否为平行四边形。
矩形的性质和判定
矩形的性质和判定定理在证明直角三 角形和等腰三角形等问题中有着广泛 应用。
菱形的性质和判定
菱形的性质和判定定理在证明等腰三 角形和等边三角形等问题中有着广泛 应用。

八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)

八下第六章《特殊平行四边形复习课》ppt课件-(共42张PPT)-(1)

的有 _______________________(组合序号)
4.若平行四边形一边长为8cm,一条对角线长为6cm,则另一条
对角线长X的取值范围是_____________
5.M为□ABCD 的边AD上一点,若▲MBC的面积为8cm2,□ABCD
的面积为_______
A
D
6.如图,□ABCD中,AE⊥BC,AF⊥CD,E,
(1)求证:EO=FO (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论.
A
M E
B
O FN
D C
(1)证明 ∵ CE 平分∠ ACB ∴ ∠ ACE= ∠ ECB ∵ MN // BC ∴ ∠ ECB= ∠ OEC ∴ ∠ OEC= ∠ ECO ∴ OE=OC
同理OF=OC ∴ OE=OF
A、对角相等
B、对角线相 C、对边相等 D、对角线互相平分
2、菱形有而一般的平行四边形不具有的性质是( )
A、对角相等 B、对角线互相平分C、对边平行且相等 D、对角线互相垂直
3.下列性质中,平行四边形不一定具备的是( )
(A)对角相等
(B)邻角互补 (C )对角互补
(D)内角和是360°
(4).下面判定四边形是平行四边形的方法中,错误的是( )。
(B)两条对角线互相平分。
(C )两条对角线互相垂直。 (D)一对邻角的和为180°。
5.不能判定四边形ABCD是平行四边形的条件是( ) (A) AB =CD, AD =BC。(B) BC // AD。 (C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。
1、矩形具有而一般的平行四边形不具有的性质是( )
O

四边形的复习教案

四边形的复习教案

四边形的复习教案一、教学目标1. 知识与技能:理解和掌握四边形的定义、分类及性质;能够识别和判断各种四边形;2. 过程与方法:通过观察、操作、推理等活动,提高学生分析问题和解决问题的能力;3. 情感态度与价值观:培养学生对几何图形的兴趣,培养学生的团队合作精神。

二、教学内容1. 四边形的定义及性质2. 四边形的分类3. 平行四边形的性质4. 梯形的性质5. 矩形、菱形、正方形的性质三、教学重点与难点1. 教学重点:四边形的定义、分类及性质;2. 教学难点:平行四边形的判定与性质,梯形的判定与性质,矩形、菱形、正方形的性质。

四、教学方法1. 采用问题驱动法,引导学生主动探究四边形的性质;2. 利用几何画板或实物模型,直观展示四边形的特征;3. 采用小组合作学习,培养学生团队合作精神。

五、教学过程1. 导入新课:回顾四边形的定义及性质,引导学生思考四边形的应用;2. 自主学习:学生自主探究四边形的分类,了解各种四边形的特征;3. 课堂讲解:讲解平行四边形的性质,举例说明其在实际中的应用;4. 练习巩固:学生独立完成相关练习题,巩固所学知识;5. 课堂小结:总结本节课所学内容,强调四边形的重要性质;6. 课后作业:布置适量作业,巩固所学知识。

教案仅供参考,具体实施可根据学生实际情况进行调整。

六、教学评价1. 评价方式:采用课堂问答、练习题、小组讨论等多种方式进行评价;2. 评价内容:学生对四边形的定义、分类及性质的理解和运用能力;3. 评价标准:能准确判断四边形类型,熟练运用四边形性质解决问题。

七、教学准备1. 教学课件:制作四边形复习课件,包括四边形的定义、分类、性质等内容;2. 教学素材:准备相关练习题、几何画板、实物模型等;3. 教学场地:教室。

八、教学进度安排1. 第1周:复习四边形的定义及性质;2. 第2周:学习四边形的分类;3. 第3周:讲解平行四边形的性质;4. 第4周:学习梯形的性质;5. 第5周:讲解矩形、菱形、正方形的性质。

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案

二年级苏教版数学上册《四边形、五边形、六边形的认识》教案一. 教材分析《四边形、五边形、六边形的认识》这一课是二年级苏教版数学上册的教学内容。

本节课主要让学生认识四边形、五边形、六边形,了解它们的特征,能够区分不同类型的多边形,并为后续学习多边形的面积、周长等知识打下基础。

二. 学情分析二年级的学生已经学习了平面图形的认识,对三角形、四边形有一定的了解。

但是,对于五边形、六边形,学生可能还比较陌生。

因此,在教学过程中,需要通过生活中的实例,让学生感受五边形、六边形,并引导学生通过观察、操作、比较等方法,发现五边形、六边形的特征。

三. 教学目标1.让学生认识四边形、五边形、六边形,了解它们的特征。

2.能够区分不同类型的多边形。

3.通过观察、操作等方法,培养学生的空间观念和观察能力。

四. 教学重难点1.重难点:认识四边形、五边形、六边形,了解它们的特征。

2.难点:能够区分不同类型的多边形。

五. 教学方法采用情境教学法、观察操作法、对比教学法等多种教学方法,引导学生通过观察、操作、比较等方法,发现五边形、六边形的特征。

六. 教学准备1.准备一些四边形、五边形、六边形的图片,和生活用品,如绳子、剪刀等。

2.制作课件,展示四边形、五边形、六边形的特征。

七. 教学过程1.导入(5分钟)通过课件展示四边形、五边形、六边形的图片,让学生初步认识这些图形。

引导学生观察这些图形的特点,引出本节课的主题。

2.呈现(10分钟)教师展示一些生活中的实物,如绳子、剪刀等,让学生找出四边形、五边形、六边形。

学生通过观察、操作,找出这些图形,并观察它们的特征。

3.操练(10分钟)教师发放一些五边形、六边形的卡片,让学生两两组合,尝试找出相同的多边形。

然后,教师邀请几名学生上台,展示他们的组合结果,并解释为什么这些多边形是相同的。

4.巩固(10分钟)教师出示一些四边形、五边形、六边形的图片,让学生判断它们属于哪种类型的多边形。

学生通过观察,判断出这些多边形的类型,并说出判断的理由。

中招复习数学四边形公开课一等奖课件省赛课获奖课件

中招复习数学四边形公开课一等奖课件省赛课获奖课件
线 AC 上的两点,且 BE⊥AC,DF⊥AC. (1)求证:△ABE≌△CDF; (2)请写出图中除△ABE≌△CDF 外其余两对全等三角
形(不再添加辅助线).
图 25-1
第25学时┃ 课堂热身
[解析] 根据平行四边形对边平行,对边相等得出证 明三角形全等的条件.
解:(1)证明:∵四边形 ABCD 是平行四边形, ∴AB=CD,AB∥CD. ∴∠BAE=∠FCD, 又∵BE⊥AC,DF⊥AC, ∴∠AEB=∠CFD=90°, ∴△ABE≌△CDF(AAS). (2)①△ABC≌△CDA;②△BCE≌△DAF.
第25学时┃ 豫考探究
1.平行四边形的性质的应用,主要是利用平行四边形的 边与边,角与角及对角线之间的特殊关系进行证明或计算.
2.判别一个四边形是不是平行四边形,要根据具体条件 灵活选择判别方法.凡是可以用平行四边形知识证明的问题, 不要再回到用三角形全等证明,应直接运用平行四边形的性质 和判定去解决问题.
(1)若 CE=1,求 BC 的长; (2)求证:AM=DF+ME.
图26-2
(1)请直接写出图中所有的等腰三角形(不添加字母); (2)求证:△AB′O≌△CDO.
图 25-3
第25学时┃ 豫考探究
[解析] 由折叠和平行四边形的性质判断图中的等 腰三角形.
解:(1)△ABB′,△AOC 和△BB′C. (2)证明:在▱ABCD 中,AB=DC,∠ABC=∠D. 由轴对称知 AB′=AB,∠ABC=∠AB′C. ∴AB′=CD,∠AB′O=∠D. 在△AB′O 和△CDO 中,
考点2 平面图形的镶嵌
定义
平面镶嵌 的条件
防错 提醒
用 __形__状__ 、 _大___小__ 完 全 相 同 的 一 种 或 几 种 _平__面__图__形__进行拼接,彼此之间不留空隙、不 重叠地铺成一片,就是平面图形的_镶__嵌___

人教版四年级数学上册 平行四边形个梯形的复习 复习教学设计集体备课定稿

人教版四年级数学上册 平行四边形个梯形的复习 复习教学设计集体备课定稿

人教版四年级数学上册平行四边形个梯形的复习复习教学设
计集体备课定稿
一、教学目标:
1. 回顾平行四边形和梯形的定义和特征。

2. 能够识别和绘制平行四边形和梯形,能够判断图形是否为平行四边形或梯形。

3. 理解平行四边形和梯形的相似性和不同性,掌握它们的面积计算方法。

二、教学内容:
1. 平行四边形的定义和特征
2. 梯形的定义和特征
3. 平行四边形和梯形的相似性和不同性
4. 平行四边形和梯形的面积计算方法
三、教学过程:
1. 复习引入
复习前一个学期所学的知识点:平行四边形和梯形的定义和特征。

通过图形展示,引导学生回忆并表述平行四边形和梯形的
定义和特征。

2. 概念理解
(1)平行四边形和梯形的相似性和不同性
比较平行四边形和梯形的特征,引导学生发现它们的相似性和不同性,并让学生运用图形进行比较。

(2)平行四边形和梯形的面积计算方法
通过直观的图形演示,引导学生掌握平行四边形和梯形的面积计算方法。

3. 练习巩固
通过给出一些实际问题,让学生运用所学的知识和技能计算面积和解决问题。

4. 总结回顾
让学生对本课所学的知识进行总结和回顾,检查学生对所学知识的理解和掌握程度。

四、教学时长:
本节课预计为1学时(40分钟)。

五、教学评估:
通过作业和课堂练习考查学生掌握程度,及时调整教学策略,提高教学效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《四边形》复习课
1.知道第十九章四边形的知识结构图,知道特殊四边形的性质和判定方法表.
2.通过基本训练,巩固第十九章所学的基本内容.
3.通过典型例题的学习和综合运用,加深理解第十九章所学的基本内容,发展能力. 重点:知识结构图、性质和判定方法表、基本训练. 难点:典型例题和综合运用. 一、
归纳总结,完善认知
等腰梯形两腰相等
梯形
另一组对边不平行
一组对边平行
四边形
正方形
菱形
一组邻边相等
矩形
一个角是直角
平行四边形
两组对边分别平行
二、
1.本章学的是什么?
2.两组对边分别平行的四边形是什么图形?
3.一组对边平行另一组对边不平行的四边形是什么图形?
4.有一个角是直角的平行四边形是什么图形?
5.有一组邻边相等的平行四边形是什么图形?
6.既是矩形又是菱形的四边形是什么图形?
7.什么样的特殊梯形?

判断正误:对的画“√”,错的画“×”.
(1)平行四边形邻角互补. ( ) (2)一组对边平行,另一组对边相等的四边形是平行四边形. ( ) (3)对角线垂直且相等的四边形是平行四边形. ( ) (4)邻角相等的平行四边形是矩形. ( )
(5)如果直角三角形一条直角边等于斜边的一半,那么这条直角边所对的角等于30°. ( )
(6)菱形的面积等于两条对角线的乘积. ( ) (7)对角线互相垂直的矩形是正方形. ( ) (8)对角线相等的菱形是正方形. ( ) (9)有一组对边平行的四边形是梯形. ( ) (10)等腰梯形的对角线互相平分. ( ) (11)平行四边形是轴对称图形. ( ) (12)矩形、菱形、正方形、等腰梯形都是轴对称图形. ( )
(一)基础知识探究 填空:
特殊四边形的性质
矩形 特殊四边形的判定方法

(二)知识综合应用探究
探究点 特殊四边形的性质和判定运用
[例习题分析]
例1 填空:在四边形ABCD 中,
(1)如果∠A:∠B:∠C:∠D=5:1:5:1,那么四边形ABCD 的形状是 ; (2)如果∠A:∠B:∠C:∠D=1:2:4:5,那么四边形ABCD 的形状是 ; (3)如果∠A:∠B:∠C:∠D=2:7:7:2,那么四边形ABCD 的形状是 ; (4)如果∠A:∠B:∠C:∠D=3:5:5:7,那么四边形ABCD 的形状是 .
例2 已知:如图,四边形ABCD 是平行四边形,BE ∥DF ,且分别交对角线AC 于点E ,F ,连结ED ,BF. 求证:∠1=∠2.
4
32
1
D C
B A
E F
例3 如图,ABCD 是一个正方形花园,E ,F 是它的两个门,且DE=CF ,要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?
四、填空:
(1)
ABCD 中,AB+BC=15,则 ABCD = . (2)中,∠A:∠B=2:1,则∠C= °.
(3) ABCD 中,AB=5,AC=8,BD=12,AC 与BD 相交于点O ,则△OCD 的周长= .
(4)如图,在 ABCD 中,AC 与BD 相交于点O ,S △BOC =2, 则S △AOB = ,
S △AOD = ,
S ABCD = . (5)D ,E ,F 分别是△ABC 三边的中点,△ABC 的周长为16,面积为8,
则△DEF 的周长= ,△DEF 的面积= .
课后训练
1.如图,在矩形ABCD 中,OB=1,∠ACD=30°,则A D= ,DC= .
2..如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠AEB= .
3..如图,在直角梯形ABCD 中,∠B=90°,∠C=30°,DC=4,则BC -AD= .
4.已知:如图,在 ABCD 中,AE ⊥BC ,AF ⊥CD ,∠EAF=45°, 求∠B 的度数.
O A B D
C
A B
C F E
D
O D C
B A E A B
C D
A B C D F
A B
C D
E O A B D E F
5.如图,在△ABC中,D,E,F是各边的中点,四边形DBFE的周长为10,EC=2,求△A BC的周长.
6.已知:如图,E是矩形ABCD中BC边上的一点,且有AE=BC,
DF⊥AE. 求证:DF=DC.
7.如图,在等腰梯形ABCD中,AD∥BC,AB=DC,∠1=∠2,∠C=60°,
BC=6,求等腰梯形ABCD的周长.
A
B C
D E
A
B C
D
2
1
③定义。

具有平行四边形、矩形、菱的矩个角是直。

相关文档
最新文档