峁诗松的概率统计 第二章
《概率论与数理统计》第二章基础知识小结 2
第二章、基础知识小结一、 离散型分布变量分布函数及其分布律 1. 定义:),3,2,1(}{ ===i p x X P i i2.分布律}{k p 的性质: (1);,2,1,0 =≥k p k (2)11=∑∞=k k p3.离散型随机变量的分布函数:∑≤=≤=xx kk px X P x F }{)(4.分布函数F (X )的性质: (1)1)(0≤≤x F(2))(x F 是不减函数,0)()(}{1221≥-=≤<x F x F x X x P (3)1)(,0)(=+∞=-∞F F ,即1)(lim ,0)(lim ==+∞→-∞→x f x f x x(4))(x F 右连续,即)()(lim )0(0x F x x F x F x =∆+=+→∆(5))()(}{}{}{a F b F a X P b X P b X a P -=≤-≤=≤<)(1}{1}{a F a X P a X P -=≤-=>5.三种常见的离散型随机变量的概率分布(1)0-1分布(),1(~p B X )(2)二项分布(),(~p n B X )n k q p C k X P p kn k k n k ,,2,1,0,}{ ====-(3)泊松分布()(~λP X ),,,2,1,0,!}{n k e k k X P p kk ====-λλ二、连续型随机变量分布函数及其概率密度 1.连续型随机变量的分布函数即概率密度定义:dt t f x X P x F x ⎰∞-=<=)(}{)(其中,)(x F 为X 的分布函数,)(x f 为X 的概率密度。
2.概率密度的性质 (1)0)(≥x f (2)1)(=⎰+∞∞-dx x f(3)dx x f a F b F b X a P ba⎰=-=≤<)()()(}{ (43.三种常见的连续型随机变量 (1)均匀分布(),(~b a U X )⎪⎩⎪⎨⎧≤≤-=其他,0,1)(b x a a b x f(2)指数分布()(~λE X )⎩⎨⎧≤>=-0,00,)(x x e x f x λλ (3)正态分布(),(~2σμN X )+∞<<-∞=--x ex f x ,21)(222)(σμσπ(4)标准正态分布()1,0(~N X )及其性质+∞<<-∞=-x ex f x ,21)(22π性质:A.)(1)(x x ΦΦ-=-B.21)0(=Φ(5)非标准正态分布标准化 设),(~2σμN X ,则三、随机变量函数的概率分布 1.离散型随机变量函数的概率分布 设离散型随机变量X 的分布律为:X 1x 2x3x …k x …P1p 2p 3p … k p …则X的函数)(X g Y =的分布律为:X )(1x g)(2x g )(3x g…)(k x g …P1p 2p 3p … k p …2.连续型随机变量函数的分布设X 的连续型随机变量,其概率密度为)(x f X 。
概率论与数理统计(茆诗松)第二章讲义(PDF)
第二章 随机变量及其分布上一章研究内容: 事件(集合A )→ 概率(数).本章将用函数研究概率,函数是数与数的关系,即需要用数反映事件——随机变量.事件(数)→ 概率(数).§2.1 随机变量及其分布2.1.1.随机变量的概念随机试验的样本点有些是定量的:如掷骰子掷出的点数,电子元件使用寿命的小时数.有些是定性的:如掷硬币正面或反面,检查产品合格或不合格.对于定性的结果也可以规定其数量性质:如掷硬币,正面记为1,反面记为0;检查产品,合格记为1,不合格记为0.随机试验中,可将每一个样本点ω 都对应于一个实数X (ω),称为随机变量(Random Variable ),常用大写英文字母X , Y , Z 等表示随机变量,而随机变量的具体取值通常记为小写英文字母x , y , z .对于随机变量首先应掌握它的全部可能取值:如掷硬币,⎩⎨⎧=反面正面,0,1X ,X 的全部可能取值为0, 1;掷两枚骰子,X 表示掷出的点数之和,X 的全部可能取值为2, 3, 4, … , 12 ;观察某商店一小时内的进店人数X ,X 的全部可能取值为0, 1, 2, … ;电子元件使用寿命,用X 表示使用的小时数,X 的全部可能取值为 ),0[∞+; 一场足球比赛(90分钟),用X 表示首次进球时间(分钟),若为0:0,记X = 100,X 的全部可能取值为 (0, 90 )∪{100};注意:1. 每个样本点都必须对应于一个实数,2.不同样本点可以对应于同一个实数,3.随机变量的每一取值或取值范围都表示一个事件.应掌握将随机变量的取值或取值范围描述为事件,又能将事件用随机变量表达的方法. 例 掷一枚骰子,用X 表示出现的点数,则 X = 1表示出现1点;X > 4表示点数大于4,即出现5点或6点;X ≤ 0为不可能事件.又出现奇数点,即X = 1, 3, 5;点数不超过3,即X ≤ 3. 例 X 表示商店一天中某商品的销售件数(顾客的需求件数), 则 X = 0表示没有销售;X ≤ 10表示销售不超过10件.又销售5件以上(不含5件)即X > 5;若该商店准备了a 件该商品,事件“能满足顾客需要”,即X ≤ a . 例 X 表示一只电子元件的使用寿命(小时), 则 X = 1000表示该元件恰好使用了1000小时,X ≥ 800表示该元件使用寿命在800小时以上. 例 90分钟足球比赛,X 表示首次进球时间(分钟),且0:0时,记X = 100, 则 X = 10表示上半场第10分钟首次进球.又上半场不进球即X > 45;开场1分钟内进球即X ≤ 1.如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.(注:可列个即可以排成一列,一个一个往下数,如非负整数0, 1, 2, 3, … )离散型随机变量的全部可能取值是实数轴上一些离散的点,而连续型随机变量的全部可能取值是实数轴上一个区间或多个区间的并,如电子元件使用寿命X (小时),全部可能取值是),0[∞+.下面按离散型和连续型分别进行讨论.2.1.2. 离散随机变量的概率分布列对于随机变量还应该掌握它的每一取值或取值范围表示事件的概率.定义 如果随机变量X 的全部可能取值是有限个或可列个,则称为离散型随机变量.设离散型随机变量X 的全部可能取值为x 1, x 2, …, x k , …,则X 取值x k 的概率p k = p (x k ) = P {X = x k }, k = 1, 2, …… 称为离散型随机变量的概率分布函数(Probability Distribution Function ,PDF ),简称概率分布或概率函数.直观上,又写为L LLL)()()(2121k kx p x p x p Px x x X 或 ⎟⎟⎠⎞⎜⎜⎝⎛L L L L)()()(~2121k k x p x p x p x x x X , 称为X 的概率分布列.如掷一枚骰子,X 表示出现的点数,X 的分布列为616161616161654321PX . 概率函数基本性质:(1)非负性 p (x k ) ≥ 0 , k = 1, 2, ……; (2)正则性1)(1=∑∞=k kxp .这是因为事件X = x 1 , X = x 2 , … , X = x k , … 是一个完备事件组, 故P {X = x 1} + P {X = x 2} + … + P {X = x k } + … = P (Ω) = 1,即p (x 1) + p (x 2) + … + p (x k ) + … = 1. 例 设盒中有2个红球3个白球,从中任取3球,以X 表示取得的红球数.求X 的分布列. 解:X 的全部可能取值0, 1, 2 ,样本点总数为1035=⎟⎟⎠⎞⎜⎜⎝⎛=n ,X = 0表示“取到3个白球”,所含样本点个数为1330=⎟⎟⎠⎞⎜⎜⎝⎛=k ,有1.0101)0(==p , X = 1表示“取到1个红球2个白球”,所含样本点个数为612231=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有6.0106)1(==p , X = 2表示“取到2个红球1个白球”,所含样本点个数为322132=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=k ,有3.0103)2(==p . 故X 的分布列为3.06.01.0210P X.求离散型随机变量X 的概率分布步骤: (1)找出X 的全部可能取值,(2)将X 的每一取值表示为事件, (3)求出X 的每一取值的概率.例 现有10件产品,其中有3件不合格.若不放回抽取,每次取一件,直到取得合格品为止.用X 表示抽取次数,求X 的概率分布. 解:X 的全部可能取值1, 2, 3, 4 ,X = 1表示“第1次就取得合格品”,有107)1(=p , X = 2表示“第2次取得合格品且第1次是不合格品”,有30797103)2(=⋅=p , X = 3表示“第3次取得合格品且前两次是不合格品”,有12078792103)3(=⋅⋅=p , X = 4表示“第4次取得合格品且前三次是不合格品”,有1201778192103)4(=⋅⋅⋅=p , 故X 的分布列为120112073071074321PX . 例 上例若改为有放回地抽取,又如何? 解:X 的全部可能取值1 , 2 , … , n , … ,7.0107)1(==p ,21.0107103)2(=⋅=p ,7.03.0)3(2×=p ,…,7.03.0)(1×=−k k p ,…, 故X 的概率函数为L ,2,1,7.03.0)(1=×=−k k p k ;X 的分布列为LL L L 7.03.07.03.021.07.032112××−k PkX .例 若离散型随机变量的概率函数为kCk p =)(,k = 1, 2, 3, 4,且C 为常数. 求:(1)C 的值,(2)P {X = 3},(3)P {X < 3}.解:(1)由正则性知:1432)4()3()2()1(=+++=+++CC C C p p p p ,即11225=C ,故2512=C .(2)254)3(}3{===p X P , (3)25182562512)2()1(}3{=+=+=<p p X P . 2.1.3.随机变量的分布函数连续型随机变量在单个点取值概率为零,如电子元件使用寿命恰好为1000小时这个事件的概率就等于零,因此连续型随机变量不能考虑概率函数.为了用单独一个变量表示一个区间,特别地取区间 (−∞, x ].定义 随机变量X 与任意实数x ,称F (x ) = P {X ≤ x },−∞ < x < +∞为X 的累积分布函数(Cumulative Distribution Function ,CDF ),简称分布函数.P {a < X ≤ b } = P {X ≤ b } − P {X ≤ a } = F (b ) − F (a ),P {X > a } = 1 − P {X ≤ a } = 1 − F (a ),由概率的连续性知)0()(lim }{lim }{−==≤=<−−→→a F x F x X P a X P ax ax ,且P {X = a } = P {X ≤ a } − P {X < a } = F (a ) − F (a – 0),可见X 在任一区间上或任一点取值的概率都可用分布函数表示. 例 已知随机变量X 的分布列为3.05.02.0210PX ,求X 的分布函数.解:X 的全部可能取值为0, 1, 2,当x < 0时,F (x ) = P {X ≤ x } = P (∅) = 0, 当0 ≤ x < 1时,F (x ) = P {X ≤ x } = p (0) = 0.2,当1 ≤ x < 2时,F (x ) = P {X ≤ x } = p (0) + p (1) = 0.7, 当x ≥ 2时,F (x ) = P {X ≤ x } = P (Ω ) = 1,故⎪⎪⎩⎪⎪⎨⎧≥<≤<≤<=.2,1,21,7.0,10,2.0,0,0)(x x x x x F若离散型随机变量的全部可能取值为x 1, x 2, ……,概率函数p (x k ) = p k ,k = 1, 2, ……,则分布函数∑≤=≤=xx kk xp x X P x F )(}{)(.且离散型随机变量的分布函数F (x )是单调不减的阶梯形函数,X 的每一可能取值x k 是F (x )的跳跃点,跳跃高度是相应概率p (x k ).例 已知某离散型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤−−<=,5,1,52,6.0,20,4.0,01,3.01,0)(x x x x x x F 求X 的分布列. 解:X 的全部可能取值是F (x )的跳跃点,即 −1, 0, 2, 5,跳跃高度依次为:p (−1) = 0.3 − 0 = 0.3; p (0) = 0.4 − 0.3 = 0.1; p (2) = 0.6 − 0.4 = 0.2; p (5) = 1 − 0.6 = 0.4.故X 的分布列为4.02.01.03.05201PX −.分布函数的基本性质:(1)单调性,F (x ) 单调不减,即x 1 < x 2时,F (x 1) ≤ F (x 2); (2)正则性,F (−∞) = 0,F (+∞) = 1;(3)连续性,F (x ) 右连续,即)()(lim 00x F x F x x =+→. 证:(1)当x 1 < x 2时,{X ≤ x 1} ⊂ {X ≤ x 2},有F (x 1) ≤ F (x 2);(2)F (−∞) = P {X < −∞} = P (∅) = 0,F (+∞) = P {X < +∞} = P (Ω ) = 1;(3)任取单调下降且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n ≤=≤=≤∞=∞→I ,根据概率的连续性知}{}{}{lim 01x X P x X P x X P n n n n ≤=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→I ,即)()(lim 00x F x F x x =+→. 但F (x )不一定左连续,任取单调增加且趋于x 0的数列{x n },有}{}{}{lim 01x X x X x X n n n n <=≤=≤∞=∞→U ,得}{}{}{lim 01x X P x X P x X P n n n n <=⎟⎟⎠⎞⎜⎜⎝⎛≤=≤∞=∞→U , 故}{)(}{)(lim 0000x X P x F x X P x F x x =−=<=−→.2.1.4. 连续随机变量的概率密度函数离散型随机变量的全部可能取值是有限或可列个点,连续型随机变量的全部可能取值是实数区间.但连续型随机变量在单独一个点取值的概率为0,其概率函数无实际意义,对于连续随机变量通常考虑其在某个区间上取值的概率,这就需要讨论分布函数.连续型随机变量的分布函数是连续函数. 注意:概率为0的事件不一定是不可能事件.定义 随机变量X 的分布函数F (x ),若存在函数p (x ),使 ∫∞−=xdu u p x F )()(,则称X 为连续型随机变量,p(x )为X 的概率密度函数(可以理解为:p (u )为概率密度,p (u )du 为X 在该小区间内取值的概率,∫∞−x 为从−∞ 到x 无限求和.几何意义:在平面上作出密度函数p (x )的图形,则阴影部分的面积即为F (x )的值.密度函数基本性质:(1)非负性 p (x ) ≥ 0;(2)正则性 1)(=∫∞+∞−dx x p .因)()(x F du u p x =∫∞−,有1)()(=+∞=∫∞+∞−F dx x p .连续型随机变量的性质:设连续型随机变量X 的概率密度函数为p (x ),分布函数为F (x ),则有 (1)∫=−=≤<21)()()(}{1221x x dx x p x F x F x X x P ;(2)当p (x ) 连续时,p (x ) = F ′(x ); 因∫∞−=x du u p x F )()(,当p (x ) 连续时,有)(])([)(x p du u p x F x=′=′∫∞−(3)X 在单独一个点取值的概率为0,其分布函数为连续函数;(4)P {x 1 < X ≤ x 2} = P {x 1 ≤ X ≤ x 2} = P {x 1 < X < x 2} = P {x 1 ≤ X < x 2},即连续型...随机变量在某区间内的概率与区间开闭无关,离散型则不成立;(5)只在有限个点上取值不相同的密度函数对应于同一个分布函数,一般,只在概率为0的数集上取值不相同的密度函数都对应于同一个分布函数.例 设F (x ) = A + B arctan x 为某连续型随机变量X 的分布函数. 求:(1)A , B ; (2)}31{≤≤−X P ; (3)密度函数p (x ). 解:(1)由正则性 F (−∞) = 0,F (+∞) = 1,得:02π)arctan (lim =−=+−∞→B A x B A x ,12π)arctan (lim =+=++∞→B A x B A x ,故21=A ,π1=B ;(2)x x F arctan π121)(+=,得1274ππ1213ππ121)1()3(}31{=⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−⋅+−⎟⎠⎞⎜⎝⎛⋅+=−−=≤≤−F F X P . (3)密度函数)1π(1)()(2x x F x p +=′=.例 已知⎩⎨⎧<<−=,,0,10),()(32其它x x x C x p是某连续型随机变量X 的密度函数,求:(1)C , (2)}211{<<−X P , (3)分布函数F (x ).解:(1)由正则性:1)(=∫∞+∞−dx x p ,得1120)4131()43()(10431032==−−=−=−∫C C x x C dx x x C ,故C = 12;(2)165)641241(12)43(12)(12)(}211{2104321032211=−=−=−==<<−∫∫−x x dx x x dx x p X P ;(3)X 的全部可能取值为 [0, 1],分段点0, 1,当x < 0时,0)()(==∫∞−xdu u p x F ,当0 ≤ x < 1时,4304303234)43(12)(12)()(x x u u du u u du u p x F xxx−=−=−==∫∫∞−,当x ≥ 1时, 1)(12)()(132=−==∫∫∞−du u u du u p x F x,故⎪⎩⎪⎨⎧≥<≤−<=.1,1,10,34,0,0)(43x x x x x x F例 已知⎩⎨⎧<<−=,,0,11|,|)(其它x x x p是某连续型随机变量X 的密度函数,求分布函数F (x ).解:分段点−1, 0, 1,当x < −1时,0)()(==∫∞−xdu u p x F ;当−1 ≤ x < 0时, 212122)()()(22121x x u du u du u p x F xxx−=+−=−=−==−−∞−∫∫; 当0 ≤ x < 1时,21221022)()()(220212001x x u u udu du u du u p x F xxx+=++=+−=+−==−−∞−∫∫∫;当x ≥ 1时, 1)()()(101=+−==∫∫∫−∞−udu du u du u p x F x.故⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤+<≤−−<=.1,1,10,21,01,21,0,0)(22x x x x xx x F§2.2 随机变量的数学期望对于随机变量,还应当掌握反映其平均值、分散程度等的指标,这就需要引入数学期望和方差等概念. 2.2.1.数学期望的概念例 甲、乙两个射击选手,在射击训练中甲射了10次,其中3次10环,1次9环,4次8环,2次7环;乙射了15次,其中2次10环,9次9环,2次8环,2次7环.问谁的表现更好? 分析:比较他们射中的平均环数甲共射中3 × 10 + 1 × 9 + 4 × 8 + 2 × 7 = 85环,平均每次射中5.81085=环; 乙共射中2 × 10 + 9 × 9 + 2 × 8 + 2 × 7 = 131环,平均每次射中73.815131=&环. 故乙的表现更好.一般地,若在n 次试验中,出现了m 1次x 1,m 2次x 2,…,m k 次x k ,(其中m 1 + m 2 + … + m k = n ),则平均值为∑==+++ki i i k k n mx n x m x m x m 12211L ,即平均值等于取值与频率乘积之和.因n 很大时,频率稳定在概率附近,即平均值将稳定在取值与概率乘积之和附近. 2.2.2.数学期望的定义定义 设离散型随机变量X 的分布列是⎟⎟⎠⎞⎜⎜⎝⎛L L L L )()()(~2121k kx p x p x p x x x X ,如果级数∑∞=1)(k k k x p x 绝对收敛,则称之为X 的数学期望(Expectation ),记为E (X ). 数学期望的实际意义是反映随机变量的平均取值,是其全部可能取值以相应概率为权数的加权平均.如X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−2.04.01.03.04102,则E (X) = (−2) × 0.3 + 0 × 0.1 + 1 × 0.4 + 4 × 0.2 = 0.6. 例 某人有4发子弹,现在他向某一目标射击,若命中目标就停止射击,否则直到子弹用完为止.设每发子弹命中率为0.4,以X 表示射击次数,求E (X ). 解:先求X 的分布列,X 的全部可能取值为1, 2, 3, 4,X = 1,第一枪就命中, p (1) = 0.4;X = 2,第一枪没有命中,第二枪命中,p (2) = 0.6 × 0.4 = 0.24; X = 3,前两枪没有命中,第三枪命中,p (3) = 0.6 2 × 0.4 = 0.144; X = 4,前三枪没有命中, p (4) = 0.6 3 = 0.216.则X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛216.0144.024.04.04321,故E (X ) = 1 × 0.4 + 2 × 0.24 + 3 × 0.144 + 4 × 0.216 = 2.176.例 若X 的概率函数为L ,2,1,21)2(==⎟⎟⎠⎞⎜⎜⎝⎛−k kp k k,求E (X ). 解:因∑∑∞=∞=−=⋅−11)1(21)2(k kk k k k k 收敛但不是绝对收敛,故E (X ) 不存在.离散型随机变量的数学期望是取值乘概率求和:∑∞=1)(k k k x p x ,类似可定义连续型随机变量的数学期望是取值乘密度积分:∫+∞∞−dx x xp )(.定义 设连续型随机变量X 的密度函数为p (x ).如果广义积分∫+∞∞−dx x xp )(绝对收敛,则称之为X 的数学期望,记为E (X ).例 已知连续型随机变量X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其它x x x p 求E (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xp X E . 例 已知X 的密度函数为⎩⎨⎧<<+=.,0,20,)(其它x bx a x p 且32)(=X E ,求a , b . 解:由正则性得122)2()()(2220=+=⋅+=+=∫∫∞+∞−b a x b ax dx bx a dx x p ,又32382)32()()()(20322=+=⋅+⋅=+==∫∫∞+∞−b a x b x a dx bx a x dx x xp X E ,故21,1−==b a . 例 已知X 的密度函数为+∞<<∞−+=x x x p ,)1π(1)(2,求E (X ).解:因+∞∞−+∞∞−+∞∞−+∞∞−+=⋅+=+=∫∫∫)1ln(π21)(21)1π(1)1π()(2222x x d x dx x x dx x xp 发散, 故E (X )不存在. 2.2.3.数学期望的性质设X 为随机变量,g (x ) 为函数,则称Y = g (X ) 为随机变量函数,Y 也是一个随机变量.下面不加证明地给出随机变量函数的数学期望计算公式.定理 设X 为随机变量,Y = g (X ) 为随机变量函数,则(1)若X 为离散型随机变量,概率函数为p(x k ), k = 1, 2, …,则∑∞===1)()()]([)(k k k x p x g X g E Y E ;(2)若X 为连续型随机变量,密度函数为p (x ),则∫+∞∞−==dx x p x g X g E Y E )()()]([)(.数学期望具有以下性质:(1)常数的期望等于其自身,即E (c ) = c ;(2)常数因子可移到期望符号外,即E (aX ) = a E (X );(3)随机变量和的期望等于期望的和,即E [g 1 (X ) + g 2 (X )] = E [g 1 (X )] + E [g 2 (X )]. 证明:(1)将常数c 看作是单点分布p (c ) = 1,故E (c ) = c p (c ) = c ;(2)以连续型为例加以证明,)()()()(X aE dx x xp a dx x axp aX E ===∫∫+∞∞−+∞∞−;(3)以连续型为例加以证明,∫∫∫+∞∞−+∞∞−+∞∞−+=+=+dx x p x g dx x p x g dx x p x g x g X g X g E )()()()()()]()([)]()([212121= E [g 1 (X )] + E [g 2 (X )].由性质(2)、(3)知随机变量线性组合的期望等于期望的线性组合,可见数学期望具有线性性质. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛−3.04.01.02.02101, 求E (2X +1),E (X 2).解:E (2X +1) = −1 × 0.2 + 1 × 0.1 + 3 × 0.4 + 5 × 0.3 = 2.6;E (X 2) = 1 × 0.2 + 0 × 0.1 + 1 × 0.4 + 4 × 0.3 = 1.8. 例 已知圆的半径X 是一个随机变量,密度函数为⎪⎩⎪⎨⎧<<=.,0,31,21)(其他x x p 求圆面积Y 的数学期望. 解:圆面积Y = π X 2,故3π1332π21π)(π)(3133122=⋅=⋅==∫∫∞+∞−xdx x dx x p x Y E . 例 设国际市场对我国某种出口商品的需求量X (吨)的密度函数为⎪⎩⎪⎨⎧<<=.,0,40002000,20001)(其他x x p 设每售出一吨,可获利3万美元,但若销售不出,每积压一吨将亏损1万美元,问如何计划年出口量,能使国家获利的期望最大.解:设计划年出口量为a 吨,每年获利Y 万美元.当X ≥ a 时,销售a 吨,获利3a 万美元;当X < a 时,销售X 吨,积压a − X 吨,获利3X − (a − X ) = 4X − a 万美元;即⎩⎨⎧<≤−≤≤==.2000,4,4000,3)(a X a X X a a X g Y则4000200024000200020003)2(2000120001320001)4()()()(aa a a x a ax x dx a dx a x dx x p x g Y E +−=⋅+⋅−==∫∫∫+∞∞− 8250)3500(10001400071000122+−−=−+−=a a a , 故计划年出口量为3500吨时,使国家获利的期望最大.§2.3 随机变量的方差与标准差数学期望反映平均值,方差反映波动程度.如甲、乙两台包装机,要求包装重量为每袋500克,现各取5袋,重量为甲:498,499,500,501,502; 乙:490,495,500,505,510.二者平均值相同都是500克,但显然甲比乙好.此时比较的是它们的偏差(即取值与平均值之差).偏差:甲:−2,−1,0,1,2;乙:−10,−5,0,5,10. 2.3.1.方差的定义定义 随机变量X 与其数学期望E (X ) 之差X − E (X ) 称为偏差.偏差有大有小,可正可负,比较时需要去掉符号,但绝对值函数进行微积分处理不方便,因此考虑偏差平方的数学期望.定义 随机变量X ,若E [X − E (X )]2存在,则称之为X 的方差(Variance ),记为Var (X ) 或D (X ).即Var (X ) = E [X − E (X )]2.显然方差Var (X ) ≥ 0,称)Var(X 为X 的标准差(Standard Deviation ).在实际问题中,标准差与随机变量有相同的量纲.方差与标准差反映波动程度.方差越大,取值越分散;方差越小,取值越集中. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求E (X ), Var (X ).解:E (X ) = 1 × 0.2 + 2 × 0.4 + 3 × 0.4 = 2.2;Var (X ) = (−1.2)2 × 0.2 + (−0.2)2 × 0.4 + 0.82 × 0.4 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p求E (X ), Var (X ).解:32322)()(1310=⋅=⋅==∫∫∞+∞−x xdx x dx x xf X E ; 181949821949842)98382()()32()Var(1023410232=+−=⎟⎠⎞⎜⎝⎛+−=+−=−=∫∫∞+∞−x x x dx x x x dx x p x X .例 已知X 的全部可能取值为0, 1, 2,且E (X ) = 1.3,Var (X ) = 0.81.求X 的分布列.解:设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛c b a 210,由正则性得:a + b + c = 1,且E (X ) = 0 × a + 1 × b + 2 × c = b + 2c = 1.3,Var (X ) = (−1.3)2 × a + (−0.3)2 × b + 0.72 × c = 1.69a + 0.09b + 0.49c = 0.81, 解得a = 0.3,b = 0.1,c = 0.6,故X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛6.01.03.0210.2.3.2. 方差的性质方差具有以下性质:(1)方差计算公式:Var (X ) = E (X 2) − [E (X )]2; (2)常数的方差等于零,即Var (c ) = 0;(3)设a , b 为常数,则Var (a X + b ) = a 2 Var (X ). 证:(1)Var (X ) = E [X − E (X )]2 = E [X 2 − 2X ⋅ E (X ) + E (X )2] = E (X 2 ) − 2E (X ) ⋅ E (X ) + [E (X )]2.= E (X 2) − [E (X )]2;(2)Var (c ) = E [c − E (c )]2 = E (c − c )2 = E (0) = 0;(3)Var (a X + b ) = E [(a X + b ) − E (a X + b )]2 = E [a X + b − a E (X ) − b ]2 = a 2 E [X − E (X )]2 = a 2 Var (X ). 由性质(1),显然有以下推论:推论 对于随机变量X ,如果E (X 2) 存在,则E (X 2) ≥ [E (X )]2.以后常利用方差计算公式Var (X ) = E (X 2) − [E (X )]2计算随机变量的方差.通常用公式计算比直接用定义计算方差要方便. 例 设X 的分布列为⎟⎟⎠⎞⎜⎜⎝⎛4.04.02.0321, 求Var (X ).解:前面已求得E (X ) = 2.2,因E (X 2) = 1 2 × 0.2 + 2 2 × 0.4 + 3 2 × 0.4 = 5.4, 故Var (X ) = E (X 2) − [E (X )]2 = 5.4 − 2.22 = 0.56. 例 已知X 的密度函数为⎩⎨⎧<<=.,0,10,2)(其他x x x p 求Var (X ).解:前面已求得32)(=X E , 因21422)(141022=⋅=⋅=∫x xdx x X E , 故1813221)]([)()Var(222=⎟⎠⎞⎜⎝⎛−=−=X E X E X . 对于随机变量X ,若方差Var (X ) 存在,且Var (X ) > 0.令)Var()(*X X E X X −=,有0)]()([)Var(1)]([)Var(1)Var()(*)(=−=−=⎟⎟⎠⎞⎜⎜⎝⎛−=X E X E X X E X E X X X E X E X E ; 1)Var()Var(1)](Var[)Var(1)Var()(Var *)Var(==−=⎟⎟⎠⎞⎜⎜⎝⎛−=X X X E X X X X E X X .称X *为X 的标准化随机变量.2.3.3. 切比雪夫不等式方差反映随机变量的分散程度,切比雪夫不等式给出其定量标准.切比雪夫不等式表明大偏差概率的上限与方差成正比.定理 设X 为随机变量,且方差Var (X ) 存在,则对于任何正数ε ,都有2)Var(}|)({|εεX X E X P ≤≥−.证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫≥−=≥−εε|)(|)(}|)({|X E x dx x p X E X P ,且∫∞+∞−−=−=dx x p X E x X E X E X )()]([)]([1)Var(22222εεε,故222|)(|22)Var()()]([)()]([}|)({|εεεεεX dx x p X E x dx x p X E x X E X P X E x =−≤−≤≥−∫∫∞+∞−≥−,得证.注:切比雪夫不等式的等价形式2)Var(1}|)({|εεX X E X P −≥<−.如随机变量X 的数学期望为E (X ) = 10,方差Var (X ) = 1,则由切比雪夫不等式可得43211}2|10{|}128{2=−≥<−=<<X P X P . 例 设随机变量X 的全部可能取值为),0[∞+,且数学期望E (X ) 存在,试证:对任何正数a ,都有)(1}{X E aa X P ≤≥. 证明:以连续型随机变量为例证明,设X 的密度函数为p (x ),有∫+∞=≥a dx x p a X P )(}{,且∫∫+∞+∞∞−==0)()(1)(1dx x p a x dx x xp a X E a ,故)(1)()(}{0X E adx x p a x dx x p a x a X P a =≤≤≥∫∫+∞+∞,得证.定理 设随机变量X 的方差存在,则Var (X ) = 0的充分必要条件是存在常数b ,使得X 几乎处处收敛于b ,即P {X = b } = 1.证:充分性,设存在常数b ,使得P {X = b } = 1,有P {X ≠ b } = 0,即E (X ) = b P {X = b } = b ,故Var (X ) = E [X − E (X )]2 = E (X − b )2 = 0 × P {X = b } = 0; 必要性,设X 的方差Var (X ) = 0,因事件U +∞=+∞→⎭⎫⎩⎨⎧≥−=⎭⎬⎫⎩⎨⎧≥−=>−11|)(|lim 1|)(|}0|)({|n n n X E X n X E X X E X ,则01)Var(lim 1|)(|lim 1|)(|}0|)({|21=⎟⎠⎞⎜⎝⎛≤⎭⎬⎫⎩⎨⎧≥−=⎟⎟⎠⎞⎜⎜⎝⎛⎭⎬⎫⎩⎨⎧≥−=>−+∞→+∞→+∞=n X n X E X P n X E X P X E X P n n n U , 可得P {| X − E (X )| > 0} = 0,即P {| X − E (X )| = 0} = 1,取b = E (X ),有b 为常数, 故P {X = b } = 1.注:如果P {X = b } = 1,记为X = b , a.e.(或a.s.),称为X = b 几乎处处成立(或几乎必然成立).这里,a.e.就是almost everywhere 的缩写,a.s.就是almost surely 的缩写.意味着不成立的情况是一个测度(或概率)等于零的集合(或事件).§2.4 常用离散分布对于一个给定的函数,只要满足概率函数的两条基本性质:非负性、正则性,都可以成为某个离散随机变量的概率函数.但绝大多数在实际工作中并不常见,下面是几种常用的概率函数. 2.4.1.两点分布与二项分布一.两点分布两点分布只可能在两个点取值,通常就是0或1.定义 随机变量的可能取值只有两个:0或1,且概率函数为p (0) = 1 − p ,p (1) = p , 其中0 < p < 1,称X 服从两点分布(Two-point Distribution )或0-1分布,记为X ~ (0-1).分布列为⎟⎟⎠⎞⎜⎜⎝⎛−p p110. 两点分布实际背景是一次伯努利试验.通常描述为:X 表示一次伯努利试验中事件A 发生的次数.非负性:p (0) = 1 − p > 0,p (1) = p > 0; 正则性:(1 − p ) + p = 1. 两点分布的数学期望为E (X ) = 0 × (1 − p ) + 1 × p = p .又因E (X 2 ) = 02 × (1 − p ) + 12 × p = p ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = p − p 2 = p (1 − p ).二.二项分布在n 重伯努利试验中,以X 表示事件A 的发生次数,则X 的全部可能取值为0, 1, 2, …, n ,且kn k p p k n k X P −−⎟⎟⎠⎞⎜⎜⎝⎛==)1(}{. 定义 若离散型随机变量X 的概率函数为kn k p p k n k p −−⎟⎟⎠⎞⎜⎜⎝⎛=)1()(, k = 0, 1, 2, …, n ;0 < p < 1, 则称X 服从二项分布(Binomial Distribution ),记为X ~ b (n , p ).二项分布的实际背景是n 重伯努利试验. 当n = 1时,二项分布就是两点分布.非负性:0)1()(>−⎟⎟⎠⎞⎜⎜⎝⎛=−kn k p p k n k p ; 正则性:1)]1([)1()(11=−+=−⎟⎟⎠⎞⎜⎜⎝⎛=∑∑=−=nnk k n k nk p p p p k n k p . 例 掷三枚硬币,X 表示正面朝上的次数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3 ,将掷每一枚硬币看作一次试验.每次试验两种结果:正面A ,反面A ;每次试验相互独立;每次试验概率5.0)(=A P . 即n 重伯努利试验,n = 3,5.0=p ,有X ~ b (3, 0.5),p (0) = 0.5 3 = 0.125,375.05.05.013)1(21=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 375.05.05.023)2(12=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (3) = 0.5 3 = 0.125.例 现有5台机床,每台机床一小时内平均开动18分钟,且是否开动相互独立,以X 表示同一时刻开动的机床数,求X 的概率分布.解:X 的全部可能取值为0, 1, 2, 3, 4, 5 ,将每台机床是否开动看作一次试验.每次试验两种结果:开动A ,不开动A ;每次试验相互独立;每次试验概率P (A ) = 0.3. 即n 重伯努利试验,n = 5,p = 0.3,有X ~ b (5, 0.3).p (0) = 0.7 5 = 0.16807,36015.07.03.015)1(41=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 3087.07.03.025)2(32=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 1323.07.03.035)3(23=××⎟⎟⎠⎞⎜⎜⎝⎛=p , 02835.07.03.045)4(14=××⎟⎟⎠⎞⎜⎜⎝⎛=p , p (5) = 0.3 5 = 0.00243 .一般地,如果随机变量X 服从二项分布,概率函数值p (k ) 将随着k 的增加,先逐渐增加,达到最大值后,又逐渐减少.通常,一个随机变量X 的概率函数或密度函数的最大值点称为X 的最可能值.二项分布b (n , p )的最可能值为⎩⎨⎧+−++++=.)1(,1)1()1(,)1(],)1[(0是正整数时当或不是正整数时当p n p n p n p n p n k 这里[x ]表示不超过x 的最大整数.如[2.3] = 2,[3.14] = 3,[−1.2] = −2.证:若X ~ b (n , p ),有n k p p k n k n p p k n k p k n k kn k ≤≤−−=−⎟⎟⎠⎞⎜⎜⎝⎛=−−0,)1()!(!!)1()(, 则11)1()!1()!1(!)1()!(!!)1()(+−−−−+−−−−−=−−k n k k n k p p k n k n p p k n k n k p k p ⎟⎠⎞⎜⎝⎛+−−−⋅−−−=−−11)1()!()!1(!1k n p k pp p k n k n k n k)1()1()1()!()!1(!1+−−+⋅−−−=−−k n k k p n p p k n k n k n k , 当k < (n + 1) p 时,有p (k ) > p (k − 1);当k > (n + 1) p 时,有p (k ) < p (k − 1).如果(n + 1) p 不是正整数,取k 0 = [(n + 1) p ],有k 0 < (n + 1) p ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > (n + 1) p ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果(n + 1) p 是正整数,取k 0 = (n + 1) p ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值.如X ~ B (3, 0.5),有(n + 1) p = 4 × 0.5 = 2是正整数,最可能值k 0 = 2或1;X ~ B (5, 0.3),有(n + 1) p = 6 × 0.3 = 1.8不是正整数,最可能值k 0 = [1.8] = 1.三.二项分布的数学期望和方差组合数公式⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=−⋅−−⋅=−⋅=⎟⎟⎠⎞⎜⎜⎝⎛11)!()!1()!1()!(!!k n k n k n k n k n k n k n k n , (n ≥ k > 0). 二项分布b (n , p )的数学期望为∑∑∑=−−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅⋅=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k kn k nk k n k p p k n np p p k n k n k p p k n k X E 1110)1(11)1(11)1()( = np [ p + (1 − p )]n − 1 = np .又因∑∑∑=−=−=−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−=−⎟⎟⎠⎞⎜⎜⎝⎛⋅=nk k n k n k k n k nk k n k p p k n k p p k n k k p p k n k X E 002022)1()1(11)()1()( )()1(22)1()1()(22X E p p k n k k n n k k nk k n k+−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=∑=− np p p k n pn n nk kn k +−⎟⎟⎠⎞⎜⎜⎝⎛−−−=∑=−−222)1(22)1( = n (n − 1) p 2 [ p + (1 − p )]n − 2 + np = (n 2 − n ) p 2 + np ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = (n 2 − n ) p 2 + np − (np )2 = − np 2 + np = np (1 − p ).2.4.2.泊松分布一.泊松分布泊松分布是一种理论推导的极限分布(成立的条件和推导过程见附录). 定义 若随机变量X 的概率函数为λλ−=e !)(k k p k, k = 0, 1, 2, …… ;λ > 0,则称X 服从参数为 λ 的泊松分布(Poisson’s Distribution ),记为X ~ P (λ).泊松分布的实际背景是已知平均发生次数为常数λ ,实际发生次数的概率分布.如足球比赛进球数,商店进店人数,电话接听次数等.非负性:λ > 0时,0e !>−λλk k;正则性:1e e e !=⋅=⋅−∞=−∑λλλλk kk .例 已知一场足球比赛的进球数X 服从参数λ = 2.3的泊松分布,求比分为0:0, 1:0以及总进球数超过5个的概率.解:因X ~ P(2.5),则3.2e !3.2)(−=k k p k , k = 0, 1, 2, …….比分0:0,即X = 0,100.0e e !03.2)0(3.23.20===−−p (查表);比分1:0,即X = 1,231.0100.0331.0e 3.2e !13.2)1(3.23.21=−===−−p (查表);总进球数超过5个,即X > 5,030.0970.01e !3.21e!3.2}5{53.263.2=−=−==>∑∑=−∞=−k k k k k k X P (查表). 例 已知某公用电话每小时内打电话的人数X 服从参数为λ = 8的泊松分布.求某一小时内无人打电话的概率,恰有10人打电话的概率,至少有10人打电话的概率.解:因X ~ P(8),有8e !8}{−==k k X P k . 无人打电话的概率0003.0e e !08}0{880====−−X P ,恰有10人打电话的概率099.0717.0816.0e !108}10{810=−===−X P (查表),至少有10人打电话的概率283.0717.01}9{1e !8}10{108=−=≤−==≥∑∞=−X P k X P k k (查表). 例 已知某商店一天中某种贵重商品的销售件数X 服从泊松分布P (7),问该商店每天应该准备多少件该商品才能以99.9%以上的概率满足顾客需要?解:设准备了a 件该商品,X ~ P(7),则7e !7)(−=k k p k .事件“满足顾客需要”,即X ≤ a ,有P {X ≤ a } ≥ 0.999,故查表可得a = 16. 泊松分布P (λ )的最可能值为⎩⎨⎧−=.,1,],[0是正整数时当或不是正整数时当λλλλλk 证:若X ~ P(λ),有L ,2,1,0,e !)(==−k k k p kλλ,故k k k k k k k k p k p k k k k−⋅−=⎟⎠⎞⎜⎝⎛−⋅−=−−=−−−−−−−−−λλλλλλλλλλe )!1(1e )!1(e)!1(e !)1()(111,当k < λ 时,有p (k ) > p (k − 1);当k > λ 时,有p (k ) < p (k − 1).如果λ 不是正整数,取k 0 = [λ ] ,有k 0 < λ ,即p (k 0) > p (k 0 − 1);且k 0 + 1 > λ ,即p (k 0 + 1) < p (k 0). 故p (k 0) 为最大值.如果λ 是正整数,取k 0 = λ ,即p (k 0) = p (k 0 − 1), 故p (k 0) 和p (k 0 − 1) 都是最大值. 二.泊松分布的数学期望和方差泊松分布P (λ )的数学期望为λλλλλλλλλλλ=⋅=−⋅=−=⋅=−∞=−−∞=−∞=−∑∑∑e e )!1(e e)!1(e!)(111k k k kk kk k k k X E ,即泊松分布的参数 λ 反映平均发生次数.又因)()!2(e e!e!)(e!)(222222X E k k k k k k k k X E k k k kk kk k+−⋅=⋅+⋅−=⋅=∑∑∑∑∞=−−∞=−∞=−∞=−λλλλλλλλλ= λ 2 e −λ ⋅ e λ + λ = λ 2 + λ ,故方差为Var (X ) = E (X 2 ) − [E (X )]2 = λ 2 + λ − (λ )2 = λ .三.二项分布的泊松近似二项分布与泊松分布的实际背景都是反映发生次数问题.下面的定理说明了二者之间的联系,泊松分布是二项分布的一种极限分布. 定理 (泊松定理)在n 重伯努利试验中,记事件A 在每次试验中发生的概率为与试验次数n 有关的数p n ,如果当n → +∞ 时,有n p n → λ ,则λλ−−+∞→=−⎟⎟⎠⎞⎜⎜⎝⎛e !)1(lim k p p k n k k n n k n n . 证:记λ n = n p n ,有λλ=+∞→n n lim ,因nk n n n kn n k n n n n n n p )(11)1(−−⋅−−−⎟⎠⎞⎜⎝⎛−+=⎟⎠⎞⎜⎝⎛−=−λλλλ,且e 1lim =⎟⎠⎞⎜⎝⎛−+−+∞→nnn n n λλ,λλ−=−−+∞→n k n n n )(lim , 则λλλλ−−−⋅−+∞→−+∞→=⎟⎠⎞⎜⎝⎛−+=−e 1lim )1(lim )(n k n n n n k n n n n n n p ,又因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛n k n k n k k n n n k n k 1111!!)1()1(L L ,且11111lim =⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−+∞→n k n n L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−−=−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→−+∞→n k n p p k n p p k n k n nk n k n k n n k n n 1111)1(!lim )1(lim L λλ−+∞→−+∞→+∞→=⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅=e !1111lim )1(lim !)(lim k n k n p k np k n k n n n k n n L . 此定理表明对于二项分布b (n , p ),当n 很大,p 很小时,可用泊松分布P (λ ) 近似,其中λ = n p .例 某地区每年人口意外死亡率为0.0001,现有60000人投保人身意外保险,求一年内因投保人意外死亡恰好赔付8人的概率以及赔付不超过5人的概率.解:设X 表示“一年内因投保人意外死亡而赔付的人数”,X ~ B (60000, 0.0001).则5999289999.00001.0860000}8{××⎟⎟⎠⎞⎜⎜⎝⎛==X P ,∑=−××⎟⎟⎠⎞⎜⎜⎝⎛=≤50600009999.00001.060000}5{k kk k X P , 但显然计算很繁琐,为便于计算,用泊松分布近似.因n = 60000很大,p = 0.0001很小,λ = np = 6,有)6(~P X &,故103.0744.0847.0e !86}8{68=−=≈=−X P ,446.0e !6}5{506=≈≤∑=−k k k X P .2.4.3. 超几何分布一.超几何分布在N 件产品中,有M 件次品,从中不放回地取n 件,以X 表示取得的次品数.设X 取值为k ,一方面,显然有k ≤ n 且k ≤ M ,即k ≤ min{n , M },另一方面,有k ≥ 0且n − k ≤ N − M ,可得k ≥ M + n − N ,即k ≥ max{0, M + n − N }.这样X 的全部可能取值为l , l + 1, …, L ,其中l = max{0, M + n − N },L = min{n , M },且⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛==n N k n M N k M k X P }{.定义 若随机变量X 的概率函数为⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=n N k n M N k M k p )(,k = l , l + 1, …, L ,l = max(0, n + M − N ),L = min(M , n ),M < N ,n < N , 则称X 服从超几何分布(Hypergeometric Distribution ),记为X ~ h (n , N , M ).超几何分布的实际背景是古典概型中的不放回抽样检验问题. 注:有放回检验抽样问题对应的是二项分布.非负性:0>⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛n N k n M N k M ;正则性:10=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑∑==n N n N n N k n M N k M n N k n M N k M Ll k L k .注:比较(1 + x )M(1 + x )N − M与(1 + x )N中x n的系数可以证明⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛∑=n N k n M N k M Ll k .例 一袋中有3个红球,2个白球,不放回地取出3个球,X 表示取得的红球数.求X 的概率分布.解:不放回抽样,N = 3,M = 2,n = 3,则X ~ h (3, 5, 3).故X 的全部可能取值为1, 2, 3, (l = max (0, n + M − N ) = 1,L = min(n , M ) = 3),3.0352213}1{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,6.0351223}2{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P ,1.0350233}3{=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛==X P . 超几何分布h (n , N , M )的最可能值为⎪⎩⎪⎨⎧+++−++++++++++++=.21)1(,121)1(21)1(,21)1(],21)1[(0是正整数时当或不是正整数时当N M n N M n N M n N M n N M n k证:若X ~ h (n , N , M),有)!()!()!()!(!!1)(k n M N k n M N k M k M n N n N k n M N k M k p +−−−−⋅−⋅⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛=, 故p (k ) − p (k − 1))!1()!1()!1()!1()!(!)!()!()!(!)!(!−+−−+−+−−⎟⎟⎠⎞⎜⎜⎝⎛−−+−−−−⎟⎟⎠⎞⎜⎜⎝⎛−=k n M N k n k M k n N M N M k n M N k n k M k n N M N M)]()1)(1[()!()!1()!1(!)!(!k n M N k k n k M k n M N k n k M k n N M N M +−−−+−+−+−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=)]2()1)(1[()!()!1()!1(!)!(!+−+++−−+−+−⎟⎟⎠⎞⎜⎜⎝⎛−=N k n M k n M N k n k M k n N M N M .当21)1(+++<N M n k 时,有p (k ) > p (k − 1);当21)1(+++>N M n k 时,有p (k ) < p (k − 1). 如果21)1(+++N M n 不是正整数,取21)1[(0+++=N M n k ,有21)1(0+++<N M n k ,即p (k 0) > p (k 0 − 1);且21)1(10+++>+N M n k ,即p (k 0 + 1) < p (k 0).故p (k 0) 为最大值.如果21)1(+++N M n 是正整数,取21)1(0+++=N M n k ,即p (k 0) = p (k 0 − 1),故p (k 0) 和p (k 0 − 1) 都是最大值. 二.超几何分布的数学期望和方差超几何分布h (n , N , M )的数学期望为N nM n N k n M N k M N nM n N n N k n M N k M k M k n N k n M N k M k X E Ll k L lk L l k =⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=∑∑∑===11111111)(, 又因∑∑∑===⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅+⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛⋅=L lk L l k Ll k n N k n M N k M k n N k n M N k M k k n N k n M N k M k X E )()(222 ∑=+⎟⎟⎠⎞⎜⎜⎝⎛−−−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−−⋅−=Llk X E n N n n N N k n M N k M k k M M k k )(22)1()1(22)1()1()(2N nM N N M M n n N nM n N k n M N k M N N M M n n Ll k +−−−=+⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−⋅−−−=∑=)1()1()1(2222)1()1()1(, 故方差为)1())(()1()1)(1()]([)()Var(222222−−−=−+−−−=−=N N n N M N nM N M n N nM N N M n nM X E X E X . 为了便于记忆,可将超几何分布与二项分布的数学期望和方差进行比较.二项分布b (n , p ):数学期望E (X ) = np ,方差Var (X ) = np (1 − p );超几何分布h (n , N , M ):数学期望N M nX E =)(,方差11)Var(−−⎟⎠⎞⎜⎝⎛−=N n N N M N M n X ; 可见分布h (n , N , M )中的N M 相当于二项分布b (n , p )中的p ,方差修正因子为1−−N nN . 三.超几何分布的二项近似直观上,当抽样个数n 远小于M 及N − M 时,不放回抽样问题可近似看作有放回抽样问题,也就是此时超几何分布可用二项分布近似.定理 如果当N → +∞ 时,p NM→, (0 < p < 1),则k n k N p p k n n N k n M N k M −+∞→−⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛)1(lim . 证:因⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=+−−=⎟⎟⎠⎞⎜⎜⎝⎛N n N n N n n N N N n N n 1111!!)1()1(L L , 且⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛M k M k M k M k 1111!L ,⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−=⎟⎟⎠⎞⎜⎜⎝⎛−−−M N k n M N k n M N k n M N kn 1111)!()(L , 故⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−+∞→+∞→N n N n N M N k n M N k n M N M k M k M n N k n M N k M n k n k N N 1111!1111)!()(1111!lim lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅−⋅−=−+∞→N n N M N k n M N M k M N M N M k n k n nk n k N 111111111111)()!(!!lim L L L ⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛−−−−⎟⎠⎞⎜⎝⎛−−⋅⎟⎠⎞⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−⋅⎟⎠⎞⎜⎝⎛−⎟⎠⎞⎜⎝⎛⋅⎟⎟⎠⎞⎜⎜⎝⎛=+∞→−+∞→N n N M N k n M N M k M N M N M k n N kn k N 111111111111lim 1lim L L L。
茆诗松《概率论与数理统计教程》笔记和课后习题(含考研真题)详解(随机变量及其分布)【圣才出品】
xk p xk 丌收敛,则称 X 癿数学期望丌存在.
k =1
(2)连续型随机变量
定义:设连续随机变量 x 癿密度凼数为 p(x).如果
x p xdx
则称
E
X
xp
x
dx
为 X 癿数学期望,或称作该分布 p(x)癿数学期望,简称期望或均值.若
x p x dx 丌收敛,则称 X 癿数学期望丌存在.
2.数学期望癿性质 按照数学期望 E(X)癿定义,E(X)由其分布唯一确定.若要求随机变量 X 癿一个凼
5 / 119
圣才电子书 十万种考研考证电子书、题库视频学习平台
数 g(X)癿数学期望,当然要先求出 Y=g(X)癿分布,再用此分布来求 E(Y).
lim
xx0
F
x
F
x0
即 F(x0+0)=F(x0)
返三个基本性质为判别某个凼数是否能成为分布凼数癿充要条件.
当 F(x)在 a 不 b 处连续时,有 F(a-0)=F(a),F(b-0)=F(b).
3.离散随机变量癿概率分布列
(1)定义:设 X 是一个离散随机变量,如果 X 癿所有可能叏值是 x1,x2,…,xn,…,
则称 X 叏 xi 癿概率 pi=p(xi)=P(X=xi),i=1,2,…n,…为 X 癿概率分布列或简称为
分布列,记为 X~{pi}.
分布列也可用下表来表示:
X
x1
x2
…
P P(x1) P(x2) …
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案批注版
(3) AB ; (4) A U B . 解: (1) A B = {0.25 ≤ X ≤ 0.5} U {1 < X < 1.5} ; (2) A U B = {0 ≤ X ≤ 2} = Ω ; (3) AB = {0 ≤ X ≤ 0.5} U {1 < X ≤ 2} = A ; (4) A U B = {0 ≤ X < 0.25} U {1.5 ≤ X ≤ 2} = B . 6. 检查三件产品,只区分每件产品是合格品(记为 0)与不合格品(记为 1) ,设 X 为三件产品中的不合 格品数,指出下列事件所含的样本点: A =“X = 1” ,B =“X > 2” ,C =“X = 0” ,D =“X = 4” . 解:A = {(1, 0, 0),(0, 1, 0),(0, 0, 1)},B = {(1, 1, 1)},C = {(0, 0, 0)},D = ∅. 7. 试问下列命题是否成立? (1)A − (B − C ) = (A − B )∪C; (2)若 AB = ∅且 C ⊂ A,则 BC = ∅; (3)(A∪B ) − B = A; (4)(A − B )∪B = A. 解: (1)不成立, A − ( B − C ) = A − BC = A BC = A( B U C ) = AB U AC = ( A − B ) U AC ≠ ( A − B ) U C ; B A C A − (B − C ) (2)成立,因 C ⊂ A,有 BC ⊂ AB = ∅,故 BC = ∅; (3)不成立,因 ( A U B ) − B = ( A U B ) B = AB U BB = AB = A − B ≠ A ; (4)不成立,因 ( A − B ) U B = AB U B = ( A U B )( B U B ) = A U B ≠ A . 8. 若事件 ABC = ∅,是否一定有 AB = ∅? 解:不能得出此结论,如当 C = ∅时,无论 AB 为任何事件,都有 ABC = ∅. 9. 请叙述下列事件的对立事件: (1)A =“掷两枚硬币,皆为正面” ; (2)B =“射击三次,皆命中目标” ; (3)C =“加工四个零件,至少有一个合格品” . 解: (1) A = “掷两枚硬币,至少有一个反面” ; (2) B = “射击三次,至少有一次没有命中目标” ; (3) C = “加工四个零件,皆为不合格品” . 10.证明下列事件的运算公式: (1) A = AB U AB ; (2) A U B = A U A B .
茆诗松概率论与数理统计教程课件第二章 (1)
所以, X是样本点的函数, 根据试验结果的 不同取不同的值, 我们把X称为一个随机 变量.
该例中引入随机变量的好处有哪些?
引入变量X后, X对应的样本空间为{0,1,…,50}, 与原 始样本空间相比有两个优点: (1)数量化, (2)元素少;
而且用原始样本空间难以表达的事件, 如有一半人同 意该项政策, 可以用随机变量简单表示成{ω ∈Ω : X(ω )=25}, 或缩写成 {X=25}.
i 1 i
反之, 如果一个数列{pk}满足上面的两条性质, 则 必存在某离散随机变量X, 使得{pk}成为X的概率 分布列.
由X的概率分布列还可求得其分布函数:
F ( x ) P( X x )
i : xi x
P( X x )
i
它的图形是介于0,1间的阶梯函数, 它在X的每 个取值点xi处有个跳跃, 其跳跃值恰为P(X=xi).
1 e x F ( x) 0
2
x0 x0
(2) P (1 X 2) F (2 0) F (1)
F (2) F (1) e 1/ 2 e 2 0.4712
3. 离散随机变量的概率分布列
一个离散型随机变量的概率分布用分布函数来描述并不是 最方便的.
x x0
为证右连续性 ,只要对单调下降数列 x1 x 2 x n , 当x n x0时, 有 limF ( x n ) F ( x0 ).
n
为 此, F ( x1 ) F ( x0 ) P ( x0 X x1 ) P (i 1 xi 1 X x1 )
X的分布函数的图形为:
分布函数的三条基本性质:
(1)单调性. F ( x)是单调非减函数 , 即当x1 x2时, 有 F ( x1 ) F ( x2 )
概率论第二章课件(魏宗舒版)
答:这样的求法不正确,首先该弄清楚分布函数的定 义即F(x)=P(X≤x),F(x)表示事件{X≤x}的概率,因此 当0≤ x<1时,概率 P(X ≤x )=P(X=-1)+P(X=0)=1/2+1/4=3/4,当x ≥1时, 事件{X ≤x}为必然事件,因此,它也可用 P(X ≤x )=1 它也可用 P(X ≤x )=P(X=-1)+P(X=0)+P(X=1)=1/2+1/4+1/4=1 求得。综合后正确的分布函数为
0 0dt
0
,当
0 x1
时,
x 0 1 x F ( x ) f ( t ) dt 0 dt 2 tdt 0 1 0dt 1
综合有
ห้องสมุดไป่ตู้
0 2 F ( x) x 0
x0 0 x1 x1
问2.7: 对于连续型随机变量 X ~ f x ( x ) , Y g( X )
所谓“3σ”原则是比较定量地说明正态分布的“两 头小,中间大”的特点,具体为
P ( X 3 ) P ( 3 X 3 ) 3 3 ( 3 ) ( 3 ) 2 ( 3 ) 1 2 0.9987 1 0.9974
即 在使用这条性质时,一定要注意y=g(x)为单调函 数且可导。
fY ( y ) f X ( h( y )) | h' ( y ) |
' f ( y ) f ( h ( y )) h ( y) 的密度函数为什么是 Y X
,
这里
y g( x )
是一单调可导函数, x h( y )
是y g ( x ) 的反函数。
概率论与数理统计(茆诗松)第二版课后第二章习题参考答案_百度讲解
(2)正态分布N (µ, σ 2 ;(3)对数正态分布LN (µ, σ 2 .解:(1)因 X 服从区间 (a, b上的均匀分布,则0.5 = P{ X ≤ x0.5 } = P{a < X ≤ x0.5 } = 故中位数x0.5 = a + 0.5(b − a = (2)因 X 服从正态分布N (µ, σ 2 ,x0.5 − a ,b−a a+b ; 2 x −µ⎛x −µ⎞ =0,则 0.5 = P{ X ≤ x0.5 } = F ( x0.5 = Φ⎜ 0.5 ⎟,即0.5 σ ⎝ σ ⎠故中位数 x0.5 = µ;(3)因 X 服从对数正态分布LN (µ, σ 2 ,有 ln X 服从正态分布 N (µ, σ 2 ,ln x0.5 − µ ⎛ ln x0.5 − µ ⎞ =0,则0.5 = P{ X ≤ x0.5 } = P{ln X ≤ ln x0.5 } = F (ln x0.5 = Φ⎜⎟,即σ σ ⎝⎠故中位数 x0.5 = e µ. 4.设 X ~ Ga (α , λ ,对 k = 1, 2, 3,求µ k = E (X k 与ν k = E [X − E (X ] k.解:因Ga (α , λ 的密度函数为⎧λα α −1 − λ x ⎪ x e , x ≥ 0, p X ( x = ⎨ Γ(α ⎪ x < 0. ⎩0, 由正则性知∫ +∞ +∞ +∞ Γ(α λα α −1 − λ x x e dx = 1 ,可得∫ x α −1 e −λ x dx = α ,0 Γ(α λ 0 故µ1 = ∫ 0 x⋅ λα α −1 − λ x λα+ ∞ α −λ x λα Γ(α + 1 α x e dx = x e dx = ⋅ = ;λ Γ(α Γ(α ∫0 Γ(α λα +1 λα α −1 −λ x λα + ∞ α +1 − λ x λα Γ(α + 2 α (α + 1 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 2 λ2 λα α −1 − λ x λα + ∞ α + 2 −λ x λα Γ(α + 3 α (α + 1(α + 2 e = ⋅ = x e dx = x dx ;Γ(α Γ(α ∫0 Γ(α λα + 3 λ3 µ2 = ∫ µ3 = ∫ +∞ 0 x2 ⋅ +∞ 0 x3 ⋅ ν 1 = E [X − E (X ] = 0;α (α + 1 α 2 α − 2 = 2 ;λ2 λ λ α (α + 1(α + 2 α (α + 1 α α 3 2α .3 2 − ⋅ + = ν 3 =E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ λ3 λ2 λ3 λ3 5.设X ~ Exp(λ,对 k = 1, 2, 3, 4,求µ k = E (X k 与ν k = E [X − E (X ] k ,进一步求此分布的变异系数、偏ν 2 = E[ X − E ( X ] 2 = µ 2 − µ12 = 度系数和峰度系数.解:因 X 的密度函数为⎧λ e − λ x , x ≥ 0, p X ( x = ⎨ x < 0. ⎩0, 41且 k 为正整数时,∫ 故µ1 = ∫ +∞ 0 +∞ 0 x k −1 e − λ x dx = +∞ Γ(k λ k = (k − 1! λk 1 ,; x ⋅ λ e −λ x dx = λ ∫ 0 x e −λ x dx = λ ⋅ λ 2 = 2! 1 λ = = = µ 2 = ∫ x 2 ⋅ λ e −λ x dx = λ ∫ x 2 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 2 λ λ 3 λ2 6 ;;;µ 3 = ∫ x 3 ⋅ λ e − λ x dx = λ ∫ x 3 e − λ x dx = λ ⋅ 0 0 +∞ +∞ 3! 4 λ3 24 µ 4 = ∫ x 4 ⋅ λ e −λ x dx = λ ∫ x 4 e −λ x dx = λ ⋅ 0 0 +∞ +∞ 4! λ 1 5 λ4 ν 1 = E [X − E (X ] = 0;ν 2 = E[ X − E ( X ] 2 = µ 2 −µ12 = 2 λ 2 − 1 λ 2 = λ2 6 3 ;ν 3 = E[ X − E ( X ]3 = µ 3 − 3µ 2 µ1 + 2µ13 = λ −3 2 λ 2 ⋅ 1 λ 4 +2 −4 1 λ 6 3 = ⋅ 1 2 λ3 ;ν 4 = E[ X − E ( X ] 4 = µ 4 − 4 µ 3 µ1 + 6µ 2µ12 − 3µ14 = 变异系数C v ( X = 24 λ λ 3 λ +6 2 λ 2 ⋅ 1 λ 2 −3 1 λ 4 = 9 λ3 ; Var( X E( X =2;= ν2 =1; µ1 偏度系数β 1 = ν3 (ν 2 3 / 2 峰度系数β 2 = ν4 −3=9−3=6.(ν 2 2 6.设随机变量 X 服从正态分布 N (10, 9,试求 x0.1 和 x0.9.x − 10 ⎛ x − 10 ⎞解:因F ( x 0.1 = Φ⎜ 0.1 = 1.2816 ,故 x0.1 = 6.1552;⎟ = 0.1 ,得− 0.1 3 3 ⎝⎠ x − 10 ⎛ x − 10 ⎞又因F ( x 0.9 = Φ⎜ 0.9 = 1.2816 ,故 x0.9 = 13.8448.⎟ = 0.9 ,得0.9 3 3 ⎝⎠ x − 10 x 0.1 − 10 = 1.28 ,故 x0.1 = 6.16; 0.9 = 1.28 ,故 x0.9 = 13.84)3 3 7.设随机变量 X 服从双参数韦布尔分布,其分布函数为(或查表可得− m ⎧⎪⎪⎛ x⎞⎫⎟⎜ F ( x = 1 − exp ⎨− ⎜⎟⎬, η ⎭⎪⎩⎝⎠⎪ x>0,其中η > 0, m > 0.试写出该分布的 p 分位数 xp 的表达式,且求出当m = 1.5, η = 1000 时的 x0.1 , x0.5 , x0.8 的值.⎧⎪⎛ xp 解:因F ( x p = 1 − exp⎨− ⎜⎜η ⎪⎩⎝故x p = η[−ln(1 − p ] m ; 1 ⎞⎟⎟⎠ m ⎫⎪⎬= p,⎪⎭ 42当m = 1.5, η = 1000 时, x 0.1 = 1000(− ln 0.9 1 1.5 1 = 223.0755 ; x 0.5 = 1000(− ln 0.5 1 1.5 = 783.2198 ;x 0.8 = 1000(− ln 0.2 1.5 = 1373.3550 . 8.自由度为 2 的χ 2 分布的密度函数为p ( x = 1 −2 e , 2 x x>0,试求出其分布函数及分位数x0.1 , x0.5 , x0.8 .解:设 X 服从自由度为 2 的χ 2 分布,当 x < 0 时,F (x = P{X ≤ x} = P (∅ = 0,当x ≥ 0 时,F ( x = P{ X ≤ x} = ∫ 故 X 的分布函数为 x ⎧ − ⎪1 − e2 , x ≥ 0, F ( x = ⎨⎪ x < 0. ⎩0, x − − 1 −2 e du = (− e 2 = 1 − e 2 ; 2 0 u u x x 0 因 F (x p = 1 − e − xp 2 = p ,有xp = −2 ln (1 − p,故x0.1 = −2 ln 0.9 = 0.2107;x0.5 = −2 ln 0.5 = 1.3863;x0.8 = −2 ln 0.2 = 3.2189. 9.设随机变量 X 的分布密度函数 p(x 关于 c 点是对称的,且 E (X 存在,试证(1)这个对称点 c 既是均值又是中位数,即 E (X = x0..5 = c;(2)如果 c = 0,则xp = −x1 − p .证:设 f (x = p (x + c,因 p (x 关于 c 点对称,有 f (x 为偶函数,(1)E ( X = ∫ xp( xdx = ∫ ( x − c p ( xdx + ∫ cp( xdx = ∫ up (u + cdu + c = ∫ uf (u du + c −∞ −∞ −∞ −∞ −∞ +∞ +∞ +∞ +∞ +∞ = 0 + c = c;因 f (x 为偶函数,有∫ 则F (c = ∫ c −∞ 0 −∞ 0 f ( xdx = 1 +∞ f ( xdx = 0.5 ,2 ∫− ∞ 0 p( x dx = ∫ p (u + cdu = ∫ −∞ −∞ f (u du = 0.5 ,可得 x0..5 = c;故 E (X = x0..5 = c;(2)如果 c = 0,有 p (x 为偶函数,则 F (x p = ∫ xp −∞ p ( xdx = ∫ −xp +∞ p(−u ⋅ (−du = ∫ +∞ −xp p(u du = 1 − ∫ −xp −∞ p(u du = 1 − F (− x p = p ,可得 F (−xp = 1 − p,故−xp = x1 − p ,即xp = −x1 − p . 10.试证随机变量 X 的偏度系数与峰度系数对位移和改变比例尺是不变的,即对任意的实数a, b (b ≠ 0, Y = a + b X 与 X 有相同的偏度系数与峰度系数.证:因 Y = a + bX,有 E (Y = E (a + bX = a + bE (X ,可得Y − E (Y = a + b X − a − bE (X = b[X − E (X ],则ν 2 (Y = E [Y − E (Y ]2 = E{b2[X − E (X ]2} = b2 E [X − E (X ]2 = b2ν 2 (X ,ν 3 (Y = E [Y − E (Y ]3 = E{b3[X − E (X ]3} = b3 E [X − E (X ]3 = b3ν 3 (X ,ν 4 (Y = E [Y − E (Y ]4 =E{b4[X − E (X ]4} = b4 E [X − E (X ]4 = b4ν 4 (X ,故偏度系数β 1 (Y = ν 3 (Y [ν 2 (Y ] 3/ 2 = b 3ν 3 ( X [b ν 2 ( X ] 2 3/ 2 = b 3ν 3 ( X b [ν 2 ( X ] 3 3/ 2 = ν 3 (X [ν 2 ( X ]3 / 2 = β1 ( X ; 43峰度系数β 2 (Y = b 4ν 4 ( X b 4ν 4 ( X ν 4 (Y ν (X−3 = − 3 = −3= 4 − 3 = β2(X .2 2 2 4 2 [ν 2 (Y ] [b ν 2 ( X ] b [ν 2 ( X ] [ν 2 ( X ] 2 11.设某项维修时间 T(单位:分)服从对数正态分布LN (µ, σ 2 .(1)求 p 分位数 tp;(2)若µ =4.127,求该分布的中位数;(3)若µ = 4.127,σ = 1.0364,求完成 95%维修任务的时间.解:(1)因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布 N (µ, σ 2 ,ln t p − µ ⎛ ln t p − µ ⎞⎟则p = P{T ≤ t p } = P{ln T ≤ ln t p } = Φ⎜ = up ,ln tp = µ + σ ⋅ up,⎜σ ⎟,即σ ⎝⎠故tp = e µ +σ ⋅u p ;(2)中位数 t0.5 = e µ +σ ⋅u0.5 = e 4.1271+0 = 61.9979 ;(3)t0.95 = e µ +σ ⋅u0.95 = e4.1271+1.0364×1.6449 = 340.9972 . 12.某种绝缘材料的使用寿命 T(单位:小时)服从对数正态分布LN (µ, σ 2 .若已知分位数 t0.2 = 5000 小时,t0.8 = 65000 小时,求µ和σ.解:因 T 服从对数正态分布LN (µ, σ 2 ,有 ln T 服从正态分布N (µ, σ 2 ,由第 11 题可知t p = e µ +σ ⋅u p ,则t0.2 = e µ +σ ⋅u0.2 = e µ−0.8416σ = 5000 ,t0.8 = e µ +σ ⋅u0.8 = e µ +0.8416σ = 65000 ,可得µ − 0.8416σ = ln 5000 = 8.5172,µ + 0.8416σ = ln 65000 = 11.0821,故µ = 9.7997,σ =1.5239. 13.某厂决定按过去生产状况对月生产额最高的 5%的工人发放高产奖.已知过去每人每月生产额 X(单位:千克)服从正态分布 N (4000, 602 ,试问高产奖发放标准应把生产额定为多少?解:因 X 服从正态分布 N (4000, 602 ,x − 4000 ⎛ x − 4000 ⎞ = u0.95 = 1.6449 ,则0.95 = P{ X ≤ x0.95 } = F ( x0.95 = Φ⎜0.95 ⎟,即 0.95 60 60 ⎝⎠故高产奖发放标准应把生产额定为 x0.95 = 4000 + 60 ×1.6449 = 498.6940 千克. 44。
概率论与数理统计教程华东师大茆诗松版第二章 ppt课件
第2页
概率论与数理统计教程华东师 大茆诗松版第二章
(1) 掷一颗骰子, 出现的点数 X 1,2,……,6.
(2) n个产品中的不合格品个数 Y 0,1,2,……,n
(3) 某商场一天内来的顾客数 Z 0,1,2,……
(4) 某种型号电视机的寿命 T : [0, +)
8/4/2020
华东师范大学
第二章 随机变量及其分布
若 X 表示掷一颗骰子出现的点数, 则 {X=1.5} 是不可能事件.
(2) 若 X 为随机变量,则 {X = k} 、 {a < X b} 、……
均为随机事件.
即 {a < X b} ={;a < X() b }
8/4/2020
华东师范大学
第二章 随机变量及其分布
第5页
概率论与数理统
计教程华东师大
茆诗松版第二章
(3) 注意以下一些表达式:
{X = k}= {X k}{X < k}; {a < X b} = {X b}{X a}; { X > b} = {X b}.
(4) 同一样本空间可以定义不同的随机变量.
8/4/2020
华东师范大学
第二章 随机变量及其分布
第6页
概率论与数理统计教
第8页
概率论与数理统计教程华东师大茆 诗松版第二章
➢ 设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列.
➢ 分布列也可用表格形式表示:
X x1 P p1
x2 …… xn …… p2 …… pn ……
8/4/2020
华东师范大学
概率论和数理统计教程茆诗松专题培训课件
11/27/2019
华东师范大学
第二章 随机变量及其分布
第5页
2.1.2 随机变量的分布函数
定义2.1.2 设X为一个随机变量,对任意实数 x,
称 F(x)=P( X x) 为 X 的分布函数.
基本性质:
(1) F(x) 单调不降; (2) 有界:0F(x)1,F()=0,F(+)=1; (3) 右连续.
第12页
定义2.1.4
设随机变量X 的分布函数为F(x), 若存在非负可积函数 p(x) ,满足:
F(x)xp(t)dt
则称 X 为连续随机变量, 称 p(x)为概率密度函数,简称密度函数.
11/27/2019
华东师范大学
第二章 随机变量及其分布
第13页
密度函数的基本性质
(1) p(x) 0; (非负性)
(2)
p(
x)dx
1.
(正则性)
满足(1) (2)的函数都可以看成某个 连续随机变量的概率密度函数.
11/27/2019
华东师范大学
第二章 随机变量及其分布
例2.1.3
设
X
~
ke3x, p(x)
0,
x0, x0.
求 (1) 常数 k. (2) F(x).
解:
(1) k =3.
11/27/2019
华东师范大学
第二章 随机变量及其分布
第6页
2.1.3 离散随机变量的分布列
设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列.
分布列也可用表格形式表示:
X x1 P p1
数理统计茆诗松第二章自测题
《数理统计》第二章自测题时间:120分钟,卷面分值:100分一、填空题:(每题2分,共10分)得分 _________1.设总体X 服从参数为兄的泊松分布,龙,尼 …,见是取自尤的随机样本,其均值和方差分别为乂和S3如果A = aX + (2-3a )S2是2的无偏估计,则圧 ; ' [,…,x“为来自该总体的一 个简单随机样本,则参数&的矩估计量为 2.设总体X 的密度函数为/(兀&)= x <0,3.己知玄,&为未知参数&的两个无偏估计,且玄与&不相关,£>(&)=4£>(&)。
如果 也是&的无偏估计,且是&6的所有同类型线性组合中方差最小的,则 <3= 4•设尤是在一次随机试验中事件月发生的次数,进行了力次试验得一组样本屁 见•: X, 其中事件月发生了 R 次,则事件月发生的概率为P ,p?的最大似然估计为 ____________ ; p (l-p )的 矩估计为 ______ 5.设总体X~N ( u, 0 2), 口,° $均为未知参数,X b X 2> -X n <n N 3〉为来自总体X 的一个样 本,当用2X - Xp £及0・2Xi + 0. 3X2 + 0. 5X3作为口的估计时,最有效的 二、选择题:(每题3分,共24分) 得分1.设总体X 服从[a, b] (a<b ) ±的均匀分布,冬b 均为未知参数,X b X 2, …Xn 为来自总体X的一个样本,则用与庄的最人似然估计量为() max Xf]2, =[1 W i 冬 nmin XiJ 2 1 冬 i W n a 2 = [ min XiJ 2, b J 二[max XiJ 21 W i 冬门 1 W i W n (C )a2 = [X - S]2,b 2 = [X + S22.设总体X 的概率分布为 (D )a 2 = [X + Sl^b 2=[X - S]2P 6223(1-0)021-26>其中& (0<弘1⑵是未知参数,从总体/中抽取容量为8的一组样本,其样本值为3, 1, 3,0, 3, 1, 2, 3,则参数&的矩估计值为()。
概率论与数理统计教程茆诗松版第二章ppt课件
4/22/2020
华东师范大学
第二章 随机变量及其分布
第8页
2.1.3 离散随机变量的分布列
➢ 设离散随机变量 X 的可能取值为: x1,x2,……,xn,……
称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列.
➢ 分布列也可用表格形式表示:
X x1 P p1
x2 …… xn …… p2 …… pn ……
4/22/2020
华东师范大学
第二章 随机变量及其分布
注 意 点 (2)
第11页
对离散随机变量的分布函数应注意: (1) F(x)是递增的阶梯函数; (2) 其间断点均为右连续的; (3) 其间断点即为X的可能取值点; (4) 其间断点的跳跃高度是对应的概率值.
4/22/2020
华东师范大学
第二章 随机变量及其分布
第二章 随机变量及其分布
第1页
第二章 随机变量及其分布
§2.1 随机变量及其分布 §2.2 随机变量的数学期望 §2.3 随机变量的方差与标准差 §2.4 常用离散分布 §2.5 常用连续分布 §2.6 随机变量函数的分布 §2.7 分布的其他特征数
4/22/2020
华东师范大学
第二章 随机变量及其分布
(2) F(x) 是 (∞, +∞) 上的连续函数; (3) P(X=x) = F(x)F(x0) = 0;
4/22/2020
华东师范大学
第二章 随机变量及其分布
注意点(2)
第18页
(4) P{a<X≤b} = P{a<X<b} = P{a≤X<b} = P{a≤X≤b} = F(b)F(a).
(5) 当F(x) 在x点可导时, p(x) = F ( x )
茆诗松概率论教案
茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间定义随机现象、样本空间、事件列举实例,解释随机现象和样本空间的概念1.2 概率的定义与性质引入概率的概念,讲解概率的计算方法探讨概率的基本性质,如归一性、互补性等1.3 条件概率与独立性引入条件概率的概念,讲解条件概率的计算方法探讨事件的独立性,讲解独立事件的概率计算规则第二章随机变量及其分布2.1 随机变量的概念定义随机变量、随机变量的取值、随机变量的分布举例说明随机变量的概念及其应用2.2 离散型随机变量的概率分布讲解离散型随机变量的概率分布,如二项分布、泊松分布等探讨离散型随机变量的数学期望和方差的概念及计算方法2.3 连续型随机变量的概率密度讲解连续型随机变量的概率密度,如正态分布、均匀分布等探讨连续型随机变量的数学期望和方差的计算方法第三章随机向量及其分布3.1 随机向量的概念定义随机向量、随机向量的取值、随机向量的分布举例说明随机向量的概念及其应用3.2 离散型随机向量的分布讲解离散型随机向量的分布,如二元随机向量、多元随机向量等探讨离散型随机向量的数学期望和方差的概念及计算方法3.3 连续型随机向量的分布讲解连续型随机向量的分布,如二维正态分布、均匀分布等探讨连续型随机向量的数学期望和方差的计算方法第四章数学期望与方差4.1 数学期望的概念与计算定义数学期望,讲解数学期望的计算方法探讨数学期望的性质,如线性性、单调性等4.2 方差的概念与计算定义方差,讲解方差的计算方法探讨方差的性质,如非负性、线性性等4.3 协方差与相关系数讲解协方差的概念及计算方法探讨相关系数的定义及计算方法,讲解相关系数的性质与应用第五章大数定律与中心极限定理5.1 大数定律讲解大数定律的概念及意义,如弱大数定律、强大数定律等探讨大数定律的应用及在实际问题中的重要性5.2 中心极限定理讲解中心极限定理的概念及意义探讨中心极限定理的应用,如样本均值的分布、样本方差的分布等5.3 随机变量的标准化讲解随机变量标准化的概念及方法探讨标准化随机变量在概率论中的应用,如正态分布的标准化等第六章随机过程及其基本性质6.1 随机过程的概念定义随机过程,讲解随机过程的表示方法举例说明随机过程的应用,如随机游走、随机振动等6.2 随机过程的分布函数讲解随机过程的分布函数的概念及计算方法探讨随机过程的分布函数的性质,如单调性、规范性等6.3 随机过程的协方差函数讲解随机过程的协方差函数的概念及计算方法探讨随机过程的协方差函数的性质,如对称性、规范性等第七章马尔可夫链7.1 马尔可夫链的概念定义马尔可夫链,讲解马尔可夫链的表示方法举例说明马尔可夫链的应用,如天气变化、人口迁移等7.2 马尔可夫链的转移概率讲解马尔可夫链的转移概率的概念及计算方法探讨马尔可夫链的转移概率的性质,如无后效性、规范性等7.3 马尔可夫链的稳态分布讲解马尔可夫链的稳态分布的概念及计算方法探讨马尔可夫链的稳态分布的性质,如唯一性、非增性等第八章随机分析8.1 随机微分的概念定义随机微分,讲解随机微分的表示方法举例说明随机微分的应用,如金融市场的波动等8.2 随机微分方程讲解随机微分方程的概念及求解方法探讨随机微分方程的性质,如唯一性、存在性等8.3 随机积分讲解随机积分的概念及计算方法探讨随机积分的性质,如线性性、规范性等第九章随机最优化9.1 随机最优化问题定义随机最优化问题,讲解随机最优化问题的表示方法举例说明随机最优化问题的应用,如金融风险管理等9.2 随机最优化方法讲解随机最优化方法的概念及求解方法探讨随机最优化方法的性质,如收敛性、有效性等9.3 随机最优化问题的数值解法讲解随机最优化问题的数值解法概念及计算方法探讨随机最优化问题的数值解法的性质,如准确性、稳定性等第十章蒙特卡洛方法及其应用10.1 蒙特卡洛方法的概念定义蒙特卡洛方法,讲解蒙特卡洛方法的原理及步骤举例说明蒙特卡洛方法的应用,如随机模拟、参数估计等10.2 蒙特卡洛方法的收敛性讲解蒙特卡洛方法的收敛性概念及判断方法探讨蒙特卡洛方法的收敛性的性质,如收敛速度、条件等10.3 蒙特卡洛方法的应用讲解蒙特卡洛方法在实际问题中的应用,如金融市场模拟、风险管理等探讨蒙特卡洛方法的优缺点及其在实际应用中的限制重点和难点解析一、概率的定义与性质:理解概率的概念,掌握概率的计算方法,特别是概率的基本性质,如归一性、互补性等。
茆诗松概率论教案
茆诗松概率论教案第一章概率论的基本概念1.1 随机现象与样本空间引入随机现象的定义,解释其特点。
介绍样本空间的概念,举例说明。
1.2 随机事件与概率定义随机事件的术语,如必然事件、不可能事件、独立事件等。
解释概率的定义,讨论概率的性质。
1.3 条件概率与独立性引入条件概率的概念,给出计算公式。
讨论独立事件的性质,证明独立事件的概率乘积公式。
第二章随机变量及其分布2.1 随机变量的概念定义随机变量的概念,解释离散随机变量和连续随机变量的区别。
2.2 离散随机变量的概率分布引入概率分布的概念,讨论离散随机变量的概率分布函数。
介绍二项分布、泊松分布等常见的离散随机变量分布。
2.3 连续随机变量的概率分布解释连续随机变量的概率密度函数的概念。
介绍均匀分布、正态分布等常见的连续随机变量分布。
第三章随机变量的数字特征3.1 随机变量的期望值定义随机变量的期望值的概念,讨论期望值的性质。
给出计算随机变量期望值的方法。
3.2 随机变量的方差与标准差定义随机变量的方差和标准差的概念,解释其意义。
给出计算随机变量方差和标准差的方法。
3.3 随机变量的不完全信息引入条件期望的概念,讨论条件期望的性质。
解释协方差与相关系数的定义,讨论其性质与应用。
第四章随机向量及其分布4.1 随机向量的概念定义随机向量的概念,解释随机向量的分布。
4.2 随机向量的联合分布介绍随机向量的联合分布的概念,讨论随机向量的独立性。
4.3 随机向量的边缘分布与条件分布解释边缘分布的概念,给出计算边缘分布的方法。
引入条件分布的概念,讨论条件分布的性质。
第五章随机过程及其基本性质5.1 随机过程的概念定义随机过程的概念,解释其特点。
5.2 随机过程的分布函数介绍随机过程的分布函数的概念,讨论其性质。
5.3 随机过程的马尔可夫性解释马尔可夫过程的概念,讨论其性质。
5.4 随机过程的独立增量性引入独立增量性的概念,解释其意义。
第六章随机过程的数学期望6.1 随机过程的数学期望概念引入随机过程的数学期望的概念,解释其在随机过程中的重要性。
数理统计茆诗松第二章自测题
3.设 和 是总体参数 的两个估计量,说 比 更有效,是指( )。
(A) ;(B) ;
(C) ;(D) 。
4.设 是来自总体X的样本,D(X)=σ2, 和 ,分别为样本均值和样本方差,则()。
(A)S是 的无偏估计(B)S是 的最大似然估计
10.( )在贝叶斯统计中,对给定的总体,参数是随机的;参数估计由先验信息决定。
四、计算题(共51分)
1.(8分)设总体X的概率密度函数为 其中参数 >0未
知,设X1,X2, …,Xn是来自总体X的样本,求 的矩估计量 ,计算 的方差 ,并讨论 的无偏性。得分
2.(12分)设总体X的概率密度为 其中参数>0为未知,从总体中抽取样本X1,X2, …,Xn,其样本观察值为x1,x2, …,xn,
《数理统计》第二章自测题参考答案
一、填空题:
1. ;2. ;3.a=0.2,b=0.8;4. , ;5.
【提示】
1.因为 ,故 ,又 ,即
,解得 。
3.由题意 , 应使得 且 达到最小。已知 ,
, , ,
令 ,求f(a)的最小值点为a= 0.2,则b=0.8。
4.因为X服从两点分布,则E(X)=p,矩估计值 ,代入p(1-p)可得其矩估计。
设总体x的密度函数为为来自该总体的一个简单随机样本则参数的矩估计量为为未知参数的两个无偏估计且是在一次随机试验中事件a发生的次数进行了n次试验得一组样本x其中事件a发生了k次则事件a发生的概率为p的最大似然估计为
《数理统计》第二章自测题
时间:120分钟,卷面分值:100分
一、填空题:(每题2分,共10分)得分
四、计算题
概率论讲义(茆诗松)
第二章 随机变量及其分布教学目的与教学要求:理解随机变量的概念;掌握离散和连续随机变量的描述方法;理解分布函数、概率分布列和概率密度函数的概念和性质;会利用概率分布计算有关事件的概率;掌握二项分布、泊松分布、正态分布、指数分布、均匀分布等;会求简单随机变量函数的概率分布及特征数。
教学重点:不同类型的随机变量的概率分布的概念和性质、常用的离散和连续分布、随机变量的数学期望与方差的概念和性质、随机变量函数的分布。
教学难点:概率分布和数学期望以及方差性质的应用、随机变量函数的分布。
教学措施:理论部分的教学多采用讲授法,注意思想方法的训练,计算类问题采用习题与讨论的方法进行教学。
教学时数:20学时 教学过程:§2.1 随机变量及其分布例2.1.1 (1) 掷一颗骰子,出现的点数X :1、2、…、6; (2) n 个产品中的不合格品个数Y :0、1、2、…、n ; (3) 某商场一天内来的顾客数Z :0、1、2、…; (4) 某种型号电视机的寿命T :[0,)+∞。
§2.1.1 随机变量的概念定义2.1.1 定义在样本空间Ω上的实值函数称为随机变量,常用大写X 、Y 、Z 等表示;随机变量的取值用小写字母x 、y 、z 等表示。
注意:(1) 随机变量()X ω是样本点ω的函数,其定义域为Ω,其值域为(,)R =-∞+∞,若X 表示掷一颗骰子出现的点数,则{ 1.5}X =是不可能事件;(2) 若X 为随机变量,则{}X k =、{}a X b <≤、…均为随机事件,即:{}{:()}a X b a X b ωω<≤=<≤⊂Ω;(3) 注意以下一些表达式:{}{}{}X k X k X k ==≤-< {}{}{}a X b X b X a <≤=≤-≤ {}{}X b X b >=Ω-≤(4) 同一样本空间可以定义不同的随机变量。
两类随机变量:若随机变量X 可能取值的个数为有限个或可列个,则称X 为离散随机变量;若随机变量X 的可能取值充满某个区间(,)a b ,则称X 为连续随机变量,其中a 可以是-∞,b 可以是+∞。
茆诗松概率论教案
茆诗松概率论教案第一章概率论的基本概念1.1 随机试验与样本空间介绍随机试验的概念及其特点讲解样本空间、事件及它们的分类举例说明如何判断两个事件的关系(包含、互斥、独立等)1.2 概率的定义与性质介绍概率的定义(古典概率、几何概率、条件概率)讲解概率的基本性质(互补性、可加性、乘法公式)举例说明如何计算简单事件的概率1.3 条件概率与独立性讲解条件概率的定义及其计算方法介绍独立事件的定义及其性质讲解如何判断两个事件是否独立1.4 贝叶斯定理讲解贝叶斯定理的定义及其意义讲解如何应用贝叶斯定理计算后验概率第二章随机变量及其分布2.1 随机变量的概念介绍随机变量的定义及其分类(离散型、连续型)讲解随机变量的数学期望、方差、标准差等基本统计量2.2 离散型随机变量的概率分布讲解离散型随机变量的概率质量函数(PMF)讲解常见离散型随机变量的分布(均匀分布、二项分布、泊松分布等)2.3 连续型随机变量的概率分布讲解连续型随机变量的概率密度函数(PDF)讲解常见连续型随机变量的分布(均匀分布、正态分布、指数分布等)2.4 大数定律与中心极限定理讲解大数定律的意义及其应用讲解中心极限定理的内容及其意义第三章随机变量的数字特征3.1 随机变量的数学期望讲解随机变量数学期望的定义及其计算方法讲解随机变量数学期望的性质及其应用3.2 随机变量的方差与标准差讲解随机变量方差的定义及其计算方法讲解随机变量标准差的定义及其计算方法3.3 随机变量的协方差与相关系数讲解随机变量协方差的定义及其计算方法讲解随机变量相关系数的定义及其计算方法3.4 随机变量的矩讲解随机变量矩的定义及其计算方法讲解随机变量矩的应用及其意义第四章随机向量及其分布4.1 随机向量的概念介绍随机向量的定义及其分类(离散型、连续型)讲解随机向量的数学期望、方差、标准差等基本统计量4.2 离散型随机向量的概率分布讲解离散型随机向量的概率质量函数(PMF)讲解常见离散型随机向量的分布(均匀分布、二项分布等)4.3 连续型随机向量的概率分布讲解连续型随机向量的概率密度函数(PDF)讲解常见连续型随机向量的分布(均匀分布、正态分布等)4.4 大数定律与中心极限定理在随机向量中的应用讲解大数定律与中心极限定理在随机向量中的应用方法第五章随机变量的函数及其分布5.1 随机变量函数的定义及其分类介绍随机变量函数的定义及其分类(确定性函数、随机性函数)5.2 离散型随机变量的函数的分布讲解离散型随机变量的函数的分布的定义及其计算方法讲解常见离散型随机变量的函数的分布的性质及其应用5.3 连续型随机变量的函数的分布讲解连续型随机变量的函数的分布的定义及其计算方法讲解常见连续型随机变量的函数的分布的性质及其应用5.4 随机向量的函数的分布讲解随机向量的函数的分布的定义及其计算方法讲解随机向量的函数的分布的应用及其意义第六章随机过程及其基本性质6.1 随机过程的概念介绍随机过程的定义及其特点讲解随机过程的分类(离散时间、连续时间)6.2 随机过程的随机变量的相关性质讲解随机过程中随机变量的相关性质(独立性、马尔可夫性等)6.3 随机过程的分布函数及其性质讲解随机过程的分布函数的定义及其性质讲解如何计算随机过程的分布函数6.4 随机过程的数字特征讲解随机过程的数字特征(数学期望、方差、协方差等)讲解如何计算随机过程的数字特征第七章马尔可夫链7.1 马尔可夫链的概念介绍马尔可夫链的定义及其特点讲解马尔可夫链的分类(有限状态、无限状态)7.2 马尔可夫链的转移概率讲解马尔可夫链的转移概率的定义及其计算方法讲解如何判断马尔可夫链的稳态分布7.3 马尔可夫链的性质及其应用讲解马尔可夫链的性质(无后效性、唯一性等)讲解马尔可夫链在实际应用中的例子(例如,股票价格预测、人口变化等)7.4 马尔可夫决策过程讲解马尔可夫决策过程的定义及其特点讲解如何应用马尔可夫决策过程解决实际问题第八章随机过程的数学期望和方差8.1 随机过程的数学期望讲解随机过程的数学期望的定义及其计算方法讲解随机过程的数学期望的性质及其应用8.2 随机过程的方差和协方差讲解随机过程的方差的定义及其计算方法讲解随机过程的协方差的定义及其计算方法8.3 随机过程的矩讲解随机过程的矩的定义及其计算方法讲解随机过程的矩的应用及其意义8.4 随机过程的线性变换讲解随机过程的线性变换的定义及其计算方法讲解如何利用线性变换分析随机过程的性质第九章随机过程的应用9.1 随机过程在统计学中的应用讲解随机过程在统计学中的应用方法(例如,时间序列分析、生存分析等)9.2 随机过程在物理学中的应用讲解随机过程在物理学中的应用方法(例如,噪声、布朗运动等)9.3 随机过程在经济学中的应用讲解随机过程在经济学中的应用方法(例如,随机模型、经济预测等)9.4 随机过程在其他领域中的应用讲解随机过程在其他领域中的应用方法(例如,生物学、工程学等)第十章随机过程的进一步研究10.1 随机过程的极限讲解随机过程的极限的定义及其性质讲解如何判断随机过程的极限存在性10.2 随机过程的稳态分布讲解随机过程的稳态分布的定义及其计算方法讲解如何判断随机过程的稳态分布的存在性10.3 随机过程的谱分析讲解随机过程的谱分析的定义及其方法讲解如何利用谱分析研究随机过程的性质10.4 随机过程的其他研究方法讲解随机过程的其他研究方法(例如,主成分分析、信息论等)重点和难点解析重点环节1:随机试验与样本空间需要重点关注样本空间的定义及其包含的所有可能结果。
【最新资料】概率论与数理统计魏宗舒第二章(2)ppt模版课件
则 当 i j 时,P{X i,Y j} 0
当 i j 时,由乘法公式得
Pij
P{ X
i,Y
j}
P{X
i }P{Y
j
X
i}
1 1 4i
1 4i
再由 pi pij p j pi (2)二维随机变量 (X ,Y) (X (),Y()) ( ) 是一个整体,因为 X 与 Y 之间是有联系的。
(3)在集合上,二维随机变量 ( X ,Y ) 可看成 平面上的随机点。
二维随机变量举例
1 考察某地区成年男子的身体状况: 令 X :该地区成年男子的身高
二、边沿分布
定义【2.6】若 ( X ,Y ) 是一个二维随机变 量,则它的分量 X(或 Y)是一维随机变量, 因此,分量 X(或 Y )也有分布函数。
称 X(或 Y)的分布函数为二维随机变量 (X, Y) 关于 X(或 Y)的边沿分布函数。
边沿分布也称为边缘分布或边际分布
已知联合分布列求边沿分布列
定义【2.4】设( X ,Y )为二维离散型随 机变量,X 的取值为 x1 , x2 , , xi , ;Y 的取值 为 y1 , y2 , , y j , 则称 pij P{X xi ,Y y j} (i , j 1 , 2 , ) 为二维离散型随机变量 ( X ,Y )
的(联合)分布列。
22 P{X 1 , Y 1} 32 9
P{X 2 , Y 2} P() 0
由此得 ( X ,Y ) 的联合分布列为
Y
0
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17 September 2011
华东师范大学
第二章 随机变量及其分布
第19页 19页
离散型
1. 分布列: pn = P(X=xn) ( 唯一 ) 2. F(x) = 3.
xi ≤x
连续型
1. 密度函数 X ~ p(x) ( 不唯一 ) 2. F(x) = ∫ p(t)dt
−∞ x
∑P(X = x )
17 September 2011
华东师范大学
第二章 随机变量及其分布
第8页
2.1.3 离散随机变量的分布列
设离散随机变量 X 的可能取值为: x1,x2,……,xn,…… 称 pi=P(X=xi), i =1, 2, …… 为 X 的分布列. 分布列也可用表格形式表示: X P
17 September 2011
17 September 2011
华东师范大学
第二章 随机变量及其分布
第26页 26页
2.2.1 数学期望的概念 数学期望的概念
若按已赌局数和再赌下去的“期望” 分, 则甲的所得 X 是一个可能取值为0 或100 的随机变量,其分布列为:
X P 0 1/4 100 3/4
甲的“期望” 所得是:0×1/4 +100 × 3/4 = 75.
第14页 14页
2.1.4 连续随机变量的密度函数 连续随机变量的密度函数
连续随机变量X的可能取值充满某个区间 (a, b). 因为对连续随机变量X,有P(X=x)=0, 所以无法仿离散随机变量用 P(X=x) 来描述连续 随机变量X的分布. 注意离散随机变量与连续随机变量的差别.
17 September 2011
第16页 16页
密度函数的基本性质
(1 p(x) ≥0 (非负性) ) ;
(2) ∫ p(x)dx= . (正则性) 1
∞ −∞
满足(1) (2)的函数都可以看成某个 连续随机变量的概率密度函数.
17 September 2011
华东师范大学
第二章 随机变量及其分布
第17页 17页
注意点(1)
(1) P(a ≤ X ≤b) = ∫b p(x)dx.
17 September 2011
华东师范大学
第二章 随机变量及其分布
第31页 31页
2.2.3 数学期望的性质
定理2.2.1 设 Y=g(X) 是随机变量X的函数, 若 E(g(X)) 存在,则
∞ ( g(x )P X = x ) i i i=1 E(g(X)) = ∞ g(x) p(x)dx −∞
17 September 2011
华东师范大学
第二章 随机变量及其分布
第25页 25页
两种分法
1. 按已赌局数分: 则甲分总赌本的2/3、乙分总赌本的1/3 2. 按已赌局数和再赌下去的“期望” 分: 因为再赌两局必分胜负,共四种情况: 甲甲、甲乙、乙甲、乙乙 所以甲分总赌本的3/4、乙分总赌本的1/4
第20页 20页
例2.1.3
ke−3x, 设 X ~ p(x) = 0,
求 (1) 常数 k.
x > 0, x ≤ 0.
(2) F(x).
解:
(1) k =3. (2)
−e−3x, x > 0, 1 F(x) = x ≤ 0. 0,
华东师范大学
17 September 2011
第二章 随机变量及其分布
第1页
第二章
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7
17 September 2011
随机变量及其分布
随机变量及其分布 随机变量的数学期望 随机变量的方差与标准差 常用离散分布 常用连续分布 随机变量函数的分布 分布的其他特征数
华东师范大学
第二章 随机变量及其分布
17 September 2011
华东师范大学
第二章 随机变量及其分布
第28页 28页
连续随机变量的数学期望
定义2.2.2 若积分
∞
设连续随机变量X的密度函数为p(x),
∫−∞xp(x)dx 绝对收敛,则称该积分为X 的
E(X) = ∫ xp(x)dx
−∞ ∞
数学期望,记为
17 September 2011
∑ ∫
17 September 2011
华东师范大学
第二章 随机变量及其分布
第32页 32页
例2.2.2 设随机变量 X 的概率分布为
第二章 随机变量及其分布
第3页
2.1.1 随机变量的定义
定义2.1.1 设 Ω ={ω}为某随机现象的样本空间, 称定义在Ω上的实值函数X=X(ω)为随机变量.
17 September 2011
华东师范大学
第二章 随机变量及其分布
第4页
注 意 点 (1)
(1) 随机变量X(ω)是样本点ω的函数, 其定义域为Ω ,其值域为R=(−∞,+∞) 若 X 表示掷一颗骰子出现的点数, 则 {X=1.5} 是不可能事件. (2) 若 X 为随机变量,则 {X = k} 、 {a < X ≤ b} 、…… 均为随机事件. 即 {a < X ≤ b} ={ω;a < X(ω)≤ b }⊂ Ω
第2页
§2.1 随机变量及其分布
(1) 掷一颗骰子, 出现的点数 X 1,2,……,6. (2) n个产品中的不合格品个数 Y 0,1,2,……,n (3) 某商场一天内来的顾客数 Z 0,1,2,…… (4) 某种型号电视机的寿命 T :
17 September 2011
[0, +∞)
华东师范大学
华东师范大学
第二章 随机变量及其分布
第12页 12页
例2.1.1 已知 X 的分布列如下:
X P 0 1 2 1/2 1/3 1/6
求 X 的分布函数.
解:
, x<0 0 , 0≤x< 1/3 1 F(x) = 1/2, 1 x<2 ≤ 1, 2≤x
华东师范大学
17 September 2011
17 September 2011
华东师范大学
第二章 随机变量及其分布
第6页
两类随机变量
若随机变量 X 可能取值的个数为有限个或 可列个,则称 X 为离散随机变量. 若随机变量 X 的可能取值充满某个区间 [a, b],则称 X 为连续随机变量. 前例中的 X, Y, Z 为离散随机变量; 而 T 为连续随机变量.
17 September 2011
华东师范大学
第二章 随机变量及其分布
第27页 27页
2.2.2 数学期望的定义
定义2.2.1 设离散随机变量X的分布列为 P(X=xn) = pn, n = 1, 2, ... 若级数
i= 1
∑ xi pi
∞
绝对收敛,则称该级数为X 的
∞ i= 1
数学期望,记为 E(X) = ∑xi pi
a
1 2
− ∫ p(x)d x
0
a
④ F(−a) = 2F(a) − 1
17 September 2011
华东师范大学
第二章 随机变量及其分布
第24页 24页
§2.2 随机变量的数学期望
分赌本问题(17世纪) 甲乙两赌徒赌技相同,各出赌注50元. 无平局,谁先赢3局,则获全部赌注. 当甲赢2局、乙赢1局时,中止了赌博. 问如何分赌本?
解: 因为 P(A) = P(B), 且由A、B 独立,得 P(A∪B) = P(A)+P(B)−P(A)P(B) = 2P(A) − [P(A)]2 = 3/4 从中解得: P(A)=1/2, 由此得 0<a <2 , 23 a3 因此 1/2 = P(A) = P( X > a ) = ∫ x2dx =1− a 8 8 3 从中解得 a = 4
17 September 2011
华东师范大学
第堂练习
设 X ~ p(x),且 p(−x) = p(x),F(x)是 X 的分布函数, 则对任意实数 a>0,有( ② ) ① F(−a) =1−∫0 p(x)dx ② F(−a)= ③ F(−a) = F(a)
第二章 随机变量及其分布
第21页 21页
例2.1.4
1+ x, 设 X ~ p(x) = 1− x, 0,
−1≤ x < 0 0 ≤ x <1 其它
求 F(x).
解:
0, x < −1 x2 + x + 1 , −1≤ x < 0 2 2 F(x) = 2 x − + x + 1 , 0 ≤ x <1 2 2 1 , 1≤ x
17 September 2011
华东师范大学
第二章 随机变量及其分布
第7页
2.1.2
随机变量的分布函数 随机变量的分布函数
定义2.1.2 设X为一个随机变量,对任意实数 x,
称 F(x)=P( X≤ x) 为 X 的分布函数.
基本性质:
(1) F(x) 单调不降; (2) 有界:0≤F(x)≤1,F(−∞)=0,F(+∞)=1; (3) 右连续.
17 September 2011
华东师范大学
第二章 随机变量及其分布
第5页
注 意 点 (2)
(3) 注意以下一些表达式: {X = k}= {X ≤ k}−{X < k}; {a < X ≤ b} = {X ≤ b}−{X ≤ a}; { X > b} = Ω −{X ≤ b}. (4) 同一样本空间可以定义不同的随机变量.
a
(2) (3)