八年级数学上册第14章单元测试题

合集下载

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷(Word版,含答案)

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷(Word版,含答案)

人教版八年级上册数学第14章《整式的乘法与因式分解》单元测试卷题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1.计算(-2a2b)3的结果是()A. -6a6b3B. -8a6b3C. 8a6b3D. -8a5b32.计算的结果是A. a7B. a8C. a10D. a113.下列从左边到右边的变形,是因式分解的是( )A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)24.下列多项式中,不能因式分解的是()A.a3﹣a B.a2﹣9 C.a2+2a+2 D.a2+a+1 5.若x+y=1且xy=﹣2,则代数式(1﹣x)(1﹣y)的值等于()A.﹣2 B.0 C.1 D.26.若x2+6x+p=(x﹣q)2,则p,q的值分别为()A.6,6 B.9,﹣3 C.3,﹣3 D.9,37.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.﹣3 B.3 C.0 D.18.20042-2003×2005的计算结果是()A.1 B.-1 C.0 D.2×20042-19. 将代数式2x+4x-1化成()2x+p+q的形式为()A.(x-2)2+3 B.(x+2)2-4C.(x+2)2 -5 D.(x+2)2+410.下列各式,能够表示图中阴影部分的面积的是()①ac+(b﹣c)c;②ac+bc﹣c2;③ab﹣(a﹣c)(b﹣c);④(a﹣c)c+(b﹣c)c+c2A .①②③④B .①②③C .①②D .①二、填空题(每题3分,共24分)11.把多项式2a 2b ﹣18b 分解因式的结果是 . 12.若ab =﹣2,a 2+b 2=5,则(a ﹣b )2的值为 . 13.已知:x +=3,则x 2+= .14.若(m+1)0=1,则实数m 应满足的条件 . 15.若(x+2)(x −6)=x 2+px+q ,则p+q= . 16.等式(a+b)2=a 2+b 2成立的条件为 .17.若x 2−(m −1)x+36是一个完全平方式,则m 的值为 .18.如图,边长为(m +n )的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为n ,则另一边长是 .三.解答题(共46分,19题6分,20 ---24题8分) 19.计算: (1)(-1)2 018+⎝ ⎛⎭⎪⎫-12 2-(3.14-π)0; (2)(2x 3y )2·(-2xy )+(-2x 3y )3÷2x 2;(3)(2x -3)2-(2x +3)(2x -3);。

八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析

八年级数学上册第十四章整式的乘法与因式分解单元综合测试题含解析

《第14章整式的乘法与因式分解》一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.3.如果(a3)2•a x=a24,则x=.4.计算:(1﹣2a)(2a﹣1)=.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据图写出一个代数恒等式是:.7.已知(﹣x)3=a0+a1x+a2x2+a3x3,求(a0+a2)2﹣(a1+a3)2的值.8.已知:A=﹣2ab,B=3ab(a+2b),C=2a2b﹣2ab2,则3AB﹣AC=.9.用如图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.10.我国北宋时期数学家贾宪的著作《开方作法本源》中的“开方作法本源图”如图所示,通过观察你认为图中的a=.二、选择题11.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=﹣4x2D.(﹣3a3)•(﹣5a5)=15a812.如果一个单项式与﹣3ab的积为﹣a2bc,则这个单项式为()A.a2c B.ac C.a2c D.ac13.计算[(a+b)2]3•(a+b)3的正确结果是()A.(a+b)8 B.(a+b)9C.(a+b)10D.(a+b)1114.若x2﹣y2=20,且x+y=﹣5,则x﹣y的值是()A.5 B.4 C.﹣4 D.以上都不对15.若25x2+30xy+k是一个完全平方式,则k是()A.36y2B.9y2C.6y2D.y216.已知a+b=2,则a2﹣b2+4b的值是()A.2 B.3 C.4 D.617.计算(5x+2)(2x﹣1)的结果是()A.10x2﹣2 B.10x2﹣x﹣2 C.10x2+4x﹣2 D.10x2﹣5x﹣218.下列计算正确的是()A.(x+7)(x﹣8)=x2+x﹣56 B.(x+2)2=x2+4C.(7﹣2x)(8+x)=56﹣2x2D.(3x+4y)(3x﹣4y)=9x2﹣16y2三、解答题(共46分)19.利用乘法公式公式计算(1)(3a+b)(3a﹣b);(2)10012.20.计算:(x+1)2﹣(x﹣1)2.21.化简求值:(2a﹣3b)2﹣(2a+3b)(2a﹣3b)+(2a+3b)2,其中a=﹣2,b=.22.解方程:2(x﹣2)+x2=(x+1)(x﹣1)+x.23.如图,在矩形ABCD中,横向阴影部分是矩形,另一阴影部分是平行四边形,根据图中标注的数据,计算图中空白部分的面积.24.学习了整数幂的运算后,小明给小华出了这样一道题:试比较3555,4444,5333的大小?小华怎么也做不出来.聪明的读者你能帮小华解答吗?《第14章整式的乘法与因式分解》参考答案与试题解析一、填空题1.若x•x a•x b•x c=x2000,则a+b+c=.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法:底数不变指数相加,可得答案.【解答】解:x•x a•x b•x c=x1+a+b+c=x2000,1+a+b+c=2000,a+b+c=1999,故答案为:1999.【点评】本题考查了同底数幂的乘法,同底数幂的乘法底数不变指数相加得出1+a+b+c=2000是解题关键.2.(﹣2ab)=,(﹣a2)3(﹣a32)=.【考点】单项式乘多项式;单项式乘单项式.【分析】根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可.【解答】解:﹣2ab(a﹣b)=﹣2ab•a+2ab•b=﹣2a2b+2ab2,(﹣a2)3(﹣a32)=﹣a6•(﹣a32)=a38.故答案为:﹣2a2b+2ab2,a38.【点评】本题考查了单项式与多项式相乘,熟练掌握运算法则是解题的关键,计算时要注意符号的处理.3.如果(a3)2•a x=a24,则x=.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先根据幂的乘方进行计算,再根据同底数幂的乘法得出方程6+x=24,求出即可.【解答】解:∵(a3)2•a x=a24,∴a6•a x=a24,∴6+x=24,∴x=18,故答案为:18.【点评】本题考查了幂的乘方,同底数幂的乘法的应用,解此题的关键是得出方程6+x=24.4.计算:(1﹣2a)(2a﹣1)=.【考点】完全平方公式.【分析】先提取“﹣"号,再根据完全平方公式进行计算即可.【解答】解:(1﹣2a)(2a﹣1)=﹣(1﹣2a)2=﹣(1﹣4a+4a2)=﹣1+4a﹣4a2,故答案为:﹣1+4a﹣4a2.【点评】本题考查了完全平方公式的应用,能熟练地运用公式进行计算是解此题的关键.5.有一个长4×109mm,宽2.5×103mm,高6×103mm的长方体水箱,这个水箱的容积是mm2.【考点】单项式乘单项式.【分析】直接利用单项式乘以单项式运算法则求出即可.【解答】解:∵长4×109mm,宽2。

第十四章 实数数学八年级上册-单元测试卷-冀教版(含答案)

第十四章 实数数学八年级上册-单元测试卷-冀教版(含答案)

第十四章实数数学八年级上册-单元测试卷-冀教版(含答案)一、单选题(共15题,共计45分)1、选择下列语句正确的是()A.- 的算术平方根是-B.- 的算术平方根是C. 的算术平方根是D. 的算术平方根是-2、如图,数轴上与1,对应的点分别为A,B,点B关于点A的对称点为C,设点C表示的数为x,则|x-|+2x=()A. B.6 C.4 D.23、9的算术平方根为()A.3B.±3C.-3D.814、流感病毒的半径大约为0.00000045米,它的直径用科学记数法表示为()A. B. C. D.5、有如下命题:1有理数与数轴上的点一一对应;2无理数包括正无理数,0,负无理数;3如果一个数的平方根是这个数本身,那么这个数是1或0;4一个实数的立方根不是正数就是负数.其中错误的个数是()A.1B.2C.3D.46、实数a,b在数轴上的位置如图所示,则下列各式正确的是()A.a>bB.a>﹣bC.a<bD.﹣a<﹣b7、的平方根()A.4B.2C.±4D.±28、地球上的陆地面积约为149000000km2.将149000000用科学记数法表示为()A.1.49×10 6B.1.49×10 7C.1.49×10 8D.1.49×10 99、下列说法中,不正确的是A.3是的算术平方根B.-3是的算术平方根C.±3是的平方根 D.-3是的立方根10、-3的相反数是()A. B.3 C.0 D.11、判断下列说法错误的是()A.2是8的立方根B.±4是64的立方根C.﹣是﹣的立方根 D.(﹣4)3的立方根是﹣412、我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130 000 000kg的煤所产生的能量.把130 000 000kg用科学记数法可表示为()A.13×10 7kgB.0.13×10 8kgC.1.3×10 7kgD.1.3×10 8kg13、若|m|=3,n2=25,且m﹣n>0,则m+n的值为()A.±8B.±2C.2或8D.﹣2或﹣814、据海关统计,今年第一季度我国外贸进出口总额是70100亿元人民币,比去年同期增长了3.7%,数70100亿用科学记数法表示为( )A.7.01×10 4B.7.01×10 11C.7.01×1012 D.7.01×10 1315、2月10日19时52分,中国首次火星探测任务“天问一号”成功“刹车”被火星“捕获”.在制动捕获过程中,火星环绕器面临着诸多困难,比如探测器距离地球约公里,无法实时监控.其中数据用科学记数法表示为()A. B. C. D.二、填空题(共10题,共计30分)16、已知=4.1,则=________.17、x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的平方根________.18、﹣1.305≈﹣1.3是精确到________.19、比较大小: ________ (填“<”、“=”或“>”)20、若,则得值是________;若,则得值是________.21、1680000000用科学记数法表示为________.22、如图,在数轴上点A表示的实数是________.23、的绝对值是________,相反数是________,倒数是________.24、用计算器比较与大小.解:按键:显示:________ ;按键:显示:________ ;所以________&nbsp; (填“>”或“<”)25、的平方根是________ ,的立方根是________。

人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)

人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)

人教版数学八年级上第十四章《整式的乘法与因式分解》单元检测卷(含答案)一、选择题(每题3分,共30分) 1.下列运算正确的是( )A .a 3+a 3=a 6B .2(a +1)=2a +1C .(ab )2=a 2b 2D .a 6÷a 3=a 22.(1+x 2)(x 2-1)的计算结果是( )A .x 2-1B .x 2+1C .x 4-1D .1-x 43.任意给定一个非零数m ,按下列程序计算,最后输出的结果是( )A .mB .m -2C .m +1D .m -14.下列计算正确的是( )A .-3x 2y ·5x 2y =2x 2yB .-2x 2y 3·2x 3y =-2x 5y 4C .35x 3y 2÷5x 2y =7xyD .(-2x -y )(2x +y )=4x 2-y 2 5.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-25 6.下列因式分解正确的是( )A .2x 2-2=2(x +1)(x -1)B .x 2+2x -1=(x -1)2C .x 2+1=(x +1)2D .x 2-x +2=x (x -1)+2 7.若(a +b )2=(a -b )2+A ,则A 为( )A .2abB .-2abC .4abD .-4ab8.计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3的项,则m ,n 的值为( )A .m =3,n =1B .m =0,n =0C .m =-3,n =-9D .m =-3,n =89.若a ,b ,c 是三角形的三边长,则代数式(a -b )2-c 2的值( )A .大于0B .小于0C .等于0D .不能确定10.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示,设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =25b B .a =3b C .a =27bD .a =4b二、填空题(每题3分,共18分)11.计算:(m+1)2-m2=____.12.计算:|-3|+(π+1)0-4=____.13.已知x=y+4,则代数式x2-2xy+y2-25的值为____.14.若a=2,a-2b=3,则2a2-4ab的值为____.15.若6a=5,6b=8,则36a-b=____.16.利用1个a ×a 的正方形,1个b ×b 的正方形和2个a ×b 的长方形可拼成一个正方形(如图所示),从而可得到因式分解的公式____.三、解答题(共52分) 17.(16分)计算:(1)5x 2y ÷(-31xy )×(2xy 2)2;(2)9(a -1)2-(3a +2)(3a -2);(3)[(a -2b )2+(a -2b )(2b +a )-2a (2a -b )]÷2a ;(4)[a (a 2b 2-ab )-b (-a 3b -a 2)]÷a 2b .18.(9分)把下列各式因式分解:(1)x (m -x )(m -y )-m (x -m )(y -m );(2)ax 2+8ax +16a ;(3)x 4-81x 2y 2.19.(7分)已知xy =1,求代数式-31x (xy 2+y +x 3y 4)的值.20.(8分)如图,某市有一块长为(3a +b )米,宽为(2a +b )米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.21.(12分)观察下列等式: 12×231=132×21, 13×341=143×31, 23×352=253×32, 34×473=374×43, 62×286=682×26, …以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①52×=×25;②×396=693×.(2)设这类等式左边两位数的十位数字为a ,个位数字为b ,且2≤a +b ≤9,写出表示“数字对称等式”一般规律的式子(含a ,b ),并证明.参考答案1.C2.C3.C4.C5.B6.A7.C8.A9.B10.B11.2m +112.213.-914.122515.6416.a2+2ab+b2=(a+b)217.(1)原式=-60x3y4.(2)原式=-18a+13.(3)原式=-a-b.(4)原式=2ab.18.(1)原式=-(m-x)2(m-y). (2)原式=a(x+4)2. (3)原式=x2(x+9y)(x-9y)19.原式=-1.20.63平方米.21.(1)①275572②6336(2)“数字对称等式”一般规律的式子为:(10a+b)×[100b+10(a+b)+a]=[100a+10(a+b)+b]×(10b+a).人教版八年级上册第十四章整式的乘法与因式分解单元测试(3)一、选择题(共14 小题,每小题 3 分,共42 分)1.若,,则等于()A. B. C. D.2.把多项式因式分解的结果是()A. B.C. D.3.以下二次三项式在实数范围内一定不能分解因式的是()A. B.C. D.4.代数式与的公因式是()A. B. C. D.5.计算的结果是()A. B. C. D.6.若为整数,则一定能被()整除.A. B. C. D.7.下列多项式中,能运用公式法进行因式分解的是()A. B.C. D.8.下列运算中,正确的是()A. B.C. D.9.分解因式的正确结果是()A. B.C. D.10.如果的展开式中只含有这一项,那么的值为()A. B. C. D.不能确定11.设,如果,,,那么、、的大小关系为()A. B. C. D.不能确定12.若,那么的值是()A. B. C. D.13.下多项式中,在实数范围内能分解因式的是()A. B.C. D..14.若,且,则A. B. C. D.卷II(非选择题)二、填空题(共6 小题,每小题 3 分,共18 分)15.已知,,则________.16.已知,,则①________ ②________.17.若多项式是完全平方展开式,则________.18.要使多项式不含关于的二次项,则与的关系是________.19.如图,是一个长为,宽为的长方形,沿图中虚线用剪刀将其均分成四个完全相同的小长方形,然后按图的形状拼图.图中的图形阴影部分的边长为________;(用含、的代数式表示)请你用两种不同的方法分别求图中阴影部分的面积;方法一:________;方法二:________.观察图,请写出代数式、、之间的关系式:________.20.杨辉三角,又称贾宪三角,是二项式系数在三角形中的一种几何排列,如图,观察下面的杨辉三角:按照前面的规律,则________.三、解答题(共8 小题,共90 分)21.(11分) 计算:;.22.(11分) 因式分解:(1)(2)(3)23.(11分)关于的多项式分解因式后有一个因式是,试求的值.24.(11分)一个单项式加上多项式后等于一个整式的平方,试求这样的单项式并写出相应的等式(请写个)25.(11分)已知(、为整数)是及的公因式,求、的值.26.(11分)已知展开后的结果中不含、项.求的值.27.(11分)老师给了一个多项式,甲、乙、丙、丁四位同学分别对这个多项式进行描述,(甲):这是一个三次四项式;(乙):常数项系数为;(丙):这个多项式的前三项有公因式;(丁):这个多项式分解因式时要用到公式法;若这四个同学的描述都正确,请你构造两个同时满足这些描述的多项式,并将它因式分解.28.(13分)如图所示,某规划部门计划将一块长为米,宽为米的长方形地块进行改建,其中阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当,时的绿化面积.答案1.C2.D3.D4.A5.B6.A7.C8.D10.A11.A12.C13.D14.D15.16.17.18.相等19.20.21.解:;.22.解:(1);(2);(3).23.解:,.24.解:①加,则;②加,则;③加,则.25.解:∵二次三项式既是的一个因式,也是的一个因式,∴也必定是与差的一个因式,而,∴,∴,.26.解:因为展开后的结果中不含、项所以所以.27.解:28.解:(平方米),当,时,(平方米).人教版八年级上册第十四章整式乘法与因式分解单元检测(含答案)一、单选题1.计算结果正确的是()A.B.C.D.2.计算12x a a a a ⋅⋅=,则x 等于( ) A.10B.9C.8D.43.下列计算正确的是( ) A .326a a a •=B .()239a a = C .5510x x x += D .78y y y •=4.若m ,n 是正整数,且2232m n ⋅=,()m n =264,则mn m n ++的值为( ) A.10B.11C.12D.135.20192019532135⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭( )A .1-B .1C .0D .20036.如果(x-2)(x+3)=x 2+px+q ,那么p 、q 的值为( ) A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-6.7.( 22)221xy x y xy ÷=-+,括号内应填的多项式为( ) A .322324x y x y -B .12x y - C .3223242x y x y xy -+D .112x y -+ 8.下列多项式乘法中可以用平方差公式计算的是( ) A .(﹣a +b )(a ﹣b ) B .(x +2)(2+x )C .(3x +y )(y ﹣3x) D .(x ﹣2)(x +1) 9.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大正方形的面积为36,中间空缺的小正方形的面积为4,则下列关系式中不正确的是( )A .x+y=6B .x ﹣y=2C .x•y=8D .x 2+y 2=3610.下列等式从左往右因式分解正确的是( ) A .()ab ac b a b c d ++=++ B .()()23212x x x x -+=--C .()222121m n m mn n +-=++-D .()()2414141x x x -=+-11.下列多项式能分解因式的是( ) A .22xy +B .22x y xy -C .22x xy y ++D .244x x +-12.在多项式①-m 4-n 4,②a 2+b 2,③-16x 2+y 2,④9(a -b )2-4,⑤-4a 2+b 2中,能用平方差公式分解因式的有() A.1个 B.2个 C.3个 D.4个二、填空题13.分解因式:a 2-5a -14=________.14.若7m n +=,11mn =,则22m mn n -+的值是______. 15.()2320x y -++=,则x y 为 .16.如图,边长为a 的正方形中有一个边长为b 的小正方形,若将图1的阴影部分拼成一个长方形,如图2,比较图1和图2的阴影部分的面积,你能得到的公式是______________.三、解答题 17.计算:(123(2)853|--(2)2342()()n n ⋅(3)23322(3)(4)(6)a b ab ⋅÷18.(1)计算:()1132π-⎛⎫-+ ⎪⎝⎭(2)化简:()()()32223x x y x y x yxy -++÷19.计算:(1)2(2)(1)(1)a b a a +--+(2)()43322223694(3)a b a b a bab -+÷-20.动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;(2)请写出三个代数式(a +b )2,(a -b )2,ab 之间的一个等量关系:___________________________;问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x +y =8,xy =7,求x -y 的值.21.把下列各式分解因式:(1)481a - (2)223242x y xy y -+22.乘法公式的探究及应用.小题1:如图1,可以求出阴影部分的面积是_______ (写成两数平方差的形式);小题2:如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是_______,长是______,面积是_________ (写成多项式乘法的形式).小题3:比较图 1,图2的阴影部分面积,可以得到乘法公式________ (用式子表达)答案 1.A 2.A 3.D 4.B 5.B 6.B 7.C 8.C 9.D 10.B 11.B 12.C 13.(a-7)(a+2) 14.16. 15.-816.a 2-b 2=(a+b )(a-b ).17.(1) 7-14n ;(3)1244a b18.(1)3;(2)25x ;19.(1)4ab+42b +1;(2)2449a b a -+20.(1) (a -b )2;(a +b )2-4ab;(2) (a +b )2-4ab =(a -b )2,问题解决: x -y =±6 21.(1)(a 2+9)(a+3)(a-3); (2)2y (x-y )2.22.小题1: 22a b -;小题2: -a b ,+a b ,()()a b a b +-;小题3: 22()()a b a b a b +-=-人教版八年级数学上册第14章整式的乘法与因式分解单元测试题 一、选择题1.下列各式由左边到右边的变形为因式分解的是( ) A.a 2-b 2+1=(a+b)(a-b)+1 B.m 2-4m+4=(m-2)2C.(x+3)(x-3)=x 2-9D.t 2+3t-16=(t+4)(t-4)+3t 2.分解因式:x 3-x,结果为( )(第10题图)A.x(x 2-1)B.x(x-1)2C.x(x+1)2D.x(x+1)(x-1)3.下列因式分解正确的是( )A.16m 2-4=(4m+2)(4m-2)B.m 4-1=(m 2+1)(m 2-1)C.m 2-6m+9=(m-3)2D.1-a 2=(a+1)(a-1) 4.下列多项式能因式分解的是( )A.m 2+n B .m 2-m+1 C .m 2-2m+1 D .m 2-n 5.计算(2x 3y )2的结果是( )A .4x 6y 2B .8x 6y 2C .4x 5y 2D .8x 5y 2 6.已知a+b=3,ab=2,计算:a 2b+ab 2等于( )A .5B .6C .9D .1 7、下列运算中结果正确的是( )A 、633·x x x =;B 、422523x x x =+;C 、532)(x x =;D 、222()x y x y +=+.8、ab 减去22b ab a +-等于 ( )。

八年级数学上册《第十四章勾股定理》单元测试卷及答案-华东师大版

八年级数学上册《第十四章勾股定理》单元测试卷及答案-华东师大版

八年级数学上册《第十四章勾股定理》单元测试卷及答案-华东师大版(考试时间:60分钟 总分:100分)一、选择题1.以下四组数中,是勾股数的是( )A .1,2,3B .12,13,4C .8,15,17D .4,5,62.在下列以线段a 、b 、c 的长为三边的三角形中,不能构成直角三角形的是( )A . 1.5a = 2b = 3c =B .7a = 24b = 25c =C .345a b c =::::D .9a = 12b = 15c =3.如图,一根长为5m 的竹竿AB 斜靠在竖直的墙壁上,竹竿底端B 离墙壁距离3m ,则该竹竿的顶端A 离地竖直高度为( )A .2mB .3mC .4mD 3m4.如图,在△ABC 中,△B=90°,AB=1,BC=2.四边形ADEC 是正方形,则正方形ADEC 的面积是( )A .3B .4C .5D .65.如图,在ABC 中5AB AC ==,按以下步骤作图:①以C 为圆心,CB 的长为半径作弧,交AB 于点D ;②分别以点D ,B 为圆心,大于12BD 的长为半径作弧,两弧交于点E ;③作射线CE ,交边AB 于点F .若4CF =,则线段AD 的长为( )A 3B .1C .22D .126.由下列各组线段围成的三角形中,是直角三角形的是()A .1,2,2B .2,3,4C .12 3 D .22 37.用反证法证明“a b <”时应假设( )A .a b >B .a b ≥C .a b =D .a b ≤8.我国明代有一位杰出的数学家提出一道“荡秋千”的数学问题:“平地秋千未起,踏板一尺离地,送行二步与人齐,五尺人高曾记;仕女佳人争蹴,终朝笑语欢嬉,良工高士素好奇,算出索长有几?”其意思为:如图所示,当秋千静止在地面上时,秋千的踏板离地的距离为一尺(1CE =尺),将秋千的踏板往前推两步(每一步合五尺,即10EF =尺),秋千的踏板与人一样高,这个人的身高为五尺(5DF =尺),求这个秋千的绳索AC 有多长?( )A .12尺B .13.5尺C .14.5尺D .15.5尺二、填空题9.在Rt ABC 中1390BC AC B ==∠=︒,,,则AB 的长是 .10.在△ABC 中,AB=5,BC=a ,AC=b ,如果a ,b 满足(a+5)(a-5)-b 2=0,那么△ABC 的形状是 .11.用反证法证明:一个三角形中至少有一个角不小于60°,应先假设 .12.如图,长方体木箱的长、宽、高分别为12cm ,4cm ,3cm ,则能放进木箱中的直木棒最长为cm .三、解答题13.如图,在ABC 中,CD 是高,BC=7,BD=6.若DE BC ,DEC DCB ∠=∠求CE 的长.14.已知ABC 的三边长为a 、b 、c ,且a-b=8,ab=2,17c =ABC 的形状,并说明理由.15.已知:如图,直线a ,b 被c 所截,△1,△2是同位角,且△1≠△2.求证:a 不平行于b.16.在Rt ABC 中90C ∠=︒,若34a b =::,10c =求a ,b 的长.四、综合题17.如图,在四边形ABCD 中=60A ∠︒,=90B D ∠=∠︒和BC=6,CD=4,求:(1)AB 的长;(2)四边形ABCD 的面积.18.如图,在ABC 中,AB 长比AC 长大1,15BC =,D 是AB 上一点9BD =和12CD =.(1)求证:CD AB ⊥; (2)求AC 长.19.如图,点A 是网红打卡地诗博园,市民可在云龙湖边的游客观光车站B 或C 处乘车前往,且AB=BC,因市政建设,点C到点A段现暂时封闭施工,为方便出行,在湖边的H处修建了一临时车站(点H在线段BC上),由H处亦可直达A处,若AC=1km,AH=0.8km,CH=0.6km.(1)判断△ACH的形状,并说明理由;(2)求路线AB的长.20.阅读材料,解答下面问题:我们新定义一种三角形,两边的平方和等于第三边平方2倍的三角形叫做奇异三角形.(1)理解并填空:①根据奇异三角形的定义,请你判断:等边三角形一定(填“是”或“不是”)奇异三角形;②若某三角形的三边长分别为17,2,则该三角形(填“是”或“不是”)奇异三角形;(2)探究:在Rt ABC中,两边长分别是a,c,且250c=则这个三角形是否是奇异a=,2100三角形?请说明理由.参考答案与解析1.【答案】C【解析】【解答】解:A 、12+22=5,32=9,5≠9,故不是勾股数;B 、42+122=160,132=169,160≠169,故不是勾股数;C 、82+152=189=172,故是勾股数;D 、42+52=41,62=36,41≠36,故不是勾股数. 故答案为:C.【分析】勾股数就是可以构成一个直角三角形三边的一组正整数,据此判断.2.【答案】A【解析】【解答】解:A 、∵a=1.5,b=2,c=3∴a 2+b 2=1.52+22=6.25≠c 2=9∴以线段a 、b 、c 的长为三边的三角形不是直角三角形,故此选项符合题意; B 、∵a=7,b=24,c=25 ∴a 2+b 2=72+242=625=c 2=252=625∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意; C 、∵a△b△c=3△4△5,设a=3x ,b=4x ,c=5x ∴a 2+b 2=(3x )2+(4x )22=25x 2=c 2=(5x )2=25x 2∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意; B 、∵a=9,b=12,c=15 ∴a 2+b 2=92+122=225=c 2=152=225∴以线段a 、b 、c 的长为三边的三角形是直角三角形,故此选项不符合题意. 故答案为:A.【分析】根据勾股定理的逆定理,如果三条线段的长度满足较小两条长的平方和等于最大一条长的平方,则该三角形就是直角三角形,据此一一判断得出答案.3.【答案】C【解析】【解答】解:由题意得:5m AB = 3m BC = AC BC ⊥则224m AC AB BC =-=即该竹竿的顶端A 离地竖直高度为4m 故答案为:C .【分析】直角利用勾股定理计算即可.4.【答案】C【解析】【解答】解:在△ABC 中,△B=90°由勾股定理得:AC 2=AB 2+BC 2=12+22=5 ∵四边形ADEC 是正方形 ∴S 正方形ADEC =AC 2=5 故答案为:C .【分析】利用勾股定理求出AC 2=AB 2+BC 2=12+22=5,再利用正方形的面积公式可得S 正方形ADEC =AC 2=5。

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解(能力提升)八年级数学上册单元过关测试

2022-2023学年人教版八年级数学上册单元测试定心卷第十四章 整式的乘法与因式分解(能力提升)时间:100分钟 总分:120分一、选择题目(每题3分,共24分)1.计算()2223x x ⋅-的结果是 ( )A .46x -B .56xC .52x -D .62x【解析】 解:()2223x x ⋅-=46x -,故选:A .【点睛】本题考查单项式乘单项式,熟练掌握运算法则是解答的关键.2.下列单项式中,使多项式216a M +能用平方差公式因式分解的M 是 ( )A .aB .2bC .-16aD .2b -【解析】解:A 、16a 2+a ,不符合平方差公式,不符合题意;B 、16a 2+b 2,不符合平方差公式,不符合题意;C 、16a 2-16a ,不符合平方差公式,不符合题意;D 、16a 2-b 2,符合平方差公式,符合题意.故选:D .【点睛】本题考查了平方差公式:a 2-b 2=(a+b )(a-b ),掌握平方差公式是解题的关键.3.若323b a =+,则代数式224129a ab b -+的值为 ( )A .1-B .9C .7D .5【解析】解:∵323b a =+,∴323b a -=∴()222412932a ab b b a -+=-23= =9.故选:B .【点睛】本题考查求代数式的值,完全平方式,解题关键能发现所给的条件等式与所求代数式之间的关系.4.把一块边长为a 米(5a >)的正方形土地的一边增加5米,相邻的另一边减少5米,变成一块长方形土地,你觉得土地的面积 ( )A .没有变化B .变大了C .变小了D .无法确定【解析】解:由题意得:长方形土地的长为()5a +米,宽为()5a -米,∴长方形的面积为()()()225525m a a a +-=-,正方形的面积为2a 平方米,∴2225a a >-,∴我觉得土地的面积变小了;故选C .【点睛】本题主要考查平方差公式,熟练掌握平方差公式是解题的关键.5.观察图形,用两种不同的方法计算大长方形面积,我们可以验证等式 ( )A .(a +b )(a +2b )=a2+3ab +2b2B .(a +b )(2a +b )=2a2+3ab +b2C .(a +b )(a +2b )=2a2+3ab +b2D .(a +b (2a +b )=a2+3ab +2b2【解析】解:∵长方形的面积=(a +b )(a +2b )长方形的面积=a 2+ab +ab +ab +b 2+b 2= a2+3ab +2b2,∴(a +b )(a +2b )= a 2+3ab +2b 2故选:A .【点睛】本题考查多项式乘以多项式的几何意义,通过几何图形之间的数量关系对多项式乘以多项式做出几何解释.6.阅读材料:数学课上,杨老师在求代数式245x x -+的最小值时,利用公式222)2(a ab b a b ±+=±,对式子作如下变形:22245441(2)1x x x x x ++=+++=++,因为2(2)0x +≥,所以2(2)11x ++≥,当2x =-时,2(2)11x ++=,因此245x x ++的最小值是1.通过阅读,解答问题:当x 取何值时,代数式289x x ---有最大或最小值,是多少?( )A .当4x =时,有最小值7-.B .当4x =-时,有最小值7.C .当4x =-时,有最大值7.D .当4x =时,有最大值7-.【解析】解:289x x ---=()289x x -++=()28167x x -+++=()247x -++∴当4x =-时,有最大值7,故选:C .【点睛】本题考查求代数式的最值,完全平方公式的应用,解题的关键是参照样例对代数式进行变形.7.如图,有两个正方形A ,B ,现将B 放置在A 的内部得到图甲,将A 、B 并列放置,以正方形A 与正方形B 的边长之和为新的边长构造正方形得到图乙,若图甲和图乙中阴影部分的面积分别为1和8,则正方形A 、B 的面积之和为 ( )A .8B .9C .10D .12【解析】解:设大小正方形边长分别为a 、b ,S 阴1=(a ﹣b )2=1,即a 2+b 2﹣2ab =1,S 阴2=(a +b )2﹣a 2﹣b 2=8,得:ab =4.∴a 2+b 2﹣2×4=1,∴a 2+b 2=9.故选:B .【点睛】考查了完全平方式的应用,把阴影部分表示出来是解题的关键.8.若()()35M x x =--,()()26N x x =--,则M 与N 的关系为 ( )A .M NB .M N >C .M N <D .不能确定【解析】 解:∵()()235815M x x x x =--=-+,()()226812N x x x x =--=-+,()228158123M N x x x x -=-+--+=>0,∴M N >.故选:B .【点睛】本题主要考查多项式乘以多项式、整式的加减.注意不要漏项,漏字母,有同类项的合并同类项,掌握多项式乘以多项式的法则是解题的关键.二、填空题目(每题3分,共24分)9.计算:(21)(21)x x -+--_________.【解析】解:(21)(21)x x -+--241x =-.故答案为:241x -【点睛】本题主要考查了平方差公式,熟练掌握平方差公式是解题的关键.10.计算:4.3×202.2+7.6×202.2-1.9×202.2=__________.【解析】解:4.3×202.2+7.6×202.2-1.9×202.2=202.2×(4.3+7.6-1.9)=202.2×10=2022,故答案为:2022.【点睛】本题考查提公因式法分解因式,掌握提公因式的方法是正确应用的前提.11.已知(1)(1)8x y --=,8x y +=,则xy =________.【解析】解:(1)(1)8,x y --=18,xy x y ∴--+=()18,xy x y ∴-++=()7,xy x y ∴=++8,x y ∴+=7815.xy ∴=+=故答案为:15.【点睛】本题主要考查了多项式乘多项式,熟练掌握多项式乘多项式乘法法则是解此题的根据.12.若2(3)9x m x +-+是完全平方式,则m =______.【解析】解:∵2(3)9x m x +-+是完全平方式,∴m −3=±6,解得:m =-3或9.故答案为:-3或9.【点睛】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.13.已知21m x =+,132m y +=+,若用含x 的代数式表示y ,则y =______.【解析】∵21m x =+,132m y +=+,∴12m x -=,322m y -=⨯,∴3(1)2y x -=-⨯,即21y x =+,故答案为:21x +.【点睛】本题考查了同底数幂的乘法的逆用,掌握同底数幂的乘法是解答本题的关键.14.若n 满足22(2020)(2022)1n n -+-=,则(2020)(2022)n n --=________.【解析】解:()()()()()()222420202022=20202022+220202022n n n n n n ⎡⎤=-+--+---⎣⎦, 又22(2020)(2022)1n n -+-=,212(2020)(2022)24n n ∴+--==,3(2020)(2022)2n n ∴--=, 故答案为:32.【点睛】本题考查了完全平方公式,能灵活运用完全平方公式进行变形计算是解此题的关键.15.已知6m n -=,216730mn c c +++=,则m +n +c 的值为__________.【解析】解:∵m −n =6,∴m =n +6,∵216730mn c c +++=,∴n (n +6)+c 2+16c +73=0,∴n 2+6n +c 2+16c +73=0,∴n 2+6n +9+c 2+16c +64=0,∴(n +3)2+(c +8)2=0,∴n +3=0,c +8=0,∴n =−3,c =−8,∴m =n +6=−3+6=3,∴m +n +c =3+(−3)+(−8)=−8,∴m +n +c 的值为−8.故答案为:−8.【点睛】本题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.16.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.三、解答题(每题8分,共72分)17.计算(1)计算:(2x ﹣y )2﹣(2x +y )(2x ﹣y );(2)用简便方法计算:20212﹣2020×2022.【解析】(1)解:原式=4x 2-4xy +y 2-4x 2+y 2=-4xy +2y 2;(2)解:原式=(2020+1)2-2020×(2020+2)=20202+2×2020×1+1-20202-2020×2=1.【点睛】本题考查整式混合运算,完全平方公式,平方差公式,熟练掌握完全平方公式和平方差公式是解题的关键.18.以下是小鹏化简代数式()()()()221123a a a a a -++---的过程.(1)小鹏的化简过程在第______步开始出错,错误的原因是______.(2)请你帮助小鹏写出正确的化简过程,并计算当0.5a =-时代数式的值.【解析】(1)小鹏在第①步开始出错,(a -2)2≠a 2-2a +4,错误的原因是完全平方公式运用错误. 故答案为:①,完全平方公式运用错误.(2)(a -2)2+(a +1)(a -1)-2a (a -3)=a 2-4a +4+a 2-1-2a 2+6a=2a +3.∴当0.5a =-时,原式=2×(-0.5)+3=2.【点睛】本题考查了整式的混合运算,熟练掌握相关公式及运算法则是解题的关键.19.甲、乙两个同学因式分解2x ax b ++时,甲看错了a ,分解结果为()()48x x +-,乙看错了b ,分解结果为()()26x x -+.求多项式2x ax b ++分解因式的正确结果.【解析】解:∵()()248432x x x x +-=--,甲看错了a 的值,又∵()()226412x x x x -+=+-,乙看错了b 的值,∴4a =,∴多项式()()2243284x ax b x x x x ++=+-=+-.故答案为:()()84x x +-.【点睛】本题考查因式分解和整式化简之间的关系,牢记各自的特点并能灵活应用是解题关键.20.如图,学校有一块长为()2m a b +,宽为()m a b +的长方形土地,四个角留出四个边长为()m b a -的小正方形空地,剩余部分进行绿化.(1)用含a 、b 的式子表示要进行绿化的土地面积;(结果要化简)(2)当6a =,10b =时,求要进行绿化的土地面积.【解析】(1)解:由于S 绿化面积=S 长方形﹣4S 小正方形,因此有,(a +b )(a +2b )﹣4(b ﹣a )2=a 2+3ab +2b 2﹣4a 2+8ab ﹣4b 2=(11ab ﹣3a 2﹣2b 2)(m 2),答:绿化的面积为(11ab ﹣3a 2﹣2b 2)(m 2);(2)解:当a =6,b =10时,原式=660﹣108﹣200=352(m 2)答:当a =6,b =10时,绿化的土地面积为352m 2.【点睛】本题考查完全平方公式的几何背景,多项式乘多项式,单项式乘多项式,掌握完全平方公式的结构特征,多项式乘多项式,单项式乘多项式的计算方法是正确解答的前提.21.计算并观察规律,完成下列问题:例:计算:32022202120222023-⨯⨯解:设2022x =,则原式3(1)(1)x x x x =--⋅⋅+32(1)x x x =--x =2022=.(1)计算:2223224222-⨯;(2)若123456789123456786M =⨯,123456788123456787N =⨯,请比较M 、N 的大小.【解析】(1)设223=x,∴2232-224×122=x2-(x+1)(x-1)=x2-x2+1=1;(2)设123456786=x,∴M=123456789×123456786=(x+3)•x=x2+3x,N=123456788×123456787=(x+2)(x+1)=x2+3x+2,∴M<N.【点睛】本题考查了整式的混合运算,单项式乘多项式,理解例题的解题思路是解题的关键.22.初中数学的一些代数公式可以通过几何图形的面积来推导和验证.如图①,从边长为a的正方形中挖去一个边长为b的小正方形后,将其沿虚线裁剪,然后拼成一个矩形(如图②).(1)通过计算图①和图②中阴影部分的面积,可以验证的公式是:.(2)小明在计算(2+1)(22+1)(24+1)时利用了(1)中的公式:(2+1)(22﹣1)(24+1)=1•(2+1)(22+1)(24+1)=.(请你将以上过程补充完整.)(3)利用以上的结论和方法、计算:12+(3+1)(32+1)(34+1)(38+1)(316+1).【解析】(1)解:图①中阴影部分的面积可以看作两个正方形的面积差,即a2−b2,图②是长为(a+b),宽为(a−b)的长方形,因此面积为(a+b)(a−b),由图①、图②面积相等可得:(a+b)(a −b)=a2−b2,故答案为:(a+b)(a−b)=a2−b2;(2)解:原式=(2−1)•(2+1)(22+1)(24+1)=(22−1)(22+1)(24+1)=(24−1)(24+1)=28−1,故答案为:28−1;(3)解:原式=12+12(3−1)(3+1)(32+1)(34+1)(38+1)(316+1)=12+12(32−1)(32+1)(34+1)(38+1)(316+1)=12+12(34−1)(34+1)(38+1)(316+1)=12+12(38−1)(38+1)(316+1)=12+12(316−1)(316+1)=12+12(332−1)=12+3232−12=3232. 【点睛】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是正确解答的前提,用代数式表示图形中阴影部分的面积是正确解答的关键.23.先阅读,再解答.例:222450x y x y +-++=,求x y +的值.解:∵222450x y x y +-++=∴()2221)440x x y y -++++=( 即()221)20x y -++=( 221)0,(20x y -≥+≥()221020x y ∴-=+=(),()1,2x y ∴==- 1x y ∴+=-(1)已知22464100x y x y +-++=,求xy 的值;(2)已知c a b 、、为ΔABC 的三边,且满足()222220,a b c b a c ++-+=判断ΔABC 的形状,并说明理由.【解析】(1)解:∵22464100x y x y +-++=∴()2269)4410x x y y -++++=( 即()223)210x y -++=( ∵()223)0,210x y -≥+≥( ∴()()2230,210x y -=+= ∴13,2x y ==- ∴32xy =-.(2)解:ΔABC 是等边三角形,理由∵()222220,a b c b a c ++-+=∴()()2222220a ab b b bc c -++-+=∴()()220a b b c +-=-∵()()220,0a b b c -≥-≥∴()()220,0a b b c -=-=∴,a b b c ==即a b c ==∴ΔABC 是等边三角形.【点睛】本题考查了配方法的应用以及非负数的性质,等边三角形的判定,熟练掌握完全平方公式是解题的关键.24.(1)请用两种不同的方法表示图中阴影部分的面积和.方法1:____________________________;方法2:____________________________.(2)请你直接写出三个代数式:()2a b +,22a b +,ab 之间的等量关系.(3)根据(2)中的等量关系,解决如下问题:①已知5m n +=,2220m n +=,求mn 和()2m n -的值;②已知()()222021202374x x -+-=,求()22022x -的值.【解析】解:(1)方法1:两个阴影部分的面积和就是边长为a 的正方形,与边长为b 的正方形的面积和,即22a b +;方法2:两个阴影部分的面积和也可以看作从边长为a b +的正方形面积中减去两个长为a ,宽为b 的长方形面积,即2()2a b ab +-;故答案为:22a b +,2()2a b ab +-;(2)由(1)得,222()2a b a b ab +=+-;(3)①5m n +=,222()252m n m mn n ∴+==++,2220m n +=,25mn ∴=, 即52mn =;222()220515m n m mn n -=-+=-=,答:52mn =,2()15m n -=;②设2021a x =-,2023b x =-,则2a b -=,2222(2021)(2023)74a b x x +=-+-=, 所以2222()7423522a b a b ab +---===, 即(2021)(2023)35x x --=,所以2[(2022)1][(2022)1](2022)135x x x -+--=--=,即2(2022)36x -=.【点睛】本题考查完全平方公式的几何背景,解题的关键是用不同的代数式表示阴影部分的面积.25.在求代数式值的问题中,有时通过观察式子的特点,可以找到较为简单的解法. 例如,若x 满足()()2510x x --=,求()()2225x x ---的值,可以按下列的方法来解: 解:设()2x a -=,()5x b -=,则()()2510ab x x =--=,()()253a b x x -=---=,∴()()22449a b a b ab +=-+=,∴7a b +=±,∴()()()()2222257321x x a b a b a b ---=-=+-=±⨯=±.请仿照上面的方法求解下面的问题:(1)若x 满足()()496x x --=,求()()2249x x -+-的值; (2)将正方形ABCD 和正方形EFGH 按如图所示摆放,点F 在BC 边上,EH 与CD 交于点I ,且1ID =,2CG =,长方形EFCI 的面积为24,以CF 为边作正方形CFMN .设AD x =,①用含x 的代数式直接表示EF 和CF 的长;②求图中阴影部分的面积.【解析】(1)解:设()4x a -=,()9x b -=,则()()496ab x x =--=,()()495a b x x -=---=, ∴()()()22222249252637x x a b a b ab -+-=+=-+=+⨯=;(2)①∵四边形ABCD 是正方形,四边形EFGH 是正方形,四边形EFCI 是长方形,1ID =,2CG =, ∴CD =AD =x ,∴1EF IC x ==-,∴FG =1EF x =-,∴123CF x x =--=-;②∵长方形EFCI 的面积为24,∴()()1324x x --=,设1x a -=,3x b -=,则24ab =,2a b -=,∴()()224100a b a b ab +=-+=,∵0a >,0b >,∴10a b +=,∴()()()()22221320S x x a b a b a b =---=-=+-=阴影.【点睛】本题主要考查了完全平方公式和平分差公式的应用,牢记完全平方公式和平方差公式以及变形公式(a +b )2=(a −b )2+4ab 是解题关键.祝福语祝你考试成功!。

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷(含答案)

八年级上册数学第十四章 14.3因式分解 测试卷知识要点一:提公因式法1.下列变形是因式分解的是( ) A .a ²-b ²-1=(a+b)(a-b)-1 B .ax ²+x+b ²=x(ax+1)+b ² C .(a+2)(a-2)=a ²-4 D .4x ²-9=(2x+3)(2x-3)2.分解因式6xyz - 4x ²y ²z ²+ 2xz ²时,应提取的公因式是( ) A .xyz B .2x C .2z D .2xz 3.将21a ²b-ab ²提公因式后,另一个因式是( )A. a+2bB.-a+2bC.-a-b D .a- 2b4.下列因式分解中,是利用提公因式法分解的是( ) A. a ²-b ²= (a+b) (a-b) B.a ²-2ab+b ²= (a-b)² C.ab+ac=a (b+c) D.a ²+2ab+b ²= (a+b)²5.若a+b=4,ab=2,则3a ²b+3ab ²的值是( ) A .24 B .18 C .12 D .86.多项式x ²+x ⁶提取公因式x ²后的另一个因式是( ) A .x ⁴ B .x³ C .x ⁴+1 D .x³+17.若△ABC 的三边a ,b ,c 满足a ²+ b ²+ c ²=ac+ bc+ab ,则△ABC 是( )A .锐角三角形B .等腰三角形C .等边三角形D .直角三角形 8.分解因式:3x ²y-6xy +x=_____;3x³-6x ²+ 12x=_____.9.请写出含有公因式3m ²n ,且次数为5的两个多项式,分别为_____、_____. 10.若多项式ax+B 运用提公因式法分解因式的结果为a(x -y),则B 等于_____. 11.计算:5×3⁴+9×3⁴-12×3⁴=_____.12.已知a=49,6=109,则ab - 9a 的值为_____. 13.将下列式子因式分解:(1) (x+2y)² - 2xy -x ²; (2) 3xy ²+21x ²y-39xy.14.化简3a ²b (2ab³-a ²b³-1)+2(ab)⁴+a .3ab ,并求出当a= -1,b=2时原式的值.15.已知x ²+4x-1=0,求2x ⁴+ 8x³-4x ²-8x+1的值.16.已知关于x 的二次三项式2x ²+mx+n 因式分解的结果为(2x -3)(x+21),求m ,n 的值.知识要点二:公式法17.在下列各式中,不能用平方差公式分解因式的是()A. -x²+y²B.-1-m²C.a²-9b² D.4m²-118.下列各式中不是完全平方式的是()A.x²-10x+25 B.a²+a+41C.4n²+n+4 D.9m²+6m+119.下列四个多项式,能因式分解的是()A.a²+b²B.a²-a+2C.a²+3bD.(x+y)²-420.若x为任意有理数,则多项式-41x²+x-1的值()A.一定为负数B.一定为正数C.不可能为正数D.不可能为负数21.若n为任意整数,则(n+7)²-n²一定能被______整除()A.7 B.14 C.7或14 D.7的倍数22.下列因式分解不正确的是()A.2x³-2x= 2x (x²-1) B.mx²-6mx+ 9m= m(x -3)²C.3x²-3y²=3 (x+y)(x-y) D.x²-2xy+y²= (x-y)²23.若9x²-kx+4是一个完全平方式,则k=_____.24.已知x²+6xy+9y²+∣y-1∣=0,则x+y=_____.25.若x²+x+m=(x- n)²,则m=_____,n=_____.26.如果x+y=-3,x-y=6,则代数式2x²-2y²的值为_____.27.若9x²-M= (3x+y-1)(3x-y+1),则M=_____.28.分解因式:4+12 (a-b)+9(a-b)²=_____.29.因式分解:(1) 8a³ - 2a(a+1)²; (2) m²-4n²+4n -1.30.已知x-y=1,xy=2,求x³y-2x²y²+ xy³的值.31.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4= 2²- 0²,12 = 4²- 2²,20=6²- 4²,因此4,12,20都是这种“神秘数”.(1) 28和2016这两个数是“神秘数”吗?试说明理由.(2)试说明神秘数能被4整除.(3)两个连续奇数的平方差是神秘数吗?试说明理由.32.当a,b为何值时,多项式a²+b²- 4a+6b+18有最小值?并求出这个最小值.33.已知x-1=5,求代数式(x+1)²-4(x+1)+4的值.参考答案1.D2.D3.A4.C5.A6.C7.C8.x(3xy-6y+1) 3x(x²-2x+4)9. 3m⁴n+3m²n 6m²n³-3m²n(答案不唯一)10. -ay 11. 162 12. 490013.(1)原式=(x+2y)²-x(x+2y)=(x+2y)(x+2y-x)=2y(x+ 2y);(2)原式=3xy(y+7x - 13).14.原式= 6a³b⁴-3a⁴b⁴ - 3a²b+2a⁴b⁴+ 3a²b=a³b⁴(6 -a).当a= -1, b-2时,原式=(-1)³×2⁴×【6 -(-1)】- 16×7=-112.15.∵x²+4x-1=0,∴x²+4x=1.∴2x⁴+ 8x³- 4x²-8x+1=2x²(x²+4x) -4(x²+4x) +8x+1=2x²·1 -4×1+8x+1= 2x²+8x -3 =2(x²+4x)-3=2×1-3=-1.16.因为2x²+mx+n=(2x-3)(x+ 21) =2x²-2x-23,所以m= -2, n= 23-.17.B 18.C 19.D 20.C 21.A 22.A23.±12 24.-2 25.4121-26.-3627.(y-1)²28.(2+3a - 3b)²29.(1)原式=2a[4a²- (a+1)²]=2a(3a+1)(a-1);(2)原式=m²- (4n²-4n+1)=m²-(2n -1)²= (m - 2n +1) (m+2n -1).30.x³y-2x ²y ²+ xy³= xy(x ² - 2xy+ y ²)= xy(x-y)²=2×1²=2. 31.(1)是.理由如下: ∵28=8²- 6², 2016= 505² - 503² ∴28是“神秘数”;2016是“神秘数”. (2)“神秘数”是4的倍数.理由如下:(2k+2)² - (2k)²= (2k+2 - 2k) (2k+2+2k)= 2(4k+2)=4(2k+1), ∴“神秘数”是4的倍数.(3)设两个连续的奇数为2k+1,2k -1,则(2k+1)²-(2k-1)²=8k ,而由(2)知“神秘数”是4的倍数,但不是8的倍数,所以两个连续的奇数的平方差不是“神秘数”. 32.a ²+b ²-4a+6b+18=(a ²- 4a+4)+(b ²+6b+9) +5=(a-2)²+(b+3)²+5,∴当a=2,b= -3时,a ²+b ²-4a+6b+18有最小值5.33.原式=[(x+1)-2]²-(x-1)²,当x-1=5时,原式=52)5( .。

第14章 整式的乘法与因式分解 人教版八年级数学上册单元测试题4份(含答案)

第14章 整式的乘法与因式分解 人教版八年级数学上册单元测试题4份(含答案)

八年级上册第14章同步训练一.解答题1.因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.2.计算(1)3﹣9+3﹣4;(2)﹣++;(3)(﹣)(+)+(﹣1)2.3.解答下列问题(1)一正方形的面积是a2+6ab+9b2(a>0,b>0),则表示该正方形的边长的代数式是.(2)求证:当n为正整数时,(2n+1)2﹣(2n﹣1)2能被8整除.4.(1)如图①所示的大正方形的边长为a,小正方形的边长为b,则阴影部分的面积是.(2)若将图①中的阴影部分剪下来,拼成如图②的长方形,则其面积是.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:.(4)应用公式计算:(1﹣)(1﹣)(1﹣).5.已知,关于x,y的方程组的解为x、y.(1)x=,y=(用含k的代数式表示);(2)若x、y互为相反数,求k的值;(3)若2y•3m•8x=12m,求m的值.6.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC =BD=b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+b2﹣a2+c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.7.阅读材料∵(x+3)(x﹣2)=x2+x﹣6,∴(x2+x﹣6)÷(x﹣2)=x+3,这说明多项式x2+x﹣6能被x﹣2整除,同时也说明多项式x2+x﹣6有一个因式为x﹣2;另外,当x=2时,多项式x2+x﹣6的值为零.根据上述信息,解答下列问题(1)根据上面的材料猜想:已知一个多项式有因式x﹣2,则说明该多项式能被整除,当x=2时,该多项式的值为;(2)探索规律:一般地,如果一个关于x的多项式M,当x=k时,M的值为0,试确定M与代数式x﹣k之间的关系;(3)应用:已知x﹣2能整除x2+kx﹣14,利用上面的信息求出k的值.8.已知有理数x,y满足x+y=,xy=﹣3.(1)求(x+1)(y+1)的值;(2)求x2+y2的值.9.阅读下列材料:定义:任意两个实数a,b,按规则c=ab+a+b扩充得到一个新数c,称所得的新数c为a,b的“如意数”.(1)若a=3,b=﹣2,则a,b的“如意数”c=.(2)若a=﹣m﹣4,b=m,试说明a,b的“如意数”c≤0.(3)已知a=x2(x≠0),且a,b的“如意数”为c=x4+x2﹣1,请用含x的式子表示b.10.因式分解:(1)3a2b2﹣6ab3;(2)﹣27a3b+18a2b2﹣3ab3;(3)x3+5x2﹣x﹣5;(4)(x2﹣4)2﹣9x2.参考答案一.解答题1.解:(1)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2;(2)原式=(x﹣2)2﹣y2=(x﹣2+y)(x﹣2﹣y).2.解:(1)原式=12﹣3+9﹣=9+8;(2)原式=2+5+2=9;(3)原式=5﹣2+3﹣2+1=7﹣2.3.(1)解:∵a2+6ab+9b2=(a+3b)2,∴表示该正方形的边长的代数式是a+3b.故答案为:a+3b;(2)证明:∵(2n+1)2﹣(2n﹣1)2=[(2n+1)+(2n﹣1)][(2n+1)﹣(2n﹣1)]=4n×2=8n,∴原式能被8整除.4.解:(1)如图①所示,阴影部分的面积是a2﹣b2,故答案为:a2﹣b2;(2)根据题意知该长方形的长为a+b、宽为a﹣b,则其面积为(a+b)(a﹣b),故答案为:(a+b)(a﹣b);(3)由阴影部分面积相等知(a﹣b)(a+b)=a2﹣b2,故答案为:(a﹣b)(a+b)=a2﹣b2;(4)(1﹣)(1﹣)(1﹣)====.5.解:(1),②﹣①得3y=6﹣9k.∴y=2﹣3k,把y=2﹣3k代入①得x=k﹣4.故答案为:k﹣4,2﹣3k;(2)∵x、y互为相反数,∴k﹣4+2﹣3k=0.∴k=﹣1;(3)∵2y•23x=12m÷3m,∴23x+y=(12÷3)m,∴23x+y=22m,∴2m=3x+y=3(k﹣4)+2﹣3k=3k﹣12+2﹣3k=﹣10,∴m=﹣5.6.解:(1)S=b(a+b)=ab+b2.故答案为S=ab+b2;(2)由题意得:,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2;(3)∵a2+b2=c2,且c=10,a=6,∴62+b2=102,∴b=8,∴S=ab+b2=6×8+64=112.答:S的值为112.7.解:(1)已知一个多项式有因式x﹣2,说明此多项式能被(x﹣2)整除,当x=2时,该多项式的值为0;故答案为:(x﹣2),0;(2)根据(1)得出的关系,得出M能被(x﹣k)整除;(3)∵x﹣2能整除x2+kx﹣14,∴当x﹣2=0时,x2+kx﹣14=0,当x=2时,x2+kx﹣14=4+2k﹣14=0,解得:k=5.8.解:(1)(x+1)(y+1)=xy+(x+y)+1=﹣3++1=﹣1;(2)x2+y2=(x+y)2﹣2xy=+6=6.9.解:(1)∵c=ab+a+b=3×(﹣2)+3+(﹣2)=﹣5.∴a,b的“如意数”c是﹣5.故答案为:﹣5.(2)c=m(﹣m﹣4)﹣m﹣4+m=﹣m2﹣4m﹣4=﹣(m2+4m+4)=﹣(m+2)2∵(m+2)2≥0,∴﹣(m﹣2)2≤0,∴a,b的“如意数“c≤0.(3)∵c=x2×b+x2+b=x4+x2﹣1,∴b(x2+1)=x4﹣1,∵x2+1≠0,∴b===x2﹣1.10.解:(1)3a2b2﹣6ab3=3ab2(a﹣2b);(2)﹣27a3b+18a2b2﹣3ab3=﹣3ab(9a2﹣6ab+b2)=﹣3ab(3a﹣b)2;(3)x3+5x2﹣x﹣5=x2(x+5)﹣(x+5)=(x+5)(x+1)(x﹣1);(4)(x2﹣4)2﹣9x2=(x2﹣4+3x)(x2﹣4﹣3x)=(x+4)(x﹣1)(x﹣4)(x+1).人教版八年级数学上册课时练第十四章整式的乘法与因式分解单元测试题一、选择题(30分)1.已知a与b互为相反数且都不为零,n为正整数,则下列两数互为相反数的是( )A.a2n-1与-b2n-1B.a2n-1与b2n-1C.a2n与b2n D.a n与b n2.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d大小顺序为()A.a<b<c<d B.a<b<d<c C.b<a<c<d D.a<d<b<c 3.若A=(2+1)(22+1)(24+1)(28+1)+1,则A的末位数字是( )A.2 B.4 C.6 D.84.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定5.下列计算正确的是 A .224a a a += B .624a a a ÷= C .352()a a =D .222)=a b a b --(6.如果多项式29x kx -+能用公式法分解因式,那么k 的值是( ) A .3B .6C .3±D .6±7.计算(-2)1999+(-2)2000等于( )A .-23999B .-2C .-21999D .21999 8.下列计算正确的是( ) A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 69.下列计算正确的是( ) A .a 2•a 3=a 6B .a 6÷a 3=a 2C .4x 2﹣3x 2=1D .(﹣2a 2)3=﹣8a 6 10.下列运算正确的是( ) A .633a a a ÷= B .238()a a =C .222()a b a b -=-D .224a a a +=二、填空题(15分) 11.设123,,a a a 是一列正整数,其中1a 表示第一个数,2a 表示第二个数,依此类推,na 表示第n 个数(n 是正整数),已知11a =,2214(1)(1)nnna a a ,则2018a =___________.12.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128…则算式(2+1) ×(22+1) ×(24+1) ×...×(232+1)+1计算结果的个位数字是_____________. 13.计算4444444444(34)(74)(114)(154) (394)(54)(94)(134)(174) (414)++++++++++ =_____.14.若a m =2,a n =8,则a m+n =_________.15.若代数式210x x b -+可化为2()1x a --,其中a 、b 为实数,则的值是_____.三、解答题(75分)16.任何一个正整数n 都可以进行这样的分解:n =p ×q (p 、q 是正整数,且p ≤q ).如果p ×q 在n 的所有这种分解中两因数之差的绝对值最小,我们就称p ×q 是n 的最佳分解,并且规定F (n )=p q .例如18=1×18=2×9=3×6,这时就有F (18)=3162=.请解答下列问题:(1)计算:F (24);(2)当n 为正整数时,求证:F (n 3+2n 2+n )=1n. 17.我们在解题时,经常会遇到“数的平方”,那么你有简便方法吗?这里,我们以“两位数的平方”为例,请观察下列各式的规律,回答问题:()2227277207729=+⨯+= ()22323223021024=+⨯+= ()22565665063136=+⨯+=⋯()1请根据上述规律填空:238=______=______;()2我们知道,任何一个两位数(个数上数字n 十位上的数字为)m 都可以表示为10m n +,根据上述规律写出:2(10)m n +=______,并用所学知识说明你的结论的正确性. 18.(阅读理解)“若x 满足(80)(60)30x x --=,求22(80)(60)x x -+-的值”解:设(80),(60)x a x b -=-=,则(80)(60)30,(80)(60)20x x ab a b x x --==+=-+-=,所以222222(80)(60)()220230340x x a b a b ab -+-=+=+-=-⨯= (解决问题)(1)若x 满足(30)(20)10x x --=-,求22(30)(20)x x -+-的值.(2)若x 满足22(2017)(2015)4038x x -+-=,求(2017)(2015)x x --的值.(3)如图,正方形ABCD 的边长为x ,10,20AE CG ==,长方形EFGD 的面积是500,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).19.观察下列等式:12×231=132×21, 14×451=154×41, 32×253=352×23, 34×473=374×43,45×594=495×54,…… 以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”: ①35× = ×53; ② ×682=286× .(2)设数字对称式左边的两位数的十位数字为m ,个位数字为n ,且2≤m +n ≤9.用含m ,n的代数式表示数字对称式左边的两位数与三位数的乘积P ,并求出P 能被110整除时mn 的值.(其中乘法公式()()()()a b p q a p q b p q ap aq bp bq ++=+++=+++)) 20.阅读题:因式分解:1+x+x (x+1)+x (x+1)2 解:原式=(1+x )+x (x+1)+x (x+1)2 =(1+x )[1+x+x (x+1)] =(1+x )[(1+x )+x (1+x )] =(1+x )2(1+x ) =(1+x )3.(1)本题提取公因式几次?(2)若将题目改为1+x+x (x+1)+…+x (x+1)n ,需提公因式多少次?结果是什么? 21.阅读下列材料:正整数的正整数次幂的个位数字是有规律的,以“3”为例.∵133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,9319683=,∴指数以1到4为一个周期,幂的个位数字就重复出现,一般来说,若k a 的个位数字是b ,则4m k a + 的末位数字也是b (k 为正整数,m 为非负整数). 请你根据上面提供的信息,求出下式的计算结果:2432(31)(31)(31)(31)(31)1-+++++,并说出该结果的个位数字是几.22.任意一个正整数都可以进行这样的分解:n p q =⨯(p q 、是正整数,且p q ≤),正整数的所有这种分解中,如果p q 、两因数之差的绝对值最小,我们就称p q ⨯是正整数的最佳分解.并规定:()pF n q=.例如24可以分解成1×24,2×12,3×8或4×6,因为2411228364->->->-,所以4×6是24的最佳分解,所以()2243F =.(1)求()18F 的值;(2)如果一个两位正整数,10t x y =+(19,x y x y ≤≤≤、为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差记为m ,交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和记为n ,若mn 为4752,那么我们称这个数为“最美数”,求所有“最美数”;(3)在(2)所得“最美数”中,求()F t 的最大值. 23.先阅读第(1)题的解答过程,然后再解第(2)题. (1)已知多项式2x 3﹣x 2+m 有一个因式是2x +1,求m 的值.解法一:设2x 3﹣x 2+m =(2x +1)(x 2+ax +b ),则:2x 3﹣x 2+m =2x 3+(2a +1)x 2+(a +2b )x +b 比较系数得: 211{20?a a b b m +=-+== ,解得: 11{?212a b m =-==,∴12m =. 解法二:设2x 3﹣x 2+m =A •(2x +1)(A 为整式)由于上式为恒等式,为方便计算了取12x =-, 32112022m ⎛⎫⎛⎫⨯---+= ⎪ ⎪⎝⎭⎝⎭,故12m =.(2)已知x 4+mx 3+nx ﹣16有因式(x ﹣1)和(x ﹣2),求m 、n 的值.【参考答案】1.B 2.D 3.C 4.C 5.B 6.D 7.D 8.D 9.D 10.A 11.4035 12.613.135314.16 15.19, 16.(1)23;(2) 1n. 17.(1)()2388308+⨯+,1444;(2)()21010m n n m n ++⨯+. 18.(1)120;(2)2017;(3)210019.(1)①583,385;②26,62;(2)P=1100mn+110m 2+110n 2+11mn ;mn=10或mn=20. 20.(1)共提取了两次公因式;(2)将题目改为1+x+x (x+1)+…+x (x+1)n ,需提公因式n 次,结果是(x+1)n+1. 21.643的个位数字为1.22.(1)12;(2)“最美数”为48和17;(3)34. 23.m =﹣5,n =20.第十四章:整式的乘法与因式分解试题学校: 姓名: 班级: 考号:一、选择题(每小题3分,共30分)(1-6;7-8;9-10) 1. 已知28a 2b m÷4a n b 2=7b 2,那么m ,n 的值为( )A. m =4,n =2B. m =4,n =1C. m =1,n =2D. m =2,n =2 2. 计算(a -2)2的结果是( )A. a 2-4 B. a 2-2a +4 C. a 2-4a +4 D. a 2+4 3. 下列计算正确的是( )A. a3+a2=a5B. (a-b)2=a2-b2C. a6b÷a2=a3bD. (-ab3)2=a2b64. 下列运算中正确的是( )A. B. · C. D.5. 下列各数中,与的积为有理数的是( )A. B. C. D.6. 如果x+y=4,那么代数式的值是( )A. ﹣2B. 2C.D.7. [2017·北京中考]如果a2+2a-1=0,那么代数式·的值是()A. -3B. -1C. 1D.38. 下列运算正确的是( )A. B. C. D.9. 从边长为a的大正方形纸板中挖去一个边长为b的小正方形纸板后,将剩余部分裁成四个相同的等腰梯形(如图(1)),然后把它们拼成一个平行四边形(如图(2)).那么通过计算两个图形阴影部分的面积,可以验证下列等式成立的是( )A. B.C. D.10. [2016·厦门中考]设681×2 019-681×2 018=a,2 015×2 016-2 013×2 018=b,=c,则a,b,c的大小关系是 ()A. b<c<aB. a<c<bC. b<a<cD. c<b<a二、填空题(每小题4分,共32分)(11-15;16-17;18)11. 把多项式2x2y﹣4xy2+2y3分解因式的结果是______.12. 分解因式x3+6x2+9x的结果是_________.13. 因式分解:=__________.14. 分解因式:.15. 因式分解:=_________.16. 已知,记,,…,,则通过计算推测出的表达式=_______.(用含n的代数式表示)17. 已知,则=____.18. [2016·四川绵阳中考]如图所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.现用Ai表示第三行开始,从左往右,从上往下,依次出现的第i个数,例如:A1=1,A2=2,A3=1,A4=1,A5=3,A6=3,A7=1,则A2016=.三、计算题(每题6分,共24分)19. 若|x-2|+(y+1)2=0,求代数式(x-y)2-(x+2y)(x-2y)的值.20.[2017·河南中考] (8分)先化简,再求值:(2x+y)2+(x-y)(x+y)-5x(x-y),其中x=+1,y=-1.21.已知,求代数式的值.22.计算:×××…××.四、解答题(第23题7分;第24题8分;第25题9分;第26题10分,共34分)(23-24;25;26)23. 在解题目“先化简代数式,再求值,其中x=2 012,y=2 013”时,聪聪认为x只要任取一个使原式有意义的值代入都有相同的结果.你认为他说的有道理吗,如果他说的有道理,请求出这个结果,并说明理由.24.小明在做练习册上的一道多项式除以单项式的习题时,一不小心,一滴墨水污染了这道习题,只看见了被除式中最后一项是“-3x2y”和中间的“÷”,污染后的习题形式如下:小明翻看了书后的答案是“”,你能够复原这个算式吗?25.观察下列等式:12×231=132×21,13×341=143×31,23×352=253×32,34×473=374×43.62×286=682×26,……以上每个等式两边的数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:①52×____=____×25,②____×396=693×____;(2)设这类等式左边两位数的十位数字为a,个位数字为b,且2≤a+b≤9,写出表示“数字对称等式”一般规律的式子(含a,b),并证明.26.已知,且,能否求出的值?若能,请求出其值;若不能,请说明理由.参考答案一、选择题1. 【答案】A【解析】∵28a2b m÷4a n b2=7a2-n b m-2=7b2,∴2-n=0,m-2=2,解得m=4,n=2.故选A.2. 【答案】C【解析】完全平方公式为,则(a-2)2=.故选C.3. 【答案】D【解析】A:a3与a2不能合并,A错误;B:(a-b)2=a2-2ab+b2≠a2-b2,B错误; C:a6b÷a2= a4b≠a3b,C错误;D:(-ab3)2=a2b6,D正确.故选D.4. 【答案】C【解析】A ,A错误;B:·,B错误;C: ,C 正确;D:,D错误.故选C.5. 【答案】A【解析】,积为有理数.,积为无理数.,积为无理数.,积为无理数.故选A.6. 【答案】C【解析】原式=∵x+y=4,∴原式= .故选C.7. 【答案】C【解析】因为a2+2a-1=0,所以a2+2a=1,又···=a2+2a,所以·=1,故选C.8. 【答案】B【解析】,故A选项错误;,故B选项正确;,故C选项错误;,故D选项错误.故选B.9. 【答案】D【解析】因为阴影部分的面积既可以用“大正方形的面积-小正方形的面积”来表示,也可以用所拼成的平行四边形的面积来表示,所以有,故选D.10. 【答案】A【解析】a=681×2019-681×2018 =681×(2019-2018)=681=,b=2015×( 2015+1)-(2015-2) ×(2015+3)=20152+2015-20152-3×2015+2×2015+6=2015×(1-3+2)+6=6,c=,∴b <c <a ,故选A. 二、填空题11. 【答案】2y (x ﹣y )2【解析】2x 2y -4xy 2+2y 3=2y (x 2-2xy +y 2)=2y (x -y )212. 【答案】x (x +3)2【解析】原式= x (x ²+6x +9)= x (x +3)2. 13. 【答案】【解析】原式=5(x ²-2x +1)=5(x -1) ².14. 【答案】【解析】原式=15. 【答案】【解析】=.16. 【答案】【解析】根据题意按规律求解:b 1=2(1-a 1)=2×(1)==,b 2=2(1-a 1)(1-a 2)=×(1)==,….分析可得:b n 的表达式b n =.17. 【答案】【解析】原式.18. 【答案】1 953【解析】本题考查寻找数的规律.设第2 016个数在第n行,则=2 016,解得n = 63,由于本题中是从第3行开始,需往后推3项,即第2 016个数是64行第3个数,通过规律计算,这个数是1 953.三、计算题19. 【答案】原式=x2-2xy+y2-(x2-4y2)=.若|x-2|+(y+1)2=0,可求得,,∴原式.20. 【答案】原式=4x2+4xy+y2+x2-y2-5x2+5xy=9xy.当x=+1,y=-1时,原式=9xy=9(+1)·(-1)=9.21. 【答案】原式==.∴.22. 【答案】=××××××…××××= ××××××…××××=×=.四、解答题23. 【答案】聪聪说的有道理.原式.代数式化简后与x的取值无关,因此任取一个使原式有意义的x ,都有相同的结果.当y =2 013时,原式=-2 013.24. 【答案】由于是被除式中的最后一项,商的最后一项是6x ,故除式为,被除式为,所以这个算式为.25.(1) 【答案】①275;572 ②63;36.(2) 【答案】(10a +b )·[100b +10(a +b )+a ]=(10b +a )·[100a +10(a +b )+b ]. 证明:∵左边=(10a +b )·[100b +10(a +b )+a ]=11(10a +b )·(10b +a ), 右边=(10b +a )·[100a +10(a +b )+b ]=11(10a +b ) ·(10b +a ), ∴左边=右边,原等式成立.26. 【答案】能.因为,,所以x +y =5,x +5+5-y =9,解得x +y =5,x -y =-1,则(.第十四章 整式的乘法与因式分解 单元检测1一、选择题(每题3分,共30分) 1.下列计算,正确的是( )A.326a a a ⋅=B.33a a a ÷=C.224a a a +=D.()224a a =2.计算()32ab的结果是( )A.23abB.6abC.35a bD.36a b 3.下列运算不正确的是( )A.235a a a +=B.()()21343x x x x --=-+C.()222244x y x xy y +=++ D.()()22336a b a b a b +-=-4.多项式()221a x x -+与多项式()()11x x +-的公因式是( )A.1x -B.1x +C.2+1xD.2x 5.已知24436x mx ++是完全平方式,则m 的值为( )A.2B.±2C.-6D.±6 6.将下列多项式因式分解,结果中不含因式1a +的是( )A.21a - B.2a a + C.221a a -+ D.()()22221a a +-++7.若x m +与3x +的乘积中不含x 的一次项,则m 的值为( ) A.-3 B.3 C.O D. 1 8.已知21ab =-,则()253ab a b ab b ---的值等于( )A.-1B.OC.1D.无法确定9.已知537x y 与一个多项式之积是756555289821x y x y x y +-,则这个多项式是( )A.2243x y -B.2243x y xy -C.2224314x y xy -+ D.223437x y xy --+10.小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:2222,,,,,,a b x y x y a b x y a b --++--分别对应下列六个字:昌、爱、我、宜、游、美,现将()()222222x ya xy b ---因式分解,结果呈现的密码信息可能是( )A.我爱美B.宜昌游C.爱我宜昌D.美我宜昌 二、填空题(每题3分,共18分) 11.计算:()()10822x x -÷=_________. 12.当x _________时,()0241x -=.13.若229,60a b a b +=+=,则()2a b -=_________.14.若代数式()()211x m x n ++++可以化简为223x x +-,则m n +=_________.15.利用乘法公式计算:2210199+=_________.16.已知实数,a b 满足:22111,1a b a b+=+=,则2017a b-的值为_________. 三、解答题(共72分) 17.(8分)计算: (1)()2332x y xy ⋅-; (2)()22235a ab -;(3)()()2323a b c a b c ---+; (4)()()()()432682321x xx x x -÷--+-.18.(8分)分解因式:(l)33624ab a b -; (2)42816x x -+;(3)()()2294a x y b y x -+-; (4)()222224m n m n-+.19.(8分)先化简,再求值:(l)()()()()23233a a a a -+-+-,其中2a =-;(2)()()()2141224xy xy xy xy ⎡⎤--+-÷⎣⎦,其中2,0.5x y =-=-.20.(6分)设y kx =是否有实数k ,得代数式()()()2222222434x yxy x x y --+-能化简为4x ?若能,请求出所有满足条件的k 的值;若不能,请说明理由.21.(10分)如图,在一块长为a cm 、宽为b cm 的长方形纸板四角各剪去一个边长为x cm(2bx <)的正方形,再把四周沿虚线折起,制成一个无盖的长方体盒子. (1)求这个长方体盒子的底面积;(用含,,a b x 的代数式表示)(2)小明想做一个容积为162cm 3的长方体盒子,且长:宽:髙=3: 2: 1,请帮助小明计算需要长方形纸板的长和宽各是多少.22.(10分)规定三角“”表示abc ,方框“”表示m n x y +.例如:()141193233=⨯⨯+=.请根据这个规定解答下列问题:(1)计算: _________;(2)代数式为完全平方式,则k =_________.(3)解方程:267x +.23.(10分)观察下列各式的变形过程:①()()25623x x x x ++=++,其中235,236+=⨯=; ②()()271234x x x x ++=++,其中347,3412+=⨯=;③()()24313x x x x -+=--,其中()()()()134,133-+-=--⨯-=; …从以上各式中,你发现了什么规律?请用你发现的规律分解因式:(l)268x x ++; (2)228x x --.24.(12分)阅读下列文字:我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如由图1可以得到()()22232a b a b a ab b ++=++.请解答下列问题:(1)写出图2中所表示的数学等式__________________;(2)利用(1)中所得到的结论,解决下面的问题:已知11,ab bc ac 38a b c ++=++=,求222a b c ++的值; (3)图3中给出了若干个边长为a 和边长为b 的小正方形纸片及若干个边长分别为,a b 的长方形纸片.①请按要求利用所给的纸片拼出一个几何图形,并画在所给的方框中,要求所拼出的几何图形的面积为22252a ab b ++; ②再利用另一种计算面积的方法,可将多项式22252a ab b ++分解因式.即22252a ab b ++=_________.答案:1. D 【解析】因为32325a a aa +⋅==,所以A 错误;因为3312a a a a -÷==,所以B 错误;因为2222a a a +=,所以C 错误;因为()224a a =,所以D 正确.故选D.2. D 【解析】()()3323236.ab a b a b ==故选 D. 3. D 【解析】选项D 应为()()22339a b a b a b +-=-.故选D.4. A 【解析】()()22211,a x x a x -+=-所以多项式()221a x x -+与多项式()()11x x +-的公因式是1x -.故选A.5. D 【解析】24436x mx ++是完全平方式,则()22443626x mx x ++=±,所以424m =±,所以m 的值为6±.故选D.6. C 【解析】()()2111,a a a -=+-()21,a a a a +=+()22211,a a a -+=-()()()()2222221211,a a a a +-++=+-=+所以A,B,D 的结果中都含因式1a +,C 的结果中不含因式1a +.故选C.7. A 【解析】()()()2333x m x x m x m ++=+++,因为其不含x 的一次项,所以30m +=,所以3m =-.故选A.8. C 【解析】()()()322253362622221,111 1.ab ab a b ab b a b a b ab ab ab ab =-∴---=-++=-++=+-=故选 C.9. C 【解析】由537x y 与一个多项式之积是756555289821x y x y x y +-,得这个多项式是()7565555322228982174143.x y x y x y x y x xy y +-÷=+-.故选C.10. C 【解析】()()()()()()()()2222222222.x y a x y b x y a b x y x y a b a b ---=--=-+-+故选 C.11. 24x 【解析】()()()()()10810822222224x x x x x x -÷=÷==.12.2≠【解析】因为任何不为0的数的0次幂都等于1,所以只要240x -≠即可,,解得2x ≠.13.39【解析】 因为 9,a b +=所以()281,a b +=,即22281,a b ab ++=2260a b +=又,所以()2222602139.a b a b ab -=+-=-=14.4-【解析】()()()222112121,x m x n x x mx m n x m x m n ++++=+++++=+++++ ()22222123,,13m x m x m n x x m n +=⎧∴+++++=+-∴⎨++=-⎩解得0.4m n =⎧⎨=-⎩故 4.m n +=- 15.20002【解析】()()()22221019910199210199200210011001+=+-⨯⨯=-⨯+-4000029999400001999820002.=-⨯=-=16.1【解析】22111,1a b a b+=+=两式相减可得 ()()()()2211,,10.b a a b a b a b ab a b a b a b ab --=-∴+-=∴++-=⎡⎤⎣⎦22111,1,0,0,a b a b a b+=+=∴>> 从而010,0,20172017 1.a b aba b a b -++>∴-=∴== 17.【解析】(l)()2334326.x y xy x y ⋅-=- (2)()2242235610.aa b a a b -=-.(3) ()()()()22222232323449.a b c a b c a b c a ab b c ---+=--=-+-(4)()()()()()()43222226823213433223433223 2.x x x x x x x x x x x x x x xx -÷--+-=-+--+-=-+-+-+=- 18.【解析】(l)()()()332262464622.ab a bab b a ab b a b a -=-=+-(2)()()()422222816422.x x x x x -+=-=-+ (3)()()()()()()()()()2222229494943232.a x yb y x a x y b x y x y a b x y a b a b -+-=---=--=-+-(4) ()()()()()22222222222422.m n m n mn m n mn m n m n m n -+=++--=-+- 19.【解析】(l)()()()()()()2222223233269221293221,a a a a a a a a a a a a -+-+-=----=---+=--当2a =-时,原式()()2322221 5.=⨯--⨯--=-(2)()()()()222222222141224148444148444xy xy xy xy x y xy x y xy x y xy x y xy⎡⎤--+-÷⎣⎦⎡⎤=-+--÷⎣⎦⎡⎤=-+-+÷⎣⎦()2215842032,x y xy xy xy =-÷=-当2,0.5x y =-=-时,1xy =,原式203212-=-.20.【解析】能.因为()()()()()()()()222222222222222222222443443444,x y x y x xy x y x y x x y x k x k x --+-=--+=-=-=-⋅所以只需要()2241k -=,原代数式就能化简为4x ,所以224141,k k -=-=-或解得k k ==21.【解析】(1)长方体盒子的底面积为()()()222224a x b x ab ax bx x --=--+(cm 2). (2)由长:宽:髙=3:2:1,可设长方形纸板的长为3x cm,宽为2x cm,高为cm,所以3:2:162,x x x =所以 3.x =所以长方形纸板的长为3255315x x x +==⨯=(cm),长方形纸板的宽为2244312x x x +==⨯=(cm).答:需要长方形纸板的长和宽分别是15cm,12cm.22.【解析】(1)32-()()4132311364.2⎡⎤=⨯-⨯÷-+=-÷=-⎡⎤⎣⎦⎣⎦ (2)3±()22223292,x y x k y x y kxy ⎡⎤=++⋅⋅=++⎣⎦代数式为完全平方式,26, 3.k k ∴=±=±解得(3)267,x =+()()()()223232232367,x x x x x ⎡⎤∴-+-+-+=+⎣⎦()22294344967,x x x x ∴--+-+=+2229434567,x x x x ∴---+=+解得 4.x =-23.【解析】(1)()()26824.x x x x ++=++(2)()()22842.x x x x --=-+24.【解析】(1)()2222222a b c a b c ab ac bc ++=+++++ (2)由(1)得()2222222a b c a b c ab ac bc ++=++--- ()()2221123845.a b c ab ac bc =++-++=-⨯=(3)①如图所示.②()()22a b a b ++。

2022-2023学年人教版八年级数学上册《第14整式乘法与因式分解》单元综合测试题(附答案)

2022-2023学年人教版八年级数学上册《第14整式乘法与因式分解》单元综合测试题(附答案)
∴m=﹣8.
故选:B.
9.解:A.2a﹣(3b+c)=2a﹣3b﹣c,故此选项不合题意;
B.3a+2(2b﹣1)=3a+4b﹣2,故此选项不合题意;
C.a+2b﹣4c=a+(2b﹣4c),故此选项符合题意;
D.m﹣n+b﹣a=m﹣(n﹣b+a),故此选项不合题意;
D.因为(﹣5)5•(﹣5)n=(﹣5)n+5,所以D选项计算正确,故D选项符合题意.
故选:D.
2.解:∵(﹣20)0=1,
故选:C.
3.解:∵﹣4a与一个多项式的积是16a3+12a2+4a,
∴这个多项式是:(16a3+12a2+4a)÷(﹣4a)=﹣4a2﹣3a﹣1.
故选:D.
4.解:(3x+5)(3x﹣n)
所以(a+b)(a﹣b)=a2﹣b2,
即:a2﹣b2=(a+b)(a﹣b),
故选:C.
7.解:∵3x2y2=3xy•xy;9x2y=3xy•3x;6xy2=3xy•2y;
∴3x2y2,9x2y,6xy2的公因式为3xy,
故选:A.
8.解:∵分解因式x2+mx+16的结果为(x﹣4)2=x2﹣8x+16,
=9x2﹣3nx+15x﹣5n
=9x2+(﹣3n+15)x﹣5n,
∵结果中不含x的一次项,
∴﹣3n+15=0,
解得:n=5.
故选:A.
5.解:∵x2+mx+16是一个完全平方式,
∴m=±8.
故选:C.
6.解:如图,图中阴影部分可以看作长为(a+b),宽为(a﹣b),因此面积为(a+b)(a﹣b),

八年级数学上册第14章测试卷含答案

八年级数学上册第14章测试卷含答案

八年级数学上册第14章测试卷含答案整式的乘除与因式分解单元测试题班级:__________ 姓名:__________ 平台号:__________一、选择题(每小题2分,共20分)1、下列运算正确的是()A、x³+x³=2x⁶B、x²·x⁴=x⁸C、xᵐ·xⁿ=xᵐ⁺ⁿD、(-x⁵)⁴=-x²⁰2、下列关系式中,正确的是()A、(a-b)²=a²-b²B、(a+b)(a-b)=a²-b²C、(a+b)²=a²+b²D、(a+b)²=a²-2ab+b²3、若(x-a)(x-5)展开式中不含有x的一次项,则a的值为()A、B、5C、-5D、5或-54、下列因式分解错误的是()A、2a³-8a²+12a=2a(a²-4a+6)B、x²-5x+6=(x-2)(x-3)C、(a-b)²-c²=(a-b+c)(a-b-c)D、-2a²+4a-2=2(a+1)²5、为了应用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是(A、[x-(2y+1)]²B、[x+(2y+1)]²C、[x-(2y-1)][x+(2y-1)]D、[(x-2y)+1][(x-2y)-1]6、化简代数式(x-3)(x-4)-(x-1)(x-3)结果是(。

)A、-3x+9B、-3x-9C、-11x+15D、-11x-157、下列多项式:①x²+2xy-y²②-x²-y²+2xy③x²+xy+y²④1+x+1/(4x²),其中能用完全平方公式分解因式的有()A、1个B、2个C、3个D、4个8、下列各式中,代数式()是x³y+4x²y²+4xy³的一个因式A、x²y²B、x+yC、x+2yD、x-y9、下面是某同学在一次测验中的计算摘录①y³÷y³=y;②(2x²+x)÷x=2x;③3x³·(-2x²)=-6x⁵;④4ab÷(-2ab)=-2;⑤a³²³²=a⁵;⑥(-a)÷(-a)=a².3其中错误的个数有(。

第14章整式的乘法与因式分解单元测试(基础卷)2020-2021学年八年级数学上册(原卷)【人教版】

第14章整式的乘法与因式分解单元测试(基础卷)2020-2021学年八年级数学上册(原卷)【人教版】

2020-2021学年八年级数学上册尖子生同步培优题典【人教版】专题4.11第14章整式的乘法与因式分解单元测试(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•德阳)下列运算正确的是( )A .a 2•a 3=a 6B .(3a )3 =9a 3C .3a ﹣2a =1D .(﹣2a 2)3=﹣8a 62.(2020春•梁溪区期末)计算a 3•(﹣a 2)结果正确的是( )A .﹣a 5B .a 5C .﹣a 6D .a 6 3.(2020春•锦江区期末)如果x m =2,x n =14,那么x m +n 的值为( )A .2B .8C .12D .214 4.(2020春•潜山市期末)(2x +p )(x ﹣2)的展开式中,不含x 的一次项,则p 值是( )A .﹣1B .﹣4C .1D .45.(2020春•肥城市期末)下列由左到右变形,属于因式分解的是( )A .(2x +3)(2x ﹣3)=4x 2﹣9B .2x 2+4=2(x 2+4)C .1−18x 2=(1−14x )(1+14x )D .(a ﹣b )2﹣9=(a ﹣b +3)(a ﹣b ﹣3)6.(2020春•沙坪坝区校级月考)若5m =3,5n =4,则53m﹣2n 的值是( ) A .916 B .11 C .2716 D .5167.(2020春•竞秀区期末)某同学在计算﹣3x 2乘一个多项式时错误的计算成了加法,得到的答案是x 2﹣x +1,由此可以推断该多项式是( )A .4x 2﹣x +1B .x 2﹣x +1C .﹣2x 2﹣x +1D .无法确定8.(2020春•昌图县期末)已知,4x 2+12xy +ky 2是一个完全平方式,则k 的值是( )A .3B .6C .8D .99.(2020春•句容市期末)下面有4道题,小明在横线上面写出了答案:①(a +b )(b ﹣a )=﹣a 2+b 2,②(﹣a 5)÷(﹣a )2=﹣a 3,③32019×(13)2020=3,④若a ﹣b =2,则a 2﹣b 2﹣4b =4.他写对答案的题是( )A .①②B .①②③C .①②④D .②③④10.(2020春•碑林区期末)如图,有A ,B 两个正方形,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为5和16,则正方形A ,B 的面积之和为( )A .11B .9C .21D .23二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•丹阳市校级期末)若x ﹣y =2,则3x ÷3y 的值为 .12.(2020春•灯塔市期末)﹣2a 2b 3•(﹣3a )= ;(﹣2xy 3z 2)4= .13.(2020春•沙坪坝区校级月考)已知2x =4,2y =8,则(x ﹣2)(y ﹣2)+3(xy ﹣3)的值为 .14.(2020春•永安市期末)面积为(a 2﹣2ab )的长方形,若它的宽为a ,则它的长为 .15.(2020春•沙坪坝区期末)若x 2+x +m =(x ﹣2)(x +n ),则m +n = .16.(2020春•永定区校级期末)甲、乙两个同学分解因式x 2+ax +b 时,甲看错了b ,分解结果为(x +2)(x +4);乙看错了a ,分解结果为(x +1)(x +9),则a ﹣b 的值是 .17.(2020春•单县期末)若m 2﹣n 2=5,则(m +n )2•(m ﹣n )2的值是 .18.(2020春•安吉县期末)现有如图①的小长方形纸片若干块,已知小长方形的长为a (cm ),宽为b (cm ).用3个如图②的完全相同的图形和8个如图①的小长方形,拼成如图③的大长方形,则图③中阴影部分面积与整个图形的面积之比为 .三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•陈仓区期末)因式分解:(1)2mx2﹣4mxy+2my2;(2)x2﹣4x+4﹣y2.20.(2020春•青白江区期末)化简:(1)(2x2)3﹣x2•x4;(2)(x+2)(x﹣3)+x.21.(2020春•肥城市期末)计算:(1)(﹣0.125)2019×82020﹣12020+(−12)﹣2﹣(3.14﹣π)0;(2)(y+2)•(y2﹣2y+1)﹣y•(y2+1);(3)化简,求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),其中x=1 2.22.(2020春•新泰市期末)先化简再求值:(1)(2x2y)3•(﹣xy2)÷(−12x4y3),其中x=−12,y=2;(2)(x+y)(x﹣y)+(x﹣y)2﹣(6x2y﹣2xy2)÷(2y),其中x=﹣2,y=1 2.23.(2020春•横山区期末)已知a﹣b=3,ab=4,求下列式子的值:(1)a2b﹣ab2;(2)a4b2﹣2a3b3+a2b4.24.(2019秋•桐梓县期末)如图,在某一禁毒基地的建设中,准备在一个长为(6a+5b)米,宽为(5b﹣a)米的长方形草坪上修建两条宽为a米的通道.(1)求剩余草坪的面积是多少平方米?(2)若a=1,b=3,求剩余草坪的面积是多少平方米?25.(2020春•海州区期末)若x满足(7﹣x)(x﹣4)=2,求(x﹣7)2+(4﹣x)2的值:解:设7﹣x=a,x﹣4=b,则(7﹣x)(x﹣4)=ab=2,a+b=(7﹣x)+(x﹣4)=3所以(x﹣7)2+(4﹣x)2=(7﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=32﹣2×2=5请仿照上面的方法求解下面的问题(1)若x满足(8﹣x)(x﹣3)=3,求(8﹣x)2+(x﹣3)2的值;(2)已知正方形ABCD的边长为x,E,F分别是AD,DC上的点,且AE=2,CF=5,长方形EMFD 的面积是28,分别以MF、DF为边作正方形,求阴影部分的面积.26.(2020春•三明期末)数形结合是解决数学问题的一种重要的思想方法,借助图的直观性,可以帮助理解数学问题.(1)请写出图1,图2,图3阴影部分的面积分别能解释的乘法公式.图1,图2,图3.(2)用4个全等的长和宽分别为a,b的长方形拼摆成一个如图4的正方形,请你通过计算阴影部分的面积,写出这三个代数式(a+b)2,(a﹣b)2,ab之间的等量关系.(3)根据(2)中你探索发现的结论,计算:当x+y=3,xy=﹣10时,求x﹣y的值.。

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解八年级数学上学期单元测试卷(人教版)

人教版初中数学八年级上单元试卷第十四章 整式的乘法与因式分解八年级数学上学期单元测试卷(人教版)

第十四章整式的乘法与因式分解(时间:100分钟,分值:150分)一.选择题目(共12小题,每小题4分,共48分)1.下列运算正确的是()A.x4+x4=x8B.x6÷x2=x3C.x•x4=x5D.(x2)3=x5【解答】解:A、x4+x4=2x4,故A不符合题意;B、x6÷x2=x4,故B不符合题意;C、x•x4=x5,故C符合题意;D、(x2)3=x6,故D不符合题意;故选:C.2.计算﹣(﹣2x3y2)4的结果是()A.16x7y6B.﹣16x7y6C.16x12y8D.﹣16x12y8【解答】解:﹣(﹣2x3y2)4=﹣16x12y8,故选:D.3.多项式3x2y2﹣12x2y4﹣6x3y3的公因式是()A.3x2y2z B.x2y2C.3x2y2D.3x3y2z【解答】解:多项式3x2y2﹣12x2y4﹣6x3y3的公因式是3x2y2,故选:C.4.下列多项式乘以多项式能用平方差公式计算的是()A.(a+b)(﹣b﹣a)B.(﹣a+b)(﹣b﹣a)C.(a+b)(b+a)D.(﹣a+b)(b﹣a)【解答】解:能用平方差公式计算的是(﹣a+b)(﹣b﹣a),其它的不能用平方差公式计算.故选:B.5.下列各式中,正确的因式分解是()A.a2﹣b2+2ab﹣c2=(a+b﹣c)(a﹣b﹣c)B.﹣(x﹣y)2﹣(x﹣y)=﹣(x﹣y)(x﹣y+1)C.2(a﹣b)+3a(b﹣a)=(2+3a)(a﹣b)D.2x2+4x+2﹣2y2=(2x+2+2y)(x+1﹣y)【解答】解:A.a2﹣b2+2ab﹣c2=(a﹣b+c)(a﹣b﹣c),故此选项不合题意;B .﹣(x ﹣y )2﹣(x ﹣y )=﹣(x ﹣y )(x ﹣y +1),故此选项符合题意;C .2(a ﹣b )+3a (b ﹣a )=(2﹣3a )(a ﹣b )),故此选项不合题意;D .2x 2+4x +2﹣2y 2=2(x +1+2y )(x +1﹣y ),故此选项不合题意;故选:B .6.若2x 2+m 与2x 2+3的乘积中不含x 的二次项,则m 的值为( )A .﹣3B .3C .0D .1 【解答】解:(2x 2+m )(2x 2+3)=4x 4+6x 2+2mx 2+3m ,∵2x 2+m 与2x 2+3的乘积中不含x 的二次项,∴6+2m =0,∴m =﹣3.故选:A .7.计算(−23)2021×(32)2021的结果是( )A .﹣1B .1C .23D .32 【解答】解:(−23)2021×(32)2021=[(−23)×32]2021=(﹣1)2021=﹣1,故选:A .8.若(2x ﹣1)0有意义,则x 的取值范围是( )A .x =﹣2B .x ≠0C .x ≠12D .x =12 【解答】解:(2x ﹣1)0有意义,则2x ﹣1≠0,解得:x ≠12.故选:C .9.若x 2﹣mx +16是完全平方式,则m 的值等于( )A .2B .4或﹣4C .2或﹣2D .8或﹣8【解答】解:∵x 2﹣mx +16=x 2﹣mx +42,∴﹣mx =±2•x •4,解得m =8或﹣8.故选:D .10.已知a =817,b =279,c =913,则a ,b ,c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a【解答】解:∵a =817,b =279,c =913,∴a =(34)7=328,b =(33)9=327,c =(32)13=326.又∵328>327>326,∴a >b >c .故选:A .11.若(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,则a 的值为( )A .0B .2C .12D .﹣2【解答】解:(x 2+ax +2)(2x ﹣4)=2x 3+2ax 2+4x ﹣4x 2﹣4ax ﹣8=2x 3+(﹣4+2a )x 2+(﹣4a +4)x ﹣8,∵(x 2+ax +2)(2x ﹣4)的结果中不含x 2项,∴﹣4+2a =0,解得:a =2.故选:B .12.如图所示的是4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为64,小正方形的面积为16,若分别为x ,y (x >y )表示为小长方形的长和宽,则下列关系式中不正确的是( )A .x +y =8B .xy =24C .x 2﹣y 2=32D .4xy +16=64【解答】解:由题意得:(x +y )2=64且(x ﹣y )2=16.(x >y >0).∴{x+y=8,x−y=4.解得:{x=6.y=2.∴x+y=8,xy=12,x2﹣y2=32,4xy+16=64.故选:B.二.填空题目(共4小题)13.计算:6m3÷2m=3m2.【解答】解:原式=6÷2•m3﹣1=3m2,故答案为:3m2.14.若a m=2,a n=5,则a2m+2n=100.【解答】解:∵a m=2,a n=5,∴a2m+2n=a2m•a2n=(a m)2•(a n)2=22×52=4×25=100,故答案为:100.15.计算:20212﹣2020×2022=1.【解答】解:20212﹣2020×2022=20212﹣(2021﹣1)(2021+1)=20212﹣(20212﹣12)=20212﹣20212+1=1.16.小丽在计算3×(4+1)×(42+1)时,把3写成(4﹣1)后,发现可以连续运用平方差公式进行计算.用类似方法计算:(1+12)×(1+122)×(1+124)×(1+128)+1215=2.【解答】解:(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−12)×(1+12)×(1+122)×(1+124)×(1+128)+1215=2×(1−122)(1+122)×(1+124)×(1+128)+1215=2×(1−124)(1+124)×(1+128)+1215=2×(1−128)×(1+128)+1215=2×(1−1216)+1215=2−1215+1 215=2.故答案为:2.三.解答题(共14小题)17.(1)计算;√9−|﹣3|+(π﹣3.14)0﹣(﹣1);(2)199×201【解答】解:(1)原式=3﹣3+1+1=2;(2)解:199×201=(200﹣1)×(200+1)=2002﹣1=39999.18.计算:(1)(4a2b+6a2b2﹣ab2)÷2ab;(2)(2x-3y)2【解答】解:(1)(4a2b+6a2b2﹣ab2)÷2ab=4a2b÷2ab+6a2b2÷2ab﹣ab2÷2ab=2a+3ab−12 b.(2)(2x-3y)2=4x2﹣12xy+9y219.计算:(1)(x+y﹣2z)(x﹣y+2z).(2)(x﹣y)(2x+y)﹣(x+y)(x﹣y).【解答】(1)解:(x+y﹣2z)(x﹣y+2z)=[x+(y﹣2z)][x﹣(y﹣2z)]=x2﹣(y﹣2z)2=x2﹣(y2+4z2﹣4yz)=x2﹣y2﹣4z2+4yz.(2)解:原式=2x2﹣xy﹣y2﹣x2+y2=x2﹣xy.20.因式分解:(1)﹣3a3b2+6ab3(2)4x2﹣9.(3)2m2﹣12m+18.(4)(a﹣2b)2﹣(3a﹣2b)2【解答】(1)解:﹣3a3b2+6ab3 =﹣3ab2(a2﹣2b)(2)解:4x2﹣9=(2x+3)(2x﹣3).(3)解:2m2﹣12m+18=2(m2﹣6m+9)=2(m﹣3)2.(4)解:(a﹣2b)2﹣(3a﹣2b)2=(a﹣2b+3a﹣2b)(a﹣2b﹣3a+2b)=(4a﹣4b)•(﹣2a)=﹣8a(a﹣b).21.解方程或不等式:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1)(2)x(3x﹣2)<3(x﹣2)(x+1)【解答】解:(1)(x﹣3)(x﹣2)+18=(x+9)(x+1),x2﹣2x﹣3x+6+18=x2+x+9x+9,x2﹣5x﹣10x﹣x2=9﹣6﹣18,﹣15x=﹣15,x=1;(2)x(3x﹣2)<3(x﹣2)(x+1),3x2﹣2x<3x2+3x﹣6x﹣6,3x2﹣2x﹣3x2﹣3x+6x<﹣6,x<﹣6.22.在计算(x+a)(x+b)时,甲把b错看成了6,得到结果是:x2+8x+12.(1)求出a的值;(2)在(1)的条件下,且b=﹣3时,计算(x+a)(x+b)的结果.【解答】解:(1)∵(x+a)(x+6)=x2+6x+ax+6a=x2+(6+a)x+6a,∴x2+(6+a)x+6a=x2+8x+12,∴6+a=8,6a=12,解得a=2;(2)当a=2,b=﹣3时,(x+a)(x+b)=(x+2)(x﹣3)=x2﹣3x+2x﹣6=x2﹣x﹣6.23.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形“正方形(如图2).(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是(a+b)2=(a﹣b)2+4ab;(2)根据(1)中的结论,若x+y=5,xy=94,则(x﹣y)2=16;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=7,求(2019﹣m)(m﹣2020)的值.【解答】解:(1)由题意可得,图2的面积为:(a +b )2=(a ﹣b )2+4ab ,故答案为:(a +b )2=(a ﹣b )2+4ab ;(2)由(1)题结论(a +b )2=(a ﹣b )2+4ab ,可得(a ﹣b )2=(a +b )2﹣4ab ,∴x +y =5,xy =94时,(x ﹣y )2=(x +y )2﹣4xy=52﹣4×94=25﹣9=16,故答案为:16;(3)由完全平方公式(a +b )2=a 2+2ab +b 2,可得ab =(a+b)2−(a 2+b 2)2, ∴当(2019﹣m )2+(m ﹣2020)2=7时,(2019﹣m )(m ﹣2020)=[(2019−m)+(m−2020)]2−[(2019−m)2+(m−2020)2]2=(−1)2−72 =−62=﹣3.24.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.(1)如图1所示的大正方形,是由两个正方形和两个形状大小完全相同的长方形拼成的.用两种不同的方法计算图中阴影部分的面积,可以得到的数学等式是 a 2+b 2=(a +b )2﹣2ab ;(2)如图2所示的大正方形,是由四个三边长分别为a 、b 、c 的全等的直角三角形(a 、b 为直角边)和一个正方形拼成,试通过两种不同的方法计算中间正方形的面积,并探究a、b、c之间满足怎样的等量关系;(3)利用(1)(2)的结论,如果直角三角形两直角边满足a+b=17,ab=60,求斜边c的值.【解答】解(1)方法一:阴影部分是两个正方形的面积和,即a2+b2;方法二:阴影部分也可以看作边长为(a+b)的面积,减去两个长为a,宽为b的长方形面积,即(a+b)2﹣2ab,由两种方法看出a2+b2=(a+b)2﹣2ab,故答案为:a2+b2=(a+b)2﹣2ab;(2)中间正方形的边长为c,因此面积为c2,也可以看作从边长为(a+b)的面积减去四个两条直角边分别a、b的面积,即c2=(a+b)2﹣2ab,也就是c2=a2+b2,所以c2=a2+b2;(3)∵a+b=17,ab=60,∴c2=a2+b2=(a+b)2﹣2ab=172﹣2×60=169,∴c=13,答:斜边的长为13.祝福语祝你考试成功!。

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章 整式的乘法与因式分解单元测试卷附解析

人教版八年级上册数学第十四章整式的乘法与因式分解单元测试卷附解析一、单选题(共10题;共30分)1.(3分)计算(a3)2•a2的结果是()A.a7B.a8C.a10D.a112.(3分)若x n=2,则x3n的值为()A.6B.8C.9D.123.(3分)计算(-2a2b)3的结果是()A.-6a6b3B.-8a6b3C.8a6b3D.-8a5b34.(3分)如果(a-1)0=1成立,则()A.a≠1B.a=0C.a=2 D.a=0或a=2 5.(3分)计算(2+1)(22+1)(24+1)(28+1)+1的值是()A.1024B.28+1C.216+1D.2166.(3分)已知a+1a=3,则a2+1a2的值为()A.5B.6C.7D.87.(3分)下列由左到右的变形,属于因式分解的是()A.(x+2)(x-2)=x2-4B.x2+4x-2=x(x+4)-2C.x2-4=(x+2)(x-2)D.x2-4+3x=(x+2)(x-2)+3x8.(3分)若4x2+5x+k有一个因式为(x−3),则k的值为()A.17B.51C.-51D.-579.(3分)如图,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成一个矩形,通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是()A.a2−ab=a(a−b)B.(a+b)2=a2+2ab+b2C.(a−b)2=a2−2ab+b2D.a2−b2=(a+b)(a−b)10.(3分)如图,大正方形与小正方形的面积之差为S,则图中阴影部分的面积是()A.2S B.S C.12S D.14S 二、填空题(共5题;共15分)11.(3分)已知2n=3,则4n+1的值是.12.(3分)设4x2+mx+121是一个完全平方式,则m=13.(3分)计算(x−y)(−y−x)的结果是.14.(3分)已知a+10=b+12=c+15,则a2+b2+c2﹣ab﹣bc﹣ac=.15.(3分)若√a2−3a+1+b2+2b+1=0,则a2+1a2−|b|=.三、计算题(共3题;共21分)16.(8分)计算:(1)(2分)(5ab-3x)(-3x-5ab).(2)(2分)(-y2+x)(x+y2).(3)(2分)x(x+5)-(x-3)(x+3).(4)(2分)(-1+a)(-1-a)(1+b2).17.(8分)因式分解:(1)(2分)am−an+ap(2)(2分)2a(b+c)−3(b+c)(3)(2分)4x4−4x3+x2(4)(2分)x4−1618.(5分)已知(x+a)(x 2﹣x+c)的乘积中不含x 2和x 项,求a ,c 的值.四、解答题(共7题;共54分)19.(6分)仔细阅读下面例题,解答问题:例题:已知二次三项式 x 2 - 4x + m 有一个因式是(x+3),求另一个因式以及 m 的值. 解:设另一个因式为(x+n),得 x 2 - 4x + m = ( x + 3)( x + n) 则 x 2 - 4x + m = x 2 + (n + 3) x + 3n ∴{n +3=−4m =3n 解得:n=-7,m=-21∴另一个因式为(x -7),m 的值为-21. 问题:仿照以上方法解答下面问题:已知二次三项式 2x 2 + 3x - k 有一个因式是(2x -3),求另一个因式以及 k 的值.20.(6分)阅读下面解题过程,然后回答问题.分解因式: x 2+2x −3 .解:原式= x 2+2x +1−1−3 = (x 2+2x +1)−4 = (x +1)2−4 = (x +1+2)(x +1−2) = (x +3)(x −1) 上述因式分解的方法称为”配方法”.请你体会”配方法”的特点,用“配方法”分解因式: y 2−4y +3 .21.(6分)已知a,b,c是△ABC的三边长,且满足a2c2−b2c2=a4−b4,试判断△ABC的形状。

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章-整式乘法与因式分解》单元测试卷-附带有答案

人教版八年级数学上册《第十四章整式乘法与因式分解》单元测试卷-附带有答案学校:班级:姓名:考号:一、单选题1.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a32.下列因式分解错误的是()A.a2+4a−4=(a+2)2B.2a−2b=2(a−b)C.x2−9=(x+3)(x−3)D.x2−x−2=(x+1)(x−2)3.将-12a2b-ab2提公因式-12ab后,另一个因式是()A.a+2b B.-a+2b C.-a-b D.a-2b4.已知x2+y2=4,xy=2那么(x+y)2的值为()A.6B.8C.10D.125.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为()A.10B.12C.14D.166.某公司有如图所示的甲、乙、丙、丁四个生产基地.现决定在其中一个基地修建总仓库,以方便公司对各基地生产的产品进行集中存储.已知甲、乙、丙、丁各基地的产量之比等于4:5:4:2,各基地之间的距离之比a:b:c:d:e=2:3:4:3:3(因条件限制,只有图示中的五条运输渠道),当产品的运输数量和运输路程均相等时,所需的运费相等.若要使总运费最低,则修建总仓库的最佳位置为()A.甲B.乙C.丙D.丁二、填空题7.若a=b+2,则代数式a2−2ab+b2的值为.8.若a+b=5,ab=6,则(a+2)(b+2)的值是。

9.若(2x﹣3)x+5=1,则x的值为.10.观察下列各式的规律:1×3=22−1:3×5=42−1:5×7=62−1:7×9=82−1…请将发现的规律用含n的式子表示为.11.若m2=n+2023,n2=m+2023,且m≠n,则代数式m3−2mn+n3的值为.三、计算题12.计算:(1)(−12ab)(23ab2−2ab+43b)(2)(2x+y)(2x-y)+(x+y)2-2(2x2-xy)13.把下列各式分解因式:(1)6ab3-24a3b;(2)x4-8x2+16;(3)a2(x+y)-b2(y+x)(4)4m2n2-(m2+n2)214.先化简,再求值:(2+a)(2﹣a)+a(a﹣5b)+3a5b3÷(﹣a2b)2,其中ab=﹣12.四、解答题15.木星是太阳系九大行星中最大的一颗,木星可以近似地看作球体,已知木星的半径大约是7×104km,木星的体积大约是多少km3(取3.14)?16.说明代数式[(x﹣y)2﹣(x+y)(x﹣y)]÷(﹣2y)+y的值,与y的值无关.17.甲乙两人共同计算一道整式乘法:(2x+a)(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x−10;由于乙漏抄了第二个多项式中的x的系数,得到的结果为2x2−9x+ 10.请你计算出a、b的值各是多少,并写出这道整式乘法的符合题意结果.18.常用的分解因式的方法有提取公因式法、公式法及十字相乘法,但有更多的多项式只用上述方法就无法分解,如x2-4y2-2x+4y,我们细心观察这个式子就会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式了.过程为:x2-4y2-2x+4y=(x+2y)(x-2y)-2(x-2y)=(x-2y)(x+2y-2).这种分解因式的方法叫分组分解法.利用这种方法解决下列问题:(1)分解因式x2-2xy+y2-16;(2)△ABC三边a,b,c 满足a2-ab-ac+bc=0,判断△ABC的形状.19.阅读材料,解决后面的问题:若m2+2mn+2n2−6n+9=0,求m−n的值.解:∵m2+2mn+2n2−6n+9=0∴(m2+2mn+n2)+(n2−6n+9)=0即:(m+n)2+(n−3)2=0,∴m+n=0,n−3=0解得:m=−3,n=3∴m−n=−3−3=−6.(1)若x2+y2+6x−8y+25=0,求x+2y的值;(2)已知等腰△ABC的两边长a,b,满足a2+b2=10a+12b−61,求该△ABC的周长;(3)已知正整数a,b,c满足不等式a2+b2+c2+36<ab+6b+10c,求a+b−c的值.参考答案和解析1.【答案】B【解析】【解答】解:∵2a•3a=6a2∴选项A不正确;∵(﹣a3)2=a6∴选项B正确;∵6a÷2a=3∴选项C不正确;∵(﹣2a)3=﹣8a3∴选项D不正确.故选:B.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.2.【答案】A【解析】【解答】A、原式不能分解,故答案为:A错误,符合题意;B、2a−2b=2(a−b)故答案为:B正确,不符合题意;C、x2−9=(x+3)(x−3)故答案为:C正确,不符合题意;D、x2−x−2=(x+1)(x−2)故答案为:D正确,不符合题意.故答案为:A.【分析】A、a2+4a-4不是完全平方式,不能用完全平方公式进行因式分解,即可判断A错误;B、利用提公因式法进行因式分解,即可判断B正确;C、利用平方差公式进行因式分解,即可判断C正确;D、利用十字相乘法进行因式分解,即可判断D正确.3.【答案】A【解析】【解答】解:∵−12a2b−ab2=−12ab(a+2b),∴将−12a2b−ab2提公因式−12ab后,另一个因式是a+2b.故答案为:A.【分析】利用提公因式的方法对−12a2b−ab2进行因式分解即可.4.【答案】B【解析】【解答】∵x2+y2=4∴(x+y)2=x2+2xy+y2=4+2×2=8故答案为:B.【分析】将x2+y2=4,xy=2代入(x+y)2=x2+2xy+y2计算即可.5.【答案】B【解析】【解答】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2设大正方形边长为a,小正方形的边长为b,∴a-b+2=b如图2,阴影部分面积=a2-2b2+(b-a−b2)2=44,解得b=6,∴a=10如图3,两个小正方形重叠部分的面积=b[(a-b)]=12.故答案为:B.【分析】根据图1重叠图形及已知条件,可得重叠部分的边长为2,设大正方形边长为a,小正方形的边长为b,可得a-b+2=b,根据图2阴影部分面积为44建立方程,从而求出b值,即得a值,根据图3两个小正方形重叠部分的面积=b[(a-b)]即可求出结论.6.【答案】A【解析】【解答】∵甲、乙、丙、丁各基地的产量之比等于4:5:4:2设甲基地的产量为4x吨,则乙、丙、丁基地的产量分别为5x吨、4x吨、2x吨∵各基地之间的距离之比a:b:c:d:e=2:3:4:3:3设a=2y千米,则b、c、d、e分别为3y千米、4y千米、3y千米、3y千米设运输的运费每吨为z元/千米①设在甲处建总仓库则运费最少为:(5x×2y+4x×3y+2x×3y)z=28xyz;②设在乙处建总仓库∵a+d=5y,b+c=7y∴a+d<b+c则运费最少为:(4x×2y+4x×3y+2x×5y)z=30xyz;③设在丙处建总仓库则运费最少为:(4x×3y+5x×3y+2x×4y)z=35xyz;④设在丁处建总仓库则运费最少为:(4x×3y+5x×5y+4x×4y)z=53xyz;由以上可得建在甲处最合适故答案为:A.【分析】根据比例分别设甲基地的产量为4x吨,可得乙、丙、丁基地的产量分别为5x吨、4x吨、2x 吨;设a=2y千米,可得b、c、d、e分别为3y千米、4y千米、3y千米、3y千米.接着设设运输的运费每吨为z元/千米,然后分别求出设在甲处、乙处、丙处、丁处的总费用,最后比较即可.7.【答案】4【解析】【解答】解:∵a=b+2∴a−b=2∴a2−2ab+b2=(a−b)2=22=4。

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册 第十四章 整式的乘法与因式分解 单元测试卷(2024年秋)

人教版八年级数学上册第十四章整式的乘法与因式分解单元测试卷(2024年秋)一、选择题(每小题3分,共30分)1.计算:8xy3·-1432=()A.2x4y5B.-2x4y5C.2x3yh6D.-2x3y5 2.[母题教材P118例5]多项式x2-4x+4因式分解的结果是() A.x(x-4)+4B.(x+2)(x-2)C.(x-2)2D.(x+2)2 3.[2024西安灞桥区模拟]计算(12x3-18x2-6x)÷(-6x)的结果为()A.-2x2+3x B.-2x2-3xC.-2x2-3x-1D.-2x2+3x+14.要使多项式(x+p)(x-q)不含x的一次项,则p与q的关系是() A.相等B.互为相反数C.互为倒数D.乘积为-15.[母题教材P104习题T1]下列各式计算正确的是() A.a2·a3=a6B.a6÷a3=a2C.(-2ab2)3=-8a3b6D.2a2+3a3=5a5 6.[2024泰安期末]当x=1时,ax+b+1的值为-2,则(a+b-1)(1-a-b)的值为()A.16B.8C.-8D.-16 7.若10a×100b=10000,则a+2b=()A.1B.2C.3D.48.若式子(x+2)(x-1)-(x+2)能因式分解成(x+m)(x+n),则mn的值是()A.2B.-2C.-4D.49.某同学在计算-3x加上一个多项式时错将加法做成了乘法,得到的答案是3x3-3x2+3x,由此可以推断出正确的计算结果是() A.x2+2x-1B.-x2-2x-1C.-x2+4x-1D.x2-4x+110.224-1可以被60和70之间某两个数整除,这两个数是() A.63,64B.63,65C.61,67B.61,65二、填空题(每小题3分,共15分)11.计算:(-1)2=.12.若x2-3mx+36是一个完全平方式,则m的值是.13.一个正方体的棱长是2×103cm,则这个正方体的体积为.14.[2024温州期中]已知(a+3)2=82,则(a+11)(a-5)的值为.15.3(22+1)(24+1)(28+1)…(232+1)+1计算结果的个位数字是.三、解答题(本大题共8个小题,满分75分)16.(8分)[2024盐城期中]因式分解:(1)m2-16n2;(2)xy4-6xy3+9xy2.17.(9分)[母题教材P112习题T4]先化简,再求值:[(2x-y)2-(3x +y)(3x-y)+5x2]÷(-2y),其中x=-12,y=1.18.(9分)若x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,试确定m,n的值.19.(9分)[2024扬州邗江区期中](1)已知a m=2,a n=5,求a2m+n的值;(2)如果2x+2+2x+1=24,求x的值.20.(9分)[情境题生活应用]某种植基地有一块长方形实验田和一块正方形实验田,长方形实验田每排种植(3a-b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a +b)排,其中a>b>0.(1)长方形实验田比正方形实验田多种植多少株豌豆幼苗?(2)当a=4,b=3时,长方形实验田比正方形实验田多种植多少株豌豆幼苗?21.(9分)[新视角新定义题]如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)试说明“神秘数”能被4整除;(2)两个连续奇数的平方差是“神秘数”吗?试说明理由.22.(11分)[新考法阅读类比题]先阅读下面的内容,再解决问题.例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0,∴m2+2mn+n2+n2-6n+9=0.∴(m+n)2+(n-3)2=0.∴m+n=0,n-3=0,解得m=-3,n=3.(1)若x2+2y2-2xy-4y+4=0,求x y的值;(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.23.(11分)知识生成:我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:由图①可以得到(a+b)2=a2+2ab +b2,基于此,请解答下列问题:直接应用:(1)若xy=5,x+y=7,直接写出x2+y2的值为;类比应用:(2)填空:①若x(4-x)=2,则x2+(x-4)2=;②若(x-3)(x-5)=2,则(x-3)2+(x-5)2=;知识迁移:(3)如图②,一农家乐准备在原有长方形用地(即长方形ABCD)上进行装修和扩建,先用长为120m的装饰性篱笆围起该长方形用地,再以AD,CD为边分别向外扩建正方形ADGH、正方形DCEF两块空地,并在这两块正方形空地上建造功能性花园,该功能性花园面积和为2000m2,求原有长方形用地ABCD的面积.答案1.B2.C3.D4.A5.C6.D7.D8.C9.B 10.B【点拨】224-1=(212-1)(212+1)=(26-1)(26+1)(212+1)=63×65×(212+1),则这两个数是63与65.二、11.212.±413.8×109cm314.1815.6三、16.【解】(1)m2-16n2=m2-(4n)2=(m+4n)(m-4n).(2)xy4-6xy3+9xy2=xy2(y2-6y+9)=xy2(y-3)2.17.【解】原式=(4x2-4xy+y2-9x2+y2+5x2)÷(-2y)=(2y2-4xy)÷(-2y)=-y+2x.当x=-12,y=1时,原式=-1+2×1-1=-2.18.【解】(x-1)(x2+mx+n)=x3+mx2+nx-x2-mx-n=x3+(m-1)x2+(n-m)x-n.∵x3-5x2+10x-6=(x-1)(x2+mx+n)恒成立,即x3-5x2+10x -6=x3+(m-1)x2+(n-m)x-n恒成立,∴n=6,m-1=-5,解得m=-4.∴m=-4,n=6.19.【解】(1)∵a m=2,a n=5,∴a2m+n=a2m·a n=(a m)2·a n=22×5=20.(2)∵2x+2+2x+1=2x·22+2x·2=4×2x+2×2x=6×2x,∴6×2x=24.∴2x=4=22.∴x=2.20.【解】(1)由题意,得(3a-b)(3a+b)-(a+b)2=9a2-b2-a2-2ab-b2=(8a2-2ab-2b2)(株).答:长方形实验田比正方形实验田多种植(8a2-2ab-2b2)株豌豆幼苗.(2)当a=4,b=3时,8a2-2ab-2b2=8×42-2×4×3-2×32=128-24-18=86.答:长方形实验田比正方形实验田多种植86株豌豆幼苗.21.【解】(1)设两个连续的偶数分别为2k,2k+2(k为整数),则由题意得(2k+2)2-(2k)2=(2k+2+2k)(2k+2-2k)=2(4k+2)=4(2k+1),∴“神秘数”能被4整除.(2)两个连续奇数的平方差不是“神秘数”.理由如下:设两个连续的奇数分别为2k-1,2k+1(k为整数),则(2k+1)2-(2k-1)2=8k,而由(1)知“神秘数”是4的奇数倍,不是偶数倍,但8k是4的偶数倍,∴两个连续奇数的平方差不是“神秘数”.22.【解】(1)∵x2+2y2-2xy-4y+4=x2-2xy+y2+y2-4y+4=(x-y)2+(y-2)2=0,∴x-y=0,y-2=0,解得x=2,y=2.∴x y =22=4.(2)∵a2+b2=10a+8b-41,∴a2-10a+25+b2-8b+16=0.∴(a-5)2+(b-4)2=0.∴a-5=0,b-4=0,解得a=5,b=4.∵c 是△ABC中最长的边,∴5≤c<9.23.【解】(1)39(2)①12②8(3)设AB=x m,BC=y m,则2(x+y)=120,∴x+y=60.由题意,得x2+y2=2000,∴xy=(+)2−(2+2)2=3600-20002=800.∴原有长方形用地ABCD的面积为800m2.。

人教版八年级上册数学 第十四章 整式的乘法与因式分解 单元测试题

人教版八年级上册数学   第十四章  整式的乘法与因式分解  单元测试题

人教版八年级上册数学第十四章 整式的乘法与因式分解 单元测试题一.单选题(本大题共12小题,每小题3分,共36分)。

1.正整数a 、b 335398a <27b <a b =( )A .4B .8C .9D .162.计算23a a a ⋅⋅的正确结果是( )A .5aB .6aC .8aD .9a3.计算(a+3)(﹣a+1)的结果是( )A .﹣a 2﹣2a+3B .﹣a 2+4a+3C .﹣a 2+4a ﹣3D .a 2﹣2a ﹣3 4.制作拉面需将长方形面条摔匀拉伸后对折,并不断重复.随着不断地对折,面条根数不断增加.若一拉面店一碗面约有64根面条,一天能拉出2048碗拉面,用底数为2的幂表示拉面的总根数为( )A .62B .112C .172D .6625.若A 与12ab -的积为33221432a b a b ab -+-,则A 为( ) A .22861a b ab -+- B .2231224a b ab -++ C .22861a b ab -+ D .223212a b ab -+ 6.按如图所示的运算程序,能使输出 y 值为 5 的是( )A .2m =,1n =B .2m =,0n =C .2m =,2n =D .3m =,2n =7.若(2)(21)x y x my +--的结果中不含xy 项,则m 的值为( )A .4B .4-C .2D .2- 8.计算22023022430.75⎛⎫⨯- ⎪⎝⎭的结果是( ) A .43 B .43- C .0.75 D .﹣0.759.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿曰兆.”说明了大数之间的关系:1亿=1万×1万,1兆=1万×1万×1亿,则1兆等于( )A .810B .1210C .1610D .241010.如图,ABC 中,若80BAC ∠=︒,70ACB ∠=︒,根据图中尺规作图的痕迹推断,以下结论错误的是( )A .40BAQ ∠=︒B .12DE BD = C .AF AC = D .25EQF ∠=︒ 11.有一台特殊功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数1x ,只显示不运算,接着再输入整数2x 后则显示12x x -的结果.比如依次输入1,2,则输出的结果是121-=;此后每输入一个整数都是与前次显示的结果进行求差后再取绝对值的运算.有如下结论:①依次输入1,2,3,4,则最后输出的结果是2;②若将1,2,3,4这4个整数任意地一个一个输入,全部输入完毕后显示的结果的最大值是4;③若将1,2,3,4这4个整数任意地一个一个地输入,全部输入完毕后显示的结果的最小值是0;④若随意地一个一个地输入三个互不相等的正整数2,a ,b ,全部输入完毕后显示的最后结果设为k ,若k 的最大值为10,那么k 的最小值是6.上述结论中,正确的个数是( )A .1个B .2个C .3个D .4个12.若m n a a =(0a >且1a ≠),则m n =,已知43m =,412n =,448p =,那么m ,n ,p 三者之间的关系正确的有( )①1m n -=;②2m p n +=;③21n mp -=;④21m n p +=-.A .0个B .1个C .2个D .3个二.填空题(本大题共8小题,每小题3分,共24分)。

人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)

人教版八年级上册数学第14章整式的乘法与因式分解 单元测试卷(Word版,含答案)

人教版八年级上册数学第14章整式的乘法与因式分解单元测试卷题号一二三四总分得分一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.下列各式由左到右的变形中,属于分解因式的是( )A. a(m+n)=am+anB. a2−b2−c2=(a−b)(a+b)−c2C. 10x2−5x=5x(2x−1)D. x2−16+6x=(x+4)(x−4)+6x2.下列各式计算结果为a5的是( )A. a3+a2B. a3×a2C. (a2)3D. a10÷a23.下列等式中,从左到右的变形是因式分解的是( )A. x(x−2)=x2−2xB. (x+1)2=x2+2x+1) D. x2−4=(x+2)(x−2)C. x+2=x(1+2x4.下列等式中,从左到右的变形属于因式分解的是( )A. a(a+2)=a2+2aB. a2−b2=(a+b)(a−b)C. m2+m+3=m(m+1)+3D. a2+6a+3=(a+3)2−65.一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,例如27=62−32,63=82−12,故27,63都是“创新数”,下列各数中,不是“创新数”的是( )A. 31B. 41C. 16D. 546.代数式yz(xz+2)−2y(3xz2+z+x)+5xyz2的值( )A. 只与x、y有关B. 只与y、z有关C. 与x、y、z都无关D. 与x、y、z都有关7.如图,将一张边长为x的正方形纸板按图中虚线裁剪成三块长方形,观察图形表示阴影部分的面积,则表示错误的是( )A. (x−1)(x−2)B. x2−3x+2C. x2−(x−2)−2xD. x2−38.下列运算正确的是( )A. a⋅a2=a3B. a6÷a2=a3C. 2a2−a2=2D. (3a2)2=6a49.若4x2−(k+1)x+9能用完全平方公式因式分解,则k的值为( )A. ±6B. ±12C. −13或11D. 13或−1110.若x,y,z满足(x−z)2−4(x−y)(y−z)=0,则下列式子一定成立的是 ( )A. x+y+z=0B. x+y−2z=0C. y+z−2x=0D. z+x−2y=0二、填空题(本大题共8小题,共24分)11.分解因式:x2y−4y=.12.计算:(a−b)3⋅(b−a)⋅(a−b)5=.13.若x2+kx+25=(x±5)2,则k=.14.已知(ka m−n b m+n)2=4a4b8,则k+m+n=.15.若x m=3,x n=2,则x2m+3n=______⋅16.已知a2+b2=13,(a−b)2=1,则(a+b)2=.17.如图1,将边长为x的大正方形剪去一个边长为1的小正方形(阴影部分),并将剩余部分沿虚线剪开,得到两个长方形,再将这两个长方形拼成图2所示长方形.这两个图能解释一个等式是.18.在计算(x+y)(x−3y)−my(nx−y)(m、n均为常数)的值,在把x、y的值代入计算时,粗心的小明把y的值看错了,其结果等于9,细心的小红把正确的x、y的值代入计算,结果恰好也是9,为了探个究竟,小红又把y的值随机地换成了2018,结果竟然还是9,根据以上情况,探究其中的奥妙,计算mn=______.三、计算题(本大题共2小题,共12分)19.计算:(1)(x−1)(x2+x+1);(2)(3a−2)(a−1)−(a+1)(a+2);(3)(x−2)(x2+2x)+(x+2)(x2−2x).20.把下列各式分解因式:(1)8a 3b 2−12ab 3c +6a 3b 2c; (2)5x(x −y)2+10(y −x)3;(3)(a +b)2−9(a −b)2; (4)−4ax 2+8axy −4ay 2; (5)(x 2+2)2−22(x 2+2)+121.四、解答题(本大题共7小题,共54分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学单元质量检测
14章
一、选择题:(每小题3分,共30分)
1.下列计算中正确的是( ). A .a 2+b 3=2a 5 B .a 4÷a =a 4 C .a 2·a 4=a 8 D .(-a 2)3=-a 6
2.计算
的结果是( )
A. B. C. D.
3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ). ①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2. A .1个 B .2个 C .3个 D .4个 4.计算
的结果是( )
A .
B .
C .
D .
5.下列各式是完全平方式的是( ). A .x 2-x +
1
4
B .1+x 2
C .x +xy +1
D .x 2+2x -1 6.下列各式中能用平方差公式是( ) A .(x+y)(y+x) B .(x+y)(y-x) C .(x+y)(-y-x) D .(-x+y)(y-x)
7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ). A .-3 B . C .0 D .1
8.若3x =15,3y =5,则3x -
y 等于( ). A .5 B .3 C .15 D .10 9.若(x -3)(x+4)=x 2+px+q,那么p 、q 的值是( )
A .p=1,q=-12
B .p=-1,q=12
C .p=7,q=12
D .p=7,q=-12 10.下列各式从左到右的变形,正确的是( ).
A.-x -y=-(x -y)
B.-a+b=-(a+b)
C.22)()(y x x y -=-
D.33)()(a b b a -=-
第Ⅱ卷(非选择题 共70分)
二、填空题:(每小题3分,共24分)
11.计算(-3x 2y )·(2
1
3
xy )=__________. 12.计算:22
()()33
m n m n -
+--=__________.
13.计算:2007
200831
()
(1)4
3
⨯-= .
14.若代数式2a 2+3a+1的值是6,则代数式6a 2+9a+5的值为 .
15.当x __________时,(x -4)0=1.
16.若多项式x 2+ax +b 分解因式的结果为(x +1)(x -2),则a +b 的值为__________. 17.若|a -2|+b 2-2b +1=0,则a =__________,b =__________. 18.已知a +
1a =3,则a 2+21
a
的值是__________. 三、解答题:(共46分)
19.计算:(每小题5分,共10分) (1)(ab 2)2·(-a 3b )3÷(-5ab ); (2)
)12(4)392(32
--+-a a a a a
20.分解因式:(每小题5分,共20分) (1)m 2-6m +9 (2) (x +y )2+2(x +y )+1.
(3)3x -12x 3; (3)9a 2(x -y )+4b 2(y -x );
21.先化简,再求值.(6分)
2(x -3)(x +2)-(3+a )(3-a ),其中,a =-2,x =1.
22.若0352=-+y x ,求y
x
324⋅的值.(4分)
23.(本题满分6分)已知:a ,b ,c 为△ABC 的三边长,且2a 2+2b 2+2c 2
=2ab +2ac +2bc ,试判断△ABC 的形状,并证明你的结论.
第Ⅰ卷(选择题 共30 分)
一、选择题:(每小题3分,共30分)
题号 1 2 3 4 5 6 7 8 9 10 答案
D
B
B
B
A
B
A
B
A
C
第Ⅱ卷(非选择题 共70分) 二、填空题:(每小题3分,共24分)
11、-x 3y 3 12、
2
249
m n 13、34 14、20
15、x ≠4 16、-3 17、a =2,b =1. 18、7 三、解答题:(共46分)
19.(1)
106
15
a b ;(2)6a 3-35a 2+13a ; 20.解:(1) m 2-6m +9 =(m -3)2
(2)(x +y )2+2(x +y )+1=(x +y +1)2. (3)3x -12x 3=3x (1-4x 2)=3x (1+2x )(1-2x );
(4)9a 2(x -y )+4b 2(y -x )=9a 2(x -y )-4b 2(x -y )=(x -y )(9a 2-4b 2)
=(x -y )(3a +2b )·(3a -2b );
21.解:2(x -3)(x +2)-(3+a )(3-a )
=2(x 2-x -6)-(9-a 2) =2x 2-2x -12-9+a 2 =2x 2-2x -21+a 2,
当a =-2,x =1时,原式=2-2-21+(-2)2=-17. 22. 8;
23.解:△ABC 是等边三角形.证明如下:
因为2a 2+2b 2+2c 2=2ab +2ac +2bc ,所以2a 2+2b 2+2c 2-2ab -2ac -2bc =0, a 2-2ab +b 2+a 2-2ac +c 2+b 2-2bc +c 2=0, (a -b )2+(a -c )2+(b -c )2=0,
所以(a -b )2=0,(a -c )2=0,(b -c )2=0,得a =b 且a =c 且b =c ,即a =b =c ,所以△ABC 是等边三角形.。

相关文档
最新文档