2020-2021深圳华侨城中学七年级数学下期末第一次模拟试卷及答案

合集下载

深圳华侨城中学七年级下册数学期末试卷检测题(Word版 含答案)

深圳华侨城中学七年级下册数学期末试卷检测题(Word版 含答案)

深圳华侨城中学七年级下册数学期末试卷检测题(Word 版 含答案)一、解答题1.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.2.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数.3.如图,∠EBF =50°,点C 是∠EBF 的边BF 上一点.动点A 从点B 出发在∠EBF 的边BE 上,沿BE 方向运动,在动点A 运动的过程中,始终有过点A 的射线AD ∥BC .(1)在动点A 运动的过程中, (填“是”或“否”)存在某一时刻,使得AD 平分∠EAC ? (2)假设存在AD 平分∠EAC ,在此情形下,你能猜想∠B 和∠ACB 之间有何数量关系?并请说明理由;(3)当AC ⊥BC 时,直接写出∠BAC 的度数和此时AD 与AC 之间的位置关系.4.点A ,C ,E 在直线l 上,点B 不在直线l 上,把线段AB 沿直线l 向右平移得到线段CD .(1)如图1,若点E 在线段AC 上,求证:∠B +∠D =∠BED ;(2)若点E 不在线段AC 上,试猜想并证明∠B ,∠D ,∠BED 之间的等量关系;(3)在(1)的条件下,如图2所示,过点B 作PB //ED ,在直线BP ,ED 之间有点M ,使得∠ABE =∠EBM ,∠CDE =∠EDM ,同时点F 使得∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,其中n ≥1,设∠BMD =m ,利用(1)中的结论求∠BFD 的度数(用含m ,n 的代数式表示). 5.已知直线//AB CD ,点P 为直线AB 、CD 所确定的平面内的一点.(1)如图1,直接写出APC ∠、A ∠、C ∠之间的数量关系 ;(2)如图2,写出APC ∠、A ∠、C ∠之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作//EF PC ,作PEG PEF ∠∠=,点G 在直线CD 上,作BEG ∠的平分线EH 交PC 于点H ,若30APC ∠=,140PAB ∠=,求PEH ∠的度数.二、解答题6.如图,直线//PQ MN ,一副三角板(90ABC CDE ∠=∠=︒,30ACB ∠=︒,60,45EAC DCE DEC ∠=︒∠=∠=︒)按如图①放置,其中点E 在直线PQ 上,点,B C 均在直线MN 上,且CE 平分ACN ∠.(1)求DEQ ∠的度数.(2)如图②,若将三角形ABC 绕B 点以每秒5︒的速度按逆时针方向旋转(,A C 的对应点分别为,F G ).设旋转时间为t 秒(036)t ≤≤.①在旋转过程中,若边//BG CD ,求t 的值;②若在三角形ABC 绕B 点旋转的同时,三角形CDE 绕E 点以每秒4︒的速度按顺时针方向旋转(,C D 的对应点分别为,H K ).请直接写出当边//BG HK 时t 的值.7.[感知]如图①,//40130AB CD AEP PFD ∠=︒∠=︒,,,求EPF ∠的度数.小乐想到了以下方法,请帮忙完成推理过程.解:(1)如图①,过点P 作//PM AB .∴140AEP ∠=∠=︒(_____________),∴//AB CD ,∴//PM ________(平行于同一条直线的两直线平行),∴_____________(两直线平行,同旁内角互补),∴130PFD ∠=︒,∴218013050︒︒∠=-=︒,∴12405090︒∠=+︒+∠=︒,即90EPF ∠=︒.[探究]如图②,//,50,120AB CD AEP PFC ∠=︒∠=︒,求EPF ∠的度数;[应用](1)如图③,在[探究]的条件下,PEA ∠的平分线和PFC ∠的平分线交于点G ,则G ∠的度数是_________º.(2)已知直线//a b ,点A ,B 在直线a 上,点C ,D 在直线b 上(点C 在点D 的左侧),连接AD BC ,,若BE 平分ABC DE ∠,平分ADC ∠,且BE DE ,所在的直线交于点E .设(),ABC ADC αβαβ∠=∠=≠,请直接写出BED ∠的度数(用含,αβ的式子表示). 8.(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a 从空气中射入水中,再从水中射入空气中,形成光线b ,根据光学知识有12,34∠=∠∠=∠,请判断光线a 与光线b 是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线α与水平线OC 的夹角为40︒,问如何放置平面镜MN ,可使反射光线b 正好垂直照射到井底?(即求MN 与水平线的夹角) (3)如图3,直线EF 上有两点A 、C ,分别引两条射线AB 、CD .105BAF ∠=︒,65DCF ∠=︒,射线AB 、CD 分别绕A 点,C 点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t ,在射线CD 转动一周的时间内,是否存在某时刻,使得CD 与AB 平行?若存在,求出所有满足条件的时间t .9.如图1,点O 在MN 上,90,,AOB AOM m OCQ n ∠=︒∠=︒∠=︒,射线OB 交PQ 于点C ,已知m ,n 满足:220(70)0m n -+-=.(1)试说明MN //PQ 的理由;(2)如图2,OD 平分AON ∠,CF 平分OCQ ∠,直线OD 、CF 交于点E ,则OEF ∠=______︒;(3)若将AOB ∠绕点O 逆时针旋转()090αα<<︒,其余条件都不变,在旋转过程中,OEF ∠的度数是否发生变化?请说明你的结论.10.如图1,D 是△ABC 延长线上的一点,CE //AB .(1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.三、解答题11.【问题探究】如图1,DF ∥CE ,∠PCE=∠α,∠PDF=∠β,猜想∠DPC 与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF ∥CE ,点P 在三角板AB 边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P 在E 、F 两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2) 12.在ABC 中,100BAC ∠=︒,A ABC CB =∠∠,点D 在直线BC 上运动(不与点B 、C 重合),点E 在射线AC 上运动,且ADE AED ∠=∠,设DAC n ∠=︒.(1)如图①,当点D 在边BC 上,且40n =︒时,则BAD ∠=__________︒,CDE ∠=__________︒;(2)如图②,当点D 运动到点B 的左侧时,其他条件不变,请猜想BAD ∠和CDE ∠的数量关系,并说明理由;(3)当点D 运动到点C 的右侧时,其他条件不变,BAD ∠和CDE ∠还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑) 13.如图1,已知AB ∥CD ,BE 平分∠ABD ,DE 平分∠BDC .(1)求证:∠BED =90°;(2)如图2,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EDF =α,∠ABF 的角平分线与∠CDF 的角平分线DG 交于点G ,试用含α的式子表示∠BGD 的大小;(3)如图3,延长BE 交CD 于点H ,点F 为线段EH 上一动点,∠EBM 的角平分线与∠FDN 的角平分线交于点G ,探究∠BGD 与∠BFD 之间的数量关系,请直接写出结论: .14.已知,//AB CD ,点E 为射线FG 上一点.(1)如图1,写出EAF ∠、AED ∠、EDG ∠之间的数量关系并证明;(2)如图2,当点E 在FG 延长线上时,求证:EAF AED EDG ∠=∠+∠;(3)如图3,AI 平分BAE ∠,DI 交AI 于点I ,交AE 于点K ,且EDI ∠:2:1CDI ∠=,20AED ∠=︒,30I ∠=︒,求EKD ∠的度数.15.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系.小明:可以用三角形内角和定理去解决.小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程:∵180BDC DBC BCD ∠+∠+∠=︒,(______)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(______)(2)请你按照小丽的思路完成探究过程;(3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、解答题1.(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.2.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.3.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD解析:(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.【分析】(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.【详解】解:(1)是,理由如下:要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;故答案为:是;(2)∠B=∠ACB,理由如下:∵AD平分∠EAC,∴∠EAD=∠CAD,∵AD∥BC,∴∠B=∠EAD,∠ACB=∠CAD,∴∠B=∠ACB.(3)∵AC⊥BC,∴∠ACB=90°,∵∠EBF=50°,∴∠BAC=40°,∵AD∥BC,∴AD⊥AC.【点睛】此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.4.(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E 在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)【分析】(1)如图1中,过点E作ET∥AB.利用平行解析:(1)见解析;(2)当点E在CA的延长线上时,∠BED=∠D-∠B;当点E在AC的延长线上时,∠BED=∠BET-∠DET=∠B-∠D;(3)()12m nn-【分析】(1)如图1中,过点E作ET∥A B.利用平行线的性质解决问题.(2)分两种情形:如图2-1中,当点E在CA的延长线上时,如图2-2中,当点E在AC的延长线上时,构造平行线,利用平行线的性质求解即可.(3)利用(1)中结论,可得∠BMD=∠ABM+∠CDM,∠BFD=∠ABF+∠CDF,由此解决问题即可.【详解】解:(1)证明:如图1中,过点E作ET∥A B.由平移可得AB∥CD,∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET+∠DET=∠B+∠D.(2)如图2-1中,当点E在CA的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠DET-∠BET=∠D-∠B.如图2-2中,当点E在AC的延长线上时,过点E作ET∥A B.∵AB∥ET,AB∥CD,∴ET∥CD∥AB,∴∠B=∠BET,∠TED=∠D,∴∠BED=∠BET-∠DET=∠B-∠D.(3)如图,设∠ABE=∠EBM=x,∠CDE=∠EDM=y,∵AB∥CD,∴∠BMD=∠ABM+∠CDM,∴m =2x +2y ,∴x +y =12m , ∵∠BFD =∠ABF +∠CDF ,∠ABE =n ∠EBF ,∠CDE =n ∠EDF ,∴∠BFD =()111n n n x y x y n n n ---+=+=112n m n -⨯=()12m n n -. 【点睛】本题属于几何变换综合题,考查了平行线的性质,角平分线的定义等知识,解题的关键是学会条件常用辅助线,构造平行线解决问题,属于中考常考题型. 5.(1)∠A+∠C+∠APC=360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A+∠C+∠APC=360解析:(1)∠A +∠C +∠APC =360°;(2)见解析;(3)55°【分析】(1)首先过点P 作PQ ∥AB ,则易得AB ∥PQ ∥CD ,然后由两直线平行,同旁内角互补,即可证得∠A +∠C +∠APC =360°;(2)作PQ ∥AB ,易得AB ∥PQ ∥CD ,根据两直线平行,内错角相等,即可证得∠APC =∠A +∠C ;(3)由(2)知,∠APC =∠PAB -∠PCD ,先证∠BEF =∠PQB =110°、∠PEG =12∠FEG ,∠GEH =12∠BEG ,根据∠PEH =∠PEG -∠GEH 可得答案.【详解】解:(1)∠A +∠C +∠APC =360°如图1所示,过点P 作PQ ∥AB ,∴∠A +∠APQ =180°,∵AB ∥CD ,∴PQ ∥CD ,∴∠C +∠CPQ =180°,∴∠A +∠APQ +∠C +∠CPQ =360°,即∠A +∠C +∠APC =360°;(2)∠APC =∠A +∠C ,如图2,作PQ ∥AB ,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ-∠CPQ,∴∠APC=∠A-∠C;(3)由(2)知,∠APC=∠PAB-∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵EF∥BC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG-∠GEH=1 2∠FEG-12∠BEG=12∠BEF=55°.【点睛】此题考查了平行线的性质以及角平分线的定义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.二、解答题6.(1)60°;(2)①6s;②s或s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当解析:(1)60°;(2)①6s;②103s或703s【分析】(1)利用平行线的性质角平分线的定义即可解决问题.(2)①首先证明∠GBC=∠DCN=30°,由此构建方程即可解决问题.②分两种情形:如图③中,当BG∥HK时,延长KH交MN于R.根据∠GBN=∠KRN构建方程即可解决问题.如图③-1中,当BG∥HK时,延长HK交MN于R.根据∠GBN+∠KRM=180°构建方程即可解决问题.【详解】解:(1)如图①中,∵∠ACB=30°,∴∠ACN=180°-∠ACB=150°,∵CE平分∠ACN,∴∠ECN=12∠ACN=75°,∵PQ∥MN,∴∠QEC+∠ECN=180°,∴∠QEC=180°-75°=105°,∴∠DEQ=∠QEC-∠CED=105°-45°=60°.(2)①如图②中,∵BG∥CD,∴∠GBC=∠DCN,∵∠DCN=∠ECN-∠ECD=75°-45°=30°,∴∠GBC=30°,∴5t=30,∴t=6s.∴在旋转过程中,若边BG∥CD,t的值为6s.②如图③中,当BG∥HK时,延长KH交MN于R.∵BG∥KR,∴∠GBN=∠KRN,∵∠QEK=60°+4t,∠K=∠QEK+∠KRN,∴∠KRN=90°-(60°+4t)=30°-4t,∴5t=30°-4t,∴t=103s.如图③-1中,当BG∥HK时,延长HK交MN于R.∵BG∥KR,∴∠GBN+∠KRM=180°,∵∠QEK=60°+4t,∠EKR=∠PEK+∠KRM,∴∠KRM=90°-(180°-60°-4t)=4t-30°,∴5t+4t-30°=180°,∴t=703s.综上所述,满足条件的t的值为103s或703s.【点睛】本题考查几何变换综合题,考查了平行线的性质,旋转变换,角平分线的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题.7.[感知]见解析;[探究]70°;[应用](1)35;(2)或【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD=180°,求出∠2的度数,结合∠1可得结果;解析:[感知]见解析;[探究]70°;[应用](1)35;(2)2αβ+或2βα-【分析】[感知]过点P 作PM ∥AB ,根据平行线的性质得到∠1=∠AEP ,∠2+∠PFD =180°,求出∠2的度数,结合∠1可得结果;[探究]过点P 作PM ∥AB ,根据AB ∥CD ,PM ∥CD ,进而根据平行线的性质即可求∠EPF 的度数;[应用](1)如图③所示,在[探究]的条件下,根据∠PEA 的平分线和∠PFC 的平分线交于点G ,可得∠G 的度数;(2)画出图形,分点A 在点B 左侧和点A 在点B 右侧,两种情况,分别求解.【详解】解:[感知]如图①,过点P 作PM ∥AB ,∴∠1=∠AEP =40°(两直线平行,内错角相等)∵AB ∥CD ,∴PM ∥CD (平行于同一条直线的两直线平行),∴∠2+∠PFD =180°(两直线平行,同旁内角互补),∴∠PFD =130°(已知),∴∠2=180°-130°=50°,∴∠1+∠2=40°+50°=90°,即∠EPF =90°;[探究]如图②,过点P 作PM ∥AB ,∴∠MPE =∠AEP =50°,∵AB ∥CD ,∴PM ∥CD ,∴∠PFC =∠MPF =120°,∴∠EPF =∠MPF -∠MPE =120°-50°=70°;[应用](1)如图③所示,∵EG 是∠PEA 的平分线,FG 是∠PFC 的平分线,∴∠AEG =12∠AEP =25°,∠GFC =12∠PFC =60°,过点G 作GM ∥AB ,∴∠MGE =∠AEG =25°(两直线平行,内错角相等)∵AB ∥CD (已知),∴GM ∥CD (平行于同一条直线的两直线平行),∴∠GFC =∠MGF =60°(两直线平行,内错角相等).∴∠G =∠MGF -∠MGE =60°-25°=35°.故答案为:35.(2)当点A 在点B 左侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠ABE =∠BEF ,∠CDE =∠DEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠ABE =∠BEF =12α,∠CDE =∠DEF =12β, ∴∠BED =∠BEF +∠DEF =2αβ+;当点A 在点B 右侧时,如图,故点E 作EF ∥AB ,则EF ∥CD ,∴∠DEF =∠CDE ,∠ABG =∠BEF ,∵BE 平分ABC DE ∠,平分ADC ∠,,ABC ADC αβ∠=∠=,∴∠DEF =∠CDE =12β,∠ABG =∠BEF =12α, ∴∠BED =∠DEF -∠BEF =2βα-;综上:∠BED 的度数为2αβ+或2βα-.【点睛】 本题考查了平行线的判定与性质、平行公理及推论,角平分线的定义,解决本题的关键是熟练运用平行线的性质.8.(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a ∥b ;(2)根据入射光线与镜面的夹角与反解析:(1)平行,理由见解析;(2)65°;(3)5秒或95秒【分析】(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a ∥b ;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上40°即可得解;(3)分①AB 与CD 在EF 的两侧,分别表示出∠ACD 与∠BAC ,然后根据两直线平行,内错角相等列式计算即可得解;②CD 旋转到与AB 都在EF 的右侧,分别表示出∠DCF 与∠BAC ,然后根据两直线平行,同位角相等列式计算即可得解;③CD 旋转到与AB 都在EF 的左侧,分别表示出∠DCF 与∠BAC ,然后根据两直线平行,同位角相等列式计算即可得解.【详解】解:(1)平行.理由如下:如图1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(内错角相等,两直线平行);(2)如图2:∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=1×50°=25°,2∴MN与水平线的夹角为:25°+40°=65°,即MN与水平线的夹角为65°,可使反射光线b正好垂直照射到井底;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠ACD=∠BAC,即115-3t=105-t,解得t=5;如图②,CD旋转到与AB都在EF的右侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,则∠DCF=∠BAC,即295-3t=105-t,解得t=95;如图③,CD旋转到与AB都在EF的左侧时,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,则∠DCF=∠BAC,即3t-295=t-105,解得t=95,此时t>105,∴此情况不存在.综上所述,t为5秒或95秒时,CD与AB平行.【点睛】本题考查了平行线的判定与性质,光学原理,读懂题意并熟练掌握平行线的判定方法与性质是解题的关键,(3)要注意分情况讨论.9.(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由可求得m及n,从而可求得∠MOC=∠OCQ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也 解析:(1)见解析;(2)45;(3)不变,见解析;【分析】(1)由220(70)0m n -+-=可求得m 及n ,从而可求得∠MOC =∠OCQ ,则可得结论;(2)易得∠AON 的度数,由两条角平分线,可得∠DON ,∠OCF 的度数,也易得∠COE 的度数,由三角形外角的性质即可求得∠OEF 的度数;(3)不变,分三种情况讨论即可.【详解】(1)∵200m -≥,2(70)0n -≥,且220(70)0m n -+-= ∴200m -=,2(70)0n -=∴m =20,n =70∴∠MOC =90゜-∠AOM =70゜∴∠MOC =∠OCQ =70゜∴MN ∥PQ(2)∵∠AON =180゜-∠AOM =160゜又∵OD 平分AON ∠,CF 平分OCQ ∠ ∴1802DON AON ∠=∠=︒,1352OCF OCQ ∠=∠=︒∵80MOE DON ∠=∠=︒∴10COE MOE MOC ∠=∠-∠=︒∴∠OEF =∠OCF +∠COE =35゜+10゜=45゜故答案为:45.(3)不变,理由如下:如图,当0゜<α<20゜时,∵CF 平分∠OCQ∴∠OCF =∠QCF设∠OCF =∠QCF =x则∠OCQ =2x∵MN ∥PQ∴∠MOC =∠OCQ =2x∵∠AON =360゜-90゜—(180゜-2x )=90゜+2x ,OD 平分∠AON∴∠DON =45゜+x∵∠MOE =∠DON =45゜+x∴∠COE =∠MOE -∠MOC =45゜+x -2x =45゜-x∴∠OEF =∠COE +∠OCF =45゜-x +x =45゜当α=20゜时,OD与OB共线,则∠OCQ=90゜,由CF平分∠OCQ知,∠OEF=45゜当20゜<α<90゜时,如图∵CF平分∠OCQ∴∠OCF=∠QCF设∠OCF=∠QCF=x则∠OCQ=2x∵MN∥PQ∴∠NOC=180゜-∠OCQ=180゜-2x∵∠AON=90゜+(180゜-2x)=270゜-2x,OD平分∠AON∴∠AOE=135゜-x∴∠COE=90゜-∠AOE=90゜-(135゜-x)=x-45゜∴∠OEF=∠OCF-∠COE=x-(x-45゜)=45゜综上所述,∠EOF的度数不变.【点睛】本题主要考查了角平分线的定义,平行线的判定与性质,角的和差关系,注意分类讨论,引入适当的量便于运算简便.10.(1)证明见解析;(2)∠F=55°;(3)∠MQN=∠ACB;理由见解析.【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角∠ACB;理由见解析.解析:(1)证明见解析;(2)∠F=55°;(3)∠MQN=12【分析】(1)首先根据平行线的性质得出∠ACE=∠A,∠ECD=∠B,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB .【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD ,∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ),∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°, 110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°;(3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD )=180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC )∠ACB.=12【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.三、解答题11.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1)(图2)(2) 如图1,∠DPC=β -α∵DF∥CE,∴∠PCE=∠1=β,∵∠DPC=∠1-∠FDP=∠1-α.∴∠DPC=β -α如图2,∠DPC= α -β∵DF∥CE,∴∠PDF=∠1=α∵∠DPC=∠1-∠ACE=∠1-β.∴∠DPC=α - β12.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析【分析】(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC 中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=1002n-︒,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=1802n︒-.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=1002n︒+,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.【详解】解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,∴∠ABC=∠ACB=40°,∴∠ADC=∠ABC+∠BAD=40°+60°=100°.∵∠DAC=40°,∠ADE=∠AED,∴∠ADE=∠AED=70°,∴∠CDE=∠ADC-∠ADE=100°-70°=30°.故答案为60,30.(2)∠BAD=2∠CDE,理由如下:如图②,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACB=∠CDE+∠AED,∴∠CDE=∠ACB-∠AED=40°-1802n︒-=1002n-︒,∵∠BAC=100°,∠DAC=n,∴∠BAD=n-100°,∴∠BAD=2∠CDE.(3)成立,∠BAD=2∠CDE,理由如下:如图③,在△ABC中,∠BAC=100°,∴∠ABC=∠ACB=40°,∴∠ACD=140°.在△ADE中,∠DAC=n,∴∠ADE=∠AED=1802n︒-,∵∠ACD=∠CDE+∠AED,∴∠CDE=∠ACD-∠AED=140°-1802n︒-=1002n︒+,∵∠BAC=100°,∠DAC=n,∴∠BAD=100°+n,∴∠BAD=2∠CDE.【点睛】本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.13.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°解析:(1)见解析;(2)∠BGD=902a︒-;(3)2∠BGD+∠BFD=360°.【分析】(1)根据角平分线的性质求出∠EBD+∠EDB=12(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),即可求解.【详解】解:(1)证明:∵BE平分∠ABD,∴∠EBD=12∠ABD,∵DE平分∠BDC,∴∠EDB=12∠BDC,∴∠EBD+∠EDB=12(∠ABD+∠BDC),∵AB∥CD,∴∠ABD+∠BDC=180°,∴∠EBD+∠EDB=90°,∴∠BED=180°﹣(∠EBD+∠EDB)=90°.(2)解:如图2,由(1)知:∠EBD+∠EDB=90°,又∵∠ABD+∠BDC=180°,∴∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,∵BG平分∠ABE,DG平分∠CDF,∴∠ABE=2∠ABG,∠CDF=2∠CDG,∴2∠ABG+2∠CDG=90°﹣α,过点G作GP∥AB,∵AB∥CD,∴GP∥AB∥CD∴∠ABG=∠BGP,∠PGD=∠CDG,∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=902α-;(3)如图,过点F、G分别作FN∥AB、GM∥AB,∵AB∥CD,∴AB∥GM∥FN∥CD,∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,∴∠BFD=∠BFN+∠DFN=∠3+∠5,∠BGD=∠BGM+∠DGM=∠4+∠6,∵BG平分∠FBP,DG平分∠FDQ,∴∠4=12∠FBP=12(180°﹣∠3),∠6=12∠FDQ=12(180°﹣∠5),∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,=∠3+∠5+12(180°﹣∠3)+12(180°﹣∠5),=180°+12(∠3+∠5),=180°+12∠BFD,整理得:2∠BGD+∠BFD=360°.【点睛】本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.14.(1),证明见解析;(2)证明见解析;(3).【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H∠+∠=∠,证明见解析;(2)证明见解析;(3)解析:(1)EAF EDG AED∠=︒.80EKD【分析】(1)过E作EH∥AB,根据两直线平行,内错角相等,即可得出∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)设CD与AE交于点H,根据∠EHG是△DEH的外角,即可得出∠EHG=∠AED+∠EDG,进而得到∠EAF=∠AED+∠EDG;α+5°,再根(3)设∠EAI=∠BAI=α,则∠CHE=∠BAE=2α,进而得出∠EDI=α+10°,∠CDI=12α+5°+α+10°+20°,求得据∠CHE是△DEH的外角,可得∠CHE=∠EDH+∠DEK,即2α=12α=70°,即可根据三角形内角和定理,得到∠EKD的度数.【详解】解:(1)∠AED=∠EAF+∠EDG.理由:如图1,过E作EH∥AB,∵AB∥CD,∴AB∥CD∥EH,∴∠EAF=∠AEH,∠EDG=∠DEH,∴∠AED=∠AEH+∠DEH=∠EAF+∠EDG;(2)证明:如图2,设CD与AE交于点H,∵AB∥CD,∴∠EAF=∠EHG,∵∠EHG是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵AI平分∠BAE,∴可设∠EAI=∠BAI=α,则∠BAE=2α,如图3,∵AB∥CD,∴∠CHE=∠BAE=2α,∵∠AED=20°,∠I=30°,∠DKE=∠AKI,∴∠EDI=α+30°-20°=α+10°,又∵∠EDI:∠CDI=2:1,∴∠CDI=12∠EDK=12α+5°,∵∠CHE是△DEH的外角,∴∠CHE=∠EDH+∠DEK,即2α=12α+5°+α+10°+20°,解得α=70°,∴∠EDK=70°+10°=80°,∴△DEK中,∠EKD=180°-80°-20°=80°.【点睛】本题主要考查了平行线的性质,三角形外角性质以及三角形内角和定理的综合应用,解决问题的关键是作辅助线构造内错角,运用三角形外角性质进行计算求解.解题时注意:三角形的一个外角等于和它不相邻的两个内角的和.15.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,。

2020-2021初一数学下期末一模试卷含答案(2)

2020-2021初一数学下期末一模试卷含答案(2)

2020-2021初一数学下期末一模试卷含答案(2)一、选择题1.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( )A .1600名学生的体重是总体B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本3.点M (2,-3)关于原点对称的点N 的坐标是: ( )A .(-2,-3)B .(-2, 3)C .(2, 3)D .(-3, 2)4.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°5.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个6.点P 为直线m 外一点,点A ,B ,C 为直线m 上三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线m 的距离为( )A .4cmB .2cm ;C .小于2cmD .不大于2cm7.已知关于x 的不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤ B .12a << C .12a ≤< D .12a ≤≤8.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.9.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5 C .7 D .910.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,411.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,012.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-二、填空题13.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°14.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.15.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 16.如果不等式组213(1)x x x m ->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____17.若a ,b 均为正整数,且a >7,b <32,则a +b 的最小值是_______________.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.20.如果点M (a-1,a+1)在x 轴上,则a 的值为___________.三、解答题21.如图,在ABC ∆中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F ,12∠=∠.(1)试说明DG BC 的理由;(2)如果54B ∠=︒,且35ACD ∠=︒,求3∠的度数.22.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A .没影响;B .影响不大;C .有影响,建议做无声运动;D .影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m =________,态度为C 所对应的圆心角的度数为________;(2)补全条形统计图;(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B 的市民人数;23.解方程组:(1)用代入法解342 25 x yx y+=⎧⎨-=⎩(2)用加减法解5225 3415 x yx y+=⎧⎨+=⎩24.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO 的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.25.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.2.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.B解析:B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B.4.D解析:D【解析】【分析】根据折叠的知识和直线平行判定即可解答.【详解】解:如图可知折叠后的图案∠ABC=∠EBC,又因为矩形对边平行,根据直线平行内错角相等可得∠2=∠DBC,又因为∠2+∠ABC=180°,所以∠EBC+∠2=180°,即∠DBC+∠2=2∠2=180°-∠1=140°.可求出∠2=70°.【点睛】掌握折叠图形的过程中有些角度是对称相等的是解答本题的关键.5.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.6.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.7.A解析:A【解析】【分析】先根据一元一次不等式组解出x的取值范围,再根据不等式组只有三个整数解,求出实数a的取值范围即可.3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1,解不等式②得:x<a , ∵不等式组3211230x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解,∴不等式的整数解为:-1、0、1,∴1<a≤2,故选:A【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.D解析:D【解析】解:A .应为两点之间线段最短,故本选项错误;B .应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C .应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D .在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D .9.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.10.C解析:C【解析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标.【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2),即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.12.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°.【点睛】本题考查平行线的性质及三角形外角的性质.14.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN ,MO=DM=DO ,OD′=D′E=OE ,EG=EC=GC ,B′G=RG=RB′, ∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.15.a >﹣1【解析】分析:∵由得x≥﹣a ;由得x <1∴解集为﹣a≤x<1∴﹣a <1即a >﹣1∴a 的取值范围是a >﹣1解析:a >﹣1【解析】分析:∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1.∴x a 0{12x x 2+≥-->解集为﹣a≤x <1. ∴﹣a <1,即a >﹣1.∴a 的取值范围是a >﹣1.16.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x <2从而得出关于m 的不等式解不等式即可【详解】解:解第一个不等式得x <2∵不等式组的解集是x <2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x x x m ⎧->-⎨<⎩的解集是x <2,从而得出关于m 的不等式,解不等式即可.【详解】解:解第一个不等式得,x <2,∵不等式组()2131x x x m ⎧->-⎨<⎩的解集是x <2,∴m ≥2,故答案为m ≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.17.4【解析】【分析】先估算的范围然后确定ab 的最小值即可计算a+b 的最小值【详解】∵<<∴2<<3∵a>a 为正整数∴a 的最小值为3∵<<∴1<<2∵b<b 为正整数∴b 的最小值为1∴a+b 的最小值为3+解析:4【解析】【分析】的范围,然后确定a 、b 的最小值,即可计算a+b 的最小值.【详解】∴2<3,∵a ,a 为正整数,∴a 的最小值为3,∴1<2,∵b ,b 为正整数,∴b 的最小值为1,∴a+b 的最小值为3+1=4.故答案为:4.【点睛】此题考查了估算无理数的大小,解题的关键是:确定a 、b 的最小值.18.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.20.-1【解析】【分析】根据x 轴上的点纵坐标等于0列出方程求解得到a 的值【详解】∵点M (a-1a+1)在x 轴上∴a+1=0解得a=-1故答案为:-1【点睛】本题考查了点的坐标熟记x 轴上的点的纵坐标等于0解析:-1【解析】【分析】根据x 轴上的点纵坐标等于0列出方程求解得到a 的值.【详解】∵点M (a-1,a+1)在x 轴上,∴a+1=0,解得a=-1,故答案为:-1.【点睛】本题考查了点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.三、解答题21.(1)见解析;(2)371∠=︒【解析】【分析】(1)由CD ⊥AB ,EF ⊥AB 即可得出CD ∥EF ,从而得出∠2=∠BCD ,再根据∠1=∠2即可得出∠1=∠BCD ,依据“内错角相等,两直线平行”即可证出DG ∥BC ;(2)在Rt △BEF 中,利用三角形内角和为180°即可算出∠2度数,从而得出∠BCD 的度数,再根据BC ∥DE 即可得出∠3=∠ACB ,通过角的计算即可得出结论.【详解】(1)证明:∵CD AB ⊥,EF AB ⊥,∴CD EF ,∴2BCD ∠=∠,∵12∠=∠,∴1BCD ∠=∠,∴DG BC ;(2)解:在Rt △BEF 中,∠B=54°,∴∠2=180°-90°-54°=36°,∴∠BCD=∠2=36°.又∵BC ∥DG ,3353671ACB ACD BCD ︒︒︒∴∠=∠=∠+∠=+=【点睛】本题考查了平行线的判定与性质,解题的关键是:(1)找出∠1=∠BCD ;(2)找出∠3=∠ACB=∠ACD+∠BCD .本题属于基础题,难度不大,解决该题型题目时,根据相等(或互补)的角证出两直线平行是关键.22.(1)32;115.2°;(2)补图见解析;(3)6.6万人.【解析】【分析】(1)由扇形统计图可求得m 的值;由态度为C 的占32%,即可求得态度为C 所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】(1)m =100-10-5-20-33=32;态度为C 所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°. (2)500×20%-15-35-20-5=25,补全条形统计图如图.(3)估计该地区对“广场舞”噪音干扰的态度为B 的市民人数为:20×33%=6.6(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(1)21x y =⎧⎨=-⎩;(2)50x y =⎧⎨=⎩【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415? x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.24.(1) C (5,﹣4);(2)90°;(3)见解析.【解析】分析:(1)利用非负数的和为零,各项分别为零,求出a ,b 即可;(2)用同角的余角相等和角平分线的意义即可;(3)利用角平分线的意义和互余两角的关系简单计算证明即可.详解:(1)∵(a ﹣3)2+|b+4|=0,∴a ﹣3=0,b+4=0,∴a=3,b=﹣4,∴A(3,0),B(0,﹣4),∴OA=3,OB=4,∵S四边形AOBC=16.∴0.5(OA+BC)×OB=16,∴0.5(3+BC)×4=16,∴BC=5,∵C是第四象限一点,CB⊥y轴,∴C(5,﹣4);(2)如图,延长CA,∵AF是∠CAE的角平分线,∴∠CAF=0.5∠CAE,∵∠CAE=∠OAG,∴∠CAF=0.5∠OAG,∵AD⊥AC,∴∠DAO+∠OAG=∠PAD+∠PAG=90°,∵∠AOD=90°,∴∠DAO+∠ADO=90°,∴∠ADO=∠OAG,∴∠CAF=0.5∠ADO,∵DP是∠ODA的角平分线,∴∠ADO=2∠ADP,∴∠CAF=∠ADP,∵∠CAF=∠PAG,∴∠PAG=∠ADP,∴∠APD=180°﹣(∠ADP+∠PAD)=180°﹣(∠PAG+∠PAD)=180°﹣90°=90°即:∠APD=90°(3)不变,∠ANM=45°理由:如图,∵∠AOD=90°,∴∠ADO+∠DAO=90°,∵DM ⊥AD ,∴∠ADO+∠BDM=90°,∴∠DAO=∠BDM ,∵NA 是∠OAD 的平分线,∴∠DAN=0.5∠DAO=0.5∠BDM ,∵CB ⊥y 轴,∴∠BDM+∠BMD=90°,∴∠DAN=0.5(90°﹣∠BMD ),∵MN 是∠BMD 的角平分线,∴∠DMN=0.5∠BMD ,∴∠DAN+∠DMN=0.5(90°﹣∠BMD )+0.5∠BMD=45°在△DAM 中,∠ADM=90°,∴∠DAM+∠DMA=90°,在△AMN 中,∠ANM=180°﹣(∠NAM+∠NMA )=180°﹣(∠DAN+∠DAM+∠DMN+∠DMA )=180°﹣[(∠DAN+DMN )+(∠DAM+∠DMA )] =180°﹣(45°+90°)=45°,∴D 点在运动过程中,∠N 的大小不变,求出其值为45°点睛:此题是四边形综合题,主要考查了非负数的性质,四边形面积的计算方法,角平分线的意义,解本题的关键是用整体的思想解决问题,也是本题的难点.25.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.。

《试卷3份集锦》深圳市2020-2021年七年级下学期期末复习检测数学试题

《试卷3份集锦》深圳市2020-2021年七年级下学期期末复习检测数学试题

七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.若x满足3=则x的值为()x xA.1B.0C.0或1D.0或±1【答案】C【解析】根据平方根和立方根性质判断即可.【详解】解:∵3=, 且x≥0,x x∴x=0或1.【点睛】此题主要考查了平方根和立方根,掌握它们的性质是解题的关键.2.若x=2时,代数式ax4+bx2+5的值是3,则当x=﹣2时,代数式ax4+bx2+7的值为()A.﹣3 B.3 C.5 D.7【答案】C【解析】将x=2代入ax4+bx2+5使其值为5,可得16a+8b的值,在将x=﹣2代入ax4+bx2+5,可求得ax4+bx2+7.【详解】解:当x=2时,代数式ax4+bx2+5的值是3,即:16a+4b+5=3,可得16a+4b=-2,当x=﹣2时,代数式ax4+bx2+7=16a+4b+7=-2+7=5,故选C.【点睛】本题主要考查代数式求值,注意运算的准确性.3.如图,直线,平分,交于点.若,则的度数为()A.B.C.D.【答案】C【解析】根据相邻补角可得∠AEC+∠BEC=180°,根据平行线的性质,可得∠AEC=∠ECD,根据角平分线的性质,可得∠1=∠DCE,从而求解.【详解】解:∵∠AEC+∠BEC=180°,∠BEC=140°,∴∠AEC=40°,∵AB∥CD,∴∠AEC=∠DCE=40°,∵CE 平分∠ACD ,∴∠1=∠DCE=40°.故选:C .【点睛】此题主要考查了平行线的性质以及角平分线的定义的运用,解决问题的关键是掌握平行线的性质定理. 4.小颖有两根长度为 6cm 和 9cm 的木条,桌上有下列长度的几根木条,从中选出一根使三根木条首尾顺次相连,钉成三角形木框,她应该选择长度为( )的木条A .2cmB .3cmC .12cmD .15cm【答案】C 【解析】根据两边之和大于第三边,两边之差小于第三边,可得第三边的长度的取值范围是.【详解】设木条的长度为lcm ,则9-6<l<9+6,即3<l<1.故选C【点睛】考核知识点:三角形三边关系. 5.已知3243x y k x y k +=⎧⎨-=+⎩如果x 与y 互为相反数,那么( ) A .k =0B .k =-34C .k =-32D .k =34【答案】C【解析】分析:先通过解二元一次方程组,用含k 的代数式表示出x ,y 的值后,再代入0x y +=,建立关于k 的方程而求解的.详解:解3243x y k x y k +=⎧-=+⎨⎩, 得9651195k x k y +⎧=⎪⎪⎨+⎪=-⎪⎩, x 与y 互为相反数,96119055k k ++∴-=, 解得32k =-. 故选C .点睛:本题考查了含参二元一次方程组的解法,解题的关键是用含k 的代数式表示出x ,y 的值.解二元一次方程组的基本思路是消元,把二元一次方程组转化为一元一次方程求解,消元的方法有加减消元法和代入消元法两种.6.下列各式从左边到右边的变形是因式分解的是( )A .x 2+2x+1=x(x+2)+1B .43222623x y x y x y =⋅C .()()2111x x x +-=-D .()22442x x x -+=- 【答案】D【解析】分析:属于因式分解变形的等式的左边是多项式,右边是几个整式的积的形式.详解:A .x 2+2x +1=x (x +2)+1,等式的右边不是几个整式的积,不是因式分解;B .43222623x y x y x y ⋅=,等式的左边不是多项式,不是因式分解;C .()()2111x x x --+=,等式的右边不是几个整式的积,不是因式分解; D .()22442x x x --+=,符合因式分解的定义,是因式分解.故选D .点睛:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式.7.下列调查中,调查方式选择合理的是( )A .为了解襄阳市初中每天锻炼所用时间,选择全面调查B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C .为了解神舟飞船设备零件的质量情况,选择抽样调查D .为了解一批节能灯的使用寿命,选择抽样调查【答案】D【解析】A .为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A 不符合题意;B .为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B 不符合题意;C .为了解神舟飞船设备零件的质量情况,选普查,故C 不符合题意;D .为了解一批节能灯的使用寿命,选择抽样调查,故D 符合题意;故选D .8.如图,AB ∥CD ,DB ⊥BC ,∠2=50°,则∠1的度数是( )A .40°B .50°C .60°D .140°【答案】A【解析】试题分析:根据直角三角形两锐角互余求出∠3,再根据两直线平行,同位角相等解答.解:∵DB⊥BC,∠2=50°,∴∠3=90°﹣∠2=90°﹣50°=40°,∵AB∥CD,∴∠1=∠3=40°.故选A.9.如图,点E在AB的延长线上,下列条件中能判断AD∥BC的是()A.∠1=∠3 B.∠2=∠4C.∠C=∠CBE D.∠C+∠ABC=180°【答案】B【解析】根据平行线的判定分别进行分析可得答案.【详解】解: A. ∠1=∠3,同旁内角相等,不能判定直线平行,故此选项不正确;B. ∠2=∠4,同旁内角相等,不能判定直线平行,故此选项不正确;C. ∠C=∠CBE,根据内错角相等,两直线平行可得AB∥CD,故此选项错误;D. ∠C+∠ADC=180°,根据同旁内角互补,两直线平行可得AD∥BC,故此选项正确;故选D.【点睛】本题考查平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.10.李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为,?x y分钟,列出的方程是()A.1{4250802900x yx y+=+=B.15{802502900x yx y+=+=C.1{4802502900x yx y+=+=D.15{250802900x yx y+=+=【答案】D【解析】由实际问题抽象出二元一次方程组.【分析】李明同学骑车和步行的时间分别为,?x y 分钟,由题意得: 李明同学到学校共用时15分钟,所以得方程:+=15x y .李明同学骑自行车的平均速度是250米/分钟,x 分钟骑了250x 米;步行的平均速度是80米/分钟,y 分钟走了80y 米.他家离学校的距离是2900米,所以得方程:250+80=2900x y .故选D .二、填空题题11.在一个不透明的袋中装有黑色和红色两种颜色的球共15个,每个球触颜色外都相同,每次摇匀后随即摸出一个球,记下颜色后再放回袋中,通过大量重复摸球实验后,发现摸到黑球的频率稳定于0.6,则可估计这个袋中红球的个数约为__________.【答案】6【解析】根据频率的定义先求出黑球的个数,即可知红球个数.【详解】解:黑球个数为:150.69⨯=,红球个数:1596-=.故答案为:6【点睛】本题考查了频数和频率,频率是频数与总数之比,掌握频数频率的定义是解题的关键.12.写一个以{57x y ==-为解的二元一次方程组:______. 【答案】212(x y x y +=-⎧-=⎨⎩答案不唯一) 【解析】同时满足二元一次方程组的定义和二元一次方程组解的定义即可.【详解】含x 、y 的二元一次方程组,并且解是x 5=,y 7=-.满足条件的方程组非常多,例如:x y 2x y 12+=-⎧-=⎨⎩或x 2y 9x 3y 26+=-⎧-=⎨⎩或2x y 32x 17+=⎧-=⎨⎩等等 故答案为:x y 2x y 12(+=-⎧-=⎨⎩不唯一) 【点睛】本题主要考查了二元一次方程组及其解的定义.题目难度不大,只要满足条件就行.13.若关于x 的不等式组0532x m x +<⎧⎨-⎩无解,则m 的取值范围是_____. 【答案】m≥﹣1【解析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m的范围.【详解】解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14.x的12与5的差不大于2,用不等式表示为_____.【答案】12x-5≤1.【解析】x的12为12x,与5的差即为12x-5,不大于即≤,据此列不等式.【详解】由题意得,12x-5≤1.故答案为:12x-5≤1.【点睛】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.15.【答案】0.3【解析】根据立方根的定义求解.【详解】∵(0.3)3=0.027,=0.3.故答案是:0.3.【点睛】本题考查了立方根的知识,解答本题的关键是掌握开立方的运算.16.明代数学家程大位的《算法统宗》中有这样一个问题,其大意为;有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有_________两.【答案】1【解析】设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【详解】解:设有x人,依题意有7x+4=9x-8,解得x=6,7x+4=42+4=1.答:所分的银子共有1两.故答案为:1.【点睛】本题考查一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中所分的银子的总两数相等的等量关系列出方程,再求解.17.如图,是一块缺角的四边形钢板,根据图中所标出的结果,可得所缺损的∠A的度数是_____.【答案】73°【解析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+∠D=(4-2)×180°=360°,∠C=80°,∠D=89°,∴∠A=360°-∠ABC-∠C-∠D=73°,故答案为:73°.【点睛】本题考查了多边形的内角和外角,能求出四边形的内角和是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.三、解答题18.列方程解应用题:为了保护环境,节约用水,按照《关于调整市水务(集团)有限公司自来水价格的通知》规定对供水范围内的居民用水实行三级阶梯水价收费如下表:每户每月用水量水费价格(单位:元/立方米)不超过22立方米 2.3超过22立方米且不超过30立方米的部分 a超过30立方米的部分 4.6(1)若小明家去年1月份用水量20立方米,他家应缴费___元.(2)若小明家去年2月份用水量26立方米,缴费64.4元,请求出用水在22-30立方米之间收费标准a 元/立方米?(3)在(2)的条件下,若小明家去年8月份用水量增大,共缴费87.4元,请求出他家8月份的用水量多少立方米?【答案】(1)46;(2)3.45元/立方米;(3)32立方米;【解析】(1)根据题意列式计算即可;(2)根据题意列方程即可得到结论;(3)根据题意列方程即可得到结论.【详解】(1)20×2.3=46(元),∴他家应缴费46元;故答案为46;(2)22×2.3+(26-22)a=64.4解得:a=3.45,∴用水在22-30立方米之间收费标准3.45元/立方米;(3)设他家8月份的用水量是x 立方米,则当x=30时,水费为22×2.3+(30-22)×3.45=78.2<87.4元,∴用水量超过30立方米,则有22×2.3+(30-22)×3.45+(x-30)×4.6=87.4解得:x=32,答:他家8月份的用水量是32立方米.【点睛】此题考查一元一次方程的应用,正确的理解题意找到等量关系是解题的关键.19.如图,已知AB CD ∥,180BCF ∠=︒,BD 平分ABC ∠,CE 平分DCF ∠,90ACE ∠=︒.求证:AC BD ⊥.【答案】证明见解析.【解析】根据平行线性质由AB CD ∥得出∠ABC=∠DCF ,根据角平分线定义求出DBC ECF ∠=∠,继而可得//BD CE ;根据平行线性质得出ECA BGC ∠=∠,根据∠ACE=90°,求出∠DGC=90°再由垂直定义即可得出结论.【详解】证明:∵//AB CD∴ABC DCF ∠=∠∵BD 平分ABC ∠,CE 平分DCF ∠ ∴12DBC ABC ∠=∠,12ECF DCF ∠=∠ ∴DBC ECF ∠=∠∴//BD CE∴ECA BGC ∠=∠∵90ACE ∠=︒∴90BGC ∠=︒∴AC BD ⊥.【点睛】本题考查了角平分线定义,平行线的性质和判定,垂直定义等知识点,注意:①同位角相等,两直线平行,②两直线平行,内错角相等.20.如图,//ED AC ,80C ∠=︒,DA 平分EDC ∠,试求出A ∠的度数,并在说理中注明每步推理的依据.【答案】50A ∠=︒(两直线平行,内错角相等),见解析.【解析】已知ED ∥AC ,根据两直线平行,同旁内角互补可得180C EDC ∠+∠=︒,再由80C ∠=︒即可求得100EDC ∠=︒;再由DA 平分EDC ∠,根据角平分线的定义可得50EDA ∠=︒,再由两直线平行,内错角相等即可得到50A EDA ∠=∠=︒.【详解】因为ED ∥AC (已知)所以180C EDC ∠+∠=︒(两直线平行,同旁内角互补)因为80C ∠=︒(已知)所以18080100EDC ∠=︒-︒=︒因为DA 平分EDC ∠(已知) 所以111005022EDA EDC ∠=∠=⨯︒=︒(角平分线定义) 所以50A EDA ∠=∠=︒(两直线平行,内错角相等)【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键. 21.如图,在四边形中ABCD 中,//,12,AB CD DB DC ∠=∠=,且DBC DCB ∠=∠.(1)求证: ABD EDC ∆≅∆;(2)若125,30A BDC ∠=︒∠=︒,求BCE ∠的度数.【答案】(1)见解析;(2)∠BCE=50°【解析】(1)根据两角夹边对应相等的两个三角形全等即可证明. (2)利用全等三角形的性质即可解决问题.【详解】(1)证明:证明:∵AB ∥CD ,∴∠ABD=∠EDC ,在△ABD 和△EDC 中,12DB DCABD EDC ∠=∠=∠=∠⎧⎪⎨⎪⎩, ∴△ABD ≌△EDC(ASA).(2)∵△ABD ≌△EDC ,∴∠DEC=∠A=125°,∵∠BDC=30°,DB=DC ,∴∠DBC=∠DCB=75°,∠2=180°−125°−30°=25°,∴BCE ∠=75°-25°=50°【点睛】此题考查全等三角形的判定与性质,解题关键在于利用全等三角形的性质求解 22.如图,DE ∥BF ,∠1与∠2互补.(1)试说明:FG ∥AB;(2)若∠CFG=60°,∠2=150°,则DE与AC垂直吗?请说明理由.【答案】(1)证明见解析;(2)DE与AC垂直,理由见解析.【解析】(1)根据两直线平行,同旁内角互补可得∠2+∠DBF=180°,再根据∠1+∠2=180°可得∠1=∠DBF,最后根据内错角相等,两直线平行即可证明;(2)根据(1)中所证出的FG∥AB,可得∠A=∠CFG=60°,再根据三角形外角等于与它不相邻的两个内角的和,即可求出∠AED=90°,根据垂直定义可得出结论.证明:(1)∵DE∥BF,∴∠2+∠DBF=180°,∵∠1与∠2互补,∴∠1+∠2=180°,∴∠1=∠DBF,∴FG∥AB;(2)DE与AC垂直理由:∵FG∥AB,∠CFG=60°,∴∠A=∠CFG=60°,∵∠2是△ADE的外角,∴∠2=∠A+∠AED,∵∠2=150°,∴∠AED=150°-60°=90°,∴DE⊥AC.23.如图,△ABC的三个顶点的坐标为A(-2,1),B(-4,-3),C(0,-1).(1)若点A平移后的对称点为A′(2,4),请在坐标系中画出△ABC作同样的平移后得到的△A'B′C,并写出另两点B′,C′的对称点的坐标;(2)△ABC经过怎样的平移得到△A′B′C′?;(3)求△ABC的面积.【答案】(1)如图所示:△A'B′C,即为所求见解析;B′(0,0),C′(4,2);(2)△ABC先向上平移3个单位,再向右平移4个单位得到△A′B′C′.见解析;(3)△ABC的面积为=1.【解析】(1)直接利用平移的性质得出对应点位值进而得出答案;(2)利用对应点的变化得出平移规律;(3)利用△ABC所在矩形面积减去周围三角形面积进而得出答案.【详解】(1)如图所示:△A'B′C,即为所求;B′(0,0),C′(4,2).故答案为:(0,0),(4,2);(2)△ABC先向上平移3个单位,再向右平移4个单位得到△A′B′C′.故答案为:△ABC先向上平移3个单位,再向右平移4个单位得到△A′B′C′.(3)△ABC的面积为:4×412-⨯2×212-⨯2×412-⨯2×4=1.【点睛】本题考查了平移变换以及三角形面积,正确得出对应点位置是解题的关键.24.观察下面图形,解答下列问题:(1)在上面第四个图中画出六边形的所有对角线;(2)观察规律,把下表填写完整:边数三四五六七……n 对角线条数0 2 5 ……(3)若一个多边形的内角和为1440°,求这个多边形的边数和对角线的条数.【答案】(1)详见解析;(2)9,14,(3)2n n-;(3)1.【解析】(1)根据要求画图;(2)观察得出多边形对角线条数公式(3)2n n-;(3)先根据多边形的内角和公式(n-2)×180°求出该多边形的边数,再根据多边形对角线条数公式(3)2n n-进行计算即可得解.【详解】解:(1)如图(2)画图并总结可得:边数三四五六七……n 对角线条数0 2 5 9 14 ……(3)2n n-(3)设多边形的边数为n,由题意,得:(n-2)×180°=1440°,解得:n=10,所以,此多边形的对角线的条数为(3)2n n-=1072⨯=1.【点睛】考核知识点:多边形的内角和和对角线.观察总结出规律是关键.25.如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1;(2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,得到△A 1B 2C 2,在网格中画出旋转后的△A 1B 2C 2.(3)连结12C C ,请判断112AC C ∆的形状,并说明理由.【答案】 (1)见解析;(2)见解析;(3)112AC C ∆是等腰直角三角形【解析】(1)利用平移的性质得出对应点位置进而得出答案;(2)利用旋转的性质进而得出旋转后对应点位置进而得出答案;(3)根据旋转的性质进行判断即可.【详解】(1)如图所示,111A B C ∆就是所求;(2)如图所示,122A B C ∆就是所求;(3) 112AC C ∆是等腰直角三角形,理由如下:由旋转性质可知:1211A C A C =,21190C A C ∠=︒112A C C ∴∆是等腰直角三角形.【点睛】本题考查了作图——平移变换,作图——旋转变换,等腰直角三角形的判定,熟练掌握相关作图方法以及网格的结构特征是解题的关键.七年级下学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中,属于真命题的是()A.互补的角是邻补角B.在同一平面内,如果a⊥b,b⊥c,则a⊥c.C.同位角相等D.在同一平面内,如果a∥b,b∥c,则a∥c.【答案】D【解析】A. ∵互补的角是补角,不一定是邻补角,故不正确;B. ∵在同一平面内,如果a⊥b,b⊥c,则a∥c,故不正确;C. ∵两直线平行,同位角相等,故不正确;D. 在同一平面内,如果a∥b,b∥c,则a∥c故正确;故选D.2.如果关于x的方程x+2m-3=3x+7解为不大于2的非负数,那么( )A.m=6 B.m=5,6,7 C.5<m<7 D.5≤m≤7【答案】D【解析】由题意关于x的方程x+2m-3=3x+7解为不>2的非负数,说明方程的解0≤x≤2,将方程移项、系数化为1,求出x的表达式,再根据0≤x≤2,从而求出m的范围.【详解】将方程x+2m-3=3x+7,移项得,2x=2m-3-7,∴x=m-5,∵0≤x≤2,∴0≤m-5≤2,解得5≤m≤7,故选:D.【点睛】考查了解一元一次不等式,解题关键是先将m看作是已知数,求得x的值,再根据其取值范围求得m的取值范围.3.下列解不等式22135x x+-的过程中,出现错误的一步是()①去分母,得5(x+2)>3(2x-1).②去括号,得5x+10>6x-3.③移项,得5x-6x>-10-3.④系数化为1,得x>13.A.①B.②C.③D.④【答案】D【解析】去分母,去括号,移项,合并同类项,系数化成1即可.【详解】去分母:5(x+2)>3(2x-1);去括号:5x+10>6x-3;移项:5x-6x>-10-3;合并同类项,得:-x>-1,系数化为1得:x<1.故选D.【点睛】.本题考查了解一元一次不等式,能正确根据不等式的性质进行变形是解此题的关键.不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变4.若不等式组-0x bx a<⎧⎨+>⎩的解集为2<x<3,则a,b的值分别为( )A.-2,3B.2,-3C.3,-2D.-3,2 【答案】A【解析】x bx a-⎧⎨+⎩<①>②,∵解不等式①得:x<b,解不等式②得:x>-a,∴不等式组的解集是:-a<x<b,∵不等式组0,x bx a-<⎧⎨+>⎩的解集为2<x<3,∴-a=2,b=3,即a=-2,故选A.【点睛】解一元一次不等式和解一元一次不等式组的应用,关键是得出关于a、b的方程. 5.在世界人口扇形统计图(如图)中,关于中国部分的圆心角的度数为()A .69°B .70°C .72°D .76°【答案】C 【解析】关于中国部分所占比例为20%,则所对应的圆心角的度数为20%×360°.【详解】关于中国部分的圆心角的度数为20%×360°=72°.故选C.【点睛】本题考查扇形统计图,熟练掌握计算法则是解题关键.6.已知一个正方体的体积是729立方厘米,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是665立方厘米,则截去的每个小正方体的棱长是( )A .8厘米B .6厘米C .4厘米D .2厘米【答案】D【解析】分析:设每个小正方体的棱长是x ,根据截去的8个小立方体的体积+剩余部分的体积=原正方体的体积列方程求解即可..详解:设每个小正方体的棱长是x ,则可列方程8x 3+665=729,解得x=2cm点睛:根据本题题干及题意可知,这是一道一元一次方程的典型应用,要牢牢掌握正方体的体积计算公式后即可解答.7.计算(﹣8m 4n+12m 3n 2﹣4m 2n 3)÷(﹣4m 2n )的结果等于( )A .2m 2n ﹣3mn+n 2B .2n 2﹣3mn 2+n 2C .2m 2﹣3mn+n 2D .2m 2﹣3mn+n 【答案】C【解析】分析:多项式除以单项式的计算法则为:(a+b+c)÷m=a÷m+b÷m+c÷m ,根据计算法则即可得出答案.详解:原式=()()()423222322284n 124n 44n 23mn m n m m n m m n m m n -÷-+÷--÷-=--+,故选C . 点睛:本题主要考查的是多项式除以单项式的法则,属于基础题型.明确同底数幂的除法法则是解决这个问题的关键.8.若2a >,则下列各式错误的是( )A .20a ->B .57a +>C .2a ->-D .42a ->- 【答案】C【解析】根据不等式的性质,对选项进行判断即可【详解】解:A 、2a >,20a ∴->,正确; B 、2a >,57a ∴+>,正确;C 、2a >,2a ∴-<-,错误;D 、2a >,42a ∴->-,正确;故选:C.【点睛】本题考查不等式,熟练掌握不等式的性质即运算法则是解题关键. 9.方程x﹣2y=﹣3和2x+3y=1的公共解是()A.3xy=-⎧⎨=⎩B.13xy=⎧⎪⎨=⎪⎩C .313xy=-⎧⎪⎨=⎪⎩D.11xy=-⎧⎨=⎩【答案】D【解析】联立两方程组成方程组,求出解即可.【详解】解:联立得:23 231x yx y-=-⎧⎨+=⎩①②,②﹣①×2得:7y=7,解得:y=1,把y=1代入①得:x=﹣1,则方程组的解为11xy=-⎧⎨=⎩,故选D.【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.10.下列交通标志是轴对称图形的是()A.B.C.D.【答案】C【解析】试题分析:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.二、填空题题11.《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重.问每只雀、燕的重量各为多少?”解:设雀每只x 两,燕每只y 两,则可列出方程组为__________.【答案】561645x y x y y x +=⎧⎨+=+⎩【解析】设雀每只x 两,燕每只y 两,根据五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重,找到等量关系即可列出方程组.【详解】∵雀每只x 两,燕每只y 两,依题意可得561645x y x y y x +=⎧⎨+=+⎩故填:561645x y x y y x+=⎧⎨+=+⎩ 【点睛】此题主要考查列二元一次方程组,解题的关键是根据题意找到等量关系.12.如果(21,3)P m m -+ 在第二象限,那么m 的取值范围是 __________ 【答案】132m -<< 【解析】第二象限点的坐标特点,横坐标<0,纵坐标>0,代入P 点,即可求得.【详解】∵(21,3)P m m -+ 在第二象限,∴21030m m -<⎧⎨+>⎩①②, 由①得:12m <由②得:>-3m ∴132m -<<【点睛】本题考查平面直角坐标系第二象限内点的坐标特点,以及解不等式组;熟练掌握各象限内坐标特点是解答本题的关键.13.计算:()()13x x +-=_______.【答案】x 2-2x-1【解析】根据多项式与多项式相乘的法则计算:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.【详解】解:(x+1)(x-1)=x 2-1x+x-1=x 2-2x-1,故答案为x 2-2x-1.【点睛】本题考查了多项式乘多项式的法则,解题时牢记法则是关键,此题比较简单,易于掌握.14.若方程33x x m +=-的解是正数,则m 的取值范围是______.【答案】m >-1【解析】首先解方程,利用m 表示出x 的值,然后根据x 是正数即可得到一个关于m 的不等式,即可求得m 的范围.【详解】33x x m +=-2x=1+m ,根据题意得:1+m >0,解得:m>-1.故答案是:m>-1.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错. 解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(1)不等式的两边同时乘以或除以同一个负数不等号的方向改变.15.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.【答案】1【解析】根据平移的性质可得AD=CF=1,AC=DF ,然后根据四边形的周长的定义列式计算即可得解.【详解】∵△ABC 沿BC 方向平移2个单位得到△DEF ,∴AD=CF=1,AC=DF ,∴四边形ABFD 的周长=AB+(BC+CF )+DF+AD=AB+BC+AC+AD+CF ,∵△ABC 的周长=8,∴AB+BC+AC=8,∴四边形ABFD 的周长=8+1+1=1.故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.16.若关于x 、y 的二元一次方程2x-my=4的一个解是x 1{y 2==,则m 的值为____.【答案】-1 【解析】将x 1{y 2==代入2x-my=4,即可求得m 的值. 【详解】解:将x 1{y 2==代入2x-my=4,得:2×1-2m=4,解得:m=-1 故答案为-1.【点睛】本题考查了二元一次方程组的解,将方程组的解代入方程组是解答本题的关键.17.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的__________.(球的体积计算公式为343V r π=)【答案】23【解析】根据题意表示出圆柱的体积进而得出三个球的体积之和与整个盒子容积的关系.【详解】设小球的半径为r ,由题意可得圆柱的半径为r ,高度为6r ,则圆柱的体积为2366r r r ππ⨯=,三个小球的体积和为334343r r ππ⨯=, 故三个球的体积之和占整个盒子容积的334263r r ππ=. 故答案为:23. 【点睛】 此题考查圆柱体积公式,球体积计算公式,正确理解题意是解题的关键.三、解答题18.计算: (1) 44440.50.412.51.25⨯⨯(2)t m +1·t +(-t )2·t m (m 是整数)【答案】(1)16;(2)m+22t .【解析】(1)运用积的乘方逆运算对原式进行化简,然后求解即可.(2)运用同底数幂相乘和合并同类项进行计算,即可完成解答.【详解】解:(1)44440.50.412.51.25⨯⨯ 440.50.412.51.25216⨯⨯⎛⎫= ⎪⎝⎭== (2)m+12m t t (t)t ⋅+-⋅m+2m+2m+2t t 2t =+= 【点睛】本题考查了积的乘方以及同底数幂相乘,解题的关键在于学生是否有扎实的计算基本功.19.(1)问题解决:如图1,△ABC 中,BO 、CO 分别是∠ABC 和∠ACB 的平分线,O 为BO 、CO 交点,若∠A =62°,求∠BOC 的度数;(写出求解过程)(2)拓展与探究①如图1,△ABC 中,BO 、CO 分别是∠ABC 和∠ACB 的平分线,O 为BO 、CO 交点,则∠BOC 与∠A 的关系是 ;(请直接写出你的结论)②如图2,BO 、CO 分别是∠ABC 和∠ACB 的两个外角∠CBD 和∠BCE 的平分线,O 为BO 、CO 交点,则∠BOC 与∠A 的关系是 ;(请直接写出你的结论)③如图3,BO 、CO 分别是△ABC 的一个内角∠ABC 和一个外角∠ACE 的平分线,O 为BO 、CO 交点,则∠BOC 与∠A 的关系是 .(请直接写出你的结论)【答案】(1)121°;(2)①∠BOC=90°+12∠A ;②∠BOC=90°-12∠A ;③∠BOC=12∠A. 【解析】分析:(1)求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,根据三角形内角和定理求出即可;(2)①求出∠ABC+∠ACB ,根据角平分线定义求出∠OBC+∠OCB ,根据三角形内角和定理求出即可;②根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠OBC与∠OCB,然后再根据三角形的内角和定理列式整理即可得解;③根据提供的信息,根据三角形的一个外角等于与它不相邻的两个内角的和,然后整理即可得到∠BOC与∠A的关系.详解:(1)∵∠A=62°,∴∠ABC+∠ACB=180°-62°=118°,∵BC、CO分别是∠ABC和∠ACB的平分线,∴∠OBC=12∠ABC, ∠OCB=12∠ACB,∴∠OBC+∠OCB =12(∠ABC+∠ACB)=12×118°,=59°,∴∠O=1800-(∠OBC+∠OCB)= 180°-59°=121°. (2)拓展与探究①∵BO、CO分别是∠ABC和∠ACB的平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(180°-∠A)=90°-12∠A,∴在△BOC中,∠BOC=180°--(∠OBC+∠OCB)=90°+12∠A,故答案为90°+12∠A;②∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC=180°+∠A,∵BO、CO分别是△ABC两个外角∠CBD和∠BCE的平分线,∴∠OBC=12∠DBC,∠OCB=12∠ECB,∴∠OBC+∠OCB=12(180°+∠A),∴∠BOC=180°-(∠OBC+∠OCB)=180°-12(180°+∠A)=90°-12∠A,故答案为∠BOC=90°-12∠A;③∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠OBC=12∠ABC,∠OCE=12∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠OCE=12(∠A+∠ABC)=12∠A+∠OBC,∵∠OCE是△BOC的一外角,∴∠BOC=∠OCE-∠OBC=12∠A+∠OBC-∠OBC=12∠A,故答案为∠BOC=12∠A.点睛:本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键,读懂题目提供的信息,然后利用提供信息的思路也很重要.20.某市为了节约用水,采用分段收费标准.若某户居民每月应交水费y(元)与用水量x(立方米)之间关系的图象如图所示,根据图象回答:(1)该市自来水收费,每户用水不超过5立方米时,每立方米收费多少元?超过5立方米时,超过的部分每立方米收费多少元?(2)求出y与x之间的关系式.(3)若某户居民某月用水量为3.5立方米,则应交水费多少元?若某户居民某月交水费17元,则该户居民用水多少立方米?【答案】(1)每户使用不足1吨时,每吨收费2元,超过1吨时,每吨收费3.1元;(2)见解析;(3)某户居民每月用水3.1吨,应交水费2元;若某月交水费12元,该户居民用水2吨.【解析】(1)因为此统计图是两条直线;从图中看出每户使用不足1吨时,每吨收费10÷1=2元,超过1吨时,每吨收费(20.1-10)÷(8-1)=3.1元;(2)根据图像可分为两种情况当0<x≤1时,y=2x,当x>1时,y=10+3.1(x﹣1),即y=3.1x﹣2.1.(3)直接把数据代入到(2)的方程里面即可解答【详解】(1)每户使用不足1吨时,每吨收费:10÷1=2(元),超过1吨时,每吨收费:(20.1﹣10)÷(8﹣1)=3.1(元)(2)当0<x≤1时,y=2x,当x>1时,y=10+3.1(x﹣1),即y=3.1x﹣2.1.∴y与x之间的函数关系式为y=2(05) 3.57.5(5x xx x≤⎧⎨-⎩<>)(3)当x=3.1时,y=2x=3.1×2=2(元)当y=12时,3.1x﹣2.1=12,解得:x=2.答:某户居民每月用水3.1吨,应交水费2元;若某月交水费12元,该户居民用水2吨.【点睛】此题考查单式折线统计图和从统计图表中获取信息,根据图像列出方程组是解题关键。

2020-2021深圳市深圳中学初中部初一数学下期末试卷(及答案)

2020-2021深圳市深圳中学初中部初一数学下期末试卷(及答案)

2020-2021深圳市深圳中学初中部初一数学下期末试卷(及答案)一、选择题1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm2.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b3.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b >4.一副直角三角板如图放置,点C 在FD 的延长线上,AB 2-2-1212-231ax by ax by +=⎧⎨-=⎩11x y =⎧⎨=-⎩453560(2)35x y x y -=⎧⎨-=-⎩453560(2)35x y x y =-⎧⎨-+=⎩453560(1)35x y x y +=⎧⎨-+=⎩453560(2)35x y y x =+⎧⎨--=⎩15.3的平方根是_________.16.若不等式组1x x a ⎧⎨⎩><有解,则a 的取值范围是______.17.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.18.如图,直线//a b ,点B 在直线上b 上,且AB⊥BC,∠1=55°,则∠2的度数为______.19.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________. 20.关于x的不等式111x-<-的非负整数解为________.三、解答题21.七年级同学最喜欢看哪一类课外书某校随机抽取七年级部分同学对此进行问卷调査(每人只选择一种最喜欢的书籍类型).如图是根据调查结果绘制的两幅统计图(不完整).请根据统计图信息,解答下列问题:(1)一共有多少名学生参与了本次问卷调查;(2)补全条形统计图,并求出扇形统计图中“其他”所在扇形的圆心角度数;(3)若该年级有400名学生,请你估计该年级喜欢“科普常识”的学生人数.22.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.23.为了扶贫户学生好读书,读好书,某实验学校校友会在今年开学初,到新华书店采购文学名著和自然科学两类图书.经了解,购买30本文学名著和50本自然科学书共需2350元,20本文学名著比20本自然科学书贵500元.(注:所采购的文学名著价格都一样,所采购的自然科学书价格都一样)(1)求每本文学名著和自然科学书的单价.(2)若该校校友会要求购买自然科学书比文学名著多30本,自然科学书和文学名著的总数不低于80本,总费用不超过2400元,请求出所有符合条件的购书方案.24.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系请说明理由.25.如图,平面直角坐标系中,ABCD为长方形,其中点A、C坐标分别为(﹣8,4)、(2,﹣8),且AD∥x轴,交y轴于M点,AB 交x轴于N.(1)求B、D两点坐标和长方形ABCD的面积;(2)一动点P从A出发(不与A点重合),以12个单位/秒的速度沿AB向B点运动,在P点运动过程中,连接MP、OP,请直接写出∠AMP、∠MPO、∠PON之间的数量关系;(3)是否存在某一时刻t,使三角形AMP的面积等于长方形面积的1若存在,求t的值并求此时点P的坐标;若不存在请说明理由.3【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD 的周长为:AB +BF +FD +DA=AB +BE +EF +DF +AD=AB +BC +CA +2AD=20+2×3=26.故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.2.D解析:D【解析】A.∵a >b ,∴a -7>b-7,∴选项A 正确;B.∵a >b ,∴6+a>b+6,∴选项B 正确;C.∵a >b ,∴55ab >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D.3.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2aa ≥,故A 不一定成立,故本选项错误;B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误;C. 若a b >,当0c d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.4.B解析:B【解析】【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=45°,进而得出答案.【详解】由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.【点睛】本题考查的是平行线的性质,熟练掌握这一点是解题的关键. 5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 . 6.C解析:C【解析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.7.B【解析】【详解】把11xy=⎧⎨=-⎩代入方程组231ax byax by+=⎧⎨-=⎩得:231a ba b-=⎧⎨+=⎩,解得:4313ab⎧=⎪⎪⎨⎪=-⎪⎩,所以a−2b=43−2×(13-)=2.故选B.8.D解析:D【解析】【分析】【详解】根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,故选D.9.C解析:C【解析】【分析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.10.C解析:C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.考点:平移的性质.11.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.12.B解析:B【解析】根据题意,易得B.二、填空题13.【解析】【分析】把x看做已知数求出y即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x看做已知数求出y解析:26 3 x【解析】【分析】把x看做已知数求出y即可.【详解】解:方程2x-3y=6,解得:y=263x-,故答案为26 3x-.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.14.(-2-2)【解析】【分析】先根据相和兵的坐标确定原点位置然后建立坐标系进而可得卒的坐标【详解】卒的坐标为(﹣2﹣2)故答案是:(﹣2﹣2)【点睛】考查了坐标确定位置关键是正确确定原点位置解析:(-2,-2)【解析】【分析】先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【点睛】考查了坐标确定位置,关键是正确确定原点位置.15.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:3【解析】试题解析:∵(32=3,∴3的平方根是3故答案为:316.a>1【解析】【分析】根据题意利用不等式组取解集的方法即可得到a的范围【详解】∵不等式组有解∴a>1故答案为:a>1【点睛】此题考查不等式的解集解题关键在于掌握运算法则解析:a>1.【解析】【分析】根据题意,利用不等式组取解集的方法即可得到a的范围.【详解】∵不等式组1xx a⎧⎨⎩><有解,∴a>1,故答案为:a>1.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则.17.0【解析】【分析】根据二元一次方程的定义可以得到x的次数等于1且系数不等于0由此可以得到m的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【分析】根据二元一次方程的定义,可以得到x的次数等于1,且系数不等于0,由此可以得到m的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.18.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。

2020-2021初一数学下期末一模试卷及答案(1)

2020-2021初一数学下期末一模试卷及答案(1)

2020-2021初一数学下期末一模试卷及答案(1) 一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有A.1个B.2个C.3个D.4个2.下列各式中计算正确的是()A.93=±B.2(3)3-=-C.33(3)3-=±D.3273=3.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5{152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==4.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°5.如图已知直线//AB CD,134∠=︒,272∠=︒,则3∠的度数为()A.103︒B.106︒C.74︒D.100︒6.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A .34°B .56°C .66°D .146°7.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .28.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩9.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°10.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)11.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度 12.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A.110°B.120°C.125°D.135°二、填空题13.如图,将周长为9的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为_____.14.如果a的平方根是3±,则a=_________15.已知a、b满足(a﹣1)2+2b+=0,则a+b=_____.16.已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.17.若不等式组1xx a⎧⎨⎩><有解,则a的取值范围是______.18.已知方程x m﹣3+y2﹣n=6是二元一次方程,则m﹣n=_____.19.已知方程组236x yx y+=⎧⎨-=⎩的解满足方程x+2y=k,则k的值是__________.20.关于x的不等式111x-<-的非负整数解为________.三、解答题21.各地“广场舞”噪音干扰的问题备受关注,相关人员对本地区15~65岁年龄段的500名市民进行了随机调查,在调查过程中对“广场舞”噪音干扰的态度有以下五种:A.没影响;B.影响不大;C.有影响,建议做无声运动;D.影响很大,建议取缔;E.不关心这个问题,将调查结果统计整理并绘制成如下两幅不完整的统计图.请根据以上信息解答下列问题:(1)填空m=________,态度为C所对应的圆心角的度数为________;(2)补全条形统计图;(3)若全区15~65岁年龄段有20万人,估计该地区对“广场舞”噪音干扰的态度为B的市民人数;22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A ,B 两种笔记本作为奖品,已知A ,B 两种每本分别为12元和20元,设购入A 种x 本,B 种y 本. (1)求y 关于x 的函数表达式.(2)若购进A 种的数量不少于B 种的数量.①求至少购进A 种多少本?②根据①的购买,发现B 种太多,在费用不变的情况下把一部分B 种调换成另一种C ,调换后C 种的数量多于B 种的数量,已知C 种每本8元,则调换后C 种至少有______本(直接写出答案)23.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足1000.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 24.在边长为1的小正方形网格中,△AOB 的顶点均在格点上.(1)B 点关于y 轴的对称点坐标为______ ;(2)将△AOB 向左平移3个单位长度,再向上平移2个单位长度得到△A 1O 1B 1,请画出△A 1O 1B 1;(3)在(2)的条件下,△AOB 边AB 上有一点P 的坐标为(a ,b ),则平移后对应点P 1的坐标为______ .25.如图,BCE 、AFE 是直线,AB ∥CD ,∠1=∠2,∠3=∠4,求证:AD ∥BE.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个1,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x 尺,竿子长为y 尺, 根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩. 故选A .【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.4.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.5.B解析:B【解析】【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案.【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补),∴318018074106BAC ∠=︒-∠=︒-︒=︒,故选B .【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.6.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.7.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m 的值即可.【详解】解:276359632713x y x y +=⎧⎨+=-⎩①② ②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A .【点睛】考查了解二元一次方程组,解关于x ,y 二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.8.D解析:D【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可. 详解:∵32120x y x y --+-=,∴321020x y x y --⎧⎨+-⎩== 将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1,把x=1代入①得,3-2y=1,解得y=1,∴方程组的解为11 xy=⎧⎨=⎩.故选:D.点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.10.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.11.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.12.D解析:D【解析】【分析】【详解】如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,∴∠ABE+∠BED+∠CDE=360°.又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,∴∠FBE+∠FDE=12(∠ABE+∠CDE)=12(360°﹣90°)=135°,∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.故选D.【点睛】本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.二、填空题13.11【解析】【分析】根据平移的基本性质得出四边形ABFD的周长=AD+AB +BF+DF=1+AB+BC+1+AC即可得出答案【详解】解:根据题意将周长为9的△ABC沿BC方向向右平移1个单位得到△D解析:11【解析】根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案.【详解】解:根据题意,将周长为9的△ABC沿BC方向向右平移1个单位得到△DEF,∴AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=9,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=11.故答案为:11.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD,DF=AC是解题的关键.14.81【解析】【分析】根据平方根的定义即可求解【详解】∵9的平方根为∴=9所以a=81【点睛】此题主要考查平方根的性质解题的关键是熟知平方根的定义解析:81【解析】【分析】根据平方根的定义即可求解.【详解】±,∵9的平方根为3,所以a=81【点睛】此题主要考查平方根的性质,解题的关键是熟知平方根的定义.15.﹣1【解析】【分析】利用非负数的性质可得a-1=0b+2=0解方程即可求得ab的值进而得出答案【详解】∵(a﹣1)2+=0∴a=1b=﹣2∴a+b=﹣1故答案为﹣1【点睛】本题考查了非负数的性质熟知解析:﹣1【解析】【分析】利用非负数的性质可得a-1=0,b+2=0,解方程即可求得a,b的值,进而得出答案.【详解】∵(a﹣1)2=0,∴a=1,b=﹣2,∴a+b=﹣1,故答案为﹣1.【点睛】本题考查了非负数的性质,熟知几个非负数的和为0,那么每个非负数都为0是解题的关键.16.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组17.a>1【解析】【分析】根据题意利用不等式组取解集的方法即可得到a的范围【详解】∵不等式组有解∴a>1故答案为:a>1【点睛】此题考查不等式的解集解题关键在于掌握运算法则解析:a>1.【解析】【分析】根据题意,利用不等式组取解集的方法即可得到a的范围.【详解】∵不等式组1xx a⎧⎨⎩><有解,∴a>1,故答案为:a>1.【点睛】此题考查不等式的解集,解题关键在于掌握运算法则.18.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m、n的方程,求出m、n的值,再代入m-n进行计算即可.∵方程x m-3+y2-n=6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.19.-3【解析】分析:解出已知方程组中xy的值代入方程x+2y=k即可详解:解方程组得代入方程x+2y=k得k=-3故本题答案为:-3点睛:本题的实质是考查三元一次方程组的解法需要对三元一次方程组的定义解析:-3【解析】分析:解出已知方程组中x,y的值代入方程x+2y=k即可.详解:解方程组236x yx y+=⎧⎨-=⎩,得33 xy⎧⎨-⎩==,代入方程x+2y=k,得k=-3.故本题答案为:-3.点睛:本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成无该未知数的二元一次方程组.20.012【解析】【分析】先解不等式确定不等式的解集然后再确定其非负整数解即可得到答案【详解】解:解不等式得:∵∴∴的非负整数解为:012故答案为:012【点睛】本题主要考查了二次根式的应用及一元一次不解析:0,1,2【解析】【分析】先解不等式,确定不等式的解集,然后再确定其非负整数解即可得到答案.【详解】解:解不等式1x<-得:1x<,∵34=<<=,∴13x<<,∴13x<<的非负整数解为:0,1,2.故答案为:0,1,2.【点睛】本题主要考查了二次根式的应用及一元一次不等式的整数解的知识,确定其解集是解题的关键.三、解答题21.(1)32;115.2°;(2)补图见解析;(3)6.6万人.【解析】【分析】(1)由扇形统计图可求得m的值;由态度为C的占32%,即可求得态度为C所对应的圆心角的度数;(2)首先求得25到35的人数,继而可补全条形统计图;(3)利用样本估计总体的方法,即可求得答案.【详解】(1)m=100-10-5-20-33=32;态度为C所对应的圆心角的度数为:32%×360=115.2°;故答案为:32,115.2°.(2)500×20%-15-35-20-5=25,补全条形统计图如图.(3)估计该地区对“广场舞”噪音干扰的态度为B的市民人数为:20×33%=6.6(万人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c>y∴c>300235c x--∴c>30037x-,∵购进A种的数量不少于B种的数量,∴x≥y∴x≥300235c x--∴c≥150﹣4x∴c>30037x-,且x,y,c为正整数,∴C种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.95 2m≤≤【解析】【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y mx y m+=+⎧⎨-=+⎩得:422x my m+⎧⎨-⎩==,解方程组10310x yx y+=⎧⎨+=-⎩得:2010xy⎧⎨-⎩==,∵关于x,y的二元一次方程组222104x y mx y m+=+⎧⎨-=+⎩的解是方程组10310x yx y+=⎧⎨+=-⎩的模糊解,因此有:42200.120m+-≤且2100.110m-+≤,化简得:821091122mm≤≤⎧⎪⎨≤≤⎪⎩,即4591122mm≤≤⎧⎪⎨≤≤⎪⎩解得:952m≤≤,故答案为952m≤≤.【点睛】本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.24.(1)(﹣3,2)(2)见解析(3)(a﹣3,b+2)【解析】试题分析:(1)根据坐标系可得B点坐标,再根据关于y轴对称的对称点的坐标特点:横坐标相反,纵坐标不变可得答案;(2)首先确定A、B、C三点平移后的对应点位置,然后再连接即可;(3)根据△AOB的平移可得P的坐标为(a,b),平移后横坐标﹣3,纵坐标+2.解:(1)B点关于y轴的对称点坐标为(﹣3,2),故答案为(﹣3,2);(2)如图所示:(3)P的坐标为(a,b)平移后对应点P1的坐标为(a﹣3,b+2).故答案为(a﹣3,b+2).点评:此题主要考查了作图﹣﹣平移变换,关键是几何图形都可看做是由点组成,我们在画一个图形的平移图形时,也就是确定一些特殊点的对应点.25.证明见解析.【解析】试题分析:先根据平行线的性质得出∠4=∠BAE.再根据∠3=∠4可知∠3=∠BAE.由∠1=∠2,得出∠1+∠CAE=∠2+∠CAE即∠BAE=∠CAD,故∠3=∠CAD,由此可得出结论.试题解析:证明:∵AB∥CD,∴∠4=∠BAE.∵∠3=∠4,∴∠3=∠BAE.∵∠1=∠2,∴∠1+∠CAE=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD,∴AD∥BE.。

2020-2021深圳市初一数学下期末模拟试题含答案

2020-2021深圳市初一数学下期末模拟试题含答案

2020-2021深圳市初一数学下期末模拟试题含答案一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是( ) A .1600名学生的体重是总体 B .1600名学生是总体C .每个学生是个体D .100名学生是所抽取的一个样本3.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°4.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限5.小明对九(1)、九(2)班(人数都为50人)参加“阳光体育”的情况进行了调查,统计结果如图所示.下列说法中正确的是( )A .喜欢乒乓球的人数(1)班比(2)班多B .喜欢足球的人数(1)班比(2)班多C .喜欢羽毛球的人数(1)班比(2)班多D .喜欢篮球的人数(2)班比(1)班多 6.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2B .3C .4D .57.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠38.在实数0,-π,3,-4中,最小的数是( ) A .0B .-πC .3D .-49.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125° 10.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-311.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-112.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.15.已知不等式231x a -<<-的整数解有四个,则a 的范围是___________. 16.如图,大矩形长是10厘米,宽是8厘米,阴影部分宽为2厘米,则空白部分面积__________.17.已知12xy=⎧⎨=⎩是方程ax-y=3的解,则a的值为________.18.已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.19.关于x的不等式(3a-2)x<2的解为x >,则a的取值范围是________20.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____.参赛者答对题数答错题数得分A191112B182104C17396D101040三、解答题21.解不等式组523(1)13222x xx x+>-⎧⎪⎨≤-⎪⎩,并求出它的所有整数解的和.22.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.23.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?24.已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x为非正数,y为负数.(1)求a的取值范围;(2)化简|a-3|+|a+2|;(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1.25.已知关于,x y的方程组354522x yax by-=⎧⎨+=-⎩和2348x yax by+=-⎧⎨-=⎩有相同解,求(a)b-值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A93=,此选项错误错误,不符合题意;B2(3)3-=,此选项错误错误,不符合题意;C33(3)3-=-,此选项错误错误,不符合题意;D3273=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.A解析:A【解析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.5.C解析:C【解析】【分析】根据扇形图算出(1)班中篮球,羽毛球,乒乓球,足球,羽毛球的人数和(2)班的人数作比较,(2)班的人数从折线统计图直接可看出.【详解】解:A、乒乓球:(1)班50×16%=8人,(2)班有9人,8<9,故本选项错误;B、足球:(1)班50×14%=7人,(2)班有13人,7<13,故本选项错误;C、羽毛球:(1)班50×40%=20人,(2)班有18人,20>18,故本选项正确;D、篮球:(1)班50×30%=15人,(2)班有10人,15>10,故本选项错误.故选C.【点睛】本题考查扇形统计图和折线统计图,扇形统计图表现部分占整体的百分比,折线统计图表现变化,在这能看出每组的人数,求出(1)班喜欢球类的人数和(2)班比较可得出答案.6.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.7.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.D解析:D【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【详解】∵正数大于0和一切负数,∴只需比较-π和-4的大小,∵|-π|<|-4|,∴最小的数是-4.故选D.【点睛】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.10.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260{50x x ->-<,解得:3<x <5. 故选:A . 【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.11.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:212x ±==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.12.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.m>-2【解析】【分析】首先解关于x和y的方程组利用m表示出x+y代入x+y>0即可得到关于m的不等式求得m的范围【详解】解:①+②得2x+2y=2m+4则x+y=m+ 2根据题意得m+2>0解得m>解析:m>-2【解析】【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.【详解】解:2133x y mx y-=+⎧⎨+=⎩①②,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>﹣2.故答案是:m>﹣2.【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.40【解析】根据平行线的性质先求出∠BEF和∠CEF的度数再求出它们的差就可以了解:∵AB∥EF∴∠BEF=∠ABE=70°;又∵EF∥CD∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.15.【解析】【分析】根据不等式2<x<3a-1的整数解有四个得出关于a的不等式组求解即可得出a的取值范围【详解】∵不等式2<x<3a-1的整数解有四个∴整数解为3456∴6<3a-1≤7∴故答案为:【点解析:78 33a≤<.【解析】【分析】根据不等式2<x<3a-1的整数解有四个,得出关于a的不等式组,求解即可得出a的取值范围.【详解】∵不等式2<x<3a-1的整数解有四个,∴整数解为3,4,5,6,∴6<3a-1≤7,∴78 33a≤<.故答案为:78 33a≤<.【点睛】本题考查了一元一次不等式组的整数解.关键是根据整数解的个数,确定含a的代数式的取值范围.16.48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移这样空白部分就变成了了一个矩形然后利用矩形面积公式计算即可【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=解析:48cm2【解析】【分析】把两个矩形形状的阴影部分分别向上和向左平移,这样空白部分就变成了了一个矩形,然后利用矩形面积公式计算即可.【详解】解:把阴影部分平移后如图:S空白部分=(10-2)×(8-2)=48(cm2)故答案为48 cm2.【点睛】本题考查了平移. 通过平移,把不规则的几何图形转化为规则的几何图形,然后根据面积公式进行计算.17.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.18.m>3【解析】试题分析:因为点P在第二象限所以解得:考点:(1)平面直角坐标;(2)解不等式组解析:m>3.【解析】试题分析:因为点P在第二象限,所以,30{mm-<>,解得:考点:(1)平面直角坐标;(2)解不等式组19.x<23【解析】【分析】根据已知不等式的解集确定出a的范围即可【详解】∵关于x的不等式(3a-2)x<2的解为x>23a-2∴3a-2<0解得:a<23故答案为:a<23【点睛】此题考查了解一元一次解析:x<【解析】【分析】根据已知不等式的解集确定出a的范围即可.【详解】∵关于x的不等式(3a-2)x<2的解为x>,∴3a-2<0,解得:a<,故答案为:a<【点睛】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.20.【解析】【分析】设答对1道题得x分答错1道题得y分根据图表列出关于x和y的二元一次方程组解之即可【详解】解:设答对1道题得x分答错1道题得y分根据题意得:解得:答对13道题打错7道题得分为:13×6解析:【解析】【分析】设答对1道题得x分,答错1道题得y分,根据图表,列出关于x和y的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩, 解得:62x y =⎧⎨=-⎩ , 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.三、解答题21.512x -<„,-2 【解析】【分析】 先求出两个不等式的解集,再求其公共解,然后求出整数解的和即可.【详解】 解:523(1)13222x x x x +>-⎧⎪⎨-⎪⎩①②„ 解不等式①得52x >-, 解不等式②得1x ≤,∴512x -<„,x 为整数,可取-2,-1,0,1.则所有整数解的和为21012--++=-.【点睛】 此题考查一元一次不等式组解集,解题关键在于掌握简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).22.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.23.小型车有38辆,中型车有12辆【解析】【分析】设小型车有x 辆,中型车有y 辆,根据“小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元”,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设小型车有x 辆,中型车有y 辆,根据题意得:501015560x y x y +=⎧⎨+=⎩, 解得:3812x y =⎧⎨=⎩, 答:小型车有38辆,中型车有12辆.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.24.(1)-2<a≤3.(2)5;(3)a=-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;(2)根据a的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

2020-2021七年级数学下期末模拟试卷(含答案)(1)

2020-2021七年级数学下期末模拟试卷(含答案)(1)
∴当y=3时,x=13
当y=7时,x=6.
所以有两种方案.
故答案为2.
本题考查理解题意的能力,关键是根据题意列出二元一次方程然后根据解为整数确定值从而得出结果.
17.25【解析】【分析】【详解】设需安排x名工人加工大齿轮安排y名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能
(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;
(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;
结论应用
(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG=α,则∠CFG等于______(用含α的式子表示).
解析:2
【解析】
设甲种运动服买了x套,乙种买了y套,根据,准备用365元购买两种运动服,其中甲种运动服20元/套,乙种运动服35元/套,在钱都用尽的条件下可列出方程,且根据x,y必需为整数可求出解.
解:设甲种运动服买了x套,乙种买了y套,
20x+35y=365
x= ,
∵x,y必须为正整数,
∴ >0,即0<y< ,
A.0B.-πC. D.-4
10.不等式4-2x>0的解集在数轴上表示为()
A. B. C. D.
11.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()
A.16cmB.18cmC.20cmD.21cm
12.关于 , 的方程组 的解满足 ,则 的值为()
【点睛】

2020-2021七年级数学下期末一模试卷(及答案)

2020-2021七年级数学下期末一模试卷(及答案)

2020-2021七年级数学下期末一模试卷(及答案)一、选择题1.如图,直线BC 与MN 相交于点O ,AO ⊥BC ,OE 平分∠BON ,若∠EON =20°,则∠AOM 的度数为( )A .40°B .50°C .60°D .70° 2.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=3.如图,将△ABC 沿BC 方向平移3cm 得到△DEF,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A .20cmB .22cmC .24cmD .26cm4.估计10+1的值应在( ) A .3和4之间 B .4和5之间 C .5和6之间 D .6和7之间 5.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0)6.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩7.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)8.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x xx x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角 B .至少有两个内角是直角 C .至多有一个内角是直角 D .至多有两个内角是直角 11.过一点画已知直线的垂线,可画垂线的条数是( )A .0B .1C .2D .无数12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题13.不等式组有3个整数解,则m 的取值范围是_____.14.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______. 15.64立方根是__________.16.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.17.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.18.已知在一个样本中,50个数据分别在5个组内,第一、二、三、五组数据的个数分别为2,8,15,5,则第四组的频数为__________.19.若方程组23133530.9a ba b-=⎧⎨+=⎩的解为8.31.2ab=⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x yx y+--=⎧⎨++-=⎩的解为_______.20.如图,将周长为10的三角形ABC沿BC方向平移1个单位长度得到三角形DEF,则四边形ABFD的周长为__________.三、解答题21.如图,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO 平移之后得到的图形,并且O的对应点O′的坐标为(4,3).(1)求三角形ABO的面积;(2)作出三角形ABO平移之后的图形三角形A′B′O′,并写出A′、B′两点的坐标分别为A′、B′;(3)P(x,y)为三角形ABO中任意一点,则平移后对应点P′的坐标为.22.某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.(1)求y关于x的函数表达式.(2)若购进A种的数量不少于B种的数量.①求至少购进A种多少本?②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)23.(1)同题情境:如图1,AB∥CD,∠P AB=130°,∠PCD=120°.求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE∥AB,∴∠APE+∠P AB=180°.∴∠APE=180°-∠P AB=180°-130°=50°.∵AB∥C D.∴PE∥C D.…………请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的思路,解答下面的问题:如图3,AD∥BC,点P在射线OM上运动,∠ADP=∠α,∠BCP=∠β.①当点P在A、B两点之间时,∠CPD,∠α,∠β之间有何数量关系?请说明理由.②当点P在A、B两点外侧时(点P与点O不重合),请直接写出∠CPD,∠α,∠β之间的数量关系.24.已知△ABC是等边三角形,将一块含有30°角的直角三角尺DEF按如图所示放置,让三角尺在BC所在的直线上向右平移.如图①,当点E与点B重合时,点A恰好落在三角尺的斜边DF上.(1)利用图①证明:EF=2BC.(2)在三角尺的平移过程中,在图②中线段AH=BE是否始终成立(假定AB,AC与三角尺的斜边的交点分别为G,H)?如果成立,请证明;如果不成立,请说明理由.25.某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】首先根据角的平分线的定义求得∠BON,然后根据对顶角相等求得∠MOC,然后根据∠AOM=90°﹣∠COM即可求解.【详解】∵OE平分∠BON,∴∠BON=2∠EON=40°,∴∠COM=∠BON=40°,∵AO⊥BC,∴∠AOC=90°,∴∠AOM=90°﹣∠COM=90°﹣40°=50°.故选B.【点睛】本题考查了垂直的定义、角平分线的定义以及对顶角的性质,正确求得∠MOC的度数是关键.2.D解析:D【解析】【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案.【详解】A3=,此选项错误错误,不符合题意;B3=,此选项错误错误,不符合题意;C3=-,此选项错误错误,不符合题意;D3=,此选项正确,符合题意;故选:D.【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.3.D解析:D【解析】平移不改变图形的形状和大小,对应线段平行且相等,平移的距离等于对应点的连线段的长,则有AD=BE=3,DF=AC,DE=AB,EF=BC,所以:四边形ABFD的周长为:AB+BF+FD+DA=AB+BE+EF+DF+AD=AB+BC+CA+2AD=26. 故选D.点睛:本题考查了平移的性质,理解平移不改变图形的形状和大小,只改变图形的位置,对应线段平行(或在同一条直线上)且相等,平移的距离即是对应点的连线段的长度是解题的关键,将四边形的周长作相应的转化即可求解.4.B解析:B 【解析】解:∵34<<,∴415<<.故选B .的取值范围是解题关键.5.D解析:D 【解析】 【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标. 【详解】解:因为点 P (m + 3,m + 1)在x 轴上, 所以m +1=0,解得:m =-1, 所以m+3=2,所以P 点坐标为(2,0). 故选D. 【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.6.A解析:A 【解析】 【分析】 【详解】该班男生有x 人,女生有y 人.根据题意得:303278x y x y +=⎧⎨+=⎩,故选D .考点:由实际问题抽象出二元一次方程组.7.D解析:D 【解析】 【分析】根据同位角的定义,对每个图进行判断即可.(1)图中∠1和∠2是同位角;故本项符合题意; (2)图中∠1和∠2是同位角;故本项符合题意; (3)图中∠1和∠2不是同位角;故本项不符合题意; (4)图中∠1和∠2不是同位角;故本项不符合题意; (5)图中∠1和∠2是同位角;故本项符合题意. 图中是同位角的是(1)、(2)、(5). 故选D . 【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.8.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案. 解:过E 作EF ∥AB , ∵AB ∥CD , ∴AB ∥CD ∥EF ,∴∠C=∠FEC ,∠BAE=∠FEA , ∵∠C=44°,∠AEC 为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°, ∴∠1=180°﹣∠BAE=180°﹣46°=134°, 故选B .“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=,去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=,去分母得:2210x x --=,代入公式得:1x ==解得:3411x x ==经检验1x =综上,所求方程的解为1+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.B解析:B 【解析】 【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案. 【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角. 故选B. 【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.11.B解析:B 【解析】 【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答. 【详解】在平面内,过一点有且只有一条直线与已知直线垂直, 故选:B 【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.12.D解析:D 【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.2<m≤3【解析】【分析】根据不等式组x >-1x <m 有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x >-1x <m 有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3 【解析】 【分析】 根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】 根据不等式组有3个整数解,可得: .故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.14.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】 【分析】把x 看做已知数求出y 即可. 【详解】解:方程2x-3y=6,解得:y=263x-,故答案为26 3x-.【点睛】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.15.2;【解析】【分析】先计算=8再计算8的立方根即可【详解】∵=8∴的立方根是2故答案为:2【点睛】本题考查了立方根及算术平方根的知识属于基础题掌握基本的定义是关键解析:2;【解析】【分析】,再计算8的立方根即可.【详解】,2.故答案为:2.【点睛】本题考查了立方根及算术平方根的知识,属于基础题,掌握基本的定义是关键.16.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m 的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.17.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 18.【解析】【分析】每组的数据个数就是每组的频数50减去第1235小组数据的个数就是第4组的频数【详解】50−(2+8+15+5)=20则第4小组的频数是20【点睛】本题考查频数与频率解题的关键是掌握频解析:20【解析】【分析】每组的数据个数就是每组的频数,50减去第1,2,3,5,小组数据的个数就是第4组的频数.【详解】50−(2+8+15+5)=20.则第4小组的频数是20.【点睛】本题考查频数与频率,解题的关键是掌握频数与频率的计算.19.【解析】【分析】主要是通过换元法设把原方程组变成进行化简求解ab 的值在将ab 代入求解即可【详解】设可以换元为;又∵∴解得故答案为【点睛】本题主要应用了换元法解二元一次方程组换元法是将复杂问题简单化时解析: 6.32.2x y =⎧⎨=⎩【解析】【分析】主要是通过换元法设2,1x a y b +=-=,把原方程组变成23133530.9a b a b -=⎧⎨+=⎩,进行化简求解a,b 的值,在将a,b 代入2,1x a y b +=-=求解即可.【详解】设2,1x a y b +=-=,2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩可以换元为23133530.9a b a b -=⎧⎨+=⎩;又∵8.31.2ab=⎧⎨=⎩,∴28.31 1.2xy+=⎧⎨-=⎩,解得6.32.2 xy=⎧⎨=⎩.故答案为6.32.2 xy=⎧⎨=⎩【点睛】本题主要应用了换元法解二元一次方程组,换元法是将复杂问题简单化时常用的方法,应用较为广泛.20.12【解析】试卷分析:根据平移的基本性质由等量代换即可求出四边形ABFD的周长解:根据题意将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF可知AD=1BF=BC+CF=BC+1DF=解析:12【解析】试卷分析:根据平移的基本性质,由等量代换即可求出四边形ABFD的周长.解:根据题意,将周长为10个单位的△ABC沿边BC向右平移1个单位得到△DEF,可知AD=1,BF=BC+CF=BC+1,DF=AC;又因为AB+BC+AC=10,所以,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=12.故答案为12.点睛:本题主要考查平移的性质.解题的关键在于要利用平移的性质找出相等的线段.三、解答题21.(1)4;(2)图见解析,点A′(2,0) 、点B′(6,2);(3)点P′的坐标为(x+4,y+3).【解析】分析:()1用矩形的面积减去3个直角三角形的面积即可.()2根据点O'的坐标,找出平移规律,画出图形,即可写出,A B''的坐标.()3根据()2中的平移规律解答即可.详解:()111134231224 4.222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=()2O的对应点O′的坐标为()4,3.可知向右平移4个单位长度,向上平移3个单位长度.如图所示:点A′(2,0) 、点B′(6,2);()3点P'的坐标为()43.x y++,点睛:考查坐标与图形,平移.弄清楚题目的意思,根据题目给的对应点坐标,找出平移的规律即可.22.(1)y=30035x-,(2)①至少购进A种40本,②30.【解析】【分析】(1)根据A种的费用+B种的费用=1200元,可求y关于x的函数表达式;(2)①根据购进A种的数量不少于B种的数量,列出不等式,可求解;②设B种的数量m本,C种的数量n本,根据题意找出m,n的关系式,再根据调换后C 种的数量多于B种的数量,列出不等式,可求解.【详解】解:(1)∵12x+20y=1200,∴y=30035x-,(2)①∵购进A种的数量不少于B种的数量,∴x≥y,∴x≥30035x-,∴x≥752,∵x,y为正整数,∴至少购进A种40本,②设A种的数量为x本,B种的数量y本,C种的数量c本,根据题意得:12x+20y+8c=1200∴y=300235c x--∵C种的数量多于B种的数量∴c >y∴c >300235c x -- ∴c >30037x -, ∵购进A 种的数量不少于B 种的数量,∴x ≥y∴x ≥300235c x -- ∴c ≥150﹣4x ∴c >30037x -, 且x ,y ,c 为正整数,∴C 种至少有30本故答案为30本.【点睛】本题考查一次函数的应用,不等式组等知识,解题的关键是学会构建一次函数解决实际问题,属于中考常考题型.23.(1)110°;(2) 详见解析 【解析】分析:(1)根据平行线的判定与性质补充即可;(2)①过P 作PE ∥AD 交CD 于E ,推出AD ∥PE ∥BC ,根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案;②画出图形(分两种情况(i )点P 在BA 的延长线上,(ii )点P 在AB 的延长线上),根据平行线的性质得出∠α=∠DPE ,∠β=∠CPE ,即可得出答案.详解:(1)剩余过程:∴∠CPE +∠PCD =1800,∴∠CPE =1800—1200=600,∴∠APC =500+600=1100.(2)①∠CPD =∠α+∠β.理由如下:过P 作PQ ∥AD .∵AD ∥BC ,∴PQ ∥BC ,∴1α∠=∠,同理,2β∠=∠,∴12CPD αβ∠=∠+∠=∠+∠;②(i )当P 在BA 延长线时,如图4,过P 作PE ∥AD 交CD 于E ,同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠β﹣∠α;(ii )当P 在AB 延长线时,如图5, 同①可知:∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠α﹣∠β.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,难度适中.24.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB=60°,AC=BC.结合三角形外角的性质,得∠CAF=30°,则CF=AC,从而证明结论;(2)根据(1)中的证明方法,得到CH=CF.根据(1)中的结论,知BE+CF=AC,从而证明结论.【详解】(1)∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CAF=60°-30°=30°,∴∠CAF=∠F,∴CF=AC,∴CF=AC=BC,∴EF=2BC.(2)成立.证明如下:∵△ABC是等边三角形,∴∠ACB=60°,AC=BC.∵∠F=30°,∴∠CHF=60°-30°=30°,∴∠CHF=∠F,∴CH=CF.∵EF=2BC,∴BE+CF=BC.又∵AH+CH=AC,AC=BC,∴AH=BE.【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF=2BC是解题的关键.25.(1)每台电脑机箱、液晶显示器的进价各是60元,800元;(2)利润最大为4400元.【解析】【分析】(1)设每台电脑机箱的进价是x元,液晶显示器的进价是y元,根据“若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元”即可列方程组求解;(2)设购进电脑机箱z台,根据“可用于购买这两种商品的资金不超过22240元,所获利润不少于4100元”即可列不等式组求解.【详解】解:(1)设每台电脑机箱、液晶显示器的进价各是x,y元,根据题意得:1087000 254120x yx y+=⎧⎨+=⎩,解得:60800 xy=⎧⎨=⎩,答:每台电脑机箱、液晶显示器的进价各是60元,800元;(2)设该经销商购进电脑机箱m台,购进液晶显示器(50-m)台,根据题意得:60800(50)22240 10160(50)4100m mm m+-≤⎧⎨+-≥⎩,解得:24≤m≤26,因为m要为整数,所以m可以取24、25、26,从而得出有三种进货方式:①电脑箱:24台,液晶显示器:26台,②电脑箱:25台,液晶显示器:25台;③电脑箱:26台,液晶显示器:24台.∴方案一的利润:24×10+26×160=4400,方案二的利润:25×10+25×160=4250,方案三的利润:26×10+24×160=4100,∴方案一的利润最大为4400元.答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器.第①种方案利润最大为4400元.【点睛】考点:方案问题,方案问题是初中数学的重点,在中考中极为常见,一般难度不大,需熟练掌握.。

2020-2021七年级数学下期末一模试卷含答案(1)

2020-2021七年级数学下期末一模试卷含答案(1)

2020-2021七年级数学下期末一模试卷含答案(1) 一、选择题1.不等式组213312xx+⎧⎨+≥-⎩<的解集在数轴上表示正确的是()A .B .C .D .2.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.计算2535-+-的值是()A.-1B.1C.525-D .255-4.估计10+1的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间5.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)6.已知是关于x,y的二元一次方程x-ay=3的一个解,则a的值为()A.1B.-1C.2D.-27.16的平方根为()A.±4B.±2C.+4D.28.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 9.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-310.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.11.若点(),1P a a -在x 轴上,则点()2,1Q a a -+在第( )象限.A .一B .二C .三D .四12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( ) A .8 B .6C .4D .2 二、填空题13.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°14.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 15.机械厂加工车间有85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,问安排______名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.16.3a ,小数部分是b 3a b -=______.17.3的平方根是_________.18.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.19.已知方程x m ﹣3+y 2﹣n =6是二元一次方程,则m ﹣n =_____.20.若关于x 的不等式组0532x m x +<⎧⎨-⎩…无解,则m 的取值范围是_____. 三、解答题21.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解甲、乙两家快递公司比较合适,甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费,乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)当x >1时,请分別直接写出甲、乙两家快递公司快递该物品的费用y(元)与x(千克)之间的函数关系式;(2)在(1)的条件下,小明选择哪家快递公司更省钱?23.如图,已知AB CD ∥,B D ∠=∠,请用三种不同的方法说明AD BC ∥.24.已知:方程组713x y a x y a +=--⎧⎨-=+⎩的解x 为非正数,y 为负数. (1)求a 的取值范围;(2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.25.已知关于,x y 的方程组354522x y ax by -=⎧⎨+=-⎩和2348x y ax by +=-⎧⎨-=⎩有相同解,求(a)b -值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①②∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 2.B解析:B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.3.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】 解:2535+-(253525351-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 4.B解析:B【解析】 解:∵3104<<,∴41015<<.故选B . 10 的取值范围是解题关键.解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.B解析:B【解析】【分析】 把代入x-ay=3,解一元一次方程求出a 值即可.【详解】 ∵是关于x ,y 的二元一次方程x-ay=3的一个解,∴1-2a=3解得:a=-1故选B.【点睛】本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.7.A解析:A【解析】根据平方根的概念即可求出答案.【详解】∵(±4)2=16,∴16的平方根是±4.故选A.【点睛】本题考查了平方根的概念,属于基础题型.8.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.9.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A10.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.11.B解析:B【解析】【分析】由点P在x轴上求出a的值,从而得出点Q的坐标,继而得出答案.【详解】∵点P(a,a-1)在x轴上,∴a-1=0,即a=1,则点Q 坐标为(-1,2),∴点Q 在第二象限,故选:B .【点睛】此题考查点的坐标,解题的关键是掌握各象限及坐标轴上点的横纵坐标特点.12.D解析:D【解析】【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值.【详解】两式相加得:3336x y a +=-;即3()36,x y a +=-得2x y a +=-即20,2a a -==故选:D.【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【解析】【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°. 【点睛】本题考查平行线的性质及三角形外角的性质.14.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.15.25【解析】【分析】【详解】设需安排x 名工人加工大齿轮安排y 名工人加工小齿轮由题意得:解得:即安排25名工人加工大齿轮才能使每天加工的大小齿轮刚好配套故答案为25【点睛】本题考查理解题意能力关键是能 解析:25【解析】【分析】【详解】设需安排x 名工人加工大齿轮,安排y 名工人加工小齿轮,由题意得:85316210x y x y +=⎧⎨⨯=⨯⎩,解得:2560x y =⎧⎨=⎩. 即安排25名工人加工大齿轮,才能使每天加工的大小齿轮刚好配套.故答案为25.【点睛】本题考查理解题意能力,关键是能准确得知2个大齿轮和3个小齿轮配成一套,根据此正确列出方程.16.【解析】【详解】若的整数部分为a 小数部分为b∴a=1b=∴a -b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b 1,-b 1)=1.故答案为1.17.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:18.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程解析:0【解析】【分析】根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.【详解】根据二元一次方程的定义,得|m-1|=1且m-2≠0,解得m=0,故答案为0.【点睛】考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.19.3【解析】试题分析:先根据二元一次方程的定义得出关于mn的方程求出mn的值再代入m-n进行计算即可∵方程xm-3+y2-n=6是二元一次方程∴m-3=1解得m=4;2-n=1解得n=1∴m-n=4-解析:3【解析】试题分析:先根据二元一次方程的定义得出关于m、n的方程,求出m、n的值,再代入m-n进行计算即可.∵方程x m-3+y2-n=6是二元一次方程,∴m-3=1,解得m=4;2-n=1,解得n=1,∴m-n=4-1=3.考点:二元一次方程的定义.20.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m的范围【详解】解不等式x+m<0得:x<﹣m解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m的范围.【详解】解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.三、解答题21.(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪(2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比【详解】解:(1)∵(252+104+24)÷1000=38%,∴这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人),∴本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人),∴该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人),∴该市小学生患“中度近视”的约有1.04万人.22.(1)y甲=15x+7,y乙=16x+3(2)当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱【解析】【分析】(1) 根据甲、乙公司的收费方式结合数量关系,可得y甲、y乙 (元) 与x ( 千克) 之间的函数关系式;(2)当x>1时,分别求出y甲<y乙、y甲=y乙、y甲<y乙时x的取值范围, 综上即可得出结论.【详解】(1)y甲=22+15(x-1)=15x+7,y乙=16x+3.(2)令y甲<y乙,即15x+7<16x+3,解得x>4,令y甲=y乙,即15x+7=16x+3,解得x=4,令y甲>y乙,即15x+7>16x+3,解得x<4,综上可知:当1<x<4时,选乙快递公司省钱;当x=4时,选甲、乙两家快递公司快递费一样多;当x>4时,选甲快递公司省钱.【点睛】本题主要考查一次函数的实际应用,注意准确列好方程及分类讨论思想在解题中的应用. 23.见解析【解析】【分析】有多种方法可证明:方法一:通过∠C 转化得到180D C ∠+∠=︒,从而证明;方法二:连接BD ,根据平行得ABD CDB ∠=∠,角度转化得到DBC BDA ∠=∠,从而证平行;方法三:延长BC 至E ,根据平行得B DCE ∠=∠,角度转化得DCE D ∠=∠,从而证平行.【详解】方法一:∵AB ∥CD ∴180B C ∠+∠=︒∵B D ∠=∠∴180D C ∠+∠=︒∴AD ∥BC方法二:连接BD∵AB ∥CD ∴ABD CDB ∠=∠又∵ABC CDA ∠=∠∴ABC ABD CDA CDB ∠-∠=∠-∠∴DBC BDA ∠=∠∴AD ∥BC方法三:延长BC 至E∵AB ∥CD ∴B DCE ∠=∠又∵B D ∠=∠∴DCE D ∠=∠∴AD ∥BC【点睛】本题考查平行线的性质和证明,注意,仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.24.(1)-2<a≤3.(2)5;(3)a =-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a 的不等式组,求出不等式组的解集即可; (2)根据a 的范围去掉绝对值符号,即可得出答案;(3)求出a<-12,根据a的范围即可得出答案.【详解】解:(1)713x y ax y a+=-⎧⎨-=+⎩①②∵①+②得:2x=-6+2a,x=-3+a,①-②得:2y=-8-4a,y=-4-2a,∵方程组713x y ax y a+=-⎧⎨-=+⎩的解x为非正数,y为负数,∴-3+a≤0且-4-2a<0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.25.-8.【解析】试题分析:因为两个方程组有相同的解,故只要将两个方程组中不含有a,b的两个方程联立,组成新的方程组,求出x和y的值,再代入含有a,b的两个方程中,解关于a,b的方程组即可得出a,b的值.试题解析:因为两组方程组有相同的解,所以原方程组可化为方程组①35234x yx y-=⎧⎨+=-⎩和方程组②45228ax byax by+=-⎧⎨-=⎩,解方程组①,得12 xy=⎧⎨=-⎩,代入②得4102228a ba b-=-⎧⎨+=⎩,解得23ab=⎧⎨=⎩,所以(-a)b=(-2)3=-8.【点睛】本题考查了同解方程组,考查了学生对方程组有公共解定义的理解能力及应用能力,解题的关键是将所给的两个方程组进行重新组合.。

2020-2021七年级数学下期末一模试卷(带答案)

2020-2021七年级数学下期末一模试卷(带答案)

2020-2021七年级数学下期末一模试卷(带答案)一、选择题1.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )A .22x y =-⎧⎨=-⎩B .00x y =⎧⎨=⎩C .22x y =⎧⎨=⎩D .33x y =⎧⎨=⎩ 3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 4.黄金分割数512是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间C .在1.3和1.4之间D .在1.4和1.5之间 5.方程组23x y a x y +=⎧⎨-=⎩的解为5x y b =⎧⎨=⎩,则a 、b 分别为( ) A .a=8,b=﹣2 B .a=8,b=2 C .a=12,b=2 D .a=18,b=86.若不等式组20{210x a x b +---><的解集为0<x <1,则a ,b 的值分别为( ) A .a =2,b =1 B .a =2,b =3 C .a =-2,b =3 D .a =-2,b =17.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个8.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个9.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°10.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4D .()8,411.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设( ) A .至少有一个内角是直角B .至少有两个内角是直角C .至多有一个内角是直角D .至多有两个内角是直角12.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22<D .2x 2y -<-二、填空题13.某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).14.不等式组有3个整数解,则m 的取值范围是_____.15.一棵树高h (m )与生长时间n (年)之间有一定关系,请你根据下表中数据,写出h (m )与n (年)之间的关系式:_____.n/年 2 4 6 8 …h/m 2.6 3.2 3.8 4.4 …16.已知二元一次方程2x-3y=6,用关于x 的代数式表示y ,则y=______.17.如果不等式组213(1)x x x m->-⎧⎨⎩<的解集是x <2,那么m 的取值范围是_____ 18.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 19.如果方程组23759x y x y +=⎧⎨-=⎩,的解是方程716x my +=的一个解,则m 的值为____________.20.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.三、解答题21.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.22.随着移动计算技术和无线网络的快速发展,移动学习方式越来越引起人们的关注,某校计划将这种学习方式应用到教育学中,从全校1500名学生中随机抽取了部分学生,对其家庭中拥有的移动设备的情况进行调查,并绘制出如下的统计图①和图②,根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为 ,图①中m 的值为 ;(Ⅱ)求本次调查获取的样本数据的众数、中位数和平均数;(Ⅲ)根据样本数据,估计该校1500名学生家庭中拥有3台移动设备的学生人数.23.快递公司准备购买机器人来代替人工分拣已知购买- 台甲型机器人比购买-台乙型机器人多2万元;购买2台甲型机器人和3台乙型机器人共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型、乙型机器人每台每小时分拣快递分别是1200件、1000件,该公司计划最多用41万元购买8台这两种型号的机器人.该公司该如何购买,才能使得每小时的分拣量最大?24.如图,以直角三角形AOC 的直角顶点O 为原点,以OC 、OA 所在直线为x 轴和y 轴建立平面直角坐标系,点()0,A a ,(),0C b 满足220a b b -+-=.()1则C 点的坐标为______;A 点的坐标为______.()2已知坐标轴上有两动点P 、Q 同时出发,P 点从C 点出发沿x 轴负方向以1个单位长度每秒的速度匀速移动,Q 点从O 点出发以2个单位长度每秒的速度沿y 轴正方向移动,点Q 到达A 点整个运动随之结束.AC 的中点D 的坐标是()1,2,设运动时间为(0)t t >秒.问:是否存在这样的t ,使ODP ODQ S S =V V ?若存在,请求出t 的值;若不存在,请说明理由.()3点F 是线段AC 上一点,满足FOC FCO ∠=∠,点G 是第二象限中一点,连OG ,使得.AOG AOF ∠=∠点E 是线段OA 上一动点,连CE 交OF 于点H ,当点E 在线段OA 上运动的过程中,OHC ACE OEC∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.25.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】213312x x +⎧⎨+≥-⎩<①② ∵解不等式①得:x <1,解不等式②得:x≥-1,∴不等式组的解集为-1≤x <1, 在数轴上表示为:,故选A .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键. 2.C解析:C【解析】【分析】根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.【详解】解:∵实数x ,y 满足254()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,即400x y x y +-=⎧⎨-=⎩, 解得:22x y =⎧⎨=⎩,【点睛】本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.3.B解析:B【解析】【详解】设可打x 折,则有1200×10x -800≥800×5%, 解得x≥7.即最多打7折.故选B .【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解. 4.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B .【点睛】是解题关键.5.C解析:C【解析】试题解析:将x=5,y=b 代入方程组得:10{53b a b +=-=, 解得:a=12,b=2,故选C .考点:二元一次方程组的解.6.A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.7.B解析:B【解析】【分析】先求解不等式组得到关于m的不等式解集,再根据m的取值范围即可判定整数解.【详解】不等式组0 420 x mx-<⎧⎨-<⎩①②由①得x<m;由②得x>2;∵m的取值范围是4<m<5,∴不等式组420x mx-<⎧⎨-<⎩的整数解有:3,4两个.故选B.【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m的取值范围是本题的关键.8.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.10.C解析:C【解析】【分析】根据A和C的坐标可得点A向右平移4个单位,向上平移1个单位,点B的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D的坐标.【详解】解:∵点A(0,1)的对应点C的坐标为(4,2),即(0+4,1+1),∴点B(3,3)的对应点D的坐标为(3+4,3+1),即D(7,4);故选:C.【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.12.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.④【解析】【分析】分别求出1-4月音乐手机的销售额再逐项进行判断即可【详解】1月份的音乐手机销售额是85×23=1955(万元)2月份的音乐手机销售额是80×15=12(万元)3月份音乐手机的销售额解析:④ .【解析】【分析】分别求出1-4月音乐手机的销售额,再逐项进行判断即可.【详解】1月份的音乐手机销售额是85×23%=19.55(万元)2月份的音乐手机销售额是80×15%=12(万元)3月份音乐手机的销售额是 60×18%=10.8(万元),4月份音乐手机的销售额是 65×17%=11.05(万元).①从1月到4月,手机销售总额3-4月份上升,故①错误;②从1月到4月,音乐手机销售额在当月手机销售总额中的占比没有连续下降,故②错误;③由计算结果得,10.8<11.05,因此4月份音乐手机的销售额比3月份的销售额增多了.故③错误;④今年1-4月中,音乐手机销售额最低的是3月,故④正确.故答案为:④.【点睛】此题主要考查了拆线统计图与条形图的综合应用,利用两图形得出正确信息是解题关键.14.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x >-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】根据不等式组有3个整数解,可得:.故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法.15.h=03n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式可先设出通式然后将已知的条件代入式子中求出未知数的值进而求出函数的解析式【详解】设该函数的解析式为h=kn+b将n=2h=2解析:h=0.3n+2【解析】【分析】本题主要考查了用待定系数法求一次函数的解析式,可先设出通式,然后将已知的条件代入式子中求出未知数的值,进而求出函数的解析式.【详解】设该函数的解析式为h=kn+b,将n=2,h=2.6以及n=4,h=3.2代入后可得2 2.64 3.2k b k b +=⎧⎨+=⎩, 解得0.32k b =⎧⎨=⎩, ∴h =0.3n+2,验证:将n =6,h =3.8代入所求的函数式中,符合解析式;将n =8,h =4.4代入所求的函数式中,符合解析式;因此h (m )与n (年)之间的关系式为h =0.3n+2.故答案为:h =0.3n+2.【点睛】本题主要考查用待定系数法求一次函数关系式的方法.用来表示函数关系的等式叫做函数解析式,也称为函数关系式.16.【解析】【分析】把x 看做已知数求出y 即可【详解】解:方程2x-3y=6解得:y=故答案为【点睛】此题考查了解二元一次方程解题的关键是将x 看做已知数求出y 解析:263x - 【解析】【分析】把x 看做已知数求出y 即可.【详解】解:方程2x-3y=6,解得:y=263x -, 故答案为263x -. 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y . 17.m≥2【解析】【分析】先解第一个不等式再根据不等式组的解集是x <2从而得出关于m 的不等式解不等式即可【详解】解:解第一个不等式得x <2∵不等式组的解集是x <2∴m≥2故答案为m≥2【点睛】本题是已知解析:m≥2.【解析】【分析】先解第一个不等式,再根据不等式组()2131x x x m ⎧->-⎨<⎩的解集是x <2,从而得出关于m 的不等式,解不等式即可.【详解】解:解第一个不等式得,x<2,∵不等式组()2131x xx m⎧->-⎨<⎩的解集是x<2,∴m≥2,故答案为m≥2.【点睛】本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.18.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.19.2【解析】分析:求出方程组的解得到x与y的值代入方程计算即可求出m的值详解:①+②×3得:17x=34即x=2把x=2代入①得:y=1把x=2y=1代入方程7x+my=16得:14+m=16解得:m解析:2【解析】分析:求出方程组的解得到x与y的值,代入方程计算即可求出m的值.详解:23759x yx y+=⎧⎨-=⎩①②,①+②×3得:17x=34,即x=2,把x=2代入①得:y=1,把x=2,y=1代入方程7x+my=16得:14+m=16,解得:m=2,故答案为:2.点睛:此题考查了解二元一次方程组和二元一次方程解的概念,解出二元一次方程组的解代入另一个方程是解决此题的关键.20.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB ⊥BC ,∠1=55°,∴∠3=90°-55°=35°.∵a ∥b ,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。

2020-2021七年级数学下期末一模试题(带答案)

2020-2021七年级数学下期末一模试题(带答案)

2020-2021七年级数学下期末一模试题(带答案)一、选择题1.为了了解天鹅湖校区2019-2020学年1600名七年级学生的体重情况,从中抽取了100名学生的体重,就这个问题,下面说法正确的是()A.1600名学生的体重是总体B.1600名学生是总体C.每个学生是个体D.100名学生是所抽取的一个样本2.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5 {152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yxy=+=D.-5{2+5x yx y==3.在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是() A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若不等式组20{210x ax b+---><的解集为0<x<1,则a,b的值分别为( )A.a=2,b=1B.a=2,b=3C.a=-2,b=3D.a=-2,b=1 5.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有()A.1个B.2个C.3个D.4个6.已知两个不等式的解集在数轴上如右图表示,那么这个解集为()A.≥-1 B.>1 C.-3<≤-1 D.>-37.如图所示,点P到直线l的距离是()A.线段PA的长度B.线段PB的长度C.线段PC的长度D.线段PD的长度8.用反证法证明命题“在三角形中,至多有一个内角是直角”时,应先假设()A.至少有一个内角是直角B.至少有两个内角是直角C.至多有一个内角是直角D.至多有两个内角是直角9.在平面直角坐标系中,点B在第四象限,它到x轴和y轴的距离分别是2、5,则点B的坐标为( )A .()5,2-B .()2,5-C .()5,2-D .()2,5--10.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0 11.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限 12.若x <y ,则下列不等式中不成立的是( )A .x 1y 1-<-B .3x 3y <C .x y 22< D .2x 2y -<-二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.不等式组11{2320x x ≥--<的解集为________.15.如果一个数的平方根为a+1和2a-7, 这个数为 ________16.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 17.不等式3x 134+>x 3+2的解是__________. 18.如图,直线1l ∥2l ,αβ∠∠=,1∠=35°,则2∠=____°.19.若2(2)9x m x +-+是一个完全平方式,则m 的值是_______.20.5______.三、解答题21.解方程组()() 31210 21132x yxy⎧++-=⎪⎨+=-⎪⎩22.如图,已知∠A=∠AGE,∠D=∠DGC(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.23.若关于x,y的方程组2431(1)3mx ny x yx y nx m y+=-=⎧⎧⎨⎨+=+-=⎩⎩与有相同的解.(1)求这个相同的解;(2)求m、n的值.24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:营业员A:月销售件数200件,月总收入2400元;营业员B:月销售件数300件,月总收入2700元;假设营业员的月基本工资为x元,销售每件服装奖励y元.(1)求x、y的值;(2)若某营业员的月总收入不低于3100元,那么他当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件,乙2件,丙1件共需350元;如果购买甲1件,乙2件,丙3件共需370元.某顾客想购买甲、乙、丙各一件共需多少元?25.补充完成下列解题过程:如图,已知直线a、b被直线l所截,且//a b,12100∠+∠=°,求3∠的度数.解:1∠Q与2∠是对顶角(已知),12∠∠∴=()12100∠+∠=︒Q(已知),得21100∠=︒(等量代换).1∴∠=_________().//a bQ(已知),得13∠=∠().3∴∠=________(等量代换).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:A、1600名学生的体重是总体,故A正确;B、1600名学生的体重是总体,故B错误;C、每个学生的体重是个体,故C错误;D、从中抽取了100名学生的体重是一个样本,故D错误;故选:A.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.3.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.A解析:A【解析】试题分析:先把a、b当作已知条件求出不等式组的解集,再与已知解集相比较即可求出a、b的值.解:20210x ax b+->⎧⎨--<⎩①②,由①得,x>2﹣a,由②得,x<12b+,故不等式组的解集为;2﹣a<x<12b +,∵原不等式组的解集为0<x<1,∴2﹣a=0,12b+=1,解得a=2,b=1.故选A.5.C解析:C【解析】【分析】根据线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识一一判断即可.【详解】解:①两点之间,线段最短,正确.②连接两点之间的线段叫做这两点间的距离,错误,应该是连接两点之间的线段的距离叫做这两点间的距离.③经过直线外一点,有且只有一条直线与这条直线平行,正确.④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.正确.故选C.【点睛】本题考查线段公理,两点之间的距离的概念,平行公理,垂线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.A解析:A【解析】>-3 ,≥-1,大大取大,所以选A7.B解析:B【解析】由点到直线的距离定义,即垂线段的长度可得结果,点P到直线l的距离是线段PB 的长度,故选B.8.B解析:B【解析】【分析】本题只需根据在反证法的步骤中,第一步是假设结论不成立,可据此进行分析,得出答案.【详解】根据反证法的步骤,则可假设为三角形中有两个或三个角是直角.故选B.【点睛】本题考查的知识点是反证法,解此题关键要懂得反证法的意义及步骤,反证法的步骤是:1.假设结论不成立;2.从假设出发推出矛盾;3.假设不成立,则结论成立.9.A解析:A【解析】【分析】先根据点B所在的象限确定横纵坐标的符号,然后根据点B与坐标轴的距离得出点B的坐标.【详解】∵点B在第四象限内,∴点B的横坐标为正数,纵坐标为负数∵点B到x轴和y轴的距离分别是2、5∴横坐标为5,纵坐标为-2故选:A【点睛】本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的:第一象限内,则横坐标为正,纵坐标为正;第二象限内,则横坐标为负,纵坐标为正;第三象限内,则横坐标为负,纵坐标为负;第四象限内,则横坐标为正,纵坐标为负.10.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.11.D解析:D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.12.D解析:D【解析】【分析】利用不等式的基本性质判断即可.【详解】若x<y,则x﹣1<y﹣1,选项A成立;若x<y,则3x<3y,选项B成立;若x<y,则x2<y2,选项C成立;若x<y,则﹣2x>﹣2y,选项D不成立,故选D.【点睛】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】33x x m+=-2x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.【解析】∵解不等式①得:x⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x<解析:2 23x-≤<【解析】112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 15.9【解析】【分析】根据一个正数的平方根互为相反数可得出a 的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a ﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9【解析】【分析】根据一个正数的平方根互为相反数可得出a 的值,代入后即可得出这个正数.【详解】由题意得:a +1=﹣(2a ﹣7),解得:a =2,∴这个正数为:(2+1)2=32=9. 故答案为:9.【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.16.a >﹣1【解析】分析:∵由得x≥﹣a ;由得x <1∴解集为﹣a≤x<1∴﹣a <1即a >﹣1∴a 的取值范围是a >﹣1解析:a >﹣1【解析】分析:∵由x a 0+≥得x≥﹣a ;由12x x 2-->得x <1.∴x a 0{12x x 2+≥-->解集为﹣a≤x <1. ∴﹣a <1,即a >﹣1.∴a 的取值范围是a >﹣1.17.x >-3【解析】>+2去分母得:去括号得:移项及合并得:系数化为1得:故答案为x >-3解析:x >-3【解析】3134x +>3x +2, 去分母得:3(313)424,x x +>+ 去括号得:939424,x x +>+ 移项及合并得:515,x >- 系数化为1得:3x >- .故答案为x >-3.18.145【解析】【分析】如图:延长AB 交l2于E 根据平行线的性质可得∠AED=∠1根据可得AE//CD 根据平行线的性质可得∠AED+∠2=180°即可求出∠2的度数【详解】如图:延长AB 交l2于E ∵l解析:145【解析】【分析】如图:延长AB 交l 2于E ,根据平行线的性质可得∠AED=∠1,根据αβ∠∠=可得AE//CD ,根据平行线的性质可得∠AED+∠2=180°,即可求出∠2的度数.【详解】如图:延长AB 交l 2于E ,∵l 1//l 2,∴∠AED=∠1=35°,∵αβ∠∠=,∴AE//CD ,∴∠AED+∠2=180°,∴∠2=180°-∠AED=180°-35°=145°,故答案为145【点睛】本题考查了平行线的判定和性质,通过内错角相等证得AE//CD 是解题关键.19.8或﹣4【解析】解:∵x2+(m-2)x+9是一个完全平方式∴x2+(m-2)x+9=(x±3)2而(x±3)2=x2±6x+9∴m-2=±6∴m=8或m=-4故答案为8或-4 解析:8或﹣4【解析】解:∵x 2+(m -2)x +9是一个完全平方式,∴x 2+(m -2)x +9=(x ±3)2. 而(x ±3)2=x 2±6x +9,∴m -2=±6,∴m =8或m =-4.故答案为8或-4. 20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身 5【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.12 xy=⎧⎨=-⎩.【解析】【分析】方程组整理后,利用加减消元法求出解即可.【详解】方程组整理得:321 432x yx y+=-⎧⎨+=-⎩①②,①×3﹣②×2得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)证明见解析;(2)50°.【解析】证明:(1)∵∠A =∠AGE,∠D =∠DGC又∵∠AGE =∠DGC∴∠A=∠D∴AB∥CD(2) ∵∠1+∠2 =180°又∵∠CGD+∠2=180°∴∠CGD=∠1∴CE∥FB∴∠C=∠BFD,∠CEB +∠B=180°又∵∠BEC=2∠B+30°∴2∠B+30°+∠B=180°∴∠B=50°又∵AB∥CD∴∠B=∠BFD∴∠C=∠BFD=∠B=50°.23.(1)21x y =⎧⎨=-⎩;(2)m=6,n=4 【解析】【分析】先解关于x,y 的方程组,再代入其他方程,再解关于m,n 的方程组.【详解】解:(1)由13x y x y +=⎧⎨-=⎩得, 21x y =⎧⎨=-⎩, (2)把21x y =⎧⎨=-⎩代入含有m,n 的方程,得 224213m n n m -=⎧⎨-+=⎩, 解得64m n =⎧⎨=⎩【点睛】本题考核知识点:解方程组.解题关键点:熟练解方程组.24.(1) 18003x y =⎧⎨=⎩;(2) 434;(3) 180. 【解析】解:(1)依题意,得 20024003002700x y x y +=⎧⎨+=⎩解,得18003x y =⎧⎨=⎩(2)设他当月要卖服装m 件.则180033100m +≥ 14333m ≥ 14333m ≥的最小整数是434答:他当月至少要卖服装434件.(3)设甲、乙、丙服装的单价分别为a 元、b 元、c 元. 则3235023370a b c a b c ++=⎧⎨++=⎩∴ 444720a b c ++=∴ 180a b c ++=答:购买甲、乙、丙各一件共需180元.25.对顶角相等;50︒;等式性质;两直线平行,内错角相等;50︒【解析】【分析】直接利用平行线的性质结合等式的性质分别填空得出答案.【详解】∵∠1与∠2是对顶角(已知),∴∠1=∠2(对顶角相等).∵∠1+∠2=100°(已知),∴2∠1=100°(等量代换),∴∠1=50°,∵a∥b(已知),∴∠1=∠3(两直线平行,内错角相等)∴∠3=50°(等量代换).故答案为:对顶角相等;50°;两直线平行,内错角相等;50°.【点睛】此题主要考查了平行线的性质以及等式的性质,正确掌握相关性质是解题关键.。

2020-2021初一数学下期末一模试卷及答案(4)

2020-2021初一数学下期末一模试卷及答案(4)

2020-2021初一数学下期末一模试卷及答案(4)一、选择题1.不等式组213312x x +⎧⎨+≥-⎩<的解集在数轴上表示正确的是( ) A .B .C .D .2.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是( )A .40°B .50°C .60°D .70°3.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折4.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( ) A .1个 B .2个 C .3个 D .4个5.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x 分钟,则列出的不等式为( )A .210x +90(15﹣x )≥1.8B .90x +210(15﹣x )≤1800C .210x +90(15﹣x )≥1800D .90x +210(15﹣x )≤1.86.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,8 7.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 8.已知两个不等式的解集在数轴上如右图表示,那么这个解集为( )A .≥-1B .>1C .-3<≤-1D .>-39.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-210.若0a <,则下列不等式不成立的是( )A .56a a +<+B .56a a -<-C .56a a <D .65a a< 11.如图,AB ∥CD ,DE ⊥BE ,BF 、DF 分别为∠ABE 、∠CDE 的角平分线,则∠BFD =( )A .110°B .120°C .125°D .135°12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0二、填空题13.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,则m 的取值范围是____.14.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.15.若不等式组x a 0{12x x 2+≥-->有解,则a 的取值范围是_____. 16.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到点B , 则点B 的坐标为_______.17.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.18.已知a 、b 满足(a ﹣1)2+2b +=0,则a+b=_____.19.已知(m-2)x |m-1|+y=0是关于x ,y 的二元一次方程,则m=______.20.如图,点A ,B ,C 在直线l 上,PB ⊥l ,PA=6cm ,PB=5cm ,PC=7cm ,则点P 到直线l 的距离是_____cm.三、解答题21.“安全教育平台”是中国教育学会为方便学长和学生参与安全知识活动、接受安全提醒的一种应用软件.某校为了了解家长和学生参与“防溺水教育”的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A .仅学生自己参与;B .家长和学生一起参与;C .仅家长自己参与;D .家长和学生都未参与.请根据图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了________名学生;(2)补全条形统计图,并在扇形统计图中计算C 类所对应扇形的圆心角的度数; (3)根据抽样调查结果,估计该校2000名学生中“家长和学生都未参与”的人数.22.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?23.如图,已知直线l 1∥l 2,直线l 3和直线l 1、l 2交于点C 和D ,点P 是直线CD 上的一个(1)如果点P 运动到C 、D 之间时,试探究∠PAC ,∠APB ,∠PBD 之间的关系,并说明理由。

2020-2021七年级数学下期末一模试卷及答案(4)

2020-2021七年级数学下期末一模试卷及答案(4)

2020-2021七年级数学下期末一模试卷及答案(4)一、选择题1.下面不等式一定成立的是( )A .2a a <B .a a -<C .若a b >,c d =,则ac bd >D .若1a b >>,则22a b > 2.计算2535-+-的值是( )A .-1B .1C .525-D .255-3.在平面直角坐标系中,若点A(a ,-b)在第一象限内,则点B(a ,b)所在的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.已知方程组276359632713x y x y +=⎧⎨+=-⎩的解满足1x y m -=-,则m 的值为( ) A .-1 B .-2 C .1 D .26.2-的相反数是( )A .2-B .2C .12D .12- 7.如图,能判定EB ∥AC 的条件是( )A .∠C =∠ABEB .∠A =∠EBDC .∠C =∠ABCD .∠A =∠ABE8.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()A .()8,3--B .()4,2C .()0,1D .()1,89.如图,下列能判断AB ∥CD 的条件有 ( )①∠B +∠BCD =180°②∠1 = ∠2 ③∠3 =∠4 ④∠B = ∠5 A .1 B .2 C .3 D .410.如图,已知∠1+∠2=180°,∠3=55°,那么∠4的度数是( )A .35°B .45°C .55°D .125°11.下列说法正确的是( )A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线.12.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 二、填空题13.若方程33x x m +=-的解是正数,则m 的取值范围是______.14.不等式71x ->的正整数解为:______________.15.若点P (2−a ,2a+5)到两坐标轴的距离相等,则a 的值为____.16.已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N (下面是推理过程,请你填空).解:∵∠BAE+∠AED=180°(已知)∴ AB ∥ ( )∴∠BAE= ( 两直线平行,内错角相等 )又∵∠1=∠2∴∠BAE ﹣∠1= ﹣∠2即∠MAE=∴ ∥NE ( )∴∠M=∠N ( )17.如果一个数的平方根为a+1和2a-7, 这个数为 ________18.若3的整数部分是a ,小数部分是b ,则3a b -=______.19.对一个实数x 技如图所示的程序进行操作,规定:程序运行从“输入一个实数x ”到判断结果是否大于190?“为一次操作,如果操作恰好进行三次才停止,那么x 的取值范围是__________.20.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.三、解答题21.5小时的人数有:50010020080120---=补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:120802000800500+⨯=120802000800500+⨯=(人), 即该校每天户外活动时间超过1小时的学生有800人.【点睛】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.22.一个正数x的两个平方根是2a-3与5-a,求x的值.23.某商场计划从厂家购进甲、乙两种不同型号的电视机,已知进价分别为:甲种每台1500元,乙种每台2100元.(1)若商场同时购进这两种不同型号的电视机50台,金额不超过76000元,商场有几种进货方案,并写出具体的进货方案.(2)在(1)的条件下,若商场销售一台甲、乙型号的电视机的销售价分别为1650元、2300元,以上进货方案中,哪种进货方案获利最多?最多为多少元?24.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件)质量(吨/件)A型商品0.80.5B型商品21(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【详解】A. 当0a ≤时,2a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若ab >,当0cd =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;D. 若1a b >>,则必有22a b >,正确;故选D .【点睛】主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.B解析:B【解析】【分析】根据正数的绝对值是它本身和负数的绝对值是它的相反数,化简合并即可得到答案.【详解】解:23+-(23231-+=-+=,故选B .【点睛】本题主要考查了去绝对值的知识点,掌握正数的绝对值是它本身和负数的绝对值是它的相反数是解题的关键. 3.D解析:D【解析】【分析】先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.【详解】∵点A(a,-b)在第一象限内,∴a>0,-b>0,∴b<0,∴点B((a,b)在第四象限,故选D.【点睛】本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.4.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.5.A解析:A【解析】【分析】观察方程结构和目标式,两个方程直接相减得到x-y=-2,,整体代入x-y=m-1,求出m的值即可.【详解】解:276359 632713x yx y+=⎧⎨+=-⎩①②②-①得36x-36y=-72则x-y=-2所以m-1=-2所以m=-1.故选:A.【点睛】考查了解二元一次方程组,解关于x,y二元一次方程组有关的问题,观察方程结构和目标式,巧妙变形,运用整体的思想求解,能简化计算,应熟练掌握.6.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .7.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.8.C解析:C【解析】【分析】根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.【详解】点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,故D(0,1).【点睛】此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.9.C解析:C【解析】【分析】判断平行的条件有:同位角相等、内错角相等、同旁内角互补,依次判断各选项是否符合.【详解】①∠B+∠BCD=180°,则同旁内角互补,可判断AB∥CD;②∠1 = ∠2,内错角相等,可判断AD∥BC,不可判断AB∥CD;③∠3 =∠4,内错角相等,可判断AB∥CD;④∠B = ∠5,同位角相等,可判断AB∥CD故选:C【点睛】本题考查平行的证明,注意②中,∠1和∠2虽然是内错角关系,但对应的不是AB与CD 这两条直线,故是错误的.10.C解析:C【解析】【分析】利用平行线的判定和性质即可解决问题.【详解】如图,∵∠1+∠2=180°,∴a∥b,∴∠4=∠5,∵∠3=∠5,∠3=55°,∴∠4=∠3=55°,故选C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识.解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.12.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.二、填空题13.m>-3【解析】【分析】首先解方程利用m表示出x的值然后根据x是正数即可得到一个关于m的不等式即可求得m的范围【详解】2x=3+m根据题意得:3+m>0解得:m>-3故答案是:m>-3【点睛】本题考解析:m>-3【解析】【分析】首先解方程,利用m表示出x的值,然后根据x是正数即可得到一个关于m的不等式,即可求得m的范围.【详解】+=-x x m332x=3+m,根据题意得:3+m>0,解得:m>-3.故答案是:m>-3.【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.14.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.15.a=-1或a=-7【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|求出a的值即可【详解】解:∵点P到两坐标轴的距离相等∴|2-a|=|2a+5|∴2-a=2a+52-a=-(解析:a=-1或a=-7.【解析】【分析】由点P到两坐标轴的距离相等可得出|2-a|=|2a+5|,求出a的值即可.【详解】解:∵点P到两坐标轴的距离相等,∴|2-a|=|2a+5|,∴2-a=2a+5,2-a=-(2a+5)∴a=-1或a=-7.故答案是:a=-1或a=-7.【点睛】本题考查了点到坐标轴的距离与坐标的关系,解答本题的关键在于得出|2-a|=|2a+5|,注意不要漏解.16.见解析【解析】【分析】由已知易得AB∥CD则∠BAE=∠AEC又∠1=∠2所以∠MAE=∠AEN则AM∥EN故∠M=∠N【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补两直线解析:见解析【解析】【分析】由已知易得AB∥CD,则∠BAE=∠AEC,又∠1=∠2,所以∠MAE=∠AEN,则AM∥EN,故∠M=∠N.【详解】∵∠BAE+∠AED=180°(已知)∴AB∥CD(同旁内角互补,两直线平行)∠BAE=∠AEC(两直线平行,内错角相等)又∵∠1=∠2,∴∠BAE−∠1=∠AEC−∠2,即∠MAE=∠NEA,∴AM∥EN,(内错角相等,两直线平行)∴∠M=∠N(两直线平行,内错角相等)【点睛】考查平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键.17.9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值代入后即可得出这个正数【详解】由题意得:a+1=﹣(2a﹣7)解得:a=2∴这个正数为:(2+1)2=32=9故答案为:9【点睛】本题考查解析:9【解析】【分析】根据一个正数的平方根互为相反数可得出a的值,代入后即可得出这个正数.【详解】由题意得:a+1=﹣(2a﹣7),解得:a=2,∴这个正数为:(2+1)2=32=9.故答案为:9.【点睛】本题考查了平方根及解一元一次方程的知识,解答本题的关键是掌握正数的两个平方根互为相反数.18.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a,小数部分为b,∴a=1,b1,-b1)=1.故答案为1.19.【解析】【分析】表示出第一次第二次第三次的输出结果再由第三次输出结果可得出不等式解出即可【详解】解:第一次的结果为:3x-2没有输出则3x-2≤190解得:x≤64;第二次的结果为:3(3x-2)-解析:822<≤x【解析】【分析】表示出第一次、第二次、第三次的输出结果,再由第三次输出结果可得出不等式,解出即可.【详解】解:第一次的结果为:3x-2,没有输出,则3x-2≤190,解得:x≤64;第二次的结果为:3(3x-2)-2=9x-8,没有输出,则9x-8≤190,解得:x≤22;第三次的结果为:3(9x-8)-2=27x-26,输出,则27x-26>190,解得:x >8;综上可得:8<x≤22.故答案为:8<x≤22.【点睛】本题考查了一元一次方程组的应用,解答本题的关键是读懂题意,根据结果是否可以输出,得出不等式.20.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 三、解答题21.无22.x=49【解析】试题分析:根据一个正数的平方根有两个,它们是互为相反数可得: 2a -3+5-a =0,可求出a =2-,即可求出这个正数的两个平方根是-7和7,根据平方根的意义可求出x .试题解析: 因为一个正数x 的两个平方根是2a -3与5-a ,所以2a -3+5-a =0,解得a =2-,所以2a -3=7-,所以49x =.23.(1)有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润大,最多为7550元.【解析】【分析】(1)设购进甲种型号的电视机x 台,则乙种型号的电视机y 台.数量关系为:两种不同型号的电视机50台,金额不超过76000元;(2)根据利润=数量×(售价-进价),列出式子进行计算,即可得到答案.【详解】解:(1)设购进甲种型号的电视机x 台,则乙种型号的电视机(50-x )台.则 1500x+2100(50-x )≤76000,解得:x ≥4813. 则50≥x≥4813. ∵x 是整数,∴x=49或x=50.故有2种进货方案:方案一:是购进甲种型号的电视机49台,乙种型号的电视机1台;方案二:是甲种型号的电视机50台,乙种型号的电视机0台;(2)方案一的利润为:49×(1650-1500)+(2300-2100)=7550(元)方案二的利润为:50×(1650-1500)=7500(元).∵7550>7500∴方案一的利润大,最多为7550元.【点睛】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,依题意列出不等式进行求解.24.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【解析】【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩,解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】【分析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人); 故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人), 第三次优秀率为:3240×100%=80%; 如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.。

2020-2021七年级数学下期末一模试题含答案(3)

2020-2021七年级数学下期末一模试题含答案(3)

2020-2021七年级数学下期末一模试题含答案(3)一、选择题1.在实数3π,227,0.2112111211112……(每两个2之多一个1),3,38中,无理数的个数有 A .1个B .2个C .3个D .4个2.已知二元一次方程组m 2n 42m n 3-=⎧⎨-=⎩,则m+n 的值是( )A .1B .0C .-2D .-13.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°4.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1 B .2x ﹣y =1C .11y x+= D .xy ﹣1=05.黄金分割数51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请你估算5﹣1的值( ) A .在1.1和1.2之间 B .在1.2和1.3之间 C .在1.3和1.4之间D .在1.4和1.5之间6.如图,在下列给出的条件中,不能判定AB ∥DF 的是( )A .∠A+∠2=180°B .∠1=∠AC .∠1=∠4D .∠A=∠37.若|321|20x y x y --++-=,则x ,y 的值为( )A .14x y =⎧⎨=⎩B .20x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩8.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个 9.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5 B .-5<x <3 C .-3<x <5 D .-5<x <-3 10.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-211.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)12.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②二、填空题13.若264a =,则3a =______. 14.已21x y =⎧⎨=-⎩是关于x 、y 的二次元方程39ax y +=的解,则a 的值为___________15.某小区地下停车场入口门栏杆的平面示意图如图所示, 垂直地面于点 ,平行于地面,若,则________.16.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.17.3的平方根是_________.18.如图,在数轴上点A 表示的实数是_____________.19.如图,直线//a b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55°,则∠2的度数为______.20.比较大小:23________13.三、解答题21.已知,如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E=∠1,求证:AD 平分∠BAC .22.已知方程组137x y ax y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数.(1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <? 23.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.24.解不等式组533(2)1233x x x x ->-⎧⎪⎨-≤-⎪⎩,并把解集表示在数轴上,再找出它的整数解. 25.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据无理数的三种形式,①开方开不尽的数,②无限不循环小数,③含有π的数,结合所给数据进行判断即可.【详解】无理数有3π,0.2112111211112……(每两个2之多一个13,共三个,故选C.【点睛】本题考查了无理数的知识,解题的关键是熟练掌握无理数的三种形式.2.D解析:D【解析】分析:根据二元一次方程组的特点,用第二个方程减去第一个方程即可求解.详解:24 23m nm n-=⎧⎨-=⎩①②②-①得m+n=-1.故选:D.点睛:此题主要考查了二元一次方程组的特殊解法,关键是利用加减法对方程变形,得到m+n这个整体式子的值.3.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.B解析:B【解析】【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得.【详解】解:A.x-y2=1不是二元一次方程;B.2x-y=1是二元一次方程;C.1x+y=1不是二元一次方程;D.xy-1=0不是二元一次方程;故选B.【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.5.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴5,∴, 故选B . 【点睛】是解题关键.6.B解析:B 【解析】 【分析】利用平行线的判定定理,逐一判断,容易得出结论. 【详解】A 选项:∵∠2+∠A=180°,∴AB ∥DF (同旁内角互补,两直线平行);B 选项:∵∠1=∠A ,∴AC ∥DE (同位角相等,两直线平行),不能证出AB ∥DF ; C 选项:∵∠1=∠4,∴AB ∥DF (内错角相等,两直线平行).D 选项:∵∠A=∠3,∴AB ∥DF (同位角相等,两直线平行) 故选B . 【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩. 故选:D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.8.B解析:B【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解. 【详解】不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ; 由②得x >2;∵m 的取值范围是4<m <5,∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个.故选B . 【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.9.A解析:A 【解析】 【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数. 【详解】解:∵点P (2x-6,x-5)在第四象限,∴260{50x x ->-<, 解得:3<x <5. 故选:A . 【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.10.A解析:A 【解析】 【分析】根据题意可得不等式恰好有两个负整数解,即-1和-2,再结合不等式计算即可. 【详解】根据x 的不等式x -b >0恰有两个负整数解,可得x 的负整数解为-1和-20x b ->Q x b ∴>综合上述可得32b -≤<-【点睛】本题主要考查不等式的非整数解,关键在于非整数解的确定.11.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.12.B解析:B【解析】【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B<90°,原题正确顺序为:③④①②,故选B.【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2【解析】【分析】根据平方根、立方根的定义解答.【详解】解:∵264a=,∴a=±8.∴3a=±2故答案为±2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.6【解析】【分析】把x与y的值代入方程组求出a的值代入原式计算即可求出值【详解】解:把代入得解得:故答案为:6【点睛】此题考查了解二元一次方程掌握方程的解是解答本题的关键解析:6【解析】【分析】把x与y的值代入方程组求出a的值,代入原式计算即可求出值.【详解】解:把21xy=⎧⎨=-⎩,代入得239a-=,解得:6a=故答案为:6【点睛】此题考查了解二元一次方程,掌握方程的解是解答本题的关键.15.150°【解析】【分析】先过点B作BF∥CD由CD∥AE可得CD∥BF∥AE继而证得∠1+∠BCD=180°∠2+∠BAE=180°又由BA垂直于地面AE于A∠BCD=120°求得答案【详解】如图过解析:【解析】【分析】先过点B作BF∥CD,由CD∥AE,可得CD∥BF∥AE,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA垂直于地面AE于A,∠BCD=120°,求得答案.【详解】如图,过点B作BF∥CD,∵CD∥AE,∴CD∥BF∥AE,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o.【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.16.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC 方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2即可解析:2【解析】【分析】根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.【详解】解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;故答案为2.17.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:3【解析】±2=3,试题解析:∵(3±.∴3的平方根是3±.故答案为:318.【解析】【分析】如图在直角三角形中的斜边长为因为斜边长即为半径长且OA为半径所以OA=即A表示的实数是【详解】由题意得OA=∵点A在原点的左边∴点A表示的实数是-故答案为-【点睛】本题考查了勾股定理解析:5-【解析】【分析】如图在直角三角形中的斜边长为22+=,因为斜边长即为半径长,且OA为半径,125所以OA=5,即A表示的实数是5.【详解】由题意得,OA=22+=,125∵点A在原点的左边,∴点A表示的实数是-5.故答案为-5.【点睛】本题考查了勾股定理,实数与数轴的关系,根据勾股定理求出线段OA的长是解答本题的关键.19.【解析】【分析】先根据∠1=55°AB⊥BC求出∠3的度数再由平行线的性质即可得出结论【详解】解:∵AB⊥BC∠1=55°∴∠3=90°-55°=35°∵a∥b∴∠2=∠3=35°故答案为:35°【解析:【解析】【分析】先根据∠1=55°,AB⊥BC求出∠3的度数,再由平行线的性质即可得出结论【详解】解:∵AB⊥BC,∠1=55°,∴∠3=90°-55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等。

【3套打包】深圳华侨城中学最新七年级下册数学期末考试试题(含答案)

【3套打包】深圳华侨城中学最新七年级下册数学期末考试试题(含答案)

最新七年级(下)数学期末考试试题【答案】一、选择题(共10小题,每小题3分,满分30分)1.下列实数中,属于无理数的是( )A 、227B 、3.14CD 、0 答案:C考点:无理数的概念。

解析是无限不循环的小数,所以,是无理数。

2.下面调查中,适宜采用全面调查方式的是( )A 、调查某批次汽车的抗撞击能力B 、调查市场上某种食品的色素含量是否符合国家标准 C 、了解某班学生的视力情况 D 、调查春节联欢晚会的收视率答案:C考点:统计。

解析:A 、B 、D 的样本容易大,不适宜采用全面调查方式,只有C ,某班学生的数量是有限的,全面调查可行。

3.如图,直线a ∥b ,直角三角形的直角顶点在直线b 上,已知∠1=48°,则∠2的度数是( )A 、42°B 、52°C 、48°D 、58°答案:A考点:两直线平行的性质,平角的概念。

解析:如下图,依题意,有:∠1+90°+∠3=180°,因为∠1=48°,所以,∠3=42°,因为a ∥b ,所以,∠2=∠3=42°,选A 。

4.若m >n ,则下列不等式变形错误的是( )A 、m ﹣5>n ﹣5B 、6m >6nC 、﹣3m >﹣3nD 、21m x +>21n x + 答案:C考点:不等式的性质。

解析:A 、不等式的两边同时减去一个数,不等号方向不改变,故正确;B 、不等式的两边同时乘以一个正数6,不等号方向不改变,故正确;C 、不等式的两边同时乘以一个负数,不等号方向要改变,故错误;D 、不等式的两边同时除以一个正数(2x +1),不等号方向不改变,故正确;选C 。

5.方程组3759y x x y =+⎧⎨+=⎩的解是( ) A 、1272x y ⎧=⎪⎪⎨⎪=⎪⎩ B 、1252x y ⎧=-⎪⎪⎨⎪=⎪⎩ C 、41x y =-⎧⎨=-⎩ D 、21x y =⎧⎨=-⎩ 答案:B考点:二元一次方程组。

2020-2021初一数学下期末一模试卷带答案

2020-2021初一数学下期末一模试卷带答案

2020-2021初一数学下期末一模试卷带答案一、选择题1.116的平方根是( )A.±12B.±14C.14D.122.如图,直线a∥b,直线c与直线a、b分别交于点A、点B,AC⊥AB于点A,交直线b于点C.如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°3.已知方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,则k的值是()A.k=-5 B.k=5 C.k=-10 D.k=104.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A.﹣3B.﹣5C.1或﹣3D.1或﹣55.如图,在平面直角坐标系xOy中,点P(1,0).点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(﹣1,1),第3次向上跳动1个单位至点P3,第4次向右跳动3个单位至点P4,第5次又向上跳动1个单位至点P5,第6次向左跳动4个单位至点P6,….照此规律,点P第100次跳动至点P100的坐标是( )A.(﹣26,50)B.(﹣25,50)C.(26,50)D.(25,50)6.51-是一个很奇妙的数,大量应用于艺术、建筑和统计决策等方面,请51的值()A.在1.1和1.2之间B.在1.2和1.3之间C.在1.3和1.4之间D.在1.4和1.5之间7.已知关于x的方程2x+a-9=0的解是x=2,则a的值为A.2 B.3 C.4 D.58.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A+∠2=180°B.∠1=∠A C.∠1=∠4D.∠A=∠39.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 10.不等式4-2x>0的解集在数轴上表示为()A.B.C.D.11.如图所示,下列说法不正确的是()A.∠1和∠2是同旁内角B.∠1和∠3是对顶角C.∠3和∠4是同位角D.∠1和∠4是内错角12.如图,直线l1∥l2,被直线l3、l4所截,并且l3⊥l4,∠1=44°,则∠2等于()A.56°B.36°C.44°D.46°二、填空题13.如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C (3,2),则平移后另一端点的坐标为______________.14.不等式71x ->的正整数解为:______________.15.不等式组11{2320x x ≥--<的解集为________.16.3a ,小数部分是b 3a b -=______.17.化简2-1)0+(12)-29327-________________________. 18.3的平方根是_________. 19.若关于x 的不等式组0532x m x +<⎧⎨-⎩…无解,则m 的取值范围是_____. 20.5______.三、解答题21.解方程组:(1)用代入法解34225x y x y +=⎧⎨-=⎩(2)用加减法解52253415x y x y +=⎧⎨+=⎩22.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++L L23.为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.24.计算:2009111()3tan3013o--+---.25.解不等式组:5(1)21111(3)32x xx x+>-⎧⎪⎨-≥-⎪⎩,并把它的解集在数轴上表示出来.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据平方根的性质:一个正数的平方根有两个,它们互为相反数计算即可.【详解】11614,14的平方根是12±,11612±,故选A.【点睛】本题考查平方根的性质,一个正数的平方根有两个,它们互为相反数,0的平方根还是0,熟练掌握相关知识是解题关键.2.B解析:B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a∥b,∴∠2+∠BAD=180°.∵AC⊥AB于点A,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B.点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.3.A解析:A【解析】【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.4.A解析:A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.5.C解析:C【解析】【分析】解决本题的关键是分析出题目的规律,以奇数开头的相邻两个坐标的纵坐标是相同的,所以第100次跳动后,纵坐标为100250÷=,其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到100P 的横坐标.【详解】解:经过观察可得:1P 和2P 的纵坐标均为1,3P 和4P 的纵坐标均为2,5P 和6P 的纵坐标均为3,因此可以推知99P 和100P 的纵坐标均为100250÷=;其中4的倍数的跳动都在y 轴的右侧,那么第100次跳动得到的横坐标也在y 轴的右侧.1P 横坐标为1,4P 横坐标为2,8P 横坐标为3,以此类推可得到:n P 的横坐标为41n ÷+(n 是4的倍数). 故点100P 的横坐标为:1004126÷+=,纵坐标为:100250÷=,点P 第100次跳动至点100P 的坐标为()26,50.故选:C .【点睛】本题考查规律型:点的坐标,解题的关键是分析出题目的规律,找出题目中点的坐标的规律,属于中考常考题型.6.B解析:B【解析】【分析】根据4.84<5<5.29,可得答案.【详解】∵4.84<5<5.29,∴,∴,故选B.【点睛】是解题关键.7.D解析:D【解析】∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,解得a=5.故选D.8.B解析:B【解析】【分析】利用平行线的判定定理,逐一判断,容易得出结论.【详解】A选项:∵∠2+∠A=180°,∴AB∥DF(同旁内角互补,两直线平行);B选项:∵∠1=∠A,∴AC∥DE(同位角相等,两直线平行),不能证出AB∥DF;C选项:∵∠1=∠4,∴AB∥DF(内错角相等,两直线平行).D选项:∵∠A=∠3,∴AB∥DF(同位角相等,两直线平行)故选B.【点睛】考查了平行线的判定;正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.9.D解析:D【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.【点睛】此题考查平行线的性质,正确识别“三线八角”中的同位角、内错角、同旁内角是解题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.10.D解析:D【解析】【分析】根据解一元一次不等式基本步骤:移项、系数化为1可得.【详解】移项,得:-2x>-4,系数化为1,得:x<2,故选D.【点睛】考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.11.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 12.D解析:D【解析】解:∵直线l1∥l2,∴∠3=∠1=44°.∵l3⊥l4,∠2=90°-∠3=90°-44°=46°.故选D.二、填空题13.(13)或(51)【解析】【分析】平移中点的变化规律是:横坐标右移加左移减;纵坐标上移加下移减【详解】解:①如图1当A平移到点C时∵C (32)A的坐标为(20)点B的坐标为(01)∴点A的横坐标增大解析:(1,3)或(5,1)【解析】【分析】平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】解:①如图1,当A平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点A的横坐标增大了1,纵坐标增大了2,平移后的B坐标为(1,3),②如图2,当B平移到点C时,∵C(3,2),A的坐标为(2,0),点B的坐标为(0,1),∴点B的横坐标增大了3,纵坐标增大2,∴平移后的A坐标为(5,1),故答案为:(1,3)或(5,1)【点睛】本题考查坐标系中点、线段的平移规律,关键要理解在平面直角坐标系中,图形的平移与图形上某点的平移相同,从而通过某点的变化情况来解决问题.14.12345【解析】【分析】【详解】解:由7-x>1-x>-6x<6∴x的正整数解为123456故答案为12345解析:1,2,3,4,5.【解析】【分析】【详解】解:由7-x>1-x>-6,x<6,∴x 的正整数解为1,2,3,4,5,6故答案为1,2,3,4,5.15.【解析】∵解不等式①得:x ⩾−2解不等式②得:x<∴不等式组的解集为−2⩽x<故答案为−2⩽x< 解析:223x -≤<【解析】 112320x x ⎧≥-⎪⎨⎪-<⎩①②∵解不等式①得:x ⩾−2,解不等式②得:x<23, ∴不等式组的解集为−2⩽x<23, 故答案为−2⩽x<23. 16.【解析】【详解】若的整数部分为a 小数部分为b ∴a=1b=∴a-b==1故答案为1解析:【解析】【详解】a ,小数部分为b ,∴a =1,b1,-b1)=1.故答案为1.17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键解析:-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.详解:原式=1+4-3-3=-1.故答案为:-1.点睛:此题主要考查了实数运算,正确化简各数是解题关键.18.【解析】试题解析:∵()2=3∴3的平方根是故答案为:解析:【解析】试题解析:∵(2=3,∴3的平方根是故答案为:19.m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集根据不等式组无解即可确定出m的范围【详解】解不等式x+m<0得:x<﹣m解不等式5﹣3x≤2得:x≥1∵不等式组无解∴﹣m≤1则m≥﹣1故答解析:m≥﹣1【解析】【分析】分别表示出不等式组中两不等式的解集,根据不等式组无解,即可确定出m的范围.【详解】解不等式x+m<0,得:x<﹣m,解不等式5﹣3x≤2,得:x≥1,∵不等式组无解,∴﹣m≤1,则m≥﹣1,故答案为:m≥﹣1.【点睛】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.20.【解析】【分析】根据负数的绝对值是它的相反数可得答案【详解】解:-的绝对值是故答案为【点睛】本题考查了实数的性质负数的绝对值是它的相反数非负数的绝对值是它本身【解析】【分析】根据负数的绝对值是它的相反数,可得答案.【详解】解:【点睛】本题考查了实数的性质,负数的绝对值是它的相反数,非负数的绝对值是它本身.三、解答题21.(1)21x y =⎧⎨=-⎩;(2)50x y =⎧⎨=⎩【解析】【分析】(1)根据代入法解方程组,即可解答;(2)根据加减法解方程组,即可解答.【详解】解:(1)34225x y x y +=⎧⎨-=⎩①② 由②得25y x =- ③把③代入①得34(25)2x x +-=解这个方程得2x =把2x =代入③得1y =-所以这个方程组的解是21x y =⎧⎨=-⎩(2)5225? 3415? x y x y +=⎧⎨+=⎩①② ①×②得10450x y += ③③—②得735x =,5x =把5x =代入①得0y =所以这个方程组的解是50x y =⎧⎨=⎩【点睛】此题考查解二元一次方程组,解题的关键是明确代入法和加减法解方程组.22.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【解析】【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++L L 中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++L L1111144771010132983011+++++⨯⨯⨯⨯⨯=L 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭L 111111111++++3447710111290133018=-⎛⎫⨯-+--- ⎪⎝⎭L 1330111⎛=⨯-⎫ ⎪⎝⎭ 30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.23.(1)40;(2)答案见解析;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【解析】(1)由两个统计图可以发现第一次22名优秀的同学占55%,故该班总人数为2255%=40÷;(2)第四次优秀人数为:4085%=34⨯,第三次优秀率为3240×100%=80%,据此可以补全统计图;(3)根据图像可以写出优秀人数逐渐增多,增大的幅度逐渐减小等信息.【详解】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:3240×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点睛】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.24.33-【解析】【分析】直接利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质分别化简得出答案.【详解】原式313313⎛⎫=---⨯-⎪⎪⎝⎭)431=--,33=--【点睛】此题主要考查了实数运算,正确化简各数是解题关键.25.﹣2<x ≤3,表示在数轴上见解析.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.【详解】5(1)21111(3)32x x x x ①②+>-⎧⎪⎨-≥-⎪⎩, 解①得:x >﹣2,解②得:x ≤3,故不等式组的解集是:﹣2<x ≤3,表示在数轴上如下:【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

2020-2021七年级数学下期末一模试卷带答案(2)

2020-2021七年级数学下期末一模试卷带答案(2)

2020-2021七年级数学下期末一模试卷带答案(2)一、选择题1.下列各式中计算正确的是( ) A .93=±B .2(3)3-=-C .33(3)3-=±D .3273=2.如图,已知∠1=∠2,∠3=30°,则∠B 的度数是( )A .20B .30C .40D .603.如图,将一张长方形纸条折叠,如果∠1=130°,则,∠2=( )A .100°B .130°C .150°D .80°4.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒5.如图所示的表格是某次篮球联赛部分球队的积分表,则下列说法不正确的是( ) 队名 比赛场数 胜场 负场 积分 前进 14 10 4 24 光明 14 9 5 23 远大 14 7 a 21 卫星 14 4 10 b 钢铁 14 0 14 14 ……………A .负一场积1分,胜一场积2分B .卫星队总积分b =18C .远大队负场数a =7D .某队的胜场总积分可以等于它的负场总积分6.在直角坐标系中,若点P(2x -6,x -5)在第四象限,则x 的取值范围是( ) A .3<x <5B .-5<x <3C .-3<x <5D .-5<x <-37.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角8.下列说法正确的是( ) A .两点之间,直线最短;B .过一点有一条直线平行于已知直线;C .和已知直线垂直的直线有且只有一条;D .在平面内过一点有且只有一条直线垂直于已知直线. 9.下列图中∠1和∠2是同位角的是( )A .(1)、(2)、(3)B .(2)、(3)、(4)C .(3)、(4)、(5)D .(1)、(2)、(5)10.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 11.已知4+3,则以下对m 的估算正确的( ) A .2<m <3B .3<m <4C .4<m <5D .5<m <612.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点()1,1,第2次接着运动到点()2,0,第3次接着运动到点()3,2,···,按这样的运动规律,经过第2020次运动后,动点P 的坐标是( )A .()2020,1B .()2020,0C .()2020,2D .()2019,0二、填空题13.9的算术平方根是________.14.如图,在平面直角坐标系中,已如点A (1,1),B (-1,1),C (-1,-2),D (1,-2),把一根长为2019个单位长度没有弹性的细线(线的相细忽略不计)的一端固定在A 处,并按A B C D A →→→→的规律紧绕在四边形ABCD 的边上,则细线的另一端所在位置的点的坐标是__________.15.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________.16.如图所示第1个图案是由黑白两种颜色的正六边形地面砖组成,第2个,第3个图案可以看作是第1个图案经过平移而得,那么(1)第4个图案中有白色六边形地面砖________块,第n 个图案中有白色地面砖________ 块.17.1a -5b -=0,则(a ﹣b )2的平方根是_____. 18.关于x 的不等式组352223x x x a-≤-⎧⎨+>⎩有且仅有4个整数解,则a 的整数值是______________.19.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.如表记录了4个参赛者的得分情况.在此次竞赛中,有一位参赛者答对13道题,答错7道题,则他的得分是_____. 参赛者 答对题数 答错题数 得分 A 19 1 112 B 18 2 104 C 17 3 96 D10104020.比较大小:23________13.三、解答题21.国家规定,中小学生每天在校体育活动时间不低于1h .为此,某县就“你每天在校体育活动时间是多少”的问题,随机调查了辖区内300名初中学生.根据调查结果绘制成统计图如图所示,其中A 组为0.5t h <,B 组为0.51h t h ≤<,C 组为1 1.5h t h ≤<,D 组为1.5t h ≥.请根据上述信息解答下列问题:(1)本次调查数据的中位数落在______组内,众数落在______组内;(2)若该辖区约4000名初中生,请你估计其中达到国家规定体育活动时间的人数; (3)若A 组取0.25t h =,B 组取0.75t h =,C 组取 1.25t h =,D 组取2t h =,试计算这300名学生平均每天在校体育活动的时间. 22.如图,已知∠A=∠AGE ,∠D=∠DGC . (1)试说明AB ∥CD ;(2)若∠1+∠2=180°,且∠BEC=2∠B+60°,求∠C 的度数.23.问题情境在综合与实践课上,老师让同学们以“两条平行线AB,CD和一块含60°角的直角三角尺EFG(∠EFG=90°,∠EGF=60°)”为主题开展数学活动.操作发现(1)如图(1),小明把三角尺的60°角的顶点G放在CD上,若∠2=2∠1,求∠1的度数;(2)如图(2),小颖把三角尺的两个锐角的顶点E、G分别放在AB和CD上,请你探索并说明∠AEF与∠FGC之间的数量关系;结论应用(3)如图(3),小亮把三角尺的直角顶点F放在CD上,30°角的顶点E落在AB上.若∠AEG =α,则∠CFG等于______(用含α的式子表示).24.“大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数.25.学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,12l l //,点P 在1l 、2l 内部,探究A ∠,APB ∠,B 的关系,小明过点P 作1l 的平行线PE ,可推出APB ∠,A ∠,B 之间的数量关系,请你补全下面的推理过程,并在括号内填上适当的理由. 解:过点P 作1//PE l ,12//l l ∴ 1////PE l ∴∴ A =∠, B =∠( )APB APE BPE ∴∠=∠+∠= +(2)如图2,若//AC BD ,点P 在AC 、BD 外部,探究A ∠,APB ∠,B 之间的数量关系,小明过点P 作//PE AC ,请仿照(1)问写出推理过程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】直接利用算术平方根、平方根以及立方根的定义分别化简求出答案. 【详解】A 93=,此选项错误错误,不符合题意;B 2(3)3-=,此选项错误错误,不符合题意;C 33(3)3-=-,此选项错误错误,不符合题意;D 3273=,此选项正确,符合题意; 故选:D . 【点睛】本题主要考查了算术平方根、平方根、立方根的概念,正确理解和灵活运用相关知识是解题关键.2.B解析:B 【解析】 【分析】根据内错角相等,两直线平行,得AB ∥CE ,再根据性质得∠B=∠3. 【详解】 因为∠1=∠2, 所以AB ∥CE 所以∠B=∠3=30故选B 【点睛】熟练运用平行线的判定和性质.3.A解析:A 【解析】1=1303=502=23=100∠︒∴∠︒∴∠∠︒ .故选A.4.B解析:B 【解析】 【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案. 【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒ ∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补), ∴318018074106BAC ∠=︒-∠=︒-︒=︒, 故选B . 【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.5.D解析:D【解析】【分析】A、设胜一场积x分,负一场积y分,根据前进和光明队的得分情况,即可得出关于x,y 的二元一次方程组,解之即可得出结论;B、根据总积分=2×得胜的场次数+1×负的场次数,即可求出b值;C、由负的场次数=总场次数-得胜的场次数,即可求出a值;D、设该队胜了z场,则负了(14-z)场,根据胜场总积分等于负场总积分,即可得出关于z的一元一次方程,解之即可得出z值,由该值不为整数即可得出结论.【详解】A、设胜一场积x分,负一场积y分,依题意,得:10424 9523x yx y+⎧⎨+⎩==,解得:21xy⎧⎨⎩==,∴选项A正确;B、b=2×4+1×10=18,选项B正确;C、a=14-7=7,选项C正确;D、设该队胜了z场,则负了(14-z)场,依题意,得:2z=14-z,解得:z=143,∵z=143不为整数,∴不存在该种情况,选项D错误.故选:D.【点睛】本题考查了一元一次方程的应用以及二元一次方程组的应用,找准等量关系,正确列出一元一次方程(或二元一次方程组)是解题的关键.6.A解析:A【解析】【分析】点在第四象限的条件是:横坐标是正数,纵坐标是负数.【详解】解:∵点P(2x-6,x-5)在第四象限,∴260 {50xx->-<,解得:3<x<5.故选:A.【点睛】主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.7.A解析:A【解析】【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选:A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 8.D解析:D【解析】解:A.应为两点之间线段最短,故本选项错误;B.应为过直线外一点有且只有一条一条直线平行于已知直线,故本选项错误;C.应为在同一平面内,和已知直线垂直的直线有且只有一条,故本选项错误;D.在平面内过一点有且只有一条直线垂直于已知直线正确,故本选项正确.故选D.9.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.10.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.11.B解析:B【解析】【分析】3【详解】∵4+33132,∴3<m<4,故选B.【点睛】3的取值范围是解题关键.12.B解析:B【解析】【分析】观察可得点P 的变化规律,“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,由此即可得出结论.【详解】观察, ()()()()()()0123450,01,12,0,3,2,4,0,5,1....P P P P P P ,,,, 发现规律:()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数) .∵20204505=⨯∴2020P 点的坐标为()2020,0.故选: B.【点睛】本题考查了规律型中的点的坐标,解题的关键是找出规律“()()()()44 1 4243 4, 041, 1 42, 0 43, 2n n n n P n P n P n P n ++++++,,, (n 为自然数)”,本题属于中档题,难度不大,解决该题型题目时,根据点P 的变化罗列出部分点的坐标,再根据坐标的变化找出规律是关键.二、填空题13.【解析】【分析】根据算术平方根的性质求出=3再求出3的算术平方根即可【详解】解:∵=33的算术平方根是∴的算术平方根是故答案为:【点睛】本题考查算术平方根的概念和求法正数的算术平方根是正数0的算术平【解析】【分析】,再求出3的算术平方根即可.【详解】,3,.【点睛】本题考查算术平方根的概念和求法,正数的算术平方根是正数,0的算术平方根是0,负数没有平方根.14.(10)【解析】【分析】根据点的坐标求出四边形ABCD 的周长然后求出另一端是绕第几圈后的第几个单位长度从而确定答案【详解】∵A(11)B (-11)C (-1-2)D (1-2)∴AB=1-(-1)=2B解析:(1,0)【解析】【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2019÷10=201…9,∴细线另一端在绕四边形第202圈的第9个单位长度的位置,即在DA上从点D 向上2个单位长度所在的点的坐标即为所求,也就是点(1,0),故答案为:(1,0).【点睛】本题考查了规律型——点的坐标,根据点的坐标求出四边形ABCD一周的长度,从而确定2019个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.15.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12xy=⎧⎨=⎩代入方程,得a-2=3解得a=5,故答案为5.16.18;4n+2【解析】【分析】根据所给的图案发现:第一个图案中有6块白色地砖后边依次多4块由此规律解决问题【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=1解析:18;4n+2【解析】【分析】根据所给的图案,发现:第一个图案中,有6块白色地砖,后边依次多4块,由此规律解决问题.【详解】解:第1个图案中有白色六边形地面砖有6块;第2个图案中有白色六边形地面砖有6+4=10(块);第3个图案中有白色六边形地面砖有6+2×4=14(块);第4个图案中有白色六边形地面砖有6+3×4=18(块);第n个图案中有白色地面砖6+4(n-1)=4n+2(块).故答案为18,4n+2.【点睛】此题考查图形的变化规律,结合图案发现白色地砖的规律是解题的关键.17.±4【解析】【分析】根据非负数的性质列出方程求出ab的值代入所求代数式计算即可【详解】根据题意得a-1=0且b-5=0解得:a=1b=5则(a-b)2=16则平方根是:±4故答案是:±4【点睛】本题解析:±4.【解析】【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】根据题意得a-1=0,且b-5=0,解得:a=1,b=5,则(a-b)2=16,则平方根是:±4.故答案是:±4.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.12【解析】【分析】求出每个不等式的解集根据已知得出不等式组的解集根据不等式组的整数解即可得出关于a的不等式组求出即可【详解】解不等式3x-5≤2x-2得:x≤3解不能等式2x+3>a得:x>∵不等解析:1,2【解析】【分析】求出每个不等式的解集,根据已知得出不等式组的解集,根据不等式组的整数解即可得出关于a的不等式组,求出即可.【详解】解不等式3x-5≤2x-2,得:x≤3,解不能等式2x+3>a,得:x>32a-,∵不等式组有且仅有4个整数解,∴-1≤32a-<0,解得:1≤a<3,∴整数a的值为1和2,故答案为:1,2.【点睛】本题考查了一元一次不等式组的整数解,解答本题的关键应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【解析】【分析】设答对1道题得x分答错1道题得y分根据图表列出关于x 和y 的二元一次方程组解之即可【详解】解:设答对1道题得x 分答错1道题得y 分根据题意得:解得:答对13道题打错7道题得分为:13×6 解析:【解析】【分析】设答对1道题得x 分,答错1道题得y 分,根据图表,列出关于x 和y 的二元一次方程组,解之即可.【详解】解:设答对1道题得x 分,答错1道题得y 分,根据题意得:19112182104x y x y +=⎧⎨+=⎩ , 解得:62x y =⎧⎨=-⎩ , 答对13道题,打错7道题,得分为:13×6+(﹣2)×7=78﹣14=64(分),故答案为:64.【点睛】本题考查了二元一次方程组的应用,正确找出等量关系,列出二元一次方程组是解题的关键.20.<【解析】试题解析:∵∴∴解析:<【解析】试题解析:∵∴三、解答题21.(1)C ,C ;(2)2400;(3)76h. 【解析】【分析】(1)根据中位数的概念即中位数应是第150、151人时间的平均数和众数的定义即可得出答案;(2)首先计算样本中达国家规定体育活动时间的频率,再进一步估计总体达国家规定体育活动时间的人数;(3)根据t 的取值和每组的人数求出总的时间,再除以总人数即可.【详解】解:(1)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故调查数据的中位数落在C组;C组出现的人数最多,则众数再C组;故答案为:C,C;(2)达到国际规定体育活动时间的人数约12060100%60% 300+⨯=,则达国家规定体育活动时间的人约有4000×60%=2400(人);(3)根据题意得:(20×0.25+100×0.75+120×1.25+60×2)÷300=7 (h) 6,【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.(1)证明见解析;(2)∠C=50°.【解析】【分析】(1)欲证明AB∥CD,只需推知∠A=∠D即可;(2)利用平行线的判定定理推知CE∥FB,然后由平行线的性质、等量代换推知∠C=∠BFD=∠B=50°.【详解】(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.【点睛】本题考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.23.(1)∠1=40°;(2)∠AEF+∠GFC=90°;(3)60°﹣α.【解析】【分析】(1)依据AB∥CD,可得∠1=∠EGD,再根据∠2=2∠1,∠FGE=60°,即可得出∠EGD13=(180°﹣60°)=40°,进而得到∠1=40°;(2)根据AB∥CD,可得∠AEG+∠CGE=180°,再根据∠FEG+∠EGF=90°,即可得到∠AEF+∠GFC=90°;(3)根据AB∥CD,可得∠AEF+∠CFE=180°,再根据∠GFE=90°,∠GEF=30°,∠AEG=α,即可得到∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.【详解】(1)如图1.∵AB∥CD,∴∠1=∠EGD.又∵∠2=2∠1,∴∠2=2∠EGD.又∵∠FGE=60°,∴∠EGD13=(180°﹣60°)=40°,∴∠1=40°;(2)如图2.∵AB∥CD,∴∠AEG+∠CGE=180°,即∠AEF+∠FEG+∠EGF+∠FGC=180°.又∵∠FEG+∠EGF=90°,∴∠AEF+∠GFC=90°;(3)如图3.∵AB∥CD,∴∠AEF+∠CFE=180°,即∠AEG+∠FEG+∠EFG+∠GFC=180°.又∵∠GFE=90°,∠GEF=30°,∠AEG=α,∴∠GFC=180°﹣90°﹣30°﹣α=60°﹣α.故答案为:60°﹣α.【点睛】本题考查了平行线的性质的运用,解决问题的关键是掌握:两直线平行,同旁内角互补.24.(1)40;(2)72;(3)280.【解析】【分析】(1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;(2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)用800乘以样本中最想去A景点的人数所占的百分比即可.【详解】(1)被调查的学生总人数为8÷20%=40(人);(2)最想去D 景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:扇形统计图中表示“最想去景点D”的扇形圆心角的度数为840×360°=72°; (3)800×1440=280,所以估计“最想去景点B“的学生人数为280人. 25.(1)2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B ;(2)APB B A ∠=∠-∠,推理过程见详解【解析】【分析】(1)过点P 作1//PE l ,根据平行线的性质得,APE A BPE B ∠=∠∠=∠,据此得出APB APE BPE A B ∠=∠+∠=∠+∠;(2)过点P 作//PE AC ,根据平行线的性质得出,EPA A EPB B ∠=∠∠=∠,进而得出APB B A ∠=∠-∠.【详解】解:(1)如图1,过点P 作1//PE l12//l l ∴12////PE l l ∴,APE A BPE B ∴∠=∠∠=∠(两直线平行,内错角相等)APB APE BPE A B ∴∠=∠+∠=∠+∠故答案为:2l ;APE ∠;BPE ∠;两直线平行,内错角相等;A ∠;B ; (2)APB B A ∠=∠-∠,理由如下:如图2,过点P 作//PE AC∵//AC BD∴////PE AC BD∴,EPA A EPB B ∠=∠∠=∠∴APB EPB EPA B A ∠=∠-∠=∠-∠∴APB B A ∠=∠-∠.【点睛】本题考查的知识点是平行线的判定与性质,掌握平行线的判定定理以及平行线的性质内容是解此题的关键.。

2021年深圳市七年级数学下期末模拟试卷附答案

2021年深圳市七年级数学下期末模拟试卷附答案

一、选择题1.定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a﹣b.例如:3☆(﹣4)=3+(﹣4)=﹣1,(-6)☆111(6)6 222=--=-,则方程(3x﹣7)☆(3﹣2x)=2的解为x=()A.1 B.125C.6或125D.62.若a+b>0,且b<0,则a、b、-a、-b的大小关系为( )A.-a<-b<b<a B.-a<b<a<-b C.-a<b<-b<a D.b<-a<-b<a 3.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有()A.4种B.5种C.6种D.7种4.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩5.若x,y均为正整数,且2x+1·4y=128,则x+y的值为()A.3 B.5 C.4或5 D.3或4或5 6.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x斗,买到行酒y斗,根据题意可列方程组为()A.5010302x yx y+=⎧⎨+=⎩B.5010302y xx y+=⎧⎨+=⎩C.5010230x yx y+=⎧⎨+=⎩D.5010230y xx y+=⎧⎨+=⎩7.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路程如图所示,第一次移动到点A1,第二次移动到点A2,第n次移动到点A n,则点A2020的坐标是()A.(1010,0) B.(1010,1) C.(1009,0) D.(1009,1) 8.在平面直角坐标系中,点P(-5,0)在( )A.第二象限B.x轴上C.第四象限D.y轴上9.在实数﹣34,0,9,215中,是无理数的是()A.﹣34B.0 C.9D.21 510.如图a是长方形纸带,26DEF∠=︒,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的CFE∠的度数是()A.102°B.112°C.120°D.128°11.某电视台组织知识竞赛,共设20道选择题,各题分值相同,每题必答.下表记录了5个参赛者的得分情况参赛者答对题数答错题数得分A200100B18288C14664D15570E91134A.胜一场积5分,负一场扣1分B.某参赛选手得了80分C.某参赛选手得了76分D.某参赛选手得分可能为负数12.已知a<b,则下列四个不等式中,不正确的是()A.a+2<b+2 B.22ac bc<C.1122a b<D.-2a-1-2b-1>二、填空题13.对于实数x,我们规定[]x表示不大于x的最大整数,例如[1.2]1,[3]3,[ 2.5]3==-=-,若4510x+⎡⎤=⎢⎥⎣⎦,则x的取值可以是______________(任写一个).14.若不等式组52355x x x a+≤-⎧⎨-+<⎩无解,则a 的取值范围是______.15.已知关于x 、y 的方程组22332x y kx y k -=⎧⎨-=-⎩的解满足24x y -=,则k 的值为_______.16.若方程2x 2a +b -4+4y 3a -2b -3=1是关于x ,y 的二元一次方程,则a =________,b =________.17.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.18.在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按下图中的规律摆放. 点P 从原点O 出发,以每秒1个单位长度的速度沿着等边三角形的边"OA 1→A 1A2→A2A 3→A 3A 4→A 4A 5…."的路线运动,设第n 秒运动到点P n (n 为正整数);则点P 2021的横坐标为_______19.()1116353cos302-⎛⎫+-+--︒ ⎪⎝⎭20.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.三、解答题21.一直关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-. (1)求a 的取值范围; (2)试化简1a a 2-++. 22.解方程组与不等式组.(1)解方程组244523x y x y -=-⎧⎨-=-⎩.(2)解不等式组4(1)710853x x x x +≤+⎧⎪-⎨-<⎪⎩. 23.解下列方程组(1)3325y x x y =-⎧⎨-=⎩;(2)7239219x y x y -=⎧⎨+=-⎩;(3)322127x y x y +=⎧⎨-=⎩;(4)232491a b a b +=⎧⎨-=-⎩.24.在平面直角坐标系中,点P(2﹣m ,3m +6). (1)若点P 与x 轴的距离为9,求m 的值;(2)若点P 在过点A(2,﹣3)且与y 轴平行的直线上,求点P 的坐标. 25.求满足下列条件的x 的值:(1)3(3)27x +=-;(2)2(1)218x -+=.26.定义:一个三位数,如果它的各个数位上的数字互不相等且都不为0,同时满足十位上的数字为百位与个位数字之和,则称这个三位数为“西西数”.A 是一个“西西数”,从A 各数位上的数字中任选两个组成一个两位数,由此我们可以得到6个不同的两位数.我们把这6个数之和与44的商记为()h A ,如:132A =,133112212332(132)344h +++++==.(1)求()187h ,()693h 的值.(2)若A ,B 为两个“西西数”,且()()35h A h B =,求BA的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分3x-7≥3-2x 和3x-7<3-2x 两种情况,依据新定义列出方程求解可得. 【详解】解:当3x ﹣7≥3﹣2x ,即x ≥2时, 由题意得:(3x ﹣7)+(3﹣2x )=2, 解得:x =6;当3x ﹣7<3﹣2x ,即x <2时, 由题意得:(3x ﹣7)﹣(3﹣2x )=2,解得:x =125(不符合前提条件,舍去), ∴x 的值为6. 故选:D . 【点睛】本题主要考查解一元一次不等式及一元一次方程,解题的关键是根据新定义列出关于x 的不等式及解一元一次不等式、一元一次方程的能力.2.C解析:C 【分析】根据不等式a+b >0得a >-b ,-a <b ,再根据b <0得b <-b ,再比较大小关系即可. 【详解】 解:∵a+b >0, ∴a >-b ,-a <b. ∵b <0, ∴b <-b , ∴-a <b <-b <a. 故选C. 【点睛】本题考查了不等式的性质与有理数的知识点,解题的关键是熟练的掌握有理数与不等式的性质.3.A解析:A 【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解. 【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔, 根据题意得:2330x y ,且,x y 为正整数,变形为:3023xy,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x ,即2y =时,12x =是整数,符合题意; 当3029x,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意; 当30215x ,即5y =时,7.5x =不是整数,舍去; 当30218x ,即6y =时,6x =是整数,符合题意;当30221x ,即7y =时, 4.5x =不是整数,舍去; 当30224x ,即8y =时,3x =是整数,符合题意; 当30227x ,即9y =时, 1.5x =不是整数,舍去;故共有4种购买方案,故选:A . 【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.4.C解析:C 【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】依题意,得: 4.512y x yx -=⎧⎪⎨-=⎪⎩, 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数, ∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩ ∴x +y =4或5.6.A解析:A 【分析】设醇酒为x 斗,行酒为y 斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可. 【详解】 解:由题意,得2501030x y x y +=⎧⎨+=⎩,故选A .【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.7.A解析:A 【分析】根据图象可得移动4次图象完成一个循环,从而可得出点A 2020的坐标. 【详解】A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, 2020÷4=505,所以A 2020的坐标为(505×2,0), 则A 2020的坐标是(1010,0). 故选:A . 【点睛】本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.8.B解析:B 【分析】根据点的坐标特点判断即可. 【详解】在平面直角坐标系中,点P (-5,0)在x 轴上, 故选B . 【点睛】此题考查了点的坐标,熟练掌握平面直角坐标系中点的特征是解本题的关键.9.A解析:A 【分析】根据无理数是无限不循环小数,可得答案. 【详解】,0215, 故选:A . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.10.A解析:A 【分析】根据两条直线平行,内错角相等,则∠BFE=∠DEF=26°,根据平角定义,则∠EFC=154°(图a ),进一步求得∠BFC=154°-26°=128°(图b ),进而求得∠CFE=128°-26°=102°(图c ). 【详解】解:∵AD ∥BC ,∠DEF=26°, ∴∠BFE=∠DEF=26°, ∴∠EFC=154°(图a ), ∴∠BFC=154°-26°=128°(图b ), ∴∠CFE=128°-26°=102°(图c ). 故选:A . 【点睛】本题考查了翻折变换,平行线的性质和平角定义,根据折叠能够发现相等的角是解题的关键.11.B解析:B 【分析】由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分列出方程,求出方程的解即可得出负一场扣多差分;设参赛选手胜y 场,则负(20-y )场,根据胜场的得分+负场的得分=选手得分,分别建立方程求出其解即可. 【详解】A .由参赛者A 可得:胜一场得100÷20=5分,设负一场扣x 分,根据参赛者B 的得分:5181288x ⨯-⨯=,解得:1x =,所以负一场扣1分;故本选项正确;B .设参赛选手胜y 场,则负(20-y )场,则()512080y y ⨯-⨯-=,解得503y =,∵y 为整数,∴参数选手不可能得80分;故本选项错误;C .设参赛选手胜y 场,则负(20-y )场,()512076y y ⨯-⨯-=,解得16y =,所以参数选手胜了16场,负了4场;故本选项正确;D .设参赛选手胜y 场,则负(20-y )场,()51200y y ⨯-⨯-<,解得103y <,所以当参赛选手低于4场胜利时候,得分就可能是负数;故本选项正确; 故选:B 【点睛】本题考查了总数÷分数=每份数的运用,列一元一次方程解实际问题的运用,结论猜想试题的运用,解答时关键胜场的得分+负场得分=总得分是关键.12.B解析:B 【分析】根据不等式的性质逐项排除即可. 【详解】 解:∵a<b∴a+2<b+2成立,则A 选项不符合题意; 当c=0时,22ac bc =,则B 选项符合题意;1122a b <成立,则C 选项不符合题意; -2a-1-2b-1>成立,则D 选项不符合题意. 故答案为B . 【点睛】本题考查了不等式的性质,掌握①不等式左右两边同时加(减)一个数(式)不等式符号不变;②给不等式左右两边同时乘(除)一个不为零的数(式),当该数(式)大于零时不等式符号不变,反之改变.二、填空题13.50(答案不唯一)【分析】由于规定表示不大于x 的最大整数则表示不大于的最大整数接下来根据可列出不等式组求解即可【详解】解:表示不大于x 的最大整数表示不大于的最大整数又可列不等式组x 的取值可以是范围内解析:50(答案不唯一) 【分析】由于规定[]x 表示不大于x 的最大整数,则410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,接下来根据4510x +⎡⎤=⎢⎥⎣⎦,可列出不等式组,求解即可. 【详解】 解:[]x 表示不大于x 的最大整数,∴410x +⎡⎤⎢⎥⎣⎦表示不大于410x +的最大整数,又4510x +⎡⎤=⎢⎥⎣⎦, ∴可列不等式组45104610x x +⎧≥⎪⎪⎨+⎪<⎪⎩ ,450460x x +≥⎧⎨+<⎩,∴4656x x ≥⎧⎨<⎩,∴4656≤<x , ∴x 的取值可以是范围内的任何实数.故答案为:50(答案不唯一). 【点睛】本题主要考查了一元一次不等式组的应用,解题的关键是根据[x]表示不大于x 的最大整数列出不等式组.14.【分析】先解一元一次不等式组再根据不等式组无解即可得出a 的取值范围【详解】解:解一元一次不等式组得:∵不等式组无解∴解得:故答案为:【点睛】本题考查了一元一次不等式组的解法一元一次不等式的解法会根据 解析:172a ≤【分析】先解一元一次不等式组,再根据不等式组无解即可得出a 的取值范围. 【详解】解:解一元一次不等式组52355x x x a +≤-⎧⎨-+<⎩,得:725x x a⎧≤-⎪⎨⎪>-⎩,∵不等式组无解, ∴752a -≥-, 解得:172a ≤, 故答案为:172a ≤. 【点睛】本题考查了一元一次不等式组的解法、一元一次不等式的解法,会根据不等式组无解求解参数a 的取值范围是解答的关键.15.6【分析】先利用方程组中的第二个方程减去第一个方程可得再根据方程的解满足可得一个关于k 的一元一次方程解方程即可得【详解】由②①得:由题意得:解得故答案为:6【点睛】本题考查了二元一次方程组的特殊解法解析:6 【分析】先利用方程组中的第二个方程减去第一个方程可得22x y k -=-,再根据方程的解满足24x y -=可得一个关于k 的一元一次方程,解方程即可得.【详解】22332x y k x y k -=⎧⎨-=-⎩①②, 由②-①得:22x y k -=-,由题意得:24k -=, 解得6k =,故答案为:6.【点睛】本题考查了二元一次方程组的特殊解法、解一元一次方程,熟练掌握方程组的解法是解题关键.16.1【分析】根据二元一次方程的定义列出关于ab 的二元一次方程组通过解方程组来求ab 的值【详解】根据题意得解得:故答案是:21【点睛】本题主要考查了二元一次方程定义关键是掌握含有两个未知数并且含有未知数 解析:1【分析】根据二元一次方程的定义列出关于a 、b 的二元一次方程组,通过解方程组来求a ,b 的值.【详解】根据题意,得2413231a b a b +-=⎧⎨--=⎩, 解得:21a b =⎧⎨=⎩. 故答案是:2,1.【点睛】本题主要考查了二元一次方程定义,关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.17.(-32)【分析】设点P 的坐标为(xy )由点到轴的距离为2到轴的距离为3得出再根据点P 所在的象限得出答案【详解】设点P 的坐标为(xy )∵点到轴的距离为2到轴的距离为3∴∴∵点在第二象限∴x=-3y=解析:(-3, 2).【分析】设点P 的坐标为(x ,y ),由点P 到x 轴的距离为2,到y 轴的距离为3,得出3,2x y =±=±,再根据点P 所在的象限得出答案.【详解】设点P 的坐标为(x ,y ),∵点P 到x 轴的距离为2,到y 轴的距离为3, ∴3,2x y ==,∴3,2x y =±=±,∵点P 在第二象限,∴x=-3,y=2,∴点P 的坐标是(-3,2)故答案为:(-3,2).【点睛】此题考查直角坐标系中点的坐标,点到坐标轴的距离,根据点所在的象限确定点的坐标,掌握点到坐标轴的距离与点的横纵坐标的关系是解题的关键.18.【分析】先分别求出A1A2A3A4A5A6A7……的坐标据此发现每个点的横坐标为序号的一半据此解答即可【详解】解:根据题意可知……由此可知每个点的横坐标为序号的一半∴点P2021的横坐标为:故答案为 解析:20212. 【分析】 先分别求出A 1、A 2、A 3、A 4、A 5、A 6、A 7、……的坐标,据此发现每个点的横坐标为序号的一半,据此解答即可.【详解】解:根据题意可知,1122A ⎛ ⎝⎭,,()210A ,,3322A ⎛⎫ ⎪ ⎪⎝⎭,,()420A ,,5522A ⎛⎫- ⎪ ⎪⎝⎭,,()630A ,,7722A ⎛⎫ ⎪ ⎪⎝⎭,……由此可知,每个点的横坐标为序号的一半,∴点P 2021的横坐标为:20212. 故答案为:20212. 【点睛】此题主要考查探索规律,解题的关键是根据题意发现规律. 19.【分析】根据平方根定义负指数幂零指数幂特殊角的三角函数值计算即可;【详解】解:原式【点睛】本题主要考查了实数的运算结合负整数指数幂零指数幂特殊角的三角函数值计算是解题的关键 解析:32【分析】根据平方根定义、负指数幂、零指数幂、特殊角的三角函数值计算即可;【详解】解:原式33421421222=-+-=-+-=. 【点睛】本题主要考查了实数的运算,结合负整数指数幂、零指数幂、特殊角的三角函数值计算是解题的关键. 20.40【解析】根据平行线的性质先求出∠BEF 和∠CEF 的度数再求出它们的差就可以了解:∵AB ∥EF ∴∠BEF=∠ABE=70°;又∵EF ∥CD ∴∠CEF=180°-∠ECD=180°-150°=30°解析:40【解析】根据平行线的性质,先求出∠BEF 和∠CEF 的度数,再求出它们的差就可以了. 解:∵AB ∥EF ,∴∠BEF=∠ABE=70°;又∵EF ∥CD ,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.三、解答题21.(1)a 1>;(2)2a 1+.【分析】(1)根据不等式的基本性质,得到关于a 的不等式,即可求解;(2)根据求绝对值的法则以及a 的范围,即可得到答案.【详解】(1)∵ 关于x 的不等式()1a x 2->两边都除以1a -,得2x 1a<-, ∴ 1a 0-<,∴ a 1>;2()由(1)得a 1>, ∴1a 0-<,a 20+>, ∴1a a 2a 1a 22a 1-++=-++=+.【点睛】本题主要考查不等式的性质以及求绝对值的法则,熟练掌握不等式的性质是解题的关键. 22.(1)125x y ⎧=⎪⎨⎪=⎩;(2)722x -≤< 【分析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集.【详解】(1)244523x y x y -=-⎧⎨-=-⎩①②.①5⨯得:10520x y -=-,③③-②得:63x =, ∴12x =, 将12x =代入①得:14y -=-, ∴5y =,∴方程组的解为125x y ⎧=⎪⎨⎪=⎩;(2)4(1)710853x x x x +≤+⎧⎪⎨--<⎪⎩①②, 由①得:44710x x +≤+,解得:2x ≥-,由②得:3(5)8x x -<-, 解得:72x <, ∴不等式组的解集为722x -≤<. 【点睛】 本题考查了解二元一次方程组与一元一次不等式组,熟知同大取大;同小取小;大小小大中间找;大大小小找不到的原则是解答此题的关键.23.(1)14x y =-⎧⎨=-⎩;(2)15x y =-⎧⎨=-⎩;(3)53x y =⎧⎨=⎩;(4)1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【分析】(1)利用代入法解答;(2)利用加减法解答;(3)利用代入法解答;(4)利用加减法求解.【详解】(1)3325y x x y =-⎧⎨-=⎩①②, 将①代入②,得3x-2(x-3)=5解得x=-1,将x=-1代入①,得y=-1-3=-4,∴方程组的解是14 xy=-⎧⎨=-⎩;(2)723 9219 x yx y-=⎧⎨+=-⎩①②由①+②,得16x=-16,解得x=-1,将x=-1代入①,得-7-2y=3,解得y=-5,∴这个方程组的解是15 xy=-⎧⎨=-⎩;(3)322127x yx y+=⎧⎨-=⎩①②,由②得:y=2x-7③,将③代入①得,3x+2(2x-7)=21,解得x=5,将x=5代入③得,y=3,∴这个方程组的解是53 xy=⎧⎨=⎩;(4)232491a ba b+=⎧⎨-=-⎩①②,由①3⨯得,6a+9b=6③,②+③得,10a=5,解得a=12,将a=12代入①,得1+3b=2,解得b=13,∴这个方程组的解是1213ab⎧=⎪⎪⎨⎪=⎪⎩.【点睛】此题考查解二元一次方程组,掌握解二元一次方程组的解法:代入法或加减法,根据每个方程组的特点选择恰当的解法是解题的关键.24.(1)1或﹣5;(2)(2,6)【分析】(1)由点P 与x 轴的距离为9可得36=9m +,解出m 的值即可;(2)由点P 在过点A(2,-3)且与y 轴平行的直线上可得2-m =2,解出m 的值即可.【详解】(1)点P (2-m ,3m +6),点P 在x 轴的距离为9,∴|3m +6|=9,解得:m =1或-5.答:m 的值为1或-5;(2)点P 在过点A (2,-3)且与y 轴平行的直线上,∴2-m =2,解得:m =0,∴3m +6=6,∴点P 的坐标为(2,6).【点睛】本题主要考查点到坐标轴的距离以及在与坐标轴平行的直线上点的坐标的特点,熟练掌握点到坐标轴的距离的意义以及与坐标轴平行的直线上点的坐标的特点是解题关键. 25.(1)6x =-;(2)3x =-或5【分析】(1)根据立方根,即可解答;(2)根据平方根,即可解答.【详解】解:(1)3(3)27x +=-33x +=-6x =-;(2)2(1)218x -+=2(1)16x -=14x -=±∴3x =-或5.【点睛】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义. 26.(1)8,9;(2)671.154B A 【分析】(1)根据新定义的法则进行运算即可得到答案;(2)先由(1)的运算发现并总结规律,可得()h A 的值等于A 的十位数字,再运用规律结合()()35h A h B =进行合理的分类讨论,分4种情况:()()5,7h A h B ==或()()7,5,h A h B == ()()35,1h A h B ==或()()1,35h A h B ==,再根据新定义可得答案.【详解】解:(1)由定义可得:()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++== (2)探究: 133112212332(132)344h +++++==, ()18+81+17+71+78+87352===84417448h , ()699663369339396=9.4444693h +++++==发现并总结规律:()h A 的值等于A 的十位数字,A ,B 为两个“西西数”,且()()35h A h B =, ()()5,7h A h B ∴==或()()7,5,h A h B ==而()()35,1h A h B ==或()()1,35h A h B ==不合题意舍去, B A的值最大,则B 最大,A 最小, ()()5,7,h A h B ∴==当()5h A =时,154A =或451A =或253A =或352A =,当()7h B =时,671B =或176B =或572B =或275B =或374B =或473.B =A ∴最小为154,B 最大为671, 此时B A 的值最大为 671.154B A 【点睛】本题考查的是新定义运算,同时考查了规律探究,弄懂新定义的运算法则,理解并运用规律,掌握合理的分类讨论是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021深圳华侨城中学七年级数学下期末第一次模拟试卷及答案一、选择题1.同学们喜欢足球吗?足球一般是用黑白两种颜色的皮块缝制而成的,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为( )A .16块,16块B .8块,24块C .20块,12块D .12块,20块2.如图已知直线//AB CD ,134∠=︒,272∠=︒,则3∠的度数为( )A .103︒B .106︒C .74︒D .100︒3.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为( )A .34°B .56°C .66°D .146°4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.已知4<m <5,则关于x 的不等式组0420x m x -<⎧⎨-<⎩的整数解共有( )A .1个B .2个C .3个D .4个6.已知关于x 的不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩恰有3个整数解,则a 的取值范围为( ) A .12a <≤B .12a <<C .12a ≤<D .12a ≤≤7.如图,已知两直线1l 与2l 被第三条直线3l 所截,下列等式一定成立的是( )A .12∠∠=B .23∠∠=C .24∠∠+=180°D .14∠∠+=180°8.不等式组3(1)112123x x x x -->-⎧⎪--⎨≤⎪⎩的解集在数轴上表示正确的是( )A .B .C .D .9.对于两个不相等的实数,a b ,我们规定符号{}max ,a b 表示,a b 中较大的数,如{}max 2,44=,按这个规定,方程{}21max ,x x x x+-=的解为 ( ) A .1-2B .2-2C .1-212+或D .1+2或-110.在平面直角坐标系中,点A 的坐标()0,1,点B 的坐标()3,3,将线段AB 平移,使得A 到达点()4,2C ,点B 到达点D ,则点D 的坐标是( )A .()7,3B .()6,4C .()7,4 D .()8,4 11.在平面直角坐标系中,点P(1,-2)在( )A .第一象限B .第二象限C .第三象限D .第四象限12.关于x ,y 的方程组2,226x y a x y a +=⎧⎨+=-⎩的解满足0x y +=,则a 的值为( )A .8B .6C .4D .2 二、填空题13.若264a =,则3a =______. 14.不等式组有3个整数解,则m 的取值范围是_____.15.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm .某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm ,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm .16.如图,将一块含有30°角的直角三角板的两个顶点叠放在长方形的两条对边上,如果∠1=27°,那么∠2=______°17.三个同学对问题“若方程组的111222a x b y c a x b y c +=⎧⎨+=⎩ 解是34x y =⎧⎨=⎩,求方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是_____. 18.已知12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的值为________. 19.在开展“课外阅读”活动中,某校为了解全校1200名学生课外阅读的情况,随机调查了60名学生一周的课外阅读时间,并绘制成如图所示的条形统计图.根据图中数据,估计该校1200名学生一周的课外阅读时间不少于7小时的人数是_______.20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.三、解答题21.诗词是我国古代文化中的瑰宝,某市教育主管部门为了解本市初中生对诗词的学习情况,举办了一次“中华诗词”背诵大赛,随机抽取了部分同学的成绩(x为整数,总分100分),绘制了如下尚不完整的统计图表.组别成绩分组(单位:分)频数A50≤x<6040B60≤x<70aC70≤x<8090D80≤x<90bE90≤x<100100合计c根据以上信息解答下列问题:(1)统计表中a=,b=,c=;(2)扇形统计图中,m的值为,“E”所对应的圆心角的度数是 (度);(3)若参加本次大赛的同学共有4000人,请你估计成绩在80分及以上的学生大约有多少人?22.某市青少年健康研究中心随机抽取了本市1000名小学生和若干名中学生,对他们的视力状况进行了调查,并把调查结果绘制成如下统计图.(近视程度分为轻度、中度、高度三种)(1)求这1000名小学生患近视的百分比.(2)求本次抽查的中学生人数.(3)该市有中学生8万人,小学生10万人.分别估计该市的中学生与小学生患“中度近视”的人数.23.已知△ABC 是等边三角形,将一块含有30°角的直角三角尺DEF 按如图所示放置,让三角尺在BC 所在的直线上向右平移.如图①,当点E 与点B 重合时,点A 恰好落在三角尺的斜边DF 上.(1)利用图①证明:EF =2BC .(2)在三角尺的平移过程中,在图②中线段AH =BE 是否始终成立(假定AB ,AC 与三角尺的斜边的交点分别为G ,H)?如果成立,请证明;如果不成立,请说明理由.24.规律探究,观察下列等式: 第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭ 第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++L L 25.已知:方程组713x y ax y a+=--⎧⎨-=+⎩的解x 为非正数,y 为负数.(1)求a 的取值范围; (2)化简|a -3|+|a +2|;(3)在a 的取值范围中,当a 为何整数时,不等式2ax +x >2a +1的解为x <1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】试题分析:根据题意可知:本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.解:设黑色皮块和白色皮块的块数依次为x ,y . 则, 解得,即黑色皮块和白色皮块的块数依次为12块、20块. 故选D .2.B解析:B 【解析】 【分析】先算BAC ∠的度数,再根据//AB CD ,由直线平行的性质即可得到答案. 【详解】解:∵134∠=︒,272∠=︒,∴18012180347274BAC ∠=-∠-∠=︒-︒-︒=︒ ∵//AB CD ,∴3180BAC ∠+∠=︒(两直线平行,同旁内角互补), ∴318018074106BAC ∠=︒-∠=︒-︒=︒, 故选B . 【点睛】本题主要考查了直线平行的性质(两直线平行,同旁内角互补),掌握直线平行的性质是解题的关键.3.B解析:B 【解析】分析:先根据平行线的性质得出∠2+∠BAD =180°,再根据垂直的定义求出∠2的度数. 详解:∵直线a ∥b ,∴∠2+∠BAD =180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°. 故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.4.A解析:A 【解析】试题分析:如图,过A 点作AB ∥a ,∴∠1=∠2,∵a ∥b ,∴AB ∥b ,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A .考点:平行线的性质.5.B解析:B 【解析】 【分析】先求解不等式组得到关于m 的不等式解集,再根据m 的取值范围即可判定整数解. 【详解】 不等式组0420x m x -<⎧⎨-<⎩①②由①得x <m ; 由②得x >2;∵m 的取值范围是4<m <5, ∴不等式组0420x m x -<⎧⎨-<⎩的整数解有:3,4两个.故选B . 【点睛】本题考查了一元一次不等式组的整数解,用到的知识点是一元一次不等式组的解法,m 的取值范围是本题的关键.6.A解析:A 【解析】 【分析】先根据一元一次不等式组解出x 的取值范围,再根据不等式组只有三个整数解,求出实数a 的取值范围即可. 【详解】3211230x x x a --⎧≤-⎪⎨⎪-<⎩①②, 解不等式①得:x≥-1, 解不等式②得:x<a ,∵不等式组321123x x x a --⎧≤-⎪⎨⎪-<⎩有解, ∴-1≤x<a ,∵不等式组只有三个整数解, ∴不等式的整数解为:-1、0、1, ∴1<a≤2, 故选:A 【点睛】本题考查一元一次不等式组的整数解,解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.D解析:D 【解析】 【分析】由三线八角以及平行线的性质可知,A ,B ,C 成立的条件题目并没有提供,而D 选项中邻补角的和为180°一定正确. 【详解】1∠与2∠是同为角,2∠与3∠是内错角,2∠与4∠是同旁内角,由平行线的性质可知,选项A ,B ,C 成立的条件为12l l //时,故A 、B 、C 选项不一定成立, ∵1∠与4∠是邻补角, ∴∠1+∠4=180°,故D 正确. 故选D . 【点睛】本题考查三线八角的识别及平行线的性质和邻补角的概念.本题属于基础题,难度不大.8.B解析:B 【解析】 【分析】首先解两个不等式求出不等式组解集,然后将解集在数轴上的表示出来即可. 【详解】解:3(1)112123x x x x -->-⎧⎪⎨--≤⎪⎩①②,解不等式①得:x <2, 解不等式②得:x≥-1, 在数轴上表示解集为:,故选:B. 【点睛】本题考查了解一元一次不等式组及在数轴上表示不等式组解集,解题关键是熟练掌握确定不等式组解集的方法:同大取大、同小取小、大小小大中间找、大大小小无解了.9.D解析:D 【解析】 【分析】分x x <-和x x >-两种情况将所求方程变形,求出解即可. 【详解】当x x <-,即0x <时,所求方程变形为21x x x+-=, 去分母得:2210x x ++=,即210x +=(),解得:121x x ==-,经检验1x =-是分式方程的解;当x x >-,即0x >时,所求方程变形为21x x x+=, 去分母得:2210x x --=,代入公式得:22212x ±== 解得:341212x x ==, 经检验12x = 综上,所求方程的解为12+-1. 故选D. 【点睛】本题考查的知识点是分式方程的解,解题关键是弄清题中的新定义.10.C解析:C 【解析】 【分析】根据A 和C 的坐标可得点A 向右平移4个单位,向上平移1个单位,点B 的平移方法与A 的平移方法相同,再根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得点D 的坐标. 【详解】解:∵点A (0,1)的对应点C 的坐标为(4,2), 即(0+4,1+1),∴点B (3,3)的对应点D 的坐标为(3+4,3+1),即D (7,4); 故选:C. 【点睛】此题主要考查了坐标与图形的变化——平移,关键正确得到点的平移方法.11.D解析:D 【解析】 【分析】根据各象限内点的坐标特征解答即可. 【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D. 【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.12.D解析:D 【解析】 【分析】两式相加得,即可利用a 表示出x y +的值,从而得到一个关于a 的方程,解方程从而求得a 的值. 【详解】两式相加得:3336x y a +=-; 即3()36,x y a +=-得2x y a +=- 即20,2a a -== 故选:D. 【点睛】此题考查二元一次方程组的解,解题关键在于掌握二元一次方程的解析.二、填空题13.±2【解析】【分析】根据平方根立方根的定义解答【详解】解:∵∴a=±8∴=±2故答案为±2【点睛】本题考查平方根立方根的定义解题关键是一个正数的平方根有两个他们互为相反数解析:±2 【解析】 【分析】根据平方根、立方根的定义解答. 【详解】解:∵264a =,∴a=±8.2【点睛】本题考查平方根、立方根的定义,解题关键是一个正数的平方根有两个,他们互为相反数.. 14.2<m≤3【解析】【分析】根据不等式组x>-1x<m有3个整数解先根据x>-1可确定3个整数解是012所以2<m≤3【详解】根据不等式组x>-1x<m有3个整数解可得:2<m≤3故答案为:2<m≤3解析:2<m≤3【解析】【分析】根据不等式组有3个整数解,先根据可确定3个整数解是0,1,2,所以.【详解】根据不等式组有3个整数解,可得:.故答案为:.【点睛】本题主要考查不等式组整数解问题,解决本题的关键是要熟练掌握不等式组的解法. 15.55【解析】【分析】利用长与高的比为8:11进而利用携带行李箱的长宽高三者之和不超过115cm得出不等式求出即可【详解】设长为8x高为11x由题意得:19x+20≤115解得:x≤5故行李箱的高的最解析:55【解析】【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm得出不等式求出即可.【详解】设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.【点睛】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.16.57°【解析】【分析】根据平行线的性质和三角形外角的性质即可求解【详解】由平行线性质及外角定理可得∠2=∠1+30°=27°+30°=57°【点睛】本题考查平行线的性质及三角形外角的性质解析:57°.【分析】根据平行线的性质和三角形外角的性质即可求解.【详解】由平行线性质及外角定理,可得∠2=∠1+30°=27°+30°=57°. 【点睛】本题考查平行线的性质及三角形外角的性质.17.【解析】【分析】把第二个方程组的两个方程的两边都除以5通过换元替代的方法来解决【详解】两边同时除以5得和方程组的形式一样所以解得故答案为【点睛】本题是一道材料分析题考查了同学们的逻辑推理能力需要通过解析:510x y =⎧⎨=⎩【解析】【分析】把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决.【详解】111222325325a x b y c a x b y c +=⎧⎨+=⎩两边同时除以5得, 11122232()()5532()()55a x b y c a x b y c ⎧+⎪⎪⎨⎪+⎪⎩==, 和方程组111222a x b y c a x b y c +⎧⎨+⎩==的形式一样,所以335245x y ⎧⎪⎪⎨⎪⎪⎩==,解得510x y ⎧⎨⎩==. 故答案为510x y ⎧⎨⎩==. 【点睛】本题是一道材料分析题,考查了同学们的逻辑推理能力,需要通过类比来解决,有一定的难度.18.【解析】将代入方程得a-2=3解得a=5故答案为5解析:【解析】将12x y =⎧⎨=⎩代入方程,得 a-2=3解得a=5,故答案为5.19.【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×=400(人)故答案为:400【点解析:【解析】【分析】用所有学生数乘以样本中课外阅读时间不少于7小时的人数所占的百分比即可.【详解】估计该校1200名学生一周的课外阅读时间不少于7小时的人数是:1200×15+560=400(人),故答案为:400.【点睛】本题考查了用样本估计总体的知识,解题的关键是求得样本中不少于6小时的人数所占的百分比. 20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关 解析:【解析】【分析】本题可设打x 折,根据保持利润率不低于5%,可列出不等式:12008008005%10x ,⨯-≥⨯ 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10x ,⨯-≥⨯ 解得7.x ≥即最多打7折.故答案为7.【点睛】考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键. 三、解答题21.(1)70,200,500;(2)14,72;(3)成绩在80分及以上的学生大约有2400人.【解析】【分析】(1)根据统计图中的数据可以分别求得a 、b 、c 的值;(2)根据统计图中的数据可以求得m 和“E”所对应的圆心角的度数;(3)根据题意可以求得成绩在80分及以上的学生大约有多少人.【详解】解:(1)()()408%18%18%40%20%70a =÷⨯----=,()408%40%200b =÷⨯=,408%500c =÷=,故答案为70,200,500; (2)%18%18%40%20%14%m =----=,“E ”所对应的圆心角的度数是:36020%72︒⨯=︒,故答案为14,72;(3)()400040%20%2400⨯+= (人),答:成绩在80分及以上的学生大约有2400人.【点睛】本题考查了扇形统计图、用样本估计总体、频数分布表,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)这1000名小学生患近视的百分比为38%. (2)本次抽查的中学生有1000人. (3)该市中学生患“中度近视”的约有2.08万人,患“中度近视”的约有1.04万人.【解析】【分析】(1)这1000名小学生患近视的百分比=小学生近视的人数÷总人数×100﹪ (2)调查中学生总人数=中学生近视的人数÷中学生患近视的百分比(3)用样本估计总体,该市中学生患“中度近视”的人数=8万×1000名中学生患中度近视的百分比;该市小学生患“中度近视”的人数=10万×1000名小学生患中度近视的百分比 【详解】解:(1)∵(252+104+24)÷1000=38%, ∴这1000名小学生患近视的百分比为38%.(2)∵(263+260+37)÷56%=1000(人), ∴本次抽查的中学生有1000人.(3)∵8×2601000=2.08(万人), ∴该市中学生患“中度近视”的约有2.08万人.∵10×1041000=1.04(万人), ∴该市小学生患“中度近视”的约有1.04万人.23.(1)详见解析;(2)成立,证明见解析.【解析】【分析】(1)根据等边三角形的性质,得∠ACB =60°,AC =BC .结合三角形外角的性质,得∠CAF =30°,则CF =AC ,从而证明结论;(2)根据(1)中的证明方法,得到CH =CF .根据(1)中的结论,知BE +CF =AC ,从而证明结论.【详解】(1)∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CAF =60°-30°=30°,∴∠CAF =∠F ,∴CF =AC ,∴CF =AC =BC ,∴EF =2BC .(2)成立.证明如下:∵△ABC 是等边三角形,∴∠ACB =60°,AC =BC .∵∠F =30°,∴∠CHF =60°-30°=30°,∴∠CHF =∠F ,∴CH =CF .∵EF =2BC ,∴BE +CF =BC .又∵AH +CH =AC ,AC =BC ,∴AH =BE .【点睛】本题考查了等边三角形的性质、三角形的外角性质以及等腰三角形的判定及性质.证明EF =2BC 是解题的关键.24.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【解析】【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案; (2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++L L 中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++L L1111144771010132983011+++++⨯⨯⨯⨯⨯=L 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ⎪⎝⎭L 111111111++++3447710111290133018=-⎛⎫⨯-+--- ⎪⎝⎭L 1330111⎛=⨯-⎫ ⎪⎝⎭ 30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.25.(1)-2<a≤3.(2)5;(3)a =-1.【解析】【分析】(1)求出不等式组的解集即可得出关于a 的不等式组,求出不等式组的解集即可; (2)根据a 的范围去掉绝对值符号,即可得出答案;(3)求出a <-12,根据a 的范围即可得出答案. 【详解】 解:(1)713x y a x y a +=-⎧⎨-=+⎩①② ∵①+②得:2x=-6+2a ,x=-3+a ,①-②得:2y=-8-4a ,y=-4-2a ,∵方程组713x y a x y a +=-⎧⎨-=+⎩的解x 为非正数,y 为负数, ∴-3+a≤0且-4-2a <0,解得:-2<a≤3;(2)∵-2<a≤3,∴|a-3|+|a+2|=3-a+a+2=5;(3)2ax+x>2a+1,(2a+1)x>2a+1,∵不等式的解为x<1∴2a+1<0,∴a<-12,∵-2<a≤3,∴a的值是-1,∴当a为-1时,不等式2ax+x>2a+1的解为x<1.【点睛】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。

相关文档
最新文档