江西省鹰潭市九年级下学期数学3月月考试卷
九年级数学下学期3月月考题
A B下学期3月月考题九年数学试卷(答题时间120分钟,满分120分)一、填空题(每小题2分,共20分)1.的绝对值是.2.回收废纸用于造纸可以节约木材.根据专家估计,每回收一吨废纸可以节约3立方米木材,那么回收吨废纸可以节约立方米木材.3.1月10日起,中国四川、贵州、湖南、湖北等19个省级行政区均受到低温、雨雪、冰冻灾害影响,直接经济损失537.9亿元,用科学记数法表示是元.4.不等式的解集是。
5.若m是方程2x+1=3的一个解,则4m-5= 。
6.甲、乙两厂分别生产直径为246mm的标准篮球.从两厂各自生产的篮球中分别随机抽取10个,得到甲厂篮球实际直径的方差是2,乙厂篮球实际直径的标准差S乙=1.96.生产质量较稳定的厂是厂.7.反比例函数在第二象限内的图象如图所示,则k= 。
8.如图,点D、B、C在同一直线上,∠A=60°,∠C=50°,∠D=25°,则∠1= 度。
9.如图,点O是⊙O的圆心,点A、B、C在⊙O上,AO∥BC,∠AOB=38°,则∠OAC的度数是.10.如图,在□ABCD中,BC=4m,E为AD的中点,F、G分别为BE、CD的中点,则FG= cm。
二、选择题(每小题3分,共18分.)11.不等式组的解集在数轴上表示正确的是()51-a213-<+xxky=221xx-⎧⎨-<⎩≤O CBA第9图第7题图第8题图12.下列计算正确的是()A.B.C.D.13.若的值为()A.12B.6C.3D.014.“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段x米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.若原计划每天修10米,所列方程正确的是()A .B.C.D.15.现有奥运会福娃卡片20张,其中贝贝6张,京京5张,欢欢4张,迎迎3张,妮妮2张,每张卡片大小、质地均匀相同,将画有福娃的一面朝下反扣在桌子上,从中随机抽取一张,抽到京京的概率是()A .B.C.D.16.如图,一张长方形纸沿AB对折,以AB中点O为顶点将平角五等分,并沿五等分的折线折叠,再沿CD剪开,使展开后为正五角星(正五边形对角线所构成的图形).则∠OCD 等于()A.108°B.144°C.126° D.129°三、解答题(每题5分,共20分)17.如图,在数轴上有A、B、C 三点,请回答:(1)将C点向左移动6个单位后,这时的点所表示的数是;(2)怎样移动A、B、C 三点中的任意一点,才能使这三点所表示的数之和为零?请写出一种移动方法;(3)怎样移动A、B、C 三点中的两个点,才能使这三点表示相同的数?请写出一种移动方法。
江西省鹰潭市九年级数学中考模拟试卷(3月)
江西省鹰潭市九年级数学中考模拟试卷(3月)姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在-(-5),-(-5)2 ,-|-5|,(-5)2中负数有()A . 0个B . 1个C . 2个D . 3个2. (2分) (2019八上·绿园期末) 下列命题中,为真命题的是()A . 对顶角相等B . 同位角相等C . 若,则D . 若,则3. (2分) (2017八上·确山期中) 下列“表情”中属于轴对称图形的是()A .B .C .D .4. (2分) (2018七上·北仑期末) 已知和是同类项,则的值为()A . 3B . 4C . 5D . 65. (2分) (2017八下·东台期中) 今年我市有近4万名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是()A . 这1000名考生是总体的一个样本B . 近4万名考生是总体C . 每位考生的数学成绩是个体D . 1000名学生是样本容量6. (2分)(2018·铁西模拟) 七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,现在从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况如下表:节水量(m3)0.20.250.30.40.5家庭数12241那么这组数据的众数和平均数分别是()A . 0.4m3和0.34m3B . 0.4m3和0.3m3C . 0.25m3和0.34m3D . 0.25m3和0.3m37. (2分) (2018九上·海淀期末) 如图,将△ABC绕点A逆时针旋转100°,得到△ADE.若点D在线段BC 的延长线上,则的大小为()A . 30°B . 40°C . 50°D . 60°8. (2分)峰口镇中心学校2009年中考上洪湖一中线50人,近三年上洪湖一中线共168人,问:2010年、2011年上洪湖一中线平均每年增长率是多少?设平均增长率为x,则列出下列方程正确的是()A . 50(1+2x)=168B . 50+50(1+2x)=168C . 50(1+x)2=168D . 50+50(1+x)+50(1+x)2=1689. (2分)方程2x2+4x+3=0的根的情况是()A . 有两个相等的实数根B . 有两个互为相反数的实数根C . 只有一个实数根D . 没有实数根10. (2分)如图,已知矩形ABCD的对角线AC的长为10cm,连接各边中点E,F,G,H得四边形EFGH,则四边形EFGH的周长为().A . 20cmB . 20 cmC . 20 cmD . 25 cm二、填空题 (共6题;共6分)11. (1分)(2017·无棣模拟) “十三五”开局之年,我市财政总收入达到58400000000元,将这个数用科学记数法表示为________.12. (1分)(2012·崇左) “明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).13. (1分)(2019·许昌模拟) 不等式组的解集是________。
江西省鹰潭市九年级下学期数学3月月考试卷
江西省鹰潭市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019七上·江汉期中) 下列各式正确的是()A .B .C .D .2. (2分)(2018·宜宾) 我国首艘国产航母于2018年4月26日正式下水,排水量为65000吨.将65000用科学记数法表示为()A .B .C .D .3. (2分)(2017·费县模拟) 下列计算中,正确的是()A . (a3)4=a12B . a3•a5=a15C . a2+a2=a4D . a6÷a2=a34. (2分) (2020八下·万州期末) 如图,在中, 分别为上一点,延长至 ,使得,若则的长为()A . 0.5B . 1C . 1.5D . 25. (2分) (2016九上·乐至期末) 判断一元二次方程x2﹣2x+1=0的根的情况是()A . 只有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根6. (2分)(2014·北海) 函数y=ax2+1与y= (a≠0)在同一平面直角坐标系中的图象可能是()A .B .C .D .二、填空题 (共4题;共4分)7. (1分) (2017九上·镇雄期末) 分解因式:ab2﹣4a=________.8. (1分) (2020八下·泗辖月考) 运行程序如图所示,从“输入实数x”到“结果是否>18”为一次程序操作,若输入x后程序操作进行了两次停止,则x的取值范围是________.9. (1分)要使代数式有意义,则实数a的取值范围是________.10. (1分) (2020八下·瑞安期末) 如图,已知点在反比例函数的图象上,过点A作x轴的平行线交反比例函数的图象于点B,连结,过点B作交y轴于点C,连结,则的面积为________.三、解答题 (共5题;共45分)11. (5分)(2020·孝感模拟) 计算:tan30°+ +(﹣)﹣1+(﹣1)202012. (5分)(2017·聊城) 先化简,再求值:2﹣÷ ,其中x=3,y=﹣4.13. (15分)(2018·遂宁) 如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y= (m≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD= ,且点B的坐标为(n,-2).(1)求一次函数与反比例函数的解析式;(2) E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.14. (10分) (2019八上·正定期中) A市到B市的距离约为,小刘开着小轿车,小张开着大货车,都从A市去B市,小刘比小张晚出发1小时,最后两车同时到达B市,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少.(列方程解答)(2)当小刘出发时,求小张离B市还有多远.15. (10分)(2014·深圳) 如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共4题;共4分)7-1、8-1、9-1、10-1、三、解答题 (共5题;共45分)11-1、12-1、13-1、13-2、14-1、14-2、15-1、。
鹰潭市九年级文理科基础调研数学试卷(3月)
鹰潭市九年级文理科基础调研数学试卷(3月)姓名:________ 班级:________ 成绩:________一、选择题(本题有9小题,每小题2分,共18分) (共9题;共18分)1. (2分) (2017八下·嵊州期中) 下列运算正确的是()A . 2 ﹣ =1B . (﹣)2=2C . =±11D . =3﹣2=12. (2分) (2019八下·江北期中) 下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是()A . 0个B . 1个C . 2个D . 3个3. (2分)(2019·桂林模拟) 下列说法:①平方等于其本身的数有0,±1;②32xy3是4次单项式;③将方程 =1.2中的分母化为整数,得 =12;④平面内有4个点,过每两点画直线,可画6条.其中正确的有()A . 1个B . 2个C . 3个D . 4个4. (2分) (2019八上·香洲期末) 如图,设k=(a>b>0),则有()A . 0<k<B . <k<1C . 0<k<1D . 1<k<25. (2分)△ABC的三边满足|a+b﹣16|++(c﹣8)2=0,则△ABC为()A . 直角三角形B . 等腰三角形C . 等边三角形D . 等腰直角三角形6. (2分)(2018·济宁模拟) 有下列命题:①若x2=x,则x=1;②若a2=b2 ,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A . 1个B . 2个C . 3个D . 4个7. (2分)若直角三角形的两边长分别为a,b,且满足+|b﹣4|=0,则该直角三角形的第三边长为()A . 5B .C . 4D . 5或8. (2分)(2020·邹平模拟) 下列命题:①方程x2=x的解是x=1 ②的算术平方根是③有两边和一角相等的两个三角形全等④连接任意四边形各边中点的四边形是平行四边形其中真命题有:()A . 4个B . 3个C . 2个D . 1个9. (2分) (2019七下·钦州期末) 有以下四个命题,其中正确的是()A . 同位角相等B . 0.01是0.1的一个平方根C . 若点P(x,y)在坐标轴上,则xy=0D . 若a2>b2 ,则a>b二、填空题(本题有5小题,每小题3分,共15分) (共5题;共15分)10. (3分)根据下列表格的对应值,判断ax2+bx+c=0 (a≠0,a,b,c为常数)的一个解x的取值范围是________x 3.23 3.24 3.25 3.26ax2+bx+c﹣0.06﹣0.020.030.0911. (3分)(2017·郴州) 从1、﹣1、0三个数中任取两个不同的数作为点的坐标,则该点在坐标轴上的概率是________.12. (3分) (2019九下·桐乡月考) 若弦AB是⊙O的内接正十二边形的一边,弦AC是⊙O的内接正方形的一边,弦CB是⊙O的内接正n边形一边,则n的值是________.13. (3分)(2019九下·桐乡月考) 已知,则代数式的值为________.14. (3分) (2019九下·桐乡月考) 如图,点E,F在正方形ABCD内,且∠EAF=∠ECF=45°,则线段BE,EF,FD之间的数量关系是________ .三、解答题(本题有4小题,共27分) (共4题;共27分)15. (5分)(2018·柘城模拟) 先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.16. (6分) (2019九下·桐乡月考) 甲、乙两人加工同一种直径为100mm的零件,现从他们加工好的零件中随机各抽取6个,量得零件的直径如下(单位:mm):甲:98,102,100,100,101,99:乙:100,103,101,97,100,99.(1)根据上述两组数据,完成下面的表格:平均数中位数众数方差甲________100________乙100________100________(2)请你结合(1)中的统计数据,评价一下甲、乙两人的加工质量.17. (7.0分) (2019九下·桐乡月考) 己知△ABC∽△DEC,∠ABC=∠DEC=90°,BC⊥EC,射线BE交AD于点P.(1)如图,若BC=EC:①求∠PED的度数;②求证:AP=-DP;(2)如图,若BC:EC=3:2,求AP:DP的值.18. (9分) (2019九下·桐乡月考) 如图,抛物线y=ax2+bx经过点A(7,0),B(-1,4),经过点B的直线与抛物线的另一个交点C在第四象限.已知△ABC的面积为14.(1)求抛物线的函数关系式;(2)求点C的坐标#(3)设P是线段BC延长线上的点,作直线PD∥x轴,交抛物线于点D、E(点D在点E的左侧).若DE=PE,求点P的横坐标.参考答案一、选择题(本题有9小题,每小题2分,共18分) (共9题;共18分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题(本题有5小题,每小题3分,共15分) (共5题;共15分) 10-1、11-1、12-1、13-1、14-1、三、解答题(本题有4小题,共27分) (共4题;共27分)15-1、16-1、16-2、17-1、17-2、18-1、18-2、18-3、。
江西省鹰潭市2021年九年级下学期数学3月月考试卷B卷
江西省鹰潭市2021年九年级下学期数学3月月考试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·杭州月考) 从一幅扑克牌中抽出5张红桃,4张梅花,3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情是()A . 必然事件B . 随机事件C . 不可能事件D . 不确定事件2. (2分)(2017·深圳) 一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出双,列出方程()A .B .C .D .3. (2分)(2018·荆州) 如图,平面直角坐标系中,⊙P经过三点A(8,0),O(0,0),B(0,6),点D 是⊙P上的一动点.当点D到弦OB的距离最大时,tan∠BOD的值是()A . 2B . 3C . 4D . 54. (2分) (2020九下·镇江月考) 如图,已知AB∥CD∥EF, AD:AF=3:5,BE=12,那么CE的长等于()A .B .C .D .5. (2分) (2020九上·温州期末) 如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为()A . 5πB . 12.5πC . 20πD . 25π6. (2分)如图,AD是⊙O的直径,且AD=6,点B、C在⊙O上,,∠AOB=120°,点E是线段CD 的中点,则OE=()A . 1B .C . 3D . 27. (2分) (2017九下·钦州港期中) 下列四组图形中,一定相似的是()A . 正方形与矩形B . 正方形与菱形C . 菱形与菱形D . 正五边形与正五边形8. (2分)(2018·覃塘模拟) 如图,已知二次函数的图象与y轴的正半轴交于点A,其顶点B在轴的负半轴上,且OA=OB,对于下列结论:① ≥0;② ;③关于的方程无实数根;④ 的最小值为3.其中正确结论的个数为()A . 1个B . 2个C . 3个D . 4个9. (2分)(2018·新疆) 如图,AB∥CD,点E在线段BC上,CD=CE.若∠ABC=30°,则∠D为()A . 85°B . 75°C . 60°D . 30°10. (2分)若二次函数y=x2-6x+c的图像过A(-1,y1),B(2,y2),C(5,y3),则y1 , y2 , y3的大小关系是()A . y1>y2>y3B . y1>y3>y2C . y2>y1>y3D . y3>y1>y211. (2分) (2017八下·邵阳期末) Rt△ABC的两边长分别是3和4,若一个正方形的边长是△ABC的第三边,则这个正方形的面积是()A . 25B . 7C . 12D . 25或712. (2分)(2017·肥城模拟) 如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;② ;③△PMN为等边三角形;④当∠ABC=45°时,BN= PC.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)13. (1分) (2018七上·沧州期末) 已知|x|=3,|y|=4,且x>y,则2x﹣y的值为________.14. (1分)(2019·瑞安模拟) 一个不透明的布袋里装有若干个只有颜色不同的红球和白球,其中3个红球,且从布袋中随机摸出1个球,摸出的球是红球的概率是,则白球的个数是________15. (1分)(2019·新会模拟) 把函数y=x2的图象向右平移2个单位长度,再向下平移1个单位长度,得到函数________的图象.16. (1分)(2019·临泽模拟) 如图,在⊙O中,圆周角∠ACB=150°,弦AB=4,则扇形OAB的面积是________.17. (1分)如图,直线垂直相交于点,曲线关于点成中心对称,点的对称点是点,于点,于点 .若 ,,则阴影部分的面积之和为________.18. (1分)如图,△ABC中,∠ACB=90°,AC >BC,CD、CE分别为斜边AB上的高和中线,若tan∠DCE=,则=________.三、解答题 (共8题;共69分)19. (5分)计算:(1)计算:﹣+sin45°(2)化简:(1+ ).20. (11分)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有6个黄球.(1)若先从盒子里拿走m个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m的最大值为________;(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问 n的值大约是多少?21. (5分)(2019·乌鲁木齐模拟) 如图,某高速公路设计中需要测量某条江的宽度,测量人员使用无人机测量,在处测得两点的俯角分别为和,若无人机离地面的高度为米,且点在同一条水平直线上,求这条江的宽度长(结果保留根号).22. (10分)(2018·白云模拟) 如图,一条公路的转弯处是一段圆弧(1)用直尺和圆规作出所在圆的圆心O;要求保留作图痕迹,不写作法(2)若的中点C到弦AB的距离为,求所在圆的半径.23. (10分)已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点.(1)求菱形ABCD的面积.(2)求PM+PN的最小值.24. (2分) (2016九上·呼和浩特期中) 如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?25. (11分)(2018·成都模拟) 如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2 ,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x 轴于点E,以线段DE,DB为邻边作矩形BDEF.(1)填空:点B的坐标为________;(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;(3)①求证:;②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.26. (15分) (2019九下·象山月考) 定义:若一个四边形能被其中的一条对角线分割成两个相似三角形,则称这个四边形为“友谊四边形”.我们熟知的平行四边形就是“友谊四边形”,(1)如图1,在4×4的正方形网格中有一个Rt△ABC,请你在网格中找格点D,使得四边形ABCD是被AC分割成的“友谊四边形”,(要求画出点D的2种不同位置)(2)如图2,BD平分∠ABC,BD=4 ,BC=8,四边形ABCD是被BD分割成的“友谊四边形”,求AB长;(3)如图3,圆内接四边形ABCD中,∠ABC=60,点E是的中点,连结BE交CD于点F,连结AF,∠DAF =30°①求证:四边形ABCF是“友谊四边形”;②若△ABC的面积为6 ,求线段BF的长.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共69分)19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
江西省鹰潭市2021版九年级下学期数学3月月考试卷C卷
江西省鹰潭市2021版九年级下学期数学3月月考试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,共30分) (共10题;共30分)1. (3分) (2018七上·老河口期中) 若()÷ =﹣2,则前面括号内应填的数是()A . 1B . ﹣1C . 2D . ﹣22. (3分)下列图形即使轴对称图形又是中心对称图形的有:()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A . 1个B . 2个C . 3个D . 4个3. (3分)(2018·吉林模拟) 下列计算结果正确的是()A .B .C .D .4. (3分)下列说法中,不正确的是()A . 三个角的度数之比为1∶3∶4的三角形是直角三角形B . 三个角的度数之比为3∶4∶5的三角形是直角三角形C . 三边长度之比为3∶4∶5的三角形是直角三角形D . 三边长度之比为9∶40∶41的三角形是直角三角形5. (3分)一条直线与双曲线y=的交点是A(a,4),B(﹣1,b),则这条直线的关系式为()A . y=4x﹣3B .C . y=4x+3D . y=﹣4x﹣36. (3分)(2017·黑龙江模拟) 在△ABC中,∠C=90°,BC=2,sinA= ,则边AC的长是()A .B . 3C .D .7. (3分) (2017九上·井陉矿开学考) 如果函数y=ax+b(a<0,b<0)和y=kx(k>0)的图象交于点P,那么点P应该位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (3分)如图,在直角梯形ABCD中,∠B=90°,DC//AB,动点P从B点出发,沿折线B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图像如图2所示,则△ABC的面积为()A . 10B . 16C . 18D . 329. (3分)如图,⊙O的半径为5,弦AB的长为8,M是弦AB 上的动点,则OM长的最小值为()A . 5B . 4C . 3D . 210. (3分)把抛物线y=x2+bx+4的图像向右平移3个单位,再向上平移2个单位,所得到的图象的解析式为y=x2-2x+3,则b的值为()A . 2B . 4C . 6D . 8二、填空题(本大题共4个小题,每题3分,共12分) (共4题;共12分)11. (3分) (2015七下·龙海期中) 不等式5x+14≥0的所有负整数解的和是________12. (3分)若点M取在多边形的一条边上(不是顶点),再将点M与n边形个顶点连结起来,将此多边形分割成9个三角形,则n边形是________ 边形.13. (3分) (2019·高新模拟) 如图,已知双曲线(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣6,4),则△AOC的面积为________.14. (3分)如图,DE∥BC ,EF∥AB ,且S△ADE=4,S△EFC=9,则△ABC的面积为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省鹰潭市九年级下学期数学3月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·丽江期末) 方程x(x﹣1)=x的根是()A . x=2B . x=﹣2C . x1=﹣2,x2=0D . x1=2,x2=02. (2分)(2018·鹿城模拟) 在一次中学生田径运动会上,参加男子跳高的20名运动员的成绩如下表所示:成绩米人数435611则这些运动员成绩的众数为A . 米B . 米C . 米D . 米3. (2分)把抛物线y=3x2沿y轴向上平移8个单位,所得抛物线的函数关系式为()A .B .C .D .4. (2分) (2017九上·重庆期中) 在Rt△ABC中,∠C=90°,AB=13,AC=12,则cosA=()A .B .C .D .5. (2分) (2015九上·宝安期末) 如图,抛物线y=x2﹣4x与x轴交于点O,A,顶点为B,连接AB并延长,交y轴于点C,则图中阴影部分的面积和为()A . 4B . 8C . 16D . 326. (2分)(2020·郑州模拟) 如果a的倒数是﹣1,则a2019的值是()A . 1B . ﹣1C . 2019D . ﹣20197. (2分) (2019八下·温江期中) 在△ABC中,已知AB=AC,且一内角为100°,则这个等腰三角形底角的度数为A . 100°B . 50°C . 40°D . 30°8. (2分)某工厂第二季度的产值比第一季度的产值增长了x%,第三季度的产值又比第二季度的产值增长了x%,则第三季度的产值比第一季度增长了()A . 2x%B . 1+2x%C . (1+x%)•x%D . (2+x%)•x%9. (2分)(2017·老河口模拟) 如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为()A .B .C .D .10. (2分)(2017·江西模拟) 抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x… 1 2 3 4 5…y… 0﹣3﹣6﹣6﹣3…从上表可知,下列说法中正确的有()① =6;②函数y=ax2+bx+c的最小值为﹣6;③抛物线的对称轴是x= ;④方程ax2+bx+c=0有两个正整数解.A . 1个B . 2个C . 3个D . 4个二、填空题 (共8题;共8分)11. (1分) (2019九上·浙江期末) 计算:sin30°tan60°=________.12. (1分)一组数据的方差是, ,则这组数据共有________个,平均数是________.13. (1分) (2018九上·西湖期末) 已知抛物线y=﹣x2﹣3x+3,点P(m , n)在抛物线上,则m+n的最大值是________.14. (1分) (2019九上·海门期末) 关于x的方程x2+mx+n=0的两根为﹣2和3,则m+n的值为________.15. (1分) (2016九上·牡丹江期中) 如图,扇形的半径OA=20厘米,∠AOB=135°,用它做成一个圆锥的侧面,则此圆锥底面的半径为________.16. (1分) (2017九上·孝义期末) 如图,在四边形ABCD中,∠BAD=∠C=90°,AB=AD,AE⊥CD,垂足为E,若线段AE=10,则S四边形ABCD=________.17. (1分) (2017八下·孝义期中) 已知三角形的三边长分别为5,5,6,则该三角形的面积为________.18. (1分) (2016八上·临河期中) 在直角坐标系内,已知A,B两点的坐标分别为A(﹣1,1)、B(3,3),若M为x轴上一点,且MA+MB最小,则M的坐标是________.三、解答题 (共10题;共100分)19. (10分)解方程:(1) x2﹣5=4x(2) x2+2x﹣5=0.20. (5分)(2019·大连模拟) 计算: .21. (5分) (2017九上·寿光期末) 计算①3x2﹣3=2x(用配方法解)②4(x﹣1)2﹣9(3﹣2x)2=0.22. (15分) (2018七上·宿州期末) 君畅中学计划购买一些文具送给学生,为此学校决定围绕“在笔袋、圆规、直尺、钢笔四种文具中,你最需要的文具是什么?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据以上信息回答下列问题:(1)在这次调查中,最需要圆规的学生有多少名?并补全条形统计图;(2)如果全校有970名学生,请你估计全校学生中最需要钢笔的学生有多少名?23. (10分)(2018·云南模拟) 某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字 1、2、3、4 的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由.24. (5分)(2017·平顶山模拟) 如图,一艘海警船在A处发现北偏东30°方向相距12海里的B处有一艘可疑货船,该艘货船以每小时10海里的速度向正东航行,海警船立即以每小时14海里的速度追赶,到C处相遇,求海警船用多长时间追上了货船?25. (15分) (2019九上·中原月考) 在一元二次方程中,有著名的韦达定理:对于一元二次方程ax2+bx+c=0(a≠0),如果方程有两个实数根x1 , x2 ,那么x1+x2= ,x1+x2= (说明:定理成立的条件△≥0).比如方程2x2-3x-1=0中,△=17,所以该方程有两个不等的实数解.记方程的两根为x1 , x2 ,那么x1+x2= ,x1+x2= .请阅读材料回答问题:(1)已知方程x2-3x-2=0的两根为x1、x2,求下列各式的值:①x12+x22;② ;(2)已知x1,x2是一元二次方程4kx2-4kx+k+1=0的两个实数根.①是否存在实数k,使(2x1-x2)(x1-2x2)= 成立?若存在,求出k的值;若不存在,请说明理由;②求使 -2的值为整数的实数k的整数值.26. (10分) (2020九上·新昌期末) 如图1是一块内置量角器的等腰直角三角板,它是一个轴对称图形.已知量角器所在的半圆O的直径DE与AB之间的距离为1,DE=4,AB=8,点N为半圆O上的一个动点,连结AN交半圆或直径DE于点M.(1)当AN经过圆心O时,求AN的长;(2)如图2,若N为量角器上表示刻度为90°的点,求△MON的周长;(3)当时,求△MON的面积.27. (15分) (2016九上·通州期末) 定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是________;当m=5,n=2时,如图2,线段BC与线段OA的距离为________;(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.28. (10分)(2017·成都) 如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B 两点,顶点为D(0,4),AB=4 ,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M 是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共100分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。