高二数学上学期期中试题文
2021-2022学年四川省遂宁中学高二年级上册学期期中考试数学(文)试题
2021~2022学年度上期半期高二文科数学注意事项:1.答卷前,考生务必将自己的班级、姓名和准考证号填写在试卷和答题卡上。
2.选择题用2B 铅笔在对应的题号涂黑答案。
主观题用0.5毫米黑色签字笔答在答题卡上对应的答题区域内。
3.考生必须保持答题卡的整洁。
结束后,请将答题卡上交。
第Ⅰ卷(选择题 共60分)一.选择题(本大题共12个小题,每小题5分,共60分)1.直线的倾斜角为( )10x y +-=A . B . C .D .30°60︒120︒135︒2.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若m ⊥α,n ⊂α,则m ⊥nB .若m ∥α,n ∥α,则m ∥nC .若m ⊥α,m ⊥n ,则n ∥αD .若m ∥α,m ⊥n ,则n ⊥α3.直线与直线平行,则的值为( )10ax y ++=420x ay +-=a A . B .2 C .D .02-2±4.无论取任何实数,直线恒过一定点,则该定点坐标为m :120l mx y m +-+=( )A. B. C. D.()-21,()2,1--()2,1()2,1-5.如果a c <0且bc <0,那么直线ax +b y +c =0不通过( )A .第一象限B .第三象限C .第二象限D .第四象限6.已知实数x ,y 满足,则z =2x -y 的最小值是( )210,10,2,x y x y x -+≥⎧⎪+-≥⎨⎪<⎩A .5B .C .0D .-1527.与直线3x -4y +5=0关于x 轴对称的直线方程为( )A .3x +4y -5=0B .3x +4y +5=0C .-3x +4y -5=0D .-3x +4y +5=08.如图,在三棱锥P ﹣ABC 中,△ABC 为等边三角形,△PAC 为等腰直角三角形,PA =PC =4,平面PAC ⊥平面ABC ,D 为AB 的中点,则异面直线AC 与PD 所成角的余弦值为( )A .B 14C ..129.已知直线ax +y+1=0, x +ay+1=0 和 x +y+a =0 能构成三角形,则a 的取值范围是 ( )A .a ≠ - 2B .a ≠1± C .a ≠ - 2且a ≠ D .a ≠ - 2且a ≠ 11±10.已知平面上一点若直线l 上存在点P 使则称该直线为点(5,0)M ||4PM =的“相关直线”,下列直线中不是点的“相关直线”的是( (5,0)M (5,0)M )A .B .C .D .3y x =-2y =210x y -+=430x y -=11. 过定点的直线与过定点的直线交于点,则M 20ax y +-=N 420x ay a -+-=P 2的最大值为( )·PM PN A .1B .3C .4 D. 212.如图,正方体的棱长为1,P ,Q 分别是线段和上的1111ABCD A B C D -1AD 1B C 动点,且满足,则下列命题错误的是( )1AP B Q =A .的面积为定值BPQ B .当时,直线与是异面直线0PA >1PB AQ C .存在P ,Q 的某一位置,使//AB PQ D .无论P ,Q 运动到任何位置,均有BC PQ⊥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分.)13.直线5x +12y+3=0与直线10x +24y+5=0的距离是________________;14.若A (a ,0),B (0,b ),C (,)三点共线,则________;2-2-11a b +=15. 如图所示,正方体ABCD-A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则O 到平面ABC 1D 1的距离为___ _____;(15题图) (16题图)16.在棱长为1的正方体中,点是对角线上的动点1111ABCD A B C D -M 1AC (点与不重合),则下列结论正确的是_______.M 1A C 、①; ②存在点,使得平面;1A DM ∆M DM //11B CD ③存在点,使得平面平面;M 1A DM ⊥1BC D ④若分别是在平面与平面的正投影的面积,则存12,S S 1A DM ∆1111A B C D 11BB C C 在点,使得.M 12S S =三.解答题:(本大题共6小题,满分70分。
山东省济南市山东省实验中学2024-2025学年高二上学期11月期中考试数学试题(含答案)
山东省实验中学2024~2025学年第一学期期中高二数学试题 2024.11(选择性必修—检测)说明:本试卷满分150分,分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,第Ⅱ卷为第3页至第4页.试题答案请用2B 铅笔或0.5mm 签字笔填涂到答题卡规定位置上,书写在试题上的答案无效。
考试时间120分钟。
第Ⅰ卷(共58分)一、单选题(本题包括8小题,每小题5分,共40分。
每小题只有一个选项符合题意)1.已知空间向量,,,若,,共面,则实数( )A.1B.2C.3D.42.“”是“直线与直线平行”的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件3.给出下列说法,其中不正确的是()A.若,则,与空间中其它任何向量都不能构成空间的一个基底向量B.若,则点是线段的中点C.若,则,,,四点共面D.若平面,的法向量分别为,,且,则3.若三条直线,,不能围成三角形,则实数的取值最多有( )A.2个B.3个C.4个D.5个4.实数,满足,则的最小值为( )A. B.7C. D.36.若直线与曲线有两个不同的交点,则实数的取值范围是( )A.()1,2,0a = ()0,1,1b =- ()2,3,c m = a b cm =1m =-()1:2310l mx m y +++=2:30l x my ++=a b ∥a b c2PM PA PB =+M AB 2OA OB OC OD =+-A B C D αβ()12,1,1n =- ()21,,1n t =-αβ⊥3t =1:43l x y +=2:0l x y +=3:2l x my -=m x y 2222x y x y +=-3x y -+3+:20l kx y --=:1C x =-k k >5k <≤k <<1k <≤7.在三棱锥中,为的重心,,,,,,若交平面于点,且,则的最小值为( )A.B.C.1D.8.已知椭圆的左、右焦点分别为,,点在上且位于第一象限,圆与线段的延长线,线段以及轴均相切,的内切圆为圆.若圆与圆外切,且圆与圆的面积之比为4,则的离心率为( )A.C.二.多选题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,部分选对的得部分分.)9.下列说法正确的是()A.若直线的倾斜角越大,则直线的斜率就越大B.圆与直线必有两个交点C.在轴、轴上的截距分别为,的直线方程为D.设,,若直线与线段有交点,则实数的取值范围是10.已知椭圆的离心率为,长轴长为6,,分别是椭圆的左、右焦点,是一个定点,是椭圆上的动点,则下列说法正确的是( )A.焦距为2B.椭圆的标准方程为P ABC -G ABC △PD PA λ= PE PB μ= 12PF PC =λ()0,1μ∈PG DEF M 12PM PG =λμ+122343()2222:10x y C a b a b+=>>1F 2F P C 1O 1F P 2PF x 12PF F △2O 1O 2O 1O 2O C 123522:4O x y +=10mx y m +--=x y a b 1x y a b+=()2,2A -()1,1B :10l ax y ++=AB a (]322⎡⎫-∞-+∞⎪⎢⎣⎭,,()2222:10x y E a b a b +=>>23F F '()1,1A P E E 22195x y +=C.D.的最大值为11.立体几何中有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数24,棱长为的半正多面体,它所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得的,下列结论正确的有()A.平面B.,,,四点共面C.点到平面的距离为D.若为线段上的动点,则直线与直线所成角的余弦值范围为第Ⅱ卷(非选择题,共92分)三、填空题(本题共3小题,每小题5分,共15分,其中14题第一空2分,第二空3分.)12.已知直线的倾斜角,则直线的斜率的取值范围为______.13.如图,已知点,,从点射出的光线经直线反射后再射到直线上,最后经直线反射后又回到点,则光线所经过的路程是______.14.杭州第19届亚运会的主会场——杭州奥体中心体育场,又称“大莲花”(如图1所示).会场造型取意于杭州丝绸纹理与纺织体系,建筑体态源于钱塘江水的动态,其简笔画如图2所示.一同学初学简笔画,先AF '=PA PF +6AG ⊥BCDG A F C D B ACD E BC DE AF 12⎡⎢⎣l 2,43ππθ⎛⎫∈⎪⎝⎭l ()8,0A ()0,4B -()3,0P AB OB OB P画了一个椭圆与圆弧的线稿,如图3所示.若椭圆的方程为,下顶点为,为坐标原点,为圆上任意一点,满足,则点的坐标为______;若为椭圆上一动点,当取最大值时,点恰好有两个,则的取值范围为______.图1 图2 图3四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.)15.(13分)已知两直线和的交点为.(1)直线过点且与直线平行,求直线的一般式方程;(2)圆过点且与相切于点,求圆的一般方程.16.(15分)已知椭圆,且过点.(1)求椭圆的方程;(2)若斜率为的直线与椭圆交于,两点,且点在第一象限,点,分别为椭圆的右顶点和上顶点,求四边形面积的最大值.17.(15分)在梯形中,,,,为的中点,线段与交于点(如图1).将沿折起到位置,使得(如图2).图1 图2(1)求证:平面平面;(2)线段上是否存在点,使得与平面的值;若不存在,请说明理由.E()222210x ya ba b+=>>10,2A⎛⎫-⎪⎝⎭O P C2PO PA=C Q QC Q a1:20l x y++=2:3210l x y-+=Pl P310x y++=lC()1,01l P C()2222:10x yC a ba b+=>>⎛⎝C12l C M N M A B CAMBN SABCD AB CD∥3BADπ∠=224AB AD CD===P AB AC DP O ACD△AC ACD'△D O OP'⊥D AC'⊥ABCPD'Q CQ BCD'PQPD'18.(17分)已知直线,半径为2的圆与相切,圆心在轴上且在直线的右上方.(1)求圆的方程;(2)直线与圆交于不同的,两点,且,求直线的斜率;(3)过点的直线与圆交于,两点(在轴上方),问在轴正半轴上是否存在定点,使得轴平分?若存在,请求出点的坐标:若不存在,请说明理由.19.(17分)已知点,是平面内不同的两点,若点满足(,且),则点的轨迹是以有序点对为“稳点”的-阿波罗尼斯圆.若点满足,则点的轨迹是以为“稳点”的-卡西尼卵形线.已知在平面直角坐标系中,,.(1)若以为“稳点”的-阿波罗尼斯圆的方程为,求,,的值;(2)在(1)的条件下,若点在以为“稳点”的5-卡西尼卵形线上,求(为原点)的取值范围;(3)卡西尼卵形线是中心对称图形,且只有1个对称中心,若,,求证:不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称.:40l x ++=C l C x l C 2y kx =-C M N 120MCN ︒∠=2y kx =-()0,1M C A B A x y N y ANB ∠N A B P PAPBλ=0λ>1λ≠P (),A B λQ ()0QA QB μμ⋅=>Q (),A B μ()2,0A -()(),2B a b a ≠-(),A B λ221240x y x +-+=a b λQ (),A B OQ O 0b =λ=a μ(),A B μ山东省实验中学2024~2025学年第一学期期中高二数学试题参考答案 2024.11选择题1234567891011ABCBDDCCBDBCDABD填空题12..13.,.解答题15.【答案】(1)(2).【详解】(1)直线与直线平行,故设直线为,……1分联立方程组,解得.直线和的交点.……3分又直线过点,则,解得,即直线的方程为.……5分(2)设所求圆的标准方程为,的斜率为,故直线的斜率为1,由题意可得,……8分解得,……11分故所求圆的方程为.(()1,-∞-+∞ ,20,3⎛⎫-⎪⎝⎭a >340x y ++=221140333x y x y +++-=l 310x y ++=l 130x y C ++=203210x y x y ++=⎧⎨-+=⎩11x y =-⎧⎨=-⎩∴1:20l x y ++=2:3210l x y -+=()1,1P --l P 1130C --+=14C =l 340x y ++=()()222x a y b r -+-=1:20l x y ++=1-CP ()()()()2222221110111a b r a b r b a ⎧--+--=⎪⎪-+-=⎨⎪+⎪=+⎩216162518a b r ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩2211256618x y ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭化为一般式:.……13分16.【答案】(1)(2)【详解】(1)由椭圆,解得,……2分由椭圆过点,得,联立解得,,……4分所以椭圆的方程为.……5分(2)由题意可设,点在第一象限,,……6分设,,点,到直线的距离分别为,,由,消可得,,,……8分10分,,直线的一般式方程:,,,,……12分14分当时,有最大值为……15分17.【答案】(1)证明见解析(2)存在,【详解】(1)证明:在梯形中,,22114333x y x y+++-=2214xy+=2222:1x yCa b+==2a b= C⎛⎝221314a b+=2a=1b=C2214xy+=1:2l y x m=+M11m∴-<<()11,M x y()22,N x y A B l1d2d221412xyy x m⎧+=⎪⎪⎨⎪=+⎪⎩y222220x mx m++-=122x x m∴+=-21222x x m=-MN∴===()2,0A()0,1B l220x y m-+=1d∴=2d=12d d∴+=()121122AMN BMNS S S MN d d∴=+=⋅+==△△m=S13ABCD AB CD∥,,为的中点,,,,……1分是正三角形,四边形为菱形,,,……3分,,又,,平面,平面,……5分平面,平面平面.……6分(2)存在,,理由如下:……8分平面,,,,两两互相垂直,如图,以点为坐标原点,,,所在直线为,,轴建立空间直角坐标系.则,,,,,,设平面的一个法向量为,则,即,令,则,,,……11分设,,,, (12)分设与平面所成角为,则,即,,解得,224AB AD CD ===3BAD π∠=P AB CD PB ∴∥CD PB =BC DP =ADP ∴△DPBC AC BC ∴⊥AC DP ⊥AC D O ⊥' D O OP '⊥AC OP O = AC OP ⊂ABC D O ∴'⊥ABC D O ⊂' D AC '∴D AC '⊥ABC 13PQ PD '=D O ⊥' BAC OP AC ⊥OA ∴OP OD 'O OA OP OD 'x y z ()C ()2,0B ()0,0,1D '()0,1,0P )2,1BD ∴'=- )CD '=CBD '(),,n x y z =00n BD n CD ⎧⋅=⎪⎨⋅=⎪⎩'' 200y z z -+=+=⎪⎩1x =0y =z =(1,0,n ∴=()01PQ PD λλ'=≤≤)CP =()0,1,1PD =-'),CQ CP PQ CP PD λλλ∴=+=+=- CQ BCD 'θsin cos ,CQ n CQ n CQ n θ⋅====23720λλ-+=01λ≤≤ 13λ=线段上存在点,且,使得与平面……15分18.【答案】(1)(2)(3)【详解】(1)设圆心,则,……2分解得或(舍),故圆的方程为.……4分(2)由题意可知圆心到直线的距离为,……6分,解得.……8分(3)当直线的斜率存在时,设直线的方程为,,,,由得,……10分,……12分若轴平分,则,即,即,即,即,即,……14分当时,上式恒成立,即;……15分当直线的斜率不存在或斜率为0时,易知满足题意;综上,当点的坐标为时,轴平分.……17分19.【答案】(1),,(2)(3)证明见解析【详解】(1)因为以为“稳点”的—阿波罗尼斯圆的方程为,设是该圆上任意一点,则,……1分所以,……3分∴PD 'Q 13PQ PD '=CQ BCD '224x y +=k =()0,4N ()(),04C a a >-422a +=0a =8a =-C 224x y +=C 2y kx =-2sin 301︒=1=k =AB AB ()10y kx k =+≠()()0,0N t t >()11,A x y ()22,B x y 224,1x y y kx ⎧+=⎨=+⎩()221230k x kx ++-=12221k x x k -∴+=+12231x x k -=+y ANB ∠AN BN k k =-12120y t y t x x --+=1212110kx t kx tx x +-+-+=()()1212210kx x t x x +-+=()()22126011t k k k k -⨯--+=++40k kt -+=4t =()0,4N AB ()0,4N N ()0,4y ANB ∠2a =0b =λ=[]1,3(),A B λ221240x y x +-+=(),P x y 22124x y x +=-()()()()22222222222222244162212224PA x y x y x x x y ax by a b a x by a bx a y b PB+++++===+--++--+-+-+-因为为常数,所以,,且,……5分所以,,.……6分(2)解:由(1)知,,设,由,所以,……7分,整理得,即,所以,……9分,……10分由,得,即的取值范围是.……12分(3)证明:若,则以—阿波罗尼斯圆的方程为,整理得,该圆关于点对称.……15分由点,关于点对称及,可得—卡西尼卵形线关于点对称,令,解得,与矛盾,所以不存在实数,,使得以—阿波罗尼斯圆与—卡西尼卵形线都关于同一个点对称……17分22PA PB2λ2240a b -+=0b =2a ≠-2a =0b =λ==()2,0A -()2,0B (),Q x y 5QA QB ⋅=5=()222242516x y x ++=+2240y x =--≥42890x x --≤()()22190x x +-≤209x ≤≤OQ ==209x ≤≤13OQ ≤≤OQ []1,30b =(),A B ()()222222x y x a y ⎡⎤++=-+⎣⎦()22244240x y a x a +-++-=()22,0a +()2,0A -(),0B a 2,02a -⎛⎫⎪⎝⎭QA QB μ⋅=μ2,02a -⎛⎫⎪⎝⎭2222a a -+=2a =-2a ≠=-a μ(),A B μ。
吉林省四平市第一高级中学2019-2020学年高二上学期期中考试数学(文)试题(含答案解析)
吉林省四平市第一高级中学2019-2020学年高二上学期期中考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.椭圆2214x y +=的焦点坐标是()A .()B .()C .(0,D .(0,2.抛物线2y ax =的准线方程为1y =,则a 的值为()A .12-B .2-C .14-D .4-3.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±4.若直线1x ya b-=过第一、二、三象限,则实数,a b 满足()A .0,0a b >>B .0,0a b <>C .0,0a b <<D .0,0a b ><5.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中正视图中的曲线为14圆弧,则该几何体的体积为()A .π42-B .π82-C .4π-D .8π-6.若P 为椭圆22195x y +=上的任意一点,F 是椭圆的一个焦点,则PF 的最大值是()A .2B .3C .4D .57.已知正方形ABCD PA ⊥平面,2ABCD PA =,则PC 与平面ABCD 所成角是()A .30B .45C .60D .908.双曲线221259x y -=的两个焦点分别是12,F F ,双曲线上一点P 到1F 的距离是12,则P到2F 的距离是()A .17B .7C .7或17D .2或229.已知α、β是两个平面,直线l α⊄,l β⊄,若以①l α⊥;②//l β;③αβ⊥中两个为条件,另一个为结论构成三个命题,则其中正确的命题有()A .①③⇒②;①②⇒③B .①③⇒②;②③⇒①C .①②⇒③;②③⇒①D .①③⇒②;①②⇒③;②③⇒①10.设12,F F 是椭圆2212516x y +=的两个焦点,点M 在椭圆上,若12MF F △是直角三角形,则12MF F △的面积等于()A .485B .365C .16D .485或1611.一束光线从点()2,3射出,经x 轴反射后与圆()()22321x y ++-=相切,则入射光线所在直线的斜率为()A .65或56B .54或45C .43或34D .32或2312.设1F 、2F 分别为双曲线()222210,0x ya b a b-=>>的左、右焦点,双曲线上存在一点P使得123PF PF b +=,1294PF PF ab ⋅=,则该双曲线的离心率为()A .43B .53C .94D .3二、填空题13.经过点()2,1P 且与直线240x y -+=平行的直线方程为______.14.在正方体1111ABCD A B C D -中,过11,,A C B 三点的平面与底面ABCD 的交线为l ,则直线l 与11A C 的位置关系为______.(填“平行”“相交”或“异面”)15.已知抛物线24y x =的弦AB 的中点的横坐标为2,则AB 的最大值为__________.16.如图,半径为R 的球的两个内接圆锥有公共的底面,若两个圆锥的体积之和为球的体积的18,则这两个圆锥高之差的绝对值为______.三、解答题17.如图,已知圆锥的顶点为P ,O 是底面圆心,AB 是底面圆的直径,5PB =,3OB =.(1)求圆锥的表面积;(2)经过圆锥的高PO 的中点O '作平行于圆锥底面的截面,求截得的圆台的体积.18.已知直线:4320l ax y a --+=.(1)求证:无论实数a 为何值,直线l 总经过第一象限;(2)若直线l 不经过第二象限,求a 的取值范围.19.已知直线1:210l x y ++=,2:280l ax y a +++=,12l l ⊥且垂足为A .(1)求点A 的坐标;(2)若圆C 与直线2l 相切于点A ,且圆心C 的横坐标为2,求圆C 的标准方程.20.如图,在多面体ABCDGE 中,已知四边形ABCD 为矩形,ABEG 为平行四边形,⊥AE 平面,ABCD AG 的中点为,F CD 的中点为P ,且24AB AE AD ===.(1)求证:EF ⊥平面BCE ;(2)求三棱锥P ACF -的体积.21.已知曲线M 由抛物线2x y =-及抛物线24x y =组成,直线l :3y kx =-(0k >)与曲线M 有m (N m ∈)个公共点.(1)若3m ≥,求k 的最小值;(2)若3m =,记这3个交点为A ,B ,C ,其中A 在第一象限,()0,1F ,证明:2FB FC FA⋅=22.已知椭圆2222:1(0)x y C a b a b+=>>,三点()()1230,2,,0,1A A A -中恰有两点在椭圆C 上.(1)求椭圆C 的方程;(2)若直线l 交椭圆C 于,M N 两点,且线段MN 的中点P 的横坐标为-,过P 作直线l l '⊥,证明:直线l '恒过定点,并求出该定点的坐标.参考答案:1.A【分析】根据椭圆方程写出焦点坐标即可.【详解】由题设方程,椭圆焦点在x 轴上且c ==∴焦点坐标为().故选:A.2.C【分析】先求得抛物线的标准方程,可得其准线方程,根据题意,列出方程,即可得答案.【详解】由题意得抛物线的标准方程为21x y a =,准线方程为14y a=-,又准线方程是1y =,所以114a-=,所以14a =-.故选:C 3.C【详解】c e a ==2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.【考点】本题考查双曲线的基本性质,考查学生的化归与转化能力.4.C【分析】将直线1x ya b-=过第一、二、三象限,转化为直线在x 轴上的截距为负,在y 轴上的截距为正,可得答案.【详解】将直线1x y a b -=化为+1x y a b=-,又直线过第一、二、三象限,所以它在x 轴上的截距为负,在y 轴上的截距为正,所以a<0,0b ->.所以0,0a b <<.故选:C.5.B【分析】根据三视图判断出几何体的结构,由此求得几何体的体积.【详解】根据三视图可知,该几何体是正方体截去四分之一的圆柱所得,所以体积为()21π222π12842⨯⨯-⨯⨯⨯=-.故选:B6.D【分析】先求得,a c ,由此求得PF 的最大值.【详解】22195x y += ,29a ∴=,2254b c =⇒=,即3,2a c ==.所以PF 的最大值为325a c +=+=.故选:D 7.B【分析】根据线面角的知识求得正确答案.【详解】由于PA ⊥平面ABCD ,AC ⊂平面ABCD ,所以PA AC ⊥,故PCA ∠是PC 与平面ABCD 所成角,由于正方形ABCD ,所以2AC PA ==,所以45PCA ∠=︒.故选:B8.D【分析】讨论P 点位置,结合1PF 求2PF .【详解】当P 在双曲线左支上时,根据双曲线的定义得2121210PF PF PF -=-=,解得222PF =,当P 在双曲线右支上时,根据双曲线的定义得1221210PF PF PF -=-=,解得22PF =,因为225PF c a =≥-=,所以22PF =满足题意.所以22PF =或22,故选:D.9.A【解析】对三个命题逐个分析,可采用判定定理、定义、作图的方法进行说明,由此可确定出正确选项.【详解】(1)证明:①②⇒③为真命题因为l α⊥,//l β,设l 平行于β内一条直线l ',所以l α'⊥,根据面面垂直的判定定理可知:αβ⊥,所以①②⇒③为真命题;(2)证明:①③⇒②为真命题因为l α⊥,αβ⊥,所以l ⊂α或l //β,又因为l β⊄,所以l //β,所以①③⇒②为真命题;(3)证明:②③⇒①为假命题作出正方体如下图所示:记直线AD 为l ,平面1111D C B A 为α,平面11BB C C 为β,所以αβ⊥,//l β,但//l α,所以②③⇒①为假命题;故选:A.【点睛】本题考查空间中关于线、面的命题的真假判断,主要考查学生对空间中位置关系的理解,难度一般.说明位置关系不成立也可以举反例.10.D【分析】对12MF F △的直角进行分类讨论,结合椭圆的定义以及标准方程求得正确答案.【详解】依题意,5,4,3a b c ===,不妨设()()13,0,3,0F F -,对于直角三角形12MF F ,若12π2F MF ∠=,由1222212210436PF PF a PF PF c ⎧+==⎪⎨+==⎪⎩,整理得1232PF PF ⋅=,所以12121162MF F S PF PF =⨯⨯= .若12MF F ∠或21MF F ∠为直角,由()22312516M y ±+=得225616,255M M y y ==,所以121211164862255MF F M S F F y =⨯⨯=⨯⨯= .所以,12MF F △的面积等于485或16.故选:D 11.C【解析】设入射光线所在的直线方程为()32y k x -=-,根据对称性可知,直线与圆()()22321x y ++-=关于x 轴的对称圆相切,即可求出斜率k .【详解】由题意可知,点()2,3在入射光线上,设入射光线所在的直线方程为()32y k x -=-,即2kx y k --30+=.圆()()22321x y ++-=关于x 轴对称的圆为()()22321x y +++=,则入射光线与该圆相切.1=,化为21225120k k -+=,解得34k =或43.故选:C【点睛】本题主要考查了直线与圆的相切,圆的对称性,考查了运算能力,属于中档题.12.B【解析】利用双曲线的定义结合已知条件可得出22949b b ab -=,可求得ba,再由公式e =可求得双曲线的离心率的值.【详解】由双曲线的定义得122PF PF a -=,又123PF PF b +=,()()2222121294PFPF PFPF b a +--=-,即1249PF PF ab ⋅=,因此22949b a ab -=,即29940b ba a ⎛⎫--= ⎪⎝⎭,则33140b b a a ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,解得43b a =,13b a =-(舍去),因此,该双曲线的离心率为53c e a ===.故选:B.【点睛】本题考查双曲线离心率的求解,解题的关键就是利用双曲线的定义建立a 、b 所满足的齐次等式,考查计算能力,属于中等题.13.20x y -=.【解析】设经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y c -+=,然后将()2,1P 求解.【详解】设经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y c -+=,把()2,1P 代入,得:2210c -⨯+=,解得0c =,∴经过点()2,1P 且与直线240x y -+=平行的直线方程为20x y -=.故答案为:20x y -=.【点睛】本题主要考查平行直线的求法,属于基础题.14.平行【分析】根据线面平行的性质定理和判定定理确定正确答案.【详解】根据正方体的性质可知:11//A C AC ,由于11A C ⊄平面ABCD ,AC ⊂平面ABCD ,所以11//A C 平面ABCD ,由于平面11AC B ⋂平面ABCD l =,11AC ⊂平面11A C B ,所以11//l AC .故答案为:平行15.6【分析】利用抛物线的定义可知,设A (x 1,y 1),B (x 2,y 2),x 1+x 2=4,那么|AF |+|BF |=x 1+x 2+2,所以|AF |+|BF |≥|AB |⇒|AB |≤6,当AB 过焦点F 时取最大值为6.16【分析】根据体积的公式求出两个圆锥体积之和,进而求出圆锥的底面圆的半径,求出两圆锥的高,求出答案.【详解】球的体积为3344ππ33R R ⨯=,则两个圆锥的体积之和为3314π=π8316R R ⨯,设两个圆锥的高分别为12,h h ,则122h h R +=,设圆锥底面圆半径为r ,则()2231212π1ππ336r h h r R R ⋅+==⋅,解得:2R r =,即2PD R =,所以222232AP R R R R ⎛⎫=--= ⎪⎝-⎭,222232BP R R R R ⎛⎫=+-= ⎪⎝+⎭所以这两个圆锥的高之差的绝对值为2232233R --=3R17.(1)24π;(2)21π2.【分析】(1)由题意可知,该圆锥的底面半径3r =,母线5l =,从而可求出锥的表面积,(2)先求出大圆锥的高,从而可求出小圆锥的高,进而可得圆台的体积等于大圆锥的体积减去小圆锥的体积【详解】解:(1)由题意可知,该圆锥的底面半径3r =,母线5l =.∴该圆锥的表面积22πππ3π3524πS r rl =+=⨯+⨯⨯=.(2)在Rt POB △中,2222534PO PB OB =-=-=,∵O '是PO 的中点,∴2PO '=.∴小圆锥的高2h '=,小圆锥的底面半径1322r r '==,∴截得的圆台的体积2211321π34π2π3322V V V ⎛⎫=-=⨯⨯⨯-⨯⨯⨯= ⎪⎝⎭小台大.18.(1)证明见解析;(2)2a ≥.【分析】(1)将含有a 的项整理在一起,令a 的系数为0,余下的项为零,进而解得定点坐标,得到答案;(2)将直线化为斜截式,进而限制斜率和纵截距的范围得到答案.【详解】(1)直线:4320l ax y a --+=化为(41)230a x y -+-=,令410,230,x y -=⎧⎨-=⎩1,42,3x y ⎧=⎪⎪∴⎨⎪=⎪⎩即直线:4320l ax y a --+=恒过定点12,43⎛⎫ ⎪⎝⎭,∴直线l 总经过第一象限.(2)直线:4320l ax y a --+=化为4233ax a y -=+,当0a =时,得23y =,直线经过第二象限;要使l 不经过第二象限,须有403203a a ⎧>⎪⎪⎨-⎪≤⎪⎩,解得2a ≥.19.(1)()1,3-;(2)()()22255x y -++=.【解析】(1)根据题意,由直线垂直的判断方法可得220a +=,解可得a 的值,即可得直线2l 的方程,联立两个直线的方程,解可得A 的坐标,即可得答案.(2)根据题意,分析可得圆心C 在直线1l 上,设C 的坐标为(2,)b ,将其代入直线1l 的方程,计算可得b 的值,即可得圆心的坐标,求出圆的半径,即可得答案.【详解】解:(1)根据题意,直线1:210l x y ++=,2:280l ax y a +++=,若12l l ⊥,则有220a +=,解可得1a =-,则直线2l 的方程为270x y -++=,即270x y --=;联立两直线的方程:210270x y x y ++=⎧⎨--=⎩,解可得13x y =⎧⎨=-⎩,即A 的坐标为()1,3-;(2)根据题意,若圆C 与直线2l 相切于点A 且12l l ⊥且垂足为A ,则圆心C 在直线1l 上,设C 的坐标为()2,b ,则有2210b ⨯++=,解可得=5b -,则圆心C 的坐标为()2,5-,圆的半径r CA ===则圆C 的标准方程为()()22255x y -++=.【点睛】本题考查直线与圆的位置关系,涉及圆的标准方程以及直线垂直的判断,属于基础题.20.(1)证明见解析(2)43【分析】(1)通过证明EF BC ⊥、EF BE ⊥来证得EF ⊥平面BCE ;(2)根据锥体体积计算方法,求得三棱锥P ACF -的体积.【详解】(1)因为⊥AE 平面,ABCD AE ⊂平面ABED ,所以平面ABCD ⊥平面ABEG .因为四边形ABCD 是矩形,所以BC AB ⊥.又BC ⊂平面ABCD ,平面ABCD ⋂平面ABEG AB =,所以BC ⊥平面ABEG .因为EF ⊂平面ABEG ,所以EF BC ⊥.因为四边形ABEG 为平行四边形,AB AE =,所以AE GE =.又F 为AG 中点,所以EF AG ⊥.易知//BE AG ,所以EF BE ⊥.又,,BC BE B BC BE ⋂=⊂平面BCE ,所以EF ⊥平面BCE .(2)因为⊥AE 平面,ABCD AG 的中点为,F ABEG 为平行四边形,GE AE ⊥,所以三棱锥F ACP -的高为122AE =.又PAC △的面积12222PAC S =⨯⨯= ,所以三棱锥P ACF -的体积142233P ACF F PAC V V --==⨯⨯=.21.(2)证明见解析【分析】(1)联立2x y =-与3y kx =-,21=120k ∆+>,故l 与抛物线2x y =-恒有两个交点.所以24x y =与3y kx =-,至少有一个交点,故令22=16480k ∆-≥,可求得k 的最小值;(2)由(1)知,k =A x =3A y =,142A FA y =+= ,即可证明22FB FC FA FA ⋅== .【详解】(1)联立2x y =-与3y kx =-,得230x kx +-=,∵21=120k ∆+>,∴l 与抛物线2x y =-恒有两个交点;联立24x y =与3y kx =-,得24120x kx -+=,∵直线l 与曲线M 有m 个公共点,且3m ≥,∴l 与抛物线24x y =至少有1个交点,∴22=16480k ∆-≥,∵0k >,∴k ≥∴k(2)由(1)知,k =且24120A A x kx -+=,∴24A x k =,∴2A x k ==,∴(24A y =,∴3A y =,故()A ,易知()0,1F 为抛物线24x y =的焦点,则23142A FA y =+=+= ,设()11,B x y ,()22,C x y ,由230x kx +-=可得12x x k +=-=123x x =-,∴()121269y y k x x +=+-=-,()()()21212121233399y y kx kx k x x k x x =--=-++=,∴()()()121212*********FB FC x x y y x x y y y y ⋅=+--=+-++= ,∵2216FA FA == ,∴2FB FC FA⋅= 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.22.(1)221124x y +=(2)证明见解析,3⎛⎫- ⎪ ⎪⎝⎭【分析】(1)分别讨论即可确定12,A A 在C 上,即可求解;(2)利用点差法表示出l 的斜率,再表示出l '的直线方程,即可求出定点.【详解】(1)显然13,A A 不能同时在C 上,若23,A A 在C 上,则2223331,31b a b a =+=+≠.故12,A A 在C 上,则22332,1b a b=+=,所以212a =.所以椭圆C 的方程为221124x y +=.(2)设()00,P y y ⎛-∈ ⎝⎭.当00y ≠时,设()()1122,,,M x y N x y ,显然12x x ≠.联立2211222211241124x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,则222212120124x x y y --+=,即1212121213y y x x x x y y -+=-⋅-+.又P 为线段MN 的中点,故直线MN的斜率为0013-.又l l '⊥,所以直线l '的方程为0y y x -=+,即3y x ⎛=+⎭,显然l '恒过定点⎛⎫ ⎪ ⎪⎝⎭.当00y =时,l '过点,03⎛⎫- ⎪ ⎪⎝⎭.综上所述,l '恒过定点3⎛⎫- ⎪ ⎪⎝⎭.。
山东省 2023~2024学年第一学期期中高二数学试题[含答案]
42
2 y
22
4
,化
为 (x 2)2 ( y 1)2 1,故选 A.
考点:1、圆的标准方程;2、“逆代法”求轨迹方程.
【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直
接法,设出动点的坐标
x,
y
,根据题意列出关于
x,
y
的等式即可;②定义法,根据题意动点符合已知曲
y 1 mx 2m R
5. 在平面直角坐标系中,动圆
与直线
相切,则面积最
大的圆的标准方程为( )
x 12 y 12 4
A.
x 12 y 12 5
B.
x 12 y 12 6
C. 【答案】B
x 12 y 12 8
D.
【解析】
【分析】据题意分析可知直线经过定点 P ;圆的圆心到直线距离的最大时,圆的半径最大,即可得到面积
当直线 x ay 1 0 与直线 ax y 1 0 相互垂直时, a 1 不一定成立,所以“ a 1 ”是“直线
x ay 1 0 与直线 ax y 1 0 相互垂直”的非必要条件.
所以“ a 1 ”是“直线 x ay 1 0 与直线 ax y 1 0 相互垂直”的充分非必要条件.
2023~2024 学年第一学期期中高二数学试题
(选择性必修一检测) 2023.11
说明:本试卷满分 150 分,分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷为 第 1 页至第 3 页,第 II 卷为第 3 页至第 4 页.试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到 答题卡规定位置上,书写在试题上的答案无效.考试时间 120 分钟.
陕西省西北大学附中高二上期中考试数学(文)试题
2016~2017学年度第一学期高二数学期中试卷 (文科)命题人:郭红丽 审题人:柳席宁注意:本试卷共三页,四道大题,满分120分,时间100分钟一、选择题:(本大题共10小题,每小题3分)1.双曲线221169x y -=的焦点坐标是 ( )A .(-5,0),(5,0)B .(0,-5),(0,-5)C .(,0,0)D .(0,),() 2 .命题 “1)1(,0>+>∀xe x x 总有”的否定是 ( ) A .1)1(,0≤+>∀x e x x 总有 B .1)1(,0≤+≤∀xe x x 总有 C .1)1(,0000≤+≤∃x ex x 使得 D .1)1(,0000≤+>∃x e x x 使得3.抛物线22x y =的准线方程是 ( ) A .1x=- B .12x =- C.14y =- D .18y =-4.若p 、q 是两个简单命题,且“p 或q ”的否定是真命题,则必有 ( ) A .p 真q 真 B .p 真q 假 C .p 假q 真 D . p 假q 假 5.方程0152=+-x x的两根是两圆锥曲线的离心率,它们是 ( )A .椭圆、双曲线B .椭圆、抛物线C .双曲线、抛物线D .无法确定 6.对于常数m,n,“mn>0”是“方程122=+ny mx的曲线是椭圆”的 ( )A. 充要条件B.充分不必要条件C. 必要不充分条件D.既不充分也不必要条件 7.原命题为“若a>b ,则22bc ac >”关于其逆命题,否命题,逆否命题 真假性的判断依次如下,正确的是 ( ) A.真,真,真 B.真,真,假C.假,假,真D.假,假,假8. 已知21,F F 是椭圆148:22=+y x C 的两个焦点,在C 上满足021=⋅→→PF PF 的点P 的个数为( )A .0B .2C .4D .无数个9.已知抛物线x 2=4y 的焦点F 和点A(-1,8),P 是抛物线上一点,则︱PA ︱+︱PF ︱的最小值是( )A.16B.12C.9D.610.双曲线)0,0(12222>>=-b a by a x 的左、右焦点分为 21,F F ,过1F 作倾斜角为 30的直线交双曲线右支于M 点,若轴x MF ⊥2,则双曲线的离心率为 ( ) A .2 B .3 C .5 D .6 二、填空题: (本大题共5小题,每小题4分)11.命题“若0=ab ,则00==b a 或”的否命题是__________.12.若双曲线)0(14222>=-b b y x 的渐近线方程x y 21±=,则b=_______.13.已知命题"0212,"2≤++∈∃a ax x R x 是假命题,则实数a 的取值范围是________. 14.已知21,F F 是椭圆192522=+y x 的两个焦点,P 为椭圆上一点,且02160=∠PF F 则21F PF ∆的面积为______.15.下面是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽_____米.三、解答题:(本大题共5小题,满分50分,解答应写出文字说明、演算步骤或推证过程)16. (8分) 已知243:>-x p ,021:2>--x x q 求q p ⌝⌝是的什么条件?17.(10分)已知双曲线与椭圆192522=+y x 有共同的焦点,它们离心率之和为514,求双曲线的方程.18.(10分)已知10≠>a a 且,命题p: 内单调递减”在“函数),0(log +∞=x y a 命题q: 轴有两个不同的交点与“曲线x x a x y 1)32(2+-+= 若命题p 且q 是假命题,p 或q 为真命题,求a 的取值范围.19.(10分)已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M (-3,m )到焦点的距离等于5, (1)求抛物线的方程.(2)过点P(-4,1)作直线交抛物线与A,B 两点,使弦AB 恰好被P 点平分,求直线的方程 20. (12分)已知椭圆C 的焦点在y 轴上,短轴长为2,离心率为23(1)求椭圆C 的方程;(2)若直线过点(0,1),交椭圆C 于A,B 两点,且OBOA ⊥,求直线的方程.四、附加题(共20分)1.(5分)已知命题p:01,2>++∈∀x x R x ;命题q: 231,x x R x -=∈∃,下列命题中为真命题的是 ( )A. q p ∧B. q p ∧⌝C. q p ⌝∧D. q p ⌝∧⌝2. (5分)过双曲线1222=-y x 的右焦点作直线交双曲线于A,B 两点,若4=AB , 则这样的直线存在( )条A.1条B.2条C.3条D.4条3. (10分)如图,圆C :(x+1)2+y 2=16内有一点A (1,0),Q 为圆C 上的一个动点,AQ 的垂直平分线与C,Q 的连线交于点M ,求点M 的轨迹方程.2016~2017学年度第一学期高二数学期中试卷答案 (文科)一、选择题 ACDDA CBBCB 二、填空题11.若0≠ab ,则00≠≠b a 且” 12.1 13.(0,4) 14.33 15. 62 三、解答题 16.所以是充分不必要条件和是q p ⌝⌝ 17.54离心率为),0,4椭圆的焦点为(± 2离心率为),0,4双曲线的焦点为(±1124双曲线的方程为22=-y x18.⎪⎩⎪⎨⎧><>25或211真,则假若a a a Q P 所以),25(+∞∈a所以),25()1,21[的取值范围是+∞ a19.(1)154即)4(41的方程为直线441即42两式相减得88),(),,(设)2(21212122112211=+++-=-∴-=∴-=⋅-=+⋅--⎩⎨⎧-=-=∴y x x y l k k y y x x y y x y x y y x B y x A i l20(1)3,223,1==∴==c a e b 椭圆C 的方程是1422=+x y(2)设),(),(2211y x B y x A 由题意得直线得斜率必存在,设为K,且直线必与椭圆有两个交点 所以直线的方程为y=kx+121⎪⎪⎩⎪⎪⎨⎧+-=+-=+∴=-++⎪⎩⎪⎨⎧=++=4342032)4(得141联立2212212222k x x k k x x kx x k x y kx y21解得01)()1(0212122121±==++++∴=+∴⊥k x x k x x k y y x x OBOA 022或022直线的方程为=-+=+-∴y x y x三、附加题 1.A 2.C3. 因为M 为AQ 的垂直平分线上的点 所以MAMQ =因为Q 为圆C :(x+1)2+y 2=16上的一个动点 所以4=+=MC MQ QC3,1,2其中为焦点的椭圆,的轨迹是以点4=∴==∴>=+∴b c a C A M ACMC MA所以点M 的轨迹方程为13422=+y x .。
安徽省蚌埠市2023-2024学年高二上学期期中数学试题含解析
蚌埠2023-2024学年第一学期期中检测试卷高二数学(答案在最后)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若直线l 的一个方向向量为(-,求直线的倾斜角()A.π3B.π6C.2π3D.5π6【答案】C 【解析】【分析】求出直线斜率,进而求出直线倾斜角即得.【详解】直线l 的一个方向向量为(-,则直线l 斜率为,所以直线l 的倾斜角为2π3.故选:C2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a = ,PB b = ,PC c = ,12PE PD = ,则BE = ()A.131222a b c -+B.111222a b c-+C.131222a b c ++D.113222a b c -+【答案】A 【解析】【分析】利用空间向量加法法则直接求解.【详解】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+-()11131131222222222PB PA PB PC PA PB PC a b c=-+-+=-+=-+故选:A .3.已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为A.(3,4) B.(4,5)C.(4,3)-- D.(5,4)--【答案】D 【解析】【分析】根据对称列式求解.【详解】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.4.在一平面直角坐标系中,已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为()A.27 B.41C.17 D.35【答案】D 【解析】【分析】平面直角坐标系中已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角后,通过向量的数量积转化求解距离即可.【详解】解:平面直角坐标系中已知()1,6A -,()2,6B -,沿x 轴将坐标平面折成60°的二面角后,作AC ⊥x 轴,交x 轴于C 点,作BD ⊥x 轴,交x 轴于D 点,则6,3,6,AC CD DB === ,AC CD CD DB ⊥⊥ ,,AC DB的夹角为120°∴AB AC CD DB =++ ,222222212+2+2=6+3+6266452AB AC CD DB AC CD CD DB AC DB =+++⋅⋅⋅-⨯⨯⨯= 35AB ∴=,即折叠后A ,B 两点间的距离为35.故选:D .【点睛】本题考查与二面角有关的立体几何综合题,解题时要认真审题,注意数形结合思想的合理运用.5.如果实数x ,y 满足()2222x y -+=,则yx的范围是()A.()1,1- B.[]1,1- C.()(),11,-∞-⋃+∞ D.(][),11,-∞-⋃+∞【答案】B 【解析】【分析】设yk x =,求y x的范围救等价于求同时经过原点和圆上的点(),x y 的直线中斜率的范围,结合图象,易得取值范围.【详解】解:设yk x=,则y kx =表示经过原点的直线,k 为直线的斜率.如果实数x ,y 满足22(2)2x y -+=和yk x=,即直线y kx =同时经过原点和圆上的点(),x y .其中圆心()2,0C ,半径2r =从图中可知,斜率取最大值时对应的直线斜率为正且刚好与圆相切,设此时切点为E则直线的斜率就是其倾斜角EOC ∠的正切值,易得2OC =,CE r ==可由勾股定理求得OE ==,于是可得到tan 1CEk EOC OE =∠==为y x的最大值;同理,yx的最小值为-1.则yx的范围是[]1,1-.故选:B.6.抛物线214x y =的焦点到双曲线22221(0,0)x y a b a b -=>>的渐近线的距离是2,则该双曲线的离心率为()A.B.C.2D.233【答案】A 【解析】【分析】先求得抛物线的焦点,根据点到直线的距离公式列方程,求得22b a =,由此求得双曲线的离心率.【详解】抛物线214x y =即24y x =的焦点坐标为()1,0,双曲线22221(0,0)x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=,所以点()1,0到直线0bx ay ±=的距离为22=,则22b a =,则双曲线的离心率为c e a =====故选:A7.直线()2200ax by a b a b +--=+≠与圆2220x y +-=的位置关系为()A.相离 B.相切C.相交或相切D.相交【答案】C 【解析】【分析】利用几何法,判断圆心到直线的距离与半径的关系,判断直线与圆的位置关系即可.【详解】由已知得,圆2220x y +-=的圆心为(0,0),所以圆心到直线()2200ax by a b a b +--=+≠.因为222ab a b ≤+,所以()()2222a b a b+≤+≤,所以直线与圆相交或相切;故选:C .8.在正方体1111ABCD A B C D -中,点P 在1AC 上运动(包括端点),则BP 与1AD 所成角的取值范围是()A.ππ,43⎡⎤⎢⎥⎣⎦ B.π0,2⎡⎤⎢⎥⎣⎦C.ππ,62⎡⎤⎢⎥⎣⎦D.ππ,63⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,设1AB =,则,01λ≤≤,利用1c s o BC BP =,,即可得出答案.【详解】设BP 与1AD 所成角为θ,如图所示,不妨设1AB =,则()0,0,0B ,()0,1,0A ,()10,1,1A ,()11,0,1C ,()111,0,1AD BC == ,()1,0,0BC = ,()11,1,1AC =-.设1AP AC λ= ,则()1,1,BP BA AC λλλλ=+=-,01λ≤≤.所以111c ·o s BC BPBC BP BC BP==⋅,当0λ=时,10cos BC BP = ,,此时BP 与1AD 所成角为π2,当0λ≠时,1c os BC BP =,,此时10cos 1BC BP <≤,,当且仅当1λ=时等号成立,因为cos y x =在π02x ⎡⎤∈⎢⎥⎣⎦,上单调递减,所以1π0,2BC BP ⎡⎫∈⎪⎢⎣⎭ ,,综上,π0,2θ⎡⎤∈⎢⎥⎣⎦.故选:B .二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的有()A.若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B.直线32y ax a =-+过定点()32,C.过点()21-,斜率为的点斜式方程为)12y x +=-D.斜率为2-,在y 轴截距为3的直线方程为23y x =-±.【答案】ABC 【解析】【分析】由直线y kx b =+过一、二、四象限,得到斜率0k <,截距0b >,可判定A 正确;由把直线方程化简为()()320a x y -+-+=,得到点()32,都满足方程,可判定B 正确;由点斜式方程,可判定C 正确;由斜截式直线方程可判定D 错误.【详解】对于A 中,由直线y kx b =+过一、二、四象限,所以直线的斜率0k <,截距0b >,故点()k b ,在第二象限,所以A 正确;对于B 中,由直线方程32y ax a =-+,整理得()()320a x y -+-+=,所以无论a 取何值点()32,都满足方程,所以B 正确;对于C 中,由点斜式方程,可知过点()21-,斜率为的点斜式方程为)12y x +=-,所以C 正确;由斜截式直线方程得到斜率为2-,在y 轴上的截距为3的直线方程为23y x =-+,所以D 错误.故选:ABC .【点睛】本题主要考查了直线的方程的形式,以及直线方程的应用,其中解答中熟记直线的点斜式的概念及形式,以及直线的斜率与截距的概念是解答的关键,着重考查推理与运算能力,属于基础题.10.关于空间向量,以下说法正确的是()A.若直线l 的方向向量为()1,0,3e = ,平面α的法向量为22,0,3n ⎛⎫=- ⎪⎝⎭ ,则直线l α∥B.已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C.若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面D.两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线【答案】BCD 【解析】【分析】计算得到e n ⊥,l α∥或l ⊂α,A 错误,若,,a b a c +r r r r 共面,则,,a b c 共面,不成立,故B 正确,化简得到23PA PB PC =--,C 正确,若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确,得到答案.【详解】()22,0,22031,0,3e n ⎛⎫=-=-+= ⎪⎝⎭⋅⋅ ,故e n ⊥ ,故l α∥或l ⊂α,A 错误;若,,a b a c +r r r r共面,设()()b a a c a c λμλμμ=++=++ ,则,,a b c 共面,不成立,故{},,a b m 也是空间的基底,B 正确;111632OP OA OB OC =++ ,则()()()111632OA OP OB OP OC OP -+-+- 1110632PA PB PC =++=,即23PA PB PC =--,故P ,A ,B ,C 四点共面,C 正确;若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确.故选:BCD.11.已知平面α的法向量为()1,2,2n =-- ,点()2,21,2A x x +为α内一点,若点()0,1,2P 到平面α的距离为4,则x 的值为()A.2 B.1C.3- D.6-【答案】AD【解析】【分析】利用向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,代入相关数值,通过解方程即可求解.【详解】解:由向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,又 ()()22,(,20,2,0)122,1,x x AP x x →+--==-,()1,2,2n =--24AP n x x →→∴⋅=+,||3n ==由点()0,1,2P 到平面α的距离为4,有2443x x+=解得2x =或6x =-故选:AD【点睛】本题考查的是点面距离的计算问题,核心是会利用向量法中点到平面的距离公式,考查运算求解能力,属于基础题.12.已知双曲线C 经过点6,12⎛⎫ ⎪ ⎪⎝⎭,且与椭圆22Γ:12x y +=有公共的焦点12,F F ,点M 为椭圆Γ的上顶点,点P 为C 上一动点,则()A.双曲线CB.sin 3MOP ∠>C.当P 为C 与Γ的交点时,121cos 3F PF ∠= D.||PM 的最小值为1【答案】ACD 【解析】【分析】根据题意中的点求出双曲线方程,结合离心率的定义即可判断A ;根据双曲线的渐近线,结合图形即可判断B ;根据椭圆与双曲线的定义,结合余弦定理计算即可判断C ;由两点距离公式,结合二次函数的性质即可判断D.【详解】A :由题意,12(1,0),(1,0)F F -,设双曲线的标准方程为222221,11x y a a a-=<-,将点,1)2代入得212a =,所以双曲线方程为2211122x y -=,得其离心率为22c e a ===,故A 正确;B :由A 选项的分析知,双曲线的渐近线方程为y x =±,如图,π4MON ∠=,所以π3π44MOP <∠<,得sin 12MOP <∠≤,故B 错误;C :当P为双曲线和椭圆在第一象限的交点时,由椭圆和双曲线的定义知,1212PF PF PF PF +=-=12,22PF PF ==,又122F F =,在12F PF △中,由余弦定理得222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,故C 正确;D :设00(,)P x y ,则22001,(0,1)2x y M -=,所以PM ==,当012y =时,min1PM =,故D 正确.故选:ACD.三、填空题(本大题共4小题,共20.0分)13.若空间向量(,2,2)a x =和(1,1,1)b = 的夹角为锐角,则x 的取值范围是________【答案】4x >-且2x ≠【解析】【分析】结合向量夹角公式、向量共线列不等式来求得x 的取值范围.【详解】依题意04211a b a bx x ⎧⋅=>⎪⋅⎪⇒>-⎨⎪≠⎪⎩ 且2x ≠.故答案为:4x >-且2x ≠14.已知0a >,0b >,直线1l :()110a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为__________.【答案】8【解析】【分析】根据两条直线的一般式方程及垂直关系,求出a ,b 满足的条件,再由基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即12a =,14b =时等号成立,所以21a b+的最小值为8.故答案为:8.15.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP 面积的取值范围______.【答案】[]6,12【解析】【分析】由题意求得所以()30A -,,()0,3B -,从而求得AB =,再根据直线与圆的位置关系可求得点P 到直线30x y ++=距离h ⎡∈⎣,再结合面积公式即可求解.【详解】因为直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,所以()30A -,,()0,3B -,因此AB =.因为圆()2232x y -+=的圆心为()3,0,半径r =,设圆心()3,0到直线30x y ++=的距离为d ,则3033222d ++==>,因此直线30x y ++=与圆()2232x y -+=相离.又因为点P 在圆()2232x y -+=上,所以点P 到直线30x y ++=距离h 的最小值为32222d r -=-=,最大值为32242d r +=+=,即22,42h ⎡⎤∈⎣⎦,又因为ABP 面积为13222AB h h ⨯⨯=,所以ABC 面积的取值范围为[]6,12.故答案为:[]6,1216.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________【答案】()2,0或()0,2-【解析】【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论.【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+=与直线y x =-的交点为(1,1)M -,∴22||||10,(1)(1)10MC MA x y ==++-=①由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+,代入欧拉线方程20x y -+=,得20x y --=②由①②可得2,0x y ==或0,2x y ==-.故答案为:()2,0或()0,2-.【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知圆M 的圆心为()2,3,且经过点()5,1C -.(1)求圆M 的标准方程;(2)已知直线:34160l x y -+=与圆M 相交于,A B 两点,求AB .【答案】(1)()()222325x y -+-=(2)AB =【解析】【分析】(1)根据条件求出圆M 的半径,再结合圆心坐标求出标准方程即可;(2)求出圆心M 到直线l 的距离,再由垂径定理求出||AB .【小问1详解】因为圆M 的圆心为(2,3),且经过点(5,1)C -,所以圆M 的半径5r MC ===,所以圆M 的标准方程为()()222325x y -+-=.【小问2详解】由(1)知,圆M 的圆心为()2,3,半径=5r ,所以圆心M 到直线l 的距离2d =,所以由垂径定理,得AB ===.18.已知ABC 的顶点()3,2A ,边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=.(1)求顶点,B C 的坐标;(2)求ABC 的面积.【答案】(1)B 的坐标为()8,7,C 的坐标为()1,3(2)152【解析】【分析】(1)设(),B a b ,(),C m n ,由题意列方程求解即可得出答案.(2)先求出AB 和直线AB 所在的方程,再由点到直线的距离公式求出边AB 上的高,即可求出ABC 的面积.【小问1详解】设(),B a b ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以2903238022a b a b --=⎧⎪⎨++-⨯+=⎪⎩,解得87a b =⎧⎨=⎩,即B 的坐标为()8,7.设(),C m n ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以3802132m n n m -+=⎧⎪-⎨=-⎪-⎩,解得13m n =⎧⎨=⎩,即C 的坐标为()1,3.【小问2详解】因为()()3,2,8,7A B,所以AB ==因为边AB 所在直线的方程为237283y x --=--,即10x y --=,所以点()1,3C 到边AB的距离为2=,即边AB上的高为2,故ABC的面积为115222⨯=.19.已知直三棱柱111ABC A B C -,侧面11AA C C 是正方形,点F 在线段1AC 上,且13AF =,点E 为1BB 的中点,1AA =,1AB BC ==.(1)求异面直线CE 与BF 所成的角;(2)求平面CEF 与平面11ACC A 夹角的余弦值.【答案】(1)90(2)21【解析】【分析】(1)利用直棱柱的结构特征,结合线面垂直的性质,建立空间直角坐标系,利用直线与直线所成角的向量求法,计算得结论;(2)分别求出两个平面的法向量,利用平面与平面所成角的向量求法,即可得到结果.【小问1详解】因为侧面11AA C C 是正方形,1AA =,1AB BC ==,所以BA BC ⊥,因为三棱柱111ABC A B C -直三棱柱,所以1BB ⊥面ABC ,而BC ,BA ⊂平面ABC ,因此1BB BC ⊥,1BB BA ⊥,所以BC ,BA ,1BB 两两垂直.以B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如下图:因此()100C ,,,()000,,B ,()010A ,,,(1102C ,,而点E 为1BB 的中点,所以2002E ⎛⎫ ⎪ ⎪⎝⎭,,,因为F 在线段1AC 上,所以设()()1,201AF AC λλλλλ==-≤≤ ,因此(),12BF BA AF λλλ=+=- ,因为13AF = ()()222123λλλ+-+=解得16λ=,因此152,,666BF ⎛⎫= ⎪ ⎪⎝⎭ ,即152,,666F ⎛⎫ ⎪ ⎪⎝⎭,因为21,0,2CE ⎛⎫=- ⎪ ⎪⎝⎭,所以11066CE BF ⋅=-+= ,因此异面直线CE 与BF 所成的角为90 .【小问2详解】设平面CEF 的法向量为()1n x y z = ,,,而552,,666CF ⎛⎫=- ⎪ ⎪⎝⎭,因此由1100n CE n CF ⎧⋅=⎪⎨⋅=⎪⎩ 得2025520666x z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,取2z =得1x =,35y =,所以13125n ⎛= ⎝ ,,是平面CEF 的一个法向量,设平面11ACC A 的法向量为()2222n x y z = ,,,()110AC =- ,,,(112AC =- ,,,因此由22100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 得020x y x y z -=⎧⎪⎨-+=⎪⎩,取1x =得1y =,0z =,所以()2110n = ,,是平面11ACC A 的一个法向量.设平面CEF 与平面11ACC A 夹角为θ,则02πθ≤≤,因此121212cos cos ,n n n n n n θ⋅==31521+==,所以平面CEF 与平面11ACC A 夹角的余弦值为24221.20.已知双曲线C的焦点坐标为()1F,)2F ,实轴长为4,(1)求双曲线C 的标准方程;(2)若双曲线C 上存在一点P 使得12PF PF ⊥,求12PF F △的面积.【答案】(1)2214x y -=;(2)1.【解析】【分析】(1)由题可知,c a 的值即可求出双曲线C 的标准方程;(2)由双曲线的定义及面积公式即可求出.【详解】(1)设双曲线方程为22221(0,0)x y a b a b-=>>,由条件知c =,24a =,∴2,1a b ==,∴双曲线C 的方程为2214x y -=.(2)由双曲线的定义可知,124PF PF -=±.∵12PF PF ⊥,∴22212420PF PF c +==,即21212()220PF PF PF PF ⨯-+=∴122PF PF ⋅=,∴12PF F △的面积12112122S PF PF =⋅=⨯=.21.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,2PA PB AD ===,4BC =.(1)若PB 的中点为E ,求证://AE 平面PCD ;(2)若PB 与底面ABCD 所成的角为60︒,求PC 与平面PBD 的所成角的余弦值.【答案】(1)证明见解析(2)80535【解析】【分析】(1)取PC 的中点F ,连接,EF DF .先证明四边形ADFE 是平行四边形,即可得出//DF AE ,然后即可证明线面平行;(2)先证明PO ⊥平面ABCD ,即可得出60PBA ∠=︒.然后建立空间直角坐标系,得出点以及向量的坐标,求出平面PBD 的法向量,根据向量求得PC 与平面PBD 的所成角的正弦值,进而求得余弦值.【小问1详解】如图1,取PC 的中点F ,连接,EF DF ,,E F 分别为,PB PC 的中点,∴//EF BC ,且122EF BC ==.//AD BC 且2AD =,//EF AD ∴且2EF AD ==,∴四边形ADFE 是平行四边形,//DF AE ∴.AE ⊄ 平面PCD ,DF ⊂平面PCD ,∴//AE 平面PCD .【小问2详解】若O 是AB 中点,取CD 中点为G ,连结OG .,O G 分别是,AB CD 的中点,∴//OG BC .AB BC ⊥,∴OG AB ⊥.由底面ABCD 为直角梯形且//AD BC ,2PA PB AD ===,4BC =.PA PB =,∴PO AB ⊥.由侧面PAB ⊥底面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂面PAB ,∴PO ⊥平面ABCD ,P ∴在平面ABCD 的投影在直线AB 上.又PB 与底面ABCD 所成的角为60︒,PB ∴与底面ABCD 所成角的平面角60PBA ∠=︒,∴PAB 为等边三角形,2AB PA ==.以O 为原点,分别以,,OB OG OP 所在的直线为,,x y z 轴,如图2建空间直角坐标系,则()1,0,0B ,()1,4,0C ,()1,2,0D -,(3P ,则(3BP =- ,(1,2,3PD =- ,(1,4,3PC = .设平面PBD 的法向量(),,n x y z =r,则00n BP n PD ⎧⋅=⎪⎨⋅=⎪⎩,即020x x y ⎧-+=⎪⎨-+-=⎪⎩,取x =,得)n = ,∴cos ,35n PC n PC n PC ⋅==r uu u r r uu u r r uu u r .设PC 与平面PBD 的所成角为θ,则sin cos ,35n PC θ== . π0,2θ⎡⎤∈⎢⎥⎣⎦,∴cos 0θ≥∴cos 35θ==,PC ∴与平面PBD的夹角的余弦值为35.22.已知抛物线C :()220y px p =>的焦点为F ,斜率为1的直线l 经过F ,且与抛物线C 交于A ,B 两点,8AB =.(1)求抛物线C 的方程;(2)过抛物线C 上一点(),2P a -作两条互相垂直的直线与抛物线C 相交于MN 两点(异于点P ),证明:直线MN 恒过定点,并求出该定点坐标.【答案】(1)24y x=(2)证明见解析【解析】【分析】(1)根据条件,得到直线l 方程为2p y x =-,设1122(,),(,)A x y B x y ,联立抛物线方程,根据抛物线的弦长求得p ,即得答案;(2)求得a 的值,设直线MN 的方程为x my n =+,联立抛物线方程,得根与系数的关系,利用PM PN ⊥,得到32(1)n m -=-或32(1)n m -=--,代入直线方程,分离参数,求得定点坐标,证明结论.【小问1详解】设1122(,),(,)A x y B x y ,由题意知(,0)2p F ,则直线l 方程为2p y x =-,代入()220y px p =>,得22304p x px -+=,280p ∆=>,∴123x x p +=,由抛物线定义,知1||2p AF x =+,2||2p BF x =+,∴12348AB AF BF x x p p p p =+=++=+==,∴2p =,∴抛物线的方程为24y x =.【小问2详解】证明: (),2P a -在抛物线24y x =上,∴242),1(a a =∴=-,由题意,直线MN 的斜率不为0,设直线MN 的方程为x my n =+,设3344(,),(,)M x y N x y ,由24y x x my n⎧=⎨=+⎩,得2440y my n --=,则216160m n '∆=+>,且34344,4y y m y y n +==-,又23434)242(x x m y y n m n +=++=+,22234344334()()()x x my n my n m y y mn y y n n =++=+++=,由题意,可知PM PN ⊥,PM PN ∴⊥,故3434(1)(1)(2)(2)0PM PN x x y y +⋅=+--+= ,故()3434343412()40x x x x y y y y -++++++=,整理得2246850n m n m --++=,即22(3)4)(1n m -=-,∴32(1)n m -=-或32(1)n m -=--,即21n m =+或25n m =-+.若21n m =+,则21(2)1x my n my m m y =+=++=++,此时直线MN 过定点(1,2)-,不合题意;若25n m =-+,则()2525x my n my m m y =+=-+=-+,此时直线MN 过定点(5,2),符合题意,综上,直线MN 过异于P 点的定点(5,2).【点睛】方法点睛:直线和抛物线的位置关系中,证明直线过定点问题,一般是设出直线方程,利用根与系数的关系化简,求得参数之间的关系式,再对直线分离参数,求得定点坐标,进而证明直线过定点.。
北京市西城区2024-2025学年高二上学期期中测验数学试题含解析
2024-2025学年度第一学期期中试卷高二数学(答案在最后)2024年11月本试卷共4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.第一部分(选择题,共40分)一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目要求的一项.1.直线的倾斜角是23π,则斜率是()A.33-B.33C.D.【答案】C 【解析】【分析】由直线的倾斜角与斜率的关系即得.【详解】∵直线的倾斜角是23π,∴直线的斜率为2tan tan()tan 333ππππ=-=-=故选:C.2.已知点P 在椭圆22132x y +=上,点()11,0F ,()21,0F -,则12PF PF +=()A.2B.C.D.【答案】C 【解析】【分析】根据题意由椭圆标准方程以及椭圆定义即可得出结果.【详解】由椭圆方程为22132x y +=可知1a c ==,则()11,0F ,()21,0F -即为椭圆的左、右焦点,由椭圆定义可得122PF PF a +==.故选:C3.已知圆222610x y x y +-++=关于直线0x y m ++=对称,则实数m =()A.-2B.-1C.1D.2【答案】D 【解析】【分析】根据圆关于直线对称即圆心在直线上得到答案.【详解】将222610x y x y +-++=化成标准方程为()()22139x y -++=,圆心为()1,3-,半径为3,因为圆222610x y x y +-++=关于直线0x y m ++=对称,所以圆心()1,3-在直线上,即130m -+=,解得2m =.故选:D.4.以点()2,1A 为圆心,且与x 轴相切的圆的标准方程为()A.()()22211x y -+-= B.()()22214x y -+-=C.()()22211x y +++= D.()()22214x y +++=【答案】A 【解析】【分析】根据圆心和半径可得圆的方程.【详解】以点()2,1A 为圆心,且与x 轴相切的圆的半径为1.故圆的标准方程是()()22211x y -+-=.故选:A .5.已知Q 为直线:210l x y ++=上的动点,点P 满足()1,3QP =-,记P 的轨迹为E ,则()A.E的圆 B.E 是一条与l 相交的直线C.E 上的点到l D.E 是两条平行直线【答案】C 【解析】【分析】设(),P x y ,由()1,3QP =-可得Q 点坐标,由Q 在直线上,故可将点代入坐标,即可得P 轨迹E ,结合选项即可得出正确答案.【详解】设(),P x y ,由()1,3QP =-,则()1,3Q x y -+,由Q 在直线:210l x y ++=上,故()12310x y -+++=,化简得260x y ++=,即P 的轨迹为E 为直线且与直线l 平行,E 上的点到l的距离d ==,故A 、B 、D 错误,C 正确.故选:C .6.如图,三棱锥D-ABC 中,DC ⊥平面ABC ,DC=1,且 为边长等于2的正三角形,则DA 与平面DBC所成角的正弦值为A.5B.5C.5D.25【答案】B 【解析】【分析】先过A 点作出高线,利用等体积法先求高线,再计算线面角.【详解】过点A 作垂直于平面BCD 的直线,垂足为O ,利用等体积法求解AO .011131V DC S 60221V AO S 33233D ABC ABC A BCD BCD sin --=⨯=⨯⨯⨯⨯===⨯,由此解得AO =,DA 与平面DBC 所成角为ADO ∠,所以15sin ADO 5AO AD ∠==,故选B 【点睛】本题考查了等体积法和线面角的基本求法,综合性强,在三棱锥中求高线,利用等体积法是一种常见处理手段,计算线面角,先找线面角,要找线面角必找垂线,而求解垂线的基本方法为等体积法或者点到平面的距离公式.7.点M 是直线250x y -+=上的动点,O 是坐标原点,则以OM 为直径的圆经过定点().A.(0,0)和(1,1)-B.(0,0)和(2,2)-C.(0,0)和(1,2)-D.(0,0)和(2,1)-【答案】D 【解析】【分析】过点O 作OP 垂直于直线250x y -+=,根据圆的性质可得以OM 为直径的圆过定点O 和P ,得解.【详解】如图,过点O 作OP 垂直于直线250x y -+=,垂足为P ,则以OM 为直径的圆过定点O 和P ,易知直线OP 的方程为12y x =-,联立25012x y y x -+=⎧⎪⎨=-⎪⎩,解得21x y =-⎧⎨=⎩,即()2,1P -.所以以OM 为直径的圆经过定点()0,0和()2,1-.故选:D.8.“3m =”是“椭圆2214x y m+=的离心率为12”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据椭圆2214x y m+=的离心率为12求出m ,进而求得答案.【详解】椭圆2214x y m +=的离心率为12,当04m <<时,4122=,得3m =;当4m >时,12=,得163m =.即“3m =”是“椭圆2214x y m+=的离心率为12”的充分不必要条件.故选:A.9.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖,在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖形成图2的组合,这个组合表达了图3所示的几何体.若图3中每个正方体的棱长为1,则点P 到平面QGC 的距离是()A.12B.22C.32D.1【答案】B 【解析】【分析】根据题意,建立空间直角坐标系,结合向量法求解点到面的距离,即可得到结果.【详解】建立如图所示空间直角坐标系,则()()()()0,2,0,0,0,2,1,0,2,2,0,1C G Q P ,则()()()1,0,0,0,2,2,2,2,1GQ GC CP ==-=-,设平面QGC 的一个法向量为(),,n x y z =,则0220GQ n x GC n y z ⎧⋅==⎪⎨⋅=-=⎪⎩ ,取1z =,得()0,1,1n = ,所以点P 到平面QGC 的距离是22n CP n ⋅== .故选:B10.如图,已知正方体1111ABCD A B C D -的棱长为1,点M 为棱AB 的中点,点P 在正方形11BCC B 的边界及其内部运动.以下四个结论中错误的是()A.存在点P满足1PM PD +=B.存在点P 满足1π2D PM ∠=C.满足1AP D M ⊥的点P 的轨迹长度为π4D.满足1MP D M ⊥的点P的轨迹长度为4【答案】C 【解析】【分析】建立空间直角坐标系,利用空间向量解决此题,对于A ,利用两个特殊点求出1PM PD +的值,在此范围内即可;对于B ,利用向量垂直数量积等于零解方程即可求P 点坐标;对于C ,D 利用向量垂直数量积等于零可求P 点的轨迹方程,根据图形找到P 点的轨迹求长度即可.【详解】如图所示,建立空间直角坐标系,则(1A ,0,0),1(0D ,0,1),1(1,,0)2M ,1(0C ,1,1),动点P 设为(P x ,1,)z ,对于A ,点M 关于平面11BCB C 的对称点为13(1,,0)2M ,当动点P 在点1M时,此时1min 11()2PM PD D M +===<,当动点P 在点1C时,此时111135122PM PD C D C M +=+=+=>,所以存在点P满足1PM PD +=,所以A 正确;对于B ,1(1,,)2PM x z =--- ,1(,1,1)PD x z =--- ,若1π2D PM ∠=,则11(1)(1)02PM PD x x z z ⋅=--+--= ,化简得:2211()(022x z -+-=,解得1212x z ⎧=⎪⎪⎨⎪=⎪⎩,即11(,1,)22P ,满足题意,所以B 正确;对于C ,(1,1,)AP x z =- ,11(1,,1)2D M =- ,若1AP D M ⊥,则11102AP D M x z ⋅=-+-= ,即12z x =-,取BC 中点E ,1BB 中点F ,则点P 的轨迹为线段EF ,长度为22,所以C 错误;对于D ,1(1,,)2MP x z =- ,11(1,,1)2D M =- ,若1MP D M ⊥,则11104MP D M x z ⋅=-+-= ,即34z x =-,取BF 中点H ,BE 中点K ,则点P 的轨迹为线段HK ,长度为24,所以D 正确.故选:C .第二部分(非选择题,共110分)二、填空题共5小题,每小题5分,共25分.11.椭圆22194x y +=的离心率是_________.【答案】53【解析】【分析】利用标准方程,求出a ,b ,然后求解c ,即可求解离心率.【详解】椭圆22194x y +=的长半轴为a =3,短半轴为b =2,则半焦距为c ==.所以椭圆的离心率为:e 53c a ==.故答案为53.【点睛】本题考查椭圆的简单性质的应用,离心率的求法,是基础题.12.已知直线1l :()210m x y +++=,2l :()5210x m y +-+=.若12l l ∥,则实数m 的值为______.【答案】-3【解析】【分析】根据两直线平行的条件列式求解即可.【详解】若12l l ∥,则()()2250m m +--=,解得3m =或3m =-,当3m =时,直线1l :510x y ++=与2l :5310x y ++=重合,不符合题意;当3m =-时,直线1l :10x y -++=与2l :5510x y -+=,符合题意,综上,3m =-故答案为:-3.13.在正三棱柱111ABC A B C -中,2AB =,1AA =,则异面直线1AB 与1BC 所成角的大小为______.【答案】π2【解析】【分析】利用异面直线夹角的向量求法建立空间直角坐标系计算可得结果.【详解】分别取11,BC B C 的中点1,O O ,连接1,AO OO ,由正三柱性质可知11,,AO BC OO BC AO OO ⊥⊥⊥,以O 为坐标原点,1,,OA OB OO 所在直线分别为,,x y z 轴建立空间直角坐标系,如下图所示:由2AB =,12AA =可得)()((113,0,0,0,1,0,0,1,2,0,1,2AB BC -,所以((113,1,2,0,2AB BC ==-,又111111022cos ,066AB BC AB BC AB BC ⋅===⨯,且[]11,0,πAB BC ∈ ;所以11π,2AB BC = .故答案为:π214.已知点P 是圆()2211x y -+=上的动点,直线1l :3470x y -+=,2l :340x y m -+=,记P 到直线1l ,2l 的距离分别为1d ,2d (若P 在直线上,则记距离为0),(1)1d 的最大值为______;(2)若当点P 在圆上运动时,12d d +为定值,则m 的取值范围是______.【答案】①.3②.(],8∞--【解析】【分析】(1)根据圆上点到直线的距离最大值为圆心到直线的距离加半径求解即可;(2)根据12d d +为定值,分析得到圆的位置,结合直线与圆的位置关系求解.【详解】(1)圆()2211x y -+=,圆心 th ,半径为1,圆心到直线1l 的距离()2231407234d ⨯-⨯+==+-,所以P 到直线1l 的距离1d 的最大值为13d +=;(2)当7m =时,两直线重合,不符题意;当7m ≠时,直线1l ,2l 平行,若当点P 在圆上运动时,12d d +为定值,所以圆在两平行线之间,此时直线2l 与圆相离,所以()223140134m d ⨯-⨯+=≥+-,解得2m ≥或8m ≤-,又因为当2m ≥时,直线1l ,2l 在圆同侧,不符合题意,所以8m ≤-,故答案为:3,(],8∞--.15.伯努利双纽线(简称双纽线)是瑞士数学家伯努利(1654-1705)在1694年提出的.伯努利将椭圆的定义作了类比处理,指出是到两个定点距离之积为定值的点的轨迹是双纽线.在平面直角坐标系xOy 中,到定点(),0A a -,(),0B a 的距离之积为()20a a >的点的轨迹C 就是伯努利双纽线,C 的方程为()()2222222x y a x y +=-,其形状类似于符号∞,若点()00,P x y 是轨迹C 上一点,给出下列四个结论:①曲线C 关于原点中心对称;②00y x ≤恒成立;③曲线C 2a ;④当0x a =时,0y 取得最大值或最小值.其中所有正确结论的序号是______.【答案】①②③【解析】【分析】根据曲线的方程,结合对称性的判定方法,联立方程组,以及不等式和三角形面积,逐项判定,即可求解.【详解】在曲线C 上任取一点(),M x y ,关于原点的对称点为(),M x y '--,代入曲线C 的方程,可知M '在曲线C 上,所以曲线C 关于原点中心对称,故①正确;因为点()00,P x y 是轨迹C 上一点,所以()()22222200002x y a x y +=-,因为()222000x y +≥,所以()()222222000020x y a x y +=-≥,即2200y x ≤,所以00y x ≤,故②正确;因为()()()22222222222x y a x x y y a +=-+≤,所以2222x y a +≤,≤,所以曲线C ,故③正确;因为()00,P x y ,所以12121212011||||sin ||||22PF F S PF PF F PF F F y =⋅⋅∠=⋅ ,又212||||PF PF a ⋅=,所以2120sin 2||a F PF a y ∠=⋅,即012||sin 22a a y F PF =∠≤,所以022a a y -≤≤,当12π2F PF ∠=时等号成立,故④错误,故答案为:①②③【点睛】方法点睛:本题考查曲线的轨迹及其性质的问题,同时需要结合解三角形的方法对所给信息进行辨析.三、解答题共6小题,共85分.解答题应写出文字说明、验算步骤或证明过程.16.已知直线l :()()211510x y λλλ++---=,R λ∈.(1)当直线l 与直线20x y +=垂直时,求λ的值;(2)设直线l 恒过定点P ,求P 的坐标;(3)若对任意的实数λ,直线l 与圆()2220x y r r +=>总有公共点,直接写出r 的取值范围.【答案】(1)14λ=(2)()2,1P(3)r ≥【解析】【分析】(1)根据直线与直线垂直关系列方程即可求得λ的值;(2)将直线方程转化为()1250x y x y λ--++-=,列方程组解得定点坐标即可;(3)根据直线与圆位置关系结合点与圆位置关系求解即可.【小问1详解】当直线l :()()211510x y λλλ++---=与直线20x y +=垂直时,可得()()21112410λλλ+⨯+-⨯=-=,解得14λ=;【小问2详解】直线l :()()211510x y λλλ++---=方程整理得()1250x y x y λ--++-=,令10,250x y x y --=⎧⎨+-=⎩,解得2,1,x y =⎧⎨=⎩即直线l 恒过定点()2,1P ;【小问3详解】对任意的实数λ,直线l 与圆()2220x y rr +=>总有公共点,则直线l 恒过定点()2,1P 在圆上或者圆内,则OP r =≤,即r ≥17.已知C 经过点()0,2A -,()3,1B ,并且圆心C 在直线28y x =-上,(1)求C 的方程;(2)设过点()2,0P 的直线l 与C 交于M ,N 两点,若MN =l 的方程.【答案】(1)()()22329x y -++=(2)2x =或3460x y +-=.【解析】【分析】(1)根据圆的几何性质确定线段AB 的垂直平分线方程,从而联立直线可得圆心坐标,根据圆的定义得半径,从而得圆的方程;(2)根据直线与圆相交弦长公式,分直线斜率存在与不存在两种情况验证求解直线方程即可.【小问1详解】因为()0,2A -,()3,1B ,则1AB k =,且线段AB 中点为31,22⎛⎫- ⎪⎝⎭,则线段AB 的垂直平分线的斜率为1-,故其方程为1322y x ⎛⎫+=-- ⎪⎝⎭,即10x y +-=,由圆的对称性知点C 在AB 的垂直平分线上,因此联立10,28,x y y x +-=⎧⎨=-⎩解得3,2,x y =⎧⎨=-⎩即点()3,2C -,又因为3r AC ==,所以圆C :()()22329x y -++=.【小问2详解】圆心()3,2C -,半径3r =当1l 的斜率不存在时,1l :2x =,则圆心C 到直线1l 的距离为1d =,此时相交弦长MN ==当1l 的斜率存在时,设1l :()2y k x =-,即20kx y k --=,因为相交弦长MN ==所以C 到1l的距离为1d ==,解得34k =-,此时,直线1l :3460x y +-=,综上,直线1l 的方程为2x =或3460x y +-=.18.已知椭圆C :()222210+=>>x y a b a b的左、右焦点分别为()1F和)2F ,长轴长为4.(1)求椭圆C 的方程;(2)设P 为椭圆C 上一点,()1,0M .若存在实数λ使得12PF PF PM λ+=,求λ的取值范围.【答案】(1)2214x y +=(2)4,3⎡⎢⎣.【解析】【分析】(1)根据椭圆,,a b c 的关系列方程组求得,,a b c 的值,即可得椭圆方程;(2)根据椭圆的定义可得124PF PF +=,再根据两点距离公式结合点在椭圆上求解PM 的取值范围,即可得所求.【小问1详解】由题知22224,,c a a b c ⎧=⎪=⎨⎪=+⎩解得2,1,a b c ⎧=⎪=⎨⎪=⎩所以,C 的方程为2214x y +=.【小问2详解】由椭圆的定义可知124PF PF +=,设点 h t h ,其中220014x y +=,则220014x y =-,所以()222020200033421224433PM x y x x x ⎛⎫=-+=-+=-+ ⎪⎝⎭,因为022x -≤≤,所以2293PM ≤≤,即633PM ≤≤当且仅当043x =时,63PM =,02x =-时,3PM =,因为12PF PF PM λ+=,则12PF PF PM λ+=,所以4,3λ⎡∈⎢⎣.综上所述,λ的取值范围是4,3⎡⎢⎣.19.如图,在三棱台111ABC A B C -中,若1A A ⊥平面1,,2ABC AB AC AB AC AA ⊥===,111,A C N =为AB 中点,M 为棱BC 上一动点(不包含端点).(1)若M 为BC 的中点,求证:1//A N 平面1C MA .(2)是否存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66?若存在,求出BM 长度;若不存在,请说明理由.【答案】(1)证明见解析(2)23【解析】【分析】(1)利用三角形中位线定理,结合平行四边形的判定定理和性质、线面平行的判定定理进行证明即可;(2)利用空间向量夹角公式进行求解即可.【小问1详解】连接NM ,因为N 为AB 中点,M 为BC 的中点,所以1//,2NM AC NM AC =,因为111ABC A B C -是正三棱台,111,2A C AC ==,所以11111//,2AC AC AC AC =,于是有11111//,2NM A C NM A C =,因此四边形11NMC A 是平行四边形,所以111//,A N C M A N ⊄平面1C MA ,1C M ⊂平面1C MA ,所以1//A N 平面1C MA【小问2详解】假设存在点M ,使得平面1C MA 与平面11ACC A 所成角的余弦值为66,因为1A A ⊥平面,,ABC AB AC ⊂平面ABC ,所以11,A A AB AA AC ⊥⊥,而AB AC ⊥,所以建立如图所示的空间直角坐标系,()()()()()10,0,0,0,1,2,2,0,0,0,2,0,,,A C B C M x y z ,设()()()()()0,12,,2,2,022,2,0BM BC x y z M λλλλλ=∈⇒-=-⇒-,设平面1C MA 的法向量为(),,m a b c =,()()1220,1,2,0,,2,AC AM λλ=-=,所以有()1202,2,112220m AC b c m m AM a b λλλλ⎧⋅=+=⎪⎛⎫⇒=-⎨ ⎪-⎝⎭⋅=-+=⎪⎩,因为1A A AB ⊥,AB AC ⊥,11,,AA AC A AA AC A == ,所以AB ⊥平面11ACC A ,所以平面11ACC A 的法向量为()2,0,0AB =,所以41cos ,66m AB m AB m ABλ⋅==⇒⋅ ,解得13λ=,1λ=-舍去,即42,,033M ⎛⎫ ⎪⎝⎭,223BM ==,即BM 长度为223.20.平面直角坐标系xOy 中,点M 到点()0,1F 的距离比它到x 轴的距离多1,记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点()1,0P ,若直线l 与轨迹C 恰好有一个公共点,求实数k 的取值范围.【答案】(1)24,00,0y y x y ≥⎧=⎨<⎩(2)[)0,1.【解析】【分析】(1)根据题意列出等量关系并整理即可得出轨迹C 的方程;(2)分情况将曲线C 与直线方程联立,根据方程根的个数求得实数k 的取值范围.【小问1详解】设点 t1y =+,两边平方,并整理得24,0220,0y y x y y y ≥⎧=+=⎨<⎩,所以轨迹C 的方程为24,00,0y y x y ≥⎧=⎨<⎩.【小问2详解】易知直线():1l y k x =-,当0y ≥时,如下图所示:联立()214y k x x y⎧=-⎨=⎩,消去y 得2440x kx k -+=,21616k k ∆=-,当0∆=,即0k =或1k =时,有且仅有一个公共点且满足题意;当0∆<,即01k <<时,无公共点;当0y <时,令0x =,yk =-,当0k ≤时,无公共点;当0k >时,有一个公共点;综合以上可知当01k ≤<时,有且仅有一个公共点,故k 的取值范围是[)0,1.21.用一个矩形铁皮制作成一个直角圆形弯管(如图1):将该矩形铁皮围成一个圆柱体(如图2),再用一个与圆柱底面所成45︒的平面截圆柱,将圆柱截成两段,再将这两段重新拼接就可以得到直角圆形弯管.现使用长为2π,宽为π的矩形铁皮制作一个直角圆形弯管,当得到的直角圆形弯管的体积最大时(不计拼接损耗部分),解答下列问题.(1)求该直角圆形弯管的体积;(2)已知在制造直角圆形弯管时截得的截口是一个椭圆,求该椭圆的离心率;(3)如图3,若将圆柱被截开的一段的侧面沿着圆柱的一条母线剪开,并展成平面图形(如图4),证明:该截口展开形成的图形恰好是某正弦型函数的部分图象,并指出该正弦型函数的最小正周期与振幅.【答案】(1)2π(2)22(3)证明见解析,最小正周期为2π,振幅为1【解析】【分析】(1)易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,分别求两种情况的体积;(2)根据圆柱截面的性质可得a =,即可得离心率;(3)以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,可得点P 对应到椭圆上的点的高度,即可得截口展开形成的图形的函数,进而可得最小正周期与振幅.【小问1详解】易知直角圆形弯管的体积即为切割前圆管体积,且当矩形的长或宽作为圆柱的高时,体积最大,当矩形的长作为圆柱的高时,圆柱体的底面圆周长为π,则底面半径为12,高为2π,体积为221π2ππ22⎛⎫⨯= ⎪⎝⎭;当矩形的宽作为圆柱的高时,圆柱体的底面圆周长为2π,则底面半径为1,高为π,体积为222ππ1ππ2⨯=>;所以体积为2π;【小问2详解】设该椭圆为()222210+=>>x y a b a b,因此22a b =,即a =,所以22c e a ===;【小问3详解】以椭圆的短轴所在直线在底面的投影为x 轴建立平面直角坐标系,设对于底面圆上一点()cos ,sin P αα,则()1,0与P 所连接的弧长为α,假设短轴对应的高度为0,则点P 对应到椭圆上的点的高度为sin tan 45sin αα︒=,所以,截口展开形成的图形的函数解析式为sin y x =,最小正周期为2π,振幅为1.。
2023-2024学年人大附中高二数学上学期期中考试卷附答案解析
2023-2024学年人大附中高二数学上学期期中考试卷(试卷满分150分,考试时间120分钟)2023.11第I 卷(共18题,满分100分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)1.已知平面//α平面β,直线a α⊂,直线b β⊂,则a 与b 的位置关系是()A .平行B .平行或异面C .异面D .异面或相交2.已知点()3,1,0A -,若向量()2,5,3AB =-,则点B 的坐标是().A .()1,6,3-B .()5,4,3-C .()1,6,3--D .()2,5,3-3.一个水平放置的平面图形OAB 用斜二测画法作出的直观图是如图所示的等腰直角O A B '''△,其中A B ''=,则平面图形OAB 的面积为()A .B .C .D .4.已知1cos ,3a b 〈〉=-,则下列说法错误的是()A .若,a b分别是直线12,l l 的方向向量,则12,l l所成角余弦值是13B .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角正弦值是13C .若,a b分别是平面ABC 、平面BCD 的法向量,则二面角A BC D --的余弦值是13D .若,a b分别是直线l 的方向向量与平面α的法向量,则l 与α所成角余弦值是223.5.一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切,过一条侧棱和对边的中点作三棱锥的截面,所得截面图形是A .B .C .D .6.如图,平行六面体1111ABCD A B C D -的底面ABCD 是矩形,其中2AB =,4=AD ,13AA =,且1160A AD A AB ∠=∠=︒,则线段1AC 的长为()A .9B C D .7.如图,已知大小为60︒的二面角l αβ--棱上有两点A ,B ,,AC AC l α⊂⊥,,BD BD l β⊂⊥,若3,3,7AC BD CD ===,则AB 的长度()A .22B .40C .D 8.鲁班锁是中国传统的智力玩具,起源于中国古代建筑中首创的榫卯结构,它的外观是如图所示的十字立方体,其上下、左右、前后完全对称,六根完全一样的正四棱柱体分成三组,经90°榫卯起来.若正四棱柱的高为6,底面正方形的边长为1,现将该鲁班锁放进一个球形容器(容器壁的厚度忽略不计),则该球形容器表面积的最小值为A .41πB .42πC .43πD .44π9.如图,1111ABCD A B C D -是棱长为4的正方体,P QRH -是棱长为4的正四面体,底面ABCD ,QRH 在同一个平面内,//BC QH ,则正方体中过AD 且与平面PHQ 平行的截面面积是A ..C ..10.《九章算术·商功》中有这样一段话:“斜解立方,得两壍堵.斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.”意思是:如图,沿正方体对角面11A B CD 截正方体可得两个壍堵,再沿平面11B C D 截壍堵可得一个阳马(四棱锥1111D A B C D -),一个鳖臑(三个棱锥11D B C C -),若P 为线段CD 上一动点,平面α过点P ,CD ⊥平面α,设正方体棱长为1,PD x =,α与图中鳖臑截面面积为S ,则点P 从点D 移动到点C 的过程中,S 关于x 的函数图象大致是()A .B .C .D .二、填空题(本大题共5小题,每小题5分,共25分.请把结果填在答题纸上的相应位置.)11.已知正方形ABCD 的边长为2,则AB AC =+ .12.已知圆锥的轴截面是边长为2的等边三角形,则此圆锥的表面积为.13.平面与平面垂直的判定定理符号语言为:.14.在移动通信中,总是有很多用户希望能够同享一个发射媒介,进行无线通信,这种通信方式称为多址通信.多址通信的理论基础是:若用户之间的信号可以做到正交,这些用户就可以同享一个发射媒介.在n 维空间中,正交的定义是两个n 维向量()()1212,,,,,,,n n a x x x b y y y =⋯=⋯满足11220n n x y x y x y ++⋯+=.已知某通信方式中用户的信号是4维非平向量,有四个用户同享一个发射媒介,已知前三个用户的信号向量为22(0,0,0,1),(0,0,1,0),,,0,022⎫⎪⎪⎝⎭.写出一个满足条件的第四个用户的信号向量.15.一个三棱锥的三个侧面中有一个是边长为2的正三角形,另两个是等腰直角三角形,则该三棱锥的体积可能为.三、解答题(本大题共3小题,共35分.解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)16.已知空间直角坐标系中四个点的坐标分别为:(1,1,1),(1,2,3),(4,5,6),(7,8,)A B C D x .(1)求||AC ;(2)若AB CD ⊥ ,求x 的值;(3)若D 点在平面ABC 上,直接写出x 的值.17.如图所示,在四棱锥P ABCD -中,BC 平面PAD ,12BC AD =,E 是PD 的中点.(1)求证:BC AD ∥;(2)求证:CE 平面PAB ;(3)若M 是线段CE 上一动点,则线段AD 上是否存在点N ,使MN 平面PAB ?说明理由.18.如图所标,已知四棱锥E ABCD -中,ABCD 是直角梯形,90ABC BAD ∠=∠=︒,平面EAB ⊥平面ABCD ,63AB BC BE AD AE =====,,(1)证明:BE ⊥平面ABCD ;(2)求B 到平面ADE 的距离;(3)求二面角A DE C --的余弦值.第Ⅱ卷(共8道题,满分50分)一、选择题(共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.)19.关于空间中的角,下列说法中正确的个数是()①空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦②空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦③空间中二面角的平面角的取值范围是π0,2⎡⎤⎢⎣⎦④空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦A .1B .2C .3D .420..如图,在正方形ABCD 中,点E 、F 分别为边BC ,AD 的中点.将ABF △沿BF 所在直线进行翻折,将CDE 沿DE 所在直线进行翻折,在翻折的过程中,下列说法正确的是()A .点A 与点C 在某一位置可能重合B .点A 与点C 3ABC .直线AB 与直线DE 可能垂直D .直线AF 与直线CE 可能垂直21.在正方体ABCD A B C D -''''中,P 为棱AA '上一动点,Q 为底面ABCD 上一动点,M 是PQ 的中点,若点,P Q 都运动时,点M 构成的点集是一个空间几何体,则这个几何体是()A .棱柱B .棱台C .棱锥D .球的一部分22.如图,在棱长为2的正方体1111ABCD A B C D -中,P 为线段11A C 的中点,Q 为线段1BC 上的动点,则下列结论正确的是()A .存在点Q ,使得//PQ BDB .存在点Q ,使得PQ ⊥平面11AB C DC .三棱锥Q APD -的体积是定值D .存在点Q ,使得PQ 与AD 所成的角为π6二、填空题(共3小题,每小题5分,共15分.把答案填在答题纸上的相应位置.)23.如图,在边长为2正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在正方体表面上移动,且满足11B P D E ⊥,则点1B 和满足条件的所有点P 构成的图形的周长是.24.已知正三棱柱111ABC A B C -的所有侧棱长及底面边长都为2,D 是1CC 的中点,则直线AD 与平面1A BD所成角的正弦值为.25.点O 是正四面体1234A A A A 的中心,()11,2,3,4i OA i ==.若11223344OP OA OA OA OA λλλλ=+++ ,其中()011,2,3,4i i λ≤≤=,则动点P 扫过的区域的体积为.三、解答题(本小题15分,解答应写出文字说明过程或演算步骤.请将答案写在答题纸上的相应位置.)26.已知自然数集()*{1,2,3,,}N A n n =∈ ,非空集合{}()*12,,,N m E e e e A m =⊆∈ .若集合E 满足:对任意a A ∈,存在,(1)i j e e E i j m ∈≤≤≤,使得,,{1,0,1}i j a xe ye x y =+∈-,称集合E 为集合A 的一组m 元基底.(1)分别判断下列集合E 是否为集合A 的一组二元基底,并说明理由:①{1,2},{1,2,3,4,5}E A ==;②{2,3},{1,2,3,4,5,6}E A ==.(2)若集合E 是集合A 的一组m 元基底,证明:(1)n m m ≤+;(3)若集合E 为集合{1,2,3,,19}A = 的一组m 元基底,求m 的最小值.1.B【分析】利用直线与平面的位置关系判断即可.【详解】因为平面//α平面β,直线a α⊂,直线b β⊂,所以a 与b 没有交点,即a 与b 可能平行,也可能异面.故选:B.2.B【分析】根据空间向量的坐标表示可得.【详解】由空间向量的坐标表示可知,AB OB OA =-,所以()()()2,5,33,1,05,4,3OB AB OA =+=-+-=-,所以点B 的坐标为()5,4,3-.故选:B 3.B【分析】先求得原图形三角形的底与高的值,进而求得原图形的面积【详解】因为在直观图中,O A A B ''''=O B ''==,,高为2⨯=故原图形的面积为12=.故选:B4.C【分析】根据向量法逐一判断即可.【详解】对于A :因为直线与直线所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以12,l l 所成角余弦值为1cos ,3a b 〈〉= ,故A 正确;对于B :因为直线与平面所成角范围为0,2π⎡⎤⎢⎥⎣⎦,所以l 与α所成角正弦值3s n 1cos ,i a b θ〈=〉= ,l 与α所成223=,故BD 正确;对于C :因为二面角的平面角所成角范围为[)0,p,所以二面角A BC D --的余弦值可能为负值,故C 错误;故选:C 5.B【分析】设三棱锥S ABC -的各棱长均相等,由,SC SH 确定的平面,得到截面SCD ∆,再由正四面体的性质和图象的对称性加以分析,同时对照选项,即可求解.【详解】如图所示,设三棱锥S ABC -的各棱长均相等,球O 是它的内切球,设H 为底面ABC ∆的中心,根据对称性可得内切球的球心O 在三棱锥的高SH 上,由,SC SH 确定的平面交AB 于D ,连接,AD CD ,得到截面SCD ∆,截面SCD 就是经过侧棱SC 与AB 中点的截面,平面SCD 与内切球相交,截得的球大圆如图所示,因为SCD ∆中,圆O 分别与,AD CE 相切于点,E H ,且SD CD =,圆O 与SC 相离,所对照各个选项,可得只有B 项的截面符合题意,故选B.【点睛】本题主要考查了正四面体的内切球的截面问题,其中解答中正确理解组合体的结构特征是解答的关键,着重考查了正四面体的性质,球的性质的应用,属于中档试题.6.C【分析】由11AC AC CC =+ ,两边平方,利用勾股定理以及数量积的定义求出2211,,2AC AC CC CC ⋅ 的值,进而可得答案【详解】由11AC AC CC =+ ,2222211111()2AC AC AC CC AC AC CC CC ==+=+⋅+ .因为底面ABCD 是矩形,2AB =,4=AD ,13AA =,所以2241620=AC AC =+= ,219CC = ,因为1160A AB A AD ∠=∠=,所以1123cos 603,43cos 606AB CC BC CC ⋅=⨯⨯=⋅=⨯⨯=所以()1111822()2()=23+6=1AC CC AB BC CC AB CC BC CC ⋅=+⋅=⋅+⋅,2112018947,47AC AC =++==故选:C.7.C【分析】过A 作AE BD 且AE BD =,连接,CE DE ,易得60CAE ︒∠=,通过线面垂直的判定定理可得ED ⊥平面AEC ,继而得到ED EC ⊥,由勾股定理即可求出答案.【详解】解:过A 作AE BD 且AE BD =,连接,CE DE ,则四边形ABDE 是平行四边形,因为BD AB ⊥,所以平行四边形ABDE 是矩形,因为BD l ⊥,即AE l ⊥,而AC l ⊥,则CAE ∠是二面角l αβ--的平面角,即60CAE ︒∠=,因为3BD AE AC ===,即ACE △为正三角形,所以3CE =,因为,ED AE l AC ⊥⊥,即ED AC ⊥,,,AE AC A AE AC ⋂=⊂平面AEC ,所以ED ⊥平面AEC ,因为EC ⊂平面AEC ,所以ED EC ⊥,所以在Rt EDC中,ED =AB ED ==故选:C8.A【解析】由于图形的对称性,只要求出一组正四棱柱的体对角线,即是外接圆的直径.【详解】由题意,该球形容器的半径的最小值为并在一起的两个长方体体对角线的一半,即为14122=,∴该球形容器体积的最小值为:42π⨯=41π.故选:A.【点睛】本题考查了几何体的外接球问题,考查了空间想象能力,考查了转化思想,该类问题的一个主要方法是通过空间想象,把实际问题抽象成空间几何问题,属于中档题.9.C【分析】首先要根据面面平行的性质定理确定截面的形状,再根据正四面体的性质、等角定理等确定点,E F 的具体位置、AE 的长度,从而求出截面面积.【详解】设截面与1111,A B D C 分别相交于点,E F 则//EF AD ,过点P 作平面QRH 的垂线,垂足为O ,则O 是底面QRH的中心.设OR HQ G ⋂=,则EAB PGO ∠=∠,又因为4323RG RO OG ===,3PO ==,所以22sin sin 3PO EAB PGO PG ∠=∠==,所以43EA EA =⇒=,所以四边形AEFD的面积4S =⨯=选C.【点睛】本题考查正棱锥的平行关系、等角定理,考查空间想象能力,突显了直观想象的考查.属中档题.10.B【分析】分析得出11PMN CB C △△,可得出1PNxCC =,求出PMN S △关于x 的函数关系式,由此可得出合适的选项.【详解】设M 、N 分别为截面与1DB 、1DC 的交点,DP x =,01x ≤≤,CD ⊥ 平面PMN ,CD ⊥平面11B CC ,所以,平面//PMN 平面11B CC ,因为平面1DCC 平面PMN PN =,平面1DCC 平面111B CC CC =,所以,1//PN CC ,同理可得11//MN B C ,1//PM B C ,所以,111111PN DN MN DM PM DP x CC DC B C DB B C DC ======,所以,11PMN CB C △△,易知111111122CB C S B C CC =⋅=△,因此,112212PMN CB C S x S x ==△△.故选:B.【点睛】关键点点睛:本题考查函数图象的辨别,解题的关键就是充分分析图形的几何特征,以此求出函数解析式,结合解析式进行判断.11.【分析】根据向量数量积以及模长公式即可求解.【详解】由题意可知π2,,4AB AC AB AC ===,24,2AB AC ∴=⋅=⨯故AB AC +===故答案为:12.3π【分析】由轴截面可确定圆锥底面半径和母线长,代入圆锥表面积公式即可.【详解】 圆锥轴截面是边长为2的等边三角形,∴圆锥底面半径1r =,圆锥母线长2l =,∴圆锥的表面积2ππ2ππ3πS rl r =+=+=.故答案为:3π.13.,a a αβαβ⊂⊥⇒⊥(答案不唯一)【分析】根据“平面与平面垂直的判定定理”写出正确答案.【详解】平面与平面垂直的判定定理:,a a αβαβ⊂⊥⇒⊥.故答案为:,a a αβαβ⊂⊥⇒⊥(答案不唯一)14.()1,1,0,0(答案不唯一)【分析】根据“正交”的定义列方程,从而求得正确答案.【详解】设满足条件的第四个用户的信号向量是(),,,x y z u ,则()()()(0,0,0,1),,,0(0,0,1,0),,,0,,,,022x y z u x y z u x y z u ⎧⎪⋅=⎪⎪⋅=⎨⎪⎛⎫⎪-⋅=⎪ ⎪⎪⎝⎭⎩,则00022u z x y ⎧⎪=⎪⎪=⎨⎪-=⎪⎩,则0,u z x y ===,故一个满足条件的信号向量是()1,1,0,0.故答案为:()1,1,0,0(答案不唯一)15.(或3或,答案不唯一)【分析】根据已知条件进行分类讨论,结合三棱锥的体积公式求得正确答案.【详解】(1)BCD △是等边三角形,且,AB AC AD AC ⊥⊥,如下图所示,由于,,AB AD A AB AD =⊂ 平面ABD ,所以AC ⊥平面ABD,2,BC BD CD AB AD AC ======222,AB AD BD AB AD +=⊥,则1132A BCD V -=⨯.(2)BCD △是等边三角形,且,AB BD AB BC ⊥⊥,如下图所示,由于,,BD BC B BD BC ⋂=⊂平面BCD ,所以AB ⊥平面BCD ,2BC BD CD AB ====,所以112322sin 602323A BCD V -=⨯⨯⨯⨯︒⨯=.(3)BCD △是等边三角形,且,AB BD CD AC ⊥⊥,如下图所示,取AD 的中点O ,连接,OB OC ,则2BC BD CD AB ====,22AD =122OB OC AD ===222,OB OC BC OB OC +=⊥,,,,,AD OB AD OC OB OC O OB OC ⊥⊥⋂=⊂平面OBC ,所以AD ⊥平面OBC .所以112222232A BCD V -⎛=⨯⨯ ⎝.故答案为:23(或23或23,答案不唯一).16.(1)92x =(3)9x =【分析】(1)根据空间向量的模求得正确答案.(2)根据向量垂直列方程,化简求得x 的值.(3)根据向量共面列方程,从而求得x 的值.【详解】(1)()3,4,5,AC AC ===(2)()()0,1,2,3,3,6AB CD x ==-,由于AB CD ⊥ ,所以3212290AB CD x x ⋅=+-=-= ,解得92x =.(3)()()0,1,2,3,4,5AB AC ==,设AD aAB bAC =+ ,即()()()()6,7,10,,23,4,53,4,25x a a b b b b a b a b -=+=++,所以6374125ba b x a b =⎧⎪=+⎨⎪-=+⎩,解得1,2,9a b x =-==.17.(1)证明见解析(2)证明见解析(3)存在,证明见解析【分析】(1)根据线面平行的性质定理即可证明;(2)由中位线、线面平行的性质可得四边形BCEF 为平行四边形,再根据线面平行的判定即可证明;(3)根据线面、面面平行的性质定理和判断定理即可判断存在性.【详解】(1)在四棱锥P ABCD -中,BC 平面PAD ,BC ⊂平面ABCD ,AD ⊂平面PAD ,平面ABCD ⋂平面PAD AD =,所以BC AD ∥;(2)如下图,取F 为AP 中点,连接,EF BF ,由E 是PD 的中点,所以EF AD ∥且12EF AD =,由(1)知BC AD ∥,又12BC AD =,所以EF BC ∥且EF BC =,所以四边形BCEF 为平行四边形,故CE BF ∥,而CE ⊂平面PAB ,BF ⊄平面PAB ,则CE 平面PAB .(3)取AD 中点N ,连接CN ,EN ,因为E ,N 分别为PD ,AD 的中点,所以EN PA ∥,因为EN ⊄平面PAB ,PA ⊂平面PAB ,所以EN 平面PAB ,线段AD 存在点N ,使得MN 平面PAB ,理由如下:由(2)知:CE 平面PAB ,又CE EN E = ,CE ⊂平面CEN ,EN ⊂平面CEN ,所以平面CEN 平面PAB ,又M 是CE 上的动点,MN ⊂平面CEN ,所以MN 平面PAB ,所以线段AD 存在点N ,使得MN 平面PAB .18.(1)证明详见解析(2)3222-【分析】(1)通过证明BE AB ⊥,结合面面垂直的性质定理证得BE ⊥平面ABCD.(2)建立空间直角坐标系,利用向量法求得B 到平面ADE 的距离.(3)利用向量法求得二面角A DE C --的余弦值.【详解】(1)由于222AB BE AE +=,所以BE AB ⊥,由于平面EAB ⊥平面ABCD ,且交线为AB ,BE ⊂平面EAB ,所以BE ⊥平面ABCD .(2)由于BC ⊂平面ABCD ,所以BE BC ⊥,所以,,BC AB BE 两两相互垂直,由此建立如图所示空间直角坐标系,则()()()()6,0,0,0,6,0,0,0,6,3,6,0C A E D,故()()3,0,0,0,6,6AD AE==-,设平面ADE的法向量为(),,m x y z=,则30660m AD xm AE y z⎧⋅==⎪⎨⋅=-+=⎪⎩,故可设()0,1,1m=,又()0,6,0BA=,所以B到平面ADE的距离为m BAm⋅==.(3)由(2)得平面ADE的法向量为()0,1,1 m=.而()()3,6,0,3,6,6CD ED=-=-,设平面CDE的法向量为(),,n a b c=,则3603660n CD a bn ED a b c⎧⋅=-+=⎪⎨⋅=+-=⎪⎩,故可设()2,1,2n=,由图可知二面角A DE C--为钝角,设为θ,则cos2m nm nθ⋅=-==-⋅.19.C【分析】由空间中直线与直线、直线与平面、平面与平面所成角范围判断即可.【详解】对于①:由空间中两条直线所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知①正确;对于②:由空间中直线与平面所成角的取值范围是π0,2⎡⎤⎢⎥⎣⎦,可知②正确;对于③:空间中二面角的平面角的取值范围是[]0,π,可知③错误;对于④:空间中平面与平面所成角的取值范围是π0,2⎡⎤⎢⎣⎦,可知④正确;故选:C20.D【分析】将ABF△沿BF所在直线进行翻折,将CDE沿DE所在直线进行翻折,在翻折过程中A,C的运动轨迹分别是圆,AB,AF是以BF为旋转轴的圆锥侧面;CE,CD是以DE为旋转轴的圆锥侧面;【详解】由题意,在翻折过程中A,C的运动轨迹分别是两个平行的圆,所以点A与点C不可能重合,故选项A错误;点A与点C的最大距离为正方形的对角线AC=,故选项B错误;由题易知直线BF与直线DE平行,所以直线AB与直线DE所成角和直线AB与直线BF所成角相等,显然直线AB与直线BF不垂直,故选项C错误;由题在正方形中直线AF 与直线CE 平行,设翻折后点A 为1A ,由题易知初始位置ππ,42AFB ⎛⎫∠∈ ⎪⎝⎭,当ABF △沿BF 所在直线翻折到与平面BEDF 重合时,1π2,π2A FA AFB ⎛⎫∠=∠∈ ⎪⎝⎭所以在此连续变化过程中必存在1π2A FA ∠=,即1A F AF ⊥,所以1A F CE ⊥,所以翻折过程中,直线AF 与直线CE 可能垂直,故选项D 正确.故选:D.21.A【分析】先讨论P 点与A 点重合,M 点的轨迹,再分析把P 点从A 点向上沿1AA 移动,在移动的过程中M 点的轨迹,从而可得出结论.【详解】解:若P 点与A 点重合,设,AB AD 的中点分别为,E F ,移动Q 点,则此时M 点的轨迹为以,AE AF 邻边的正方形,再将P 点从A 点向上沿1AA 移动,在移动的过程中可得M 点的轨迹是将以,AE AF 邻边的正方形沿1AA 向上移动,最后当点P 与1A 重合时,得到最后一个正方形,故所得的几何体为棱柱.故选:A.22.B【分析】A 由11//BD B D 、11B D PQ P = 即可判断;B 若Q 为1BC 中点,根据正方体、线面的性质及判定即可判断;C 只需求证1BC 与面APD 是否平行;D 利用空间向量求直线夹角的范围即可判断.【详解】A :正方体中11//BD B D ,而P 为线段11A C 的中点,即为11B D 的中点,所以11B D PQ P = ,故,BD PQ 不可能平行,错;B :若Q 为1BC 中点,则1//PQ A B ,而11A B AB ⊥,故1PQ AB ⊥,又AD ⊥面11ABB A ,1A B ⊂面11ABB A ,则1A B AD ⊥,故PQ AD ⊥,1AB AD A ⋂=,1,AB AD ⊂面11AB C D ,则PQ ⊥面11AB C D ,所以存在Q 使得PQ ⊥平面11AB C D ,对;C :由正方体性质知:11//BC AD ,而1AD 面APD A =,故1BC 与面APD 不平行,所以Q 在线段1BC 上运动时,到面APD 的距离不一定相等,故三棱锥Q APD -的体积不是定值,错;D :构建如下图示空间直角坐标系D xyz -,则(2,0,0)A ,(1,1,2)P ,(2,2,)Q a a -且02a ≤≤,所以(2,0,0)DA = ,(1,1,2)PQ a a =--,若它们夹角为θ,则2222(1)|1|cos 2(1)1(2)233a a a a θ=⨯-++-⋅-+令1[1,1]t a =-∈-,则cos θ==,当(0,1]t ∈,则[)11,t ∈+∞,cos θ∈;当0=t 则cos 0θ=;当[1,0)t ∈-,则(]1,1t ∞∈--,2cos (0,]2θ∈;所以πcos 6=不在上述范围内,错.故选:B23.【分析】以点D 为坐标原点,建立如下图所示的空间直角坐标系,由坐标法证明11,D E MN D E AM ⊥⊥,从而得出满足条件的所有点P 构成的图形,进而得出周长.【详解】以点D 为坐标原点,建立如下图所示的空间直角坐标系,如图,取1,CC CD 的中点分别为,N M ,连接11,,,AM MN B N AB ,由于1AB MN ∥,所以1,,,A B N M 四点共面,且四边形1AB NM 为梯形,()()()()()12,0,0,0,1,0,0,2,1,0,0,2,1,2,0A M N D E ,()()()12,1,0,0,1,1,1,2,2AM MN D E =-==- ,因为11220,220AM D E MN D E ⋅=-+=⋅=-= 所以11,D E MN D E AM ⊥⊥,所以由线面垂直的判定可知1D E ⊥平面1AB NM ,即满足条件的所有点P 构成的图形为1AB NM ,由于11NM AB AM B N ===,则满足条件的所有点P构成的图形的周长为.故答案为:3225+24.10【分析】以A 为原点,建立空间直角坐标系,求得向量(0,2,1)AD = 和平面1A BD 的一个法向量为(3,1,2)n = ,结合向量的夹角公式,即可求解.【详解】如图所示,以A 为原点,过点A 垂直于AC 的直线为x 轴,以AC 和1AA 所在的直线分别为y 轴和z 轴,建立空间直角坐标系,因为正四棱柱111ABC A B C -的所有侧棱长及底面边长都为2,可得1(0,0,0),(0,0,2),(3,1,0),(0,2,1)A A B D ,则11(0,2,1),(3,1,2),(0,2,1)AD A B A D ==-=- ,设平面1A BD 的法向量为(,,)n x y z = ,则1132020n A B y z n A D y z ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令1y =,可得3,2x z ==,所以(3,1,2)n =,设直线AD 与平面1A BD 所成的角为θ,可得410sin cos ,5522AD n AD n AD n θ⋅====⨯ ,所以直线AD 与平面1A BD 所成的角的正弦值为105.故答案为:105.25.16391639【分析】将正四面体1234A A A A 放入正方体中,得到正方体的体对角线是12OA ,从而得到该正方体的边长,再根据条件得到P 扫过的区域的体积即可.【详解】图,作出正四面体1234A A A A ,将正四面体1234A A A A 放入正方体中,如下图所示:则O 是该正方体的中心,设该正方体的棱长为a ,则22212a a a ++=⨯,解得:233a =,又11223344OP OA OA OA OA λλλλ=+++ ,()011,2,3,4i i λ≤≤=,则知P 扫过的区域的边界是以该正方体的六个面作延伸的六个全等的正方体的中心为顶点的正方体,其中两个面如下图所示:可得动点P 扫过的区域的体积为该正方体体积的2倍,即动点P 扫过的区域的体积3233239V ⎛=⨯= ⎝⎭.故答案为:163.26.(1)①不是;②是(2)证明见解析(3)5【分析】(1)根据题干信息,利用二元基底的定义加以验证即可;(2)首先设12m e e e <<⋅⋅⋅<,计算出i j a xe ye =+的各种情况下的正整数个数并求出它们的和,结合题意可得:22C C m m m m n +++≥,即可得证:()1n m m ≤+;(3)由(2)可知()119m m +≥,所以4m ≥,并且得到结论“基底中元素表示出的数最多重复一个”,再讨论当4m =时,集合E 的所有情况均不可能是A 的4元基底,而当5m =时,A 的一个基底{}1,3,5,9,16E =,由此可得m 的最小值为5.【详解】(1){}1,2E =不是{}1,2,3,4,5A =的一个二元基底理由是{}()412,1,0,1x y x y ≠⋅+⋅∈-{}2,3E =是{}1,2,3,4,5,6A =的一个二元基底理由是11213=-⨯+⨯;21203=⨯+⨯;30213=⨯+⨯;41212=⨯+⨯,51213=⨯+⨯,61313=⨯+⨯.(2)不妨设12m e e e <<⋅⋅⋅<,则形如()101i j e e i j m ⋅+⋅≤<≤的正整数共有m 个;形如()111i i e e i m ⋅+⋅≤≤的正整数共有m 个;形如()111i j e e i j m ⋅+⋅≤<≤的正整数至多有2C m 个;形如()()111i j e e i j m -+⋅≤<≤的正整数至多有2C m 个;又集合{}1,2,3,,A n =⋅⋅⋅含有n 个不同的正整数,E 为集合A 的一个m 元基底.故22C C m m m m n +++≥,即()1m m n +≥.(3)由(2)可知()119m m +≥,所以4m ≥.当4m =时,()1191m m +-=,即用基底中元素表示出的数最多重复一个.假设{}1234,,,E e e e e =为{}1,2,3,,19A =⋅⋅⋅的一个4元基底,不妨设1234e e e e <<<,则410e ≥.当410e =时,有39e =,这时28e =或27e =.如果28e =,则1109=-,198=-,1899=+,18108=+,重复元素超出一个,不符合条件;如果27e =,则16e =或15e =,易知{}6,7,9,10E =和{}5,7,9,10E =都不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当411e =时,有38e =,这时27e =,16e =,易知{}6,7,8,11E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当412e =时,有37e =,这时26e =,15e =,易知{}5,6,7,12E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当413e =时,有36e =,这时25e =,14e =,易知{}4,5,6,13E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当414e =时,有35e =,这时24e =,13e =,易知{}3,4,5,14E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当415e =时,有34e =,这时23e =,12=e ,易知{}2,3,4,15E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当416e =时,有33e =,这时22e =,11e =,易知{}1,2,3,16E =不是{}1,2,3,,19A =⋅⋅⋅的4元基底,不符合条件;当417e ≥时,E 均不可能是A 的4元基底.当5m =时,易验证A 的一个基底{}1,3,5,9,16E =,理由:11101=⨯+⨯;21111=⨯+⨯;31301=⨯+⨯;41113=⨯+⨯;51501=⨯+⨯;61313=⨯+⨯;719116=-⨯+⨯;81315=⨯+⨯;91901=⨯+⨯;101515=⨯+⨯;1115116=-⨯+⨯;121319=⨯+⨯;1313116=-⨯+⨯;141519=⨯+⨯;1511116=-⨯+⨯;1611601=⨯+⨯;1711611=⨯+⨯;181919=⨯+⨯;1911613=⨯+⨯.综上所述,m 的最小值为5.【点睛】方法点睛:新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的:遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,照章办事,逐条分析、验证、运算,使问题得以解决.。
2024学年江苏省南京市高二上学期期中考数学试题及答案
南京市2023-2024学年度第一学期期中调研测试高二数学2023.11注意事项:1.本试卷共6页,包括单项选择题(第1题~第8题)、多项选择题(第9题~第12题)、填空题(第13题~第16题)、解答题(第17题~第22题)四部分.本试卷满分为150分,考试时间为120分钟.2.答卷前,考生务必将自己的学校、姓名、考生号填涂在答题卡上指定的位置.3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上指定位置,在其他位置作答一律无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某工厂生产A,B,C三种不同型号的产品,它们的产量之比为2:3:5,用分层抽样的方法抽取一个容量为n的样本.若样本中A型号的产品有20件,则样本容量n为A.50B.80C.100D.2002.已知复数z0=3+i,其中i为虚数单位,复数z满足zz0=3z+z0,则z=A.1-3i B.1+3i C.3+i D.3-i 3.已知圆C1:x2+y2-x-ay=0与圆C2:x2+y2-2x-4y+2=0的公共弦所在直线与x轴垂直,则实数a的值为A.-4 B.-2 C.2 D.4 4.《数书九章》天池测雨:今州郡都有天池盆,以测雨水.但知以盆中之水为得雨之数.不知器形不同,则受雨多少亦异,未可以所测,便为平地得雨之数,即平地降雨量等于盆中积水体积除以盆口面积.假令器形为圆台,盆口径(直径)一尺四寸,底径(直径)六寸、深一尺二寸,接雨水深六寸(一尺等于十寸),则平地降雨量为A.1 B.2 C.3 D.45.已知cos x+sin x=23,则sin2xcos(x-\f(π,4))=A.-716B.-726C.-76D.-736.在平面直角坐标系xOy中,已知双曲线C:x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F 2,A 为双曲线右支上一点,连接AF 1交y 轴于点B .若△ABF 2为等边三角形,则双曲线C 的离心率为A .23B .32C .3D .3327.在平面直角坐标系xOy 中,P 为直线3x +4y +1=0上一点.若向量a =(3,4),则向量OP→在向量a 上的投影向量为A .-15B .(-35,-45)C .(-325,-425)D .无法确定8.已知函数f (x )=sin(ωx +φ)(ω>0).若 x ∈R ,f (x )≤f (π3),且f (x )在(0,π)上恰有1个零点,则实数ω的取值范围为A .(0,32]B .(34,32]C .(34,94]D .(32,94]二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某研究小组依次记录下10天的观测值:26,28,22,24,22,78,32,26,20,22,则A .众数是22B .80百分位数是28C .平均数是30D .前4个数据的方差比最后4个数据的方差小10.声音是由物体的振动产生的声波,一个声音可以是纯音或复合音,复合音由纯音合成,纯音的函数解析式为y =A sin ωx .设声音的函数为φ(x ),音的响度与φ(x )的最大值有关,最大值越大,响度越大;音调与φ(x )的最小正周期有关,最小正周期越大声音越低沉.假设复合音甲的函数解析式是f (x )=sin x +12sin2x ,纯音乙的函数解析式是g (x )=32sin ωx (ω>0),则下列说法正确的有A .纯音乙的响度与ω无关B .纯音乙的音调与ω无关C .若复合音甲的音调比纯音乙的音调低沉,则ω>1D .复合音甲的响度与纯音乙的响度一样大11.在平面直角坐标系xOy 中,抛物线C :y 2=4x 的焦点为F ,A (x 1,y 1),B (x 2,y 2),D (x 3,y 3)为抛物线C 上的任意三点(异于O 点),FA → +FB → +FD →=0,则下列说法正确的有A .设A ,B 到直线x =-1的距离分别为d 1,d 2,则d 1+d 2<AB B .FA +FB +FD =6C .若FA ⊥FB ,则FD =ABD .若直线AB ,AD ,BD 的斜率分别为k AB ,k AD ,k BD ,则1k AB +1k AD +1k BD =012.在长方体ABCD −A 1B 1C 1D 1中,AB =8,AD =6,点E 是正方形BCC 1B 1内部或边界上异于点C 的一点,则下列说法正确的有A .若D 1E ∥平面ABB 1A 1,则E ∈C 1CB .设直线D 1E 与平面BCC 1B 1所成角的最小值为θ,则tan θ=223C .存在E ∈BB 1,使得∠D 1EC >π2D .若∠D 1EC =π2,则EB 的最小值为35-3三、填空题:本题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy 中,已知点M (2,3)和N (4,0),点Q 在x 轴上.若直线MQ 与直线MN 的夹角为90°,则点Q 的坐标为▲________.14.在△ABC 中,AB =36,∠ABC =45°,∠BAC =75°,D 是射线BC 上一点,且CD =10,则AD =▲________.15.某商场为了促销,每天会在上午和下午各举办一场演出活动,两场演出活动相互独立.每个时段演出的概率分别如下:若某顾客打算第二天11:00抵达商场并逛3.5小时后离开,则他当天能观看到演出的概率为▲________.16.已知向量a =(1,3),b =(1,0),|a -c |=12,则向量b ,c 最大夹角的余弦值为▲________.上午演出时段9:00-9:3010:00-10:3011:00-11:30下午演出时段14:00-14:3015:00-15:3016:00-16:30相应的概率161213四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=sin x cos x-sin2x+t(x∈R)的最大值为2 2.(1)求f(x)的解析式;(2)若 x∈[π12,π2],f(x)-m≤0,求实数m的最小值.18.(本小题满分12分)在平面直角坐标系xOy中,已知圆C的圆心在l:x-2y=0上,且圆C与x轴相切,直线l1:x-ay=0(a∈R),D(6,0).(1)若直线l1与圆C相切,求a的值;(2)若直线l1与圆C相交于A,B两点,将圆C分成的两段弧的弧长之比为1∶3,且DA=DB,求圆C的方程.19.(本小题满分12分)如图,一个质地均匀的正二十面体骰子的各面上标有数字0~9这10个数字(相对的两个面上的数字相同),抛掷这个骰子,并记录下朝上一面(与地面或桌面平行)的数字.记事件A1为“抛两次,两次记录的数字之和大于16”,记事件A2为“抛两次,两次记录的数字之和为奇数”,事件A3为“抛两次,第一次记录的数字为奇数”.(1)求P(A1),P(A2);(2)判断事件A1A2与事件A3是否相互独立,并说明理由.20.(本小题满分12分)在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,AB → ·AC →=b 2-12ab .(1)求角C 的大小;(2)若△ABC 的面积为32,且CM → =2MB → ,AN → =3NM → ,求|CN →|的最小值.21.(本小题满分12分)如图,在所有棱长都等于1的三棱柱ABC -A 1B 1C 1中,∠ABB 1=π2,∠B 1BC =π3.(1)证明:A 1C 1⊥B 1C ;(2)求直线BC 与平面ABB 1A 1所成角的大小.22.(本小题满分12分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且焦距为23,椭圆C 的上顶点为B ,且BF 1→ ·BF 2→=-2.(1)求椭圆C 的方程;(2)若直线l 过点A (2,-1),且与椭圆C 交于M ,N 两点(不与B 重合),直线BM 与直线BN 分别交直线x =4于P ,Q 两点.判断是否存在定点G ,使得点P ,Q 关于点G 对称,并说明理由.(第21题图)南京市2023-2024学年度第一学期期中学情调研测试高二数学参考答案 2023.11一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案填涂在答题卡相应位置上. 1.C2.A 3.D 4.B 5.D6.C7.C 8.B二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,请把答案填涂在答题卡相应位置上.全部选对得5分,部分选对得2分,不选或有错选的得0分. 9.ACD10.AC11.BCD12.ABD三、填空题:本大题共4小题,每小题5分,共20分.请把答案填写在答题卡相应位置上. 13.(12,0)14.1415.4916.15-38四、解答题:本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤.17.(本小题满分10分)解:(1)f (x )=sin x cos x -sin 2x +t =12sin2x -1-cos2x2+t ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分=12sin2x +12cos2x -12+t =22sin(2x +π4)-12+t .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为f (x )的最大值为22,所以22-12+t =22,解得t =12,所以f (x )=22sin(2x +π4).∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)由(1)可知f (x )=22sin(2x +π4),当x ∈[π12,π2]时,5π12≤2x +π4≤5π4,当2x +π4=π2时,即x =π8时,f (x )max =22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为f (x )-m ≤0恒成立,所以m ≥f (x )max 恒成立,即m ≥22恒成立,因此m 的最小值为22.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分18.(本小题满分12分)解:(1)因为圆心C 在直线l 上,可设C (2m ,m ),m ≠0.因为圆C 与x 轴相切,所以r =|m |.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为直线l 1与圆C 相切,所以|m |=|2m -am |a 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为m ≠0,解得a =34.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为A ,B 把圆C 分成的两段弧长之比为1∶3,所以弦AB 所对劣弧圆心角为2π×14=π2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分所以圆心C 到l 1的距离d 等于圆C 半径的22倍,即22|m |=|2m -am |a 2+1,由(1)得m ≠0,解得a =1或a =7. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为DA =DB ,所以AB 的垂直平分线经过D (6,0)和圆心C (2m ,m ),所以m2m -6=-a ,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分所以,当a =1时,m =2,圆C 方程为(x -4)2+(y -2)2=4,当a =7时,m =145,圆C 方程为(x -285)2+(y -145)2=19625.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分19.(本小题满分12分)解:若用(i ,j )表示第一次抛掷骰子数字为i ,用j 表示第二次抛掷骰子数字为j ,则样本空间Ω={(i ,j )|0≤i ≤9,0≤j ≤9,i ,j ∈Z },共有100种等可能的样本点. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙1分(1)A 1={(8,9),(9,8),(9,9)},∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分所以P (A 1)=3100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为 A 2={(0,1),(0,3)…(9,8)}共有50个样本点,所以P (A 2)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分(2)因为A 1A 2={(8,9),(9,8)},所以P (A 1A 2)=2100=150.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为A 3={(1,0),(1,1)…(9,9)},共有50个样本点,所以P (A 3)=50100=12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分因为A 1A 2A 3={(9,8)},所以P (A 1A 2A 3)=1100.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分因为P (A 1A 2)P (A 3)=150×12=P (A 1A 2A 3),所以事件A 1A 2与事件A 3独立.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分20.(本小题满分12分)解:(1)方法1因为AB → ·AC → =b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由余弦定理得bc ×b 2+c 2-a 22bc =b 2-12ab ,化简得b 2+a 2-c 22ab =12,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分方法2因为AB → ·AC →=b 2-12ab ,所以bc cos A =b 2-12ab .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分由正弦定理得sin B sin C cos A =sin 2B -12sin A sin B .因为B 为△ABC 内角,所以sin B ≠0,所以sin C cos A =sin B -12sin A .因为A +B +C =π,所以sin C cos A =sin(A +C )-12sin A ,即sin C cos A =sin A cos C +cos A sin C -12sin A ,化简得sin A cos C =12sin A .因为A 为△ABC 内角,所以sin A ≠0,所以cos C =12.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分因为C 为△ABC 内角,所以C =π3.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙5分(2)因为S △ABC =12ab sin C =32,所以ab =2.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为CM → =2MB → ,AN → =3NM → ,所以CN → =CA → +AN → =CA → +34AM → =CA → +34(CM →-CA → )=14CA → +34CM → =14CA → +12CB →,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分从而|C N → |2=(14CA → +12CB → )2=116b 2+14a 2+14CA → ·CB→=116b 2+14a 2+14∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分≥2116b 2×14a 2+14=34.当且仅当116b 2=14a 2,即a =1,b =2时取等号.所以|C N →|的最小值为32.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分21.(本小题满分12分)(1)证明:连接AB 1,在△ABB 1中,∠ABB 1=π2,AB =BB 1=1,所以AB 1=2,在△BCB 1中,∠B 1BC =π3,BC =BB 1=1,所以B 1C =1,所以在△ACB 1中,AB 1=2,B 1C =1,AC =1,所以AB 12=AC 2+B 1C 2,所以AC ⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分又因为在三棱柱ABC -A 1B 1C 1中,AC ∥A 1C 1,所以A 1C 1⊥B 1C .∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)方法1解:连接AB 1,A 1B ,交于点O ,连接BC 1,连接CO .在边长都为1的正方形A 1ABB 1中,O 是AB 1的中点,又因为B 1C =AC =1,所以CO ⊥AB 1. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分因为四边形B 1BCC 1边长都为1,所以B 1C ⊥BC 1.由(1)知B 1C ⊥A 1C 1.又因为A 1C 1∩BC 1=C 1,A 1C 1,BC 1⊂平面A 1BC 1,所以B 1C ⊥平面A 1BC 1.因为A 1B ⊂平面A 1BC 1,所以B 1C ⊥A 1B .因为在边长都为1的四边形A 1ABB 1中,A 1B ⊥AB 1.又因为AB 1∩B 1C =B 1,AB 1,B 1C ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C .因为CO ⊂平面AB 1C ,所以CO ⊥A 1B . ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分又因为A 1B ∩AB 1=O ,A 1B ,AB 1⊂平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4. ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分方法2解:取AB 1中点O ,连接BO ,CO .在△ACB 1中,AC =B 1C =1,所以CO ⊥AB 1, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分在边长都为1的正方形A 1ABB 1中,BO =22,A 1B =2.又因为AC 2+B 1C 2=A 1B 2,所以△ACB 1为直角三角形,所以CO =22.在△ACB 1中,CO 2+BO 2=BC 2,所以CO ⊥BO .…………………………………………8分又因为AB 1∩BO =O ,AB 1,BO 平面A 1ABB 1,所以CO ⊥平面A 1ABB 1,所以∠CBO 即为直线BC 与平面ABB 1A 1所成的角.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分在边长都为1的四边形A 1ABB 1中,∠ABB 1=π2,所以BO =22.因为BC =1,所以cos ∠CBO =22,所以∠CBO =π4,所以直线BC 与平面ABB 1A 1所成角的大小为π4.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分22.(本小题满分12分)解:(1)因为BF 1→ =(-3,-b ),BF 2→=(3,-b ),所以BF 1→ ·BF 2→=b 2-3=-2,所以b 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙2分因为c =3,所以a 2=4,所以椭圆C 的方程为x 24+y 2=1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙4分(2)设直线MN 的方程为y =k (x -2)-1,M (x 1,y 1),N (x 2,y 2),联立{x 2+4y 2=4,y =k (x -2)-1,消去y 得,(1+4k 2)x 2-8k (1+2k )x +16k 2+16k =0,所以x 1+x 2=8k (1+2k )1+4k 2,x 1x 2=16k 2+16k 1+4k 2,∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分直线BM 的方程为y =y 1-1x 1x +1,直线BN 的方程为y =y 2-1x 2x +1,设P ,Q 两点的纵坐标分别为y P ,y Q ,所以y P =4×y 1-1x 1+1,y Q =4×y 2-1x 2+1.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分因为y P +y Q =4×(y 2-1x 2+y 1-1x 1)+2=4×[k (x 2-2)-2x 2+k (x 1-2)-2x 1]+2=4×(2k -2k +2x 2-2k +2x 1)+2=4×[2k -(2k +2)x 1+x 2x 1x 2]+2∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙10分=4×[2k -(2k +2)8k (1+2k )16(k +k 2)]+2=4×[2k -(2k +1)]+2=-2,所以y P +y Q 2=-1,所以存在G (4,-1),使得点P ,Q 关于点G 对称.∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙12分。
2022-2023学年山东省烟台市高二年级上册学期期中考试数学试题【含答案】
2022-2023学年山东省烟台市高二上学期期中数学试题一、单选题1.已知空间向量()1,2,3a =-,则向量a 在坐标平面Oyz 上的投影向量是( ) A .()0,2,3 B .()0,2,3- C .()1,2,0 D .()1,2,3-B【分析】根据投影向量的定义即可得出正确的答案. 【详解】根据空间中点的坐标确定方法知, 空间中点(1,2,3)a =-在坐标平面Oyz 上的投影坐标, 横坐标为0,纵坐标与竖坐标不变.所以空间向量(1,2,3)a =-在坐标平面Oyz 上的投影向量是:(0,2,3)- 故选:B.2.已知过坐标原点的直线l 经过点(A ,直线n 的倾斜角是直线l 的2倍,则直线n 的斜率是( )AB .CD .A【分析】先求得直线l 的倾斜角,从而求得直线n 的倾斜角,进而求得直线n 的斜率.【详解】直线l 过原点和(A π6,所以直线n 的倾斜角为π3,斜率为πtan 3故选:A3.已知点(),3,1A x -,()1,0,3B ,(),1,4C x ,若AB BC ⊥,则x 的值为( ) A .2 B .2-C .0或2-D .0或2D【分析】根据向量垂直时数量积为0即可.【详解】由题知(1,3,4),(1,1,1)AB x BC x =--=- , 因为AB BC ⊥,所以(1)(1)340AB BC x x =---+=, 解得0x = 或2.故选:D.4.以点()3,1-为圆心,且与直线340x y +=相切的圆的方程是( ) A .()()22314x y -++= B .()()22314x y ++-= C .()()22311x y -++= D .()()22311x y ++-=D【分析】求出圆心到直线的距离即得圆的半径,即得圆的方程. 【详解】由题得圆心到直线的距离22|3314|134d r -⨯+⨯===+,所以圆的方程为22(3)(1)1x y ++-=. 故选:D.5.如图,在三棱柱111ABC A B C 中,点M 是底面111A B C △的重心,若1AA a =,AB b =,AC c =,则AM =( )A .1133a b c ++B .111333a b c ++ C .2233a b c ++D .222333a b c ++A【分析】如图,连接1A M ,并延长交11B C 于点D ,根据重心的定义可得D 为11B C 的中点,1123A M A D =,利用空间向量的线性运算即可求解.【详解】由题意知,如图,连接1A M ,并延长交11B C 于点D ,则D 为11B C 的中点,1123A M A D =, 有111111()2A D AB AC =+,11AM AA AM =+ 1123AA A D =+1111121()32AA A B AC =+⨯+111111133AA A B AC =++1133a b c =++.故选:A.6.若直线10ax by 与圆22:1C x y +=相离,则过点(),P a b 的直线与圆C 的位置关系是( ) A .相离 B .相切 C .相交 D .不确定C【分析】根据题意,求出圆心(0,0)到直线10ax by 的距离大于半径,得到221a b +<,故点(),P a b 在圆内,进而判断结果.【详解】因为直线10ax by 与圆22:1C x y +=相离, 所以圆心(0,0)到直线10ax by 的距离大于半径, 221a b>+,所以221a b +<,故点(),P a b 在圆内,所以过点(),P a b 的直线与圆C 相交, 故选:C.7.如图,ABC 和ACD 均是边长为2的正三角形,ABD △是以BD 为斜边的等腰直角三角形,则异面直线AD 与BC 夹角的大小为( )A .π6B .π4C .π3D .π2C【分析】根据向量的模长公式可得向量的夹角,进而可得异面直线的夹角. 【详解】由于CD CB BA AD ,所以22222=222CDCB BA ADCBBAADCB BA CB AD BA AD ,即4=444222cos120222cos 222cos90CB,AD ,化简得1cos =2CB,AD , 由于0πCB,AD,,所以2π=3CB,AD , 故异面直线AD 与BC 夹角的大小为π3, 故选:C8.设过点()0,3的直线与圆()2269x y -+=相交于A ,B 两点,则经过AB 中点与圆心的直线的斜率的取值范围为( ) A .3,4⎛⎫-∞- ⎪⎝⎭B .3,4⎛⎫+∞ ⎪⎝⎭C .3,04⎛⎫- ⎪⎝⎭D .30,4⎛⎫ ⎪⎝⎭B【分析】根据圆的方程求出圆心坐标和半径,利用点到直线的距离为半径求出与圆相切的直线斜率,如图,结合过AB 中点与圆心(6,0)C 的连线必垂直于弦AB 可得1CD ABk k =-,即可求解. 【详解】由圆22(6)9x y -+=,知圆心(6,0)C ,半径3r =, 设过点(0,3)且与圆相切的直线方程为3y kx -=,即30kx y -+=, 则点(6,0)C 到切线的距离为26331k d k +==+,解得0k =或43-,所以4(,0)3AB k ∈-,因为过AB 中点与圆心(6,0)C 的连线必垂直于弦AB ,所以1CD AB k k =-,得13(,)4CD AB k k =-∈+∞. 故选:B.二、多选题9.下列命题正确的有( )A .若空间向量a ,b 与任意一个向量都不能构成基底,则a b ∥B .若向量a ,b 所在的直线为异面直线,则向量a ,b 一定不共面C .若{},,a b c 构成空间的一组基底,则{},,a a c b c ++也是空间的一组基底 D .若{},,a b c 构成空间的一组基底,则2a b -,a b c +-,32a b c ++共面 AC【分析】根据空间共面向量定理,结合基底的定义,对每个选项进行逐一分析,即可判断和选择. 【详解】对A :若空间向量a ,b 与任意一个向量都不能构成基底,则a b ∥,故A 正确; 对B :根据向量的可平移性可知,向量a ,b 一定共面,故B 错误; 对C :若,,a a c b c ++共面,则一定存在实数,m n 使得()b c ma n a c +=++, 即11na b c m n m n-=+++,这与,,a b c 不共互矛盾,故,,a a c b c ++不共面,可做基底,故C 正确; 对D :若2a b -,a b c +-,32a b c ++共面,则一定存在实数,m n ,使得32a b c ++()()2m a b n a b c =-++-, 即213232n m n a b c m n m n--+=-----,这与,,a b c 不共互矛盾,故2a b -,a b c +-,32a b c ++不共面,D错误. 故选:AC.10.圆221:2660C x y x y ++-+=与圆222:2210C x y x y +--+=相交于A ,B 两点,则( )A .AB 的直线方程为4450x y -+= B .公共弦ABC .圆1C 与圆2CD .线段AB 的中垂线方程为20x y +-=ACD【分析】对于A ,两圆方程相减可求出直线AB 的方程,对于B ,利用弦心距、弦和半径的关系可求公共弦AB 的长,对于C ,求出12C C D ,线段AB 的中垂线就是直线12C C ,求出直线12C C 的方程即可.【详解】由222660x y x y ++-+=,得22(1)(3)4x y ++-=,则1(1,3)C -,半径12r =, 由222210x y x y +--+=,得22(1)(1)1x y -+-=,则2(1,1)C ,半径21r =,对于A ,公共弦AB 所在的直线方程为2222266(221)0x y x y x y x y ++-+-+--+=, 即4450x y -+=,所以A 正确,对于B ,2(1,1)C 到直线AB 的距离d ==,所以公共弦AB 的长为AB ==,所以B 错误,对于C ,因为12C C ==12r =,21r =,所以圆1C 与圆2C =C 正确, 对于D ,根据题意可知线段AB 的中垂线就是直线12C C ,因为1231111C C k -==---, 所以直线12C C 为1(1)y x -=--,即20x y +-=,所以D 正确, 故选:ACD11.已知直线:sin cos 10l x y αα--=与圆22:6O x y +=相交于A ,B 两点,则( ) A .AOB 的面积为定值B .2cos 3AOB ∠=-C .圆O 上总存在3个点到直线l 的距离为2D .线段AB 中点的轨迹方程是221x y += ABD【分析】根据圆的几何性质,求出圆心到直线的距离为定值1,可判断AD ,再由圆的几何性质知1cos2d AOB r ∠==由二倍角公式可判断B ,根据点到直线的距离及r d -与2的大小比较可判断D.【详解】对A ,点O 到直线:sin cos 10l x y αα--=的距离22|001|1sin cos d αα--==+,为定值,所以22||2AB r d =-为定值,所以1||2△=⋅AOB S AB d 为定值,故正确;对B ,由A 知,11cos 26d AOB r ∠==,所以212cos 2cos 123AOB AOB ∠=∠-=-,故正确;对C ,因为圆的半径6r =,圆心到直线的距离1d =,所以612r d -=-<,故圆上到直线的距离为2的点只有2个,故错误;对D ,设线段AB 中点(,)P x y ,由圆的几何性质知||1OP d ==,所以P 点的轨迹方程为221x y +=,即221x y +=,故正确. 故选:ABD12.如图,在四棱锥P ABCD -中,PAD 是以AD 为斜边的等腰直角三角形,//BC AD ,AD CD ⊥,222AD PC CD CB ====,E 为PD 的中点,则下列结论正确的有( )A .CE ∥平面PABB .平面PAD ⊥平面ABCDC .点E 到平面PAB 5D .二面角A PB C --5 ACD【分析】利用线面平行的判定定理即可判断A ;几何法找二面角的平面角,确定角度大小即可判断B ;建立空间直角坐标系,根据空间向量计算点到平面的距离,即可判断C ;根据空间向量计算二面角的余弦值,进而求正弦值,从而判断D ; 【详解】取PA 的中点为M ,连接,BM EM , 因为E 为PD 的中点,所以1////,2EM AD BC EM AD BC ==, 所以四边形BCEM 为平行四边形,所以//CE BM ,因为CE ⊄平面PAB ,BM ⊂平面PAB ,所以//CE 平面PAB ,故A 正确; 取AD 为N ,连接,,BN PN 所以1BN CD ==,且BN ND ⊥, 又因为PAD 是等腰直角三角形,所以1,PN ND PN ND ==⊥,且,PN NB ⊂平面PNB ,且PN NB N ,所以ND ⊥平面PNB ,所以PNB ∠为平面PAD 与平面ABCD 的夹角, 又因为//BC ND ,所以BC ⊥平面PNB ,且PB ⊂平面PNB ,所以BC PB ⊥,223PB PC BC =-=,而222PB BN PN ≠+,所以90PNB ∠≠,故B 错误;以B 为原点,,BC BN 所在直线为,x y 轴,在平面PNB 内,作Bz ⊥平面ABCD , 建立如图所示空间直角坐标系,则(0,0,0),(1,1,0),(1,1,0),(1,0,0),B A D C - 因为1,BN PN == 所以120PNB ∠=, 所以331530,,,224P E ⎛⎛ ⎝⎭⎝⎭, 所以()()33153(0,,),1,1,0,1,0,0,,,2224BP BA BC BE ⎛==-== ⎝⎭设平面PAB 的法向量为(,,)m x y z =,则有00m BP m BA ⎧⋅=⎪⎨⋅=⎪⎩即33020y x y ⎧=⎪⎨⎪-+=⎩,令1,x = 则1,3y z == 所以(1,1,3)m =-,所以点E 到平面PAB 的距离为55BE m m⋅= 故C 正确;设平面PBC 的法向量为(,,)n a b c =,则有00n BP n BC ⎧⋅=⎪⎨⋅=⎪⎩即33020b a ⎧+=⎪⎨⎪=⎩,令1,b =则3c =-0,a = 所以(0,1,3)n =-,设二面角A PB C --的大小为θ,则4cos cos ,25mn m n m nθ⋅=<>===所以sin θ=.故D 正确. 故选:ACD.三、填空题13.已知直线1:2320l ax y a ++-=与()2:140l x a y +++=平行,则实数a 的值为______. 1【分析】根据直线一般式平行时满足的关系即可求解.【详解】由12l l //得:()112432a a a a ⎧+=⨯⎨≠-⎩,解得1a =,故114.已知O 为空间中一点,,,,A B C D 四点共面且任意三点不共线,若2BD xOA OB OC =++,则x 的值为______.2-【分析】根据向量共面列方程,结合已知条件求得x 的值. 【详解】依题意,,,,A B C D 四点共面且任意三点不共线, 所以BD mBA nBC =+,所以22mBA nBC xOA OB OC +=++,2222mOA mOB nOC nOB xOA OB OC -+-=++,()2222mOA m n OB nOC xOA OB OC -++=++,所以()222121m x m n n =⎧⎪-+=⎨⎪=⎩,解得2x =-.故2-15.在平面直角坐标系中,M ,N 分别是x 轴和y 轴上的动点,若以MN 为直径的圆C 与直线250x y +-=相切,则圆C 面积的最小值为______. 5π4【分析】根据条件得到点O 在圆上,利用点到直线的距离公式,结合数形结合进行求解即可. 【详解】MN 是直径,90MON ∠=︒,∴点O 在圆上,过O 作OD 垂直直线250x y +-=,交点为D , 圆C 与直线250x y +-=相切,∴要使圆C 的面积最小,此时OD 为圆的直径即可,O 到直线250x y +-=的距离005541OD +-==+,则圆的半径52, 即圆的最小面积25ππ4r =, 故5π416.中和殿是故宫外朝三大殿之一,位于紫禁城太和殿与保和殿之间,中和殿建筑的亮点是屋顶为单檐四角攒(cuán )尖顶,体现天圆地方的理念,其屋顶部分的轮廓可近似看作一个正四棱锥.已知此四棱锥的侧棱长为421米,侧面与底面的夹角为30°,则此四棱锥相邻两个侧面的夹角的余弦值为______.34##0.75 【分析】根据已知条件求得正四棱锥底面边长,再根据二面角的定义通过解三角形求得其余弦值. 【详解】根据题意,取正四棱锥P ABCD -如下所示,其中侧棱长均为21 连接,AC BD 交于点O ,取AB 中点为M ,连接,,PO OM PM .因为P ABCD -为正四棱锥,故PO ⊥面ABCD ,又,OA OB M =为AB 中点,故可得OM AB ⊥,则30PMO ∠=︒;设2AB a =,在△PAB 中,因为421PA PB ==M 为AB 中点,故PM AB ⊥,则2221621PM PB MB a -⨯-在△POM 中,OM a =,故23cos 1621OM PMO PM a ∠===⨯-12a =; 过点C 作CH PB ⊥,连接AH ,又△APB ≅△CPB ,故CHA ∠即为所求二面角的平面角;在△PBC 中,由等面积法可得:22111222CH PB BC PB BC ⎛⎫⨯=⨯- ⎪⎝⎭即242124162112CH ⨯⨯- 解得:487CH =CH AH =,又242AC = 故在△AHC 中,由余弦定理可得2224848224242737cos 1484824427AH HC AC CHA AH HC ⨯⨯-⨯⨯+-∠===-=-⨯⨯⨯. 故相邻两个侧面的夹角的余弦值为34. 故答案为.34四、解答题17.已知圆M 经过两点()1,2A ,()1,0B -且圆心在直线220x y 上.(1)求圆M 的标准方程;(2)若过点()1,3P 的直线l 与圆M 相交于C ,D 两点,且2CD =,求直线l 的方程.(1)()2212x y +-=(2)3490x y -+=或1x =【分析】(1)先求出线段AB 的垂直平分线方程,再与直线220x y 联立,求出交点,即为圆心坐标,再求出半径,可得圆的方程;(2)先根据弦,弦心距和半径的关系求出弦心距,然后分直线l 斜率存在和不存在两种情况求解即可.【详解】(1)由题知,所求圆的圆心M 为线段AB 的垂直平分线和直线220x y 的交点. 线段AB 的中点坐标为()0,1,直线AB 的斜率()20111k -==--, 所以,AB 的垂直平分线的方程为()01y x -=--即1y x =-+.联立得21010x y x y -+=⎧⎨+-=⎩,解得圆心()0,1M . 半径()()2210212r AM ==-+-=.所以,圆M 的标准方程为()2212x y +-=.(2)由题意知圆心M 到直线的距离为2212CD d r ⎛⎫=-= ⎪⎝⎭,当直线l 斜率存在时,设直线方程为()31y k x -=-,即30kx y k -+-=.所以,2211k d k -==+,解得34k =, 所以直线l 的方程为3490x y -+=.当直线l 斜率不存在时,直线方程为1x =,符合题意.所以,直线l 的方程为3490x y -+=或1x =.18.如图,四边形ABCD 是边长为2的菱形,60BAD ∠=︒,PD ⊥平面ABCD ,PD BQ ∥,且22PD BQ ==.(1)求证:PQ AC ⊥;(2)求直线AD 与平面PAQ 所成角的大小.(1)证明见解析;(2)4π. 【分析】(1)通过证明AC ⊥平面PDBQ ,即可由线面垂直证明线线垂直;(2)以BD 中点为坐标原点建立空间直角坐标系,求得AD 的方向向量,以及平面PAQ 的法向量,利用向量法即可求得结果.【详解】(1)证明:连接BD ,如下图所示:因为四边形ABCD 是菱形,所以AC BD ⊥.又因为PD ⊥平面ABCD ,AC ⊂平面ABCD ,所以AC PD ⊥.因为BD PD D =,,BD PD ⊂面PDBQ ,所以AC ⊥平面PDBQ .又因为PQ ⊂平面PDBQ ,所以PQ AC ⊥.(2)设AC BD O =,取PQ 的中点M ,则OM PD ∥,由(1)知,AC BD ⊥,AC OM ⊥.以O 为坐标原点,分别以OA ,OB ,OM 所在直线为x ,y ,z 轴,建立空间直角坐标系,如下所示:则)3,0,0A ,()0,1,0D -,()0,1,2P -,()0,1,1Q . 所以,()3,1,0AD =--,()3,1,2AP =--,()3,1,1AQ =-.设平面PAQ 的一个法向量(),,n x y z =,则00n AP n AQ ⎧⋅=⎪⎨⋅=⎪⎩, 所以32030x y z x y z ⎧--+=⎪⎨-++=⎪⎩,所以23z y x =⎧⎪⎨=⎪⎩,取()3,1,2n =. 设直线AD 与平面PAQ 夹角为α,所以,3102sin cos ,242n ADn AD n AD α⋅--+=<>===⋅,又0,2πα⎛⎫∈ ⎪⎝⎭, 所以直线AD 与平面PAQ 夹角的大小为4π. 19.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,侧棱PD ⊥底面ABCD ,22PD DC AD ===,E 是PC 的中点.(1)求直线PA 到平面BDE 的距离;(2)求平面BDE 与平面PAB 夹角的余弦值.6 30【分析】(1)连接AC 交BD 于点F ,连接EF ,则可得PA ∥平面BDE ,所以P 点到平面BDE 的距离即为直线PA 到平面BDE 的距离,以D 为坐标原点,分别以DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,利用空间向量求解; (2)求出平面BDE 与平面PAB 的法向量,利用空间向量的夹角公式求解.【详解】(1)连接AC 交BD 于点F ,连接EF .因为E 是PC 的中点,所以EF ∥PA .因为PA ⊄平面BDE ,EF ⊂平面BDE ,所以PA ∥平面BDE . 所以P 点到平面BDE 的距离即为直线PA 到平面BDE 的距离.由题知,DP ,DA ,DC 两两垂直,所以,以D 为坐标原点,分别以DA ,DC ,DP 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.则()0,0,0D ,()1,0,0A ,()002P ,,,()1,2,0B ,()0,2,0C ,()0,1,1E . 所以,()1,2,0DB =,()0,1,1DE =.设面BDE 的一个法向量(),,n x y z =,则200n DB x y n DE y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩,令1y =,则()2,1,1n =-- 又()0,0,2DP =,所以P 点到平面BDE 的距离为()()0,0,22,1,1636DP nn ⋅⋅--==. 即直线PA 到平面BDE 的距离为63.(2)由(1)知,平面BDE 的一个法向量()2,1,1n =--.又()1,0,2PA =-,()1,2,2PB =-,设平面PAB 的一个法向量面(),,m a b c =,则20220m PA a c m PB a b c ⎧⋅=-=⎪⎨⋅=+-=⎪⎩,所以20a c b =⎧⎨=⎩,取()2,0,1m =. 设平面BDE 与平面BCE 的夹角为θ,由图可知θ为锐角, 则()()2,1,12,0,130cos cos ,65n mn m n m θ⋅--⋅====⨯⋅ 所以平面BDE 与平面PAB 30 20.已知圆22:240C x y x y m +--+=. (1)若圆C 与圆22812360x y x y +--+=外切,求m 的值;(2)当1m =时,由直线:40l x y -+=上任意一点P 作圆C 的两条切线PA ,PB (A ,B 为切点),试探究四边形PACB 的外接圆是否过定点?若过,求出该点的坐标;若不过,请说明理由.(1)4m =(2)外接圆恒过定点()1,2和17,22⎛⎫- ⎪⎝⎭【分析】(1)由两圆外切可得圆心距等于半径之和,从而可得出答案;(2)由题意可知四边形PACB 外接圆是以PC 中点为圆心,2PC 为半径的圆,设(),4P a a +,求得外接圆方程,过定点则跟参数a 无关,令参数a 的系数等于零,即可得出答案.【详解】(1)解:圆C 的方程可化为:()()22125x y m -+-=-,所以50m ->,即5m <,方程22812360x y x y +--+=可化为:()()224616x y -+-=,因为两圆外切,所以圆心距54d ==,解得4m =,符合题意,所以4m =;(2)解:由题意可知四边形PACB 外接圆是以PC 中点为圆心,2PC 为半径的圆, 设(),4P a a +,则圆的方程为()()()()1420x a x y a y --+---=,整理得:()()2216380x y a x a y a +-+-+++=,式子可化为:()226830x y x y a x y +--+-+-=,联立方程2268030x y x y x y ⎧+--+=⎨+-=⎩,整理得:2210x x --=, 解得1x =或12x =-, 所以外接圆恒过定点()1,2和17,22⎛⎫- ⎪⎝⎭. 21.在如图所示的几何体111ABC A B C 中,ABC 与111B C A 为全等的等腰直角三角形,11190BAC A B C ∠=∠=︒,四边形11BAA B 为正方形,且11B C AC ∥,1AA AC ⊥.已知平面11AA C ⋂平面11BB C l =.(1)求证:1l AA ∥;(2)已知1AB =,P 为l 上一点,求直线AP 与平面BPC 所成角的正弦值的最大值.(1)见解析 (2)13【分析】(1)证明1AA ∥平面1BB C ,再根据线面平行的性质即可得证;(2)以A 为坐标原点,建立空间直角坐标系,利用向量法求解即可.【详解】(1)证明:因为四边形11BAA B 为正方形,所以11AA BB ∥,因为1AA ⊄平面1BB C ,1BB ⊂平面1BB C ,所以1AA ∥平面1BB C ,又因为1AA ⊂平面1AA C ,平面11AA C ⋂平面1BB C l =,所以1l AA ∥;(2)解:以A 为坐标原点,分别以AB ,AC ,1AA 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则()11,1,1C ,()1,0,0B ,()0,1,0C ,由(1)知,可设()1,1,P a ,所以()0,1,BP a =,()1,1,0BC =-,()1,1,AP a =.设平面BPC 的一个法向量(),,n x y z =,则00n BP x az n BC x y ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,可取(),,1n a a =--, 设直线AP 与平面BPC 所成的角为θ, 则()()22421,1,,,1sin cos ,221252AP na a a a AP n AP n a a a a θ⋅⋅--===⋅+⨯+++22113225a a =≤++,当且仅当2222a a =,即1a =±时,等号成立, 所以直线AP 与平面BPC 所成角的正弦值的最大值为13.22.如图,经过原点O 的直线与圆()22:14M x y ++=相交于,A B 两点,过点()1,0C 且与AB 垂直的直线与圆M 的另一个交点为D .(1)当点B 坐标为()1,2--时,求直线CD 的方程;(2)记点A 关于x 轴对称点为F (异于点,A B ),求证:直线BF 恒过x 轴上一定点,并求出该定点坐标;(3)求四边形ABCD 的面积S 的取值范围.(1)210x y +-=(2)证明见解析,定点()3,0(3)(0,3【分析】(1)根据垂直求出CD 的斜率,由点斜式即可解决;(2)设直线方程,联立方程组到韦达定理,找等量关系,()121121y y y y x x x x ++=--由0y =,得()121112y x x x x y y -=++,再根据11y kx =,22y kx =即可解决; (3)分类讨论,运用弦长公式求得AB CD ,,由12S AB CD =即可. 【详解】(1)当点B 坐标为()1,2--时,直线AB 的斜率为2,因为CD AB ⊥,所以CD 的斜率为12-. 因为()1,0C ,所以直线CD 的方程为()1012y x -=--,即210x y +-=. (2)证明:设()11,A x y ,()22,B x y ,()11,F x y - 由题意可知,直线AB 斜率存在且不为零,所以,可设直线AB 方程为()0y kx k =≠.联立方程22230x y x y kx⎧++-=⎨=⎩,消y 得,()221230k x x ++-=, 由韦达定理可得,12221x x k +=-+,12231x x k =-+. 又直线BF 的方程()121121y y y y x x x x ++=--,令0y =,得()121112y x x x x y y -=++. 又由11y kx =,22y kx =可得,()()121121121112121223y x x x x x x x x x x y y x x x x --=+=+==+++, 所以,直线BF 恒过x 轴上一定点()3,0. (3)当直线AB斜率不存在时,AB =4CD =,12S AB CD == 当直线AB 斜率存在时,可设直线AB 的方程为()0y kx k =≠, 所以,圆心M 到直线AB的距离为d =所以,AB = 直线CD 的方程可设为()11y x k=--整理得10x ky +-=, 圆心M 到直线CD的距离为d =,所以,CD ==所以,12S AB CD ==,令()210,11t k =∈+,所以,上式可化为:S ==()0,1t ∈,所以,(0,S ∈.综上,S 的取值范围是(0,.。
四川省成都七中实验学校2021-2022学年高二上学期期中考试数学(文)试题 Word版含答案
成都七中试验学校高二(上)期中考试 文科数学试题一、选择题:(本大共12小题,每小题5分,共60分,在每个小题所给出的四个选项中,只有一项是符合要求的,把正确选项的代号填在答题卡的指定位置.)1.若方程220x y x y m +-++=表示圆,则实数m 的取值范围是A .12m <B .1m <C .12m > D .12m ≤2.直线310ax y --=与直线2()103a x y -++=垂直,则a 的值是 A .-1或13 B .1或13 C .-13或-1 D .-13或13.已知0,0ab bc <<,则直线ax by c +=通过 A 第一、二、三象限 B 第一、二、四象限C 第一、三、四象限D 其次、三、四象限4.下列四个命题中,其中真命题的是A .假如两个平面有三个公共点,那么这两个平面重合B .两条直线可以确定一个平面C .若M M l M l αβαβ∈∈=∈,,,则D .空间中,相交于同一点的三条直线在同一平面内5.与两条异面直线分别相交的两条直线A .可能是平行直线B .肯定是异面直线C .可能是相交直线D .肯定是相交直线6.一个空间几何体的三视图如图所示,该几何体的表面积为 A.96 B.136C.152D.1927.已知圆1O :22()()4x a y b -+-=,2O :22(1)(2)1x a y b --+--= ()a b R ∈,,那么两圆的位置关系是A .内含B .内切C .相交D .外切8.给出下列关于互不相同的直线l n m ,,和平面βα,的四个命题,其中正确命题的个数是 (1)A l m =⋂⊂αα,,点m A ∉则l 与m 不共面;(2)m l ,是异面直线,αα//,//m l 且m n l n ⊥⊥,则α⊥n ; (3)若βαβα//.//,//m l 则m l //;(4)若ββαα//,//,,,m l A m l m l =⋂⊂⊂,则βα//, (5)若l α⊥,l n ⊥,则n//αA .1个B .2个C .3个D .4个9. ),(y x P 是圆1)1(22=-+y x 上任意一点,若不等式0≥++c y x 恒成立,则c 的取值范围是 A .]12,21[--- B .),12[+∞- C .),21[+∞- D .)12,21(---10.直线l :30mx y m -+-=与圆C :22(1)5x y +-=的位置关系是A 相离B 相切C 相交D 有公共点11.正方体ABCD -A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为A.23B.33C.23D.6312.如图,正方体ABCD -A 1B 1C 1D 1中,E 是棱B 1C 1的中点,动点P 在底面ABCD 内,且PA 1=A 1E ,则点P 运动形成的图形是A.线段B.圆弧C.椭圆的一部分D.抛物线的一部分二、填空题:(本大题共4个小题,每小题5分,共20分.)13.已知正方体ABCD-A 1B 1C 1D 1,下列结论中正确的是 (只填序号). ①AD 1∥BC 1; ②平面AB 1D 1∥平面BDC 1; ③AD 1∥DC 1; ④AD 1∥平面BDC 1.14.把一个半径为5错误!未找到引用源。
安徽省淮南市第二中学2021-2022学年高二上学期期中考试数学(文)试题 Word版含答案
淮南二中2021届高二上学期数学(文科)期中试题满分:150分 考试时间:120分钟一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.从编号为0,1,2,…,79的80件产品中,接受系统抽样的方法抽取容量为5的一个样本,若编号为43的产品在样本中,则该样本中产品的最小编号为( ) A.9 B.10 C.11 D.162.执行右边的程序框图,若输入的x 的值是1,则输出的值是( ) A.-1 B.1 C.0 D.23.一个正方体的体积为8,则这个正方体的内切球的体积是 ( )A. 43πB. 163πC. 16πD. 64π4.设α,β是不同的平面,a ,b ,c 为不同的直线,则下列叙述错误的是 ( ) A.若a ∥b ,b ∥c ,则a ∥c B. 若a α⊥,a ∥b ,则α⊥b C.若α∥β,α⊂a ,β⊂b 则a ∥b D. 若α∥β,a α⊥,则a β⊥5. 已知a ,b 是异面直线,直线c 平行于直线a ,那么c 与b ( ) A. 肯定是异面直线 B. 肯定是相交直线 C. 不行能...是相交直线 D. 不行能...是平行直线6.下列说法错误的是( )A. 回归直线过样本点的中心(),x yB. 在回归分析模型中,残差平方和越小,说明模型的拟合效果越好C.从独立性检验可知有95%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有95%的可能患有肺病D.从统计量中得知有99%的把握认为吸烟与患肺病有关系,是指有1%的可能性使得推断消灭错误 7.以下茎叶图记录了甲、乙两组各五名同学在一次英语听力测试中的成果(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则乙组的众数比甲组的平均数多( )A .0.4B .0.5C .0.6D .0.78.在下列四个正方体中,能得出AB ⊥CD 的是( )A. B. C. D.9.正方体1111ABCD A B C D -中, E 、F 分别是1DD 、BD 的中点,则直线1AD 与EF 所成的角余弦值是( )A .12 B .32C .63D .6210.某程序框图所示,若输出的S=120,则推断框内为( )A. k >4?B. k >5?C. k >6?D. k >7?11.若12321,,,,a a a a ⋅⋅⋅这21个数据的平均数为x ,方差为0.22,则12321,,,,,a a a a x ⋅⋅⋅这22个数据的方差为( ) A. 0.19B. 0.20C. 0.21D. 0.2212.已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示, 则该几何体的体积是( )A .143 B. 203 C. 173D. 8二、填空题(每题5分,满分20分,请将答案填在答题纸上)13.甲、乙、丙、丁四名选手在选拔赛中所得的平均环数x 及其方差2s 如下表所示, 则选送决赛的最佳人选应是___________.14.已知程序框图如图,则输出的i = __________15. 某组合体的三视图如右图所示,则该组合体的表面积为__________16.如图,在三棱锥D ABC -中,2AB BC ==,90ABC ∠=,32DA DC ==,且平面DAC ⊥平面ABC ,则该三棱锥外接球的表面积为__________甲 乙 丙 丁 7 8 8 6 6.36.378.7。
山东省济南市历城区第二中学2021-2022学年高二上学期期中考试数学(文)试题 Word版含答案
启用前绝密历城二中53级高二期中调研考试文科数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页,考试时间120分钟,满分150分,考试结束后,将本试卷和答题卡一并交回.留意事项:1答题前,考生务必用05毫米黑色签字笔将自己的姓名、座号、考生号和科类写在答题卡和试卷规定的位置上.2第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦洁净后,再选涂其他答案标号,答案不能答在试卷上.3第Ⅱ卷必需用05毫米黑色签字笔作答,答案必需写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带不按以上要求作答的答案无效.4填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第I卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分每小题给出的四个选项中只有一项是符合题目要求的.(1)椭圆x2+4y2=1的离心率为(A )(B )(C )(D )(2)在△ABC中,“”是“”的(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分又不必要条件(3)若不等式对于一切成立,则a的最小值是(A)0 (B)-2 (C )(D)-3(4)已知椭圆G的中心在坐标原点,长轴在x 轴上,离心率为,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程为().(A)4x2+9y2=1 (B)9x2+4y2=1 (C)36x2+9y2=1 (D)9x2+36y2=1(5)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有().(A)1条(B)2条(C)3条(D)4条(6)在等比数列中,若,则(A)9 (B)1 (C)2 (D)3(7)已知,给出下列四个结论:①②③其中正确结论的序号是(A)①②③(B)①②(C)②③(D)③(8)已知满足约束条件,则的最大值为(A)6 (B)8 (C)10 (D)12(9)下列各式中最小值为2的是(A )(B )(C )(D )(10)设等差数列的前项和为,且满足,,对任意正整数,都有,则的值为(A)1006 (B)1007 (C)1008 (D)1009(11)过双曲线(,)的右焦点作圆的切线(切点为),交轴于点.若为线段的中点,则双曲线的离心率为(A )(B )(C)2 (D )(12)在△ABC 中,点分别为边和的中点,点P 是线段上任意一点(不含端点),且△ABC的面积为1,若△PAB,△PCA,△PBC 的面积分别为,记,则的最小值为(A)26 (B)32 (C)36 (D)48第II卷(共90分)二、填空题:本大题共4个小题,每小题5分,共20分.(13)等差数列中,为其前项和,若则=_______.(14)椭圆的弦被点(4,2)平分,则此弦所在的直线方程是_______.(15)不等式的解集为_______.(16)下列有关命题的说法正确的是_______.①命题“若,则”的否命题为:“若,则”.②“”是“”的充分不必要条件.③命题“使得”的否定是:“均有”.④命题“若,则”的逆否命题为真命题三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必需作答.第22、23题为选考题,考生依据要求作答.(一)必考题:60分.(17)(本小题满分12分)已知数列的前项和为,且是与2的等差中项,(I )求的值;(Ⅱ)求数列的通项公式.(18)(本小题满分12分)已知,命题“函数在上单调递减”,命题“关于的不等式对一切的恒成立”,若为假命题,为真命题,求实数的取值范围.(19)(本小题满分12分)解关于x 的不等式().(20)(本小题满分12分)某单位建筑一间地面面积为12 m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5 m.房屋正面的造价为400元/m2,房屋侧面的造价为150元/m2,屋顶和地面的造价费用合计为5 800元,假如墙高为3 m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低?(21)(本小题满分12分)已知椭圆的离心率为,且过点.(I )求椭圆的标准方程;(Ⅱ)若直线与椭圆相交于两点,满足:,试推断的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答,假如多做,则按所做的第一题计分. (22)[选修4—5:不等式选讲]设函数,其中.(I )当时,求不等式的解集;(Ⅱ)若不等式的解集为,求的值.(23)[选修4—5:不等式选讲]已知均为正数,证明:,并确定为何值时,等号成立.高二数学期中参考答案(文科)选择题:(1)A(2)A(3)C(4)C(5)C (6)D(7)B(8)D(9)B(10)D (11)A(12)C 填空题:(13) 28 (14)x+2y-8=0(15)(16)②④解答题:(17)① ........2分由①得:........4分........6分(2)解:②②-①得........9分数列以2为首项,以2为公比的等比数列即 ........12分(18)解:为真:;........2分;为真:,得,又,........5分由于为假命题,为真命题,所以命题一真一假........7分(1)当真假........9分(2)当假真无解综上,的取值范围是........12分(19)解:原不等式可化为ax2+(a-2)x-2≥0⇒(ax-2)(x+1)≥0.由于a<0时,原不等式化为a2(x+1)≤0. ........2分①当a2>-1,即a<-2时,原不等式等价于-1≤x≤a2;........5分②当a2=-1,即a=-2时,原不等式等价于x=-1;........8分③当a 2<-1,即-2<a <0时,原不等式等价于a 2≤x ≤-1. ........11分 综上所述:当a <-2时,原不等式的解集为a 2; 当a =-2时,原不等式的解集为{-1};当-2<a <0时,原不等式的解集为,-12;.........12分(20)解:由题意可得,造价y =3(2x ×150+x 12×400)+5 800 =900x 16+5 800(0<x ≤5),则y =900x 16+5 800≥900×2x 16+5 800=13 000(元), 当且仅当x =x 16,即x =4时取等号.故当侧面的长度为4米时,总造价最低.........12分(21)解:(I) 解:由题意知,∴,即 又........2分∴, 椭圆的方程为 ........ 4分(II) 设,即....... 5分由得, ,......... 7分代入即得:,, ........ 9分........11分把代入上式得........ 12分(22)解:(Ⅰ )当a =1时,f (x )≥3x +2可化为|x -1|≥2.由此可得x ≥3或x ≤-1.........3分故不等式f (x )≥3x +2的解集为{x |x ≥3或x ≤-1}.........5分(Ⅱ )由f (x )≤0得,|x -a |+3x ≤0.此不等式化为不等式组x -a +3x ≤0x ≥a ,或a -x +3x ≤0,x ≤a ,即4a 或.a........8分由于a >0,所以不等式组的解集为2a.由题设可得-2a=-1,故a =2. ........10分(23)证明 法一 由于a ,b ,c 均为正数,由基本不等式得,a 2+b 2+c 2≥3(abc )32,①a 1+b 1+c 1≥3(abc )-31,所以c 12≥9(abc )-32,②故a 2+b 2+c 2+c 12≥3(abc )32+9(abc )-32. 又3(abc )32+9(abc )-32≥2=6,③ 所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc )32=9(abc )-32时,③式等号成立.故当且仅当a =b =c =341时,原不等式等号成立.........10分法二 由于a ,b ,c 均为正数,由基本不等式得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac .所以a 2+b 2+c 2≥ab +bc +ac .①同理a21+b21+c21≥ab 1+bc 1+ac 1,② 故a 2+b 2+c 2+c 12≥ab +bc +ac +ab 3+bc 3+ac 3≥6.③所以原不等式成立.当且仅当a =b =c 时,①式和②式等号成立,当且仅当a =b =c ,(ab )2=(bc )2=(ac )2=3时,③式等号成立.故当且仅当a =b =c =341时,原不等式等号成立.........10分.。
四川省成都外国语学校2022-2021学年高二上学期期中考试试题 数学(文) Word版含答案
成都外国语学校2022--2021学年度上期期中考试 高二文科数学试卷命题人:杜仕彪 审题人:蒋东峰 留意事项:1、 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2、 本堂考试120分钟,满分150分;3、 答题前,考生务必先将自己的姓名、学号填写在答题卡上,并使用2B 铅笔填涂。
4、 考试结束后,将答题卡交回。
第Ⅰ卷(60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.直线01=++y x 的倾斜角是( )A .4πB .45πC . 4-πD .43π2.椭圆221x my +=的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .14B .12 C . 2D .43.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a =( )A .43-B . 34- C 3 D .2 4.已知命题:p 全部有理数都是实数,命题:q 正数的对数都是负数,则下列命题中为真命题的是( )A .()p q ⌝∨B .p q ∧C .()()p q ⌝∧⌝D .()()p q ⌝∨⌝5.某几何体的正视图与侧视图相同,其正视图与俯视图如图所示,且 图中四边形都是边长为2的正方形,正视图中的两条虚线相互垂直, 则该几何体的表面积为( )A .24B .2042+C .2442+.2043+6.已知点M (a,b )(ab ≠0),是圆x 2+y 2=r 2内一点,直线m 是以M 为中点的弦所在的直线,直线l 的方程是ax+by=r 2,则( )A .l ∥m 且l 与圆相交B .⊥m 且l 与圆相切C .l ∥m 且l 与圆相离D .l ⊥m 且l 与圆相离7.以椭圆的两个焦点为直径的端点的圆与椭圆有四个不同的交点,顺次连接这四个点和两个焦点,恰好得到一个正六边形,那么这个椭圆的离心率等于( )A .13-.B 21C . 23D 218.设P 是△ABC 所在平面α外一点,且P 到AB 、BC 、CA 的距离相等,P 在α内的射影 P ′在△ABC 内部,则P ′为△ABC 的( )A .重心B .垂心C .内心D .外心9.y x,满足约束条件⎪⎩⎪⎨⎧≥+-≤--≤-+.022,022,02y x y x y x 若ax y z -=取得最大值的最优解不唯一...,则实数a 的值为( ) A .21或-1 B . 2或21C .2或1D .2或-1 10.在圆x 2+y 2=5x 内,过点)23,25(有n 条弦的长度成等差数列,最短弦长为数列首项a 1,最长弦长为数列第n 项a n ,若公差]31,61(∈d ,则n 的取值集合为( ) A .{4,5,6} B . {6,7,8,9} C .{3,4,5} D .{3,4,5,6}11.已知椭圆2222:1(0)x y C a b a b+=>>3F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )A .1B 2C 3D . 2 12.关于下列命题,正确的个数是( )(1)若点(2,1)在圆0152222=-++++k y kx y x 外,则2k >或4k <-(2)已知圆1)sin ()cos (:22=-++θθy x M ,直线kx y =,则无论θ为何值, 总存在R k ∈使直线与圆恒相切。
北京市育才2024-2025学年高二上学期期中考试数学试题含解析
2024-2025年度第一学期北京育才高二数学期中考试试卷(答案在最后)一、选择题:本大题共10小题,每小题4分,共40分.1.圆2221x y y ++=的半径为A.1 B.C.2D.4【答案】B 【解析】【详解】试题分析:由题意得,圆2221x y y ++=,可化为22(1)2x y ++=,所以R =B .考点:圆的标准方程.2.椭圆221178x y +=的焦点坐标为()A.(5,0),(5,0)-B.(3,0),(3,0)-C.(0,5),(0,5)-D.(0,3),(0,3)-【答案】B 【解析】【分析】根据椭圆的标准方程,求得,,a b c 的值,即可求得椭圆的焦点坐标,得到答案.【详解】由题意,椭圆221178x y +=,可得2217,8a b ==,则3c ==,所以椭圆的焦点坐标为(3,0)和(3,,0)-.故选:B.3.圆221:4C x y +=与圆222:(3)1C x y -+=的位置关系为()A.外离B.外切C.相交D.内切【答案】B 【解析】【分析】根据圆心距与半径的关系判断.【详解】由题意,圆221:4C x y +=,则圆心()10,0C ,半径12r =,圆222:(3)1C x y -+=,则圆心()23,0C ,半径21r =,所以两圆圆心距1212||3C C r r ==+,所以两圆外切.故选:B.4.在棱长为2的正方体1111ABCD A B C D -中,O 是底面ABCD 的中心,E ,F 分别是1,CC AD 的中点,那么异面直线OE 和1FD 所成角的余弦值等于() A.105B.155C.45D.23【答案】B 【解析】【分析】取BC 的中点G ,连接GC 1,则GC 1//FD 1,再取GC 的中点H ,连接HE 、OH ,则∠OEH 为异面直线所成的角,在△OEH 中,利用余弦定理可得结论.【详解】取BC 的中点G .连接GC 1,则GC 1//FD 1,再取GC 的中点H ,连接HE 、OH ,如图所示,∵E 是CC 1的中点,∴GC 1//EH ,∴∠OEH 为异面直线OE 和1FD 所成的角.在△OEH中,OE =HE=11522GC ==,OH =52.由余弦定理,可得cos ∠OEH=2221525OE EH OH OE EH+-==⋅.故选:B【点睛】本题考查异面直线所成的角,考查余弦定理的运用,解题的关键是作出异面直线所成的角,属于中档题.5.圆22(2)5x y ++=关于原点()0,0O 对称的圆的方程为()A .22(2)5x y ++= B.22(2)5x y +-=C.22(2)5x y -+=D.22(2)5x y ++=【答案】C 【解析】【分析】先求出圆心关于原点的对称点,从而可求出所求圆的方程.【详解】圆22(2)5x y ++=的圆心为(2,0)-,因为点(2,0)-关于原点()0,0O 对称点为(2,0),所以圆22(2)5x y ++=关于原点()0,0O 对称的圆的方程为22(2)5x y -+=,故选:C.6.如果方程221x ky +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围()A.−∞,1 B.()1,+∞ C.()0,1 D.()(),01,-∞⋃+∞【答案】B 【解析】【分析】由椭圆的标准方程,明确,a b 的取值,根据焦点的位置,设不等式,可得答案.【详解】由方程221x ky +=,则=1a,=b k,即101k <<,可得1k >.故选:B.7.已知点P 是圆22:(3)1C x y -+=上一点,则点P 到直线:3460l x y ++=的距离的最小值为()A.0B.1C.2D.3【答案】C 【解析】【分析】首先求出圆心到直线的距离,再减去半径,即可求解.【详解】圆22:(3)1C x y -+=的圆心为()3,0,半径为1,3=,所以点P 到直线:3460l x y ++=的距离的最小值为312-=.故选:C.8.“1a =”是“直线()110ax a y +--=与直线()110a x ay -++=垂直”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线垂直可构造方程求得a 的值,由推出关系可得结论.【详解】由两直线垂直可得:()()110a a a a -+-=,解得:0a =或1a =;10a a =⇒= 或1a =,0a =或11a a ==¿,∴“1a =”是“直线()110ax a y +--=与直线()110a x ay -++=垂直”的充分不必要条件.故选:A .9.已知直线x y a +=与圆224x y +=交于,A B 两点,且OA OB OA OB +=-(其中O 为坐标原点),则实数a 的值为A.2 B.C.2或2- D.或【答案】C 【解析】【详解】分析:利用OA ⊥OB ,OA=OB ,可得出三角形AOB 为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R ,可得出AB ,求出AB 的长,圆心到直线y=﹣x+a 的距离为AB 的一半,利用点到直线的距离公式列出关于a 的方程,求出方程的解即可得到实数a 的值.详解:∵OA ⊥OB ,OA=OB ,∴△AOB 为等腰直角三角形,又圆心坐标为(0,0),半径R=2,∴=∴圆心到直线y=﹣x+a 的距离d=12,∴|a|=2,∴a=±2.故答案为C .点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.10.在空间直角坐标系O xyz -中,已知()1,2,2a =- ,(),,a b x y z += ,其中2221x y z ++=,则b 的最大值为()A.3B.1+C.D.4【答案】D 【解析】【分析】根据题意,求得()1,2,2b x y z =--+,根据其几何意义,代入计算,即可得到结果.【详解】因为()1,2,2a =- ,(),,a b x y z +=,则()1,2,2b x y z =--+ ,且2221x y z ++=,其中点(),,x y z 可以看作球心在原点,半径为1的球上的点所以b =()1,2,2-距离,最大值为球心到点()1,2,2-的距离再加球的半径,14=.故选:D二、填空题:本大题共5题,每小题6,共25分11.写出一个圆心在直线0x y -=上,且经过原点的圆的方程:______.【答案】22(1)(1)2x y -+-=(答案不唯一)【解析】【分析】利用圆心在直线0x y -=上设圆心坐标为(,)C a a ,由于圆过原点,得半径0)r a =≠,对a 赋值,可得一个符合条件的圆的方程.【详解】解:因为圆心在直线0x y -=,则设圆心坐标为(,)C a a 又圆经过原点则圆的半径为r OC ===,且0a ≠故取1a =,得圆心为(1,1)C ,半径r =所以圆的方程为:22(1)(1)2x y -+-=.故答案为:22(1)(1)2x y -+-=(答案不唯一)12.过点()1,4A -的直线将()()22231x y -+-=的面积分为相等的两部分,求直线方程______.【答案】3110x y +-=【解析】【分析】根据圆的对称性先判定直线过圆心,利用两点式计算直线方程即可.【详解】因为直线将()()22231x y -+-=的面积分为相等的两部分,所以该直线过圆心()2,3,由两点式知该直线方程为3231104312y x x y --=⇒+-=---.故答案为:3110x y +-=13.如图,在正方体1111ABCD A B C D -中,E 为CD 的中点,则直线1A E 与平面ABCD 所成角的正切值为______.【答案】255##255【解析】【分析】连接AE ,利用正方体的特征及线面角的定义计算即可.【详解】连接AE ,易知1AA ⊥底面ABCD ,所以1AEA ∠为所求角,不妨设正方体棱长为2,则112255,tan 55AA AE AEA AE =∠===.故答案为:25514.已知点()2,2A --,点P 在圆22:20C x y x ++=上,则AP 的取值范围是______;若AP 与圆C 相切,求切线AP 的方程______.【答案】①.1⎤-+⎦②.2x =-或3420x y --=【解析】【分析】利用点与圆的位置关系计算可得第一空;利用直线与圆的位置关系结合点到直线的距离公式分类讨论计算即可得第二空.【详解】易知点A 在圆C 外,且()2222:2011C x y x x y ++=⇒++=,即圆心()1,0C -,半径1r =,AC =,则AC r AP AC r -≤≤+,即1AP ⎤∈⎦;若直线AP 斜率不存在,即:2AP l x =-,此时圆心C 到直线AP 的距离等于半径,满足题意;若直线AP 斜率存在,不妨设其方程为:()22y k x =+-,则圆心C 到直线AP的距离()22112d k k ==⇒+=-,解之得34k =,此时直线AP 方程为3420x y --=.故答案为:1⎤-⎦;2x =-或3420x y --=15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线C :()3222216x y x y +=恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()()32222160x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是______.【答案】②④【解析】【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】作出圆224x y +=和四叶玫瑰线()3222216x y x y +=的图示如下图所示:()2223222216162x y xyx y ⎛⎫++=≤ ⎪⎝⎭,解得224x y +≤(当且仅当2x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==,即224x y +=与曲线C 相切于点,(,(,,则①和③都错误;由0xy <,得④正确.综上,正确命题为:②④.故答案为:②④【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.三、解答题:本大题共6小题,共85分.16.在平面直角坐标系中,已知()3,7A -,()2,2B ,()5,1C ,线段AC 的中点为M .(1)求过点M 与直线BC 平行的直线方程;(2)求△ABC 的面积.【答案】(1)3130x y +-=(2)5【解析】【分析】(1)由点()3,7A -,()5,1C 求出AC 的中点坐标()1,4M 和BC 的斜率,进而求出方程,(2)由(1)可知BC 的斜率求出BC 的直线方程,再点A 到直线BC 的距离,根据面积公式,求出结果.【小问1详解】∵()3,7A -,()5,1C ,∴AC 的中点坐标()1,4M ,又直线BC 的斜率121523k -==--,∴过M 点和直线BC 平行的直线方程为()1413y x -=--,即3130x y +-=.【小问2详解】由(1)可知BC 的斜率13k =-,直线BC 的方程为()1223y x -=--,即380x y +-=,∴点A 到直线BC 的距离d ==,又B 、C 两点间距离BC ==∴△ABC 的面积11522S BC d =⨯⨯==.17.已知圆C 过原点O 和点()1,3A ,圆心在x 轴上.(1)求圆C 的方程;(2)直线l 经过点()1,1,且l 被圆C 截得的弦长为6,求直线l 的方程.【答案】(1)22(5)25x y -+=(2)1x =或15870x y --=【解析】【分析】(1)设圆C 的圆心坐标为(),0a ,由已知列出方程,求得a ,进而求得半径,即可得出结果;(2)设出直线方程,利用垂径定理,列方程求出直线的斜率即可得出结果.【小问1详解】设圆C 的圆心坐标为(),0a .=5a =从而圆C 的半径为5r ==,所以圆C 的方程为22(5)25x y -+=.【小问2详解】依题意,圆C 的圆心到直线l 的距离为4,显然直线1x =符合题意.当直线l 的斜率存在时,设其方程为()11y k x -=-,即10kx y k --+=4=解得158k =,所以直线l 的方程为15870x y --=综上,直线l 的方程为1x =或15870x y --=.18.如图,四边形ABCD 为梯形,//AB CD ,四边形ADEF 为平行四边形.(1)求证://CE 平面ABF ;(2)若AB ⊥平面ADEF ,AF AD ⊥,1AF AD CD ===,2AB =,求:(ⅰ)二面角A BF C --的余弦值;(ⅱ)点D 到平面BCF 的距离.【答案】(1)证明见解析;(2)66;66【解析】【分析】(1)利用平行四边形的性质与判定结合线面平行的判定证明即可;(2)根据题意判定线线垂直,构造合适的空间直角坐标系,利用面面夹角及点面距离公式计算即可.【小问1详解】过C 作//CG AD 交AB 于G 点,因为//AB CD ,所以四边形ADCG 为平行四边形,则CG AD =,又四边形ADEF 为平行四边形,所以,//AD EF AD EF =,所以,//EF GC EF GC =,则四边形CEFG 为平行四边形,即//CE FG ,易知FG ⊂平面ABF ,CE ⊄平面ABF ,所以//CE 平面ABF ;【小问2详解】因为AB ⊥平面ADEF ,,AD AF ⊂平面ADEF ,所以,AB AD AB AF ⊥⊥,又AF AD ⊥,所以,AD AB AF ,三条线两两垂直,即可以以A为中心建立如图所示的空间直角坐标系,则()()()2,0,0,0,0,1,1,1,0B F C ,所以()()1,1,0,1,1,1CB CF =-=-- ,设平面BCF 的一个法向量为(),,n x y z = ,则00n CB x y n CF x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,令11,2x y z =⇒==,即()1,1,2n = ,(ⅰ)易知平面ABF 的一个法向量为()0,1,0AD = ,二面角A BF C --的一个平面角为锐角,设二面角A BF C --的一个平面角为α,则6cos 6AD n AD n α⋅===⋅ ;(ⅱ)易知 1, , ,则点D 到平面BCF的距离66DC n d n ⋅=== .19.已知椭圆2222:1x y C a b +=(0a b >>)的右焦点为()2,0F,且过点(,直线l 过点F 且交椭圆C 于A 、B 两点.(1)求椭圆C 的方程;(2)若线段AB 的垂直平分线与x 轴的交点为1,02M ⎛⎫ ⎪⎝⎭.(ⅰ)求直线l 的方程.(ⅱ)若点()4,0P -,求ABP 的面积.【答案】(1)22184x y +=;(2)20x -=或20x +-=;【解析】【分析】(1)根据椭圆的性质并代入所过点坐标计算即可;(2)(ⅰ)先排除直线l 斜率不存在的情况,设其点斜式方程,联立椭圆方程结合韦达定理、直线垂直的斜率积计算即可;(ⅱ)由上的结论及弦长公式、点到直线的距离公式计算即可.【小问1详解】根据题意有222222421a b ab ⎧-=⎪⎨+=⎪⎩,解之得224,8b a ==,所以椭圆C 的方程22184x y +=;【小问2详解】(ⅰ)显然若l 斜率不存在,其垂直平分线与横轴重合,不符合题意;不妨设直线l 的方程为()2y k x =-,AB 的中点为C ,设()()()112200,,,,,A x y B x y C x y ,l 与椭圆方程联立有222280y kx k x y =-⎧⎨+-=⎩,整理得()2222128880k x k x k +-+-=,则212221228128812k x x k k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,所以2120002242,221212x x k k x y k x k k k+===⋅-=-++,易知20204111612CM y k k k k k x ⋅=-⇒⋅=-=---,解之得2k =±,即()222y x =±-,整理得直线l的方程为20x --=或20x +-=;(ⅱ)由弦长公式可知12 AB x=-==2211121211kk++===++,由直线的对称性知点P到两条直线l的距离相同,即d==,所以ABP的面积为1122d AB=⨯=.20.如图,在长方体1111ABCD A B C D-中,1AD=,12AB AA==,,,H F M分别是棱11C D,1BB,11B C 的中点.(1)判断直线1A M与平面1B HF的位置关系,并证明你的结论;(2)求直线HF与平面1A MD所成角的正弦值;(3)在线段HF上是否存在一点Q,使得点Q到平面11A BCD,若存在,求出HQHF的值;若不存在,说明理由.【答案】(1)相交但不垂直,证明见解析;(2)73;(3)不存在,理由见解析.【解析】【分析】(1)建立合适的空间直角坐标系,利用空间向量计算线面夹角即可;(2)建立合适的空间直角坐标系,利用空间向量计算线面夹角即可;(3)假设存在点Q ,利用空间向量研究点面距离计算参数即可.【小问1详解】如图建立空间直角坐标系,则()()()()1111,0,2,1,2,2,,2,2,0,1,2,1,2,12A B M H F ⎛⎫ ⎪⎝⎭,所以()()111,2,0,0,0,1,1,1,12A M FB HF ⎛⎫=-==- ⎪⎝⎭,设平面1B HF 的一个法向量为 ,䗘,䔹,则100m FB z m HF x y z ⎧⋅==⎪⎨⋅=+-=⎪⎩ ,取11,0x y z =⇒=-=,即 1,−1, ,则11155342cos ,34A M m A M m A M m ⋅===⋅ ,连接1A M 与1B H 交于N 点,即直线1A M 与平面1B HF 相交于N 点,则直线1A M 与平面1B HF 的位置关系为相交,直线与平面的夹角的正弦值53434;【小问2详解】由上知()111,0,2,,2,22DA DM ⎛⎫== ⎪⎝⎭,设平面1A MD 的一个法向量为 ,h, ,则12012202n DA a c n DM a b c ⎧⋅=+=⎪⎨⋅=++=⎪⎩,取41,2a b c =⇒==-,即()4,1,2n =- ,设直线HF 与平面1A MD 所成角为α,则7sin cos ,3HF n HF n HF nα⋅====⋅ ,即直线HF 与平面1A MD所成角的正弦值为3;【小问3详解】设存在Q 满足题意,不妨设[]()0,1HQ HFλλ=∈,则(),,HQ HF λλλλ==- ,易知()()10,2,2,1,0,0A B CB =-= ,设平面11A BCD 的一个法向量为(),,p r s t = ,则12200p A B s t p CB r ⎧⋅=-=⎪⎨⋅==⎪⎩ ,取10,1s r t =⇒==,即()0,1,1p = ,而()11,1,D Q D H HQ λλλ=+=+- ,所以点Q 到平面11A BCD的距离是1D Q p d p ⋅==≠ ,所以不存在.21.在平面直角坐标系xOy 中,O为坐标原点,)M,已知平行四边形OMNP 两条对角线的长度之和等于4.(1)求动点P 的轨迹方程;(2)过)M 作互相垂直的两条直线1l 、2l ,1l 与动点P 的轨迹交于A 、B ,2l 与动点P 的轨迹交于点C 、D ,AB 、CD 的中点分别为E 、F ;证明:直线EF 恒过定点,并求出定点坐标;(3)在(2)的条件下,求四边形ACBD 面积的最小值.【答案】(1)221(0)4x y y +=≠(2)证明见解析,定点43(5(3)3225.【解析】【分析】(1)根据几何位置关系可得14PM PM +=,再根据椭圆定义求解;(2)利用韦达定理表示出,E F 坐标,从而表示出EF 的直线方程即可求解;(3)利用韦达定理表示出弦长,AB CD ,进而可表示面积,利用二次函数的性质可求面积的最小值.【小问1详解】取点1(M ,则有1M O PN ∥,所以四边形1M ONP 是平行四边形,所以1PM ON =,因为4PM ON +=,所以14PM PM +=,所以动点P 的轨迹为椭圆(左右顶点除外),所以24a =,c =,所以2221b a c =-=,所以动点P 的轨迹方程为221(0)4x y y +=≠.【小问2详解】当1l 垂直于x 轴时,AB 的中点E ,直线2l 为x 轴,与椭圆221(0)4x y y +=≠,无交点,不合题意,当直线1l 不垂直于x 轴时,不妨设直线1l 的方程为(0)y k x k =≠,11(,)A x y ,22(,)B x y ,由22(44y k x x y ⎧=⎪⎨+=⎪⎩,得2222(14)1240k x x k +-+-=,所以△22222()4(41)(124)16(1)0k k k =--+-=+>,所以21228341x x k +=+,212212441k x x k -=+,所以31212228323()1414y y k x x k k-+=+-=-=++,所以222433(,)4141E k k ++,因为12l l ⊥,以1k -代替k ,得22433(,)44F k k ++,所以直线EF 的斜率为22222335441(1)4(1)4343441EFk k k k k k k k +==≠±-++,所以直线EF的方程为22225(1)414(1)41k y x k k k k +=-≠±+-+,由椭圆的对称性得,若存在这样的定点必在x 轴上,令0y =,则22225()414(1)41k x k k k =-+-+,所以22221)5(41)5(14)5k x k k ++===++,所以直线EF 恒过定点43(5,当1k =±时,433()55E ,433()55F ,所以直线EF 恒过定点43(5,综上所述,直线EF 恒过定点43(5.【小问3详解】由(2)得21228341x x k +=+,212212441k x x k -=+,所以||AB =224(1)41k k +==+,同理可得224(1)||4k CD k +=+,所以四边形ACBD 的面积222218(1)||||2(41)(4)k S AB CD k k +==++,令21t k =+,则1t >,所以2222288889933(43)(3)4994()34t t S t t t t t t t t ====-++--++-+⋅+,因为1t >,所以303t<<,当332t =,即1k =±时,23325()344t t -+⋅+≤,所以min 3225S =,所以四边形ACBD 的面积最小值为3225.。
2024学年江苏省扬州中学高二上学期期中考数学试题及答案
江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1.经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π62. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 83. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 164. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A. 1,2⎛⎫+∞⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10B. 16C. 20D. 266. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A 小于1B. 等于1C. 大于1D. 与M 点的位置有关.7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB +的最大值为( )A. 12B. C. 10D. 6二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A. 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =- B. 121=x x C. 254PQ =D. 1l 与2l 之间的距离为412. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 最小值为6.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.15. 阿基米德是古希腊著名数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.的的四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上的椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8xty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .21.已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB(O 为坐标原点),求此时直线l 的斜率k 的值.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.的的江苏省扬州中学2023-2024学年第一学期期中考试高二数学2023.11试卷满分:150分 考试时间:120分钟注意事项:1.作答前,请考生务必将自己的姓名、考试证号等写在答题卡上并贴上条形码.2.将选择题答案填写在答题卡的指定位置上(使用机读卡的用2B 铅笔在机读卡上填涂),非选择题一律在答题卡上作答,在试卷上答题无效.3.考试结束后,请将机读卡和答题卡交监考人员.一.单项选择题:本大题共8小题,每小题5分,共40分.在每题给出的四个选项中,只有一项是最符合题意的.(请将所有选择题答案填到答题卡的指定位置中.)1. 经过(A 、()1,0B -两点的直线的倾斜角为( )A.π6 B.π3C.2π3D.5π6【答案】B 【解析】【分析】求出直线AB 的斜率,利用直线的斜率与倾斜角的关系可得出结果.【详解】设直线AB 的倾斜角为α,则0πα≤<,且tan α==,故π3α=.故选:B.2. 抛物线22x py =的准线方程是2y =,则实数p 的值为( )A. 8- B. 4- C. 4D. 8【答案】B 【解析】【分析】根据抛物线的准线求得p 的值【详解】由题意可得:22p-=,则4p =-故选:B3. 已知(),P x y 是椭圆22114425x y +=上的点,则x y +的值可能是( )A. 13B. 14C. 15D. 16【答案】A【解析】【分析】根据题意,可设12cos ,5sin x y θθ==,得到13sin()x y θϕ+=+,求得x y +的取值范围,即可求解.【详解】由椭圆22114425x y +=,可设12cos ,5sin x y θθ==,其中[]0,2πθ∈,则12cos 5sin 13sin()x y θθθϕ=+=++,其中12tan 5ϕ=,因为1sin()1θϕ-≤+≤,所以1313x y -≤+≤,即x y +的取值范围为[]13,13-,结合选项,可得A 符合题意.故选:A.4. 若点()2,1在圆220x y x y a +-++=的外部,则a 的取值范围是( )A 1,2⎛⎫+∞ ⎪⎝⎭B. 1,2⎛⎫-∞ ⎪⎝⎭C. 14,2⎛⎫- ⎪⎝⎭D. ()1,4,2⎛⎫-∞-⋃+∞⎪⎝⎭【答案】C 【解析】【分析】利用表示圆的条件和点和圆的位置关系进行计算.【详解】依题意,方程220x y x y a +-++=可以表示圆,则22(1)140a -+->,得12a <;由点()2,1在圆220x y x y a +-++=的外部可知:2221210a +-++>,得4a >-.故142a -<<.故选:C5. 已知12,F F 是椭圆 221259x y +=的两个焦点,过1F 的直线交椭圆于,M N 两点,则2MNF 的周长为( )A. 10 B. 16C. 20D. 26【答案】C 【解析】【分析】由椭圆的定义可得122MF MF a +=,122NF NF a +=,代入即可求出答案.【详解】由椭圆的定义可得:122MF MF a +=,122NF NF a +=,.则2MNF 的周长为:22112244520MN MF NF MF NF MF NF a ++=+++==⨯=.故选:C .6. 已知抛物线2:16C y x =,直线:4l x =与C 交于A ,B 两点,M 是射线BA 上异于A ,B 的动点,圆1C 与圆2C 分别是OMA 和OMB △的外接圆(O 为坐标原点),则圆1C 与圆2C 面积的比值为( )A. 小于1 B. 等于1C. 大于1D. 与M 点的位置有关【答案】B 【解析】【分析】求出,A B 的坐标,由对称性可得OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,由正弦定理得到12sin OM R OAB =∠,22sin OMR OBA=∠,故12R R =,故面积比值为1.【详解】由题意得,抛物线2:16C y x =的焦点坐标为()4,0F ,将4x =代入2:16C y x =中,8y =±,不妨令()()4,8,4,8A B -,由对称性可知,A B 两点关于y 轴对称,OB OA =,OBA OAB ∠=∠,设OAM △,OBM 的外接圆半径为12,R R ,当点M 在A 点上方时,()12sin sin πsin OM OM OM R OAM OAB OAB===∠-∠∠,当点M 在A 点上方时,12sin OMR OAB=∠,同理22sin OMR OBA=∠,因为OBA OAB ∠=∠,所以12R R =,所以圆1C 圆2C 面积的比值为1.故选:B7. 由伦敦著名建筑事务所Steyn Studio 设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品. 若将如图所示的大教堂外形弧线的一段近似看成双曲线22221y x a b-=(00)a b >>,下支的一部分,且此双曲线的下焦点到渐近线的距离为2,离心率为2,则该双曲线的方程为( )A. 221124y x -= B. 223144y x -=C. 22144x y -= D. 221164y x -=【答案】B 【解析】【分析】首先根据题意得到22222b c a c a b=⎧⎪⎪=⎨⎪=+⎪⎩,再解方程组即可.【详解】设双曲线的一个焦点为()0,c ,一条渐近线方程为a y x b=,则焦点到渐近线的距离2d b ===,所以2222224234b a ca b c a b=⎧⎧⎪=⎪⎪=⇒⎨⎨⎪⎪=⎩=+⎪⎩,即双曲线方程为:223144y x -=.故选:B8. 已知点()2,4M ,若过点()4,0N 的直线l 与圆()22:69C x y -+=交于A 、B 两点,则MA MB + 的最大值为( )A. 12B. C. 10D. 6【答案】A 【解析】【分析】设AB 中点(),P x y ,根据垂径定理可得点P 的轨迹方程,进而可得MP的取值范围,又2MA MB MP +=,即可得解.【详解】设AB 中点(),P x y ,则()6,CP x y =- ,()4,NP x y =-,所以()()2640CP NP x x y ⋅=--+= ,即()2251x y -+=,所以点P 的轨迹为以()5,0E 为圆心,1为半径的圆,所以11ME MP ME -≤≤+,5ME ==,所以46MP ≤≤,又2MA MB MP +=,所以MA MB +的最大值为12,故选:A.二.多项选择题:本大题共4小题,每小题5分,共20分.在每题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.(请将所有选择题答案填到答题卡的指定位置中. )9. 已知直线2:(1)10l a a x y ++-+=,其中R a ∈,则( )A. 直线l 过定点(0,1)B. 当1a =-时,直线l 与直线0x y +=垂直C. 当0a =时,直线l 在两坐标轴上的截距相等D. 若直线l 与直线0x y -=【答案】ABD 【解析】【分析】坐标代入方程检验判断A ,根据垂直的条件判断B ,求出两坐标轴上截距判断C ,求出平行线间距离判断D .【详解】选项A ,把坐标(0,1)代入直线方程而立,A 正确;选项B ,1a =-时直线l 方程为10x y -+=,斜率是1,直线0x y +=斜率是1-,两直线垂直,B 正确;选项C ,0a =时直线方程为10x y -+=,在x 轴上截距为=1x -,在y 轴上截距为1y =,不相等,C 错;选项D ,211a a ++=即0a =或1-时,直线l 方程为10x y -+=与直线0x y -=平行,距离为d ==D 正确.故选:ABD .10. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点分别为12,F F ,与y 轴正半轴交于点B ,下列选项中给出的条件,能够求出椭圆E 标准方程的选项是( )A 2,1a c ==B. 已知椭圆E 的离心率为12,短轴长为2C. 12BF F △是等边三角形,且椭圆E 的离心率为12D. 设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上【答案】ABD.【解析】【分析】逐项代入分析即可求解.【详解】根据222a b c =+之间的关系即可求解,故选项A 正确;根据2221,22,2c e b a b c a ====+即可求解,故选项B 正确;12BF F △是等边三角形,且椭圆E 的离心率为12,只能确定12,2c a c e a ===,不能求椭圆E 标准方程,故选项C 不正确;设椭圆E 的焦距为4,点B 在圆22()9x c y -+=上,所以()2222224,09c c b c b a =-+=+==,即可求出椭圆E 标准方程,故选项D 正确.故选:ABD.11. 抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出.已知抛物线24y x =的焦点为F ,一束平行于x 轴的光线1l 从点()3,1M 射入,经过抛物线上的点()11,P x y 反射后,再经抛物线上另一点()22,Q x y 反射后,沿直线2l 射出,则下列结论中正确的是( )A. 34PQ k =-B. 121=x xC. 254PQ = D. 1l 与2l 之间的距离为4【答案】BC【解析】【分析】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =,由韦达定理得124y y =-,进而求得121=x x ,可判断B ;先求点P 的坐标,再结合124y y =-可得点Q 的坐标,然后利用斜率公式即可判断A ;根据抛物线的定义可知12Q x p P x ++=,可判断C ;由于1l 与2l 平行,所以1l 与2l 之间的距离12d y y =-,可判断D .【详解】由抛物线的光学性质可知,直线PQ 过焦点(1,0)F ,设直线:1PQ x my =+,代入24y x =得2440y my --=,则124y y =-,所以()212121616y y x x ==,所以121=x x ,故B 正确;点P 与M 均在直线1l 上,则点P 的坐标为(1,14),由124y y =-得24y =-,则点Q 的坐标为(4,4)-,则4141344PQ k --==--,故A 错误;由抛物线的定义可知,121254244PQ x x p =++=++=,故C 正确;1l 与2l 平行,1l ∴与2l 之间的距离125d y y =-=,故D 错误.故选:BC.12. 已知双曲线22:13y C x -=的左、右焦点分别为12,F F ,点P 是双曲线C 的右支上一点,过点P 的直线l 与双曲线C 的两条渐近线分别交于,M N ,则( )A. 2212PF PF -的最小值为8B. 212PF PF OP -为定值C. 若直线l 与双曲线C 相切,则点,M N 的纵坐标之积为2-;D. 若直线l 经过2F ,且与双曲线C 交于另一点Q ,则PQ 的最小值为6.【答案】AB【解析】【分析】设00(,)P x y ,由2221208PF PF x -=,可判定A 正确;化简2122PF PF OP -=,可判定B 正确;设直线l 的方程为x my n =+,联立方程组,结合Δ0=,得到2213n m =-,在化简123y y =-,可判定C 不正确;根据通经长和实轴长,可判定D 错误.【详解】由题意,双曲线2213y x -=,可得1,a b ==2c ==,所以焦点12(2,0),(2,0)F F -,且1222PF PF a -==,设00(,)P x y ,则01x ≥,且220013y x -=,即220033=-y x ,双曲线C的两条渐近线的方程为y =,对于A 中,由()][()22222212000002288PF PF x y x y x ⎡⎤-=++--+=≥⎣⎦,所以A 正确;对于B中,2221200()PF PF OP x y -=-+2200(33)x x =-+-2000(21)(21)(43)2x x x =+---=(定值),所以B 正确;对于C 中,不妨设1122(,),(,)M x y N x y ,直线l 的方程为x my n =+,联立方程组2213x my n y x =+⎧⎪⎨-=⎪⎩,整理得222(31)6330m y mny n -++-=,若直线l 与双曲线C 相切,则22223612(31)(1)0m n m n ∆=---=,整理得2213n m =-,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =M的纵坐标为1y =,联立方程组x my n y =+⎧⎪⎨=⎪⎩,解得y =N的纵坐标为2y =,则点,M N的纵坐标之积为21222233(13)33113y n m mm y ---===-=--所以C 不正确;对于D 中,若点Q 在双曲线的右支上,则通经最短,其中通经长为226b a=,若点Q 在双曲线的左支上,则实轴最短,实轴长为226a =<,所以D 错误.故选:AB.三.填空题:本大题共4小题,每小题5分,共20分.(请将所有填空题答案填到答题卡的指定位置中.)13. 若双曲线22221x y a b-=()0,0a b >>____.【答案】y =【解析】【分析】由c e a ===b a =,即可求出双曲线的渐近线方程.【详解】因为双曲线22221x y a b-=()0,0a b >>c e a ===222b a =,所以b a =,双曲线22221x y a b-=()0,0a b >>渐近线方程为:b y x a =±=.故答案为:y =14. 若在抛物线y 2=-4x 上存在一点P ,使其到焦点F 的距离与到A (-2,1)的距离之和最小,则该点的坐标为________.【答案】1,14⎛⎫-⎪⎝⎭##()0.25,1-【解析】【分析】作出图象,结合题意可知A ,P 及P 到准线的垂足三点共线时,所求距离之和最小,此时P 点的纵坐标为1,代入抛物线即可求得P 点的坐标.【详解】根据题意,由y 2=-4x 得p =2,焦点坐标为(-1,0),作出图象,如图,.因为PF 等于P 到准线的距离PQ ,所以PF PA PQ PA AQ +=+≥,可知当A ,P 及P 到准线垂足三点共线时,点P 与点F 、点P 与点A 的距离之和最小,此时点P 的纵坐标为1,将y =1代入抛物线方程求得14x =-,所以点P 的坐标为1,14⎛⎫- ⎪⎝⎭.故答案为:1,14⎛⎫- ⎪⎝⎭.15. 阿基米德是古希腊著名的数学家、物理学家,他利用“逼近法”得到椭圆的面积除以圆周率π等于椭圆的长半轴长与短半轴长的乘积. 已知椭圆22221x y a b+=(a >b >0)的右焦点为(3,0)F ,过F 作直线l 交椭圆于A 、B 两点,若弦AB 中点坐标为(2,1)-,则该椭圆的面积为_____________.【答案】【解析】【分析】利用作差法构建斜率、中点坐标相关方程2121221212y y x x b x x y y a-+=-⋅-+,再结合222a c b -=即可求解出a 、b ,进而求出面积.【详解】设()11,A x y ,()22,B x y ,记AB 的中点为M ,即(2,1)M -,因为AB 的中点为M ,所以由中点坐标公式得121242x x y y +=⎧⎨+=-⎩,因为直线AB 过椭圆焦点()3,0F ,所以直线AB 斜率为121201132y y k x x --===--,又因为A ,B 在椭圆22221x y a b+=上,的所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x y y a-+=-⋅-+,代值化简得222b a =,因为椭圆22221x y a b+=的焦点为()3,0F ,所以22a b 9-=,得a =,3b =,由题意可知,椭圆的面积为ab π=.故答案为:.16. 已知圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,两圆交于,P Q 两点,其中P 点坐标为(3,2),已知两圆半径的乘积为132,则k 的值为___________.【答案】【解析】【分析】根据题意可设1(,)C ma a ,2(,)C mb b ,(0)m >,由P 在两圆上,将坐标代入对应圆的方程整理,易知,a b 是22(64)130m r m r -++=的两个根,进而求直线12C C 的斜率,再根据直线12C C 、(0)y kx k =>倾斜角的关系求k 值.【详解】由题设,圆1C 和圆2C 与x 轴和直线(0)y kx k =>相切,且一个交点P (3,2),∴1C 和2C 在第一象限,若,a b 分别是圆1C 和圆2C 的半径,可令1(,)C ma a ,2(,)C mb b ,(0)m >,∴222222(3)+(2){(3)+(2)ma a a mb b b --=--=,易知:,a b 是22(64)130m r m r -++=的两个根,又132ab =,∴213132m =,可得m =12C C k =,而直线12C C 的倾斜角是直线(0)y kx k =>的一半,∴1212221C C C C k k k ==-.故答案为:【点睛】关键点点睛:分析圆心的坐标并设1(,)C ma a ,2(,)C mb b ,结合已知确定,a b 为方程的两个根,应用韦达定理求参数m ,进而求12C C 斜率,由倾斜角的关系及二倍角正切公式求k 值.四.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.(请将所有解答题答案填到答题卡的指定位置中.)17. 已知方程2214x y m+=(R m ∈且0m ≠)(1)若方程表示焦点在y 上椭圆,且离心率为12,求m 的值;(2)若方程表示等轴双曲线,求m 的值及双曲线的焦点坐标.【答案】(1)163m = (2)4m =-,()±【解析】【分析】(1)根据题中条件及离心率公式直接计算即可;(2)根据题中条件得4m =-,进一步计算得到c 的值,即可求解.【小问1详解】因为方程为焦点在y 轴上的椭圆,所以22,4a m b ==则离心率12c e a ===,解得163m =故163m =【小问2详解】由题意得 4m =-,c ===故焦点坐标为()±18. 已知直线l 经过直线12:34110, :2380l x y l x y +-=+-=的交点M .(1)若直线l 经过点(3,1)P ,求直线l 的方程;(2)若直线l 与直线3250x y ++=垂直,求直线l 的方程.【答案】(1)250x y +-=(2)2340x y -+=【解析】的.【分析】(1)联立方程求得交点坐标,再由两点式求出直线方程.(2)根据直线垂直进行解设方程,再利用交点坐标即可得出结果.【小问1详解】由341102380x y x y +-=⎧⎨+-=⎩得12x y =⎧⎨=⎩,即直线1l 和2l 的交点为(1,2)M .直线l 还经过点()3,1P ,∴l 的方程为211231y x --=--,即250x y +-=.【小问2详解】由直线l 与直线3250x y ++=垂直,可设它的方程为230x y n -+=.再把点(1,2)M 的坐标代入,可得260n -+=,解得4n =,故直线l 的方程为2340x y -+=.19. 已知圆C 经过()()1,4,5,0A B 两点,且在x 轴上的截距之和为2.(1)求圆C 的标准方程;(2)圆M 与圆C 关于直线10x y -+=对称,求过点()3,0且与圆M 相切的直线方程.【答案】(1)()22116x y -+=(2)3x =或3490x y --=【解析】【分析】(1)根据题意,设圆的一般式方程,代入计算,即可得到结果;(2)根据题意,分直线的斜率存在与不存在讨论,结合点到直线的距离公式列出方程,即可得到结果.【小问1详解】设圆C 的方程为()2222040x y Dx Ey F D E F ++++=+->,令0y =,可得20x Dx F ++=,则122x x D +=-=,将()()1,4,5,0A B 代入可得,116402550D E F D F ++++=⎧⎨++=⎩,解得2015D E F =-⎧⎪=⎨⎪=-⎩,所以圆C 方程为222150x y x +--=,即()22116x y -+=.【小问2详解】圆C 的圆心()1,0C ,圆M 的圆心与()1,0C 关于10x y -+=对称,∴设圆M 的圆心为(),M a b 则11022111a b b a +⎧-+=⎪⎪⎨⎪⨯=-⎪-⎩,解得12a b =-⎧⎨=⎩,圆M 的标准方程为:()()221216x y ++-=,若过点()3,0的直线斜率不存在,则方程为3x =,此时圆心()1,2C -到直线3x =的距离为314r +==,满足题意;若过点()3,0且与圆C 相切的直线斜率存在,则设切线方程为()3y k x =-,即30kx y k --=,则圆心到直线30kx y k --=4,解得34k =,所以切线方程为39044x y --=,即3490x y --=,综上,过点()3,0且与圆C 相切的直线方程为3x =或3490x y --=.20. 已知双曲线:()2211551x y m m m -=<<--的一个焦点与抛物线C :()220y px p =>的焦点重合.(1)求抛物线C 的方程;(2)若直线l :8x ty =+交抛物线C 于A 、B 两点,O 为原点,求证:以AB 为直径的圆经过原点O .【答案】(1)28y x =(2)见解析.【解析】【分析】(1)根据双曲线方程求出其焦点坐标,即也是抛物线焦点,得到抛物线方程.(2)直线l 与抛物线联立后,利用韦达定理求出0OA OB ⋅= 即可得证.【小问1详解】由双曲线方程()2211551x y m m m -=<<--知其焦点在x 轴上且焦点坐标为1(2,0)F -,2(2,0)F ,所以2(2,0)F 为抛物线C :()220y px p =>的焦点,得242p p =⇒=,所以抛物线C 的方程为28y x =.【小问2详解】设11(,)A x y ,22(,)B x y 联立22886408x ty y ty y x=+⎧⇒--=⎨=⎩,2644640t ∆=+⨯>由韦达定理得128y y t +=,1264y y =-所以12121212(8)(8)OA OB x x y y ty ty y y ⋅=+=+++ 21212(1)8()64t y y t y y =++++2(1)(64)8(8)640t t t =+-++=所以OA OB ⊥ ,所以以AB 为直径的圆经过原点O .得证21. 已知直线:R)l y kx k =+∈,与双曲线22:13x C y -=的左支交于A ,B 两点.(1)求实数k 的取值范围;(2)若OAB (O 为坐标原点),求此时直线l 的斜率k 的值.【答案】(11k <<(2)k =【解析】【分析】(1)设点坐标,联立方程组,根据根与系数的关系求解;(2)通过OAB 面积求解出12x x -,从而求解出k 的值.【小问1详解】依题意,设()()1122,,,A x y B x y ,联立方程组22330y kx x y ⎧=+⎪⎨--=⎪⎩,整理得:()221390,k x ---=因为直线:R)l y kx k =∈,与双曲线22:13x C y -=的左支交于A ,B 两点,所以()2212212130361090130k k x x k x x ⎧-≠⎪=->⎪⎪⎪-⎨=>⎪-⎪⎪+=<⎪⎩ ,解得210,13k k ><<1k <<,【小问2详解】设点O到直线:R)l y kx k =∈的距离为d,则d =,212OAB S AB d x ==-=- ,又因为S =,所以1212,5x x -=又因为12125x x -==,代入12212913x x k x x -⎧=⎪-⎪⎨⎪+=⎪⎩125,整理得4236210k k+-=1k <<,解得k =,此时直线l的斜率k.22. 已知椭圆()2222:10x y C a b a b +=>>过点(2.(1)求椭圆C 方程;(2)点,A B 分别为椭圆C 的上下顶点,过点()04P ,且斜率为k 的直线与椭圆C 交于不同的两点,M N ,探究直线,BM AN 的交点是否在一条定直线0l 上,若存在,求出该直线0l 的方程;若不存在,请说明理由.【答案】(1)22:184x y C += (2)存在,1y =【解析】【分析】(1)由椭圆离心率可得222a b =,再将(2代入椭圆的方程可得228,4a b ==,即可求出椭圆的方程;(2)设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立直线MN 和椭圆的方程求出两根之积和两根之和,设直线AN 的方程和直线BM 的方程,两式联立求得交点的纵坐标的表达式,将两根之积和两根之和代入可证得交点在一条定直线上.【小问1详解】,即c e a ===,所以2212b a =,所以222a b =,又因为椭圆()2222:10x y C a b a b +=>>过点(2,所以224212b b +=,解得:228,4a b ==,所以椭圆C 方程为22184x y +=.【小问2详解】因为()()0,2,0,2A B -,设()()1122,,,M x y N x y ,直线MN 的方程为:4y kx =+,联立方程221844x y y kx ⎧+=⎪⎨⎪=+⎩,得()221216240k x kx +++=,()()222Δ164241264960,k k k =-⨯⋅+=->得232k >则1212221624,1212k x x x x k k -+=⋅=++直线AN 的方程为:2222y y x x --= ,直线BM 的方程为:1122y y x x ++=,联立两直线方程消元:()()2112112122222226y x kx x x y y y x kx x x -+-==+++ 法1:由()221216240k x kx +++=解得:12x x ==,代入化简,2123y y -===-+,解得:1y =,即直线,BM AN 的交点在定直线1y =上.法2:由韦达定理得1221612k x x k-=-+代入化简()()22222222224162824211212242324612612k k x k k x y k k k y k k x x k -⎛⎫+- ⎪--+-++⎝⎭===-+++++,得1y =,即直线,BM AN 的交点在定直线1y =上.法3:由1212221624,1212k x x x x k k -+=⋅=++,得()121232x x kx x -+=⋅代入化简()()1211223221232362x x x y y x x x -++-==-+-++,得1y =,即直线,BM AN 的交点在定直线1y =上.法4: 代()11,M x y 点进椭圆方程得2211184x y +=化简得()()221111221844y y x y +-=-=进而得到()()1111222y x y x -=+,代入化简()()121222222y y y y x x ----=+⋅转化为韦达定理代入()()()()1212121222222222y y kx kx y y x x x x ----++-==+⋅⋅()22221212122241622422412122412k k k k x x k x x k k x x k ⎛⎫-⋅-⋅+ ⎪⎡⎤-+++++⎣⎦⎝⎭==⋅+22222243248211224312k k k k k -++-⋅+=-+,得1y =,即直线,BM AN 的交点在定直线1y =上.【点睛】思路点睛:本题考查直线与椭圆综合应用中的定直线问题的求解,求解此类问题的基本思路如下:①假设直线方程,与椭圆方程联立,整理为关于x 或y 的一元二次方程的形式;②利用0∆>求得变量之间的关系,同时得到韦达定理的形式;③利用韦达定理表示出已知的等量关系,化简整理得到所求定直线.。
北京市延庆区2024-2025学年高二上学期期中考试数学试题(含答案)
延庆区2024-2025学年第一学期期中试卷高二数学2024.11本试卷共6页,150分.考试时长120分钟.考生务必将答案答在答题纸上,在试卷上作答无效.考试结束后,将本试卷和答题纸一并交回.第一部分(选择题共40分)一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.在复平面内,复数的共轭复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知向量且,那么( )A. B.6C.9D.183.在空间直角坐标系中,点关于坐标平面的对称点为()A. B. C. D.4.设分别是空间中直线的方向向量,则直线所成角的大小为( )A. B. C. D.5.过和两点的直线的倾斜角是()A. B.1 C. D.6.“”是“直线与平行”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.在平行六面体中,,点在上,且,则( )1i +()()1,2,1,3,,a b x y =-= a ∥b b = ()1,2,3P xOy ()1,2,3-()1,2,3-()1,2,3--()1,2,3-()()120,1,1,1,0,1v v ==- 12,l l 12,l l π65π6π32π3()2,0-()0,21-3π4π41a =1:20l ax y +-=()2:2120l x a y +++=1111ABCD A B C D -1,,AA a AB b AD c === P 1AC 1:1:2A P PC =AP =A. B.C. D.8.已知正方体的棱长为为的中点,则到平面的距离为( )9.在正方体中,点是线段上任意一点,则与平面所成角的正弦值不可能是( )A. B.10.已知点,直线,若直线上至少存在三个,使得为直角三角形,直线倾斜角的取值范围是( )211333a b c ++ 122333a b c ++ 112333a b c -++ 122333a b c -- 1111ABCD A B C D -2,E 1BB 1B 11A D E 1111ABCD A B C D -E 11A C AE ABCD 1323()()0,1,0,1A B -:2l y kx =-l M MAB V lA. B.C. D.第二部分(非选择题共110分)二、填空题共5小题,每小题5分,共25分.11.复数,则__________.12.已知点,点在线段上,且,则点坐标为__________.13.若平面,平面的法向量为,平面的法向量为,写出平面的一个法向量__________.14.已知点,直线与线段无交点,则直线在轴上的截距为__________;的取值范围是__________.15.如图:在直三棱柱中,,.记,给出下列四个结论:①存在,使得任意,都有;②对于任意点,都不存在点,使得平面平面;③的最小值为3;④当取最小时,过点作三棱柱的截面,则截面周长为.其中,所有正确结论的序号是__________.三、解答题共6小题,共85分.解答应写出文字说明,证明过程或演算步骤.16.(本小题13分)已知的顶点坐标为.π5π0,,π66⎛⎤⎡⎤⋃ ⎥⎢⎥⎝⎦⎣⎦πππ2π,,3223⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ3π,,4224⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦πππ5π,,6226⎡⎫⎛⎤⋃⎪ ⎢⎥⎣⎭⎝⎦5i 12iz =-z =()()1,1,4,1,4,2A B -C AB 2AC CB =C αβ⊥α()11,2,3n = β()2,,0n x y = β()()1,3,1,4A B -:2l y ax =-AB l y a 111ABC A B C -13,90AB BB BC ABC ∠==== 1,(01,01)CH xCB CP yCB x y ==<≤≤≤ (),f x y AH HP =+H P AH HP ⊥H P AHP ⊥11A B C (),f x y (),f x y ,,A H P 5ABC V ()()()1,52,14,3A B C ---、、(1)求过点且与直线平行的直线的方程;(2)求边上的中线所在直线的方程;(3)求边上的高所在直线的方程.17.(本小题14分)如图,在三棱柱中,底面是的中点,且.(1)求证:平面;(2)若,求直线与平面所成角的正弦值;(3)若,求平面与平面所成角的余弦值.18.(本小题14分)设的内角对应的边分别为,且.(1)求角的大小;(2)从下列三个条件中选择一组作为已知,使存在且唯一,并求的面积.条件①:;条件②:;条件③:.注:如果选择的条件使不存在或不唯一,第(2)问得0分.19.(本小题14分)已知函数,且的图像过点.(1)求函数的最小正周期和单调递减区间;(2)若函数在上与直线有交点,求实数的取值范围;(3)设函数,记函数在上的最大值为,求的最小B AC BC AB 111ABC A B C -1CC ⊥,ABC D 11A C 12AC BC CC ===1BC ∥1AB D AC BC ⊥1CC 1AB D AC BC ⊥1AB D 11ACC A ABC V ,,A B C ,,a bc sin cos b A B =B ABC V ABC V 3,sin 2sin b C A ==5b a ==b C ==ABC V ()22sin cos 2cos f x a x x x =+()f x π,06⎛⎫- ⎪⎝⎭()f x ()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =m ()()()g x f x t t =-∈R ()g x π11π,612⎡⎤⎢⎥⎣⎦()M t ()M t值及此时的值.20.(本小题15分)如图,已知四棱锥中,底面是边长为4的正方形,平面是正三角形,分别为的中点.(1)求证:平面;(2)求点到平面的距离;(3)线段上是否存在点,使得三棱锥的值;若不存在,说明理由.21.(本小题15分)给定正整数,设集合.对于集合中的任意元素和,记.设,且集合,对于中任意元素,若则称具有性质.(1)判断集合是否具有性质,集合是否具有性质;(直接写出答案,结论不需要证明)(2)判断是否存在具有性质的集合,并加以证明;(3)若集合具有性质,证明:.t P ABCD -ABCD CD ⊥,PAD PAD V ,,,E F G O ,,,PC PD BC AD PO ⊥ABCD A EFG PC M M EFG -PM PC 2n ≥(){}{}12,,,,0,1,1,2,,n k M t t t t k n αα==∈= ∣M ()12,,,n x x x β= ()12,,,n y y y γ= 1122n n x y x y x y βγ⋅=+++ A M ⊆(){}12,,,,1,2,,i i i i in A t t t i n αα=== ∣A ,i j αα,,1,,i j p i j i j αα=⎧⋅=⎨≠⎩A (),T n p ()()(){}1,1,0,1,0,1,0,1,1A =()3,2T ()()()(){}1,1,0,0,1,0,1,0,0,1,1,0,1,0,0,1B =()4,2T ()4,T p A A (),T n p ()121,2,,j j nj t t t p j n +++==延庆区2024-2025学年第一学期期中考试高二数学参考答案及评分标准2024.11一、选择题(共10小题,每小题4分,共40分)1.D2.A3.B4.C5.D6.C7.A8.B9.A 10.B二、填空题(共5小题,每小题5分,共25分)12. 13.(不唯一,共线即可)14.,(注:第一问3分,第二问2分)15.①③④(注:对一个2分,两个3分,有选错0分)三、解答题(共6小题,共85分)16.(共13分)解:(1)直线的斜率过点且与直线平行的直线的斜率为过点且与直线平行的直线方程为(2)设边的中点为,因为,所以点的坐标为,即,所以边的中线所在直线方程为()1,3,0()2,1,0-2-()6,5-AC 532145AC k -==---B AC 25-B AC ()21225905y x x y +=-+⇒++=BC D ()()2,14,3B C --、D 2413,22-+-+⎛⎫ ⎪⎝⎭()1,1D 51211AD k -==---BC ()121230y x x y -=--⇒+-=(3)因为,所以边的高线所在直线的斜率为,因此边的高线所在直线方程为.17.(共14分)(1)证明:连接,设,连接,由为三棱柱,得.又是的中点,所以是的中位线,.平面平面,平面;(2)解:底面,以为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系,则,,设平面的法向量为由,得;15621AB k --==-+AB 16-AB ()13462206y x x y -=--⇒+-=1A B 11A B AB E ⋂=DE 111ABC A B C -1A E BE =D 11A C DE 11ΔA BC 1BC ∴∥DE 1BC ⊄ 1,AB D DE ⊂1AB D 1BC ∴∥1AB D 1CC ⊥ ,ABC AC BC ⊥C 1,,CA CB CC ,,x y z ()()()0,0,0,2,0,0,0,2,0C A B ()()()()1112,0,2,0,2,2,0,0,2,1,0,2A B C D ()()()110,0,2,2,2,2,1,0,2CC AB AD ==-=- 1AB D (),,n x y z =12220220n AB x y z n AD x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩ ()2,1,1n =设直线与平面所成角为.则.直线与平面.(3)设平面与平面所成角为为锐角,平面的法向量为,,平面与平面.18.(共14分)解:(1),由正弦定理得,在中,,,.(2)若选①,由余弦定理,得,解得若选③,1CC 1AB Dθ111sin cos ,n CC n CC n CC θ⋅=<>== ∴1CC 1AB D 1AB D 11ACC A ,αα11ACC A ()0,1,0m =cos cos ,n m n m n m α⋅=<>== 1AB D 11ACC A sin cos b A B =sin sin a b A B =sin sin cos B A A B =ABC V sin 0,tan A B ≠=()0,πB ∈ π3B ∴=sin 2sin ,2C A c a== 2222cos b a c ac B =+-222944cos a a a B =+-a c ==1sin 2S ac B ∴==b C == ()sin sin sin cos cos sin A B C B C B C =+=+=由正弦定理可得:选择②,面积公式2分;余弦定理2分.不超过4分.19.(共14分)解:(1)由题意,,解得,,,的最小正周期;的单调减区间为(2)函数在区间上与直线有交点所以,函数在区间上的最大值为3,又因为所以,解得.实数的取值范围是.(3)当时,取最大值4c =1sin 2S bc A ==2πππ3sin 2cos 206364f a ⎛⎫⎛⎫⎛⎫-=-+-=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭a =()22cos f x x x ∴=+cos21x x =++π2sin 216x ⎛⎫=++ ⎪⎝⎭()f x 2ππ2T ==()f x π2ππ,π,63k k k z ⎡⎤++∈⎢⎥⎣⎦()f x π,12m ⎡⎤-⎢⎥⎣⎦3y =()f x π,12m ⎡⎤-⎢⎥⎣⎦ππ20,266x m ⎡⎤+∈+⎢⎥⎣⎦ππ262m +≥π6m ≥∴m π,6∞⎡⎫+⎪⎢⎣⎭()()ππ11πππ2sin 21,,,2,2π661262g x f x t x t x x ⎛⎫⎡⎤⎡⎤=-=++-∈+∈ ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦ππ262x +=()f x t -3t -当时,取最小值所以,当时,当时,所以,当时,20.(共15分)(1)证明:因为是正三角形,是的中点,所以.又因为平面平面,平面,所以面;解:(2)因为两两互相垂直.以点为原点,的方向分别为轴正方向建立如图所示的空间直角坐标系.则,设平面的法向量为,由,得,点到平面的距离π3π262x +=()f x t -1t --1t ≤()3M t t=-1t >()1M t t =+1t =min ()2M t =PAD V O AD PO AD ⊥CD ⊥,PAD PO ⊂,PADCD PO ⊥,,AD CD D CD AD ⋂=⊂ABCD PO ⊥ABCD ,,OA OG OP O ,,OA OG OP,,x y z ()()()()()(0,0,0,2,0,0,2,4,0,2,4,0,2,0,0,0,0,O A B C D P --((()1,,,0,4,0,E F G --()((0,2,0,1,2,,1,4,EF EG FG =-==EFG (),,n x y z =2020n EF y n EG x y ⎧⋅=-=⎪⎨⋅=+=⎪⎩ )n = (3,AE =- A EFG AE n d n ⋅==(3)设所以点到面的距离为定值解得:或.21.(共15分)(1)集合具有性质,集合B 不具有性质.(2)当时,集合A 中的元素个数为4.由题设.假设集合A 具有性质,则①当时,,矛盾.②当时,,不具有性质,矛盾.③当时,.因为和至多一个在A 中;和至多一个在A 中;和至多一个在A 中,故集合A 中的元素个数小于4,矛盾.④当时,,不具有性质,矛盾.⑤当时,,矛盾.综上,不存在具有性质的集合.11,0,,122PM PC λλ⎡⎫⎛⎤=∈⋃⎪ ⎢⎥⎣⎭⎝⎦()()2,4,,12,4M EM λλλλ-=-- M EFG 2PF n d nλ⋅== cos ,||||EF EG EF EG EF EG ⋅<>=== 1sin ,22EFG S EF EG EF EG =<>=V 11sin ,36M EFGEFG V S h EF EG EF EG h -==<>=V 14PM PC λ==34A ()3,2T ()4,2T 4n ={}0,1,2,3,4p ∈()4,T p 0p =(){}0,0,0,0A =1p =()()()(){}1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1A =()4,1T 2p =()()()()()(){}1,1,0,0,1,0,1,0,1,0,0,1,0,1,1,0,0,1,0,1,0,0,1,1A ⊆()1,1,0,0()0,0,1,1()1,0,1,0()0,1,0,1()1,0,0,1()0,1,1,03p =()()()(){}1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,1A =()4,3T 4p =(){}1,1,1,1A =()4,T p A(3)记,则.若,则,矛盾.若,则,矛盾.故.假设存在使得,不妨设,即.当时,有或成立.所以中分量为1的个数至多有.当时,不妨设.因为,所以的各分量有个1,不妨设.由时,可知,中至多有1个1,即的前个分量中,至多含有个1.又,则的前个分量中,含有个1,矛盾.所以.因为,所以.所以.()121,2,,j j j nj c t t t j n =+++= 12n c c c np +++= 0p =(){}0,0,,0A = 1p =(){}1,0,0,,0A = 2p ≥j 1j c p +…1j =11c p +…1c n =0j c =()12,3,,j c j n == 12,,,n ααα ()1212n n n n np +-=-<…11p c n +<…11211,111,0p n t t t t +===== n n p αα⋅=n αp 23,11n n n p t t t +==== i j ≠1i j αα⋅={}121,2,3,,1,,,,q q p q q p t t t +∀∈+ 121,,,p ααα+ 1p +121p p p ++=+()11,2,,1i n i p αα⋅==+ 121,,,p ααα+ 1p +()()1122p p p +++=+()1,2,,j c p j n = …12n c c c np +++= ()1,2,,j c p j n == ()121,2,,j j nj t t t p j n +++==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年度第一学期期中考试
高二数学(文)试题
2017.11
(1)求证:不论k取什么值,直线l和圆C总相交;
(2)求直线l被圆C截得的最短弦长及此时的直线方程.
A B
2017—2018学年度第一学期期中考试
高二数学(文)答案
一、选择题:
二、填空题: 13. 4 14. 6
6
15. 052=+-y x 16. )16,12( 三、解答题:
17.解:由已知得线段AB 的中点坐标为)0,0(,
所以11
1)
1(1-=----=
AB k
所以弦AB 的垂直平分线的斜率为1=k ,
所以AB 的垂直平分线方程为x y = ………………………4分 又圆心在直线02=-+y x 上,
所以⎩⎨
⎧
=-+=02y x x y 解得⎩⎨⎧==11
y x 即圆心为)1,1(
圆的半径为2])1(1[)11(22=--+-=
r
所以圆的方程为4)1()1(22=-+-y x ………………………10分 18.(1)证明:因为在直三棱柱111C B A ABC -中,⊥B B 1底面ABC 所以B B AB 1⊥ …………………….2分 又因为BC AB ⊥,B B B BC =⋂1
所以⊥AB 平面11BCC B ………………………5分 (2)取AB 的中点D ,因为F 为BC 的中点, 所以DF ∥AC ,且AC DF 2
1
=
………………………6分 因为E 为11C A 的中点,AC ∥11C A ,且11C A AC =
所以DF ∥1EC ,且1EC DF =,所以四边形E DFC 1为平行四边形 所以F C 1∥DE ……………………..10分 又因为F C 1⊄平面ABE ,DE ⊂平面ABE
所以F C 1∥平面ABE ………………………12分 19. 解:(1)证明:由直线l 的方程可得,)4(3-=-x k y ,则直线l 恒通过点
)3,4(,把)3,4(代入圆的C 方程,得42)43()34(22<=-+-,
所以点)3,4(在圆C 的内部,又因为直线l 恒过点)3,4(,
所以直线l 与圆C 总相交 …………………6分
A
B C A 1 B 1
C 1
E
F
D
(2)设定点为)3,4(A ,由题可知当直线l 与CA 直线垂直时,直线l 被圆C 截得的弦长最短, 因为14
33
4-=--=
CA k ,所以直线l 的斜率为1=k 所以直线l 的方程为43-=-x y ,即01=--y x …………………10分
设圆心)4,3(C 到直线l 距离为d ,则22
1
43=--=
d
所以直线l 被圆C 截得最短的弦长为22)2(422
=- ……………………12分 20.证明:(1)因为G F E ,,分别为DC BD PC ,,的中点, 所以EG ∥PD ,FG ∥BC 因为BC ∥AD ,所以FG ∥AD 因为⊄EG 平面PAD ,⊄FG 平面PAD
⊂PD 平面PAD ,⊂AD 平面PAD ,
所以EG ∥平面PAD ,FG ∥平面PAD 又G FG EG =⋂,且⊂FG EG ,平面EFG
所以平面EFG ∥平面PAD ………………………6分 (2)因为平面⊥PAD 底面ABCD ,平面⋂PAD 底面AD ABCD = 四边形ABCD 是正方形,AD CD ⊥,⊂CD 平面ABCD
所以⊥CD 平面PAD ,所以PA CD ⊥ …………………………8分 又因为AD PD PA 22=
=,所以22222)2
2
()22(AD AD AD PD PA =+=+, 即PD PA ⊥
又D PD CD =⋂,且⊂PD CD ,平面PDC …………………………10分 所以⊥PA 平面PDC ,又⊂PA 平面PAB
所以平面⊥PAB 平面PDC ……………………12分 21. (1)证明:
因为长方形ABCD 中,M AD AB ,2,22=
=为DC 的中点,
所以2==BM AM ,所以AM BM ⊥ …………………2分 因为平面⊥ADM 平面ABCM ,平面⋂ADM 平面AM ABCM =, 且⊂BM 平面ABCM
P
A
B C
D
E
F
G
所以⊥BM 平面ADM ,因为⊂AD 平面ADM
所以BM AD ⊥ …………………6分 (2)E 为DB 的中点. 因为322
)222(,222221=⨯+==⨯⨯=∆ABCM ABM
S S , 所以ABCM D ABM D V V --=32,即ABCM D ABM D V V --=3
1
21
因为由题得ABCM D ADM E V V --=31
所以ABM D ADM E V V -==21
,因为ADM B ABM D V V --=
所以ADM B ADM E V V -==2
1
设点E 到平面ADM 的距离为1h ,点B 到平面ADM 的距离为2h 所以213
1
2131h S h S ADM ADM ⨯⨯⨯=⨯⨯∆∆ 所以212
1h h =
所以点E 为线段DB 的中点. ……………………….12分 22. 解(1)因为)0,1(),0,2(B A -,),(y x P '',且PB PA 2=
所以2
222)1(2)2(y x y x '+-'='++',
化简得0422='-'+'x y x ,即4)2(2
2='+-'y x ①
设),(y x M ,由中点坐标公式得⎪⎩
⎪⎨⎧'=+'=226y y x x ,即⎩⎨⎧='-='y y x x 262 ②
将②代入①得:4)2()82(2
2
=+-y x
所以点M 的轨迹方程为1)4(2
2
=+-y x ………………………5分 (2)由⎩⎨
⎧=+--=1
)4(12
2y x kx y 消去y 得1)1()4(2
2=-+-kx x 整理得016)4(2)1(2
2
=++-+x k x k 所以2
21221116
,1)4(2k
x x k k x x +=⋅++=
+ B
A C
M
E D
由已知22111k x x +=
-得2
2212
21)
1(14)(k x x x x +=⋅-+ 所以2
22222)
1(1
1164)1()4(4k k k k +=+⨯-++ 即1)1(64)4(422=+-+k k ,即0132602
=+-k k 所以30
1
,2121==
k k 所以直线l 的方程为121-=
x y 或130
1
-=x y 即012=--y x 或03030=--y x ……………………………12分。