降次——解一元二次方程
降次--解一元二次方程(初中数学九年级)
降次--解一元二次方程(初中数学九年级) 学情分析:在学习本节之前,学生对一元一次方程及一元一次方程的解的有关知识有一定的了解,并且九年级的学生有一定的数学思维基础,分析和概括能力相对于八年级学生有很大的提高,容易开发学生的主观能动性,适合有特殊到一般的探究方式教学内容分析:本节课主要学习运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.教学目标:1、经历推导求根公式的过程,加强推理技能的训练。
2、会用公式法解简单系数的一元二次方程。
3、会利用b2-4ac来判断一元二次方程根的情况。
教学难点分析:重点:运用开平方法解形如(m x+ n)2=p(p≥0)的方程.难点:通过根据平方根的意义解形如x2=n的方程,知识迁移到形如(x+m)2=n(n≥0)的方程.关键:理解一元二次方程“降次”──转化的数学思想,并能应用它解决一些具体问题.教学课时: 1课时教学过程:一、温故知新:1、用配方法解一元二次方程的步骤有哪些?(口答)2、用配方法解下列方程:(1)x 2-6x+5=0 (2)2x 2-7x+3=0(学生扳演,教师点评)二、自主学习:〈一〉自学课本P40---P 41思考下列问题:1、结合配方法的几个步骤,看看教材中是怎样推导出求根公式的?2、配方时,方程两边同时加是什么?3、教材中方程②()224422a acb a b x -=+能不能直接开平方求解吗?为什么?4、什么叫公式法解一元二次方程?求根公式是什么?交流与点拨:公式的推导过程既是重点又是难点,也可以由师生共同完成,在推导时,注意学生对细节的处理,教师要及时点拨;还要强调不要死记公式。
关键感受推导过程。
在处理问题3时,要结合前边学过的平方的意义,何时才能开方。
三、例题学习:例1(教材P 41例2)解下列方程:(1)2x 2-x-1=0 (2)x 2+1.5x=-3 x(3)x 2-x 2= -21(4)4x 2-3x+2=0解:将方程化成一般形式 解:a=4, b= -3, c=2.x 2-x 2+21=0 b 2-4ac=(-3)2-4×4×2=9-32=-23<0a=1, b= -2, c=21 因为在实数范围负数不能开平方,所以方b 2-4ac=(-2)2-4×1×21=0 程无实数根。
九年级数学第二十二章降次—解一元二次方程人教实验版知识精讲
初三数学第二十二章降次—解一元二次方程人教实验版【本讲教育信息】一. 教学内容:用因式分解法解一元二次方程1. 用因式分解(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 根据具体一元二次方程的特征,灵活选择方程的解法.体会解决问题方法的多样性.二. 知识要点: 1. 因式分解法解方程x 2-x =0.方程左边x 2-x 可以分解因式:x 2-x =x (x -1),于是: x =0或x -1=0.所以x 1=0,x 2=1. 上述解法过程中,不是不用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次.这种解法叫做因式分解法. 2. 因式分解法解一元二次方程的主要步骤: (1)将方程化成右边等于0的形式;(2)将方程左边分解因式(两个一次因式的积),方程化成(ax +m )(bx +n )=0的形式;(3)由ax +m =0或bx +n =0得出方程的根.3. 直接开方法、配方法、公式法、因式分解法的对比形如x 2=a (a ≥0)或(ax +b )2=c (c ≥0)的用直接开方法解.因为一元二次方程的求根公式是由配方法推导出来的,对一般形式的一元二次方程一般不用配方法求根,可考虑因式分解法或公式法.三. 重点难点:因式分解法把一个一元二次方程化为两个一元一次方程来解,体现了“降次”的思想,这种思想不但是本节的重点,而且在以后处理其他方程时也是非常重要的.【典型例题】例1. 用因式分解法解下列方程:(1)5x 2+3x =0;(2)7x (3-x )=4(x -3);(3)9(x -2)2=4(x +1)2. 分析:(1)左边=x (5x +3),右边=0;(2)先把右边化为0,7x (3-x )-4(x -3)=0,找出(3-x )与(x -3)的关系;(3)应用平方差公式.解:(1)因式分解,得x (5x +3)=0, 于是得x =0或5x +3=0,x 1=0,x 2=-35;(2)原方程化为7x (3-x )-4(x -3)=0, 因式分解,得(x -3)(-7x -4)=0, 于是得x -3=0或-7x -4=0,x 1=3,x 2=-47;(3)原方程化为9(x -2)2-4(x +1)2=0, 因式分解,得[3(x -2)+2(x +1)][3(x -2)-2(x +1)]=0, 即(5x -4)(x -8)=0, 于是得5x -4=0或x -8=0,x 1=45,x 2=8.评析:(1)用因式分解法解一元二次方程的关键有两个:一是要将方程右边化为0,二是熟练掌握多项式的因式分解.(2)对原方程变形时不一定要化为一般形式,要从便于分解因式的角度考虑,但各项系数有公因数时可先化简系数.例2. 选择合适的方法解下列方程.(1)2x 2-5x +2=0; (2)(1-x )(x +4)=(x -1)(1-2x );(3)3(x -2)2=x 2-2x . 分析:(1)题宜用公式法;(2)题中找到(1-x )与(x -1)的关系用因式分解法;(3)题中x 2-2x =x ·(x -2)用因式分解法.解:(1)a =2,b =-5,c =2, b 2-4ac =(-5)2-4×2×2=9>0, x =-(-5)±92×2=5±34,x 1=2,x 2=12;(2)原方程化为(1-x )(x +4)+(1-x )(1-2x )=0, 因式分解,得(1-x )(5-x )=0, 即(x -1)(x -5)=0, x -1=0或x -5=0, x 1=1,x 2=5;(3)原方程变形为3(x -2)2-x (x -2)=0, 因式分解,得(x -2)(2x -6)=0, x -2=0或2x -6=0, x 1=2,x 2=3. 评析:(1)解一元二次方程的几种方法中,如果不能直接由平方根定义解得,首先考虑的方法通常是因式分解法,对于不易分解的应考虑公式法,而配方法比较麻烦.公式法、配方法一般可以解所有一元二次方程.例3. 已知(a 2+b 2)2-(a 2+b 2)-6=0,求a 2+b 2的值.分析:若把(a 2+b 2)看作一个整体,则已知条件可以看作是以(a 2+b 2)为未知数的一元二次方程.解:设a 2+b 2=x ,则原方程化为x 2-x -6=0.a =1,b =-1,c =-6,b 2-4ac =12-4×(-6)×1=25>0, x =1±252,∴x 1=3,x 2=-2.即a 2+b 2=3或a 2+b 2=-2, ∵a 2+b 2≥0,∴a 2+b 2=-2不合题意应舍去,取a 2+b 2=3.评析:(1)本题求的是a 2+b 2,而题中条件是关于a 2+b 2的,把a 2+b 2看成一个整体是一个朴素的数学思想,能帮助我们解决一些较“麻烦”的问题.(2)根据非负数的性质有a 2+b 2≥0,在做题时要注意隐含条件.例4. (1)当代数式x 2+7x +6的值与x +1的值相同时,x 的值为多少?(2)方程x 2+2x -8=0的正整数解为几?分析:(1)两个代数式值相等,即x 2+7x +6=x +1,解这个方程可得x 的值;(2)先解出方程的两个根再看其中的正整数根.解:(1)x 2+7x +6=x +1, x 2+6x +5=0,a =1,b =6,c =5,b 2-4ac =16>0.所以x =-6±162,x 1=-1,x 2=-5,所以x 的值为-1或-5.(2)解方程x 2+2x -8=0, a =1,b =2,c =-8,b 2-4ac =22-4×1×(-8)=36>0, x =-2±362=-1±3, x 1=2,x 2=-4.所以方程x 2+2x -8=0的正整数解为2.评析:(1)题中涉及代数式的值的问题,实质上方程就是表示含有未知数的两个代数式的值相等的式子;(2)题中方程用了公式法,用因式分解法也很方便.例5. 用一根长40cm 的铁丝围成一个面积为91cm 2的矩形,问这个矩形长是多少?若围成一个正方形,它的面积是多少?分析:设长为xcm ,则宽为(402-x )cm ,由相等关系长×宽=面积列出方程.解:设长为xcm ,则宽为(402-x )cm ,由矩形面积等于91cm 2,得x ·(402-x )=91,解这个方程,得x 1=7,x 2=13.当x =7cm 时,402-x =20-7=13(cm )(舍去);当x =13cm 时,402-x =20-13=7(cm ).当围成正方形时,它的边长为404=10(cm ),面积为102=100(cm 2).答:矩形的长为13cm ,若围成正方形,则这个正方形的面积为100cm 2.评析:有一些几何面积问题用到一元二次方程,解这类题时要注意一些条件,如习惯上矩形中较长的边称为长,而较短的边称为宽,故本题中取长为13cm ,宽为7cm 较合适.例6. 解方程2(12-x )2-(x -12)-1=0.分析:因为(12-x )2=(x -12)2,如果把(x -12)看成一个整体,并设x -12=y ,则原方程化为2y 2-y -1=0,先求出y 的值,再反过来求x 的值. 解:设x -12=y ,原方程化为2y 2-y -1=0,a =2,b =-1,c =-1,b 2-4ac =9>0,y =-(-1)±92×2=1±34.y 1=1,y 2=-12.当y =1时,x -12=1,x =32;当y =-12时,x -12=-12,x =0.所以原方程的解是x 1=32,x 2=0.评析:本题如果化成一般形式再求解可能要麻烦些,这里使用了把x -12设为y 的做法,回避了很多计算,这种方法叫做换元法.【方法总结】1. 对某些方程而言因式分解法比较快捷,一般选择方法时应先考虑因式分解法,不适合因式分解法的再考虑其它方法.2. 注意体验类比、转化、降次的数学思想方法.解一元一次方程的基本思路是整理后把未知数的系数化成1;解一元二次方程的基本思路是通过开平方或因式分解把一元二次方程降次、转化成一元一次方程.【预习导学案】(实际问题与一元二次方程) 一. 预习前知1. 两个数的差等于3,积等于18,则这两个数是__________.2. 三个连奇数的平方和等于155,则这三个数是__________.3. 矩形的长比宽大4厘米,面积等于60厘米2,则它的周长为__________.4. 经实验,某物体运动规律满足等式s =40t -5t 2,问t =__________时,s =60. 二. 预习导学1. 两个数的和为2,且积为-15,那么求其中一个数x ,列方程为( )A .x 2-2x -15=0B .x 2+2x +15=0C .x 2-2x +15=0D .x 2+2x -15=02. 某厂2008年总产值达1493万元,比2007年增长11.8%,下列说法: ①2007年总产值为1493(1-11.8%)万元; ②2007年总产值为1493÷(1-11.8%)万元; ③2007年总产值为1493÷(1+11.8%)万元;④若按11.8%的年增长率计算,2010年总产值预计为1493(1+11.8%)万元.其中正确的是( ) A .③④ B .②④ C .①④ D .①②③3. 在一块长12m ,宽10m 的长方形平地中央划出一块地,砌成面积为48m 2的长方形花台,使花台四周的空地的宽度一样,①则花台面积占长方形平地面积的__________;②空地面积与花台面积的比是__________;③如果求花台四周空地的宽度x ,则所列方程为__________. 反思:(1)列一元二次方程解实际问题的一般步骤是怎样的?(2)用一元二次方程解实际问题应该注意什么?【模拟试题】(答题时间:50分钟)一. 选择题1. 方程x (x -1)=0的根是( ) A. 0 B. 1 C. 0,-1 D. 0,12. 方程9(x +1)2-4(x -1)2=0的正确解法是( ) A. 直接开方得3(x +1)=2(x -1)B. 化为一般形式13x 2+5=0C. 分解因式得[3(x +1)+2(x -1)][3(x +1)-2(x -1)]=0D. 直接得x +1=0或x -1=03. 解方程(5x -1)2=3(5x -1)的适当方法是( ) A. 直接开方法 B. 配方法 C. 公式法 D. 因式分解法 4. 若实数x 、y 满足(x +y +2)(x +y -1)=0,则x +y 的值为( ) A. 1 B. -2 C. 2或-1 D. -2或1 5. 方程3x (x -2)=0的解是( )A. x 1=3,x 2=2B. x 1=0,x 2=2C. x 1=13,x 2=2 D. x 1=0,x 2=-2*6. 若a 使得x 2+4x +a =(x +2)2-1成立,则a 的值为( ) A. 5 B. 4 C. 3 D. 2*7. 如果x 2+x -1=0,那么代数式x 3+2x 2-7的值是( ) A. 6 B. 8 C. -6 D. -8 **8. 已知(x +y )(1-x -y )+6=0,则x +y 的值为( ) A. 2 B. -3 C. -2或3 D. 2或-3二. 填空题1. 一元二次方程x 2-2x =0的根是__________. 2. 方程(x -1)(x +2)=2(x +2)的根是__________. *3. 方程 (x -1)(x +2)(x -3)=0的根是__________. 4. 方程x (2x -1)=3(2x -1)的根是__________.*5. 使代数式x 2+x -2的值为0的x 的值是__________.6. 一个数平方的2倍等于这个数的7倍,这个数是__________.**7. 三角形两边的长分别是8和6,第三边的长是方程x 2-12x +20=0的一个实数根,则三角形的周长是__________.*8. 一元二次方程ax 2+bx +c =0,若b =a +c ,则这个方程必有一根为__________.三. 解答题1. 用因式分解法解下列方程:(1)(x -2)2-9=0;(2)3y 2+y =0;(3)2x (3x +2)=9x +6;(4)(3x -1)2=4(x +2)2.2. 用适当的方法解下列方程:(1)(5-8x )2=2;(2)x 2+8x =20;(3)3x 2+2x -3=0;(4)(x -1)(x +2)=70.3. 试求使代数式(x -7)(x +3)的值比(x +5)大10的x 的值.4. 审查下面解方程(x -1)2=2(x -1)的过程回答问题. 方程两边都除以(x -1)得x -1=2, ∴x =3.上述过程对不对,为什么?*5. 直角三角形的三边长是三个连续整数,求这个直角三角形的斜边的长.试题答案一. 选择题1. D2. C3. D4. D5. B6. C7. C8. C二. 填空题1. x 1=0,x 2=22. x 1=-2,x 2=33. x 1=1,x 2=-2,x 3=34. x 1=12,x 2=3 5. x 1=-2,x 2=1 6. 0或72 7. 24 提示:方程的解为2或10,当x =2时,与另两边8和6不能组成三角形应舍去.所以x =10,三角形周长为24. 8. x =-1三. 解答题1. (1)x 1=-1,x 2=5;(2)y 1=0,y 2=-33;(3)x 1=32,x 2=-23;(4)x 1=5,x 2=-35. 2. (1)x 1=5-28,x 2=5+28;(2)x 1=2,x 2=-10;(3)x 1=-1+103,x 2=;(4)x 1=8,x 2=-9.3. 根据题意(x -7)(x +3)-(x +5)=10,解得x 1=9,x 2=-4.4. 不对.当x -1=0时,原方程成立,此时x =1;当x -1≠0时,两边同除以x -1得x -1=2.即x =3.所以原方程的解是x 1=1,x 2=3.5. 设斜边长为x ,则两直角边分别为x -2,x -1.根据题意可得(x -2)2+(x -1)2=x 2,解得x 1=1,x 2=5.当x =1时x -2=-1,x -1=0,不符合题意舍去;当x =5时x -2=3,x -1=4,所以三角形的斜边长为5.。
22. 2.3 降次——解一元二次方程(因式分解法)
100 x1 , x2 0 49
100 x1 , x2 0 49
探究
10 x 4.9 x 0
2
x 10 4.9x 0
x0
因式分解
如果a ·b = 0, 那么 a = 0或 b = 0。
两个因式乘积为 0 降次,化为两个一次方程 或 10 4.9 x 0
右化零 左分解
两因式 各为0
布置作业
第5次 课本第17页第6、10、11题
例3 解下列方程:
(1) x( x 2) x 2 0; 1 3 2 2 (2)5 x 2 x x 2 x . 4 4
分解因式法解一元二次方程的步骤是: 1.使方程右边等于0; (有时化为一般形式) 2. 将方程左边因式分解为a×b; 3. 根据“ab=0,则a=0或b=0”,转化为两个一元一次方程. 4. 分别解这两个一元一次方程,它们的根就是原方程的根.
例3 解下列方程:
1 x x 2 x 2 0;
2
x-2看成是一个整体
(1)因式分解,得 解: (x-2)(x+1)=0.
于是得
1 3 2 5x 2 x x 2 x . 2 4 4
(2)移项、合并同类项,得
2
因式分解,得
于是得
4 x 1 0.
5 5 r1 , r2 (舍去). 2 1 1 2
答:小圆形场地的半径是
5 m. 2 1
小结
分解因式法解一元二次方程的步骤是: 1. 将方程左边因式分解,右边等于0;
2. 根据“至少有一个因式为零”,转化为两个一元 一次方程. 3. 分别解两个一元一次方程,它们的根就是原方 程的根.
第二十二章第2节降次——解一元二次方程(一)(1)
二.知识要点:
1.形如x2=p或(mx+n)2=p(p≥0)的方程用开平方法将一元二次方程降次转化为两个一元一次方程.
2.配方的原理及过程
原理:完全平方公式a2±2ab+b2=(a±b)2.
过程:以方程2x2-3x-1=0为例.
第一步:二次项系数化为1,移项得x2-x=,即x2-2×x×=;
(2)计算b2-4ac的值;
(3)若b2-4ac≥0,则代入求根公式求解.
6.对于一元二次方程ax2+bx+c=0(a≠0),
(1)当b2-4ac>0时,方程有实数根: ;
(2)当b2-4ac=0时,方程有实数根:x1=x2=;
(3)当b2-4ac<0时,方程没有实数根.
三.重点难点:
本讲重点是用配方法和公式法解一元二次方程,难点是配方的过程和对求根公式推导过程的理解.
x===±,
x1=+,x2=-.
评析:用公式法解一元二次方程的一般步骤是:①把方程化为一般形式,确定a、b、c的值;②求出b2-4ac的值;③若b2-4ac≥0,则把a、b、c及b2-4ac的值代入一元二次方程的求根公式x=,求出x1、x2,若b2-4ac<0,则方程没有实数根.
例4.不解方程判断下列方程根的情况.
第二步:方程两边同时加上()2,x2-2×x×+()2=+()2.
第三步:完成配方,(x-)2=.
通过配方,方程的左边变形为含x的完全平方形式(mx+n)2=p(p≥0),可直接开平方,将一个一元二次方程转化为两个一元一次方程.这样解一元二次方程的方法叫做配方法.
3.用配方法解一元二次方程的步骤:
(1)把二次项系数化为1;
分析:方程(1)是一元二次方程的一般形式,且二次项系数为1,所以直接移项、配方、求解即可;方程(2)要先把二次项系数化为1;方程(3)不要急于打开括号,可把(x+1)2看成一个整体合并,可避免重复配方.
22.2降次——解一元二次方程(共8课时)
22.2降次——解一元二次方程(共8课时)第一课时:配方法(1)一、教学目的1.使学生掌握用直接开平方法解一元二次方程.2.引导学生通过特殊情况下的解方程,小结、归纳出解一元二次方程ax2+c=0(a>0,c<0)的方法.二、教学重点、难点重点:准确地求出方程的根.难点:正确地表示方程的两个根.三、教学过程复习过程回忆数的开方一章中的知识,请学生回答下列问题,并说明解决问题的依据.求下列各式中的x:1.x2=225; 2.x2-169=0;3.36x2=49; 4.4x2-25=0.回答解题过程中的依据.解题的依据是:一个正数有两个平方根,这两个平方根互为相反数.即一般地,如果一个数的平方等于a(a≥0),那么这样的数有两个,它们是互为相反数.引入新课我们已经学过了一些方程知识,那么上述方程属于什么方程呢?新课教学过程设计做一做1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?(课件:盒子的棱长)2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?(1)2x-=;(2)2692(21)5x x++=.学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到21x-=对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.即,如果方程能化成2xp=或2()(0)m x n p p +=≥的形式,那么可得x =m x n+=课堂练习解下列方程.学生独立思考、独立板书解题1.x 2-3=0 2.4x 2-9=0 3. 4x 2+4x+1=1 4. x 2-6x+9=03、应用拓展市政府计划2年内将人均住房面积由现在的10m 2提高到14.4m ,求每年人均住房面积增长率.分析:设每年人均住房面积增长率为x .•一年后人均住房面积就应该是10+•10x=10(1+x );二年后人均住房面积就应该是10(1+x )+10(1+x )x=10(1+x )2解:设每年人均住房面积增长率为x , 则:10(1+x )2=14.4 (1+x )2=1.44直接开平方,得1+x=〒1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x 1=0.2=20%,x 2=-2.2因为每年人均住房面积的增长率应为正的,因此,x 2=-2.2应舍去. 所以,每年人均住房面积增长率应为20%.课堂小结问题:本节课你学到了什么知识?从中得到了什么启发?1.本节主要学习了简单的一元二次方程的解法——直接法.2.直接法适用于ax 2+c=0(a >0,c <0)型的一元二次方程.由应用直接开平方法解形如x 2=p (p ≥0),那么x=开平方法解形如(mx+n)2=p(p≥0),那么mx+n=的.作业31页练习1、2第二课时:配方法(2)教学目的1.使学生掌握用配方法解一元二次方程的方法.2.使学生能够运用适当变形的方法,转化方程为易于用配方法求解的形式,来解某些一元二次方程.并由此体会转化的思想.重点:掌握配方的法则.难点:凑配的方法与技巧.教学过程一、复习回顾、引入新课用开平方法解下列方程:(1)x2=441; (2)196x2-49=0;我们知道,形如x2-A=0的方程,可变形为x2=A(A≥0),再根据平方根的意义,用直接开平方法求解.那么,我们能否将形如ax2+bx+c=0(a>0)的一类方程,化为上述形式求解呢?这正是我们这节课要解决的问题.二、探究新知、归纳配方法一般过程.学生通过思考,自己列出方程,然后讨论解方程的方法.问题:要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为x2+6x+9=16+9,即(x+3)2=25,问题解决.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程探究二:利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)学生首先独立思考,自主探索,然后交流配方时的规律. (1)x 2-8x + 1 = 0; (2)2213x x+=;(3)23640x x -+=.(1)中经过移项可以化为281x x -=-,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到2228414x x -+=-+,得到(x -4)2=15;(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即23122x x -=-,方程两边都加上23()4,方程可以化为231()416x -=;(3)按照(2)的方式进行处理.在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:(1)把方程化为一般形式2a xb xc ++=;(2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.三、应用提高、拓展创新,培养学生应用意识.绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?师生活动设计:学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.…解答‟设绿地的宽是x 米,则长是(x +10)米,根据题意得x (x +10)=900.整理得210900x x +=,配方得2(5)925x +=.解得1255x x =-+=--由于绿地的边长不可能是负数,因此绿地的宽只能是5-+的长是5+四、课堂练习解方程x 2-4x-3=0. 解方程2x 2+3=7x .五、归纳总结、布臵作业1、 在解决问题的过程中你采取了什么方法?2、应用配方法解一元二次方程ax 2+bx+c=0(a ≠0)的要点是: (1)化二次项系数为1;(2)移项,使方程左边为二次项和一次项,右边为常数; (3)方程两边各加上一次项系数一半的平方; 作业:习题22.2第1~3题.第三课时:用公式法解一元二次方程。
21.2.3降次--解一元二次方程(因式分解法)
A.直接开平方法 B.配方法 C.公式法 D.因式分解法 5.方程x( x 1) x的解是_______. 6.方程x 2 10 x 25 0的解是_______. 7.课本P17第6大题(1).(2).(3).(4)
解:( x 4) (5 2x) 0
2 2
( x 1)(3x 9) 0
(4) x 6 x 9 0
2
(5)4x 4x 1 0
2
解:(x 3) =0
2
解:(2x 1) =0
2
x-3=0
2x-1=0
1 x1 x2 2
x1 x2 3.
课后作业: 1.方程(x 3)( x 4) 0的根是(
)
A.x 3 B.x1 3, x2 4 C.x 4 D.x 1 3, x2 4 2.方程x( x 2) 0的根是(
2
) )
A.x 2 B.x 0 C.x 1 0, x2 2 D.x 1 0, x2 4 3.解方程(x 2) 2( x 2)最适当的方法是( 4.方程x x 0的解是_______.
x 2 0, 或1 x 0. x1 2; x2 1.
解: ( x 1)( x 7) 0 x 1 0或x 7 0
4 x1 0; x2 . 5 (3)利用十字相乘法: x2+(a+b)x+ab=(x+a)(x+b).
1 1
1 7
x1 1, x2 7
(2x 1)2x 1 0.
4 x 1 0,
2
2x 1 0, 或2x 1 0. x1 2, x2 1. 1 1 x1 ; x2 . 2 2 分解因式法解一元二次方程的步骤是:
教案:22.2降次——解一元二次方程(2)
22.2降次——解一元二次方程(2)配方法南通市观河中学 初二备课组一、教学内容本节课主要学习运用配方法,即通过变形运用开平方法降次解方程。
二、教学目标知识技能:探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.数学思考:(1)在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法。
(2)渗透配方法是解决某些代数问题的一个很重要的方法.情感态度:继续体会由未知向已知转化的思想方法.三、教学重点、难点重点:用配方法解一元二次方程.难点:正确理解把ax x 2形的代数式配成完全平方式.四、教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容五、 教学过程(一)复习引入【问题】(学生活动)请同学们解下列方程(1)3x 2-27=0; (2)(2x -3)2=7老师点评:上面的方程都能化成x 2=p 或(mx+n )2=p (p ≥0)的形式,那么可得x=mx+n=p ≥0).如:4x 2+16x+16=(2x+4)2 【活动方略】 教师演示课件,给出题目.学生根据所学知识解答问题.【设计意图】复习直接开门平方法,解形如(mx+n)2=p(p≥0)的形式的方程,为继续学习引入作好铺垫.(二)探索新知【问题情境】要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?【活动方略】学生活动:学生通过思考,自己列出方程,然后讨论解方程的方法.考虑设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为x2+6x+9=16+9,即(x+3)2=25,问题解决。
降次——解一元二次方程
22.2 降次——解一元二次方程情境感知我国南宋数学家杨辉曾提出这样一个问题:“直田积(矩形面积),八百六十四(平方步),只云阔(宽)不及长十二步(宽比长少12步),问阔及长各几步?”基础准备一、配方法1.配方法的定义把一元二次方程的左边化成一个____________________,右边变成一个___________.通过这种形式解一元二次方程的方法,叫做配方法.2.用配方法解一元二次方程的步骤(1)如果二次项系数不是1,就在方程两边同时除以_____________,将其化为1;(2)把___________移到方程的右边;(3)方程两边都加上_________________的平方,使方程的左边变为一个完全平方式;(4)如果方程的右边是一个非负数,根据平方根的定义解方程.问题1.用配方法解方程:21090x x ++=.二、公式法3.一元二次方程()200ax bx c a ++=≠的根可用式子______________________求得,这个式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法. 问题2.用公式法解方程:260x x --=.4.求根公式中的____________叫做一元二次方程()200ax bx c a ++=≠的根判别式. (1)当__________时,一元二次方程()200ax bx c a ++=≠有两个不相等的实数根; (2)当__________时,一元二次方程()200ax bx c a ++=≠有两个相等的实数根;(3)当__________时,一元二次方程()200ax bx c a ++=≠没有实数根.问题3.不解方程,判断下列关于x 的方程的根的情况:(1)245x +=;(2)()22410x mx m -+-=.三、因式分解法5.对于一元二次方程,一边是_________,另一边化为两个_____________的乘积,再使这两个因式分别等于0,从而实现降次,这种方法叫做因式分解法.问题4.用因式分解法解下列方程(1)20x -=;(2)23180x x +-=.要点探究探究1.一元二次方程四种解法的选择例1.用适当的方法解下列方程.(1)2710x x --=.(2)220x x +=.(3)2160x -=.(4)()44x x -=-. 解析:针对方程特点选择最简捷的方法解题.答案:(1)1a =,7b =-,1c =-,()()2247411530b ac -=--⨯⨯-=>,()77212x --±==⨯,∴172x =,272x =. (2)因式分解,得()20x x +=,∴0x =或20x +=,∴10x =,22x =-.(3)移项,得216x =,∴14x =,24x =-.(4)将方程化为一般形式2440x x -+=,即()220x -=,∴122x x ==. 智慧背囊:一元二次方程解法的选择顺序:先特殊,后一般,即先考虑是否可以用直接开平方法,若不能,则看能否用因式分解法,再考虑用公式法,一般没有特殊说明不用配方法,因为配方法比较麻烦,四种解法中最简单的是直接开平方法,最常用的是公式法.活学活用:选择适当的方法解下列方程:(1)2230x x --=;(2)29x =;(3)()2211x x +=+;(4)221x x -=-.探究2.一元二次方程的判别式例2.不解方程,判断下列方程根的情况.(1)22340x x +-=;(2)216924y y +=;(3)()25170x x +-=. 解析:先将方程化成一般形式,确定a ,b ,c 的值,再计算24b ac -的值,并与0进行比较.答案:(1)∵2a =,3b =,4c =-,∴()2243424410b ac -=-⨯⨯-=>,∴原方程有两个不相等的实数根.(2)原方程可变形为2162490y y -+=,∵16a =,24b =-,9c =,∴24b ac - ()22441690=--⨯⨯=,∴原方程有两个相等的实数根.(3)原方程可变形为25750x x -+=,∵5a =,7b =-,5c =,∴24b a c -=()27- 45549100510-⨯⨯=-=-<.∴原方程没有实数根.智慧背囊:判断方程根的情况的关键是准确计算24b ac -的值,并将其与0进行比较. 活学活用:不解方程,判断下列方程根的情况.(1)2100x -+=;(2)()11x x =+-.例3.已知关于x 的方程2450kx kx k -+-=有两个相等的实数根,求k 的值,并解这个方程.解析:若一元二次方程有两个相等的实数根,则240b ac -=.解题时注意题中隐含条件二次项系数0k ≠.答案:∵a k =,4b k =-,5c k =-,∴()()22244451220b ac k k k k k -=---=+. ∵方程有两个相等的实数根,∴240b ac -=,即212200k k +=,解得10k =,253k =-.当0k =时,原方程不是一元二次方程,∴0k =不合题意,舍去,当53k =-时,原方程化为2440x x -+=,解得122x x ==.智慧背囊:对于一次项系数含有字母的一元二次方程,在用根的判别式时必须考虑题目中的隐含条件,即二次项系数不能等于0.活学活用:已知关于x 的方程()21230m x mx m -+++=有两个不相等的实数根,求m 的取值范围.随堂尝试A 基础达标1.选择题(1)一元二次方程240x -=的解是( )(A )2x =.(B )2x =-.(C )12x =,22x =-.(D )1x =2x =(2)方程20x x +=的解是( )(A )1x =±.(B )0x =.(C )1x =.(D )10x =,21x =-.(3)用配方法将代数式245a a -+变形的结果是( )(A )()221a -+.(B )()221a ++.(C )()221a +-.(D )()221a --.(4)已知228x x k ++是完全平方式,则k 的取值是( )(A )4.(B )-4.(C )4±.(D )16.(5)下列方程中,无实数根的是( )(A )270x =.(B )()2116x -=.(C )()()112x x +-=-.(D )()210x +-=. 2.填空题(1)对于方程2316x x =,用_____________法解最简便.(2)当y =_____________时,代数式276y y ++的值与1y +的值相同.(3)当x =_____________(4)一个三角形两边长为2和4,第三边长适合方程2210120x x -+=,则三角形的周长为_____________.3.用适当的方法解下列方程: (1)21943x ⎛⎫+= ⎪⎝⎭;(2)260x x --=;(3)2310y y -+=;(4)22110362x x --=.4.若关于x 的方程()22(21)10m x m x -+++=有两个不相等的实数根,求m 的取值范围.B 能力升级5.试分别写出一个一元二次方程,使它的两根:(1)一根是0,一根是负数;(2)一根是正数,另一根是在-2与-1之间.6.已知实数a ,b ,c ()2130b c +++=,求方程20ax bx c ++=的根.7.若规定两个数a ,b 通过运算得4ab ,即a △b 4ab =,例如:2△642648=⨯⨯=.(1)求3△5的值;(2)求x △x 2+△x -2△40=中x 的值;(3)若不论x 是什么数时,总有a △x x =,求a 的值.C 感受中考8.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )(A )240x +=.(B )24410x x -+=.(C )230x x ++=.(D )2210x x +-=.9.方程220x x +=的解为_____________.10.已知关于x 的一元二次方程2410x x m ++-=.(1)请你为m 选取一个合适的整数,使得到的方程有两个不相等的实数根;(2)设α,β是(1)中你所得到的方程的两个实数根,求22αβαβ++的值.课后实践高次方程有求根公式吗一元二次方程有求根公式,一般的一元三次方程、一元四次方程等高次方程是否也有类似的求根公式呢?数学家们也曾提出过类似的问题,在意大利的数学家们之间还发生了一连串有趣的故事.1535年,意大利数学家塔尔塔利亚与另一位数学家举行了一场数学比赛,双方各出30个三次方程的问题,限30日交卷,约定谁解出的题目多谁就获胜,结果塔尔塔利亚取得了胜利.这次胜利促使塔尔塔利亚进一步潜心研究一般三次方程的解法.1541年,他终于完全解决了三次方程的求解问题.意大利米兰城有个学者卡尔达诺听说塔尔塔利亚会三次方程的解法,就多次向塔尔塔利亚恳求教他,并保证严守秘密,不告诉别人.当塔尔塔利亚把这个方法告诉了他之后,卡尔达诺却将其公开发表,因此现在还习惯称三次方程的求解公式为卡尔达诺公式.当然,塔尔塔利亚大为光火,两人为此曾展开公开论战.一元三次方程一经解出,一元四次方程的解法很快就被卡尔达诺的学生费拉里获得.此后200多年的时间里,推求四次以上高次方程的解法的人不可胜数,但都没有结果.久而久之,人们怀疑这个问题难以解决.挪威数学家阿贝尔证明了一般的五次及五次以上的方程都不可能有公式解法.而代数方程可解性问题的完满解决应归功于法国数学奇才伽罗瓦,他的成果被后人称之为伽罗瓦理论.。
降次--解一元二次方程--(习题课)
2.3降次--解一元二次方程---(习题课)◆随堂检测1、关于x 的方程0232=+-x ax 是一元二次方程,则( )A 、0>aB 、0≠aC 、1=aD 、0≥a2、用配方法解下列方程,其中应在左右两边同时加上4的是( )A 、522=-x xB 、5422=-x xC 、542=+x xD 、522=+x x3、方程x x x =-)1(的根是( )A 、2=xB 、2-=xC 、0,221=-=x xD 、0,221==x x4、已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是______________.5、用适当的方法解下列方程:(1)0672=+-x x ; (2))15(3)15(2-=-x x ;(3)0362=+-x x ; (4)22510x x --=.◆典例分析 解方程022=--x x .分析:本题是含有绝对值的方程,可以转化为一元二次方程求解.转化的方法可以不同,请同学们注意转化的技巧.解法一:分类讨论(1)当0≥x 时,原方程化为022=--x x ,解得:,21=x 12-=x (不合题意,舍去)(2)当0<x 时,原方程化为022=-+x x解得:21-=x ,12=x (不合题意,舍去)∴原方程的解为2,221-==x x .解法二:化归换元 原方程022=--x x 可化为220x x --=, 令y x =,则220y y --=(0y ≥),解得12,y =21y =-(舍去), 当12y =时,2x =,∴2x =±,∴原方程的解为2,221-==x x .◆课下作业●拓展提高1、方程062=--x x 的解是__________________.2、已知1x =-是关于x 的方程2220x ax a +-=的一个根,则a =_______.3、12、写出一个两实数根符号相反的一元二次方程:_________________.4、当代数式532++x x 的值为7时,代数式2932-+x x 的值为( )A 、4B 、2C 、-2D 、-45、已知x 是一元二次方程2310x x +-=的实数根,求代数式235(2)362x x x x x -÷+---的值. 6、阅读材料,解答问题: 材料:为解方程222(1)5(1)40x x ---+=,我们可以视2(1)x -为一个整体.然后设21x y -=,原方程可化为2540y y -+=①.解得121,4y y ==.当11y =时,211x -=,即22x =,∴x =当24y =时,214x -=,即25x =,∴x =.∴原方程的解为1234x x x x ====解答问题:(1)填空:在由原方程得到①的过程中利用_______法,达到了降次的目的,体现了_______的数学思想.(2)解方程4260x x --=. ●体验中考1、(2009年山西)请你写出一个有一根为1的一元二次方程: .2、(2009年湖北襄樊)如图,在ABCD Y 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD Y 的周长为( )A.4+ B.12+ C.2+ D.212++3、(2008年,凉山)已知反比例函数ab y x=,当0x >时,y 随x 的增大而增大,则关于x 的方程220ax x b -+=的根的情况是( )A .有两个正根B .有两个负根C .有一个正根一个负根D .没有实数根(提示:本题综合了反比例函数和一元二次方程根与系数的关系两个重要的知识点,请认真思考,细心解答.)4、(2008年,齐齐哈尔)三角形的每条边的长都是方程2680x x --=的根,则三角形的周长是_________________.(点拨:本题综合考查了一元二次方程的解法和三角形的有关知识,特别要注意应用三角形任意两边之和大于第三边这个定理.)参考答案:◆随堂检测1、B. 依据一元二次方程的定义可得.2、C.3、D. 注意不能在等式两边同除以含有未知数的式子.本题用因式分解法好.4、2+依据一元二次方程根与系数的关系可得224x =∴方程的另一个根是22x =.5、解:(1)用因式分解法解0672=+-x x 得:121,6x x ==;(2)用因式分解法解)15(3)15(2-=-x x 得:1214,55x x ==; (3)用配方法解0362=+-x x 得:1233x x ==A DC EB(4)用公式法解22510x x --=得:12x x ==. ◆课下作业●拓展提高1、123,2x x ==-. 选用因式分解法较好.2、2-或1 将1x =-代入方程2220x ax a +-=得:220a a +-=,解得122,1a a =-=.3、答案不唯一:如2230x x +-=.4、A. 当2357x x ++=时,即232x x +=,∴代数式223923(3)23224x x x x +-=+-=⨯-=.故选A.5、解:∵2310x x +-=,∴231x x +=. 化简:223539(2)3623(2)2x x x x x x x x x x ---÷+-=÷---- 3213(2)(3)(3)3(3)x x x x x x x x --=⨯=-+-+∵∵∴ 21113(3)313x x ===+⨯, ∴代数式235(2)362x x x x x -÷+---的值是13. 6、解:(1)换元法,转化.(2)设2x y =,原方程可化为260y y --=①.解得123,2y y ==-.当13y =时,即23x =,∴x =当22y =-时,22x =-无解.∴原方程的解为12x x =.●体验中考1、答案不唯一,如21x =2、A.解析:本题考查平行四边形及一元二次方程的有关知识,∵a 是一元二次方程2230x x +-=的根,∴1a =,∴AE=EB=EC=1,∴AB=2,BC=2,∴ABCD Y 的周长为422+,故选A 。
22.2 降次-解一元二次方程-配方法,公式法,因式分解法
2 3 2 3 y1 1 , y2 1 . 3 3
(1)3 x 2 x 5 0;
2
(2)2 y y 6 0;
2
(3)3 x 6 x 1.
2
1.熟悉配方法解方程的步骤 2.体会转化的数学思想.
解下列方程:
(1)t 2t 48;
2
(2)2 x 4 x 5 0.
x 3 5, x1 3 5 , x2 3 5.
解: x 2 5 x 6,
(2)
5 5 x 5x 6 , 2 2
2
2
2
x 5x 6 0.
2
5 25 x 6 , 2 4 5 49 x , 2 4 5 7 5 7 x1 , x2 , 2 2 2 2 x1 1, x2 6.
课时总结
(1)、可直接开方解形如 x p ( p 0) 的方程,那么 x p 达到降次的目的;
2
(2)、可直接开方解形如 ( mx n) p ( p 0) 的方程,那么 mx n p 达到降次的目 的;
2
一元二次方程配方的一般步骤: 化简:把方程化简为一般形式, 把二次项系数化为1 配方:方程两边都加上一次项系数一半的平方 开方:根据平方根意义,方程两边开平方 求解:解一元二次方程 定解:写出原方程的解
2
(2) 可直接开方解形如 (mx n) p ( p 0) 的方程, 那么 mx n p 达到降次的目的;
2
问题2 要使一块矩形场地的长比宽多6m , 并且 面积为16 m2 ,场地的长和宽应各是多少?
解:设场地的宽为 x m ,长为( x 6) m .根据 2 矩形面积为16 m ,列方程
初三数学降次——解一元二次方程试题
初三数学降次——解一元二次方程试题1.方程的根是()A.B.C.D.【答案】C【解析】x2-4=0变形得:x2=4,开方得:x1=2,x2=-2,则方程的根为2或-2.故选C考点: 解一元二次方程-直接开平方法.2.在解一元二次方程时,粗心的甲、乙两位同学分别抄错了同一道题,甲抄错了常数项,得到的两根分别是8和2;乙抄错了一次项系数,得到的两根分别是-9和-1.你能找出正确的原方程吗?若能,请你用配方法求出这个方程的根.【答案】x2-10x+9=0;x1=9,x2=1【解析】本题主要考查了根与系数的关系及用配方法解一元二次方程. 先设这个方程的两根是α、β,由于乙把一次项系数看错了,而解得方程的两根为-9和-1,则有αβ==9,甲把常数项看错了,解得两根为8和2,则有α+β=-=10,令a=1,那么关于α、β的一元二次方程即为所求.解:设此方程的两个根是α、β,根据题意得:α+β=-=10,αβ==9,令a=1,那么关于α、β的一元二次方程是x2-10x+9=0.x2-10x+9=(x-5)2-25+9=0,故(x-5)2=16,解得:x=9或x=1,故方程两根为:9,1.3.方程x2=6x的根是( )A.x1=0,x2=-6B.x1=0,x2="6"C.x=6D.x=0【答案】B【解析】本题考查了利用因式分解法解一元二次方程. 先把方程变形为x2-5x=0,把方程左边因式分解得x(x-5)=0,则有x=0或x-5=0,然后解一元一次方程即可.解:x2=6x,∴x(x-6)=0,∴x=0或x-6=0,∴x1=0,x2=6.故选B4.方程2x2-3x+1=0经过配方化为(x+a)2=b的形式,正确的是( )A.;B.;C.;D.以上都不对【答案】C【解析】本题主要考查了解一元二次方程-配方法.用配方法解一元二次方程的步骤:(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.首先把二次项系数化为1,然后进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式.解:移项得2x2-3x=-1,把二次项系数化为1,x2-x=-,配方得x2-x+=-+即(x-)2=,故选C.5.用______法解方程3(x-2)2=2x-4比较简便.【答案】因式分解法【解析】本题考查了因式分解法解一元二次方程.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.此题通过观察可知等式的右边可提出公因式2,变为2(x-2),移项后可把(x-2)看作是公因式,用提公因式的方法把左边分解因式,从而解出方程,所以用因式分解法比较简便.解:由方程3(x-2)2=2x-4知:两边有公因式x-2,∴用因式分解法解方程3(x-2)2=2x-4比较简便.6.如果2x2+1与4x2-2x-5互为相反数,则x的值为________.【答案】1或【解析】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法.根据条件把题转化为求一元二次方程的解的问题,然后用因式分解法求解比较简单,先移项,再提取公因式,可得方程因式分解的形式,即可求解.解:∵2x2+1与4x2-2x-5互为相反数,∴2x2+1+4x2-2x-5=0,⇒3x2-x-2=0,∴(x-1)(3x+2)=0,解得x1=1,x2=-.7.用适当的方法解下列一元二次方程.(每小题5分,共15分)(1)5x(x-3)="6-2x;" (2)3y2+1=; (3)(x-a)2=1-2a+a2(a是常数)【答案】(1)3,;(2);(3)1,2a-1【解析】本题主要考查了解一元二次方程. (1)、(2)根据求根公式求解;(3)直接开平方解一元二次方程.解:(1)由原方程,得5x2-13x-6=0,根据求根公式解得,∴x1=3,x2=(2)由原方程,得3y2-2y+1=0,根据求根公式,得,即x=(3)由原方程,得(x-a)2=(1-a)2,∴x-a=±(1-a),即x=±(1-a)+a,∴原方程的根是x1=1,x2=2a-1.8.已知关于x的一元二次方程x2+mx+n=0的一个解是2,另一个解是正数, 而且也是方程(x+4)2-52=3x的解,你能求出m和n的值吗?【答案】m=-6,n=8【解析】本题考查的是一元二次方程的解. 先解方程(x+4)2-52=3x,有一个正根和一个负根,其中正根是方程x2+mx+n=0的解,把这个节和2代入方程x2+mx+n=0,就可以求出m,n的值.解:解方程(x+4)2-52=3x,x2+8x+16-52-3x=0x2+5x-36=0,(x+9)(x-4)=0∴x1=-9,x2=4,所以方程x2+mx+n=0的另一个根是4,把2和4代入方程x2+mx+n=0,得:4+2m+n=0 ①,16+4m+n=0 ②解得:m=-6,n=8.9.解下面方程:(1)(2)(3),较适当的方法分别为()A.(1)直接开平法方(2)因式分解法(3)配方法B.(1)因式分解法(2)公式法(3)直接开平方法C.(1)公式法(2)直接开平方法(3)因式分解法D.(1)直接开平方法(2)公式法(3)因式分解法【答案】D【解析】本题考查了根据所给方程,选择适当的方法解方程,在选择方法时,应首选因式分解法,当用因式分解法不能解答时,再根据系数特点,选择配方法或公式法.(1)所给出的方程,符合用直接开平方法解的方程的结构特点,应用直接开平方法.(2)所给出的方程,系数较小,是整数,且左边不能进行因式分解,因此应用公式法.(3)给出的方程,左边可以进行因式分解,应用因式分解法.解:根据所给方程的系数特点,(1)应用直接开平方法;(2)应用公式法;(3)应用因式分解法.故选D.10.解方程(每题6分,共48分);①(直接开平方法)②(用配方法)③(用因式分解法)④.⑤⑥.⑦.⑧.x-2)(x-5)=-2【答案】①x1=2,x2=-1②x1="1," x2=-4③x1=-2, x2=4④x1=-4,x2=1⑤x1=x2=1⑥x1="1," x2=-2⑦x1= x2=⑧x1="3," x2=4【解析】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.①、2x-1=±3,∴x1=2,x2=-1;②、,∴x+=±,∴x1="1," x2=-4③ (x+2)(x-4)=0,∴x1=-2, x2=4;④∴x1=-4,x2=1⑤、x2+2x+1-4x=0 x2-2x+1=0 (x-1)2=0 ∴x1=x2=1⑥、x2+x-2=0 (x-1)(x+2)=0 ∴x1="1," x2=-2⑦,2x2-10x-3=0 ∴x1= x2=⑧x2-7x+12="0,(x-3)(x-4)=0," ∴x1="3," x2=4。
22.2 降次——解一元二次方程 辅导资料(含答案)
22.2 降次——解一元二次方程本章内容“一元二次方程”是《课程标准》“数与代数”的重要内容,解一元二次方程的算法是《一元二次方程》一章的重点内容,也是方程中重点内容,是学习二次函数等内容的基础,本节的主要内容是一元二次方程的解法。
这部分知识是对一次方程(组)知识学习的延续和深化,是后续内容学习的基础和工具。
主要学习下列三个内容:1.配方法配方法是继探索一元二次方程近似解的基础上研究的一种求精确解的方法.它是一元二次方程的解法的通法.因为用配方法解一元二次方程比较麻烦,一个一元二次方程需配一次方,所以在实际解一元二次方程时,一般不用配方法.但是,配方法是导出求根公式的关键,且在以后的学习中,会常常用到配方法.因此,要理解配方法,并会用配方法解一元二次方程.根据教材的特点主要设置了直接开平方法解一元二次方程和二次项系数是1的一元二次方程的解法.直接开平方法解一元二次方程比较简单,主要设置了【典例引路】中的例1、例2.【当堂检测】中的第1、2题,【课时作业】中的第1,2,11题.配方及二次项系数是1的一元二次方程的解法为本节的难点,为此设置了【拓展应用】中的例2,【当堂检测】中的第3,5题,【课时作业】中的第4,5,6,7,8,9,10,12题,【选做题】中的第1,2题,【备选题目】中的第1,2题。
2.公式法此内容是本节课的重点,是学习一元二次方程的基础,为此设计【典例引路】的例3、[当堂检测]的第1、2、4题,[课时作业]的第1—5题。
3.因式分解法利用方程解的含义,可求方程中的待定系数,也可由此把二次三项式变形求值,为此设计【典例引路】的例4,[当堂检测]的第3题,[选做题]和[备选题目]的问题。
4.整体思想和数感整体思想是数与代数中常用的数学思想,为此设计[拓展应用]的例1,课标虽不要求解含字母系数的方程,为提高数感, 为此设计[备选题目]的问题。
点击一:利用直接开平方法解一元二次方程用此法可解形如c x =2、)0()(2≥=+c c b ax 或可化为这种形式的一类方程,这种解法的优点是能迅速准确地求出方程的解,缺点是只适用于一些特殊的方程。
初中代数,一元二次方程特殊应用——降次思想
初中代数,一元二次方程特殊应用——降次思想
降次思想是一元二次方程的一种解法,它可以将复杂的一元二次方程转化为较易求解的一元一次方程。
降次思想的基本步骤如下:
(1)将一元二次方程化为一元一次方程的形式,即把未知数的平方项和一次项合并,把等号右边的常数项放到等号左边,形成一元一次方程;
(2)解决得到一元一次方程的根;
(3)将根代入一元二次方程,验证结果是否正确。
应用实例:
求解方程:x2+3x-2=0
解:
(1)将方程化为一元一次方程的形式:
x2+3x-2=0
-2-3x=-x2
-2-3x=-(x+2)(x-1)
(2)解得一元一次方程的根:
-2-3x=0
x=2
(3)将根代入一元二次方程:x2+3x-2=0
(2)2+3(2)-2=0
4+6-2=0
8-2=0
结果正确,得到解x=2。
《降次--解一元二次方程》
练习
解下列方程:
(1)(2a-3)2=(a-2)(3a-4)
(2)(4x-3)2=(x+3)2
小结
因式分解法的基本步骤:
(1)将方程变形,使方程的右边为零;
(2)将方程的左边因式分解; (3)根据若A· B=0,则A=0或B=0,将解 一元二次方程转化为解两个一元一次方程.
小结
一元二次方程的解法:
解: (2) a=1,b=-4,c=4 b2-4ac=(-4)2- 4×1×4=0
( 4) 0 4 0 x 2 1 2
4 即x1 x 2 2 2
解: (3) a=4,b=-3,c=1 b2-4ac=(-3)2- 4×1×4= -7<0 因为在实数范围内负数没有平方 根,所以方程无实数根。
梳理
上述解法中,通过因式分解使一元 二次方程化为两个一次式的乘积等于0的 形式,再使这两个一次式分别等于0,从
而实现降次,求出方程的根,这种解法
叫做因式分解法。
1、 什么样的一元二次方程 可以用因式分解法来解?
2、用因式分解法解一元二方 程,必须要先化成一般形式吗? 3、用因式分解法解一元二次方 程,其关键是什么?
1、配方法;
适用任何一 2、公式法; 元二次方程 3、因式分解法.
适用部分一 元二次方程
回顾与思考
☞
一元二次方程的概念
只含有 一个未知数x 的 整式方程 ,并且都可以化为 的形式 ax2+bx+c=0(a,b,c为常数, a≠0) 这样的方程叫做一元二次方程. 把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元 二次方程的一般形式,其中ax2 , 项、一次项和常数项,a, 数.
练习
1.不计算,请你说出下列方程的根.
汪伟林降次——解一元二次方程3
22.2降次 22.2降次——解一元二次方程 降次 解一元二次方程
黄冈市浠水县实验中学
汪伟林
说课内容
三
一、教材分析
1.教材的地位与作用 直接开平方法是学生学习“配方法” 直接开平方法是学生学习“配方法”及其 它解法的必要基础与准备。 2.教学重难点 2 0) x 2 = p 或 (mx + n) = p ( p ≥ 的一元 重点:会解形如 二次方程。 难点:把已知方程转化成为 x 2 = p 或 (mx + n) 2 = p ( p ≥ 0) 的形式。
返回
(四)实践新知、反馈调控; 实践新知、反馈调控; 解下列方程 ① 2x2 − 8 = 0 ② 9x
2
;
− 5 =; 3
③ ( x + 6 ) 2 − 9 = 0 ; ④ 3 ( x − 1) 2 − 6 = 0 ; ⑤ x2 − 4x + 4 = 5 ; ⑥ 9x2 + 6x + 1 = 4 。
四、教学过程
(一)创设情境、提出问题 创设情境、
一桶某种油漆可刷的面积为1500dm 一桶某种油漆可刷的面积为1500dm2,李林用 这桶油漆恰好刷完10个同样的正方体形状的盒 这桶油漆恰好刷完10个同样的正方体形状的盒 子的全部外表面。你能算出盒子的棱长吗?
问题1 问题1:如何设未知数?并根据问题的等量关 系列出方程?
设正方体的棱长为xdm,则一个正方体的表面积为 设正方体的棱长为xdm,则一个正方体的表面积为 根据一桶油漆的可刷面积列出方程: 6 x 2 dm 2 ,根据一桶油漆的可刷面积列出方程:
10 × 6 x = 1500
2
问题2 问题2:如何解这个方程呢?
降次法解一元二次方程
降次法解一元二次方程一元二次方程是数学中常见的一种方程形式,它的一般形式为ax^2+bx+c=0,其中a、b、c为已知的实数,且a≠0。
解一元二次方程的方法有很多,其中之一就是降次法。
降次法是一种通过变量替换的方法,将二次方程转化为一次方程来解。
具体步骤如下:1. 首先,将一元二次方程的系数化简,使得二次项的系数为1。
可以通过除以a的方式来实现,这样方程就变为x^2+(b/a)x+(c/a)=0。
2. 为了将二次项消去,我们引入一个新的变量y,使得x=y-(b/2a)。
这样,方程就变为(y-(b/2a))^2+(b/a)(y-(b/2a))+(c/a)=0。
3. 将方程进行化简,展开并合并同类项,得到y^2+(c/a-(b^2/4a^2))=0。
4. 进一步化简,将c/a-(b^2/4a^2)记作d,得到y^2+d=0。
5. 接下来,我们将方程y^2+d=0进行分解,得到(y+√d)(y-√d)=0。
6. 由于y=x-(b/2a),将y+√d和y-√d分别代入,可以得到两个解,即x1=(b/2a)+√d,x2=(b/2a)-√d。
通过这种降次法,我们成功地将一元二次方程转化为一次方程,从而求得了方程的解。
降次法的优势在于简化了计算的复杂性,使得解方程的过程更加简单明了。
需要注意的是,降次法只适用于一元二次方程,对于高次方程则不适用。
此外,降次法要求方程的系数都为实数,否则无法进行化简操作。
总结起来,降次法是一种解一元二次方程的有效方法,通过引入新的变量和化简操作,将二次方程转化为一次方程,从而求得方程的解。
这种方法简单易行,适用于一般的二次方程求解问题。
在实际应用中,我们可以根据具体情况选择适合的解方程方法,以快速求得方程的解。
一元二次方程降次法例题
一元二次方程降次法例题(最新版)目录1. 一元二次方程降次法的概念2. 降次法的具体步骤3. 降次法的实际应用正文一元二次方程降次法是解决一元二次方程的一种常用方法。
这种方法可以将一元二次方程转化为一元一次方程,从而简化问题的难度。
下面,我们来详细了解一下降次法的概念、具体步骤以及实际应用。
首先,我们来了解一元二次方程降次法的概念。
一元二次方程降次法,顾名思义,就是将一元二次方程的次数降低,从而将其转化为一元一次方程。
在一元二次方程中,二次项的系数不为零。
降次法通过特定的运算,将二次项消去,从而将一元二次方程转化为一元一次方程。
接下来,我们来介绍降次法的具体步骤。
降次法的具体步骤如下:1. 将一元二次方程转化为一般形式,即 ax^2 + bx + c = 0(其中 a、b、c 为常数,且 a ≠ 0)。
2. 通过求根公式或配方法,求出一元二次方程的两个解。
3. 将一元二次方程表示为两个一次方程的组合,即 x = m 和 x = n (其中 m、n 为一元二次方程的两个解)。
4. 解出一次方程 m 和 n,得到降次后的一元一次方程。
最后,我们来看降次法的实际应用。
假设我们有一个一元二次方程:x^2 - 3x - 10 = 0。
我们可以通过降次法来解决这个问题。
首先,我们将该方程转化为一般形式,得到 a = 1, b = -3, c = -10。
然后,我们通过求根公式求出方程的两个解,即 x1 = 5 和 x2 = -2。
接着,我们将方程表示为两个一次方程的组合,即 x - 5 = 0 和 x + 2 = 0。
最后,我们解出一次方程,得到 x1 = 5 和 x2 = -2。
这样,我们就通过降次法成功地解决了这个一元二次方程。
总结一下,一元二次方程降次法是一种有效的解决问题的方法。
通过将一元二次方程转化为一元一次方程,我们可以大大简化问题的难度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生活动设计:
学生首先独立思考,自主探索,然后交流配方时的规律.经过分析(1)中经过移项可以化为 ,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到 ,得到(x-4)2=15;
降次——解一元二次方程(配方法)
教学目标
知识技能
探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.
数学思考
在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法.
解决问题
渗透配方法是解决某些代数问题的一个很重要的方法.
பைடு நூலகம்情感态度
继续体会由未知向已知转化的思想方法.
重点
用配方法解一元二次方程.
师生活动设计:
学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.
〔解答〕设绿地的宽是x米,则长是(x+10)米,根据题意得:x(x+10)=900.
整理得: ,
配方得: .
解得: .
由于绿地的边长不可能是负数,因此绿地的宽只能是 米,于是绿地的长是 米.
「活动4」
(1)把方程化为一般形式 ;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
「活动3」
绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?
(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即 ,方程两边都加上 ,方程可以化为 ;
(3)按照(2)的方式进行处理.
教师活动设计:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:
归纳总结、布置作业
1.本节你遇到了什么问题?
2.在解决问题的过程中你采取了什么方法?
作业:习题22.2第1~3题.
学生回顾思考,并作答.
教师活动设计:鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.
引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.
即,如果方程能化成 或 的形式,那么可得 或 .
「活动2」
1.要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?
x2+6x+9=16+9,即(x+3)2=25,问题解决.
2.利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)
(1)x2-8x+ 1 = 0;
(2) ;
(3) .
教师活动设计:
在学生讨论方程x2+6x=16的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.
2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?
(1) ;
(2) .
学生活动设计:
学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到 ,于是得到 .
对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.
难点
正确理解把 形的代数式配成完全平方式.
问题与情境
师生行为
「活动1」 做一做
1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?
(课件:盒子的棱长)
学生独立分析题意,发现若设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,根据一桶油漆可以刷的面积,列出方程.在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.
学生活动设计:
学生通过思考,自己列出方程,然后讨论解方程的方法.考虑设场地的宽为xm,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为