专题曲线与方程

合集下载

专题 圆锥曲线的定义、方程与性质(课件)2023届高考数学二轮专题复习

专题 圆锥曲线的定义、方程与性质(课件)2023届高考数学二轮专题复习
A. B. C. D.

返回导航
解析:由题意可知,抛物线 的标准方程为 , ,设直线 的方程为 , , ,联立得 消去 ,得 , ,则 , . ,所以当 时, 的面积取得最小值,最小值为2,故选D.
返回导航
(2)(2022·新高考卷Ⅱ)已知直线 <m></m> 与椭圆 <m></m> 在第一象限交于 <m></m> , <m></m> 两点, <m></m> 与 <m></m> 轴、 <m></m> 轴分别交于 <m></m> , <m></m> 两点,且 <m></m> , <m></m> ,则 <m></m> 的方程为__________________.
,所以 ①,又 ②, 得 ,所以四边形 的面积为18.
返回导航
考点二 圆锥曲线的几何性质
例2.(1)(2022·陕西西安五校高三联考)已知双曲线 <m></m> 的离心率为2,则双曲线 <m></m> 的渐近线方程是( )
A. B. C. D.
解析:由题意可知,双曲线的实半轴长的平方 ,虚半轴长的平方 ,所以双曲线的离心率 满足 ,从而 ,所以双曲线的渐近线方程为 ,故选A.
返回导航
2. <m></m> , <m></m> 是椭圆 <m></m> 的两个焦点, <m></m> 是椭圆 <m></m> 上异于顶点的一点, <m></m> 是 <m></m> 的内切圆圆心,若 <m></m> 的面积等于 <m></m> 的面积的3倍,则椭圆 <m></m> 的离心率为_ _.

专题02 曲线的切线方程(解析版)

专题02 曲线的切线方程(解析版)

专题02 曲线的切线方程(解析版)曲线的切线方程(解析版)切线是解析几何中的重要概念,用于描述曲线上某一点处的变化趋势。

在本专题中,我们将重点探讨曲线的切线方程的求解方法,并应用于具体的实例中。

本文将以清晰的语言和整洁的排版,详细介绍曲线的切线方程的推导过程和应用要点,让读者更好地理解和掌握该知识点。

一、切线的定义与性质在开始讨论曲线的切线方程之前,首先需要了解切线的定义与性质。

切线是指曲线上一点处切线与曲线相切的直线。

切线具有以下几个性质:1. 切线与曲线相切于切点,切点的坐标可以通过求解方程组得到;2. 切线的斜率等于曲线在切点处的导数值;3. 切线与曲线的切点处的曲线方程相同。

了解了切线的定义与性质后,我们可以进一步推导切线方程的求解方法。

二、切线方程的求解方法求解曲线的切线方程有几种不同的方法,如点斜式、两点式和一般式。

在本文中,我们将着重介绍点斜式和两点式这两种方法。

1. 点斜式点斜式是一种简单、直观的求解切线方程的方法。

设曲线的方程为y = f(x),切点坐标为(x0, y0),曲线在切点处的斜率为k。

则切线的方程可以表示为:y - y0 = k(x - x0)其中,k可以通过求解曲线的导数得到。

通过代入切点的坐标和斜率的值,即可得到切线方程。

2. 两点式两点式是另一种常用的求解切线方程的方法。

设曲线上两点坐标分别为(x1, y1)和(x2, y2),则切线的方程可以表示为:(y - y1)/(x - x1) = (y2 - y1)/(x2 - x1)通过代入曲线上已知的两点坐标,即可得到切线方程。

三、切线方程的应用切线方程作为解析几何中的重要工具,在数学和实际应用中有着广泛的应用。

以下是几个常见的应用场景:1. 切线与法线切线和法线是曲线上两条最基本的直线。

切线与曲线在切点处相切,而法线与切线垂直。

根据切线方程的求解方法,我们可以进一步得到法线的方程。

2. 最大和最小值对于一个函数,其最大值和最小值通常出现在函数曲线的切线与x轴相交的点处。

2020年高考“圆锥曲线与方程”专题命题分析

2020年高考“圆锥曲线与方程”专题命题分析

圆锥曲线是广泛应用于科学研究及生产和生活中的曲线,是高中数学中几何与代数知识的重要组成部分,是高中学生运用平面直角坐标系将曲线与方程、几何与代数融会贯通的重要载体,更是让学生体验和领悟数与形相互转化过程的重要途径,在高考数学中占有较大的比重.2020年高考数学试卷中圆锥曲线与方程专题部分的试题,着重考查圆锥曲线的定义、方程,以及简单的几何性质,立足“四基”,凸显基础性;注重对数形结合、代数方法与几何问题化归的考查,立意能力,在数与形之间彰显综合性、应用性;重视对数学运算、逻辑推理、直观想象等数学学科核心素养的考查,立旨素养,引导数学教学,实现数学学科的育人价值.同时,与往年相比,试题结构和难度保持稳定,既体现对主线内容、核心概念、数学本质考查的连贯性,也体现了对学生的人文关怀.一、考查内容分析2020年全国各地高考数学试卷共10套13份,具体为全国Ⅰ卷(文、理)、全国Ⅱ卷(文、理)、全国Ⅲ卷(文、理)、全国新高考Ⅰ卷、全国新高考Ⅱ卷、北京卷、上海卷、天津卷、江苏卷、浙江卷.有的试卷由国家统一命题,也有的由各省市自主命题,无论是延续2019年模式的全国卷和地方卷高考试题,还是2020年首次亮相的立足《普通高中数学课程标准(2017年版)》(以下简称《标准》)的全国新高考卷试题,都是重视基础,突出能力,并围绕学生的数学学科核心素养展开全方位考查.1.布局合理,考点紧扣标准2020年高考数学试卷,以圆锥曲线的定义、基本量、标准方程、简单几何性质、位置关系等核心内容为载体,重点考查学生对平面解析几何问题基本解决过程的掌握情况:用代数语言把几何问题转化为代数问题,根据对几何问题(图形)的分析,探索解决问题的思路,运用代数方法得到结论并给出代数结论合理的几何解释解决几何问题.突出考查学生运用代数方法研究上述曲线之间的基本关系、运用平面解析几何的思想解决一些简单的实际问题的能力,旨在考查学生的直观想象、数学运算、逻辑推理等数学学科核心素养.试题紧扣《标准》,以基础题、中档题为主,在总共的26道(相同试题算1道)试题中:基础题有10道、中档题有12道,占比约85%;难题4道,其中2020年高考“圆锥曲线与方程”专题命题分析段喜玲1摘要:2020年高考数学试题中的圆锥曲线与方程部分考查内容紧扣高中数学课程标准,分值、结构稳定,试题突出对“四基”的考查,注重圆锥曲线与其他知识的结合,注重对数学思维和数学学科核心素养的考查.试题体现基础性、应用性、综合性等特点,以基础知识的考查为载体,将对学生分析问题、解决问题能力的考查蕴含在解题过程之中,以实现对学生数学学科核心素养的考查.基于2020年高考试题的命题分析,给出高考复习建议,有效引导高三复习.关键词:圆锥曲线;命题分析;数形结合;数学运算收稿日期:2020-08-01基金项目:重庆市教育科学“十三五”规划2017年度规划课题——课堂教学中自主学习实施途径与策略的研究(2017-MS-13).作者简介:段喜玲(1979—),女,中学高级教师,主要从事高中数学课堂教学研究.全国新高考Ⅰ卷第22题、全国Ⅰ卷文科第21题(同理科第20题)、全国Ⅲ卷文科第21题(同理科第20题)为压轴题,布局合理.2.分值稳定,多选双填增新彩高考试题对本专题内容的考查一般是两道客观题和一道主观题,共22分,占全卷分值的14.7%,其中北京卷24分,占全卷分值的16%,而全国Ⅰ卷文科、全国Ⅱ卷文(理)科、天津卷、江苏卷、上海卷中是一道客观题和一道主观题,共17分,占全卷分值的11.3%.考查形式、题型分布及分值比例与往年基本持平,有很高的稳定性.在全国新高考Ⅰ卷、全国新高考Ⅱ卷中出现多选题,北京卷中出现两个空的填空题,使试题形式更丰富.这是新高考题型的示范,为教学指引方向.3.文、理略异,趋同铺垫新高考2020年高考数学试卷中只有全国卷分别命制了文、理科试题.由于新高考将不再区分文科和理科,因此2020年全国卷的文、理科试题从内容到难度,差异较往年减小,姊妹题数量增加.在对圆锥曲线与方程的考查中:全国Ⅰ卷文科第21题与理科第20题相同,第11题不同,文科比理科少一道填空题;全国Ⅱ卷文科第9题与全国Ⅱ卷理科第8题相同,全国Ⅱ卷文、理科试卷第19题第(1)小题相同,第(2)小题的已知条件不同,但求解相同,方法相同;全国Ⅲ卷文科第7题、第21题与全国Ⅲ卷理科第5题、第20题相同,文科第14题不同.由此可以看出,文、理科试题虽有不同之处,但同根同源,体现趋同性,明确导向新高考.4.层次分明,数形结合思想贯穿始终《标准》对圆锥曲线与方程的要求有了解和掌握两个层次:圆锥曲线的实际背景、圆锥曲线在刻画现实世界和解决实际问题中的作用、抛物线与双曲线的定义、几何图形和标准方程,以及它们的简单几何性质、椭圆与抛物线的简单应用为了解;椭圆的定义、标准方程及简单几何性质为掌握.2020年高考数学试题对圆锥曲线与方程部分的考查层次分明,基础题和中档题均以抛物线和双曲线的定义、简单几何性质、位置关系为考查内容,部分较难的中档题和难题考查椭圆定义、标准方程、几何性质、简单应用,唯独上海卷的解答题考查圆和双曲线的组合,意在打破常规、力求创新,以考查学生的创新应用意识.同时,在试题中,数形结合思想这条主线贯穿始终,方程与曲线的表述与理解、代数与几何的转化与化归在数形结合中体现得淋漓尽致.5.综合性强,凸显思想育素养圆锥曲线与方程知识是平面几何、平面向量、直线与圆的知识的延续,可以将很多知识、方法(如三角形、直线位置关系、圆、向量、角度、长度、面积、坐标、方程、不等式及函数等)有机结合起来进行考查,体现在知识的交会处命题的基本原则.例如,全国Ⅰ卷理科第20题、全国Ⅲ卷理科第20题、全国新高考Ⅰ卷第22题、北京卷第20题、江苏卷第18题、浙江卷第21题,上海卷第20题综合性都较强,对学生要求较高.同时,试题凸显了数形结合、转化与化归、函数与方程等重要思想,为培育学生的数学抽象、直观想象、数学运算、逻辑推理等数学学科核心素养做好了指挥引领作用.二、命题思路分析1.注重对基础知识和基本方法的考查圆锥曲线的定义、方程、基本量、性质、位置关系是这部分知识的常规考查内容,要求学生既要对椭圆、双曲线、抛物线的共性建构良好的知识网络,又要对每种曲线的自身特点掌握得清楚准确,特别是区分不同曲线的定义、方程、基本量关系、性质、离心率的异同,这些知识容易混淆出错.借助平面直角坐标系将几何问题坐标化、用代数方法解决几何问题是解析几何的灵魂所在,因此建立方程或方程组、整体求解、设而不求等基本方法,通性、通法也是高频考点.命题围绕这些设置试题,突出考查学生对基本概念、基础知识、基本方法的掌握.例1(全国Ⅰ卷·理15)已知F为双曲线C:x2a2-y2b2=1()a>0,b>0的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C 的离心率为.【评析】该题主要考查对双曲线的离心率、直线斜率、双曲线的几何性质的应用,属于基础题.可以用方程组求出||BF,或者联立方程求得点B的坐标,再或者直接用公式求得||BF,然后用斜率公式求得离心率.该题解法常规,在运算处理上较灵活,能够对学生数学思维、数学运算进行多角度考查.例2(全国Ⅱ卷·理19)已知椭圆C1:x 2a2+y2b2=1()a>b>0的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且||CD=43||AB.(1)求C1的离心率;(2)设M是C1与C2的公共点,若||MF=5,求C1与C2的标准方程.【评析】考查椭圆、抛物线的基本量a,b,c,p 之间的关系,相交弦长(通径),椭圆离心率,抛物线定义及方程,椭圆方程.注重学生对基本量、关系式、离心率、弦长等基础知识的掌握,要求学生弄清知识之间的区别与联系.该题求解方法简单,整体法求离心率亦常见,第(2)小题利用离心率得a,c的关系,化简方程是解答关键,很好地考查了学生的数学运算素养.除了联立方程求解外,还可以用圆锥曲线的统一定义表示焦半径,简化了运算,提高了解题速度和准确率.类似试题还有全国Ⅰ卷理科第4题、第15题,全国Ⅱ卷文科第19题,全国Ⅲ文科第14题,全国新高考Ⅰ卷第9题、第13题,全国新高考Ⅱ卷第9题,北京卷第7题、第12题、第20题,天津卷第7题,江苏卷第6题,浙江卷第8题,上海卷第10题.2.注重对圆锥曲线与其他知识的综合应用的考查在知识的交会处命题一直是高考数学命题的一大特点,圆锥曲线不仅是知识交会的高频考点,更是代数与几何的完美结合体,因此将圆锥曲线内容与章节内、章节间、学段间、学科间的知识综合,既体现知识的连贯性,又体现知识的交叉性,既考查学生学习的延续性,也考查学生的综合能力.2020年高考数学试题中综合考查了圆锥曲线的方程、离心率、渐近线、弦长、交点,以及三角形的面积、周长等,综合考查圆锥曲线与向量、不等式、函数、解三角形的交会,其中不乏对特殊三角形、圆、线段中垂线等初中平面几何知识的考查,以及几何性质与代数表达式之间互相转化的考查,能有效检测学生的思维能力与水平.例3(全国Ⅲ卷·理11)设双曲线C:x2a2-y2b2=1 ()a>0,b>0的左、右焦点分别为F1,F2,离心率为5.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a的值为().(A)1(B)2(C)4(D)8【评析】该题综合考查双曲线的定义、离心率、焦点直角三角形、三角形面积,要求学生不仅熟练掌握知识,还要熟悉求解方程组的方法,是一道题型常见、思路常规的综合性试题.例4(江苏卷·18)如图1,在平面直角坐标系xOy 中,已知椭圆E:x24+y23=1的左、右焦点分别为F1,F2,点A在椭圆E上且在第一象限内,AF2⊥F1F2,直线AF1与椭圆E相交于另一点B.(1)求△AF1F2的周长;(2)在x轴上任取一点P,直线AP与椭圆E的右准线相交于点Q,求OP⋅QP的最小值;(3)设点M在椭圆E上,记△OAB与△MAB的面积分别为S1,S2,若S2=3S1,求点M的坐标.【评析】考查椭圆的定义、直线与椭圆相交、向量数量积和点到直线的距离.第(2)小题中数量积的最值问题考查函数与方程思想,将最值问题转化为函数问题求解的关键点是选取变量,明晰点P,Q的主、被动关系,特别是OP的纵坐标为0,即点Q的纵坐标对数量积没有影响,从而可以不求点Q的纵坐标,这是降低该题难度的关键点,需要学生有极强的数学运算素养.第(3)小题考查三角形的面积关系,实质是考查点到直线的距离,需要学生看到问题的本质,即当三角形的一边为定值时,面积取决于这一边上的高,进一步将高的值转化为椭圆上的点到直线的距离,即直线和椭圆的位置关系.这一系列问题将圆锥曲线与三角形、向量、函数、直线,以及距离流畅地结合起来,在综合考查学生基础知识的同时,考查学生灵活运用转化与化归思想以及数形结合思想解决问题的能力.例5(全国Ⅲ卷·理20)已知椭圆C :x 225+y 2m 2=1()0<m <5的离心率为,A ,B 分别为C 的左、右顶点.(1)求C 的方程;(2)若点P 在C 上,点Q 在直线x =6上,且||BP =||BQ ,BP ⊥BQ ,求△APQ 的面积.【评析】该题是以直线与椭圆相交成图,考查三角形面积的综合问题,试题表述简洁,脉络清晰,是常规题型,但是试题却不易找到解题突破口.利用垂直关系证得三角形全等,然后用三角形全等求得关键点P ,Q 的坐标是求解该题的切入点,要求学生认识知识的联系性,将圆锥曲线与初中三角形知识自然地糅合在一起,考查学生对初中所学知识的延伸及初高中知识的融合应用,对学生的跨学段知识综合应用能力要求较高.此类型的试题还有全国Ⅰ卷文科第11题、全国Ⅱ卷理科第8题、全国Ⅲ卷文科第21题、全国新高考Ⅱ卷第21题、天津卷第18题、上海卷第10题.3.注重对数学思维、核心素养的考查《标准》对高考数学命题提出明确要求:注重对学生数学学科核心素养的考查,处理好数学学科核心素养与知识技能的关系,充分考虑对教学的积极引导作用;要适度增加试题的思维量,应特别关注数学学习过程中思维品质的形成.“一核”“四层”“四翼”的新高考评价体系也明确核心素养、关键能力等考查内容和要求.2020年高考圆锥曲线与方程的相关试题,以此为依据,注重考查数学思想方法、理性思维和学科核心素养,考查学生通过平面直角坐标系将图形定位、量化,利用代数(方程、方程组)研究平面图形的几何性质,将对数形结合思想、转化与化归思想、函数与方程思想、分类讨论思想的考查不动声色地浸润在试题里,使学生在解题中充分展示分析问题、解决问题的能力,同时注重对数学抽象、逻辑推理、数学运算、直观想象等数学学科核心素养的考查,对数学教学起到很好的引导作用.例6(全国新高考Ⅰ卷·22)已知椭圆C :x 2a2+y 2b2=1()a >b >0的离心率为,且过点A ()2,1.(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得||DQ 为定值.【评析】该题为全国新高考Ⅰ卷的压轴题,第(2)小题是圆锥曲线中的定点、定值问题,特别之处是并不知道定点Q 的具体位置,需要学生自己寻找,增加了试题的难度.首先,学生要分析点M ,N 在椭圆上运动的过程中的变量和不变量,找出直线MN 过定点E ;其次,求得定点E 的坐标,并能在由点A ,D ,E 构成的直角三角形中找到定长.该题不仅在思维上起点高、难度大,在运算上亦是如此,设点、设线还需分类讨论验证,需要学生具有超强的运算功底.在解答过程中,充分体现对通性、通法的重视,对技巧的弱化,完整展现学生分析问题、解决问题的能力,对学生数学抽象、直观想象、逻辑推理、数学运算等数学学科核心素养有充分的检验作用.由于知识和思维跨度较大,数学运算繁杂,对学生综合能力要求较高,真正考查学生用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界的能力.例7(上海卷·20)如图2,双曲线C 1:x 24-y 2b2=1,圆C 2:x 2+y 2=4+b 2()b >0在第一象限交点为A ,A ()x A ,y A ,曲线Γ:ìíîïïx 24-y 2b 2=1,x 2+y 2=4+b2()||x >x A .图2(1)若x A =6,求b ;(2)若b =5,C 2与x 轴交点记为F 1,F 2,P 是曲线Γ上一点,且在第一象限,并满足||PF 1=8,求∠F1PF2;(3)过点Sæèçöø÷0,2+b22且斜率为-b2的直线l交曲线Γ于M,N两点,用b的代数式表示OM⋅ON,并求出OM⋅ON的取值范围.【评析】该题是以双曲线系、圆系的交点为动点的轨迹问题,打破常规命题背景,有创新意识和应用意识.考查学生对曲线与方程的定义、双曲线的定义、直线与圆的位置关系、直线与直线的位置关系、向量数量积、函数最值的理解和综合应用.因为含有参数b使得轨迹不为学生所熟悉,所以要求学生对曲线方程的定义有较深的理解.第(3)小题中的直线l 与圆始终相切,切点为M是关键点,并观察直线l与一条渐近线平行,对学生的直观想象、逻辑推理素养要求较高,是一道以能力立意、考查素养、有创新意识的好题.此类型试题还有全国Ⅰ卷理科第20题、文科第21题,浙江卷第21题.三、复习建议通过对2020年高考圆锥曲线与方程试题的分析,可以看到试题对从基础知识、基本方法到运用基本数学思想解决数学问题的思维过程的考查,都体现了注重“四基”、能力立意、突出思维、落实素养的特点.因此,在高三复习过程中,要通过教学注重数学思想的渗透和学生思维能力的培养,让数学学科核心素养在课堂教学中生根发芽、开花结果.1.掌握知识,明辨异同,构建网络基础知识不仅是高考考查的重点,也是教学重点.高三复习首当其冲就是要把知识点弄清、理透、掌握牢.圆锥曲线部分的基本知识点有圆锥曲线的定义、标准方程、几何性质、位置关系,每个知识点所包含的内容很丰富.例如,圆锥曲线的定义,既有各自的定义,又有统一定义,还有其他方式的定义.又如,标准方程有焦点在x轴和焦点在y轴等.这些知识虽然靠记忆,但是学生容易混淆,因此复习时要让学生明晰同一知识点之间的联系与区别、圆锥曲线与圆锥曲线之间的联系与区别,牢固掌握基础知识.同时,复习不是知识点的简单重复与堆砌,复习是立足章节对所学知识的横向再认识,是站在数学学科角度对所学知识的纵向再认识,要高站位地建构横纵知识结构网络.2.注重通法,提升运算,渗透思想做题是复习课上必不可少的教学活动,《标准》在命题原则中明确提出:注重数学本质、通性和通法、淡化解题技巧.复习的例题、习题、试题要多选用通性、通法求解的题目,让学生熟练掌握通性、通法.圆锥曲线部分的内容特点决定了解题需要学生具有超强的运算能力,常用的运算方法、运算技巧、运算素养都需要在做题中提升.高中的运算不仅仅是简单的数的运算,更多的是式的运算,需要在理解运算对象的基础上,探究运算思路、选择运算方法、求得运算结果,即数学运算素养.这需要依赖教师在教学中加强对学生运算能力的培养,不能只靠学生自己算,要重视学生在求解运算中的过程设计,如整体解法、方程思想、设而不求、点差法、同理法等.运算的速度、准确度在很大程度上决定解析几何试题的得分情况,提升运算能力、培养数学运算素养是圆锥曲线部分复习的重点和难点.教学中要有意识渗透数学思想,方程与函数思想、数形结合思想、转化与化归思想、分类讨论思想等在解题中贯穿始终,能很好地体现理性思维.3.提高能力,增强思维,培育素养能力立意,关注思维,培育核心素养是新高考命题的宗旨,也是高三复习的风向标.能力、思维、素养的培养都“润物细无声”地存在于教学过程之中,因此教学要从培育核心素养的角度思考复习方案和教学设计,并深入了解学生学习的困难,关注一题多解和多题一解的内容与题目,体现灵活性,放手让学生大胆尝试、引导学生有效反思,有助于强化学生思维,培养学生在面对新的问题情境时运用数学概念对问题进行抽象,用数学符号表达,用逻辑推理分析问题、解决问题的能力,让学生真正做到用数学眼光观察世界、用数学思维思考世界、用数学语言表达世界,以达到提炼学生思维品质,培养学生学科核心素养的课程目标.4.克服畏惧,锻炼意志,增强信心在高考数学试卷中,本专题试题繁冗的运算、大容量的思维使得学生有畏惧心理,很多学生给自己的定位是只做解答题第(1)小题,因此纵使有些试卷的解答题不难,考查结果却差强人意.例如,全国Ⅱ卷理科第19题,仍有很多学生没有做第(2)小题.高考不仅是对知识能力的检测,也是对心理素质的检测,复习中不能根据经验或规律,让学生将圆锥曲线与方程问题定性为难题而轻易舍弃,而要以此为契机培养学生面对较繁杂问题时耐心分析、善于转化的能力与勇气,要有意识选择一些基础题和中档题,引导学生在求解的过程中磨炼意志和耐心,克服畏惧心理,以平常心对待,增强“只要有足够的时间,我一定会做出来”的信念和信心.四、模拟题欣赏1.已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左、右焦点,点M 在E 上,若△MF 1F 2是直角三角形,且sin ∠MF 1F 2=12,则双曲线E 的离心率为().(A )3-1(B )3(C )3+1(D )3或3+1答案:D.2.设F 为抛物线C :y 2=3x 的焦点,过焦点F 的动直线交C 于A ,B 两点,则 OA ⋅OB 的值为.答案:-2716.3.若F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1()a >b >0的左、右焦点,且离心率为12,若过右焦点F 2的直线与曲线C 交于A ,B 两点,求当△ABF 1面积的最大值为12时的椭圆标准方程.答案:x 216+y 212=1. 4.已知过椭圆x 24+y 2=1左顶点A 的直线l 交椭圆于另一点B ,以AB 为直径的圆过椭圆的上顶点,求直线l 的方程.答案:3x +10y +6=0.5.在平面直角坐标系xOy 中,已知1是椭圆C :x 2a 2+y 2b2=1()a >b >0的右焦点,离心率为,过点F 1且垂直于x 轴的直线交椭圆C 于P ,Q 两点,||PQ =(1)求椭圆C 的标准方程;(2)若过椭圆左焦点F 2且斜率为k ()k >0的直线l 交椭圆C 于A ,B 两点,线段AB 的中点为E ,射线OE 交椭圆C 于点M ,交直线x =-3于点N .求证:||OE ,||OM ,||ON 构成等比数列.答案:(1)x 23+y 22=1;(2)略.参考文献:[1]中华人民共和国教育部制定.普通高中数学课程标准(2017年版)[M ].北京:人民教育出版社,2018.[2]吴彤,徐明悦.2019年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2019(9):24-27.[3]任佩文,张强,霍文明.2018年高考“圆锥曲线与方程”专题命题分析[J ].中国数学教育(高中版),2018(7/8):122-128.[4]范美卿,张晓斌.2016年高考“直线和圆”专题命题分析[J ].中国数学教育(高中版),2016(9):2-8.。

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解17 狭义曲线系与广义曲线系方程

高考数学总复习考点知识专题讲解 专题17 狭义曲线系与广义曲线系方程知识点一圆锥曲线与两相交直线构成的圆系方程(四点共圆问题)圆锥曲线上的四点共圆问题:圆锥曲线221(,)0f x y Ax By Dx Ey F =++++=上存在四点P 、Q 、M 、N,且PQ 与MN 相交于点T ,若满足TQ TP TN TM ⋅=⋅,则P 、Q 、M 、N 四点共圆(如图).根据初中的相交弦定理(左图)或切割线定理(右图)即可证明,当然也有同学觉得需要更严谨的证明,不妨利用相似来证明.下面我们来理解四点共圆的曲线系方程形式,由于是221(,)0f x y Ax By Dx Ey F =++++=上四点形成的圆,不妨设0:11=+-m y x k l MN ,0:22=+-m y x k l PQ ,而⋅+-=)(),(112m y x k y x f0)(22=+-m y x k 表示满足直线MN 和直线PQ 上的任意点方程,0),(),(21=+y x f y x f λ表示过圆锥曲线和两直线构成的弱化二次曲线交点的一系列曲线方程,而这一系列曲线中,有一个满足圆的方程),(111223=++++=F y E x D y x y x f ,即()()2211220Ax By Dx Ey F k x y m k x y m l +++++-+-+=,或者221122()()Ax By Dx Ey F k x y m k x y m l +++++-+-+22111()x y D x E y F m =++++.由于没有xy 的项,必有120k k --=.即PQ 与MN 斜率互为相反数.定理:圆锥曲线的内接四边形PQMN 出现四点共圆时,一定有任何一组对边对应所在的直线倾斜角互补.其方程可以写成22(Ax By Dx Ey F kx l +++++12)()0y m kx y m -+--+=,此时2A k B l l -=+,方程表示一个圆.推论:若圆锥曲线221()f x y Ax By Dx Ey ,=+++0F +=上存在四点P 、Q 、M 、N ,斜率互为相反数,且PQ 是MN 中垂线,则1MN k =±; 证明四点共圆的步骤:1.设出曲线系方程,解出l ;2.根据222440R D E F =+->证明四点一定共圆.【例1】(2021•新课标1卷)在平面直角坐标系xOy 中,已知点1(0)F ,20)F ,点M 满足12||||2MF MF -=.记M 的轨迹为C . (1)求C 的方程;(2)设点T 在直线12x =上,过T 的两条直线分别交C 于A ,B 两点和P ,Q 两点,且||||||||TA TB TP TQ ⋅=⋅,求直线AB 的斜率与直线PQ 的斜率之和.【例2】(2005•湖北)设A 、B 是椭圆223x y λ+=上的两点,点(13)N ,是线段AB 的中点,线段AB 的垂直平分线与椭圆相交于C 、D 两点. (1)确定λ的取值范围,并求直线AB 的方程;(2)试判断是否存在这样的λ,使得A 、B 、C 、D 四点在同一个圆上?并说明理由.【例3】(2011•全国卷)已知O 为坐标原点,F 为椭圆22:12y C x +=在y 轴正半轴上的焦点,过F 且斜率为l 与C 交于A ,B 两点,点P 满足0OA OB OP =++. (1)证明:点P 在C 上;(2)设点P 关于点O 的对称点为Q ,证明:A 、P 、B 、Q 四点在同一圆上.知识点二狭义曲线系之以坐标定曲线模型构造:123()()()f x y f x y f x y λμ+=,,,如图,A 、B 分别为椭圆22221(0)x y a b a b+=>>的左右顶点,M 、N 为椭圆上任意两点,MN 与x 轴交于点Q ,AM 与BN 交于点P ,我们可以理解为A ,M ,B ,N 四点确定椭圆(双曲线和抛物线也一致),那么四点之间连线有6条,我们选取两条交点在椭圆内的直线乘积式构造弱化二次曲线1()0f x y =,,再选取两条交点在椭圆外的直线乘积式构造另一条弱化的二次曲线2()0f x y =,,可以理解为两条弱化的二次曲线形成了这个椭圆22322()10x y f x y a b=+-=,,即123()()()f x y f x y f x y λμ+=,,,注意:这里最终结果会指向一个极点极线性质2P Q x x a =,故在设计:0AB l y =,:0MN l x ky m --=,1()()0f x y y x ky m =⋅--=,,1:0AM l x k y a -+=,2:0BN l x k y a --= 212()()()0f x y x k y a x k y a =-+⋅--=,,从而得出:221222()()()(1)x y y x ky m x k y a x k y a a bλμ⋅--+-+⋅--=+-;记住:曲线系只需要对比系数,确定参数,无需展开求出λ和μ,k ,1k ,2k 均是斜率倒数,不是斜率.【例4】(2020•新课标Ⅰ卷)已知A ,B 分别为椭圆222:1(1)x E y a a+=>的左、右顶点,G为E 的上顶点,8AG GB =.P 为直线6x =上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.【例5】(2023•江苏月考)在平面直角坐标系xOy 中,椭圆2222:1(0)bC x y a b a +=>>的离心率是12,焦点到 相应准线的距离是3. (1)求a ,b 的值;(2)已知A 、B 是椭圆C 上关于原点对称的两点,A 在x 轴的上方,(10)F ,,连接AF 、BF 并分别延长交椭圆C 于D 、E 两点,证明:直线DE 过定点.【例6】(2011•四川)如图,椭圆有两顶点)01(,-A 、)01(,B ,过其焦点)10(,F 的直线l 与椭圆交于D C ,两点,并与x 轴交于点P .直线AC 与直线BD 交于点Q .当点P 异于B A ,两点时,求证:OQ OP ⋅为定值.【例7】(2022全国甲卷)已知抛物线2:2(0)C y px p =>焦点为F ,点(,0)D p 过焦点F 做直线l 交抛物线于,M N 两点,当MD x ⊥轴时,||3MF =. (1)求抛物线方程(2)若直线,MD ND 与抛物线的另一个交点分别为,A B .若直线,MN AB 的倾斜角为,αβ,当αβ-最大时,求AB 的方程【例8】已知椭圆)0(12222>>=+b a by a x 过点)22(,,离心率为22.(1)求椭圆的方程;(2)过点)10(,P 做椭圆的两条弦AB ,CD (A ,C 分别位于第一、二象限),若BC ,AD 与直线1=y 分别交于M ,N ,求证:PN PM =.【例9】已知椭圆2222:1(0)x y C a b a b +=>>的离心率为23,半焦距为(0)c c >,且1a c -=,经过椭圆的左焦点1F 斜率为11(0)k k ≠的直线与椭圆交于A 、B 两点,O 为坐标原点. (1)求椭圆C 的标准方程;(2)设(10)R ,,延长AR ,BR 分别与椭圆交于C 、D 两点,直线CD 的斜率为2k ,求12k k 的值及直线CD 所经过的定点坐标.知识点三广义曲线系之以斜率定曲线回到那个话题,就是曲线系是不需要解方程的,只需要对比方程的系数,为什么呢?只要满足同解同根,满足方程同构,这样构造的方程就是以这些根为基准的一系列曲线方程,通过系数锁定,找出他们共同的关系,体现了方程中的动中求静,从而实现定点定值的锁定。

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

高中数学「求轨迹方程」知识点梳理+例题精练,建议收藏~

专题51曲线与方程-求轨迹方程【热点聚焦与扩展】纵观近几年的高考试题,高考对曲线与方程的考查,主要有以下两个方面:一是确定的轨迹的形式或特点;二是求动点的轨迹方程,同时考查到求轨迹方程的基本步骤和常用方法.一般地,命题作为解答题一问,小题则常常利用待定系数法求方程或利用方程判断曲线类别.本专题在分析研究近几年高考题及各地模拟题的基础上,重点说明求点的轨迹方程问题的常见解法.1、求点轨迹方程的步骤:(1)建立直角坐标系(2)设点:将所求点坐标设为(),x y ,同时将其他相关点坐标化(未知的暂用参数表示)(3)列式:从已知条件中发掘,x y 的关系,列出方程(4)化简:将方程进行变形化简,并求出,x y 的范围2、求点轨迹方程的方法(1)直接法:从条件中直接寻找到,x y 的关系,列出方程后化简即可(2)代入法:所求点(),P x y 与某已知曲线()00,0F x y =上一点()00,Q x y 存在某种关系,则可根据条件用,x y 表示出00,x y ,然后代入到Q 所在曲线方程中,即可得到关于,x y 的方程(3)定义法:从条件中能够判断出点的轨迹为学过的图形,则可先判定轨迹形状,再通过确定相关曲线的要素,求出曲线方程.常见的曲线特征及要素有:①圆:平面上到定点的距离等于定长的点的轨迹直角→圆:若AB AC ⊥,则A 点在以BC 为直径的圆上确定方程的要素:圆心坐标(),a b ,半径r②椭圆:平面上到两个定点的距离之和为常数(常数大于定点距离)的点的轨迹确定方程的要素:距离和2a ,定点距离2c③双曲线:平面上到两个定点的距离之差的绝对值为常数(小于定点距离)的点的轨迹注:若只是到两定点的距离差为常数(小于定点距离),则为双曲线的一支确定方程的要素:距离差的绝对值2a ,定点距离2c④抛物线:平面上到一定点的距离与到一定直线的距离(定点在定直线外)相等的点的轨迹确定方程的要素:焦准距:p .若曲线位置位于标准位置(即标准方程的曲线),则通过准线方程或焦点坐标也可确定方程(4)参数法:从条件中无法直接找到,x y 的联系,但可通过一辅助变量k ,分别找到,x y 与k 的联系,从而得到,x y 和k 的方程:()()x f k y g k =⎧⎪⎨=⎪⎩,即曲线的参数方程,消去参数k 后即可得到轨迹方程.【经典例题】例1.(2020·四川内江·高三三模)已知点()2,0A -、()3,0B ,动点(),P x y 满足2PA PB x ⋅=,则点P 的轨迹是()A.圆B.椭圆C.双曲线D.抛物线例2.(2020·广东深圳三模·)当点P 在圆221x y +=上变动时,它与定点()3,0Q -的连线PQ 的中点的轨迹方程是()A.()2234x y ++=B.()2231x y -+=C.()222341x y -+=D.()222341x y ++=例3.(2020·江西新余四中高三三模)如图:在正方体1111ABCD A B C D -中,点P 是1B C 的中点,动点M 在其表面上运动,且与平面11A DC 的距离保持不变,运行轨迹为S ,当M 从P 点出发,绕其轨迹运行一周的过程中,运动的路程x 与11l MA MC MD =++之间满足函数关系()l f x =,则此函数图像大致是()A.B.C.D.例4.(2020·上海市嘉定区第一中学高三三模)如图所示,在正方体1111ABCD A B C D -中,点P 是平面11ADD A 上一点,且满足ADP △为正三角形.点M 为平面ABCD 内的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A.B.C.D.例5.(2020·辽宁高三三模)已知半径为r 的圆M 与x 轴交于,E F 两点,圆心M 到y 轴的距离为d .若d EF =,并规定当圆M 与x 轴相切时0EF =,则圆心M 的轨迹为()A.直线B.圆C.椭圆D.抛物线例6.(2020·安徽庐阳·合肥一中高三三模)已知点A ,B 关于坐标原点O 对称,1AB =,以M 为圆心的圆过A ,B 两点,且与直线210y -=相切,若存在定点P ,使得当A 运动时,MA MP -为定值,则点P 的坐标为()A.104⎛⎫ ⎪⎝⎭,B.102⎛⎫ ⎪⎝⎭,C.14⎛⎫- ⎪⎝⎭0,D.102,⎛⎫- ⎪⎝⎭例7.(2020·东湖·江西师大附中高三三模)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于,A B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若2BP PA = ,且1OQ AB ⋅= ,则点P的轨迹方程是()A.()223310,02x y x y +=>>B.()223310,02x y x y -=>>C.()223310,02x y x y -=>>D.()223310,02x y x y +=>>例8.(2016·山西运城·高三三模)已知为平面内两定点,过该平面内动点作直线的垂线,垂足为.若,其中为常数,则动点的轨迹不可能是()A.圆B.椭圆C.抛物线D.双曲线【精选精练】1.(2020·广东普宁·高三三模)与圆及圆都外切的圆的圆心在()A.一个椭圆上B.双曲线的一支上C.一条抛物线D.一个圆上2.(2020·上海高三三模)在平面直角坐标系内,到点()1,2A 和直线l :30x y +-=距离相等的点的轨迹是()A.直线B.抛物线C.椭圆D.双曲线3.(2020·全国高考真题)在平面内,A ,B 是两个定点,C 是动点,若=1AC BC ⋅,则点C 的轨迹为()A.圆B.椭圆C.抛物线D.直线4.(2020·辽宁沈阳·高三三模)已知椭圆22184x y +=,点A ,B 分别是它的左,右顶点.一条垂直于x 轴的动直线l 与椭圆相交于P ,Q 两点,又当直线l 与椭圆相切于点A 或点B 时,看作P ,Q 两点重合于点A 或点B ,则直线AP 与直线BQ 的交点M 的轨迹方程是()A.22184y x -=B.22184x y -=C.22148y x -=D.22148x y -=5.如图,在平面直角坐标系中,()1,0A 、()1,1B 、()0,1C ,映射将平面上的点(),P x y 对应到另一个平面直角坐标系上的点()222,P xy x y '-,则当点沿着折线运动时,在映射的作用下,动点P '的轨迹是()A.B.C.D.6.(2020·四川成都七中高三三模)正方形1111ABCD A B C D -中,若12CM MC =,P 在底面ABCD 内运动,且满足1DP CPD P MP=,则点P 的轨迹为()A.圆弧B.线段C.椭圆的一部分D.抛物线的一部分7.(2020·天水市第一中学高三三模)动点A 在圆221x y +=上移动时,它与定点()3,0B 连线的中点的轨迹方程是()A.22320x y x +++=B.22320x y x +-+=C.22320x y y +++=D.22320x y y +-+=8.(2020·北京市陈经纶中学高三三模)古希腊数学家阿波罗尼奥斯的著作《圆锥曲线论》中给出了圆的另一种定义:平面内,到两个定点A 、B 距离之比是常数λ(0,1)λλ>≠的点M 的轨迹是圆.若两定点A 、B 的距离为3,动点M 满足||2||MA MB =,则M 点的轨迹围成区域的面积为().A.πB.2πC.3πD.4π9.(2020·内蒙古包头·高三三模)已知定点,A B 都在平面α内,定点,,P PB C αα∉⊥是α内异于,A B 的动点,且PC AC ⊥,那么动点C 在平面α内的轨迹是()A.圆,但要去掉两个点B.椭圆,但要去掉两个点C.双曲线,但要去掉两个点D.抛物线,但要去掉两个点10.如图所示,已知12,F F 是椭圆()2222:10x y a b a b Γ+=>>的左,右焦点,P 是椭圆Γ上任意一点,过2F 作12F PF ∠的外角的角平分线的垂线,垂足为Q ,则点Q 的轨迹为()A.直线B.圆C.椭圆D.双曲线11.(2020·北京房山·高三三模)如图,在正方体1111ABCD A B C D -中,M 为棱AB 的中点,动点P 在平面11BCC B 及其边界上运动,总有1AP D M ⊥,则动点P 的轨迹为()A.两个点B.线段C.圆的一部分D.抛物线的一部分12.(2020·四川内江·高三三模)已知平面内的一个动点P 到直线l :x =433的距离与到定点F0)的距离之比为3,点11,2A ⎛⎫ ⎪⎝⎭,设动点P 的轨迹为曲线C ,过原点O 且斜率为k (k <0)的直线l 与曲线C 交于M 、N 两点,则△MAN 面积的最大值为()C.22D.1。

高三C专题(曲线与方程:轨迹方程的求法3星)

高三C专题(曲线与方程:轨迹方程的求法3星)

专题:曲线与方程:轨迹方程的求法(★★★)教学目标(1)理解曲线与方程的概念(两个关系); (2)知道求曲线方程需要适当选取坐标系的意义; (3)掌握求曲线方程的一般方法和步骤;(4)体会通过坐标系建立曲线方程、再利用代数方法研究曲线几何性质的基本思想。

知识梳理5 min.1. 曲线方程的定义:一般地,如果曲线C 与方程0),(=y x F 之间有以下两个关系: ①曲线C 上的点的坐标都是方程0),(=y x F 的解; ②以方程0),(=y x F 的解为坐标的点都是曲线C 上的点。

此时,把方程0),(=y x F 叫做曲线C 的方程,曲线C 叫做方程0),(=y x F 的曲线。

2.利用集合与对应的观点理解曲线方程的概念:设)}(|{M P M P =表示曲线C 上适合某种条件的点M 的集合;}0),(|),{(==y x F y x Q 表示二元方程的解对应的点的坐标的集合。

于是,方程0),(=y x F 叫做曲线C 的方程等价于 ⎭⎬⎫⊆⊆P Q Q P ,即 Q P =。

3.求曲线方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为),(y x ;(3)根据曲线上点所适合的条件,写出等式; (4)用坐标y x 、表示这个等式,并化简;(5)证明已化简后的方程的解为坐标的点都是曲线上的点。

上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明。

4.求曲线方程的方法;(1)直译法:根据条件中提供的等量关系,直接列出方程;(2)代入法:在变化过程中有两个动点,已知其中一个动点在定曲线上运动,求另一动点的轨迹方程,这里通过建立两个动点坐标之间的关系,代人到已知曲线之中,得出所要求的轨迹方程; (3)参数法:单参数法;交轨法;坐标法;定形法。

典例精讲例1.(★★★)若点p 到直线1-=x 的距离比它到点)2,0(的距离小1,则点p 的轨迹为 ( )A .圆B .椭圆C .双曲线D .抛物线【答案】:由题意知,点P 到点(2,0)的距离与P 到直线x =-2的距离相等,由抛物线定义得点P 的轨迹是以(2,0)为焦点,以直线x =-2为准线的抛物线.答案:D例2.(★★★)已知两点)0,2(),0,2(N M -,点p 为坐标平面内的动点,满足| MN u u u u r |·|MP u u u r |+MN u u u u r ·MP u u u r=0,则动点),(y x p 的轨迹方程为 ( )A .x y 82= B .x y 82-= C .x y 42= D .x y 42-=【答案】:|MN u u u u r |=4,|MP u u u r |=(x +2)2+y 2,MN u u u u r ·MP u u u r=4(x -2),∴4(x +2)2+y 2+4(x -2)=0,∴y 2=-8x . 答案:B例3.(★★★)从双曲线122=-y x 上一点Q 引直线2=+y x 的垂线,垂足为N ,则线段QN 的中点P 的轨迹方程为____________.【答案】:设P (x ,y ),Q (x 1,y 1),则N (2x -x 1,2y -y 1),∵N 在直线x +y =2上, ∴2x -x 1+2y -y 1=2① 又∵PQ 垂直于直线x +y =2,∴y -y 1x -x 1=1, 即x -y +y 1-x 1=0.②由①②得⎩⎪⎨⎪⎧x 1=32x +12y -1,y 1=12x +32y -1.又∵Q 在双曲线x 2-y 2=1上,∴21x -21y =1.∴(32x +12y -1)2-(12x +32y -1)2=1. 整理,得2x 2-2y 2-2x +2y -1=0即为中点P 的轨迹方程.例4.(★★★)已知圆C 的方程为422=+y x .(1)直线l 过点)2,1(P ,且与圆C 交于B A 、两点,若32=AB ,求直线l 的方程;(2)过圆C 上一动点M 作平行于x 轴的直线m ,设m 与y 轴的交点为N ,若向量OQ u u u r =OM u u uu r +ON u u u r ,求动点Q 的轨迹方程,并说明此轨迹是什么曲线.【答案】:(1)①当直线l 垂直于x 轴时,直线方程为x =1,l 与圆的两个交点坐标为(1,3)和(1,-3),其距离为23满足题意;②当直线l 不垂直于x 轴时,设其方程为y -2=k (x -1),即kx -y -k +2=0. 设圆心到此直线的距离为d , 则23=24-d 2,得d =1. ∴1=|-k +2|k 2+1,k =34,故所求直线方程为3x -4y +5=0.综上所述,所求直线方程为3x -4y +5=0或x =1. (2)设点M 的坐标为(x 0,y 0)(y 0≠0),Q 点坐标为(x ,y ),则N 点坐标是(0,y 0).∵OQ u u u r =OM u u uu r +ON u u u r ,∴(x ,y )=(x 0,2y 0),即x 0=x ,y 0=y2.又∵x 20+y 20=4,∴x 2+y 24=4(y ≠0).∴Q 点的轨迹方程是x 24+y 216=1(y ≠0).轨迹是一个焦点在y 轴上的椭圆,除去短轴端点.课堂检测1.(★★★)如图,一圆形纸片的圆心为O ,F 是圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD , 设CD 与OM 交于点P ,则点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .抛物线 D .圆【答案】:由题意知,CD 是线段MF 的垂直平分线.∴|MP |=|PF |,∴|PF |+|PO |=|PM |+|PO |=|MO |(定值), 又显然|MO |>|FO |,∴点P 轨迹是以F 、O 两点为焦点的椭圆. 答案:A2.(★★★)已知动点P 在曲线2x 2-y =0上移动,则点A (0,-1)与点P 连线中点的轨迹方程是( )A .y =2x 2B .y =8x 2C .2y =8x 2-1 D .2y =8x 2+1 【答案】:设AP 的中点M (x ,y ),P (x 0,y 0),则有x 0=2x ,y 0=2y +1,代入220x -y 0=0,得2y =8x 2-1. 答案:C3.(★★★)平面直角坐标系中,已知两点A (3,1),B (-1,3),若点C 满足OC u u u r =λ1OA u u u r +λ2OB u u u r(O 为原点),其中λ1,λ2∈R ,且λ1+λ2=1,则点C 的轨迹是 ( )A .直线B .椭圆C .圆D .双曲线【答案】:设C (x ,y ),则OC u u u r =(x ,y ),OA u u u r=(3,1),OB u u u r=(-1,3),∵OC u u u r =λ1OA u u u r +λ2OB u u u r ,∴⎩⎪⎨⎪⎧x =3λ1-λ2y =λ1+3λ2,又λ1+λ2=1,∴x +2y -5=0,表示一条直线. 答案:A4.(★★★)已知点P (x ,y )对应的复数z 满足|z |=1,则点Q (x +y ,xy )的轨迹是( )A .圆B .抛物线的一部分C .椭圆D .双曲线的一部分 【答案】:由题意知x 2+y 2=1,∴(x +y )2-2xy =1.令x +y =m ,xy =n ,则有m 2-2n =1,∴m 2=2n +1. 又∵2|xy |≤x 2+y 2=1,∴-12≤n ≤12.∴点Q 的轨迹是抛物线的一部分. 答案:B5.(★★★)已知椭圆C 的中心为直角坐标系xOy 的原点,焦点在x 轴上,它的一个顶点到两个焦点的距离分别是7和1.(1)求椭圆C 的方程;(2)若P 为椭圆C 上的动点,M 为过P 且垂直于x 轴的直线上的点,|OP ||OM |=λ,求点M 的轨迹方程,并说明轨迹是什么曲线.【答案】:(1)设椭圆长半轴长及半焦距分别为a 、c ,由已知得⎩⎪⎨⎪⎧a -c =1,a +c =7,解得a =4,c =3,所以椭圆C 的方程为x 216+y 27=1.(2)设M (x ,y ),其中x ∈[-4,4].由已知|OP |2|OM |2=λ2及点P 在椭圆C 上可得9x 2+11216(x 2+y 2)=λ2,整理得(16λ2-9)x 2+16λ2y 2=112,其中x ∈[-4,4]. ①λ=34时,化简得9y 2=112.所以点M 的轨迹方程为y =±473(-4 ≤x ≤4),轨迹是两条平行于x 轴的线段.②λ≠34时,方程变形为x 211216λ2-9+y 211216λ2=1,当0<λ<34时,点M 的轨迹为中心在原点、实轴在y 轴上的双曲线满足-4≤x ≤4的部分;当34<λ<1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆满足-4≤x ≤4的部分; 当λ≥1时,点M 的轨迹为中心在原点、长轴在x 轴上的椭圆.回顾总结4 min.。

曲线方程与轨迹问题专题复习讲义-2024届高考数学一轮复习专题讲义 (学生版)

曲线方程与轨迹问题专题复习讲义-2024届高考数学一轮复习专题讲义 (学生版)

目录曲线与轨迹问题 (2)【课前诊断】 (2)【知识点一:求曲线方程】 (4)【典型例题】 (4)考点一:定义法 (4)考点二:直接法 (5)考点三:相关点法 (6)考点四:参数法 (7)【小试牛刀】 (8)【巩固练习——基础篇】 (9)【巩固练习——提高篇】 (9)曲线与轨迹问题【课前诊断】成绩(满分10): 完成情况: 优/中/差1. 已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定2. 圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( )A .相离B .相切C .相交D .以上都有可能3. 直线10xky与圆221x y 的位置关系是( )A .相交B .相离C .相交或相切D .相切4. 设m >0,则直线)10l xy m与圆22:O x y m 的位置关系为( )A .相切B .相交C .相切或相离D .相交或相切5. 直线l 与圆22240(3)x y x y a a 相交于A ,B 两点,若弦AB 的中点为(2,3)C ,则直线l 的方程为( )A .x -y +5=0B .x +y -1=0C .x -y -5=0D .x +y -3=06. 与圆22:420C x y x 相切,且在,x y 轴上的截距相等的直线共有( )A .1条B .2条C .3条D .4条7. 过原点O 作圆2268200x y x y 的两条切线,设切点分别为P ,Q ,则线段PQ的长为________.8.已知两圆分别为圆C 1:x 2+y 2=81和圆C 2:x 2+y 2-6x -8y +9=0,这两圆的位置关系是( )A .相离B .相交C .内切D .外切9.两圆222x y r ,222(3)(1)x y r 外切,则正实数r 的值是( )D .510.圆22616480x y x y 与圆2248440x y x y 的公切线条数为( )A .4条B .3条C .2条D .1条11.圆22460x y x y 和圆2260x y x 交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0【知识点一:求曲线方程】一、求曲线方程的常用方法:(1)定义法;(2)直接法;(3)相关点法;(4)参数法;【典型例题】考点一: 定义法例1. 已知ABC Rt ∆中,C ∠为直角,且),0,1(),0,1(B A -求满足条件的C 的轨迹方程。

十年高考理科数学真题 专题九 解析几何 二十九 曲线与方程及答案

十年高考理科数学真题 专题九  解析几何 二十九  曲线与方程及答案

专题九 解析几何第二十九讲 曲线与方程2019年1.(2019北京理8)数学中有许多形状优美、寓意美好的曲线,曲线C :x 2+y 2=1+x y 就是其中之一(如图)。

给出下列三个结论:① 曲线C 恰好经过6个整点(即横、纵坐标均为整数的点); ② 曲线C 上任意一点到原点的距离都不超过2; ③ 曲线C 所围城的“心形”区域的面积小于3. 其中,所有正确结论的序号是(A )① (B )② (C )①② (D )①②③2.(2019浙江15)已知椭圆22195x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方, 若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是_______.3.(2019江苏17)如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的焦点为F 1(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:222(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1.已知DF 1=52. (1)求椭圆C 的标准方程; (2)求点E 的坐标.4.(2019全国III 理21(1))已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C的两条切线,切点分别为A ,B . (1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.5.(2019北京理18)已知抛物线2:2C x py =-经过点(2,-1). (I) 求抛物线C 的方程及其准线方程; (II)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B ,求证:以AB 为直径的圆经过y 轴上的两上定点.6.(2019全国II 理21)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−12.记M 的轨迹为曲线C .(1)求C 的方程,并说明C 是什么曲线;(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交C 于点G .(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.7. (2019浙江21)如图,已知点(10)F ,为抛物线22(0)y px p =>的焦点,过点F 的直线交抛物线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 右侧.记,AFG CQG △△的面积为12,S S .(1)求p 的值及抛物线的准线方程; (2)求12S S 的最小值及此时点G 的坐标. 8.(2019天津理18)设椭圆22221(0)x y a b a b+=>>的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为5. (Ⅰ)求椭圆的方程;(Ⅱ)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.2010-2018年解答题1.(2018江苏)如图,在平面直角坐标系xOy 中,椭圆C 过点1)2,焦点12(F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程. 2.(2017新课标Ⅱ)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2016年山东)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>>的离心率是2,抛物线E :22x y =的焦点F 是C 的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . (i )求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.4.(2016年天津)设椭圆13222=+y ax (a >的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MOA MAO ∠∠≤,求直线l 的斜率的取值范围.5.(2016年全国II)已知椭圆:E 2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于,A M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当4,||||t AM AN ==时,求AMN ∆的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.6.(2015湖北)一种作图工具如图1所示.O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动,且1DN ON ==,3MN =.当栓子D 在滑槽AB 内作往复运动时,带动..N 绕O 转动一周(D 不动时,N也不动),M 处的笔尖画出的曲线记为C .以O 为原点,AB 所在的直线为x 轴建立如图2所示的平面直角坐标系.(Ⅰ)求曲线C 的方程;(Ⅱ)设动直线l 与两定直线1:20l x y -=和2:20l x y +=分别交于,P Q 两点.若直线l总与曲线C 有且只有一个公共点,试探究:△OPQ 的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.7.(2015江苏)如图,在平面直角坐标系xoy 中,已知椭圆()222210x y a b a b+=>>的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于,A B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点,P C ,若2PC AB =,求直线AB 的方程.8.(2015四川)如图,椭圆E :2222+1(0)x y a b a b=>>的离心率是22,过点(0,1)P 的动直线l 与椭圆相交于,A B 两点,当直线l 平行与x 轴时,直线l 被椭圆E 截得的线段长为22(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QA PAQB PB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.9.(2015北京)已知椭圆C :()222210x y a b a b+=>>的离心率为22,点()01P ,和点 ()A m n ,()0m ≠都在椭圆C 上,直线PA 交x 轴于点M . (Ⅰ)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(Ⅱ)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得OQM ONQ ∠=∠?若存在,求点Q 的坐标;若不存在,说明理由.10.(2015浙江)已知椭圆2212x y +=上两个不同的点,A B 关于直线12y mx =+对称. (Ⅰ)求实数m 的取值范围;(Ⅱ)求AOB ∆面积的最大值(O 为坐标原点).11.(2014广东)已知椭圆2222:1(0)x y C a b a b+=>>的一个焦点为5,0),5(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若动点00(,)P x y 为椭圆外一点,且点P 到椭圆C 的两条切线相互垂直,求点P的轨迹方程.12.(2014辽宁)圆224x y +=的切线与x 轴正半轴,y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图),双曲线22122:1x y C a b-=过点P 3.(1)求1C 的方程;(2)椭圆2C 过点P 且与1C 有相同的焦点,直线l 过2C 的右焦点且与2C 交于A ,B 两点,若以线段AB 为直径的圆心过点P ,求l 的方程.13.(2013四川)已知椭圆C :)0(12222>>=+b a by a x 的两个焦点分别为1(10)F -,,210F (,),且椭圆C 经过点),3134(P . (Ⅰ)求椭圆C 的离心率(Ⅱ)设过点),(20A 的直线l 与椭圆C 交于M ,N 两点,点Q 是MN 上的点,且 222112ANAMAQ+=,求点Q 的轨迹方程.14.(2012湖南)在直角坐标系xoy 中,曲线1C 的点均在2C :22(5)9x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设00(,)P x y (3y ≠±)为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D.证明:当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.15.(2011天津)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形.(Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-u u u u r u u u u r ,求点M 的轨迹方程.16.(2009广东)已知曲线2:C y x =与直线:20l x y -+=交于两点(,)A A A x y 和(,)B B B x y ,且A B x x <.记曲线C 在点A 和点B 之间那一段L 与线段AB 所围成的平面区域(含边界)为D .设点(,)P s t 是L 上的任一点,且点P 与点A 和点B 均不重合. (1)若点Q 是线段AB 的中点,试求线段PQ 的中点M 的轨迹方程;(2)若曲线22251:24025G x ax y y a -+-++=与D 有公共点,试求a 的最小值. 专题九 解析几何第二十九讲 曲线与方程答案部分1. 由221x y x y +=+可得221y x y x -=-.配方得2230241x x y ⎛⎫-≥ ⎪ ⎪⎝⎭-=,解得234x ≤.所以x 可取的整数值为-1,0,1,则曲线经过()()()()()()1,0,1,1,0,1,0,1,1,0,1,1,----这6个整点,结论①正确;当x >0时,由221x y xy +=+得222212x y x y xy ++-=≤(当x=y 时取等号),所以222x y +≤,所以222x y +≤,即曲线C 上y 轴右边的点到原点的距离不超过2,结论②正确;根据对称性可得:曲线C 上任意一点到原点的距离都不超过2;故②正确.如图所示,()()()()0,1,1,0,1,1,0,1A B C D -13111122ABCD S =⨯⨯+⨯=, 根据对称性可知23ABCD S S >=心形. 即心形区域的面积大于3,故③错误. 正确结论为①②. 故选C .2.解析 设椭圆的右焦点为F ',连接PF ',线段PF 的中点A 在以原点O 为圆心,2为半径的圆, 连接AO ,可得24PF AO '==,设P 的坐标为(m,n ),可得2343m -=,可得32m =-,15n =,由(2,0)F -,可得直线PF 的斜率为15215322=-+.3.解析 (1)设椭圆C 的焦距为2c .因为F 1(-1,0),F 2(1,0),所以F 1F 2=2,c =1. 又因为DF 1=52,AF 2⊥x 轴,所以DF 2222211253()222DF F F -=-=, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2-c 2,得b 2=3.因此,椭圆C 的标准方程为22143x y +=.(2)解法一:由(1)知,椭圆C :22143x y +=,a =2,因为AF 2⊥x 轴,所以点A 的横坐标为1.将x =1代入圆F 2的方程(x -1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(-1,0),所以直线AF 1:y =2x +2.由22()22116y x x y =+-+=⎧⎨⎩,得256110x x +-=, 解得1x =或115x =-. 将115x =-代入22y x =+,得 125y =-, 因此1112(,)55B --.又F 2(1,0),所以直线BF 2:3(1)4y x =-.由221433(1)4x y x y ⎧⎪⎪⎨⎪+=-⎩=⎪,得276130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得32y =-.因此3(1,)2E --. 解法二:由(1)知,椭圆C :22143x y +=.如图所示,联结EF 1.因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.因为F 1(-1,0),由221431x x y ⎧⎪⎨+==-⎪⎩,得32y =±.又因为E 是线段BF 2与椭圆的交点,所以32y =-. 因此3(1,)2E --. 4. 解析(1)设()111,,,2D t A x y ⎛⎫-⎪⎝⎭,则2112x y =.由于y'x =,所以切线DA 的斜率为1x ,故11112y x x t+=- ,整理得112 2 +1=0. tx y -设()22,B x y ,同理可得222 2 +1=0tx y -.故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2.5.解析(I )由抛物线2:2C x py =-经过点()2,1-,得2p =.所以抛物线C 的方程为24x y =-,其准线方程为1y =. (II )抛物线C 的焦点为()0,1-,设直线l 的方程为()10y kx k =-≠.由241x y y kx ⎧=-⎨=-⎩,得2440x kx +-=. 设()()1122,,,,Mx y N x y 则124x x=-.直线OM 的方程为11y y x x =,令1y =-,得点A 的横坐标为11A x x y =- 同理可得点B 的横坐标22B x x y =-.设点()0,Dn ,则()()2212122212121144x x x x DA DB n n y yx x ⋅=++=++⎛⎫⎛⎫-- ⎪⎪⎝⎭⎝⎭uu u r uu u r()()221216141n n x x =++=-++. 令0,DA DB ⋅=uu u r uu u r 即()2410n -++=,得1n =或3n =-.综上,以AB 为直径的圆经过y 轴上的定点()()0,10,-3和.6.解析(1)由题设得1222y y x x ⋅=-+-,化简得221(||2)42x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.由22142y kxx y =⎧⎪⎨+=⎪⎩得x =.记u =,则(,),(,),(,0)P u uk Q u uk E u --.于是直线QG 的斜率为2k ,方程为()2ky x u =-. 由22(),2142k y x u x y ⎧=-⎪⎪⎨⎪+=⎪⎩得 22222(2)280k x uk x k u +-+-=.①设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得322G uk y k =+.从而直线PG 的斜率为322212(32)2uk uk k u k kuk -+=-+-+.所以PQ PG ⊥,即PQG △是直角三角形.(ii )由(i)得||2PQ =||PG =,所以△PQG 的面积222218()18(1)||12(12)(2)12()k k k k S PQ PG k k k k++===++++‖. 设t =k +1k ,则由k >0得t ≥2,当且仅当k =1时取等号.因为2812t S t =+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为169.因此,△PQG 面积的最大值为169.7.解析 (I )由题意得12p=,即p =2.所以,抛物线的准线方程为x =−1.(Ⅱ)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2A x t =.由于直线AB 过F ,故直线AB 方程为2112t x y t-=+,代入24y x =,得 ()222140t y y t---=,故24B ty =-,即2B y t =-,所以212,B tt ⎛⎫- ⎪⎝⎭.又由于()()11,33G A B c G A B c x x x x y y y y =++=++及重心G 在x 轴上,故220c t y t-+=,得242211222,2,,03t t C t t G t t t ⎛⎫⎛⎫-+⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 所以,直线AC 方程为()222y t t x t-=-,得()21,0Q t-.由于Q 在焦点F 的右侧,故22t >.从而4224221244242222211|2|||322221222211|||1||2|23A c t t t FG y t S t t t t t S t t QG y t t t t-+-⋅⋅--====--+--⋅--⋅-. 令22m t =-,则m >0,1221222134324S m S m m m m =-=-=+++++….当m =12S S取得最小值1+G (2,0).8.解析 (Ⅰ)设椭圆的半焦距为c ,依题意,24,c b a ==,又222a b c =+,可得a =2,b =1c =.所以,椭圆的方程为22154x y +=. (Ⅱ)由题意,设()()()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠,又()0,2B ,则直线PB 的方程为2y kx =+,与椭圆方程联立222154y kx x y =+⎧⎪⎨+=⎪⎩,整理得()2245200k x kx ++=,可得22045P kx k =-+,代入2y kx =+得2281045P k y k -=+,进而直线OP 的斜率24510P p y k x k-=-.在2y kx =+中,令0y =,得2M x k =-.由题意得()0,1N -,所以直线MN 的斜率为2k -.由OP MN ⊥,得2451102k k k-⎛⎫⋅-=- ⎪-⎝⎭,化简得2245k =,从而k =所以,直线PB或. 2010-2018年1.【解析】(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩消去y ,得222200004243640()x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)44364(48)20x x y y y x =--+-=-=∆. 因为00,0x y >,所以001x y ==. 因此,点P的坐标为. ②因为三角形OAB,所以1 2AB OP ⋅=7AB =.设1122,,()(),A x y B x y ,由(*)得001,2x =,所以2222121()()x B y y x A =-+-222000222200048(2)(1)(4)x y x y x y -=+⋅+. 因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P的坐标为.综上,直线l的方程为y =+2.【解析】(1)设(,)P x y ,00(,)M x y ,则0(,0)N x ,0(,)NP x x y =-u u u r ,0(0.)NM y =u u u u r.由NP =u u u r u u u r得 0x x =,02y y =. 因为00(,)M x y 在C 上,所以22122x y +=. 因此点P 的轨迹方程为222x y +=.(2)由题意知(1,0)F -.设(3,)Q t -,(,)P m n ,则(3,)OQ t =-u u u r ,(1,)PF m n =---u u u r ,33OQ PF m tn ⋅=+-u u u r u u u r, (,)OP m n =u u u r ,(3,)PQ m t n =---u u u r,由1OP PQ ⋅=u u u r u u u r 得2231m m tn n --+-=,又由(1)知222m n +=,故330m tn +-=.所以0OQ PF ⋅=u u u r u u u r ,即OQ PF ⊥u u u r u u u r.又过点P 存在唯一直线垂直与OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F . 3.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a ,所以椭圆C 的方程为1=4+22y x .(Ⅱ) (i )设P 点坐标为2,),(0)2m Pm m >(, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又2200222(14)m m y mx m -=-=+, 于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为1(,)4M m -. 所以点M 在定直线41=y -上.(ii )在切线l 的方程为2=2m mx -y 中,令0x =,得22m y =-,即点G 的坐标为2(0,)2m G -,又2(,)2m P m ,1(0,)2F , 所以4)1+(=×21=S 21m m GF m ;再由32222(,)412(41)m m D m m -++,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P的坐标为1()24P . 4.【解析】(Ⅰ)设(,0)F c ,由113||||||c OF OA FA +=,即113()cc a a a c +=-, 可得2223a c c -=,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k .解得2=x ,或346822+-=k k x ,由题意得346822+-=k k x B ,从而34122+-=k k y B. 由(Ⅰ)知,)0,1(F ,设),0(H y H ,有),1(H y FH -=,)3412,3449(222++-=k kk k BF . 由HF BF ⊥,得0=⋅HF BF ,所以034123449222=+++-k ky k k H,解得k k y H 12492-=.因此直线MH 的方程为kk x k y 124912-+-=.设),(M M y x M ,由方程组⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M . 在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(M M M M y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k . 所以,直线l 的斜率的取值范围为),46[]46,(+∞--∞Y . 5.【解析】(I )设11(,)M x y ,则由题意知10y >.当4t =时,椭圆E 的方程为22143x y +=,A 点坐标为()20-,, 由已知及椭圆的对称性知,直线AM 的倾斜角为4π. 因此直线AM 的方程为2y x =+.将2x y =-代入22143x y +=得27120y y -=. 解得0y =或127y =,所以1127y =. 所以AMN △的面积为21112121442227749AMN S AM ∆==⨯⨯⨯=. (Ⅱ)由题意知3,0,(t k A >>,则直线AM的方程为(y k x =,联立()2213x y t y k x t ⎧+=⎪⎨⎪=+⎩并整理得,()222223230tk x t tk x t k t +++-=解得x t =-或23t tk tx -=-,所以2223611t tk t t AM k t k -=+-+=+⋅ 由题意MA NA ⊥,所以AN 的方程为1()y x t k=-+, 同理可得26(1)||k t k AN +=由2AM AN =,得22233k tk k t=++,即3(2)3(21)k t k k -=- 当32k =时上式成立,因此23632k kt k -=-. 因为3t >,即236332k k k ->-,整理得()()231202k k k +-<- 即3202k k -<-,解得322k <<. 6.【解析】(Ⅰ)设点(,0)D t (||2)t ≤,00(,),(,)N x y M x y ,依题意,2MD DN =u u u u r u u u r,且||||1DN ON ==u u u r u u u r ,所以00(,)2(,)t x y x t y --=-,且2200220()11x t y x y ⎧-+=⎪⎨+=⎪⎩ 即00222t x x ty y -=-⎧⎨=-⎩,且0(2)0t t x -=.由于当点D 不动时,点N 也不动,所以t 不恒等于0,于是02t x =,故00,42x y x y ==-,代入22001x y +=,可得221164x y +=,即所求的曲线C 的方程为221164x y +=.(Ⅱ)(1)当直线l 的斜率不存在时,直线l 为4x =或4x =-,都有14482OPQ S ∆=⨯⨯=.(2)当直线l 的斜率存在时,设直线1:()2l y kx m k =+≠±,由22416y kx m x y =+⎧⎨+=⎩ ,消去y ,可得222(14)84160k x kmx m +++-=. 因为直线l 总与椭圆C 有且只有一个公共点,所以2222644(14)(416)0k m k m ∆=-+-=,即22164m k =+. ① 又由,20,y kx m x y =+⎧⎨-=⎩可得2(,)1212m m P k k --;同理可得2(,)1212m m Q k k -++.由原点O 到直线PQ 的距离为d =和|||P Q PQ x x =-,可得22111222||||||||222121214OPQP Q m m m S PQ d m x x m k k k ∆=⋅=-=⋅+=-+-.② 将①代入②得,222241281441OPQk m S k k ∆+==--. 当214k >时,2224128()8(1)84141OPQ k S k k ∆+==+>--;当2104k ≤<时,2224128()8(1)1414OPQ k S k k ∆+==-+--.因2104k ≤<,则20141k <-≤,22214k ≥-,所以228(1)814OPQ S k∆=-+≥-, 当且仅当0k =时取等号.所以当0k =时,OPQ S ∆的最小值为8.综合(1)(2)可知,当直线l 与椭圆C 在四个顶点处相切时,△OPQ 的面积取得最小值8.7.【解析】(1)由题意,得c a =且23a c c +=,解得a =1c =,则1b =,所以椭圆的标准方程为2212x y +=.(2)当AB ⊥x 轴时,AB =C 3P =,不合题意.当AB 与x 轴不垂直时,设直线AB 的方程为()1y k x =-,()11,x y A ,()22,x y B ,将AB 的方程代入椭圆方程,得()()2222124210k x k x k +-+-=,则1,2x=C 的坐标为2222,1212k k k k ⎛⎫- ⎪++⎝⎭,且)22112k AB k+===+.若0k =,则线段AB 的垂直平分线为y 轴,与左准线平行,不合题意.从而0k ≠,故直线C P 的方程为222121212k k y x k k k ⎛⎫+=-- ⎪++⎝⎭,则P 点的坐标为()22522,12k k k ⎛⎫+ ⎪- ⎪+⎝⎭,从而(()2223112k PC k k +=+. 因为2PC AB=,所以(())222223111212k k k k k++=++,解得1k =±.此时直线AB 方程为1y x =-或1y x =-+. 8.【解析】(1)由已知,点在椭圆E 上.因此,22222211,,2a b a b c c a⎧+=⎪⎪⎪-=⎨⎪⎪=⎪⎩解得2a =,b =所以椭圆的方程为22142x y +=. (2)当直线l 与x 轴平行时,设直线l 与椭圆相交于C 、D 两点. 如果存在定点Q 满足条件,则||||1||||QC PC QD PD ==,即||||QC QD =. 所以Q 点在y 轴上,可设Q 点的坐标为0(0,)y .当直线l 与x 轴垂直时,设直线l 与椭圆相交于M、N 两点.则M ,(0,N , 由||||||||QMPM QN PN ==,解得01y =或02y =. 所以,若存在不同于点P 的定点Q 满足条件,则Q 点的坐标只可能为(0,2)Q . 下面证明:对任意的直线l ,均有||||||||QA PA QB PB =.当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,A 、B 的坐标分别为1122(,),(,)x y x y .联立221,421x y y kx ⎧+=⎪⎨⎪=+⎩得22(21)420k x kx ++-=. 其判别式22168(21)0k k ∆=++>, 所以,12122242,2121k x x x x k k +=-=-++. 因此121212112x x k x x x x ++==. 易知,点B 关于y 轴对称的点的坐标为22(,)B x y '-.又121122122111,QA QB y y k k k k k x x x x x '--==-==-+=--, 所以QA QB k k '=,即,,Q A B '三点共线. 所以12||||||||||||||||x QA QA PA QB QB x PB ==='.故存在与P 不同的定点(0,2)Q ,使得||||||||QA PA QB PB =恒成立. 9.【解析】(Ⅰ)由题意得2221,,.b caa b c =⎧⎪⎪=⎨⎪⎪=+⎩解得2a =2.故椭圆C 的方程为2212x y +=. 设M (N x ,0).因为0m ≠,所以11n -<<.直线PA 的方程为11n y x m--=, 所以M x =1m n -,即(,0)1mM n-.(Ⅱ)因为点B 与点A 关于x 轴对称,所以(,)B m n -, 设(,0)N N x ,则N x =1mn+. “存在点(0,)Q Q y 使得OQM ∠=ONQ ∠等价”,“存在点(0,)Q Q y 使得OM OQ=OQ ON”即Q y 满足2Q M N y x x =.因为1M m x n =-,1N mx n=+,2212m n +=, 所以22221Q MN m y x x n ===-.所以Q y或Q y =故在y 轴上存在点Q ,使得OQM ∠=ONQ ∠. 点Q的坐标为或(0,.10.【解析】(Ⅰ)由题意知0m ≠,可设直线AB 的方程为1y x b m=-+. 由22112y x b m x y ⎧=-+⎪⎪⎨⎪+=⎪⎩消去y ,得222112()102b x x b m m +-+-=.因为直线1y x b m=-+与椭圆2212x y +=有两个不同的交点, 所以224Δ220b m=-++>,① 设M 为AB 的中点,则2222(,)22mb m bM m m ++, 代入直线方程12y mx =+解得2222m b m +=-.②由①②得3m <-或3m >.(Ⅱ)令1((0,)22t m =∈-U ,则2||2AB t =+且O 到直线AB的距离21t d +=. 设ΔAOB 的面积为()S t ,所以1()||2S t AB d =⋅= 当且仅当212t =时,等号成立. 故ΔAOB. 11.【解析】(Ⅰ)可知c =c a =,3a ∴=,2224b a c =-=,椭圆C 的标准方程为22194x y +=; (Ⅱ)设两切线为12,l l ,①当1l x ⊥轴或1//l x 轴时,对应2//l x 轴或2l x ⊥轴,可知(3,2)P ±±②当1l 与x 轴不垂直且不平行时,03x ≠±,设1l 的斜率为k ,则0k ≠,2l 的斜率为1k-,1l 的方程为00()y y k x x -=-,联立22194x y +=,得2220000(94)18()9()360k x y kx kx y kx ++-+--=,因为直线与椭圆相切,所以0∆=,得222200009()(94)[()4]0y kx k k y kx --+--=,2200364[()4]0k y kx ∴-+--=,2220000(9)240x k x y k y ∴--+-=所以k 是方程2220000(9)240x x x y x y --+-=的一个根,同理1k-是方程2220000(9)240x x x y x y --+-=的另一个根,1()k k ∴⋅-=202049y x --,得220013x y +=,其中03x ≠±, 所以点P 的轨迹方程为2213x y +=(3x ≠±),因为(3,2)P ±±满足上式,综上知:点P 的轨迹方程为2213x y +=. 12.【解析】(Ⅰ)设圆的半径为r ,P 点上下两段分别为,m n ,24r =,由射影定理得2r mn =,三角形的面积s ==≥=当2m n ==时,s取得最大,此时P∵222cc b a a==+,P 在双曲线上 ∴222321c b a ===,,,∴双曲线的方程为22-12y x = (Ⅱ)由(Ⅰ)知2C的焦点为,由此设2C 的方程为22221113x y b b +=+,其中10b >,由P 在2C 上,得213b =,∴2C 的方程为22163x y +=, 显然,l 不是直线0y =,设l的方程为x my =+1122(,),(,)A x y B x y ,由22163x my x y ⎧=⎪⎨+=⎪⎩得22(2)-30m y ++=,∴12122-32y y y y m +==+①11220(PA PB x y x y =•=u u u r21212(1))m y y m y y =++++由①②得220m +=,解得12m m ==因此直线l的方程02x y -=或02x y -= 13.【解析】(Ⅰ)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =c =1.所以椭圆C的离心率2c e a ===. (Ⅱ)由(Ⅰ)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(ⅰ)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (ⅱ)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2. 因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(1x ,k 1x +2),(2x ,k 2x +2), 则|AM |2=(1+k 2)21x ,|AN |2=(1+k 2)22x . 又|AQ |2=x 2+(y -2)2=(1+k 2)2x . 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+),即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32.由②可知,12x x +=2821k k -+,12x x =2621k +, 代入①中并化简,得2218103x k =-.③因为点Q 在直线y =kx +2上, 所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18.由③及k 2>32,可知0<x 2<32,即x ∈⎛⎫ ⎪ ⎪⎝⎭∪⎛ ⎝⎭.又0,25⎛⎫- ⎪ ⎪⎝⎭满足10(y -2)2-3x 2=18,故x ∈,22⎛- ⎝⎭. 由题意,Q (x ,y )在椭圆C 内,所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1,则y ∈1,225⎛- ⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x ∈⎛⎝⎭,y ∈1,22⎛- ⎝⎦. 14.【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得23x +=,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以5x =+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是3.=整理得 2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则12,y y 是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400[16]6400y y k k k k -+==.所以,当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为定值6400. 15.【解析】(Ⅰ)解:设12(,0),(,0)(0)F c F c c ->,由题意,可得212||||,PF F F =2.c = 整理得22()10,1cc c aa a +-==-得(舍),或1.2c a =所以1.2e =(Ⅱ)解:由(Ⅰ)知2,,a c b ==可得椭圆方程为2223412,x y c +=直线PF 2方程为).y x c =-A ,B两点的坐标满足方程组2223412,).x y c y x c ⎧+=⎪⎨=-⎪⎩消去y 并整理,得2580.x cx -= 解得1280,.5x x c ==得方程组的解21128,0,5,.x c x y y ⎧=⎪=⎧⎪⎪⎨⎨=⎪⎪⎩=⎪⎩不妨设8(),(0,)5A c B 设点M的坐标为8(,),(,),(,)55x y AM x c y c BM x y =--=+u u u u r u u u ur 则,由),.3y x c c x y =-=-得于是38(,),15555AM y x y x =--u u u u r().BM x =u u u u r 由2,AM BM ⋅=-u u u u r u u u u r即38()()215555y x x y x -⋅+-=-,化简得218150.x --=将22105,0.316x y c x y c x +==-=>得所以0.x >因此,点M的轨迹方程是218150(0).x x --=>16.【解析】(1)联立2x y =与2+=x y 得2,1=-=B A x x ,则AB 中点)25,21(Q ,设线段PQ 的中点M 坐标为),(y x ,则225,221ty s x +=+=,即252,212-=-=y t x s ,又点P 在曲线C 上,∴2)212(252-=-x y 化简可得21128y x x =-+,又点P 是L 上的任一点,且不与点A 和点B 重合,则22121<-<-x ,即4541<<-x ,∴中点M 的轨迹方程为21128y x x =-+(4541<<-x ). (2)曲线22251:24025G x ax y y a -+-++=,即圆E :2549)2()(22=-+-y a x ,其圆心坐标为)2,(a E ,半径57=r ,设圆G 与直线l :20x y -+=相切于点(,)T T T x y ,75=,即5a =±.过点(,2)N a 与直线l 垂直的直线l '的方程是21()y x a -=-⨯-,即20x y +-=.由2020x y x y a -+=⎧⎨+--=⎩,解得2T a x =,22T ay =+.当5a =-时,1210T x -<<-<. ∵1,2-分别是D 上的点的最小和最大横坐标,∴切点T D ∈,故min 5a =-.。

高考数学复习考点知识专题讲解25---双曲线与抛物线的方程及几何性质

高考数学复习考点知识专题讲解25---双曲线与抛物线的方程及几何性质

高考数学复习考点知识专题讲解考点 25 双曲线与抛物线的方程及几何性质【考点剖析】 1.命题方向: (1)高考对双曲线的考查,主要考查以下几个方面:一是考查双曲线的标准方程, 结合双曲线的定义及双曲线基本量之间的关系,利用待定系数法求解;二是考查双曲 线的几何性质,较多地考查离心率、渐近线问题;三是考查双曲线与圆、椭圆或抛物 线相结合的问题,综合性较强. (2)高考对抛物线的考查,主要考查以下几个方面:一是考查抛物线的标准方程, 结合抛物线的定义及抛物线的焦点,利用待定系数法求解;二是考查抛物线的几何性 质,较多地涉及准线、焦点、焦准距等;三是考查直线与抛物线的位置关系问题,过 焦点的直线较多. 选择题或填空题抛物线与椭圆、双曲线综合趋势较强,涉及直线与抛物线位置关系的 解答题增多. 2.结论总结: 1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线 (1)在平面内; (2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2. 双曲线的几何性质1 / 16x2 y2标准方程 a2-b2=1(a>0,b>0)y2 x2a2-b2=1(a>0,b>0)图形范围 x≥a 或 x≤-a,y∈Rx∈R,y≤-a 或 y≥a对称 性对称轴:坐标轴 对称中心:原点顶点 A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)渐近 性线 质离心率by=±axce=a,e∈(1,+∞),其中 c=ay=±bx实虚 轴线段 A1A2 叫作双曲线的实轴,它的长|A1A2|=2a;线段 B1B2 叫作双 曲线的虚轴,它的长|B1B2|=2b;a 叫作双曲线的实半轴长,b 叫作 双曲线的虚半轴长.a、b、c 的关系c2=a2+b2(c>a>0,c>b>0)3.抛物线方程及其几何性质 图形2 / 16标准方程y2=2px (p>0)顶点 范围x≥0,y2=-2px (p>0)x2=2py (p>0)O(0,0)x≤0,y≥0,x2=-2py (p>0)y≤0,对称轴x轴y轴焦点离心率e=1准线方程焦半径3.名师二级结论:双曲线:一条规律 双曲线为等轴双曲线⇔双曲线的离心率 e=⇔双曲线的两条渐近线互相垂直(位置关 系).两种方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定 2a、2b 或 2c,从而求出 a2、b2,写出双曲线方程.(2)待定系数法:先确定焦点是在 x 轴上还是在 y 轴上,设出标准方程,再由条件确定a2、b2x2的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为m23 / 16y2-n2=λ(λ≠0),再根据条件求 λ 的值.三个防范 (1)区分双曲线中的 a,b,c 大小关系与椭圆 a,b,c 关系,在椭圆中 a2=b2+c2,而 在双曲线中 c2=a2+b2.(2)双曲线的离心率大于 1,而椭圆的离心率 e∈(0,1).双曲线的标准方程中,对 a、b 的要求只是 a>0,b>0 易误认为与椭圆标准方程中a,b 的要求相同.若 a>b>0,则双曲线的离心率 e∈(1,);若 a=b>0,则双曲线的离心率 e=;若 0<a<b,则双曲线的离心率 e>.x2 y2b(3)双曲线a2-b2=1(a>0,b>0)的渐近线方程是 y=±ax,y2 x2aa2-b2=1(a>0,b>0)的渐近线方程是 y=±bx.抛物线:一个结论焦半径:抛物线y2=2px(p>0)上一点P(x0,y0)到焦点ppF,0的距离|PF|=x0+2.两种方法(1)定义法:根据条件确定动点满足的几何特征,从而确定 p 的值,得到抛物线的标准方程. (2)待定系数法:根据条件设出标准方程,再确定参数 p 的值,这里要注意抛物线标准 方程有四种形式.从简单化角度出发,焦点在 x 轴的,设为 y2=ax(a≠0),焦点在 y 轴 的,设为 x2=by(b≠0). 4.考点交汇展示:4 / 16(1)与导函数及其应用交汇在直角坐标系 中,曲线 C:y= 与直线( >0)交与 M,N 两点,(Ⅰ)当 k=0 时,分别求 C 在点 M 和 N 处的切线方程;(Ⅱ)y 轴上是否存在点 P,使得当 k 变动时,总有∠OPM=∠OPN?说明理由.【答案】(Ⅰ)或(Ⅱ)存在【解析】(Ⅰ)由题设可得,,或,.∵,故在 = 处的到数值为 ,C 在,即.处的切线方程为故在 =-处的到数值为- ,C 在处的切线方程为,即.故所求切线方程为或. ……5 分(3)与解三角形交汇 【2018 届湖南省株洲市醴陵第二中学、醴陵第四中学高三上学期期中联考】已知双曲5 / 16线 E: ﹣ =1(a>0,b>0),点 F 为 E 的左焦点,点 P 为 E 上位于第一象限内 的点,P 关于原点的对称点为 Q,且满足|PF|=3|FQ|,若|OP|=b,则 E 的离心率为()A.B.【答案】BC. 2 D.【解析】由题意可知:双曲线的右焦点 ,由 关于原点的对称点为则 四边形为平行四边形则由,根据双曲线的定义在中,则,整理得则双曲线的离心率(4)与平面向量交汇 【2018 年理新课标 I 卷】设抛物线 C:y2=4x 的焦点为 F,过点(–2,0)且斜率为 的直线与 C 交于 M,N 两点,则=)( )6 / 16A. 5 B. 6 C. 7 D. 8 【答案】D 【解析】根据题意,过点(–2,0)且斜率为 的直线方程为,与抛物线方程联立,消元整理得: ,从而可以求得,解得,又 ,所以,故选 D.【考点分类】考向一 双曲线的标准方程及其几何性质1. 【2018 年全国卷Ⅲ理】设是双曲线(点, 是坐标原点.过 作 的一条渐近线的垂线,垂足为 .若离心率为( ) A. B. 2 C. D. 【答案】C)的左、右焦 ,则 的2.【2017 天津,文 5】已知双曲线的左焦点为 ,点 在双曲线的渐近线上,是边长为 2 的等边三角形( 为原点),则双曲线的方程为()(A)(B)(C)(D)7 / 16【答案】 【解析】试题分析:由题意结合双曲线的渐近线方程可得: ,,解得:双曲线方程为:,本题选择 D 选项.【方法总结】 1.双曲线方程的求法 (1)若不能明确焦点在哪条坐标轴上,设双曲线方程为 mx2+ny2=1(mn<0)(2)与双曲线有共同渐近线的双曲线方程可设为.(3)若已知渐近线方程为 mx+ny=0,则双曲线方程可设为 m2x2-n2y2=λ(λ≠0).2.已知双曲线的离心率 e 求渐近线方程注意应用,并判断焦点的位置.3.已知渐近线方程 y=mx,求离心率时若焦点不确定时,m= (m>0)或 m= ,故 离心率有两种可能.考向二 抛物线的标准方程及其几何性质1.【2017 课标 II,文 12】过抛物线的焦点 ,且斜率为 的直线交 于点 ( 在 轴上方), 为 的准线,点 在 上且,则 到直线 的距离为( )A. B.C.D.8 / 16【答案】C2. 【山东省济南市 2018 届二模】已知抛物线,过抛物线 上两点 分别作抛物线的两条切线为两切线的交点 为坐标原点若,则直线 与 的斜率之积为( )A.B.C.D.【答案】A【解析】设 A,B, ,因为所以切线 PA 的方程为所以切线 PB 的方程为联立切线 PA,PB 的方程解之得 x=a+b,y=ab,所以 P(a+b,ab).所以故答案为:A【方法总结】 1.抛物线的定义实质上是一种转化思想即 2.抛物线上点到焦点距离转化到点到准线距离. 3.抛物线上点到准线距离转化到点到焦点距离起到化繁为简的作用.注意定义在解 题中的应用.研究抛物线的几何性质时,一是注意定义转化应用;二是要结合图形分 析,同时注意平面几何性质的应用.9 / 16【热点预测】1.【2018 年浙江卷】双曲线的焦点坐标是( )A. (− ,0),( ,0) B. (−2,0),(2,0) C. (0,− ),(0, ) D. (0,−2),(0,2) 【答案】B2.【2018 年理数天津卷】已知双曲线的离心率为 2,过右焦点且垂直于 x 轴的直线与双曲线交于 A,B 两点. 设 A,B 到双曲线同一条渐近线的距离分别为 和 ,且A.B.【答案】C,则双曲线的方程为( )C.D.【解析】 设双曲线的右焦点坐标为(c>0),则,由可得: ,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得: ,则双曲线的方程为.本题选择 C 选项. 3.【2018 年理新课标 I 卷】已知双曲线 C:,O 为坐标原点,F 为 C 的右焦10 / 16。

专题训练14: 双曲线的定义与方程 -2021-2022学年高二上学期数学人教A版(2019)

专题训练14: 双曲线的定义与方程 -2021-2022学年高二上学期数学人教A版(2019)

专题14:双曲线的定义与方程一、单选题1.点1F 、2F 分别是双曲线2213y x -=的左、右焦点,点P 在双曲线上,则12PF F ∆的内切圆半径r 的取值范围是A .(B .()0,2C .(D .()0,12.已知点P 是双曲线E :221169x y -=的右支上一点,1F 、2F 是双曲线E 的左、右焦点,12PF F △的面积为20,给出下列四个命题: ①点P 的横坐标为203 ①12PF F △的周长为803①12F PF ∠大于3π①12PF F △的内切圆半径为32其中所有正确命题的个数为( ) A .1B .2C .3D .43.已知双曲线()2222100x y a b a b-=>,>的左、右焦点分别为F 1,F 2,过F 2且斜率为247的直线与双曲线在第一象限的交点为A ,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,则此双曲线的标准方程可能为( ) A .x 2212y -=1B .22134x y -=C .221169x y -=D .221916x y -=4.已知1F ,2F 分别是双曲线C :22143x y -=的左,右焦点,动点A 在双曲线的左支上,点B 为圆E :()2231x y ++=上一动点,则2AB AF +的最小值为( ) A.7B .8C .6+D .35.设P 是双曲线22221x y a b-=(0,0)a b >>上一点,1F 、2F 分别是双曲线的左、右焦点,则以线段2PF 为直径的圆与双曲线的实轴为直径的圆的位置关系是( ) A .内切B .外切C .内切或外切D .不相切6.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -=B .2213y x -=C .2213x y -=D .22144x y -=7.设F 为双曲线E :2222x y 1(a,b 0)a b-=>的右焦点,过E 的右顶点作x 轴的垂线与E 的渐近线相交于A ,B 两点,O 为坐标原点,四边形OAFB 为菱形,圆()222222x y c c a b +==+与E 在第一象限的交点是P ,且PF 1=,则双曲线E 的方程是( )A .22x y 162-=B .22x y 126-=C .22x y 13-=D .22y x 13-=8.设12,F F 分别是双曲线22221(0,0)x y a b a b-=>>的左、右焦点,O 为坐标原点,过左焦点1F 作直线1F P 与圆222x y a +=切于点E ,与双曲线右支交于点P ,且满足()112OE OP OF =+,3OE = ,则双曲线的方程为A .221612x y -=B .22169x y -=C .22136x y -=D .221312x y -=9.已知双曲线中心在原点且一个焦点为,直线与其相交于M ,M 两点,中点的横坐标为,则此双曲线的方程是 A .B .C .D .10.已知点P 是双曲线22221(0,0)x y a b a b-=>>右支上一点,1F 、2F 分别是双曲线的左、右焦点,l 为12PF F 的内心,若121213IPF IPF IF F S SS =+成立,则双曲线的渐近线方程为( ) A.0y ±= B .80x y ±=C 0y ±=D .30x y ±=11.已知双曲线22149x y -=,12F F 分别是双曲线的左右焦点,存在一点M ,M 点关于1F 点的对称点是A 点,M 点关于2F 点的对称点是B 点,线段MN 的中点在双曲线上,则NA NB -=A .4±B .4C .8±D .812.设双曲线C :221169x y -=的右焦点为F ,过F 作渐近线的垂线,垂足分别为M ,N ,若d 是双曲线上任一点P 到直线MN 的距离,则dPF 的值为 A .34B .45C .54D .无法确定13.过双曲线22115y x -=的右支上一点P ,分别向圆()221:44C x y ++=和圆()222:41C x y -+=作切线,切点分别为,M N ,则22PM PN -的最小值为 A .10B .13C .16D .1914.已知12,F F 分别是双曲线221916x y -=的左,右焦点,过1F 引圆229x y +=的切线1F P 交双曲线的右支于点P ,T 为切点,M 为线段1F P 的中点,O 为坐标原点,则MO MT -=A .1B .2C .3D .415.如图,已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为F 1、F 2,|F 1F 2|=8,P 是双曲线右支上的一点,直线F 2P 与y 轴交于点A ,①APF 1的内切圆在边PF 1上的切点为Q ,若|PQ|=2,则该双曲线的离心率为AB C .2D .316.已知平面上两点(5,0)M -和(5,0)N ,若直线上存在点P 使6PM PN -=,则称该直线为“单曲型直线”,下列直线中是“单曲型直线”的是( )①1y x =+; ①2y =; ①43y x =; ①21y x =+.( ) A .①和① B .①和① C .①和① D .①和①二、填空题17.P 为双曲线22115y x -=右支上一点,,M N 分别是圆()2244x y ++=和()2241x y -+=上的点,则PM PN -的最大值是_________________.18.已知椭圆22:13x E y +=的左右顶点分别为1A ,2A ,且B ,C 为E上不同两点(B ,C 位于y 轴右侧),B ,C 关于x 的对称点分别为为1B ,1C ,直线1BA 、12B A 相交于点P ,直线1CA 、2CA 相交于点Q ,已知点()2,0M -,则||||||PM QM PQ +-的最小值为____________.19.已知平面内两个定点(3,0)M 和点(3,0)N -,P 是动点,且直线PM ,PN 的斜率乘积为常数(0)a a ≠,设点P 的轨迹为C .① 存在常数(0)a a ≠,使C 上所有点到两点(4,0),(4,0)-距离之和为定值;① 存在常数(0)a a ≠,使C 上所有点到两点(0,4),(0,4)-距离之和为定值;① 不存在常数(0)a a ≠,使C 上所有点到两点(4,0),(4,0)-距离差的绝对值为定值;① 不存在常数(0)a a ≠,使C 上所有点到两点(0,4),(0,4)-距离差的绝对值为定值.其中正确的命题是_______________.(填出所有正确命题的序号) 20.如图,圆()2224x y ++=的圆心为点B ,()2,0A ,P 是圆上任意一点,线段AP 的垂直平分线l 和直线BP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹方程为__________.参考答案1.A【解析】如图所示,设12PF F ∆的内切圆圆心为I ,内切圆与三边分别相切于点,,A B C ,根据圆的切线可知:PB PC =,11F A FC =,22F A F B =,又根据双曲线定义122PF PF a -= ,即()()122PC FC PB F B a +-+=,所以122FC F B a -=,即122F A F A a -=,又因为122F A F A c +=,所以1F A a c =+,2F A c a =-,所以A 点为右顶点,即圆心(),I a r ,考虑P 点在无穷远时,直线1PF 的斜率趋近于ba,此时1PF 方程为()by x c a =+r =,解得r b =,因此12PF F ∆内切圆半径()0,r b ∈,所以选择A.2.C【分析】设12F PF △的内心为I ,连接22IP IF IF 、、,设()P m n ,,利用12PF F △的面积为20,可求得P 点坐标;12PF F △的周长为1212|+||||P F P F F F +,借助P 点坐标,可得解;利用1PF k ,2PF k 可求得12tan F PF ,可研究12F PF ∠范围;()12121212PF F Sr PF PF F F =++可求得内切圆半径r . 【解析】设12F PF △的内心为I ,连接22IP IF IF 、、,双曲线E :221169x y -=中的4a =,3b =,5c =,不妨设()P m n ,,0m >,0n >,由12PF F △的面积为20,可得1215202F F n cn n ===,即4n =,由2161169m -=,可得203m =,故①符合题意;由2043P ⎛⎫⎪⎝⎭,,且()150F -,,()250F ,,则12371350333PF PF +==+=,则12PF F △的周长为50801033+=,故①符合题意; 可得11235PF k =,2125PF k =,则(121212360535tan 012123191535F PF -==∈⨯+⨯, 则123F PF π<∠,故①不符合题意;设12PF F △的内切圆半径为r ,可得()12121211422r PF PF F F F F ++=⋅⋅,可得80403r =,解得32r =,故①符合题意. 故选:C.【点评】关键【点评】本题关键借助P 点坐标利用弦长公式求得周长,利用斜率求得夹角,用等积法求得内切圆半径.【分析】由向量的加减运算和数量积的性质,可得221||||2AF F F c ==,由双曲线的定义可得1||22AF a c =+,再由三角形的余弦定理,可得35c a =,45c b =,即可判断出所求双曲线的可能方程.【解析】解:由题可知,1212F A F F F A →→→=-+,若21210F F F A F A →→→⎛⎫+⋅= ⎪⎝⎭,即为2221210F F F F A F F A →→→→⎛⎫+⋅ ⎛⎫-+⎪⎝ ⎭⎪⎭=⎝, 可得21222F AF F →→=,即有221||||2AF F F c ==,由双曲线的定义可知122AF AF a -=, 可得1||22AF a c =+, 由于过F 2的直线斜率为247, 所以在等腰三角形12AF F 中,2124tan 7AF F ∠=-, 则217cos 25AF F ∠=-, 由余弦定理得:22221744(22)cos 25222c c a c AF F c c+-+∠=-=,化简得:35c a =,即35a c =,45b c =, 可得:3:4a b =,22:9:16a b =,所以此双曲线的标准方程可能为:221916x y -=.故选:D .【点评】本题考查双曲线的定义和方程、性质,考查向量数量积的性质,以及三角形的余弦定理,考查运算能力,属于中档题.【分析】根据题意,利用双曲线的定义化简21124AF AF a AF =+=+,转化为不等式1AB AE BE AE ≥-=-,则有211413AB AF AF AE AF AE +≥++-=++当且仅当A 是线段1EF 与双曲线的交点时取等号,计算即可求解.【解析】双曲线22143x y -=中2a =,b =c ==()1F ,圆E 半径为1r =,()0,3E -,21124AF AF a AF ∴=+=+,1AB AE BE AE ≥-=-(当且仅当A ,E ,B 共线且B 在A ,E 之间时取等号.)2111413337AB AF AF AE AF AE EF ∴+≥++-=++≥+==当且仅当A 是线段1EF 与双曲线的交点时取等号.2AB AF ∴+的最小值是7. 故选:A.【点评】本题考查双曲线与直线相交的最值问题,考查几何法解决双曲线问题,考查转化与化归思想,综合性较强,有一定难度. 5.C【分析】利用双曲线的定义,通过圆心距判断出当点P 分别在左、右两支时,两圆相内切、外切.【解析】设以实轴12F F 为直径的圆的圆心为1O ,其半径1r a =, 线段2PF 为直径的圆的圆心为2O ,其半径为222PF r =,当P 在双曲线左支上时,1122O O PF =,21212122PF PF r O O a r -=-==,①两圆内切.当P 在双曲线右支上时,1122O O PF =,12122122PF PF a O r r O -=-==,1212O r r O ∴+=①两圆外切. 故选:C.【点评】本题考查直线和双曲线的位置关系,考查运算求解能力,推理论证能力;考查化归与转化思想.对数学思维的要求比较高,有一定的探索性.综合性强,难度大,易错点是容易只考虑P 点在一个分支上而导致丢解,是高考的重点.解题时要认真审题,仔细解答. 6.A【分析】点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案. 【解析】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan aBPF m-∠=, 所以()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立,此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b -=可得a =b ==所以双曲线的方程为22122x y -=.故选:A【点评】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力. 7.D【分析】根据题意可得c 2a =,ba=结合选项可知,只有D 满足,因为本题属于选择题,可以不用继续计算了,另外可以求出点P 的坐标,根据点与点的距离公式求a 的值,可得双曲线的方程.【解析】由题意,双曲线E :2222x y 1a b-=的渐近线方程为b y x a =±, 由过E 的右顶点作x 轴的垂线与E 的渐近线相交于A ,B 两点,且四边形OAFB 为菱形,则对角线互相平分,所以c 2a =,ba=D 满足,由22222222x y 1a b x y c 4a ⎧-=⎪⎨⎪+==⎩,解得x A =,3y a 2A =,因为PF 1=,所以22232a)(a)1)2-+=,解得a 1=,则b =故双曲线方程为22y x 13-=,故选D .【点评】本题主要考查了双曲线的几何性质,以及菱形的性质和距离公式的应用,其中解答中合理应用菱形的性质,以及双曲线的几何性质是解答的关键,着重考查了运算与求解能力,属于中档试题. 8.D【解析】分析:根据圆的半径得出a,根据中位线定理和勾股定理计算c ,从而得出b ,即可得出双曲线的方程.详解:①E 为圆222x y a +=上的点,()1132OE a OE OP OF ∴===+,,①E 是1PF 的中点,又O 是12F F 的中点,222PF OE a ∴=== 且2PF OE ,又12124PF PF a PF a -==∴== 1PF 是圆的切线,121OE PF PF PF ∴⊥∴⊥,, 又2222222121224601512F F c c PF PF c b c a ,,,.=∴=+=∴=∴=-=①双曲线方程为221312x y -=.故选D .【点评】本题考查了双曲线的性质,直线与圆的位置关系,双曲线标准方程的求法,属于中档题. 9.B【解析】设双曲线方程为,,将16m n '=代入双曲线方程,整理得,由韦达定理得,则.又,所以,所以双曲线的方程是.故选B.考点:双曲线的标准方程. 10.A【分析】设圆I 与12PF F 的三边12F F 、1PF 、2PF 分别相切于点,,E F G ,连接,,IE IF IG ,12IF F ,1IPF ,2IPF 可看作三个高均为圆I 半径r 的三角形.利用三角形面积公式,代入已知式121213IPF IPF IF F S SS =+,化简可得121213PF PF F F -=,再结合双曲线的定义与渐近线方程可得所求. 【解析】如图,设圆I 与12PF F 的三边12F F 、1PF 、2PF 分别相切于点,,E F G , 连接,,IE IF IG ,则12IE F F ⊥,1IF PF ⊥,2IG PF ⊥,它们分别是12IF F ,1IPF ,2IPF 的高,111122IPF rSPF IF PF ∴=⋅=, 222122IPF rSPF IG PF =⋅=, 121212122IF F rSF F IE F F =⋅=, 其中r 是12PF F 的内切圆的半径.121213IPF IPF IF F SSS =+,1212226r r rPF PF F F ∴=+, 两边约去2r得:121213PF PF F F =+,121213PF PF F F ∴-=, 根据双曲线定义,得122PF PF a -=,122F F c =,3a c ∴=,b =,ba=可得双曲线的渐近线方程为y =± ,即为0y ±=,故选A .【点评】本题主要考查双曲线的定义以及双曲线的渐近线,着重考查了双曲线的基本性质、三角形内切圆的性质,属于中档题.解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系. 11.C【分析】由题意画出图形,将其转化为三角形中位线,结合双曲线的定义求出结果【解析】如图所示,线段MN 的中点E 在双曲线的左支上,MNA ∆中,1EF 是中位线,12NA EF =,同理,MNB ∆中,2EF 是中位线,22NB EF =,结合双曲线的()12248NA NB EF EF a -=-=-=-.同理线段MN 中点E 在双曲线的右支上,8NA NB -=,则所求8=±,故选C.【点评】本题考查了结合双曲线定义求出线段的差值,题目中的条件需要进行转化为三角形的中位线,是解题的关键 12.B【解析】由题意,易得,直线MN 的方程为:16x 5=, 设P ()y x ,,则165d x =-PF ==544x =- ①16455544x d x PF -==- 故选B 13.B【解析】 由题可知,222212||(|4)(|1)PM PN PC PC -=---, 因此2222121212||||3()()3PM PN PC PC PC PC PC PC -=--=-+-12122()32313PC PC C C =+-≥-=,故选B .考点:圆锥曲线综合题. 14.A【解析】 由题意MO 是12PF F ∆中位线,所以MO21111,,22PF MT PF FT ==-又知15OF ==,1PF 是圆229x y +=的切线,所以3OT =,14FT ==, MO MT -=212PF 1112PF FT ⎛⎫-- ⎪⎝⎭1121()2FT PF PF =--41a =-=,故选A.【点评】本题主要考查双曲线的性质及定义和三角形中位线及圆的切线的性质,属于难题.本题考查知识点较多,综合性较强,同学们往往因为某一点知识掌握不牢就导致本题“全盘皆输”,解答这类问题首先不能慌乱,更不能因贪快而审题不清.本题首先根据中位线得MO212PF =,根据几何意义得111,2MT PF FT =-有勾股定理求出14FT =,最后可得MO MT -=1121()2FT PF PF --,进而利用双曲线的定义可求解. 15.C【解析】 如下图所示,1122QF MF PF ==+.又121222,222,2PF PF QF PF a a a -=+-=∴+==,所以离心率422c e a ===,选C.考点:双曲线与圆. 16.A【分析】根据双曲线的定义,可得点P 的轨迹是以M 、N 为焦点,26a =的双曲线,由此算出双曲线的方程为221916x y -=.再分别判断双曲线与四条直线的位置关系,可得只有①①的直线上存在点P 满足B 型直线的条件,由此可得答案.【解析】点(5,0)(5,0)M N -点P 使6PM PN -=,∴点P 的轨迹是以M 、N 为焦点,26a =的双曲线可得222225316b c a =-=-=,双曲线的方程为221916x y -=,双曲线的渐近线方程为43y x =±,∴直线43y x =与双曲线没有公共点, 直线21y x =+经过点()0,1斜率43k >,与双曲线也没有公共点而直线1y x =+与直线2y =都与双曲线221916x y-=有交点,因此,在1y x =+与2y =上存在点P 使6PM PN -=,满足B 型直线的条件 只有①①正确, 故选A.【点评】本题给出“B 型直线”的定义,判断几条直线是否为B 型直线,着重考查了双曲线的定义标准方程、直线与双曲线的位置关系等知识,属于基础题. 新定义题型的特点是:通过给出一个新概念,或约定一种新运算,或给出几个新模型来创设全新的问题情景,要求考生在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决. 17.5【分析】先由已知条件知道双曲线的两个焦点为两个圆的圆心,再利用平面几何知识把||||PM PN -转化为双曲线上的点到两焦点之间的距离即可求||||PM PN -的最大值.【解析】如图,双曲线的两个焦点为:12(4,0),(4,0)F F -为两个圆的圆心,半径分别为122,1r r ==max 1min 2||||2,||||1PM PF PN PF =+=-故||||PM PN -的最大值为:1212(||2||1)||||35PF PF PF PF +-+=-+= 故答案为:5【点评】本题考查了双曲线中的最值问题,考查了学生数形结合,转化划归,数学运算的能力,属于中档题.18.【分析】根据题意,求得点P ,Q 的轨迹为双曲线2213x y -=的右支,进而根据双曲线的性质得解.【解析】设点(,)B m n ,则1:A B y x =+,21:A B y x , 则2222(3)3n y x m =--, 又2213m n +=,则22133n m =-, ∴点P 的轨迹方程为221(3)3y x =-,即221(0)3x y y -=>, 同理可得点Q 也在轨迹221(0)3x y y -=>上,注意到点(2,0)M -恰为双曲线2213x y -=的左焦点, 如图:设双曲线2213x y -=的右焦点为(2,0)N ,则由双曲线的定义可得||||||23||||||43PM QM PQ PN QN PQ +-=+-,||||||PM QM PQ ∴+-的最小值为故答案为:【点评】本题考查椭圆与双曲线的综合运用,考查化简求解能力及逻辑推理能力,属于中档题.19.①①【分析】由题意首先求得点P 的轨迹方程,然后结合双曲线方程的性质和椭圆方程的性质考查所给的说法是否正确即可.【解析】设点P 的坐标为:P (x ,y ), 依题意,有:33y y a x x ⨯=+-, 整理,得:22199x y a-=, 对于①,点的轨迹为焦点在x 轴上的椭圆,且c =4,a <0,椭圆在x 轴上两顶点的距离为:6,焦点为:2×4=8,不符; 对于①,点的轨迹为焦点在y 轴上的椭圆,且c =4, 椭圆方程为:22199y x a +=-,则9916a --=,解得:259a =-,符合; 对于①,当79a =时,22197x y -=,所以,存在满足题意的实数a ,①错误;对于①,点的轨迹为焦点在y 轴上的双曲线,即22199y x a +=-, 不可能成为焦点在y 轴上的双曲线,所以,不存在满足题意的实数a ,正确.所以,正确命题的序号是①①.【点评】本题主要考查轨迹方程的求解,双曲线方程的性质,椭圆方程的性质等知识,意在考查学生的转化能力和计算求解能力.20.2213y x -= 【解析】由题设可知||||QP QA =,又因为2QP QB BP QB =+=+,故2QA QB -=,由双曲线定义可知点Q 在以(2,0),(2,0)-B A 为焦点的双曲线上,由于221,2a a c =⇒==,所以222413b c a =-=-=,故点Q 的轨迹方程是2213y x -=,应填答案2213y x -=. 【点评】本题重在考查双曲线的定义及标准方程的求法,检查运用所学知识去分析问题解决问题的能力.求解时借助垂直平分线上的点Q 所满足的条件||||QP QA =,进而依据线段之间的数量关系得到2QA QB -=,最后再依据双曲线的定义知道点Q 在以(2,0),(2,0)-B A 为焦点的双曲线上,从而求得双曲线的标准方程使得问题巧妙获解.。

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件

(统考版)2023高考数学二轮专题复习:圆锥曲线的定义、方程与性质课件
________.
3 6
4
答案:
x2
(2)[2022·新高考Ⅱ卷]已知直线l与椭圆6 Nhomakorabeay2
+ =1在第一象限交于A,
3
B两点,l与x轴、y轴分别交于M,N两点,且|MA|=|NB|,|MN|=2 3,
x+ 2y-2 2=0
则l的方程为______________.
归纳总结
直线与圆锥曲线关系的求解技巧
18
16
2
x
y2
C. + =1
3
2
答案:B
x2
y2
B. + =1
9
8
2
x
D. +y2=1
2
(2)[2022·贵州毕节模拟预测]如图,唐金筐宝钿团花纹金杯出土于西
安,这件金杯整体造型具有玲珑剔透之美,充分体现唐代金银器制作
的高超技艺,是唐代金银细工的典范之作.该杯主体部分的轴截面可
以近似看作双曲线C的一部分,若C的中心在原点,焦点在x轴上,离
(1)对于弦中点问题常用“根与系数的关系”或“点差法”求解,在
使用根与系数的关系时,要注意使用条件Δ>0,在用“点差法”时,
要检验直线与圆锥曲线是否相交.
(2)椭圆
x2
a2
y2
+ 2
b
=1(a>b>0)截直线所得的弦的中点是P(x0,y0)(y0≠0),
b2 x0
则直线的斜率为- 2 .
a y0
x2
c
a
2c
2a
= 7m,所以C的离心率e= = =
F1 F2
PF1 − PF2

7m
7

高二数学寒假作业专题02曲线和方程背

高二数学寒假作业专题02曲线和方程背

专题2 曲线和方程【背一背】一、曲线的方程和方程的曲线的概念:1.在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x ,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.如果曲线C 的方程是f(x ,y)=0,点P 的坐标是(x0,y0),则①点P 在曲线C 上⇔00(,)0f x y =;②点P 不在曲线C 上⇔00(,)0f x y ≠.二、坐标法和解析几何借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标(,)x y 所满足的方程(,)0f x y =表示曲线,通过研究方程的性质间接地来研究曲线的性质,这就叫坐标法,用坐标法研究几何图形的知识形成的学科叫做解析几何.三、解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程;(2)通过曲线的方程,研究曲线的性质.四、求曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对(,)x y 表示曲线上任意一点M 的坐标;坐标系选取的适当,可使运算过程简化,所得方程也比较简单,否则,如果坐标系选取不当,则会增加运算的复杂程度.建立坐标系的基本原则:1、让尽量多的点落在坐标轴上.2、尽可能地利用图形的对称性,使对称轴为坐标轴.建立适当的坐标系是求曲线方程首要一步,应充分利用图形几何性质,如中心对称图形,可利用对称中心为坐标原点;轴对称图形以对称轴为坐标轴建系;条件中有直角,可将两直角边作为坐标轴建系.(2)写出适合条件p的点M的集合P=() {}|M p M;(3)用坐标表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.方程化简过程中如果破坏了同解性,就需要剔除不属于轨迹上的点,找回属于轨迹而遗漏的点.求轨迹时需要说明所表示的是什么曲线,求轨迹方程则不必说明.五、求动点轨迹方程的方法:1.直接法能够直接写出点的条件进而代入坐标写出方程的求法,称为直接法.2.相关点法利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知曲线上的动点,具体地说,就是用所求动点的坐标(x,y)来表示已知曲线上动点的坐标,并代入已知的曲线方程,即可求得所求动点的轨迹方程.3.定义法:如果所给几何条件正好符合所学过的已知曲线的定义,则可直接利用已知曲线的方程写出动点的轨迹方程.4.待定系数法已知所求曲线类型,先设出曲线的方程,再应用已知条件求出参数的值,从而求得轨迹方程.5..“轨迹”与“轨迹方程”是两个不同的概念:求轨迹方程只要求出方程即可;而求轨迹则应先求出轨迹方程,再说明轨迹的形状.。

高考数学复习考点知识与题型专题讲解7---曲线与方程

高考数学复习考点知识与题型专题讲解7---曲线与方程

力,而轨迹方程这一热点,恰好能很好的反映学生在这些能力方面的掌握程度。
预测 2021 年高考中,求曲线方程的题目若出现在主观题中,则综合性比较强,属
于较南题:若出现在客观题中,则通常可以利用圆锥曲线的定义解题,为容易题。
ቤተ መጻሕፍቲ ባይዱ
轨迹问题是每年必考内容之一,求解方程比较有规律,难度以中等偏难为主。
知识点精讲
一、曲线的方程和方程的曲线 在直角坐标系中,如果是某曲线 C (看作适合某种条件的点的集合或轨迹)上的点
变式 3 (2012 江西理 20(1))已知三点 O (0, 0) A(−2,1) B (2,1) ,曲线 C 上任意一点
( ) uuur uuur uuuur uuur uuur
M ( x, y) 满足 MA + MB = OM OA + OB + 2 ,求曲线 C 的方程。
二、定义法
若动点的轨迹符合某一已知曲线(圆,椭圆,双曲线,抛物线)的定义,则
与一个二元方程 f ( x, y) = 0 的实数解建立了如下的关系:
(1) 曲线上的点的坐标都是这个方程的解(完备性)
(2) 以这个方程的解为坐标的点都是曲线上的点(纯粹性)
那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线。事实上,曲线可以看作一 个点集 C ,以一个二元方程的解作为坐标的点也组成一个点集 F ,上诉定义中 条件(1)⇔ C ⊆ F ⇔ C = F 条件(2)⇔ F ⊆ C
圆圆心 P 的轨迹方程是
变式 3 已知平面内一动点 P 到点 F (1, 0) 的距离与点 P 到 y 轴的距离的差等于 1,求
动点 P 的轨迹 C 的方程。
例 10.32
x2 如图 10-15 所示, F1, F2 为椭圆 4

专题37 求曲线的轨迹方程(学生版)高中数学53个题型归纳与方法技巧总结篇

专题37 求曲线的轨迹方程(学生版)高中数学53个题型归纳与方法技巧总结篇

专题37求曲线的轨迹方程【考点预测】曲线的方程和方程的曲线在直角坐标系中,如果是某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程(),0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解(完备性)(2)以这个方程的解为坐标的点都是曲线上的点(纯粹性)那么,这个方程叫做曲线的方程,这条曲线叫方程的曲线.事实上,曲线可以看作一个点集C ,以一个二元方程的解作为坐标的点也组成一个点集F ,上述定义中(1)(2)C FC F F C⇔⊆⎧⇔=⎨⇔⊆⎩条件条件【方法技巧与总结】一.直接法求动点的轨迹方程利用直接法求动点的轨迹方程的步骤如下:(1)建系:建立适当的坐标系(2)设点:设轨迹上的任一点(),P x y (3)列式:列出有限制关系的几何等式(4)代换:将轨迹所满足的条件用含,x y 的代数式表示,如选用距离和斜率公式等将其转化为,x y 的方程式化简(5)证明(一般省略):证明所求方程即为符合条件的动点轨迹方程(对某些特殊值应另外补充检验).简记为:建设现代化,补充说明.注:若求动点的轨迹,则不但要求出动点的轨迹方程,还要说明轨迹是什么曲线.二.定义法求动点的轨迹方程回顾之前所讲的第一定义的求解轨迹问题,我们常常需要把动点P 和满足焦点标志的定点连起来判断.熟记焦点的特征:(1)关于坐标轴对称的点;(2)标记为F 的点;(3)圆心;(4)题目提到的定点等等.当看到以上的标志的时候要想到曲线的定义,把曲线和满足焦点特征的点连起来结合曲线定义求解轨迹方程.三.相关点法求动点的轨迹方程如果动点P 的运动是由另外某一点P '的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点P '的坐标,然后把P '的坐标代入已知曲线方程,即可得到动点P 的轨迹方程.四.交轨法求动点的轨迹方程在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先高中数学53个题型归纳与方法技巧总结篇解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.五.参数方程法求动点的轨迹方程动点(,)M x y 的运动主要是由于某个参数ϕ的变化引起的,可以选参、设参,然后用这个参数表示动点的坐标,即()()x f y g ϕϕ=⎧⎨=⎩,再消参.六.点差法求动点的轨迹方程圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法,其基本方法是把弦的两端点1122(,),(,)A x y B x y 的坐标代入圆锥曲线方程,两式相减可得12x x +,12y y +,12x x -,12y y -等关系式,由于弦AB 的中点(,)P x y 的坐标满足122x x x =+,122y y y =+且直线AB 的斜率为2121y y x x --,由此可求得弦AB 中点的轨迹方程.【题型归纳目录】题型一:直接法题型二:定义法题型三:相关点法题型四:交轨法题型五:参数法题型六:点差法题型七:立体几何与圆锥曲线的轨迹题型八:复数与圆锥曲线的轨迹题型九:向量与圆锥曲线的轨迹题型十:利用韦达定理求轨迹方程【典例例题】题型一:直接法例1.(2022·全国·高三专题练习)已知点P 是椭圆22164x y +=上任意一点,过点P 作x 轴的垂线,垂足为M ,则线段PM 的中点(),N x y 的轨迹方程为______.【方法技巧与总结】如果动点满足的几何条件本身就是一些几何量的等量关系且这些几何简单明了且易于表达,那么只需把这些关系“翻译”成含,x y 的等式,就可得到曲线的轨迹方程,由于这种求轨迹方程的过程不需要其他步骤,也不需要特殊的技巧,所以被称为直接法.例2.(2022·河南河南·模拟预测(理))已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之P 到x 轴的距离最大值为_____.例3.(2022·全国·高三课时练习)已知点(),P x y 到定点10,2M ⎛⎫⎪⎝⎭的距离比它到x 轴的距离大12.(1)求点P 的轨迹C 的方程;例4.(2022·湖南·模拟预测)已知平面直角坐标系中有两点()()122,0,2,0F F -,且曲线1C 上的任意一点P 都满足125PF PF ⋅=.求曲线1C 的轨迹方程并画出草图;例5.(2022·湖南湘潭·高三开学考试)已知,A B 两点的坐标分别为(2,0),(2,0)-,直线,AP BP的交点为P ,且它们的斜率之积14-.求点P 的轨迹E 的方程;题型二:定义法例6.(2022·全国·高三专题练习)已知定点A (1,1)和直线L :x +y -2=0,那么到定点A 和到定直线L 距离相等的点的轨迹为()A .椭圆B .双曲线C .抛物线D .直线【方法技巧与总结】若动点的轨迹符合某一已知曲线(圆,椭圆,双曲线,抛物线)的定义,则可根据定义直接求出方程中的待定系数,故称待定系数法.例7.(2022·全国·高三专题练习)已知圆F :()2221x y -+=,动圆P 与圆F 外切,且与定直线3x =-相切,设动点P 的轨迹为E .求E 的方程;例8.(2022·江西南昌·三模(理))已知两条直线1l :2320x y -+=,2l :3230x y -+=,有一动圆(圆心和半径都在变动)与1l ,2l 都相交,并且1l ,2l 被截在圆内的两条线段的长度分别是定值26,24,则动圆圆心的轨迹是()A .圆B .椭圆C .双曲线D .直线例9.(2022·上海市大同中学高三开学考试)已知定点()4,0P -和定圆22:8Q x y x +=,动圆M 和圆Q 外切,且经过点P ,求圆心M 的轨迹方程_______例10.(2022·全国·高三专题练习)设动圆M 与y 轴相切且与圆C :2220x y x +-=相外切,则动圆圆心M 的轨迹方程为______.例11.(2022·黑龙江·哈尔滨市第六中学校高三期末)已知圆1C :()2239x y ++=和圆2C :()2231x y +-=,动圆M 同时与圆1C 及圆2C 外切,则动圆的圆心M 的轨迹方程为______.例12.(2022·全国·高三专题练习(理))设圆222150x y x ++-=的圆心为A ,直线l 过点()10B ,且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AC 的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程;例13.(2022·全国·高三专题练习)已知P 是圆22:(1)16A x y -+=上的动点,M 是线段AP 上一点,()1,0B -,且PM MB =,求点M 的轨迹C 的方程例14.(2022·河南郑州·高三阶段练习(理))如图,已知圆1F 的方程为2249(1)8x y ++=,圆2F 的方程为221(1)8x y -+=,若动圆M 与圆1F 内切与圆2F 外切.求动圆圆心M 的轨迹C 的方程;例15.(2022·山东潍坊·模拟预测)已知圆M 与圆1F :()2221x y ++=外切,同时与圆2F :()22249x y -+=内切.说明动点M 的轨迹是何种曲线,并求其轨迹方程;例16.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E ,求点E 的轨迹方程.题型三:相关点法例17.(2022·全国·高三课时练习)设,A B 分别是直线2y x =和2y x =-上的动点,且满足AB 4=,则AB 的中点M 的轨迹方程为()A .22116y x +=B .22116x y +=C .22116y x -=D .22116x y -=【方法技巧与总结】有些问题中,所求轨迹上点(),M x y 的几何条件是与另一个已知方程的曲线上点(),M x y '''相关联的,这时要通过建立这两点之间关系,并用,x y 表示,y x '',再,y x ''将代入已知曲线方程,即得,x y 关系式.例18.(2022·全国·高三课时练习)已知ABC 的顶点()3,0B -,()1,0C ,顶点A 在抛物线2y x 上运动,则ABC 的重心G 的轨迹方程为______.例19.(2022·全国·高三课时练习)当点P 在圆221x y +=上变动时,它与定点()3,0Q 的连线PQ 的中点的轨迹方程是()A .22650x y x +++=B .22680x y x +-+=C .22320x y x +-+=D .22320x y x +++=例20.(2022·全国·高三课时练习)已知A 、B 分别是直线y =和y =上的两个动点,线段AB 的长为P 是AB 的中点.求动点P 的轨迹C 的方程.题型四:交轨法例21.(2022·四川凉山·高三期末(理))设椭圆22148x y +=的上、下顶点分别为A 、B ,直线y m =与椭圆交于两点M 、N ,则直线AM 与直线BN 的交点F 一定在下列哪种曲线上()A .抛物线B .双曲线C .椭圆D .圆【方法技巧与总结】在求动点的轨迹方程时,存在一种求解两动曲线交点的轨迹问题,这类问题常常可以先解方程组得出交点(含参数)的坐标,再消去参数得出所求轨迹的方程,该方法经常与参数法并用,和参数法一样,通常选变角、变斜率等为参数.例22.(多选题)(2022·江苏·南京市第一中学高三开学考试)已知椭圆C :2212x y a +=(2a >)P (1,1)的直线与椭圆C 交于A ,B 两点,且满足AP PB λ= .动点Q 满足AQ QB λ=-,则下列结论正确的是()A .3a =B .动点Q 的轨迹方程为2360x y +-=C .线段OQ (OD .线段OQ (O 例23.(2022·北京市朝阳区人大附中朝阳分校高三阶段练习)在矩形ABB A ''中,8,6A A AB ='=,把边AB 分成n 等份,在B B '的延长线上,以B B '的n 分之一为单位长度连续取点.过边AB 上各分点和点A '作直线,过B B '延长线上的对应分点和点A 作直线,这两条直线的交点为P ,如图建立平面直角坐标系,则点P 满足的方程是___________.例24.(河北省邢台市名校联盟2022届高三上学期开学考试数学试题)已知1A 、2A 为椭圆C :2213y x +=的左右顶点,直线0x x =与C 交于AB 、两点,直线1A A 和直线2A B 交于点P .求点P 的轨迹方程.例25.(2022·河南·新蔡县第一高级中学高三阶段练习(理))已知反比例函数1y x=的图像C 是以x 轴与y 轴为渐近线的等轴双曲线.(1)求双曲线C 的顶点坐标与焦点坐标;(2)设1A 、2A 为双曲线C 的两个顶点,点()00,M x y 、()00,N y x 是双曲线C 上不同的两个动点.求直线1A M 与2A N 交点的轨迹E 的方程;例26.(2022·全国·高三专题练习)如图,在平面直角坐标系中,O 为原点,()1,0F ,过直线l :4x =左侧且不在x 轴上的动点P ,作PH l ⊥于点H ,HPF ∠的角平分线交x 轴于点M ,且2PH MF =,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)已知曲线C 与x 轴正半轴交于点1A ,过点()4,0S -的直线1l 交C 于A ,B 两点,AS BS λ=,点T 满足AT TB λ=,其中1λ<,证明:12ATB TSO ∠=∠.例27.(2022·全国·模拟预测(文))设抛物线C :28x y =,过点()0,1的直线l 与C 交于A ,B 两点,分别过点A ,B 作抛物线的切线,两切线相交于点P ,求点P 的轨迹方程;例28.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b -=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P的轨迹方程(注:若双曲线的方程为22221x y a b -=,则该双曲线在点()00,x y 处的切线方程为00221x x y ya b-=)例29.(2022·全国·高三专题练习)已知抛物线C 的顶点为原点,其焦点()0,F c (0)c >到直线:20l x y --=(1)求抛物线C 的方程;(2)设点0(P x ,0)y 为直线l 上一动点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点,求直线AB 的方程,并证明直线AB 过定点Q ;(3)过(2)中的点Q 的直线m 交抛物线C 于A ,B 两点,过点A ,B 分别作抛物线C 的切线1l ,2l ,求1l ,2l 交点M 满足的轨迹方程.例30.(2022·上海·高三专题练习)双曲线22221x y a b -=的实轴为12A A ,点P 是双曲线上的一个动点,引11A Q A P ⊥,22A Q A P ⊥,1A Q 与2A Q 的交点为Q ,求点Q 的轨迹方程.例31.(2022·全国·高三课时练习)已知点()2,2P -、()0,2Q 以及直线:l y x =,的线段AB 在直线l 上移动(如图所示),求直线PA 和QB 的交点M 的轨迹方程.题型五:参数法例32.(2022·新疆·皮山县高级中学高三期末(文))已知()2cos ,4sin A θθ,()2sin ,4cos B θθ-,当R θ∈时,线段AB 的中点轨迹方程为()A .22128x y -=B .22128x y +=C .22182y x -=D .22182x y +=【方法技巧与总结】有时不容易得出动点应满足的几何条件,也无明显的相关点,但却较容易发现(或经分析可发现)该动点常常受到另一个变量(角度,斜率,比值,解距或时间等)的制约,即动点坐标(),x y 中的,x y 分别随另一变量的变化而变化,我们称这个变量为参数,由此建立轨迹的参数方程,这种方法叫参数法.例33.(2022·全国·高三专题练习(理))已知曲线:C y =和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.例34.(2022·江西景德镇·高三期末(理))已知两条动直线14:xl y λ=与2:l y λ=(0λ≠,λ为参数)的交点为P .求点P 的轨迹C 的方程;例35.(2022·北京市第五十七中学高三期中)P 是圆224x y +=上的动点,P 点在x 轴上的射影是D ,点M 满足2DP DM =.(1)求动点M 的轨迹C 的方程;(2)过11,2⎛⎫⎪⎝⎭Q 作弦且弦被Q 平分,求此弦所在的直线方程及弦长;(3)过点(30)N ,的直线l 与动点M 的轨迹C 交于不同的两点A ,B ,求以OA ,OB 为邻边的平行四边形OAEB 的顶点E 的轨迹方程.例36.(2022·全国·高三专题练习)已知直线l 1:y =k 1x 和l 2:y =k 2x 与抛物线y 2=2px (p >0)分别相交于A ,B 两点(异于原点O )与直线l :y =2x +p 分别相交于P ,Q 两点,且122k k ⋅=-.求线段AB 的中点M 的轨迹方程;例37.(2022·江苏·周市高级中学高三阶段练习)已知直线:1,0,sin cos 2x y l πθθθ⎛⎫+=∈ ⎪⎝⎭与坐标轴的交点分别为A ,B ,则线段AB 的中点C 的轨迹与坐标轴围成的图形面积为()A .2πB .4πC .8πD .16π例38.(2022·全国·高三课时练习)已知曲线()1:10x y C a b ab+=>>所围成的封闭图形的面积为曲线1C 记2C 是以曲线1C 与坐标轴的交点为顶点的椭圆.(1)求椭圆2C 的标准方程;(2)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线,M 是l 上异于椭圆中心的点,MO OA λ=(O 为坐标原点,0λ≠),当点A 在椭圆2C 上运动时,求点M 的轨迹方程.题型六:点差法例39.(2022·全国·高三专题练习)椭圆2214x y +=,则该椭圆所有斜率为12的弦的中点的轨迹方程为_________________.【方法技巧与总结】圆锥曲线中涉及与弦的中点有关的轨迹问题可用点差法.例40.(2022·全国·高三课时练习)斜率为2的平行直线截双曲线221x y -=所得弦的中点的轨迹方程是______.例41.(2022·全国·高三专题练习)已知椭圆22143x y +=的弦AB 所在直线过点()1,1E ,求弦AB 中点F 的轨迹方程.例42.(2022·上海市行知中学高三开学考试)已知曲线Γ上一动点P 到两定点()10,2F -,()20,2F 的距离之和为,过点()1,0Q -的直线L 与曲线Γ相交于点()11,A x y ,()22,B x y .(1)求曲线Γ的方程;(2)动弦AB 满足:AM MB =,求点M 的轨迹方程;例43.(2022·全国·高三期中)(1)若双曲线的一条渐近线方程为230x y +=,且两顶点间的距离为6,求该双曲线方程.(2)一组平行直线2y x b =+与椭圆221129x y +=相交,求弦的中点的轨迹方程.例44.(2022·上海·高三专题练习)已知椭圆22142x y +=,()11,M x y ,()22,N x y 是椭圆上的两个不同的点.(1)若点()1,1A 满足MA AN =,求直线MN 的方程;(2)若()11,M x y ,()22,N x y 的坐标满足121220x x y y +=,动点P 满足2OP OM ON =+(其中O 为坐标原点),求动点P 的轨迹方程,并说明轨迹的形状;题型七:立体几何与圆锥曲线的轨迹例45.(2022·全国·高三专题练习)在正方体1111ABCD A B C D -中,E 为11A D 的中点,F 为底面ABCD 上一动点,且EF 与底面ABCD 所成的角为60︒.若该正方体外接球的表面积为12π,则动点F 的轨迹长度为().A B C D 【方法技巧与总结】利用坐标法解决.例46.(2022·全国·高三专题练习)如图,点A 是平面α外一定点,过A 作平面α的斜线l ,斜线l 与平面α所成角为50︒.若点P 在平面α内运动,并使直线AP 与l 所成角为35︒,则动点P 的轨迹是()A .圆B .椭圆C .抛物线D .双曲线的一支例47.(2022·北京市第十三中学高一阶段练习)如图,正方体1l l l ABCD A B C D -中,P 为底面ABCD 上的动点,且1PE A C ⊥于E ,且PA PE =,则点P 的轨迹是()A .线段B .圆弧C .抛物线的一部分D .以上答案都不对例48.(多选题)(2022·广东·大埔县虎山中学模拟预测)如图所示,在棱长为2的正六面体1111ABCD A B C D -中,O 为线段1A C 的中点(图中未标出),以下说法正确的有().A .线段CD 中点为E ,则直线OE 与平面11A BCD 所成角的正弦值为12.B .在线段AB 上取靠近B 点的三等分点F ,则直线OF 与直线11CD 不共面.C .在平面ABCD 上存在一动点P ,满足2AP BP +=,则P 点轨迹为一椭圆.D .在平面11C D AB 上存在一动点Q ,点Q 到点O 的距离和点Q 到直线AB 的距离相等,则点Q .题型八:复数与圆锥曲线的轨迹例49.(2022·河南开封·高三阶段练习(文))已知i 为虚数单位,且013i12iz -=+,复数z 满足01z z -=,则复数z 对应点的轨迹方程为()A .()()22114x y -++=B .()()22114x y -++=C .()()22111x y +++=D .()()22111x y -+-=【方法技巧与总结】(1)利用坐标法解决.(2)利用复数几何意义例50.(多选题)(2022·重庆一中高一期末)若复数z 在复平面对应的点为Z ,则下来说法正确的有()A .若||3z =,则Z 在复平面内的轨迹为圆B .若|4||4|8z z ++-=,则Z 在复平面内的轨迹为椭圆C .不可能存在复数z 同时满足||3z =和|4||4|10z z ++-=D .若||3z =,则|4||4|z z ++-的取值范围为[8,10]例51.(2022·上海市徐汇中学高三期末)如果复数z 满足6|13i 2i |z z +++--=,则复数z 对应的点的轨迹是()A .直线B .椭圆C .线段D .圆例52.(2022·全国·高一课时练习)已知复数z 满足2||2||30z z --=,则复数z 对应的点的轨迹是___________.例53.(2022·江西赣州·高三期末(文))设复数()1cos i sin z θθ=++⋅(i 为虚数单位),则复数z 在复平面内对应的点(),x y 的轨迹方程为___________.题型九:向量与圆锥曲线的轨迹例54.(2022·全国·高三课时练习)已知()2,1A ,()2,1B -,O 为坐标原点,动点(),P x y 满足OP mOA nOB =+ ,其中,R m n ∈,且2212m n +=,则动点P 的轨迹方程是()A .2214y x +=B .2214x y +=C .2214y x -=D .2214x y -=【方法技巧与总结】(1)利用坐标法解决.(2)利用向量几何意义例55.(2022·安徽·合肥一六八中学模拟预测(理))已知向量a ,b是单位向量,若0a b ⋅= ,且345c a c b -+-= ,则c a +的取值范围是___________.例56.(2022·全国·高三课时练习)设过点(),P x y 的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点.若2BP PA =,且1OQ AB ⋅= ,则点P 的轨迹方程是______.例57.(2022·陕西师大附中高一期中)已知向量a ,b ,c ,满足4a = ,a 与b 的夹角为3,()3c c a ⋅-=-,则b c - 的最小值为()A .2B 32C 1D 1-例58.(2022·全国·高三专题练习)已知椭圆的标准方程为22142x y +=.(1)设动点P 满足:OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在两个定点12,F F ,使得12PF PF +为定值?若存在,求12,F F 的坐标;若不存在,说明理由.(2)设动点P 满足:2OP OM ON =+,其中M ,N 是椭圆上的点,直线OM 与ON 的斜率之积为12-,问:是否存在点F ,使得点P 到F 的距离与到直线x =的距离之比为定值?若存在,求F 的坐标;若不存在,说明理由.例59.(2022·重庆八中高三阶段练习)抛物线2:2(0)C y px p =>的焦点为F ,P 在抛物线C 上,O 是坐标原点,当PF 与x 轴垂直时,OFP △的面积为1.(1)求抛物线C 的方程;(2)若A ,B 都在抛物线C 上,且4OA OB ⋅=-,过坐标原点O 作直线AB 的垂线,垂足是G ,求动点G 的轨迹方程.例60.(2022·全国·高三专题练习)已知平面上一定点(20)C ,和直线l :x =8,P 为该平面上一动点,作PQ ⊥l ,垂足为Q ,且1()2PC PQ + ·1()2PC PQ -=0.求动点P 的轨迹方程;题型十:利用韦达定理求轨迹方程例61.(2022·全国·高三课时练习)设椭圆E 的方程为2212x y +=,斜率为1的动直线l 交椭圆E 于A ,B 两点,以线段AB 的中点C 为圆心,AB 为直径作圆,圆心C 的轨迹方程为______.【方法技巧与总结】联立直线与曲线方程得出两根之和与之积关系,再进行转化.例62.(2022·全国·高三专题练习)设不同的两点A ,B 在椭圆22:23C x y +=上运动,以线段AB 为直径的圆过坐标原点O ,过O 作OM AB ⊥,M 为垂足.求点M 的轨迹方程.例63.(2022·浙江·杭州市富阳区场口中学高三期末)已知椭圆C ,其焦点是双曲线2213y x -=的顶点.(1)写出椭圆C 的方程;(2)直线l :y kx m =+与椭圆C 有唯一的公共点M ,过点M 作直线l 的垂线分别交x 轴、y 轴于(),0A x ,()0,B y 两点,当点M 运动时,求点(),P x y 的轨迹方程,并说明轨迹是什么曲线.例64.(2022·广东·高三阶段练习)已知椭圆()2222:10x y E a b a b +=>>其左、右顶点分别是A 、B ,且AB 4=.(1)求椭圆E 的标准方程;(2)已知点M 、N 是椭圆E 上异于A 、B 的不同两点,设点P 是以AM 为直径的圆1O 和以AN 为直径的圆2O 的另一个交点,记线段AP 的中点为Q ,若1AM AN k k =-⋅,求动点Q 的轨迹方程.例65.(2022·全国·高三专题练习)已知三角形ABC 的三个顶点均在椭圆224580x y +=上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).(1)若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程;(2)若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.【过关测试】一、单选题1.(2022·江苏省木渎高级中学模拟预测)复平面中有动点Z ,Z 所对应的复数z 满足|3||i |-=-z z ,则动点Z 的轨迹为()A .直线B .线段C .两条射线D .圆2.(2022·全国·高三专题练习)正三角形OAB 的边长为1,动点C 满足OC OA OB λμ=+,且221λλμμ++=,则点C 的轨迹是()A .线段B .直线C .射线D .圆3.(2022·全国·高三专题练习)四边形ABCD 为梯形,且2AB DC = ,||||2DC DA == ,3DAB π∠=,点P 是四边形ABCD 内及其边界上的点.若()()4AP DP PB BA -⋅+=-,则点P 的轨迹的长度是()A B .C .4πD .16π4.(2022·全国·高三专题练习)已知复数z 满足i i 2z z ++-=,则z 的轨迹为()A .线段B .直线C .椭圆D .椭圆的一部分5.(2022·河南安阳·高三开学考试(文))平面上到两条相交直线的距离之和为常数的点的轨迹为平行四边形,其中这两条相交直线是该平行四边形对角线所在的直线.若平面上到两条直线0x y -=,0y =的距离之和为2的点P 的轨迹为曲线Γ,则曲线Γ围成的图形面积为()A .B .C .D .6.(2022·河南·郑州四中高三阶段练习(理))下列四个命题中不正确的是()A .若动点P 与定点()4,0A -、()4,0B 连线PA 、PB 的斜率之积为定值49,则动点P 的轨迹为双曲线的一部分.B .设m ,R n ∈,常数0a >,定义运算“*”:()()22*m n m n m n =+--,若0x ≥,则动点(P x 的轨迹是抛物线的一部分.C .已知两圆()22:11A x y ++=、圆()22:125B x y -+=,动圆M 与圆A 外切、与圆B 内切,则动圆的圆心M 的轨迹是椭圆.D .已知()7,0A ,()7,0B -,()2,12C -,椭圆过A ,B 两点且以C 为其一个焦点,则椭圆的另一个焦点的轨迹为双曲线.7.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的棱长为2,E F 、分别是棱1AA 、11A D 的中点,点P 为底面四边形ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A .2BCD .8.(2022·安徽·合肥一中模拟预测(文))首钢滑雪大跳台是冬奥史上第一座与工业旧址结合再利用的竞赛场馆,它的设计创造性地融入了敦煌壁画中飞天的元素,建筑外形优美流畅,飘逸灵动,被形象地称为雪飞天.中国选手谷爱凌和苏翊鸣分别在此摘得女子自由式滑雪大跳台和男子单板滑雪大跳台比赛的金牌.雪飞天的助滑道可以看成一个线段PQ 和一段圆弧QM 组成,如图所示.假设圆弧QM所在圆的方程为22:(25)(2)162C x y ++-=,若某运动员在起跳点M 以倾斜角为45 且与圆C 相切的直线方向起跳,起跳后的飞行轨迹是一个对称轴在y 轴上的抛物线的一部分,如下图所示,则该抛物线的轨迹方程为()A .232(1)y x =--B .21364y x =--C .232(1)x y =--D .2364x y =-+二、多选题9.(2022·福建省福州第一中学三模)已知曲线C 是平面内到定点(0,1)F 和定直线:1l y =-的距离之和等于4的点的轨迹,若()00,P x y 在曲线C 上,则下列结论正确的是()A .曲线C 关于x 轴对称B .曲线C 关于y 轴对称C .022x - D .1||4PF 10.(2022·全国·高三专题练习)已知抛物线C :22y px =(p >0)的焦点F 与圆22:20E x y x +-=的圆心重合,直线l 与C 交于1122(,)(,)A x y B x y 、两点,且满足:0OA OB ⋅=(其中O 为坐标原点且A 、B 均不与O 重合),则()A .121216,16x x y y ==-B .直线l 恒过定点()4,0C .A 、B 中点轨迹方程:224y x =-D .AOB 面积的最小值为1611.(2022·福建·模拟预测)已知双曲线22:14y C x -=的左、右焦点分别为12,F F ,点P 在双曲线C 的右支上,若12F PF θ∠=,12PF F △的面积为S ,则下列选项正确的是()A .若60θ︒=,则S =B .若4S =,则2PF =C .若12PF F △为锐角三角形,则(4,S ∈D .若12PF F △的重心为G ,随着点P 的运动,点G 的轨迹方程为22919143y x x ⎛⎫-=> ⎪⎝⎭12.(2022·全国·高三专题练习)已知A 、B 两点的坐标分别是(1,0)-,(1,0),直线AP 、BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当1m =-时,点P 的轨迹圆(除去与x 轴的交点)B .当10m -<<时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当01m <<时,点P 的轨迹为焦点在x 轴上的抛物线D .当1m 时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题13.(2022·浙江·高三开学考试)已知双曲线221x y -=与直线():1l y kx m k =+≠±有唯一的公共点A ,过点A 且与l 垂直的直线分别交x 轴、y 轴于()()00,0,0,B x C y 两点,当点A 运动时,点()00,D x y 的轨迹方程是___________.14.(2022·江西·上饶市第一中学模拟预测(文))①已知点)A ,直线:l x =点P 满足到点A 的距离与到直线l②已知圆C 的方程为224x y +=,直线l 为圆C 的切线,记点)A ,()B 到直线l 的距离分别为1d ,2d ,动点P 满足1PA d =,2PB d =;③点S ,T 分别在x 轴,y 轴上运动,且3ST =,动点P 满足2133OP OS OT =+;在①,②,③这三个条件中,动点P 的轨迹W 为椭圆的是______.15.(2022·黑龙江·大庆实验中学模拟预测)已知在直角坐标平面内,两定点()0,1F ,()1,1M -,动点Q 满足以FQ 为直径的圆与x 轴相切.直线FQ 与动点Q 的轨迹E 交于另一点P ,当90PMQ ∠=︒时,直线PQ 的斜率为______.16.(2022·全国·高三专题练习)已知椭圆22149x y +=,一组平行直线的斜率是32,当它们与椭圆相交时,这些直线被椭圆截得的线段的中点轨迹方程是__.四、解答题17.(2022·四川内江·模拟预测(理))在ABC 中,(2,0)A -,(2,0)B ,AC 与BC 斜率的积是14-.(1)求点C 的轨迹方程;(2)(4,0)P ,求PC 的中点M 的轨迹方程.18.(2022·全国·高三专题练习)设椭圆22154x y +=的两条互相垂直的切线的交点轨迹为C ,曲线C 的两条切线PA 、PB 交于点P ,且与C 分别切于A 、B 两点,求PA PB ⋅的最小值.第21页共21页19.(2022·全国·高三专题练习)已知椭圆22:14x C y +=的右焦点F 与抛物线21:2C y px =的焦点重合.(1)求椭圆C 的离心率与抛物线1C 的方程;(2)过焦点F 的动直线与抛物线1C 交于A ,B 两点,从原点O 作直线AB 的垂线,垂足为M ,求动点M 的轨迹方程;(3)点R ⎭为椭圆C 上的点,设直线l 与OR 平行,且直线l 与椭圆C 交于P ,Q 两点,若PQR 的面积为1,求直线l 的方程.20.(2022·山东·肥城市教学研究中心模拟预测)在平面直角坐标系xOy 中,已知12,A A 两点的坐标分别是(,直线,A B A B 12相交于点B ,且它们的斜率之积为13.(1)求点B 的轨迹方程;(2)记点B 的轨迹为曲线C ,,,,M N P Q 是曲线C 上的点,若直线MN ,PQ 均过曲线C 的右焦点F 且互相垂直,线段MN 的中点为R ,线段PQ 的中点为T .是否存在点G ,使直线RT 恒过点G ,若存在,求出点G 的坐标,若不存在,说明理由.21.(2022·湖南·长郡中学模拟预测)已知双曲线C :()222210,0x y a b a b-=>>的离心率为2,1F ,2F 为双曲线C 的左、右焦点,()2,3A 是双曲线C 上的一个点.(1)求双曲线C 的方程;(2)若过点()4,0B 且不与渐近线平行的直线l (斜率不为0)与双曲线C 的两个交点分别为M ,N ,记双曲线C 在点M ,N 处的切线分别为1l ,2l ,点P 为直线1l 与直线2l 的交点,试求点P 的轨迹方程(注:若双曲线的方程为22221x y a b-=,则该双曲线在点()00,x y 处的切线方程为00221x x y y a b-=)。

曲线专题训练(经典、全面)

曲线专题训练(经典、全面)

曲线专题训练(经典、全面)曲线专题训练(经典、全面)引言曲线是数学中的一个重要概念,广泛应用于各个领域,包括物理学、工程学和经济学等。

掌握曲线的性质和应用方法对于解决实际问题至关重要。

本文将介绍曲线专题训练的经典和全面内容。

经典训练1. 曲线的基本性质:掌握曲线的定义、类型和表示方法,了解曲线上的点、切线和法线等基本概念。

2. 曲线的参数方程:研究使用参数方程描述曲线,理解参数方程与直角坐标系的转换关系。

3. 曲线的极坐标方程:熟悉使用极坐标方程表示曲线,掌握极坐标系与直角坐标系之间的转换方法。

4. 曲线的性质与求解:研究曲线的对称性、凸凹性和渐近线等性质,研究曲线的极值点、拐点和渐近线的求解方法。

5. 曲线与微积分:了解曲线在微积分中的应用,如曲线的长度、曲率和曲线下面积的计算公式。

全面训练1. 曲线的应用:探索曲线在实际问题中的应用,如曲线表示的物理过程、曲线在工程中的设计和曲线在经济学中的应用等。

2. 曲线的拟合与插值:研究使用最小二乘法等方法对实际数据进行曲线拟合,了解插值方法在曲线绘制和数据分析中的作用。

3. 曲线的图像绘制:掌握使用计算机软件进行曲线的绘制,包括直角坐标系下的曲线图和极坐标系下的极坐标图。

4. 曲线的相关概念:了解曲线簇、曲线族和曲线的变换等相关概念,并研究相关的性质和应用方法。

5. 曲线的进一步拓展:研究更高阶、更复杂的曲线,如椭圆、双曲线和三角函数曲线等,探索它们的特性和应用。

结论通过曲线专题训练,我们可以全面了解曲线的性质和应用方法。

经典训练使我们掌握曲线的基本概念和求解方法,全面训练则使我们能够将曲线应用到更广泛的实际问题中。

继续深入研究曲线专题,我们可以进一步提高数学分析和问题解决的能力。

专题12椭圆双曲线抛物线方程及其几何性质

专题12椭圆双曲线抛物线方程及其几何性质

专题12椭圆双曲线抛物线方程及其几何性质椭圆、双曲线和抛物线是二次曲线的三种基本类型,它们在几何学和数学分析中都具有重要的地位。

在本文中,我们将介绍它们的方程及其几何性质。

一、椭圆椭圆是平面上与两个给定点F1和F2的距离之和等于常数2a的点的集合。

这两个点被称为焦点,直线F1F2的中点O称为中心,a称为半长轴的长度。

椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为中心坐标,a和b分别为半长轴和半短轴的长度。

椭圆的基本性质如下:1.椭圆的焦点到中心的距离为c,有c²=a²-b²。

2.椭圆的离心率定义为e=c/a,且0<e<13.椭圆的轴是与坐标轴平行的直线,其中长轴与x轴平行,短轴与y轴平行。

4.椭圆的焦点到椭圆上的任意一点的距离之和等于常数2a。

5.椭圆的顶点为(h±a,k)和(h,k±b),其中(h,k)为中心坐标。

二、双曲线双曲线是平面上与两个给定点F1和F2到点的距离之差的绝对值等于常数2a的点的集合。

这两个点被称为焦点,直线F1F2的中点O称为中心,a称为半长轴的长度。

双曲线的标准方程为(x-h)²/a²-(y-k)²/b²=1,其中(h,k)为中心坐标,a和b分别为半长轴和半短轴的长度。

双曲线的基本性质如下:1.双曲线的焦点到中心的距离为c,有c²=a²+b²。

2.双曲线的离心率定义为e=c/a,且e>13.双曲线的轴是与坐标轴平行的直线,其中长轴与x轴平行,短轴与y轴平行。

4.双曲线的顶点为(h±a,k)和(h,k±b),其中(h,k)为中心坐标。

三、抛物线抛物线是平面上到一个给定点(焦点)F的距离等于到一条给定直线(准线)的距离的点的集合。

准线与抛物线的公共点被称为顶点,焦点与准线的垂线称为轴,焦点到抛物线顶点的距离称为焦距,焦点到轴的距离称为准距。

曲线系方程练习杨登平

曲线系方程练习杨登平

曲线系方程专题(高二文科数学)一、直线系方程概念:具有某种共同属性的一类直线的集合,称为直线系。

它的方程称直线系方程。

几种常见的直线系方程:(1)过定点P (x 0,y 0)的直线系方程y -y 0=k (x -x 0)(k 为参数) (2)斜率为k 的直线系方程y =kx +b (b 是参数)(3)平行直线系:与已知直线Ax +By +C =0平行的直线系方程Ax +By +λ=0(λ≠C)(λ为参数)(A ,B 不同时为0) (4)垂直直线系:与已知直线Ax +By +C =0垂直的直线系方程Bx -Ay +λ=0(λ为参数)(A ,B 不同时为0) (5)交点直线系:过直线l 1:A 1x +B 1y +C 1=0与l 2:A 2x +B 2y +C 2=0的交点的直线系方程:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ为参数)(不含直线l 2) 练习1.求经过点,且与直线平行的直线的方程_____________. 练习2.求经过点,且与直线垂直的直线的方程_____________.练习3.已知直线l 1:x +y +2=0与l 2:2x -3y -3=0,求经过的交点且与已知直线3x +y -1=0平行的直线L 的方程____________.。

练习4.求经过两直线和的交点,且与直线垂 直的直线的方程_____________.高考真题:(2020全国3文科数学)点(0)1-,到直线()1y k x =+距离的最大值为A .1BCD .2二、圆系方程概念:具有某种共同属性的圆的集合,称为圆系。

几种常见的圆系方程: (1)同心圆系:(x -x 0)2+(y -y 0)2=r 2,x 0、y 0为常数,r 为参数。

(2)过交点的圆系方程:过两已知圆C 1:x 2+y 2+D 1x +E 1y +F 1=0。

和圆C 2:x 2+y 2+D 2x +E 2y +F 2=0的交点的圆系方程为:x 2+y 2+D 1x +E 1y +F 1+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ≠-1)(不含圆C 2) (3)过直线与圆交点的圆系方程:设直线L :Ax +By +C =0与圆C :x 2+y 2+Dx +Ey +F =0相交,则过直线L 与圆C 交点的1240l x y -+=:220l x y +-=:P 33450l x y -+=:l圆系方程为x 2+y 2+Dx +Ey +F +λ(Ax +By +C )=0。

专题03 曲线的公切线方程(解析版)

专题03 曲线的公切线方程(解析版)

专题03 曲线的公切线方程【方法总结】解决此类问题通常有两种方法(1)利用其中一曲线在某点处的切线与另一曲线相切,列出关系式求解;(2)设公切线l 在y =f (x )上的切点P 1(x 1,f (x 1)),在y =g (x )上的切点P 2(x 2,g (x 2)),则f ′(x 1)=g ′(x 2)=f (x 1)-g (x 2)x 1-x 2.注意:求两条曲线的公切线,如果同时考虑两条曲线与直线相切,头绪会比较乱,为了使思路更清晰,一般是把两条曲线分开考虑,先分析其中一条曲线与直线相切,再分析另一条曲线与直线相切,直线与抛物线相切可用判别式法.【例题选讲】[例1](1)(2020·全国Ⅲ)若直线l 与曲线y =x 和圆x 2+y 2=15都相切,则l 的方程为( )A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12答案 D 解析 易知直线l 的斜率存在,设直线l 的方程y =kx +b ,则|b |k 2+1=55①.设直线l 与曲线y =x 的切点坐标为(x 0,x 0)(x 0>0),则y ′|x =x 0=12x 0-12=k ②,x 0=kx 0+b ③,由②③可得b =12x 0,将b =12x 0,k =12x 0-12代入①得x 0=1或x 0=-15(舍去),所以k =b =12,故直线l 的方程y =12x +12.(2)已知f (x )=e x (e 为自然对数的底数),g (x )=ln x +2,直线l 是f (x )与g (x )的公切线,则直线l 的方程为 .答案 y =e x 或y =x +1 解析 设l 与f (x )=e x 的切点为(x 1,y 1),则y 1=1e x ,f ′(x )=e x ,∴f ′(x 1)=1e x,∴切点为(x 1,1e x),切线斜率k =1e x,∴切线方程为y -1e x=1e x(x -x 1),即y =1e x·x -11e xx +1e x,①,同理设l 与g (x )=ln x +2的切点为(x 2,y 2),∴y 2=ln x 2+2,g ′(x )=1x ,∴g ′(x 2)=1x 2,切点为(x 2,ln x 2+2),切线斜率k =1x 2,∴切线方程为y -(ln x 2+2)=1x 2(x -x 2),即y =1x 2·x +ln x 2+1,②,由题意知,①与②相同,∴111122121e e , e e ln 1,x x x x x x x x -⎧=⇒=⎪⎨⎪-+=+⎩③④把③代入④有-11e x x +1e x =-x 1+1,即(1-x 1)(1e x -1)=0,解得x 1=1或x 1=0,当x 1=1时,切线方程为y =e x ;当x 1=0时,切线方程为y =x +1,综上,直线l 的方程为y =e x 或y =x +1.(3)曲线C 1:y =ln x +x 与曲线C 2:y =x 2有________条公切线.答案 1 解析 由y =ln x +x 得y ′=1x+1,设点(x 1,ln x 1+x 1)是曲线C 1上任一点,∴曲线C 1在点(x 1,ln x 1+x 1)处的切线方程为y -(ln x 1+x 1)=⎝⎛⎭⎫1x 1+1(x -x 1),即y =⎝⎛⎭⎫1x 1+1x +ln x 1-1.同理可得曲线C 2在点(x 2,x 22)处的切线方程为y -x 22=2x 2(x -x 2),即y =2x 2x -x 22.依题意知两切线重合,∴⎩⎪⎨⎪⎧1x 1+1=2x 2,ln x 1-1=-x 22,消去x 2得1x 21+2x 1+4ln x 1-3=0,①,令f (x )=1x 2+2x +4ln x -3(x >0),则f ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0,∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴f (x )min =f (1)=0,∴f (x )只有一个零点.即方程①只有一个解,故曲线C 1与C 2只有1条公切线.(4)已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a = . 答案 8 解析 方法一 因为y =x +ln x ,所以y ′=1+1x ,y ′|x =1=2.所以曲线y =x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1.因为y =2x -1与曲线y =ax 2+(a +2)x +1相切,所以a ≠0(当a =0时曲线变为y =2x +1与已知直线平行).由⎩⎪⎨⎪⎧y =2x -1,y =ax 2+(a +2)x +1,消去y ,得ax 2+ax +2=0.由Δ=a 2-8a =0,解得a =8.方法二 同方法一得切线方程为y =2x -1.设y =2x -1与曲线y =ax 2+(a +2)x +1相切于点(x 0,ax 20+(a +2)x 0+1).因为y ′=2ax +(a +2),所以0|x x y '==2ax 0+(a +2).由⎩⎪⎨⎪⎧2ax 0+(a +2)=2,ax 20+(a +2)x 0+1=2x 0-1,解得⎩⎪⎨⎪⎧x 0=-12,a =8.(5) (2016·课标全国Ⅱ)若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =e x 的切线,则b =________. 答案 0或1 解析 设直线y =kx +b 与曲线y =ln x +2的切点为(x 1,y 1),与曲线y =e x 的切点为(x 2,y 2),y =ln x +2的导数为y ′=1x ,y =e x 的导数为y ′=e x ,可得k =e x 2=1x 1.又由k =y 2-y 1x 2-x 1=e x 2-ln x 1-2x 2-x 1,消去x 2,可得(1+ln x 1)·(x 1-1)=0,则x 1=1e 或x 1=1,则直线y =kx +b 与曲线y =ln x +2的切点为⎝⎛⎭⎫1e ,1或(1,2),与曲线y =e x 的切点为(1,e)或(0,1),所以k =e -11-1e =e 或k =1-20-1=1,则切线方程为y =e x 或y =x +1,可得b =0或1.(6)已知曲线f (x )=ln x +1与g (x )=x 2-x +a 有公共切线,则实数a 的取值范围为 .答案 8 解析 设切线与f (x )=ln x +1相切于点P (x 0,ln x 0+1),f ′(x 0)=1x 0,∴切线方程为y -(ln x 0+1)=1x 0(x -x 0),即y =1x 0x +ln x 0,联立⎩⎪⎨⎪⎧y =1x 0x +ln x 0,y =x 2-x +a ,得x 2-⎝⎛⎭⎫1+1x 0x +a -ln x 0=0,∴Δ=⎝⎛⎭⎫1+1x 02-4(a -ln x 0)=0,即1x 20+2x 0+1-4a +4ln x 0=0,即4a =1x 20+2x 0+1+4ln x 0有解,令φ(x )=1x 2+2x +1+4ln x (x >0),φ′(x )=-2x 3-2x 2+4x =4x 2-2x -2x 3=2(2x +1)(x -1)x 3,当x ∈(0,1)时,φ′(x )<0,当x ∈(1,+∞)时,φ′(x )>0,∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x )min =φ(1)=4,又x →+∞时,φ(x )→+∞,故φ(x )的值域为[4,+∞),所以4a ≥4,即a ≥1,故实数a 的取值范围是[1,+∞).【对点训练】1.若直线l 与曲线y =e x 及y =-14x 2都相切,则直线l 的方程为________.1.答案 y =x +1 解析 设直线l 与曲线y =e x 的切点为(x 0,0x e ),直线l 与曲线y =-14x 2的切点为⎝⎛⎭⎫x 1,-x 214,因为y =e x 在点(x 0,0x e )处的切线的斜率为y ′|x =x 0=0x e ,y =-x 24在点⎝⎛⎭⎫x 1,-x 214处的切线的斜率为y ′|x =x 1=⎝⎛⎭⎫-x 2|x =x 1=-x 12,则直线l 的方程可表示为y =0x e x -x 0e 0x e +0x e 或y =-12x 1x +14x 21,所以⎩⎨⎧0x e =-x 12,-x 0x e+0x e =x 214,所以0x e =1-x 0,解得x 0=0,所以直线l 的方程为y =x +1.2.已知函数f (x )=x 2的图象在x =1处的切线与函数g (x )=e xa的图象相切,则实数a 等于( )A .eB .e e 2C .e2D .e e2.答案 B 解析 由f (x )=x 2,得f ′(x )=2x ,则f ′(1)=2,又f (1)=1,所以函数f (x )=x 2的图象在x =1处 的切线方程为y -1=2(x -1),即y =2x -1.设y =2x -1与函数g (x )=e xa 的图象相切于点(x 0,y 0),由g ′(x )=e x a ,可得00000e 2,e 21,x x g x a g x x a ⎧()==⎪⎪⎨⎪()===-⎪⎩′解得x 0=32,a =321e 2=e e 2. 3.已知函数f (x )=x +1,g (x )=a ln x ,若在x =14处函数f (x )与g (x )的图象的切线平行,则实数a 的值为( )A .14B .12C .1D .43.答案 A 解析 由题意可知f ′(x )=12x -12,g ′(x )=a x ,由f ′(14)=g ′(14),得12×(14)-12=a 14,可得a =14,经检验,a =14满足题意.4.若f (x )=ln x 与g (x )=x 2+ax 两个函数的图象有一条与直线y =x 平行的公共切线,则a 等于( ) A .1 B .2 C .3 D .3或-14.答案 D 解析 设在函数f (x )=ln x 处的切点为(x ,y ),根据导数的几何意义得到k =1x =1,解得x =1,故切点为(1,0),可求出切线方程为y =x -1,此切线和 g (x )=x 2+ax 也相切,故x 2+ax =x -1,化简得到x 2+(a -1)x +1=0,只需要满足Δ=(a -1)2-4=0,解得a =-1或a =3.5.若直线y =kx +b 是曲线y =ln x +2的切线,也是曲线y =ln(x +1)的切线,则b =________.5.答案 1-ln 2 解析 y =ln x +2的切线为y =1x 1·x +ln x 1+1(设切点横坐标为x 1).y =ln(x +1)的切线为y =1x 2+1x +ln(x 2+1)-x 2x 2+1(设切点横坐标为x 2).∴⎩⎨⎧1x 1=1x 2+1,ln x 1+1=ln(x 2+1)-x2x 2+1,解得x 1=12,x 2=-12,∴b =ln x 1+1=1-ln2.6.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,与f (x )图象的切点为(1,f (1)),则m =________.6.答案 -2 解析 ∵f ′(x )=1x ,∴直线l 的斜率k =f ′(1)=1.又f (1)=0,∴切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,∴m =-2.7.已知定义在区间(0,+∞)上的函数f (x )=-2x 2+m ,g (x )=-3ln x -x ,若以上两函数的图象有公共点, 且在公共点处切线相同,则m 的值为( )A .2B .5C .1D .07.答案 C 解析 根据题意,设两曲线y =f (x )与y =g (x )的公共点为(a ,b ),其中a >0,由f (x )=-2x 2+ m ,可得f ′(x )=-4x ,则切线的斜率为k =f ′(a )=-4a ,由g (x )=-3ln x -x ,可得g ′(x )=-3x -1,则切线的斜率为k =g ′(a )=-3a -1,因为两函数的图象有公共点,且在公共点处切线相同,所以-4a =-3a -1,解得a =1或a =-34(舍去),又g (1)=-1,即公共点的坐标为(1,-1),将点(1,-1)代入f (x )=-2x 2+m ,可得m =1.8.若直线y =kx +b 是曲线y =e xe 2的切线,也是曲线y =e x -1的切线,则k +b 等于( )A .-ln 22B .1-ln 22C .ln 2-12D .ln 228.答案 D 解析 设直线y =kx +b 与曲线y =e x e 2相切于点P (x 1,y 1),y ′=e x e2=e x -2,k 1=12e x -;直线y =kx +b 与曲线y =e x -1相切于点Q (x 2,y 2),y ′=e x ,k 2=2e x ,∴l 1:y =1112221e e e x x x x x ---+-,l 2:y =2222e e 1e x x x x x +--,12112222212e e e e e e 1x x x x x x x x ⎧=⎪⎨=⎪⎩---,∴---,∴x 2=-ln 2,∴k +b =2222e e 1e x x x x +--=12+12-1-(-ln 2)×12=ln 22.9.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)在点P 处的切线垂直,则P 的坐标为________.9.答案 (1,1) 解析 y ′=e x ,曲线y =e x 在点(0,1) 处的切线的斜率k 1=e 0=1.设P (m ,n ),y =1x (x>0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).10.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为 .10.答案 -e34- 解析 由f (x )=x 3+ax +14,得f ′(x )=3x 2+a .∵f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),又∵g ′(x )=-1x,∴⎩⎪⎨⎪⎧-ln x 0-14=ax 0,①a =-1x,②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e 34=-e 34-.11.已知曲线y =e x 在点(x 1,1e x )处的切线与曲线y =ln x 在点(x 2,ln x 2)处的切线相同,则(x 1+1)(x 2-1)=( ) A .-1 B .-2 C .1 D .211.答案 B 解析 已知曲线y =e x 在点(x 1,1e x )处的切线方程为y -1e x =1e x (x -x 1),即y =1111e e e x x x x x -+,曲线y =ln x 在点(x 2,ln x 2)处的切线方程为y -ln x 2=1x 2(x -x 2),即y =1x 2x -1+ln x 2,由题意得⎩⎪⎨⎪⎧1e x =1x 2,1e x -1e x x 1=-1+ln x 2,得x 2=11e x ,111e e x x x -=-1+ln x 2=-1+1ln 1e x =-1-x 1,则1e x =x 1+1x 1-1.又x 2=11e x ,所以x 2=x 1-1x 1+1,所以x 2-1=x 1-1x 1+1-1=-2x 1+1,所以(x 1+1)(x 2-1)=-2. 12.曲线C 1:y =x 2与曲线C 2:y =a e x (a >0)存在公切线,则a 的取值范围是________.12.答案 ⎝⎛⎦⎤0,4e 2 解析 设公切线在y =x 2上的切点为(x 1,x 21),在y =a e x (a >0)上的切点为(x 2,2e x a ).函 数y =x 2,y =a e x (a >0)的导数分别为y ′=2x ,y ′=a e x,则公切线的斜率为2x 1=222112e e x x x a a x x =--,整理得a=2241e x x ()-.由a >0可知,x 2>1,令f (x )=4x -1e x ,x ∈(1,+∞),则f ′(x )=4e x 2-x e x2=8-4xe x,f ′(x )>0⇒1<x <2;f ′(x )<0⇒x >2,∴f (x )在区间(1,2)上单调递增,在区间(2,+∞)上单调递减,f (x )max =f (2)=4e 2;当x →+∞时,f (x )→0,即0<f (x )≤4e2,∴a ∈⎝⎛⎦⎤0,4e 2. 13.若存在过点O (0,0)的直线l 与曲线y =x 3-3x 2+2x 和y =x 2+a 都相切,求a 的值. 13.解析 易知点O (0,0)在曲线y =x 3-3x 2+2x 上.(1)当O (0,0)是切点时,由y ′=3x 2-6x +2,得y ′|x =0=2,即直线l 的斜率为2,故直线l 的方程为y =2x .由⎩⎪⎨⎪⎧y =2x ,y =x 2+a ,得x 2-2x +a =0,依题意Δ=4-4a =0,得a =1.(2)当O (0,0)不是切点时,设直线l 与曲线y =x 3-3x 2+2x 相切于点P (x 0,y 0), 则y 0=x 30-3x 20+2x 0,且k =y ′|x =x 0=3x 20-6x 0+2,①,又k =y 0x 0=x 20-3x 0+2,②, 联立①②,得x 0=32(x 0=0舍去),所以k =-14,故直线l 的方程为y =-14x .由⎩⎪⎨⎪⎧y =-14x ,y =x 2+a ,得x 2+14x +a =0,依题意,Δ=116-4a =0,得a =164.综上,a =1或a =164.14.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.14.解析 (1)由已知得f ′(x )=3ax 2+6x -6a ,∵f ′(-1)=0,∴3a -6-6a =0,∴a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12). ∵g ′(x 0)=6x 0+6,∴切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9;当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11,①由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9, ∴y =f (x )与y =g (x )的公切线是y =9.②由f ′(x )=12得-6x 2+6x +12=12,解得x =0或x =1.在x =0处,y =f (x )的切线方程为y =12x -11;在x =1处,y =f (x )的切线方程为y =12x -10; ∴y =f (x )与y =g (x )的公切线不是y =12x +9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题曲线与方程1 知识填空 1.曲线与方程概念一般地,在直角坐标系中,如果其曲线c 上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点。

那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.注意:1︒ 如果……,那么……;2︒ “点”与“解”的两个关系,缺一不可;3︒ 曲线的方程和方程的曲线是同一个概念,相对不同角度的两种说法;4︒ 曲线与方程的这种对应关系,是通过坐标平面建立的.2.点在曲线上的充要条件:如果曲线C 的方程是f (x ,y )=0,那么点P 0=(x 0,y 0).在曲线C 上的充要条件是f (x 0,y 0)=0.3.求曲线方程的一般步骤:(1)建立适当的坐标系,用有序实数对(,)x y 表示曲线上任意一点M 的坐标;(2)写出适合条件P 的点M 的集合{}|()P M P M =;(3)用坐标表示条件()P M ,列出方程(,)0f x y =;(4)化方程(,)0f x y =为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

说明:一般情况下,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可适当予以说明。

另外,根据情况,也可以省略步骤(2),直接列出曲线方程。

4.求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。

2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(,)x y 表示该等量关系式,即可得到轨迹方程。

3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系()()x f t y g t =⎧⎨=⎩,进而通过消参化为轨迹的普通方程(,)0F x y =.4. 代入法(相关点法):如果动点P 的运动是由另外某一点'P 的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出(,)P x y ,用(,)x y 表示出相关点'P 的坐标,然后把'P 的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。

5.交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

2 典型例题一:概念巩固1.方程与曲线1.点(1,)P a 在曲线2250x xy y +-=上,则a =___ .2.曲线220x xy by +-=上有点(1,2)Q ,则b = .2.典型例题例1 已知两点A (-1,1)和B (3,-1),求证线段AB 的垂直平分线l 的方程是022=--y x .例2(1)已知点A (1,0)、B (0,1),问线段AB 的方程是不是01=-+y x ,为什么?(2)到两坐标轴距离相等的点的轨迹C 的方程是不是0=-y x ,为什么?例3设,A B 两点的坐标分别是(1,1)--,(3,7),求线段AB 的垂直平分线的方程.变式训练:(1)到x 轴距离等于5的点所组成的曲线的方程是50y -=吗?(2)已知等腰三角形三个顶点的坐标分别是(0,3)A ,(2,0)B -,(2,0)C .中线AO (O 为原点)所在直线的方程是0x =吗?为什么?二:求轨迹方程的常用方法1:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。

【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。

2:用直译法求轨迹方程此类问题重在寻找数量关系。

例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?3:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。

注意参数的取值范围。

例3.过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

4:用代入法求轨迹方程例4. 的的中点求线段为定点上的动点是椭圆点M AB ,a ,,A by a x B )02(12222=+轨迹方程。

【变式】如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程B Q R AP o y x5、用交轨法求轨迹方程 例5.已知椭圆22221x y a b +=(a >b >o )的两个顶点为1(,0)A a -,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2,求A 1P 1与A 2P 2交点M 的轨迹方程.6、用点差法求轨迹方程例6. 已知椭圆1222=+y x 。

(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;三、轨迹方程其他应用例1 说明过点)1,5(-P 且平行于x 轴的直线l 和方程1=y 所代表的曲线之间的关系.解:如下图所示,过点P 且平行于x 轴的直线l 的方程为1-=y ,因而在直线l 上的点的坐标都满足1=y ,所以直线l 上的点都在方程1=y 表示的曲线上.但是以1=y 这个方程的解为坐标的点不会都在直线l 上,因此方程1=y 不是直线l 的方程,直线l 只是方程1=y 所表示曲线的一部分.变式训练:说明到坐标轴距离相等的点的轨迹与方程x y =所表示的直线之间的关系.例2曲线4)1(22=-+y x 与直线4)2(+-=x k y 有两个不同的交点,求k 的取值范围.有一个交点呢?无交点呢?解:由⎩⎨⎧=-++-=.4)1(,4)2(22y x x k y 得04)23()23(2)1(222=--+-++k x k k x k ∴]4)23)[(1(4)23(42222--+--=∆k k k k )5124(42+--=k k )52)(12(4---=k k ∴当0>∆即0)52)(12(<--k k ,即2521<<k 时,直线与曲线有两个不同的交点. 当0=∆即0)52)(12(=--k k ,即21=k 或25=k 时,直线与曲线有一个交点. 当0<∆即0)52)(12(>--k k ,即21<k 或25>k 时,直线与曲线没有公共点. 变式训练:若曲线x a y =与)0(>+=a a x y 有两个公共点,求实数a 的取值范围.例3 判断方程122+--=x x y 所表示的曲线.解:由原方程122+--=x x y 可得:1--=x y ,即⎩⎨⎧<-≥+-=),1(1),1(1x x x x y ∴方程122+--=x x y 的曲线是两条射线,如图所示:变式训练:已知方程),0(,1sin cos 22πθθθ∈=+y x ,讨论方程表示的曲线的形状。

3.当堂检测(概念基础训练)1.判断下列点是否在方程229x y +=的曲线上。

()()()()()()11,2222,333cos ,3sin M P Q θθ-2.若点P 的坐标为(),a b ,曲线C 的方程为(),0F x y =,则“(),0F a b =”是“点P 在曲线C 上”的______________条件。

y3.下列方程表示如图所示的直线的是( )(A)0x y -= (B) 220x y -= (C) 0x y -= (D) 220x y -=4.“点M 在曲线x y 42=上”是“点M 的坐标满足方程x y 2-=”的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分非必要条件5.若曲线C 上的点坐标),(y x 满足方程0),(=y x F ,则( )A .曲线C 的方程是0),(=y x FB .方程0),(=y x F 的曲线是CC .坐标满足方程0),(=y x F 的点在曲线C 上D .坐标不满足方程0),(=y x F 的点不在曲线C 上6. 与曲线y x =相同的曲线方程是( ).A .2x y x = B .2y x = C .33y x = D .2log 2x y = 7.直角坐标系中,已知两点(3,1)A ,(1,3)B -,若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1, 则点C 的轨迹为 ( ) .A .射线B .直线C .圆D .线段8.(1,0)A ,(0,1)B ,线段AB 的方程是( ).A .10x y -+=(01)x ≤≤B .10x y -+=(01)x ≤≤C .10x y +-=(01)x ≤≤D .10x y -+=(01)x ≤≤9.已知方程222ax by +=的曲线经过点5(0,)3A 和点(1,1)B ,则a = ,b = . 10.已知两定点(1,0)A -,(2,0)B ,动点p 满足12PA PB =,则点p 的轨迹方程是 . 轨迹方程训练1.在ABC ∆中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,则点A 的轨迹方程是______________.2.两条直线01=--my x 与01=-+y mx 的交点的轨迹方程是 __________ .3.已知圆的方程为(x-1)2+y 2=1,过原点O 作圆的弦OA ,则弦的中点M 的轨迹方程是 _____4.当参数m 随意变化时,则抛物线()y x m x m =+++-22211的顶点的轨迹方程为______。

5:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,则点M 的轨迹方程为________。

6:求与两定点()()0,030O A 、,距离的比为1:2的点的轨迹方程为_____________ 7.抛物线x y 42=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。

相关文档
最新文档