铜鼓县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析
铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知x ,y 满足时,z=x ﹣y 的最大值为( )A .4B .﹣4C .0D .22. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)3. “x ≠0”是“x >0”是的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .305. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .66. 已知抛物线的焦点为,,点是抛物线上的动点,则当的值最小时,24y x =F (1,0)A -P ||||PF PA PAF ∆的面积为( )B. C. D. 24【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.7. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e ) 8. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线9. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是()A .p 或qB .p 且qC .¬p 或qD .p 且¬q10.若是两条不同的直线,是三个不同的平面,则下列为真命题的是( ),m n ,,αβγA .若,则,m βαβ⊂⊥m α⊥B .若,则,//m m n αγ= //αβC .若,则,//m m βα⊥αβ⊥D .若,则,αγαβ⊥⊥βγ⊥11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±312.在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.在等差数列中,,其前项和为,若,则的值等}{n a 20161-=a n n S 2810810=-S S 2016S 于.【命题意图】本题考查等差数列的通项公式、前项和公式,对等差数列性质也有较高要求,属于中等难度.n 15.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.) 16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx - (m ∈R )在区间[1,e]上取得mx最小值4,则m =________.17.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .18.若函数y=ln (﹣2x )为奇函数,则a= .三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时). 20.已知函数f (x )=alnx ﹣x (a >0).(Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α 21.如图所示,两个全等的矩形和所在平面相交于,,,且ABCD ABEF AB M AC ∈N FB ∈,求证:平面.AM FN =//MN BCE22.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.23.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))24.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】B【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.当x>0时,一定有x≠0成立,∴“x≠0”是“x>0”是的必要不充分条件.故选:B.4.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S 11=()+(a 2+a 4+a 6+a 8+a 10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S 20=(a 1+a 3+…+a 19)+(a 2+a 4+…+a 20)=﹣(1+7+…+55)+(4+10+…+58)=﹣+=30,∴S 11+S 20=﹣16+30=14.故选:B .【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用. 5. 【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C .【点评】本题主要考查了椭圆的简单性质.属基础题. 6. 【答案】B【解析】设,则又设,则,,所以2(,)4y P y 2||||PF PA=214y t +=244y t =-1t …,当且仅当,即时,等号成立,此时点,||||PF PA ==2t =2y =±(1,2)P ±的面积为,故选B.PAF ∆11||||22222AF y ⋅=⨯⨯=7. 【答案】 D【解析】解:由题意知:f (x )﹣lnx 为常数,令f (x )﹣lnx=k (常数),则f (x )=lnx+k .由f[f (x )﹣lnx]=e+1,得f (k )=e+1,又f (k )=lnk+k=e+1,所以f (x )=lnx+e ,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.8.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.9.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.10.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.11.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.12.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.二、填空题13.【答案】 .【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积. 14.【答案】201615.【答案】 真命题 【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.16.【答案】-3e【解析】f ′(x )=+=,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递1x 2m x 2x m x 减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3 (-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-,令1-=4,得m =-3e ,符合题意.综上所述,m e m e m=-3e.17.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x 的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .18.【答案】 4 .【解析】解:函数y=ln (﹣2x )为奇函数,可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4.三、解答题19.【答案】【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b 再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时. 20.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用. 21.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.22.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f(x)取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.23.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]<0恒成立,因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴24.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.。
铜鼓县第二中学校2018-2019学年上学期高二数学12月月考试题含解析
铜鼓县第二中学校2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知全集为R ,集合{}|23A x x x =<->或,{}2,0,2,4B =-,则()R A B =ð( )A .{}2,0,2-B .{}2,2,4-C .{}2,0,3-D .{}0,2,4 2. 已知条件p :x 2+x ﹣2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围可以是( ) A .a ≥1 B .a ≤1 C .a ≥﹣1 D .a ≤﹣33.复数的虚部为( )A .﹣2B .﹣2iC .2D .2i4. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④5. 已知函数f (x )=2x ,则f ′(x )=( )A .2xB .2x ln2C .2x +ln2D.6. 已知幂函数y=f (x)的图象过点(,),则f (2)的值为( )A.B.﹣C .2D .﹣27. 若y x ,满足约束条件⎪⎪⎩⎪⎪⎨⎧≥≤-+≥+-0033033y y x y x ,则当31++x y 取最大值时,y x +的值为( )A .1-B .C .3-D .38. 过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是原点,若|AF|=3,则△AOF 的面积为( ) A.B.C.D .29. 如图,函数f (x )=Asin (2x+φ)(A >0,|φ|<)的图象过点(0,),则f (x )的图象的一个对称中心是( )A .(﹣,0)B .(﹣,0)C .(,0)D .(,0)10.执行如图所示的程序框图,输出的结果是( )A .15B .21C .24D .35 11.“24x ππ-<≤”是“tan 1x ≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分也不必要条件【命题意图】本题主要考查充分必要条件的概念与判定方法,正切函数的性质和图象,重点是单调性.12.已知双曲线2222:1(0,0)x y C a b a b-=>>,12,F F 分别在其左、右焦点,点P 为双曲线的右支上的一点,圆M 为三角形12PF F 的内切圆,PM 所在直线与轴的交点坐标为(1,0),与双曲线的一条渐近线平行且距离为2,则双曲线C 的离心率是( )A B .2 C D .2二、填空题13.函数()y f x =的定义域是[]0,2,则函数()1y f x =+的定义域是__________.111]14.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .15.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= . 16.下列四个命题申是真命题的是 (填所有真命题的序号) ①“p ∧q 为真”是“p ∨q 为真”的充分不必要条件;②空间中一个角的两边和另一个角的两边分别平行,则这两个角相等; ③在侧棱长为2,底面边长为3的正三棱锥中,侧棱与底面成30°的角;④动圆P 过定点A (﹣2,0),且在定圆B :(x ﹣2)2+y 2=36的内部与其相内切,则动圆圆心P 的轨迹为一个椭圆.17.i 是虚数单位,化简:= .18.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题:①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.其中正确的结论序号为 .(填上所有正确结论的序号)三、解答题19.已知函数2(x)1ax f x =+是定义在(-1,1)上的函数, 12()25f =(1)求a 的值并判断函数(x)f 的奇偶性(2)用定义法证明函数(x)f 在(-1,1)上是增函数;20.如图,在三棱锥 P ABC -中,,,,E F G H 分别是,,,AB AC PC BC 的中点,且,PA PB AC BC ==.(1)证明: AB PC ⊥; (2)证明:平面 PAB 平面 FGH .21.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
铜鼓县高中2018-2019学年高二上学期第二次月考试卷数学
铜鼓县高中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 设m ,n 是正整数,多项式(1﹣2x )m +(1﹣5x )n 中含x 一次项的系数为﹣16,则含x 2项的系数是( ) A .﹣13 B .6 C .79 D .372. 数列{a n }的首项a 1=1,a n+1=a n +2n ,则a 5=( ) A .B .20C .21D .313. 已知是虚数单位,若复数22aiZ i+=+在复平面内对应的点在第四象限,则实数的值可以是( ) A .-2 B .1 C .2 D .3 4. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形5. 若集合A={x|﹣2<x <1},B={x|0<x <2},则集合A ∩B=( ) A .{x|﹣1<x <1} B .{x|﹣2<x <1} C .{x|﹣2<x <2} D .{x|0<x <1}6. 等比数列的前n 项,前2n 项,前3n 项的和分别为A ,B ,C ,则( )A .B 2=ACB .A+C=2BC .B (B ﹣A )=A (C ﹣A )D .B (B ﹣A )=C (C ﹣A )7. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.8. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .539. 四面体ABCD 中,截面 PQMN 是正方形, 则在下列结论中,下列说法错误的是( )A .AC BD ⊥B .AC BD =C.AC PQMN D .异面直线PM 与BD 所成的角为4510.已知直线a ,b 都与平面α相交,则a ,b 的位置关系是( ) A .平行 B .相交 C .异面 D .以上都有可能11.已知函数f (x )=log 2(x 2+1)的值域为{0,1,2},则满足这样条件的函数的个数为( ) A .8 B .5C .9D .2712.设a,b,c,∈R+,则“abc=1”是“”的()A.充分条件但不是必要条件B.必要条件但不是充分条件C.充分必要条件 D.既不充分也不必要的条件二、填空题13.若关于x,y的不等式组(k是常数)所表示的平面区域的边界是一个直角三角形,则k=.14.函数f(x)=log(x2﹣2x﹣3)的单调递增区间为.15.设x,y满足约束条件,则目标函数z=2x﹣3y的最小值是.16.数据﹣2,﹣1,0,1,2的方差是.17.二面角α﹣l﹣β内一点P到平面α,β和棱l的距离之比为1::2,则这个二面角的平面角是度.18.函数f(x)=﹣2ax+2a+1的图象经过四个象限的充要条件是.三、解答题19.如图,摩天轮的半径OA为50m,它的最低点A距地面的高度忽略不计.地面上有一长度为240m的景观带MN,它与摩天轮在同一竖直平面内,且AM=60m.点P从最低点A处按逆时针方向转动到最高点B处,记∠AOP=θ,θ∈(0,π).(1)当θ=时,求点P距地面的高度PQ;(2)试确定θ的值,使得∠MPN取得最大值.20.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1z2是实数,求z2.21.已知在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E、F、G分别是PA、PB、BC的中点.(I)求证:EF⊥平面PAD;(II)求平面EFG与平面ABCD所成锐二面角的大小.22.坐标系与参数方程线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数.23.已知函数f(x)=lg(2016+x),g(x)=lg(2016﹣x)(1)判断函数f(x)﹣g(x)的奇偶性,并予以证明.(2)求使f(x)﹣g(x)<0成立x的集合.24.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.铜鼓县高中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】二项式系数的性质.【专题】二项式定理.【分析】由含x一次项的系数为﹣16利用二项展开式的通项公式求得2m+5n=16 ①.,再根据m、n为正整数,可得m=3、n=2,从而求得含x2项的系数.【解答】解:由于多项式(1﹣2x)m+(1﹣5x)n中含x一次项的系数为(﹣2)+(﹣5)=﹣16,可得2m+5n=16 ①.再根据m、n为正整数,可得m=3、n=2,故含x2项的系数是(﹣2)2+(﹣5)2=37,故选:D.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.2.【答案】C【解析】解:由a n+1=a n+2n,得a n+1﹣a n=2n,又a1=1,∴a5=(a5﹣a4)+(a4﹣a3)+(a3﹣a2)+(a2﹣a1)+a1=2(4+3+2+1)+1=21.故选:C.【点评】本题考查数列递推式,训练了累加法求数列的通项公式,是基础题.3.【答案】A【解析】试题分析:()()()()2224(22)2225ai iai a a ii i i+-+++-==++-,对应点在第四象限,故40220aa+>⎧⎨-<⎩,A选项正确.考点:复数运算.4.【答案】A【解析】解:∵(acosB+bcosA)=2csinC,∴(sinAcosB+sinBcosA)=2sin2C,∴sinC=2sin2C,且sinC>0,∴sinC=,∵a+b=8,可得:8≥2,解得:ab ≤16,(当且仅当a=b=4成立)∵△ABC 的面积的最大值S△ABC =absinC ≤=4,∴a=b=4,则此时△ABC 的形状为等腰三角形. 故选:A .5. 【答案】D【解析】解:A ∩B={x|﹣2<x <1}∩{x|0<x <2}={x|0<x <1}.故选D .6. 【答案】C 【解析】解:若公比q=1,则B ,C 成立;故排除A ,D ; 若公比q ≠1,则A=S n =,B=S 2n =,C=S 3n =,B (B ﹣A )=(﹣)=(1﹣q n)(1﹣q n)(1+q n)A (C ﹣A )=(﹣)=(1﹣q n )(1﹣q n )(1+q n);故B (B ﹣A )=A (C ﹣A );故选:C .【点评】本题考查了等比数列的性质的判断与应用,同时考查了分类讨论及学生的化简运算能力.7. 【答案】A 【解析】试题分析:函数()222112y x x x =--=--在区间[]0,1上递减,在区间[]1,3上递增,所以当x=1时,()()min 12f x f ==-,当x=3时,()()max 32f x f ==,所以值域为[]2,2-。
2018-2019学年高二数学上学期期末考试试题(含解析)_2
2018-2019学年高二数学上学期期末考试试题(含解析)第I卷(选择题共60分)一、选择题(本题共12道小题,每小题5分,共60分)1.已知命题,下列命题中正确的是( )A. B.C. D.【答案】C【解析】试题分析:命题,使的否定为,使,故选C.考点:特称命题的否定.2.抛物线的焦点坐标为A. B. C. D.【答案】A【解析】抛物线,开口向右且焦点在轴上,坐标为.故选A.3.“a>1”是“<1”的( )A. 充分但不必要条件B. 必要但不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】选A.因为a>1,所以<1.而a<0时,显然<1,故由<1推不出a>1.4. 已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为()A. 2B. 3C. 4D. 5【答案】B【解析】试题分析:由已知中△ABC三个顶点为A(3,3,2),B (4,-3,7),C(0,5,1),利用中点公式,求出BC边上中点D的坐标,代入空间两点间距公式,即可得到答案.解:∵B(4,-3,7),C(0,5,1),则BC的中点D的坐标为(2,1,4)则AD即为△ABC中BC边上的中线故选B.考点:空间中两点之间的距离点评:本题考查的知识点是空间中两点之间的距离,其中根据已知条件求出BC边上中点的坐标,是解答本题的关键.5.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。
其中正确的命题是()A. ①②B. ①③C. ②③D. ①②③【答案】C【解析】【分析】根据空间向量的基底判断②③的正误,找出反例判断①命题的正误,即可得到正确选项.【详解】解:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;所以不正确.反例:如果有一个向量为零向量,共线但不能构成空间向量的一组基底,所以不正确.②O,A,B,C为空间四点,且向量不构成空间的一个基底,那么点O,A,B,C一定共面;这是正确的.③已知向量是空间的一个基底,则向量,也是空间的一个基底;因为三个向量非零不共线,正确.故选:C.【点睛】本题考查共线向量与共面向量,考查学生分析问题,解决问题的能力,是基础题.6.如图所示,在平行六面体中,为与的交点.若,,,则下列向量中与相等的向量是()A. B.C. D.【答案】A【解析】【分析】运用向量的加法、减法的几何意义,可以把用已知的一组基底表示.详解】.【点睛】本题考查了空间向量用一组已知基底进行表示.7.已知△ABC的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A的轨迹方程是()A. (x≠0)B. (x≠0)C. (x≠0)D. (x≠0)【答案】B【解析】由于,所以到的距离之和为,满足椭圆的定义,其中,由于焦点在轴上,故选.点睛:本题主要考查椭圆的定义和标准方程. 涉及到动点到两定点距离之和为常数的问题,可直接用椭圆定义求解.涉及椭圆上点、焦点构成的三角形问题,往往利用椭圆定义、勾股定理或余弦定理求解. 求椭圆的标准方程,除了直接根据定义外,常用待定系数法(先定性,后定型,再定参).8.过抛物线的焦点作直线交抛物线于两点,如果,那么A. 6B. 8C. 9D. 10【答案】B【解析】【分析】根据抛物线的性质直接求解,即焦点弦长为.【详解】抛物线中,,∴,故选B.【点睛】是抛物线的焦点弦,,,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为,抛物线的焦点弦长为.9.若直线与双曲线的右支交于不同的两点,则的取值范围是A. B. C. D.【答案】D【解析】【分析】由直线与双曲线联立得(1-k2)x2-4kx-10=0,由结合韦达定理可得解.【详解】解析:把y=kx+2代入x2-y2=6,得x2-(kx+2)2=6,化简得(1-k2)x2-4kx-10=0,由题意知即解得<k<-1.答案:D.【点睛】本题主要考查了直线与双曲线的位置关系,属于中档题.10.试在抛物线上求一点,使其到焦点距离与到的距离之和最小,则该点坐标为A. B. C. D.【答案】A【解析】由题意得抛物线的焦点为,准线方程为.过点P作于点,由定义可得,所以,由图形可得,当三点共线时,最小,此时.故点的纵坐标为1,所以横坐标.即点P的坐标为.选A.点睛:与抛物线有关的最值问题的解题策略该类问题一般解法是利用抛物线的定义,实现由点到点的距离与点到直线的距离的转化.(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将抛物线上点到焦点的距离转化为点到准线的距离,利用“与直线上所有点的连线中的垂线段最短”解决.11.在长方体中,如果,,那么到直线的距离为A. B. C. D.【答案】C【解析】【分析】由题意可得:连接,AC,过A作,根据长方体得性质可得:平面ABCD,即可得到,,再根据等面积可得答案.【详解】由题意可得:连接,AC,过A作,如图所示:根据长方体得性质可得:平面ABCD.因为,,所以,,根据等面积可得:.故选:C.【点睛】本题主要考查了点、线、面间的距离计算,以及空间几何体的概念、空间想象力,属于基础题..12.已知点分别是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为正三角形,则该椭圆的离心率为()A. B. C. D.【答案】D【解析】在方程中,令,可得,∴.∵△ABF2为正三角形,∴,即,∴,∴,整理得,∴,解得或(舍去).选D.点睛:求椭圆离心率或其范围的方法(1)求的值,由直接求.(2)列出含有的方程(或不等式),借助于消去b,然后转化成关于e的方程(或不等式)求解.第Ⅱ卷(主观题共90分)二、填空题(每题5分,共20分,将答案写在答题纸上)13. 已知A(1,-2,11)、B(4,2,3)、C(x,y,15)三点共线,则xy=___________.【答案】2.【解析】试题分析:由三点共线得向量与共线,即,,,解得,,∴.考点:空间三点共线.14.已知抛物线型拱桥的顶点距水面米时,量得水面宽为米.则水面升高米后,水面宽是____________米(精确到米).【答案】【解析】试题分析:设抛物线方程为,当x=0时 c=2,当x=-4和x=4时y=0,求得, b=0,则,令y=1,得,所以水面宽.考点:抛物线方程.15.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是________【答案】 y=-0.5x+4【解析】设弦为,且,代入椭圆方程得,两式作差并化简得,即弦的斜率为,由点斜式得,化简得.16.①一个命题的逆命题为真,它的否命题一定也为真:②在中,“”是“三个角成等差数列”的充要条件;③是的充要条件;④“”是“”的充分必要条件;以上说法中,判断错误的有_______________.【答案】③④【解析】对于①,一个命题的逆命题与其否命题互为逆否命题,则若其逆命题为真,其否命题也一定为真,①正确;对于②,若,则,有,则三个角成等差数列,反之若三个角成等差数列,有,又由,则,故在中,“”是“三个角成等差数列”的充要条件,②正确;对于③,当,则满足,而不满足,则是的不必要条件,③错误;对于④,若,当时,有,则“”是“”的不必要条件,④错误,故答案为③④.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.已知命题有两个不相等的负根,命题无实根,若为假,为真,求实数的取值范围.【答案】【解析】【分析】根据命题和的真假性,逐个判断.【详解】因为假,并且为真,故假,而真即不存在两个不等的负根,且无实根.所以,即,当时,不存在两个不等的负根,当时,存在两个不等的负根.所以的取值范围是【点睛】此题考查了常用的逻辑用语和一元二次方程的性质,属于基础题.18.已知椭圆C的两焦点分别为,长轴长为6。
铜鼓县第二中学校2018-2019学年高二上学期第二次月考试卷数学
铜鼓县第二中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为()A.4 B.5 C.32D.332.等比数列{a n}中,a4=2,a5=5,则数列{lga n}的前8项和等于()A.6 B.5 C.3 D.43.已知命题“如果﹣1≤a≤1,那么关于x的不等式(a2﹣4)x2+(a+2)x﹣1≥0的解集为∅”,它的逆命题、否命题、逆否命题及原命题中是假命题的共有()A.0个B.1个C.2个D.4个4.若复数z满足iz=2+4i,则在复平面内,z对应的点的坐标是()A.(2,4)B.(2,﹣4)C.(4,﹣2)D.(4,2)5.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α6.已知抛物线关于x轴对称,它的顶点在坐标原点O,并且经过点M(2,y0).若点M到该抛物线焦点的距离为3,则|OM|=()A. B. C.4 D.7.以的焦点为顶点,顶点为焦点的椭圆方程为()A.B.C.D.8. 如图,半圆的直径AB=6,O 为圆心,C 为半圆上不同于A 、B 的任意一点,若P 为半径OC 上的动点,则的最小值为( )A .B .9C .D .﹣99. 设f (x )在定义域内可导,y=f (x )的图象如图所示,则导函数y=f ′(x )的图象可能是( )A .B .C .D .10.设曲线y=ax 2在点(1,a )处的切线与直线2x ﹣y ﹣6=0平行,则a=( )A .1B .C .D .﹣111.设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a的值为( )A .2B .C .D .312.已知等差数列{}n a 的前项和为n S ,且120a =-,在区间()3,5内任取一个实数作为数列{}n a 的公差,则n S 的最小值仅为6S 的概率为( )A .15 B .16 C .314 D .13二、填空题13.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是_________(单位:).14.设x ∈(0,π),则f (x )=cos 2x+sinx 的最大值是 .15.(sinx+1)dx 的值为 .16.已知函数为定义在区间[﹣2a ,3a ﹣1]上的奇函数,则a+b= .17.设函数f (x )=,则f (f (﹣2))的值为 .18.已知x 是400和1600的等差中项,则x= .三、解答题19.(本小题满分12分)△ABC 的三内角A ,B ,C 的对边分别为a ,b ,c ,AD 是BC 边上的中线. (1)求证:AD =122b 2+2c 2-a 2;(2)若A =120°,AD =192,sin B sin C =35,求△ABC 的面积.20.(本小题满分13分)如图,已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,以椭圆C 的左顶点T 为圆心作圆T :222(2)x y r++=(0r>),设圆T与椭圆C交于点M、N.[_](1)求椭圆C的方程;(2)求TM TN⋅的最小值,并求此时圆T的方程;(3)设点P是椭圆C上异于M、N的任意一点,且直线MP,NP分别与x轴交于点R S、(O为坐标原点),求证:OR OS⋅为定值.【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力.21.为了预防流感,某学校对教室用药熏消毒法进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为1()16t ay-=(a为常数),如图所示.据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。
铜鼓县高中2018-2019学年高二上学期数学期末模拟试卷含解析
e x e x e x e x , h x , x 0, 2 使得不等式 2 2
考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值. 【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问 题常见方法:①分离参数 a f ( x) 恒成立( a f ( x) min 即可)或 a f ( x) 恒成立( a f ( x) max 即可);② 数形结合;③讨论最值 f ( x) min 0 或 f ( x) max 0 恒成立;④讨论参数 .本题是利用方法①求得的最大值的. 3. 【答案】A 【解析】解:根据余弦定理可知 cosA= ∵a2=b2+bc+c2, ∴bc=﹣(b2+c2﹣a2) ∴cosA=﹣ ∴A=120° 故选 A 4. 【答案】A
第 6 页,共 14 页
【解析】解:由已知中几何体的直观图, 我们可得侧视图首先应该是一个正方形,故 D 不正确; 中间的棱在侧视图中表现为一条对角线,故 C 不正确; 而对角线的方向应该从左上到右下,故 B 不正确 故 A 选项正确. 故选:A. 【点评】 本题考查的知识点是简单空间图象的三视图, 其中熟练掌握简单几何体的三视图的形状是解答此类问 题的关键. 5. 【答案】D 【解析】解:对 A,当三点共线时,平面不确定,故 A 错误; 对 B,当两条直线是异面直线时,不能确定一个平面;故 B 错误; 对 C,∵两两相交且不共点的三条直线确定一个平面,∴当三条直线两两相交且共点时,不一定在同一个平面 ,如墙角的三条棱;故 C 错误; 对 D,由 C 可知 D 正确. 故选:D. 6. 【答案】C 【解析】解:因为全称命题的否定是特称命题,所以,命题“∀a∈R,函数 y=π”是增函数的否定是:“∃a∈R,函 数 y=π”不是增函数. 故选:C. 【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题. 7. 【答案】A 【解析】解析 : 本题考查线性规划中最值的求法.平面区域 D 如图所示,先求 z ax y 的最小值,当 a 时, a
铜鼓县二中2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县二中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下列函数在(0,+∞)上是增函数的是( )A .B .y=﹣2x+5C .y=lnxD .y=2. 设集合,,则( )A BCD3. 方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆 4. 下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.5. 若动点),(),(2211y x B y x A 、分别在直线: 011=-+y x 和2l :01=-+y x 上移动,则AB 中点M 所在直线方程为( )A .06=--y xB .06=++y xC .06=+-y xD .06=-+y x 6. 如图是一个多面体的三视图,则其全面积为( )A .B .C .D .7. 下列说法正确的是( )A .类比推理是由特殊到一般的推理B .演绎推理是特殊到一般的推理C .归纳推理是个别到一般的推理D .合情推理可以作为证明的步骤8. 函数f (x )=2x ﹣的零点个数为( ) A .0B .1C .2D .39. 函数y=e cosx (﹣π≤x ≤π)的大致图象为( )A .B .C .D .10.四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .11.如果对定义在R 上的函数)(x f ,对任意n m ≠,均有0)()()()(>--+m nf n mf n nf m mf 成立,则称 函数)(x f 为“H 函数”.给出下列函数: ①()ln25x f x =-;②34)(3++-=x x x f ;③)cos (sin 222)(x x x x f --=;④⎩⎨⎧=≠=0,00|,|ln )(x x x x f .其中函数是“H 函数”的个数为( ) A .1 B .2 C .3 D . 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大.12.如果函数f (x )的图象关于原点对称,在区间上是减函数,且最小值为3,那么f (x )在区间上是( ) A .增函数且最小值为3B .增函数且最大值为3C .减函数且最小值为﹣3D .减函数且最大值为﹣3二、填空题13.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 . 14.集合A={x|﹣1<x <3},B={x|x <1},则A ∩B= .15.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .16.如图,△ABC 是直角三角形,∠ACB=90°,PA ⊥平面ABC ,此图形中有 个直角三角形.17.已知()212811f x x x -=-+,则函数()f x 的解析式为_________.18.如图,E ,F 分别为正方形ABCD 的边BC ,CD 的中点,沿图中虚线将边长为2的正方形折起来,围成一个三棱锥,则此三棱锥的体积是 .三、解答题19.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述 发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力20.(本题满分12分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以 在1,2,3,4,5,6点中任选一个,并押上赌注m 元,然后掷1颗骰子,连续掷3次,若你所押的点数 在3次掷骰子过程中出现1次, 2次,3次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的 1倍,2倍,3倍的奖励.如果3次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家没收. (1)求掷3次骰子,至少出现1次为5点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.21.设不等式的解集为.(1)求集合; (2)若,∈,试比较与的大小。
铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=02.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α3.命题:“∀x>0,都有x2﹣x≥0”的否定是()A.∀x≤0,都有x2﹣x>0 B.∀x>0,都有x2﹣x≤0C.∃x>0,使得x2﹣x<0 D.∃x≤0,使得x2﹣x>04.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为()A.54 B.162 C.54+18 D.162+185.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1 B.2 C.3 D.46.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1 B.C.e﹣1 D.e+17.已知集合M={1,4,7},M∪N=M,则集合N不可能是()A.∅B.{1,4} C.M D.{2,7}8.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题9. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣10.在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .411.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是( )A .B .πC .D .12.设a ,b 为正实数,11a b+≤23()4()a b ab -=,则log a b =( )A.0B.1-C.1 D .1-或0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.设是空间中给定的个不同的点,则使成立的点的个数有_________个.14.已知数列{}n a 中,11a =,函数3212()3432n n a f x x x a x -=-+-+在1x =处取得极值,则 n a =_________.15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 .17.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n=.18.已知f(x)=,则f(﹣)+f()等于.三、解答题19.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.20.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.21.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t)=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.22.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.23.(本题满分14分)在ABC ∆中,角A ,B ,C 所对的边分别为c b a ,,,已知cos (cos )cos 0C A A B +=. (1)求角B 的大小;(2)若2=+c a ,求b 的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.24.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2xf x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.2.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.3.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D5.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.6.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.7.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.8.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.9.【答案】D【解析】【分析】由于长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,故MN的中点P的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在△BCO内运动(含边界),有空间想象能力可知MN的中点P的轨迹为以O为球心,以1为半径的球体,则MN的中点P的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D10.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差OA OB OD+=(D点是AB的中点),另外,要选好基底-=,这是一个易错点,两个向量的和2OA OB BAAB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.11.【答案】C【解析】函数f(x)=sin(2x+θ)(﹣<θ<)向右平移φ个单位,得到g(x)=sin(2x+θ﹣2φ),因为两个函数都经过P(0,),所以sinθ=,又因为﹣<θ<,所以θ=,所以g(x)=sin(2x+﹣2φ),sin(﹣2φ)=,所以﹣2φ=2k π+,k ∈Z ,此时φ=k π,k ∈Z ,或﹣2φ=2k π+,k ∈Z ,此时φ=k π﹣,k ∈Z ,故选:C .【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档12.【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故11a b a b ab++≤⇒≤2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.二、填空题13.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。
铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0B.2x+y﹣1=0C.x﹣2y﹣5=0D.2x+y﹣5=02.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α3.命题:“∀x>0,都有x2﹣x≥0”的否定是()A.∀x≤0,都有x2﹣x>0B.∀x>0,都有x2﹣x≤0C.∃x>0,使得x2﹣x<0D.∃x≤0,使得x2﹣x>04.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为()A.54B.162C.54+18D.162+185.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为()A.1B.2C.3D.46.已知曲线C1:y=e x上一点A(x1,y1),曲线C2:y=1+ln(x﹣m)(m>0)上一点B(x2,y2),当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,则m的最小值为()A.1B.C.e﹣1D.e+17.已知集合M={1,4,7},M∪N=M,则集合N不可能是()A.∅B.{1,4}C.M D.{2,7}8.若命题p:∃x0∈R,sinx0=1;命题q:∀x∈R,x2+1<0,则下列结论正确的是()A.¬p为假命题B.¬q为假命题C.p∨q为假命题D.p∧q真命题9. 已知三棱锥A ﹣BCO ,OA 、OB 、OC 两两垂直且长度均为6,长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),则MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积为( )A .B .或36+C .36﹣D .或36﹣10.在中,角,,的对边分别是,,,为边上的高,,若ABC ∆A B C BH AC 5BH =,则到边的距离为( )2015120aBC bCA cAB ++=H AB A .2B .3 C.1 D .411.将函数f (x )=3sin (2x+θ)(﹣<θ<)的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象,若f (x ),g (x )的图象都经过点P (0,),则φ的值不可能是()A .B .πC .D .12.设,为正实数,,,则=()a b 11a b+≤23()4()a b ab -=log a b A.B. C.D.或01-11-0【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力.二、填空题13.设是空间中给定的个不同的点,则使成立的点的个数有_________个.14.已知数列中,,函数在处取得极值,则{}n a 11a =3212()3432n n a f x x x a x -=-+-+1x =_________.n a =15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.已知面积为的△ABC 中,∠A=若点D 为BC 边上的一点,且满足=,则当AD 取最小时,BD 的长为 . 17.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n= .18.已知f(x)=,则f(﹣)+f()等于 .三、解答题19.如图所示,已知+=1(a>>0)点A(1,)是离心率为的椭圆C:上的一点,斜率为的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.(Ⅰ)求椭圆C的方程;(Ⅱ)求△ABD面积的最大值;(Ⅲ)设直线AB、AD的斜率分别为k1,k2,试问:是否存在实数λ,使得k1+λk2=0成立?若存在,求出λ的值;否则说明理由.20.已知z是复数,若z+2i为实数(i为虚数单位),且z﹣4为纯虚数.(1)求复数z;(2)若复数(z+mi)2在复平面上对应的点在第四象限,求实数m的取值范围.21.已知P(m,n)是函授f(x)=e x﹣1图象上任一于点(Ⅰ)若点P关于直线y=x﹣1的对称点为Q(x,y),求Q点坐标满足的函数关系式(Ⅱ)已知点M(x0,y0)到直线l:Ax+By+C=0的距离d=,当点M在函数y=h(x)图象上时,公式变为,请参考该公式求出函数ω(s,t )=|s﹣e x﹣1﹣1|+|t﹣ln(t﹣1)|,(s∈R,t>0)的最小值.22.在直角坐标系xOy中,过点P(2,﹣1)的直线l的倾斜角为45°.以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ,直线l和曲线C的交点为A,B.(1)求曲线C的直角坐标方程;(2)求|PA|•|PB|.23.(本题满分14分)在ABC ∆中,角,,所对的边分别为,已知cos (cos )cos 0C A A B +-=.A B C c b a ,,(1)求角B 的大小;(2)若,求b 的取值范围.2=+c a 【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.24.【海安县2018届高三上学期第一次学业质量测试】已知函数,其中,是()()2x f x x ax a e =++a R ∈e 自然对数的底数.(1)当时,求曲线在处的切线方程;1a =()y f x =0x =(2)求函数的单调减区间;()f x (3)若在恒成立,求的取值范围.()4f x ≤[]4,0-a铜鼓县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.2.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.3.【答案】C【解析】解:命题是全称命题,则根据全称命题的否定是特称命题得命题的否定是:∃x>0,使得x2﹣x<0,故选:C.【点评】本题主要考查含有量词的命题的否定,比较基础.4.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体,其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D5.【答案】B【解析】解:设数列{a n}的公差为d,则由a1+a5=10,a4=7,可得2a1+4d=10,a1+3d=7,解得d=2,故选B.6.【答案】C【解析】解:当y1=y2时,对于任意x1,x2,都有|AB|≥e恒成立,可得:=1+ln(x2﹣m),x2﹣x1≥e,∴0<1+ln(x2﹣m)≤,∴.∵lnx≤x﹣1(x≥1),考虑x2﹣m≥1时.∴1+ln(x2﹣m)≤x2﹣m,令x2﹣m≤,化为m≥x﹣e x﹣e,x>m+.令f(x)=x﹣e x﹣e,则f′(x)=1﹣e x﹣e,可得x=e时,f(x)取得最大值.∴m≥e﹣1.故选:C.7.【答案】D【解析】解:∵M∪N=M,∴N⊆M,∴集合N不可能是{2,7},故选:D【点评】本题主要考查集合的关系的判断,比较基础.8.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.9.【答案】D【解析】【分析】由于长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界),有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,故MN 的中点P 的轨迹与三棱锥的面所围成的几何体的体积,利用体积分割及球体的体积公式即可.【解答】解:因为长为2的线段MN 的一个端点M 在棱OA 上运动,另一个端点N 在△BCO 内运动(含边界), 有空间想象能力可知MN 的中点P 的轨迹为以O 为球心,以1为半径的球体,则MN 的中点P 的轨迹与三棱锥的面所围成的几何体可能为该球体的或该三棱锥减去此球体的,即:或.故选D 10.【答案】D 【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差,这是一个易错点,两个向量的和(点是的中点),另外,要选好基底OA OB BA -= 2OA OB OD +=D AB 向量,如本题就要灵活使用向量,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几,AB AC何意义等.11.【答案】C【解析】函数f (x )=sin (2x+θ)(﹣<θ<)向右平移φ个单位,得到g (x )=sin (2x+θ﹣2φ),因为两个函数都经过P (0,),所以sin θ=,又因为﹣<θ<,所以θ=,所以g (x )=sin (2x+﹣2φ),sin (﹣2φ)=,所以﹣2φ=2k π+,k ∈Z ,此时φ=k π,k ∈Z ,或﹣2φ=2k π+,k ∈Z ,此时φ=k π﹣,k ∈Z ,故选:C .【点评】本题考查的知识点是函数y=Asin (ωx+φ)的图象变换,三角函数求值,难度中档 12.【答案】B.【解析】,故2323()4()()44()a b ab a b ab ab -=⇒+=+11a b a b ab++≤⇒≤,而事实上,2322()44()1184()82()()a b ab ab ab ab ab ab ab ab ++⇒≤⇒=+≤⇒+≤12ab ab +≥=∴,∴,故选B.1ab =log 1a b =-二、填空题13.【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设,则因为,所以,所以因此,存在唯一的点M ,使成立。
铜鼓县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.给出下列结论:①平行于同一条直线的两条直线平行;②平行于同一条直线的两个平面平行;③平行于同一个平面的两条直线平行;④平行于同一个平面的两个平面平行.其中正确的个数是()A.1个B.2个C.3个D.4个2.若函数f(x)=log a(2x2+x)(a>0且a≠1)在区间(0,)内恒有f(x)>0,则f(x)的单调递增区间为()A.(﹣∞,)B.(﹣,+∞)C.(0,+∞)D.(﹣∞,﹣)3.已知点P(1,﹣),则它的极坐标是()A.B.C.D.4.正方体的内切球与外接球的半径之比为()A.B.C.D.5.函数的定义域为()A.{x|1<x≤4} B.{x|1<x≤4,且x≠2} C.{x|1≤x≤4,且x≠2} D.{x|x≥4}6.在抛物线y2=2px(p>0)上,横坐标为4的点到焦点的距离为5,则该抛物线的准线方程为()A.x=1 B.x=C.x=﹣1 D.x=﹣7.已知点M的球坐标为(1,,),则它的直角坐标为()A.(1,,)B.(,,)C.(,,)D.(,,)8.圆心在直线2x+y=0上,且经过点(-1,-1)与(2,2)的圆,与x轴交于M,N两点,则|MN|=()A.4 2 B.4 5C.2 2 D.2 59.设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa210.如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为()A .54B .162C .54+18D .162+1811.设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l12.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .二、填空题13.函数y=f (x )的图象在点M (1,f (1))处的切线方程是y=3x ﹣2,则f (1)+f ′(1)= .14.给出下列四个命题:①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)15.如图,在平行四边形ABCD 中,点E 在边CD 上,若在平行四边形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率是 .16.若实数x ,y 满足x 2+y 2﹣2x+4y=0,则x ﹣2y 的最大值为 .17.已知函数f(x)=x m过点(2,),则m=.18.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且仅有两个数字相邻,则满足条件的不同五位数的个数是.(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.三、解答题19.设f(x)=ax2﹣(a+1)x+1(1)解关于x的不等式f(x)>0;(2)若对任意的a∈[﹣1,1],不等式f(x)>0恒成立,求x的取值范围.20.在△ABC中,D为BC边上的动点,且AD=3,B=.(1)若cos∠ADC=,求AB的值;(2)令∠BAD=θ,用θ表示△ABD的周长f(θ),并求当θ取何值时,周长f(θ)取到最大值?21.已知椭圆E的中心在坐标原点,左、右焦点F1、F2分别在x轴上,离心率为,在其上有一动点A,A到点F1距离的最小值是1,过A、F1作一个平行四边形,顶点A、B、C、D都在椭圆E上,如图所示.(Ⅰ)求椭圆E的方程;(Ⅱ)判断▱ABCD能否为菱形,并说明理由.(Ⅲ)当▱ABCD的面积取到最大值时,判断▱ABCD的形状,并求出其最大值.22.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.23.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α24.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sinA﹣sinC(cosB+sinB)=0.(1)求角C的大小;(2)若c=2,且△ABC的面积为,求a,b的值.铜鼓县第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】考点:空间直线与平面的位置关系.【方法点晴】本题主要考查了空间中直线与平面的位置关系的判定与证明,其中解答中涉及到直线与直线平行的判定与性质、直线与平面平行的判定与性质的应用,着重考查了学生分析问题和解答问题的能力,属于中档试题,本题的解答中熟记直线与直线平行和直线与平面平行的判定与性质是解答的关键.2.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.3.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.4.【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,所以,正方体的内切球与外接球的半径之比为:故选C5.【答案】B【解析】解:要使函数有意义,只须,即,解得1<x≤4且x≠2,∴函数f(x)的定义域为{x|1<x≤4且x≠2}.故选B6.【答案】C【解析】解:由题意可得抛物线y2=2px(p>0)开口向右,焦点坐标(,0),准线方程x=﹣,由抛物线的定义可得抛物线上横坐标为4的点到准线的距离等于5,即4﹣(﹣)=5,解之可得p=2故抛物线的准线方程为x=﹣1.故选:C.【点评】本题考查抛物线的定义,关键是由抛物线的方程得出其焦点和准线,属基础题.7.【答案】B【解析】解:设点M的直角坐标为(x,y,z),∵点M的球坐标为(1,,),∴x=sincos=,y=sinsin=,z=cos=∴M的直角坐标为(,,).故选:B .【点评】假设P (x ,y ,z )为空间内一点,则点P 也可用这样三个有次序的数r ,φ,θ来确定,其中r 为原点O 与点P 间的距离,θ为有向线段OP 与z 轴正向的夹角,φ为从正z 轴来看自x 轴按逆时针方向转到OM 所转过的角,这里M 为点P 在xOy 面上的投影.这样的三个数r ,φ,θ叫做点P 的球面坐标,显然,这里r ,φ,θ的变化范围为r ∈[0,+∞),φ∈[0,2π],θ∈[0,π],8. 【答案】【解析】选D.设圆的方程为(x -a )2+(y -b )2=r 2(r >0). 由题意得⎩⎪⎨⎪⎧2a +b =0(-1-a )2+(-1-b )2=r 2(2-a )2+(2-b )2=r2,解之得a =-1,b =2,r =3,∴圆的方程为(x +1)2+(y -2)2=9, 令y =0得,x =-1±5,∴|MN |=|(-1+5)-(-1-5)|=25,选D. 9. 【答案】B【解析】解:根据题意球的半径R 满足(2R )2=6a 2, 所以S 球=4πR 2=6πa 2.故选B10.【答案】D【解析】解:由已知中的三视图可得:该几何体是一个正方体截去一个三棱锥得到的组合体, 其表面有三个边长为6的正方形,三个直角边长为6的等腰直角三角形,和一个边长为6的等边三角形组成,故表面积S=3×6×6+3××6×6+×=162+18,故选:D11.【答案】C 111] 【解析】考点:线线,线面,面面的位置关系12.【答案】C【解析】解:由于q=2,∴∴;故选:C.二、填空题13.【答案】4.【解析】解:由题意得f′(1)=3,且f(1)=3×1﹣2=1所以f(1)+f′(1)=3+1=4.故答案为4.【点评】本题主要考查导数的几何意义,要注意分清f(a)与f′(a).14.【答案】③⑤【解析】解:①函数y=|x|,(x∈R)与函数,(x≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x﹣1)2的图象可由y=3x2的图象向右平移1个单位得到;正确;④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域由0≤2x≤2,⇒0≤x≤1,它的定义域为:[0,1];故错;⑤设函数f(x)是在区间[a.b]上图象连续的函数,且f(a)f(b)<0,则方程f(x)=0在区间[a,b]上至少有一实根.故正确;故答案为:③⑤15.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.16.【答案】10【解析】【分析】先配方为圆的标准方程再画出图形,设z=x﹣2y,再利用z的几何意义求最值,只需求出直线z=x﹣2y过图形上的点A的坐标,即可求解.【解答】解:方程x2+y2﹣2x+4y=0可化为(x﹣1)2+(y+2)2=5,即圆心为(1,﹣2),半径为的圆,(如图)设z=x﹣2y,将z看做斜率为的直线z=x﹣2y在y轴上的截距,经平移直线知:当直线z=x﹣2y经过点A(2,﹣4)时,z最大,最大值为:10.故答案为:10.17.【答案】﹣1.【解析】解:将(2,)代入函数f(x)得:=2m,解得:m=﹣1;故答案为:﹣1.【点评】本题考查了待定系数法求函数的解析式问题,是一道基础题.18.【答案】48【解析】三、解答题19.【答案】【解析】解:(1)f(x)>0,即为ax2﹣(a+1)x+1>0,即有(ax﹣1)(x﹣1)>0,当a=0时,即有1﹣x>0,解得x<1;当a<0时,即有(x﹣1)(x﹣)<0,由1>可得<x<1;当a=1时,(x﹣1)2>0,即有x∈R,x≠1;当a>1时,1>,可得x>1或x<;当0<a<1时,1<,可得x<1或x>.综上可得,a=0时,解集为{x|x<1};a<0时,解集为{x|<x<1};a=1时,解集为{x|x∈R,x≠1};a>1时,解集为{x|x>1或x<};0<a<1时,解集为{x|x<1或x>}.(2)对任意的a∈[﹣1,1],不等式f(x)>0恒成立,即为ax2﹣(a+1)x+1>0,即a(x2﹣1)﹣x+1>0,对任意的a∈[﹣1,1]恒成立.设g(a)=a(x2﹣1)﹣x+1,a∈[﹣1,1].则g(﹣1)>0,且g(1)>0,即﹣(x2﹣1)﹣x+1>0,且(x2﹣1)﹣x+1>0,即(x﹣1)(x+2)<0,且x(x﹣1)>0,解得﹣2<x<1,且x>1或x<0.可得﹣2<x<0.故x的取值范围是(﹣2,0).20.【答案】【解析】(本小题满分12分)解:(1)∵,∴,∴…2分(注:先算∴sin∠ADC给1分)∵,…3分∴,…5分(2)∵∠BAD=θ,∴, (6)由正弦定理有,…7分∴,…8分∴,…10分=,…11分当,即时f(θ)取到最大值9.…12分【点评】本题主要考查了诱导公式,同角三角函数基本关系式,正弦定理,三角函数恒等变换的应用,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想,属于中档题.21.【答案】【解析】解:(I)由题意可得:,解得c=1,a=2,b2=3.∴椭圆E的方程为=1.(II)假设▱ABCD能为菱形,则OA⊥OB,k OA•k OB=﹣1.①当AB⊥x轴时,把x=﹣1代入椭圆方程可得:=1,解得y=,取A,则|AD|=2,|AB|=3,此时▱ABCD不能为菱形.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.∴k OA•k OB=====,假设=﹣1,化为k2=﹣,因此平行四边形ABCD不可能是菱形.综上可得:平行四边形ABCD不可能是菱形.(III)①当AB⊥x轴时,由(II)可得:|AD|=2,|AB|=3,此时▱ABCD为矩形,S矩形ABCD=6.②当AB与x轴不垂直时,设直线AB的方程为:y=k(x+1),A(x1,y1),B(x2,y2).联立,化为:(3+4k2)x2+8k2x+4k2﹣12=0,∴x1+x2=﹣,x1x2=.|AB|==.点O到直线AB的距离d=.∴S平行四边形ABCD=4×S△OAB==2××=.则S2==<36,∴S<6.因此当平行四边形ABCD为矩形面积取得最大值6.22.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x,y,z)为平面ABD的一个法向量,由条件得,=,=(﹣2,0,a).∴即,不妨令x=1,则y=,z=,∴=.又二面角A﹣BD﹣C所成角θ的正切值是2,∴.∴=cosθ=,∴==,解得a=2.∴V ABCDE=V E﹣ADC+V E﹣ABC=+=+==8.∴该几何体ABCDE的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.23.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.24.【答案】【解析】(本题满分为12分)解:(1)∵由题意得,sinA=sin(B+C),∴sinBcosC+sinCcosB﹣sinCcosB﹣sinBsinC=0,…(2分)即sinB(cosC﹣sinC)=0,∵sinB≠0,∴tanC=,故C=.…(6分)(2)∵ab×=,∴ab=4,①又c=2,…(8分)∴a2+b2﹣2ab×=4,∴a2+b2=8.②∴由①②,解得a=2,b=2.…(12分)【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.。
铜鼓县高中2018-2019学年高二上学期数学期末模拟试卷含解析(1)
铜鼓县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若﹣+1=0,则角B 的度数是( )A .60°B .120°C .150°D .60°或120°2. △ABC 的内角A ,B ,C 所对的边分别为,,,已知a =b =6A π∠=,则B ∠=( )111]A .4π B .4π或34π C .3π或23π D .3π3. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为( )A .4B .8C .10D .134. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin2,则该数列的前10项和为( )A .89B .76C .77D .355. 已知函数f (x )=2ax 3﹣3x 2+1,若 f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(﹣1,0)D .(﹣∞,﹣1)6. 已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)7. 椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.8. 下列函数中,在区间(0,+∞)上为增函数的是( )A .y=x ﹣1B .y=()xC .y=x+D .y=ln (x+1)9. 把“二进制”数101101(2)化为“八进制”数是( ) A .40(8)B .45(8)C .50(8)D .55(8)10.过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )A .x ﹣2y+7=0B .2x+y ﹣1=0C .x ﹣2y ﹣5=0D .2x+y ﹣5=011.已知直线34110m x y +-=:与圆22(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意一点,则PAB ∆的面积为( )A . B.C. D. 12.自圆C :22(3)(4)4x y -++=外一点(,)P x y 引该圆的一条切线,切点为Q ,切线的长度等于点P 到原点O 的长,则点P 轨迹方程为( )A .86210x y --=B .86210x y +-=C .68210x y +-=D .68210x y --=【命题意图】本题考查直线与圆的位置关系、点到直线的距离,意在考查逻辑思维能力、转化能力、运算求解能力.二、填空题13.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .14.已知双曲线﹣=1(a >0,b >0)的一条渐近线方程是y=x ,它的一个焦点在抛物线y 2=48x 的准线上,则双曲线的方程是 .15.若函数2(1)1f x x +=-,则(2)f = .16.【启东中学2018届高三上学期第一次月考(10月)】在平面直角坐标系xOy 中,P 是曲线xC y e :=上一点,直线20l x y c :++=经过点P ,且与曲线C 在P 点处的切线垂直,则实数c 的值为________. 17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 .18.命题“(0,)2x π∀∈,sin 1x <”的否定是 ▲ .三、解答题19.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD . (1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.20.(本小题满分10分)选修41-:几何证明选讲如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于C B ,两点,弦AP CD //,BC AD ,相 交于点E ,F 为CE 上一点,且EC EF DE ⋅=2. (Ⅰ)求证:P EDF ∠=∠;(Ⅱ)若2,3,2:3:===EF DE BE CE ,求PA 的长.21.已知数列{a n }共有2k (k ≥2,k ∈Z )项,a 1=1,前n 项和为S n ,前n 项乘积为T n ,且a n+1=(a ﹣1)S n +2(n=1,2,…,2k ﹣1),其中a=2,数列{b n }满足b n =log 2,(Ⅰ)求数列{b n }的通项公式;(Ⅱ)若|b 1﹣|+|b 2﹣|+…+|b 2k ﹣1﹣|+|b 2k ﹣|≤,求k 的值.22.(本题满分12分)为了了解某地区心肺疾病是否与性别有关,在某医院随机地对入院的50人进行了问 卷调查,得到了如下的22⨯(1(2)在上述抽取的6人中选2人,求恰有一名女性的概率.(3)为了研究心肺疾病是否与性别有关,请计算出统计量2K ,判断心肺疾病与性别是否有关?(参考公式:))()()(()(2d b c a d c b a bc ad n K ++++-=,其中d c b a n +++=)23.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.24.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x ty t =-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.铜鼓县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】A【解析】解:根据正弦定理有:=,代入已知等式得:﹣+1=0,即﹣1=,整理得:2sinAcosB﹣cosBsinC=sinBcosC,即2sinAcosB=sinBcosC+cosBsinC=sin(B+C),又∵A+B+C=180°,∴sin(B+C)=sinA,可得2sinAcosB=sinA,∵sinA≠0,∴2cosB=1,即cosB=,则B=60°.故选:A.【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.2.【答案】B【解析】试题分析:由正弦定理可得()sin0,,24sin6B B Bππ=∴=∈∴=或34π,故选B.考点:1、正弦定理的应用;2、特殊角的三角函数.3.【答案】C【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),∵2tan=2,lg=﹣1,∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,∵lne=1,()﹣1=5,∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,∴+=0+10=10.故选:C.4.【答案】C【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77故选:C.5.【答案】D【解析】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D【点评】本题主要考查函数零点的应用,求函数的导数,利用导数和极值之间的关系是解决本题的关键.注意分类讨论.6.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.7.【答案】B8.【答案】D【解析】解:①y=x﹣1在区间(0,+∞)上为减函数,②y=()x是减函数,③y=x+,在(0,1)是减函数,(1,+∞)上为,增函数,④y=lnx在区间(0,+∞)上为增函数,∴A,B,C不正确,D正确,故选:D【点评】本题考查了基本的函数的单调区间,属于基本题目,关键掌握好常见的函数的单调区间.9. 【答案】D【解析】解:∵101101(2)=1×25+0+1×23+1×22+0+1×20=45(10).再利用“除8取余法”可得:45(10)=55(8). 故答案选D .10.【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7∴x ﹣2y+7=0 故选A .【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣2y+c=0.11.【答案】 C【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆的面积为1||2AB d '⋅=,选C . 12.【答案】D【解析】由切线性质知PQ CQ ⊥,所以222PQ PC QC=-,则由PQ PO =,得,2222(3)(4)4x y x y -++-=+,化简得68210x y --=,即点P 的轨迹方程,故选D , 二、填空题13.【答案】 3 .【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),故三角形的面积S=×2×3=3,故答案为:3.【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.14.【答案】【解析】解:因为抛物线y2=48x的准线方程为x=﹣12,则由题意知,点F(﹣12,0)是双曲线的左焦点,所以a2+b2=c2=144,又双曲线的一条渐近线方程是y=x,所以=,解得a2=36,b2=108,所以双曲线的方程为.故答案为:.【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,确定c和a2的值,是解题的关键.15.【答案】0【解析】111]考点:函数的解析式.16.【答案】-4-ln2【解析】点睛:曲线的切线问题就是考察导数应用,导数的含义就是该点切线的斜率,利用这个我们可以求出点的坐标,再根据点在线上(或点在曲线上),就可以求出对应的参数值。
铜鼓县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析
铜鼓县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知集合,则A0或B0或3C1或D1或32.已知a为常数,则使得成立的一个充分而不必要条件是()A.a>0 B.a<0 C.a>e D.a<e3.如图,网格纸上的正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体的体积为()A.30 B.50 C.75 D.1504.若实数x,y满足不等式组则2x+4y的最小值是()A.6 B.﹣6 C.4 D.25.在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺,末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的()A.33% B.49% C.62% D.88% 6.已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)﹣g(x)=x3﹣2x2,则f(2)+g(2)=()A.16 B.﹣16 C.8 D.﹣87.设0<a<1,实数x,y满足,则y关于x的函数的图象形状大致是()A. B. C.D.8.以过椭圆+=1(a>b>0)的右焦点的弦为直径的圆与其右准线的位置关系是()A.相交B.相切C.相离D.不能确定9.设函数f(x)=则不等式f(x)>f(1)的解集是()A.(﹣3,1)∪(3,+∞)B.(﹣3,1)∪(2,+∞)C.(﹣1,1)∪(3,+∞)D.(﹣∞,﹣3)∪(1,3)10.已知A={﹣4,2a﹣1,a2},B={a﹣5,1﹣a,9},且A∩B={9},则a的值是()A.a=3 B.a=﹣3 C.a=±3 D.a=5或a=±311.将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是()A.x=πB.C.D.12.已知正方体ABCD﹣A1B1C1D1中,点E为上底面A1C1的中心,若+,则x、y的值分别为()A.x=1,y=1 B.x=1,y=C.x=,y=D.x=,y=1二、填空题13.已知函数()()31,ln4f x x mxg x x=++=-.{}min,a b表示,a b中的最小值,若函数()()(){}()min,0h x f x g x x=>恰有三个零点,则实数m的取值范围是▲.14.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.15.已知命题p:∃x∈R,x2+2x+a≤0,若命题p是假命题,则实数a的取值范围是.(用区间表示)16.已知向量,满足42=,2||=,4)3()(=-⋅+,则a 与b 的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,属于容易题.17.若全集,集合,则18.设A={x|x ≤1或x ≥3},B={x|a ≤x ≤a+1},A ∩B=B ,则a 的取值范围是 .三、解答题19.已知函数f (x )=2cosx (sinx+cosx )﹣1(Ⅰ)求f (x )在区间[0,]上的最大值;(Ⅱ)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且f (B )=1,a+c=2,求b 的取值范围.20.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,x 轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线l 的极坐标方程为cos sin 2ρθρθ-=,曲线C 的极坐标方程为2sin 2cos (0)p p ρθθ=>.(1)设t 为参数,若22x =-+,求直线l 的参数方程; (2)已知直线l 与曲线C 交于,P Q ,设(2,4)M --,且2||||||PQ MP MQ =⋅,求实数p 的值.21.求下列函数的定义域,并用区间表示其结果.(1)y=+;(2)y=.22.如图所示,一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2﹣6x﹣91=0内切,求动圆圆心M的轨迹方程,并说明它是什么样的曲线.23.已知△ABC的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC的面积.24.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.铜鼓县民族中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
江西省宜春市铜鼓中学高二数学理上学期期末试题含解析
江西省宜春市铜鼓中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 2x2-5x-3<0的一个必要不充分条件是()A.-<x<3 B.-<x<0 C.-3<x<D.-1<x<6参考答案:D2. 已知定义域为正整数集的函数f(x)满足,则数列的前99项和为()A.-19799 B.-19797 C. -19795 D.-19793参考答案:A3. 6.设随机变量,若,则等于A. 1B. 2C.3D.4参考答案:B∵,又,∴,∴.4. 某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设H0:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的K2≈3.918,经查对下面的临界值表,我们()A.至少有95%的把握认为“这种血清能起到预防感冒的作用”B.至少有99%的把握认为“这种血清能起到预防感冒的作用”C.至少有97.5%的把握认为“这种血清能起到预防感冒的作用”D.没有充分理由说明“这种血清能起到预防感冒的作用”参考答案:A5. 函数f(x)在定义域R内可导,若f(x)=f(2﹣x),且当x∈(﹣∞,1)时,(x﹣1)f'(x)<0,设a=f(-1),b=f(),c=f(2),则()A .a <b <cB .b <c <a C.a<c<b D.c<a<b参考答案:C【考点】利用导数研究函数的单调性.【分析】利用导数的符号,确定函数的单调性,结合函数的对称性,判断大小.【解答】解:因为(x)=f(2﹣x),所以函数f(x)关于x=1对称,当x∈(﹣∞,1)时,(x﹣1)f′(x)<0,所以f′(x)>0,所以f(x)单调递增,而f(2)=f(0),f()=f(),﹣1<0<,∴f(﹣1)<f(0)=f(2)<f()=f(),即a<c<b,故选:C.6. 将两个数交换,使,下面语句正确一组是 ( )参考答案:B7. 为了在运行下面的程序之后得到输出y=16,键盘输入x应该是()A.或 B. C.或D.或参考答案:C8. 直线与圆的位置关系是()A.相离 B.相交 C.相切 D.不确定参考答案:B9. 椭圆的焦距为()A. 5 B. 3 C. 4 D. 8参考答案:D10. 已知点F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,且|AB|=8,则|AF2|+|BF2|=()A.20 B.18 C.12 D.10参考答案:C【考点】椭圆的简单性质.【分析】利用椭圆的定义,转化求解即可.【解答】解:点F1,F2为椭圆的两个焦点,过F1的直线交椭圆于A,B两点,且|AB|=8,a=5.则|AF2|+|BF2|+AF1||+|BF1|=|AF2|+|BF2|+|AB|=|AF2|+|BF2|+8=4a=20.|AF2|+|BF2|=12.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11. 给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是.参考答案:②④【考点】平面与平面之间的位置关系;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系.【专题】证明题.【分析】用空间中线与线、面与面、线与面的相关定义与定理进行判断,相关定理与定义较多,要根据每一个命题进行合理选择.①用面面平行的判定定理进行验证,②用面面垂直的判定定理进行验证;③用空间两条直线的位置关系验证;④用面面垂直的性质定理验证.【解答】解:当两个平面相交时,一个平面内的两条直线可以平行于另一个平面,故①不对;由平面与平面垂直的判定定理可知②正确;空间中垂直于同一条直线的两条直线可以平行,相交也可以异面,故③不对;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.故应填②④【点评】考查空间中面面的位置关系的判定,属于检查基础知识是否掌握熟练的题型.12. ______________.参考答案:1略13. 已知是圆为圆心)上一动点,线段AB的垂直平分线交BF于P,则动点P 的轨迹方程为.参考答案:【考点】轨迹方程.【专题】计算题;压轴题.【分析】先根据题意可知|BP|+|PF|正好为圆的半径,而PB|=|PA|,进而可知|AP|+|PF|=2.根据椭圆的定义可知,点P 的轨迹为以A ,F为焦点的椭圆,根据A,F求得a,c,进而求得b,答案可得.【解答】解:依题意可知|BP|+|PF|=2,|PB|=|PA|∴|AP|+|PF|=2根据椭圆的定义可知,点P的轨迹为以A,F为焦点的椭圆,a=1,c=,则有b=故点P的轨迹方程为故答案为【点评】本题主要考查了用定义法求轨迹方程的问题.考查了学生综合分析问题和解决问题的能力.14. 中的满足约束条件则的最小值是参考答案:15. 某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于 cm3.参考答案:16. 一轮船行驶时,单位时间的燃料费u与其速度v的立方成正比,若轮船的速度为每小时10km 时,燃料费为每小时35元,其余费用每小时为560元,这部分费用不随速度而变化,求轮船速度为多少时,轮船行每千米的费用最少(轮船最高速度为bkm/小时)?参考答案:解:设轮船的燃料费u与速度v之间的关系是:u=kv3(k≠0),由已知,当v=10时,u=35,∴35=k×103?k=,∴u=v3.∴轮船行驶1千米的费用y=u?+560?=v2+,用导数可求得当b20时,当v=20时费用最低为42元,当b<20时,费用最低为元;答:当b20时,当轮船速度为20km/h时,轮船行每千米的费用最少,最少费用为42元.当b<20时,费用最低为元略17. 若,则的最小值是___________;参考答案:6略三、解答题:本大题共5小题,共72分。
铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学(1)
铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.设集合()A.B. C.D.2.已知函数f(x)=,则的值为()A.B.C.﹣2 D.33.已知,其中i为虚数单位,则a+b=()A.﹣1 B.1 C.2 D.34.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是()A.0.42 B.0.28 C.0.3 D.0.75.已知命题p:2≤2,命题q:∃x0∈R,使得x02+2x0+2=0,则下列命题是真命题的是()A.¬p B.¬p∨q C.p∧q D.p∨q6.已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是()A.M∪N B.M∩N C.∁I M∪∁I N D.∁I M∩∁I N7.已知集合P={x|x≥0},Q={x|≥0},则P∩Q=()A.(﹣∞,2)B.(﹣∞,﹣1)C.[0,+∞)D.(2,+∞)8.已知x,y满足,且目标函数z=2x+y的最小值为1,则实数a的值是()A.1 B.C.D.9.如果(m∈R,i表示虚数单位),那么m=()A.1 B.﹣1 C.2 D.010.设等比数列{a n }的公比q=2,前n 项和为S n ,则=( )A .2B .4C .D .11.如图给出的是计算的值的一个流程图,其中判断框内应填入的条件是( )A .i ≤21B .i ≤11C .i ≥21D .i ≥1112.在ABC ∆中,b =3c =,30B =,则等于( )A B . C D .2二、填空题13.用“<”或“>”号填空:30.8 30.7.14.设不等式组表示的平面区域为M ,若直线l :y=k (x+2)上存在区域M 内的点,则k 的取值范围是 .15.在(x 2﹣)9的二项展开式中,常数项的值为 .16.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则{a n }的通项公式a n = .17.计算sin43°cos13°﹣cos43°sin13°的值为 .18.在极坐标系中,直线l的方程为ρcosθ=5,则点(4,)到直线l的距离为.三、解答题19.已知函数f(x)=a﹣,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.20.我市某校某数学老师这学期分别用m,n两种不同的教学方式试验高一甲、乙两个班(人数均为60人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的数学期末考试成绩,并作出茎叶图如图所示.(Ⅰ)依茎叶图判断哪个班的平均分高?(Ⅱ)现从甲班所抽数学成绩不低于80分的同学中随机抽取两名同学,用ξ表示抽到成绩为86分的人数,求ξ的分布列和数学期望;(Ⅲ)学校规定:成绩不低于85分的为优秀,作出分类变量成绩与教学方式的2×2列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”下面临界值表仅供参考:P(K2≥k)0.15 0.10 0.05 0.025 0.010 0.005 0.001k 2.072 2.706 3.841 5.024 6.635 7.879 10.828(参考公式:K2=,其中n=a+b+c+d)21.(本小题满分12分)已知函数21()cos cos 2f x x x x =--. (1)求函数()y f x =在[0,]2π上的最大值和最小值;(2)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,满足2c =,3a =,()0f B =,求sin A 的值.1111]22.(本小题满分10分)已知曲线22:149x y C +=,直线2,:22,x t l y t =+⎧⎨=-⎩(为参数). (1)写出曲线C 的参数方程,直线的普通方程;(2)过曲线C 上任意一点P 作与夹角为30的直线,交于点A ,求||PA 的最大值与最小值.23.已知二阶矩阵M有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M;(Ⅱ)求M5.24.已知二次函数f(x)=x2+bx+c,其中常数b,c∈R.(Ⅰ)若任意的x∈[﹣1,1],f(x)≥0,f(2+x)≤0,试求实数c的取值范围;(Ⅱ)若对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4,试求实数b的取值范围.铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:集合A中的不等式,当x>0时,解得:x>;当x<0时,解得:x<,集合B中的解集为x>,则A∩B=(,+∞).故选B【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.【答案】A【解析】解:∵函数f(x)=,∴f()==﹣2,=f(﹣2)=3﹣2=.故选:A.3.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.4.【答案】C【解析】解:∵口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,在口袋中摸球,摸到红球,摸到黑球,摸到白球这三个事件是互斥的摸出红球的概率是0.42,摸出白球的概率是0.28,∵摸出黑球是摸出红球或摸出白球的对立事件,∴摸出黑球的概率是1﹣0.42﹣0.28=0.3,故选C.【点评】本题考查互斥事件的概率,注意分清互斥事件与对立事件之间的关系,本题是一个简单的数字运算问题,只要细心做,这是一个一定会得分的题目.5.【答案】D【解析】解:命题p:2≤2是真命题,方程x2+2x+2=0无实根,故命题q:∃x0∈R,使得x02+2x0+2=0是假命题,故命题¬p,¬p∨q,p∧q是假命题,命题p∨q是真命题,故选:D6.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.7.【答案】D【解析】解:由Q中的不等式变形得:(x+1)(x﹣2)≥0,且x﹣2≠0,解得:x≤﹣1或x>2,即Q=(﹣∞,﹣1]∪(2,+∞),∵P=[0,+∞),∴P∩Q=(2,+∞),故选:D.8.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.9.【答案】A【解析】解:因为,而(m∈R,i表示虚数单位),所以,m=1.故选A.【点评】本题考查了复数代数形式的乘除运算,考查了复数相等的概念,两个复数相等,当且仅当实部等于实部,虚部等于虚部,此题是基础题.10.【答案】C【解析】解:由于q=2,∴∴;故选:C.11.【答案】D【解析】解:∵S=并由流程图中S=S+故循环的初值为1终值为10、步长为1故经过10次循环才能算出S=的值,故i≤10,应不满足条件,继续循环∴当i≥11,应满足条件,退出循环填入“i≥11”.故选D.12.【答案】C【解析】考点:余弦定理.二、填空题13.【答案】>【解析】解:∵y=3x是增函数,又0.8>0.7,∴30.8>30.7.故答案为:>【点评】本题考查对数函数、指数函数的性质和应用,是基础题.14.【答案】.【解析】解:作出不等式组对应的平面区域,直线y=k(x+2)过定点D(﹣2,0),由图象可知当直线l经过点A时,直线斜率最大,当经过点B时,直线斜率最小,由,解得,即A(1,3),此时k==,由,解得,即B(1,1),此时k==,故k的取值范围是,故答案为:【点评】本题主要考查线性规划的应用以及直线斜率的公式的计算,利用数形结合是解决此类问题的基本方法.15.【答案】84.【解析】解:(x2﹣)9的二项展开式的通项公式为T r+1=•(﹣1)r•x18﹣3r,令18﹣3r=0,求得r=6,可得常数项的值为T7===84,故答案为:84.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,属于基础题.16.【答案】.【解析】解:∵数列{S n}是首项和公比都是3的等比数列,∴S n =3n.故a1=s1=3,n≥2时,a n=S n ﹣s n﹣1=3n﹣3n﹣1=2•3n﹣1,故a n=.【点评】本题主要考查等比数列的通项公式,等比数列的前n项和公式,数列的前n项的和Sn与第n项an 的关系,属于中档题.17.【答案】.【解析】解:sin43°cos13°﹣cos43°sin13°=sin(43°﹣13°)=sin30°=,故答案为.18.【答案】3.【解析】解:直线l的方程为ρcosθ=5,化为x=5.点(4,)化为.∴点到直线l的距离d=5﹣2=3.故答案为:3.【点评】本题考查了极坐标化为直角坐标、点到直线的距离,属于基础题.三、解答题19.【答案】【解析】解:(1)a=1时:f(0)=1﹣=;(2)∵f(x)的定义域为R∴任取x1x2∈R且x1<x2则f(x1)﹣f(x2)=a﹣﹣a+=.∵y=2x在R是单调递增且x1<x2∴0<2x1<2x2,∴2x1﹣2x2<0,2x1+1>0,2x2+1>0,∴f(x1)﹣f(x2)<0即f(x1)<f(x2),∴f(x)在R上单调递增.(3)∵f(x)是奇函数∴f(﹣x)=﹣f(x),即a﹣=﹣a+,解得:a=1.∴f(ax)=f(x)又∵f(x)在R上单调递增∴x>2或x<﹣2时:|f(x)|>f(2),x=±2时:|f(x)|=f(2),﹣2<x<2时:|f(x)|<f(2).【点评】本题考查的是函数单调性、奇偶性等知识的综合问题.在解答的过程当中充分体现了计算的能力、单调性定义的应用以及问题转化的能力.值得同学们体会和反思.20.【答案】【解析】【专题】综合题;概率与统计.【分析】(Ⅰ)依据茎叶图,确定甲、乙班数学成绩集中的范围,即可得到结论;(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2,求出概率,可得ξ的分布列和数学期望;(Ⅲ)根据成绩不低于85分的为优秀,可得2×2列联表,计算K2,从而与临界值比较,即可得到结论.【解答】解:(Ⅰ)由茎叶图知甲班数学成绩集中于60﹣9之间,而乙班数学成绩集中于80﹣100分之间,所以乙班的平均分高┉┉┉┉┉┉(Ⅱ)由茎叶图知成绩为86分的同学有2人,其余不低于80分的同学为4人,ξ=0,1,2P(ξ=0)==,P(ξ=1)==,P(ξ=2)==┉┉┉┉┉┉则随机变量ξ的分布列为ξ0 1 2P数学期望Eξ=0×+1×+2×=人﹣┉┉┉┉┉┉┉┉(Ⅲ)2×2列联表为甲班乙班合计优秀 3 10 13不优秀17 10 27合计20 20 40┉┉┉┉┉K2=≈5.584>5.024因此在犯错误的概率不超过0.025的前提下可以认为成绩优秀与教学方式有关.┉┉【点评】本题考查概率的计算,考查独立性检验知识,考查学生的计算能力,属于中档题.21.【答案】(1)最大值为,最小值为32-;(2)14. 【解析】试题分析:(1)将函数利用两角和的正余弦公式,倍角公式,辅助角公式将函数化简()sin(2)16f x x π=--再利用()sin()(0,||)2f x A x b πωϕωϕ=++><的性质可求在[0,]2π上的最值;(2)利用()0f B =,可得B ,再由余弦定理可得AC ,再据正弦定理可得sin A .1试题解析:(2)因为()0f B =,即sin(2)16B π-=∵(0,)B π∈,∴112(,)666B πππ-∈-,∴262B ππ-=,∴3B π= 又在ABC ∆中,由余弦定理得,22212cos 49223732b c a c a π=+-⋅⋅=+-⨯⨯⨯=,所以AC .由正弦定理得:sin sin b a B A =3sin sin 3A =,所以sin 14A =.考点:1.辅助角公式;2.()sin()(0,||)2f x A x b πωϕωϕ=++><性质;3.正余弦定理.【思路点睛】本题主要考查倍角公式,正余弦定理.在利用正,余弦定理 解三角形的过程中,当所给的等式中既有正弦又有余弦时,常利用正弦定理将边的关系转化为角的关系;如果出现边的平方或者两边长的乘积时 可考虑使用余弦定理判断三角形的形状.解三角形问题时,要注意正,余弦定理的变形应用,解题思路有两个:一个是角化为边,二是边化为角.22.【答案】(1)2cos 3sin x y θθ=⎧⎨=⎩,26y x =-+;(2.【解析】试题分析:(1)由平方关系和曲线C 方程写出曲线C 的参数方程,消去参数作可得直线的普通方程;(2)由曲线C 的参数方程设曲线上C 任意一点P 的坐标,利用点到直线的距离公式求出点P 直线的距离,利用正弦函数求出PA ,利用辅助角公式进行化简,再由正弦函数的性质求出PA 的最大值与最小值. 试题解析:(1)曲线C 的参数方程为2cos 3sin x y θθ=⎧⎨=⎩,(为参数),直线的普通方程为26y x =-+.(2)曲线C 上任意一点(2cos ,3sin )P θθ到的距离为4cos 3sin 6|d θθ=+-.则|||5sin()6|sin 30d PA θα==+-,其中α为锐角,且4tan 3α=,当sin()1θα+=-时,||PA 取得最大值,最大值为5.当sin()1θα+=时,||PA 取得最小值,最小值为5.考点:1、三角函数的最值;2、椭圆的参数方程及直线的的参数方程. 23.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.24.【答案】【解析】解:(Ⅰ)因为x ∈[﹣1,1],则2+x ∈[1,3], 由已知,有对任意的x ∈[﹣1,1],f (x )≥0恒成立, 任意的x ∈[1,3],f (x )≤0恒成立,故f (1)=0,即1为函数函数f (x )的一个零点.由韦达定理,可得函数f(x)的另一个零点,又由任意的x∈[1,3],f(x)≤0恒成立,∴[1,3]⊆[1,c],即c≥3(Ⅱ)函数f(x)=x2+bx+c对任意的x1,x2∈[﹣1,1],有|f(x1)﹣f(x2)|≤4恒成立,即f(x)max﹣f(x)min≤4,记f(x)max﹣f(x)min=M,则M≤4.当||>1,即|b|>2时,M=|f(1)﹣f(﹣1)|=|2b|>4,与M≤4矛盾;当||≤1,即|b|≤2时,M=max{f(1),f(﹣1)}﹣f()=﹣f()=(1+)2≤4,解得:|b|≤2,即﹣2≤b≤2,综上,b的取值范围为﹣2≤b≤2.【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.。
铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学
铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知,则f{f[f(﹣2)]}的值为()A.0 B.2 C.4 D.82.在中,、、分别为角、、所对的边,若,则此三角形的形状一定是()A.等腰直角B.等腰或直角C.等腰D.直角3.在正方体ABCD﹣A1B1C1D1中,点E为底面ABCD上的动点.若三棱锥B﹣D1EC的表面积最大,则E 点位于()A.点A处B.线段AD的中点处C.线段AB的中点处D.点D处4.设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B∪(∁U A)=()A.{5} B.{1,2,5} C.{1,2,3,4,5} D.∅5.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π6.(﹣6≤a≤3)的最大值为()A.9 B.C.3 D.7.某三棱锥的三视图如图所示,该三棱锥的表面积是A、28+B、30+C、56+D、60+8.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是()A.2日和5日B.5日和6日C.6日和11日D.2日和11日9. 给出下列命题:①多面体是若干个平面多边形所围成的图形;②有一个平面是多边形,其余各 面是三角形的几何体是棱锥;③有两个面是相同边数的多边形,其余各面是梯形的多面体是棱台.其中 正确命题的个数是( )A .0B .1C .2D .310.=( )A .﹣iB .iC .1+iD .1﹣i11.下列函数中,既是奇函数又在区间(0,+∞)上单调递增的函数为( ) A .y=sinxB .y=1g2xC .y=lnxD .y=﹣x 3【考点】函数单调性的判断与证明;函数奇偶性的判断. 【专题】函数的性质及应用.【分析】根据正弦函数的单调性,对数的运算,一次函数的单调性,对数函数的图象及单调性的定义即可判断每个选项的正误,从而找出正确选项.12.已知集合P={x|x ≥0},Q={x|≥0},则P ∩Q=( ) A .(﹣∞,2) B .(﹣∞,﹣1)C .[0,+∞)D .(2,+∞)二、填空题13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .14.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .15.【泰州中学2018届高三10月月考】设函数()()21xf x ex ax a =--+,其中1a <,若存在唯一的整数0x ,使得()00f x <,则a 的取值范围是16.如图所示,在三棱锥C ﹣ABD 中,E 、F 分别是AC 和BD 的中点,若CD=2AB=4,EF ⊥AB ,则EF 与CD 所成的角是 .17.【常熟中学2018届高三10月阶段性抽测(一)】函数()21ln 2f x x x =-的单调递减区间为__________.18.设为单位向量,①若为平面内的某个向量,则=||•;②若与平行,则=||•;③若与平行且||=1,则=.上述命题中,假命题个数是 .三、解答题19.如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.(1)求证:平面AEC⊥平面PDB;(2)当PD=AB,且E为PB的中点时,求AE与平面PDB所成的角的大小.20.已知正项等差{a n},lga1,lga2,lga4成等差数列,又b n=(1)求证{b n}为等比数列.(2)若{b n}前3项的和等于,求{a n}的首项a1和公差d.21.已知函数f(x)=lnx﹣kx+1(k∈R).(Ⅰ)若x轴是曲线f(x)=lnx﹣kx+1一条切线,求k的值;(Ⅱ)若f(x)≤0恒成立,试确定实数k的取值范围.22.如图,在几何体SABCD中,AD⊥平面SCD,BC⊥平面SCD,AD=DC=2,BC=1,又SD=2,∠SDC=120°.(1)求SC与平面SAB所成角的正弦值;(2)求平面SAD与平面SAB所成的锐二面角的余弦值.23.(本小题满分12分)菜农为了蔬菜长势良好,定期将用国家规定的低毒杀虫农药对蔬菜进行喷洒,以防止害虫的危害,待蔬菜成熟时将采集上市销售,但蔬菜上仍存有少量的残留农药,食用时可用清水清洗干净,下表是用清水x(1附:设ωi=x2i,有下列数据处理信息:ω=11,y=38,(ωi-ω)(y i-y)=-811,(ωi-ω)2=374,对于一组数据(x1,y1),(x2,y2),…,(x n,y n),其回归直线方程y=bx+a的斜率和截距的最小二乘估计分别为(3)为了节约用水,且把每千克蔬菜上的残留农药洗净估计最多用多少千克水.(结果保留1位有效数字)24.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈,都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.铜鼓县第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵﹣2<0∴f(﹣2)=0∴f(f(﹣2))=f(0)∵0=0∴f(0)=2即f(f(﹣2))=f(0)=2∵2>0∴f(2)=22=4即f{f[(﹣2)]}=f(f(0))=f(2)=4故选C.2.【答案】B【解析】因为,所以由余弦定理得,即,所以或,即此三角形为等腰三角形或直角三角形,故选B答案:B3.【答案】A【解析】解:如图,E为底面ABCD上的动点,连接BE,CE,D1E,对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,面BCD1的面积为定值,要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,而当E与A重合时,三侧面的面积均最大,∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.故选:A.【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.4.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.5.【答案】C【解析】解:函数y=2sin2x+sin2x=2×+sin2x=sin(2x﹣)+1,则函数的最小正周期为=π,故选:C.【点评】本题主要考查三角恒等变换,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为,属于基础题.6.【答案】B【解析】解:令f(a)=(3﹣a)(a+6)=﹣+,而且﹣6≤a≤3,由此可得函数f(a)的最大值为,故(﹣6≤a≤3)的最大值为=,故选B.【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题.7.【答案】B【解析】从所给的三视图可以得到该几何体为三棱锥,所求表面积为三棱锥四个面的面积之和。
铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析
铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知x ,y 满足时,z=x ﹣y 的最大值为( ) A .4B .﹣4C .0D .22. A={x|x <1},B={x|x <﹣2或x >0},则A ∩B=( )A .(0,1)B .(﹣∞,﹣2)C .(﹣2,0)D .(﹣∞,﹣2)∪(0,1)3. “x ≠0”是“x >0”是的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .305. 一个椭圆的半焦距为2,离心率e=,则它的短轴长是( )A .3B .C .2D .66. 已知抛物线24y x =的焦点为F ,(1,0)A -,点P 是抛物线上的动点,则当||||PF PA 的值最小时,PAF ∆的 面积为( )A.2B.2C.D. 4【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.7. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( ) A .(0,1) B .(e ﹣1,1) C .(0,e ﹣1) D .(1,e )8. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( )A .两个点B .四个点C .两条直线D .四条直线9. 设α、β是两个不同的平面,l 、m 为两条不同的直线,命题p :若平面α∥β,l ⊂α,m ⊂β,则l ∥m ;命题q :l ∥α,m ⊥l ,m ⊂β,则β⊥α,则下列命题为真命题的是( )A .p 或qB .p 且qC .¬p 或qD .p 且¬q10.若,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列为真命题的是( ) A .若,m βαβ⊂⊥,则m α⊥ B .若,//m m n αγ=,则//αβC .若,//m m βα⊥,则αβ⊥D .若,αγαβ⊥⊥,则βγ⊥11.已知角θ的终边经过点P (4,m ),且sin θ=,则m 等于( )A .﹣3B .3C .D .±312.在△ABC 中,已知D 是AB 边上一点,若=2,=,则λ=( )A .B .C .﹣D .﹣二、填空题13.向区域内随机投点,则该点与坐标原点连线的斜率大于1的概率为 .14.在等差数列}{n a 中,20161-=a ,其前n 项和为n S ,若2810810=-S S ,则2016S 的值等于 . 【命题意图】本题考查等差数列的通项公式、前n 项和公式,对等差数列性质也有较高要求,属于中等难度. 15.命题“若a >0,b >0,则ab >0”的逆否命题是 (填“真命题”或“假命题”.)16.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.17.把函数y=sin2x 的图象向左平移个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为 .18.若函数y=ln (﹣2x )为奇函数,则a= .三、解答题19.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x ≤200时,车流速度v 是车流密度x 的一次函数.(Ⅰ)当0≤x ≤200时,求函数v (x )的表达式;(Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)f (x )=x •v (x )可以达到最大,并求出最大值.(精确到1辆/小时).20.已知函数f (x )=alnx ﹣x (a >0). (Ⅰ)求函数f (x )的最大值;(Ⅱ)若x ∈(0,a ),证明:f (a+x )>f (a ﹣x );(Ⅲ)若α,β∈(0,+∞),f (α)=f (β),且α<β,证明:α+β>2α21.如图所示,两个全等的矩形ABCD 和ABEF 所在平面相交于AB ,M AC ∈,N FB ∈,且AM FN =,求证://MN 平面BCE .22.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.23.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))24.设a,b互为共轭复数,且(a+b)2﹣3abi=4﹣12i.求a,b 的值.铜鼓县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.2.【答案】D【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),∴A∩B=(﹣∞,﹣2)∪(0,1),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.3.【答案】B【解析】解:当x=﹣1时,满足x≠0,但x>0不成立.当x>0时,一定有x≠0成立,∴“x≠0”是“x>0”是的必要不充分条件.故选:B.4.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.5.【答案】C【解析】解:∵椭圆的半焦距为2,离心率e=,∴c=2,a=3,∴b=∴2b=2.故选:C.【点评】本题主要考查了椭圆的简单性质.属基础题.6.【答案】B【解析】设2(,)4yP y,则21||||yPFPA+=.又设214yt+=,则244y t=-,1t…,所以||||2PFPA==,当且仅当2t=,即2y=±时,等号成立,此时点(1,2)P±,PAF∆的面积为11||||22222AF y⋅=⨯⨯=,故选B.7.【答案】D【解析】解:由题意知:f(x)﹣lnx为常数,令f(x)﹣lnx=k(常数),则f(x)=lnx+k.由f[f(x)﹣lnx]=e+1,得f(k)=e+1,又f(k)=lnk+k=e+1,所以f(x)=lnx+e,f′(x)=,x>0.∴f(x)﹣f′(x)=lnx﹣+e,令g(x)=lnx﹣+﹣e=lnx﹣,x∈(0,+∞)可判断:g(x)=lnx﹣,x∈(0,+∞)上单调递增,g(1)=﹣1,g(e)=1﹣>0,∴x0∈(1,e),g(x0)=0,∴x0是方程f(x)﹣f′(x)=e的一个解,则x0可能存在的区间是(1,e)故选:D.【点评】本题考查了函数的单调性,零点的判断,构造思想,属于中档题.8.【答案】B【解析】解:方程(x2﹣4)2+(y2﹣4)2=0则x2﹣4=0并且y2﹣4=0,即,解得:,,,,得到4个点.故选:B.【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.9.【答案】C【解析】解:在长方体ABCD﹣A1B1C1D1中命题p:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足α∥β,l⊂α,m⊂β,而m与l异面,故命题p不正确;﹣p正确;命题q:平面AC为平面α,平面A1C1为平面β,直线A1D1,和直线AB分别是直线m,l,显然满足l∥α,m⊥l,m⊂β,而α∥β,故命题q不正确;﹣q正确;故选C.【点评】此题是个基础题.考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力.10.【答案】C【解析】试题分析:两个平面垂直,一个平面内的直线不一定垂直于另一个平面,所以A不正确;两个平面平行,两个平面内的直线不一定平行,所以B不正确;垂直于同一平面的两个平面不一定垂直,可能相交,也可能平行,所以D不正确;根据面面垂直的判定定理知C正确.故选C.考点:空间直线、平面间的位置关系.11.【答案】B【解析】解:角θ的终边经过点P(4,m),且sinθ=,可得,(m>0)解得m=3.故选:B.【点评】本题考查任意角的三角函数的定义的应用,基本知识的考查.12.【答案】A【解析】解:在△ABC中,已知D是AB边上一点∵=2,=,∴=,∴λ=,故选A.【点评】经历平面向量分解定理的探求过程,培养观察能力、抽象概括能力、体会化归思想,基底给定时,分解形式唯一,字母系数是被基底唯一确定的数量.二、填空题13.【答案】.【解析】解:不等式组的可行域为:由题意,A(1,1),∴区域的面积为=(x3)=,由,可得可行域的面积为:1=,∴坐标原点与点(1,1)的连线的斜率大于1,坐标原点与与坐标原点连线的斜率大于1的概率为:=故答案为:.【点评】本题考查线性规划的应用,几何概型,考查定积分知识的运用,解题的关键是利用定积分求面积.14.【答案】201615.【答案】 真命题【解析】解:若a >0,b >0,则ab >0成立,即原命题为真命题,则命题的逆否命题也为真命题,故答案为:真命题.【点评】本题主要考查命题的真假判断,根据逆否命题的真假性相同是解决本题的关键.16.【答案】-3e 【解析】f ′(x )=1x +2m x =2x m x,令f ′(x )=0,则x =-m ,且当x<-m 时,f ′(x )<0,f (x )单调递减,当x>-m 时,f ′(x )>0,f (x )单调递增.若-m ≤1,即m ≥-1时,f (x )min =f (1)=-m ≤1,不可能等于4;若1<-m ≤e ,即-e ≤m<-1时,f (x )min =f (-m )=ln (-m )+1,令ln (-m )+1=4,得m =-e 3(-e ,-1);若-m>e ,即m<-e 时,f (x )min =f (e )=1-m e ,令1-me=4,得m =-3e ,符合题意.综上所述,m=-3e.17.【答案】 y=cosx .【解析】解:把函数y=sin2x 的图象向左平移个单位长度,得,即y=cos2x 的图象,把y=cos2x的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cosx 的图象;故答案为:y=cosx .18.【答案】 4 .【解析】解:函数y=ln (﹣2x )为奇函数,可得f (﹣x )=﹣f (x ),ln (+2x )=﹣ln (﹣2x ).ln(+2x)=ln()=ln().可得1+ax2﹣4x2=1,解得a=4.故答案为:4.三、解答题19.【答案】【解析】解:(Ⅰ)由题意:当0≤x≤20时,v(x)=60;当20<x≤200时,设v(x)=ax+b再由已知得,解得故函数v(x)的表达式为.(Ⅱ)依题并由(Ⅰ)可得当0≤x<20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200当20≤x≤200时,当且仅当x=200﹣x,即x=100时,等号成立.所以,当x=100时,f(x)在区间(20,200]上取得最大值.综上所述,当x=100时,f(x)在区间[0,200]上取得最大值为,即当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.答:(Ⅰ)函数v(x)的表达式(Ⅱ)当车流密度为100辆/千米时,车流量可以达到最大值,最大值约为3333辆/小时.20.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.21.【答案】证明见解析.【解析】考点:直线与平面平行的判定与证明.22.【答案】【解析】解:(1)f(x)=﹣=sin2x+sinxcosx﹣=+sin2x﹣=sin(2x﹣)…3分周期T=π,因为cosx≠0,所以{x|x≠+kπ,k∈Z}…5分当2x﹣∈,即+kπ≤x≤+kπ,x≠+kπ,k∈Z时函数f(x)单调递减,所以函数f(x)的单调递减区间为,,k∈Z…7分(2)当,2x﹣∈,…9分sin(2x﹣)∈(﹣,1),当x=时取最大值,故当x=时函数f(x)取最大值为1…12分【点评】本题主要考查了三角函数中的恒等变换应用,三角函数的周期性及其求法,三角函数最值的解法,属于基础题.23.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+1]<0恒成立,2+x2因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴24.【答案】【解析】解:因为a,b互为共轭复数,所以设a=x+yi,则b=x﹣yi,a+b=2x,ab=x2+y2,所以4x2﹣3(x2+y2)i=4﹣12i,所以,解得,所以a=1+i,b=1﹣i;或a=1﹣i,b=1+i;或a=﹣1+i,b=﹣1﹣i;或a=﹣1﹣i,b=﹣1+i.【点评】本题考查了共轭复数以及复数相等;正确设出a,b 是解答的关键.。
铜鼓县二中2018-2019学年高二上学期第二次月考试卷数学
铜鼓县二中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .32. 数列{a n }是等差数列,若a 1+1,a 3+2,a 5+3构成公比为q 的等比数列,则q=( ) A .1 B .2 C .3 D .43. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2013 B .2014 C .2015 D .20161111] 4. 执行如图所以的程序框图,如果输入a=5,那么输出n=( )A.2 B.3 C.4 D.55.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则其侧视图的面积是()A.B.C.1 D.6.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是()A.众数 B.平均数C.中位数D.标准差7.△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成等比数列,且c=2a,则cosB=()A.B.C.D.8.在等比数列{a n}中,已知a1=3,公比q=2,则a2和a8的等比中项为()A.48 B.±48 C.96 D.±969.已知点F是抛物线y2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=()A.2 B.3 C.4 D.510.已知函数f (x )=﹣log 2x ,在下列区间中,包含f (x )零点的区间是( ) A .(0,1) B .(1,2) C .(2,4) D .(4,+∞)11.设函数f (x )满足f (x+π)=f (x )+cosx ,当0≤x ≤π时,f (x )=0,则f()=( )A. B.C .0D.﹣12.(理)已知tan α=2,则=( )A.B.C.D.二、填空题13.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .14.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 . 15.给出下列四个命题: ①函数y=|x|与函数表示同一个函数;②奇函数的图象一定通过直角坐标系的原点;③函数y=3x 2+1的图象可由y=3x 2的图象向上平移1个单位得到; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域为[0,4];⑤设函数f (x )是在区间[a ,b]上图象连续的函数,且f (a )•f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根;其中正确命题的序号是 .(填上所有正确命题的序号)16.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .17.命题“对任意的x ∈R ,x 3﹣x 2+1≤0”的否定是 .18.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 三、解答题19.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.20.等比数列{a n}的各项均为正数,且2a1+3a2=1,a32=9a2a6,(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log3a1+log3a2+…+log3a n,求数列{}的前n项和.21.已知曲线C1的极坐标方程为ρ=6cosθ,曲线C2的极坐标方程为θ=(p∈R),曲线C1,C2相交于A,B两点.(Ⅰ)把曲线C1,C2的极坐标方程转化为直角坐标方程;(Ⅱ)求弦AB的长度.22.证明:f(x)是周期为4的周期函数;(2)若f(x)=(0<x≤1),求x∈[﹣5,﹣4]时,函数f(x)的解析式.18.已知函数f(x)=是奇函数.23.已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(m+9﹣x)>0}(1)求A∩B(2)若A∪C=C,求实数m的取值范围.24.已知命题p:“存在实数a,使直线x+ay﹣2=0与圆x2+y2=1有公共点”,命题q:“存在实数a,使点(a,1)在椭圆内部”,若命题“p且¬q”是真命题,求实数a的取值范围.铜鼓县二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:因为AD•(BC•AC•sin60°)≥V D﹣ABC=,BC=1,即AD•≥1,因为2=AD+≥2=2,当且仅当AD==1时,等号成立,这时AC=,AD=1,且AD⊥面ABC,所以CD=2,AB=,得BD=,故最长棱的长为2.故选B.【点评】本题考查四面体中最长的棱长,考查棱锥的体积公式的运用,同时考查基本不等式的运用,注意等号成立的条件,属于中档题.2.【答案】A【解析】解:设等差数列{a n}的公差为d,由a1+1,a3+2,a5+3构成等比数列,得:(a3+2)2=(a1+1)(a5+3),整理得:a32+4a3+4=a1a5+3a1+a5+3即(a1+2d)2+4(a1+2d)+4=a1(a1+4d)+4a1+4d+3.化简得:(2d+1)2=0,即d=﹣.∴q===1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等比数列的性质,是基础的计算题.3.【答案】D【解析】1120142201520161...2201720172017201720172017f f f f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦()12201620162=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.【方法点睛】本题通过 “三次函数()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ”这一探索性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()311533212f x x x x =-+-的对称中心后再利用对称性和的.第Ⅱ卷(非选择题共90分)4. 【答案】B【解析】解:a=5,进入循环后各参数对应值变化如下表:p 15 20 结束 q 5 25 n 2 3 ∴结束运行的时候n=3.故选:B .【点评】本题考查了程序框图的应用,考查了条件结构和循环结构的知识点.解题的关键是理解题设中语句的意义,从中得出算法,由算法求出输出的结果.属于基础题.5. 【答案】B【解析】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,∴半圆锥的底面半径为1,高为,即半圆锥的侧视图是一个两直角边长分别为1和的直角三角形,故侧视图的面积是,故选:B.【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.6.【答案】D【解析】解:A样本数据:82,84,84,86,86,86,88,88,88,88.B样本数据84,86,86,88,88,88,90,90,90,90众数分别为88,90,不相等,A错.平均数86,88不相等,B错.中位数分别为86,88,不相等,C错A样本方差S2=[(82﹣86)2+2×(84﹣86)2+3×(86﹣86)2+4×(88﹣86)2]=4,标准差S=2,B样本方差S2=[(84﹣88)2+2×(86﹣88)2+3×(88﹣88)2+4×(90﹣88)2]=4,标准差S=2,D正确故选D.【点评】本题考查众数、平均数、中位标准差的定义,属于基础题.7.【答案】B【解析】解:△ABC中,a、b、c成等比数列,则b2=ac,由c=2a,则b=a,=,故选B.【点评】本题考查余弦定理的运用,要牢记余弦定理的两种形式,并能熟练应用.8.【答案】B【解析】解:∵在等比数列{a n}中,a1=3,公比q=2,∴a2=3×2=6,=384,∴a和a8的等比中项为=±48.2故选:B.9.【答案】B【解析】解:抛物线y2=4x的准线方程为:x=﹣1,∵P到焦点F的距离等于P到准线的距离,P的横坐标是2,∴|PF|=2+1=3.故选:B.【点评】本题考查抛物线的性质,利用抛物线定义是解题的关键,属于基础题.10.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C11.【答案】D【解析】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+cosx,当0≤x<π时,f(x)=1,∴f()=f()=f()+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos=f()+cos+cos+cos=0+cos﹣cos+cos=﹣.故选:D.【点评】本题考查抽象函数以及函数值的求法,诱导公式的应用,是基础题,解题时要认真审题,注意函数性质的合理运用.12.【答案】D【解析】解:∵tanα=2,∴===.故选D.二、填空题13.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.14.【答案】),0(+∞ 【解析】考点:利用导数研究函数的单调性.【方法点晴】本题是一道利用导数判断单调性的题目,解答本题的关键是掌握导数的相关知识,首先对已知的不等式进行变形,可得()()01>-'+x f x f ,结合要求的不等式可知在不等式两边同时乘以xe ,即()()0>-'+x x x e x f e x f e ,因此构造函数()()x x e x f e x g -=,求导利用函数的单调性解不等式.另外本题也可以构造满足前提的特殊函数,比如令()4=x f 也可以求解.115.【答案】 ③⑤【解析】解:①函数y=|x|,(x ∈R )与函数,(x ≥0)的定义域不同,它们不表示同一个函数;错;②奇函数y=,它的图象不通过直角坐标系的原点;故②错;③函数y=3(x ﹣1)2的图象可由y=3x 2的图象向右平移1个单位得到;正确; ④若函数f (x )的定义域为[0,2],则函数f (2x )的定义域由0≤2x ≤2,⇒0≤x ≤1, 它的定义域为:[0,1];故错;⑤设函数f (x )是在区间[a .b]上图象连续的函数,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b]上至少有一实根.故正确; 故答案为:③⑤16.【答案】 .【解析】解:在区间[﹣2,3]上任取一个数a,则﹣2≤a≤3,对应的区间长度为3﹣(﹣2)=5,若f(x)=x3﹣ax2+(a+2)x有极值,则f'(x)=x2﹣2ax+(a+2)=0有两个不同的根,即判别式△=4a2﹣4(a+2)>0,解得a>2或a<﹣1,∴﹣2≤a<﹣1或2<a≤3,则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,∴由几何概型的概率公式可得对应的概率P=,故答案为:【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a的取值范围是解决本题的关键.17.【答案】存在x∈R,x3﹣x2+1>0.【解析】解:因为全称命题的否定是特称命题,所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.故答案为:存在x∈R,x3﹣x2+1>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系.2,618.【答案】[]【解析】考点:简单的线性规划.【方法点睛】本题主要考查简单的线性规划.与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.常见代数式的几何意义:(1表示点(),x y与原点()0,0的距离;(2(),x y与点(),a b间的距离;(3)yx可表示点(),x y与()0,0点连线的斜率;(4)y bx a--表示点(),x y与点(),a b连线的斜率.三、解答题19.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD=AD ,PO ⊂平面PAD , ∴PO ⊥平面ABCD .以O 为坐标原点,分别以OB ,OD ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则D (0,3,0),A (0,﹣1,0),P (0,0,),C (,2,0),Q (0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC 的法向量为=(x ,y ,z ),∴,令y=﹣得=(3,﹣,5).∴cos <,>==﹣.∴直线PD 与平面AQC 所成角正弦值为.20.【答案】【解析】解:(Ⅰ)设数列{a n }的公比为q ,由a 32=9a 2a 6得a 32=9a 42,所以q 2=.由条件可知各项均为正数,故q=.由2a 1+3a 2=1得2a 1+3a 1q=1,所以a 1=.故数列{a n }的通项式为a n =.(Ⅱ)b n =++…+=﹣(1+2+…+n )=﹣,故=﹣=﹣2(﹣)则++…+=﹣2=﹣,所以数列{}的前n 项和为﹣.【点评】此题考查学生灵活运用等比数列的通项公式化简求值,掌握对数的运算性质及等差数列的前n 项和的公式,会进行数列的求和运算,是一道中档题.21.【答案】【解析】解:(Ⅰ)曲线C 2:(p ∈R )表示直线y=x ,曲线C 1:ρ=6cos θ,即ρ2=6ρcos θ 所以x 2+y 2=6x 即(x ﹣3)2+y 2=9(Ⅱ)∵圆心(3,0)到直线的距离,r=3所以弦长AB==.∴弦AB 的长度.【点评】本小题主要考查圆和直线的极坐标方程与直角坐标方程的互化,以及利用圆的几何性质计算圆心到直线的距等基本方法,属于基础题.22.【答案】【解析】(1)证明:由函数f (x )的图象关于直线x=1对称, 有f (x+1)=f (1﹣x ),即有f (﹣x )=f (x+2).又函数f (x )是定义在R 上的奇函数,有f (﹣x )=﹣f (x ).故f (x+2)=﹣f (x ).从而f (x+4)=﹣f (x+2)=f (x ).即f (x )是周期为4的周期函数.(2)解:由函数f (x )是定义在R 上的奇函数,有f (0)=0.x ∈[﹣1,0)时,﹣x ∈(0,1],.故x ∈[﹣1,0]时,.x ∈[﹣5,﹣4]时,x+4∈[﹣1,0],.从而,x ∈[﹣5,﹣4]时,函数f (x )的解析式为.【点评】本题考查函数奇偶性的性质,函数解析式的求解常用的方法,本题解题的关键是根据函数是一个奇函数对函数式进行整理,本题是一个中档题目.23.【答案】【解析】解:由合A={x|x 2﹣5x ﹣6<0},集合B={x|6x 2﹣5x+1≥0},集合C={x|(x ﹣m )(m+9﹣x )>0}.∴A={x|﹣1<x<6},,C={x|m<x<m+9}.(1),(2)由A∪C=C,可得A⊆C.即,解得﹣3≤m≤﹣1.24.【答案】【解析】解:∵直线x+ay﹣2=0与圆x2+y2=1有公共点∴≤1⇒a2≥1,即a≥1或a≤﹣1,命题p为真命题时,a≥1或a≤﹣1;∵点(a,1)在椭圆内部,∴,命题q为真命题时,﹣2<a<2,由复合命题真值表知:若命题“p且¬q”是真命题,则命题p,¬q都是真命题即p真q假,则⇒a≥2或a≤﹣2.故所求a的取值范围为(﹣∞,﹣2]∪[2,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铜鼓县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 函数是指数函数,则的值是( )2(44)xy a a a =-+A .4B .1或3C .3D .12. 定义在R 上的偶函数在[0,7]上是增函数,在[7,+∞)上是减函数,又f (7)=6,则f (x )( )A .在[﹣7,0]上是增函数,且最大值是6B .在[﹣7,0]上是增函数,且最小值是6C .在[﹣7,0]上是减函数,且最小值是6D .在[﹣7,0]上是减函数,且最大值是63. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0) 4. 已知,其中i 为虚数单位,则a+b=()A .﹣1B .1C .2D .35. 已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[]B[]C[]D[]6. 直线: (为参数)与圆:(为参数)的位置关系是( )A .相离B .相切C .相交且过圆心D .相交但不过圆心7. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°8. sin45°sin105°+sin45°sin15°=( )A .0B .C .D .19. 在三棱柱中,已知平面,此三棱111ABC A B C -1AA ⊥1=22ABC AA BC BAC π=∠=,, 柱各个顶点都在一个球面上,则球的体积为( )A .B .C.D .323π16π253π312π10.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是()A .1B .﹣1C .﹣2D .011.在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725-C. 725±D .242512.已知a=()﹣2,b=log 5,c=log 53,则a ,b ,c 的大小关系是( )A .a >b >cB .c >a >bC .a >c >bD .c >b >a二、填空题13.若数列{a n }满足:存在正整数T ,对于任意的正整数n ,都有a n+T =a n 成立,则称数列{a n }为周期为T 的周期数列.已知数列{a n }满足:a1>=m (m >a ),a n+1=,现给出以下三个命题:①若 m=,则a 5=2;②若 a 3=3,则m 可以取3个不同的值;③若 m=,则数列{a n }是周期为5的周期数列.其中正确命题的序号是 . 14.给出下列命题:(1)命题p :;菱形的对角线互相垂直平分,命题q :菱形的对角线相等;则p ∨q 是假命题(2)命题“若x 2﹣4x+3=0,则x=3”的逆否命题为真命题(3)“1<x <3”是“x 2﹣4x+3<0”的必要不充分条件(4)若命题p :∀x ∈R ,x 2+4x+5≠0,则¬p :.其中叙述正确的是 .(填上所有正确命题的序号)15.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为 .16.设a抛掷一枚骰子得到的点数,则方程x2+ax+a=0有两个不等实数根的概率为 .17.由曲线y=2x2,直线y=﹣4x﹣2,直线x=1围成的封闭图形的面积为 .18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.已知全集U=R,函数y=+的定义域为A,B={y|y=2x,1≤x≤2},求:(1)集合A,B;(2)(∁U A)∩B.20.已知集合P={x|2x2﹣3x+1≤0},Q={x|(x﹣a)(x﹣a﹣1)≤0}.(1)若a=1,求P∩Q;(2)若x∈P是x∈Q的充分条件,求实数a的取值范围.21.已知f(α)=,(1)化简f(α);(2)若f(α)=﹣2,求sinαcosα+cos2α的值.22.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x )件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?23.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.24.一个几何体的三视图如图所示,已知正(主)视图是底边长为1的平行四边形,侧(左)视图,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.V(1)求该几何体的体积;111]S(2)求该几何体的表面积.铜鼓县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】考点:指数函数的概念.2.【答案】D【解析】解:∵函数在[0,7]上是增函数,在[7,+∞)上是减函数,∴函数f(x)在x=7时,函数取得最大值f(7)=6,∵函数f(x)是偶函数,∴在[﹣7,0]上是减函数,且最大值是6,故选:D3.【答案】B【解析】解:由于函数y=a x (a>0且a≠1)图象一定过点(0,1),故函数y=a x+2(a>0且a≠1)图象一定过点(0,3),故选B.【点评】本题主要考查指数函数的单调性和特殊点,属于基础题.4.【答案】B【解析】解:由得a+2i=bi﹣1,所以由复数相等的意义知a=﹣1,b=2,所以a+b=1另解:由得﹣ai+2=b+i(a,b∈R),则﹣a=1,b=2,a+b=1.故选B.【点评】本题考查复数相等的意义、复数的基本运算,是基础题.5.【答案】B【解析】当x≥0时,f(x)=,由f(x)=x﹣3a2,x>2a2,得f(x)>﹣a2;当a2<x<2a2时,f(x)=﹣a2;由f(x)=﹣x,0≤x≤a2,得f(x)≥﹣a2。
∴当x>0时,。
∵函数f(x)为奇函数,∴当x<0时,。
∵对∀x∈R,都有f(x﹣1)≤f(x),∴2a2﹣(﹣4a2)≤1,解得:。
故实数a的取值范围是。
6.【答案】D【解析】【知识点】直线与圆的位置关系参数和普通方程互化【试题解析】将参数方程化普通方程为:直线:圆:圆心(2,1),半径2.圆心到直线的距离为:,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D7.【答案】A【解析】解:∵sinC=2sinB,∴c=2b,∵a2﹣b2=bc,∴cosA===∵A是三角形的内角∴A=30°故选A.【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题. 8.【答案】C【解析】解:sin45°sin105°+sin45°sin15°=cos45°cos15°+sin45°sin15°=cos(45°﹣15°)=cos30°=.故选:C.【点评】本题主要考查了诱导公式,两角差的余弦函数公式,特殊角的三角函数值在三角函数化简求值中的应用,考查了转化思想,属于基础题.9.【答案】A【解析】考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题. 11.【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化.12.【答案】C【解析】解:a=()﹣2=52=25>1,b=log 5<0,c=log 53∈(0,1),故a >c >b ,故选:C【点评】本题主要考查对数的大小比较,根据对数和指数的运算性质是解决本题的关键. 二、填空题13.【答案】 ①② .【解析】解:对于①由a n+1=,且a1=m=<1,所以,>1,,,∴a5=2 故①正确;对于②由a3=3,若a3=a2﹣1=3,则a2=4,若a1﹣1=4,则a1=5=m.若,则.若a1>1a1=,若0<a1≤1则a1=3,不合题意.所以,a3=2时,m即a1的不同取值由3个.故②正确;若a1=m=>1,则a2=,所a3=>1,a4=故在a1=时,数列{a n}是周期为3的周期数列,③错;故答案为:①②【点评】本题主要考查新定义题目,属于创新性题目,但又让学生能有较大的数列的知识应用空间,是较好的题目14.【答案】 (4) 【解析】解:(1)命题p:菱形的对角线互相垂直平分,为真命题.命题q:菱形的对角线相等为假命题;则p∨q是真命题,故(1)错误,(2)命题“若x2﹣4x+3=0,则x=3或x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,(3)由x2﹣4x+3<0得1<x<3,则“1<x<3”是“x2﹣4x+3<0”的充要条件,故(3)错误,(4)若命题p:∀x∈R,x2+4x+5≠0,则¬p:.正确,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题.15.【答案】 .【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.16.【答案】 .【解析】解:∵a是甲抛掷一枚骰子得到的点数,∴试验发生包含的事件数6,∵方程x2+ax+a=0 有两个不等实根,∴a2﹣4a>0,解得a>4,∵a是正整数,∴a=5,6,即满足条件的事件有2种结果,∴所求的概率是=,故答案为:【点评】本题考查等可能事件的概率,在解题过程中应用列举法来列举出所有的满足条件的事件数,是解题的关键.17.【答案】 .【解析】解:由方程组解得,x=﹣1,y=2故A(﹣1,2).如图,故所求图形的面积为S=∫﹣11(2x2)dx﹣∫﹣11(﹣4x﹣2)dx=﹣(﹣4)=故答案为:【点评】本题主要考查了定积分在求面积中的应用,以及定积分的计算,属于基础题.18.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题. 三、解答题19.【答案】【解析】解:(1)由,解得0≤x≤3A=[0,3],由B={y|y=2x,1≤x≤2}=[2,4],(2))∁U A=(﹣∞,0)∪[3,+∞),∴(∁U A)∩B=(3,4]20.【答案】【解析】解:(1)当a=1时,Q={x|(x﹣1)(x﹣2)≤0}={x|1≤x≤2}则P∩Q={1}(2)∵a≤a+1,∴Q={x|(x﹣a)(x﹣a﹣1)≤0}={x|a≤x≤a+1}∵x∈P是x∈Q的充分条件,∴P⊆Q∴,即实数a的取值范围是【点评】本题属于以不等式为依托,求集合的交集的基础题,以及充分条件的运用,也是高考常会考的题型. 21.【答案】【解析】解:(1)f(α)===﹣tanα;…5(分)(2)∵f(α)=﹣2,∴tanα=2,…6(分)∴sinαcosα+cos2α====.…10(分)22.【答案】【解析】解:(1)当x=1时,f(1)=p(1)=37.当2≤x≤12时,且x≤12)验证x=1符合f(x)=﹣3x2+40x,∴f(x)=﹣3x2+40x(x∈N*且x≤12).该商场预计销售该商品的月利润为g(x)=(﹣3x2+40x)(185﹣150﹣2x)=6x3﹣185x2+1400x,(x∈N*且x≤12),令h(x)=6x3﹣185x2+1400x(1≤x≤12),h'(x)=18x2﹣370x+1400,令h'(x)=0,解得(舍去).>0;当5<x≤12时,h'(x)<0.∴当x=5时,h(x)取最大值h(5)=3125.max=g(5)=3125(元).综上,5月份的月利润最大是3125元.【点评】本题考查利用函数知识解决应用题的有关知识.新高考中的重要的理念就是把数学知识运用到实际生活中,如何建模是解决这类问题的关键.同时要熟练地利用导数的知识解决函数的求最值问题.23.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为624.【答案】(1;(2).【解析】(2)由三视图可知,该平行六面体中平面,平面,1A D ⊥ABCD CD ⊥11BCC B ∴,侧面,均为矩形,12AA =11ABB A 11CDD C.12(11112)6S =⨯++⨯=+考点:几何体的三视图;几何体的表面积与体积.【方法点晴】本题主要考查了空间几何体的三视图、解题的表面积与体积的计算,其中解答中涉及到几何体的表面积和体积公式的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状是解答的关键.。